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Abstract

In various environments new agents may base their decisions on observations of actions taken by a few

other agents in the past. In this paper we analyze a broad class of such social learning processes, and study

under what circumstances they are path-dependent. Our main result shows that a population converges

to the same behavior independently of the initial state, provided that the expected number of actions

observed by each agent is less than one. Moreover, in any environment in which the expected number of

observed actions is more than one, there is a learning rule for which the initial state has a lasting impact

on future behavior.
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1 Introduction

Agents must often make decisions without knowing the cost and benefits of the possible choices. In such

situations an inexperienced (or “newborn”) agent may learn from the experience of others, by basing his

decision, on observations of a few actions taken by other agents in the past (see, e.g., the social learning

models of Ellison & Fudenberg, 1993, 1995; Banerjee & Fudenberg, 2004; Acemoglu et al., 2011). In other

environments, agents interact with random opponents, and an agent may base his choice of action on a few

observations of how his current opponent behaved in the past (as first described in Rosenthal, 1979, and

further developed and applied to various models of community enforcement in the Prisoner’s Dilemma game

in (Nowak & Sigmund, 1998; Takahashi, 2010; Heller & Mohlin, 2017)).

In this paper we analyze a broad class of social learning processes, and study under what circumstances

they are path-dependent. Specifically, we ask whether the initial behavior of the population has a lasting

influence on the population’s behavior in the long run. Our main result shows that, if the expected number of

actions that each revising agent observes is less than one, then the population converges to the same behavior

independently of the initial state. Moreover, if the expected number of observed actions is more than one, then

there is a rule according to which agents learn from the experience of others, such that if the agents follow

this learning rule, then the environment admits multiple steady states, and the initial state determines which

steady states will prevail.

∗This paper replaces an obsolete working paper titled “Unique Stationary Behavior” that presented related results in a narrower
setup. We thank Ron Peretz, Satoru Takahashi, Xiangqian Yang, and Peyton Young for valuable discussions and suggestions.
Yuval Heller is grateful to the European Research Council for its financial support (ERC starting grant #677057). Erik Mohlin is
grateful to Handelsbankens Forskningsstiftelser (grant #P2016-0079:1) and the Swedish Research Council (grant #2015-01751)
for their financial support.

†Affiliation: Department of Economics, Bar Ilan University, Israel. E-mail: yuval.heller@biu.ac.il.
‡Affiliation: Department of Economics, Lund University, Sweden. E-mail: erik.mohlin@nek.lu.se.
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Overview of the Model We consider an infinite population of agents. Time is discrete and in every period

each agent is faced with a choice among a fixed set of alternatives. Each agent in the population is endowed

with a type. The population state is a vector describing the aggregate distribution of actions played by agents

of each type. In each period a share 0 < β ≤ 1 of the agents are randomly selected to reevaluate their choice,

while the remaining agents play the same action as they played in the past. The revising agents can also be

interpreted as “newborn” agents that join the population. Each revising agent observes a finite sequence of

actions (called a sample) of random size. The sample may consists of either past actions of random agents

in the population (as in the social learning models mentioned above) or past actions of the current random

opponent (as in the community enforcement models mentioned above). An environment is a tuple that specifies

all the above components.

A profile of learning rules assigns to each type in the population a rule that determines the distribution of

actions played by a revising agent as a function of the observed sample. The environment and the profile of

learning rules jointly induce a mapping between population states that determines a new population state for

each initial state. A population state is steady state if it is a fixed point of this mapping.

Main Results Our main result (Theorem 2) fully characterizes which environments admit learning rules

with multiple steady states. Specifically, it shows that an environment admits a learning rule with more than

one multiple steady state if and only if the mean sample size is strictly more than one (or if agents always

observe a single action). In the opposite case, each profile of learning rules admits a unique steady state, and,

moreover, the population converges to the unique steady state from any initial state. The “only if” side relies

on showing that the mapping between states is a contraction mapping whenever the mean sample size is less

than one. The “if” side relies on constructing a specific learning rule, according to which agents play action

a′ if they observe action a′ in their sample, and play action a′′ otherwise. One can show that such a learning

rule always admits two different steady states provided that the expected number of observed actions is larger

than one.

Extensions We extend our model to deal with non-stationary environments, in which the distribution of

sample sizes and the agents’ learning rules depend on calendar time, and we characterize when a non-stationary

environment admits a unique sequence of states, such that it converges to this sequence of states from any

initial population state. We further extend the model to time-dependent common stochastic shocks that

influence the learning rules of all agents, and we characterize when the initial population state may have a

lasting effect in such environments.

Our results so far have not assumed anything about the agents’ learning rules. Obviously, additional

information on the learning rules, may allow us to achieve stronger results. Next, we present a simple notion

that measures how responsive a learning rule is to different samples, and we use this notion to define the

effective sample size of a learning process (which is always weakly smaller than the simple mean sample size).

Finally, we apply the notion of effective sample size to derive a tighter upper bound for learning processes that

admit unique steady states.

Related Literature Various papers have studied different aspects of the question of when social learning is

path dependent. Most of this literature focuses on specific learning rules, according to which revising agents

myopically best reply to the empirical frequency of the observed actions. Arthur (1989) (see related models
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and extensions in Arthur, 1994; Kaniovski & Young, 1995) studies games in which agents sequentially choose

which competing technology to adopt, and he shows that social learning is path dependent if the technologies

have increasing returns.

Kandori et al. (1993) and Young (1993a) study models of finite large populations who are involved in a

social learning process, and revising agents occasionally make mistakes (e.g., an agent adopts a technology that

is not his myopic best reply to his sampled information). They show that the path dependency of the social

learning process vanishes when infinite time horizons are considered. In many cases, when the probability

of mistakes is sufficiently small the population spends almost all the time in a unique “stochastically stable

state”, which is independent of the initial state. A key difference between our model and their models is that

we model an infinite population, rather than a large finite population. In Section 8, we discuss the relations

between the present paper and the literature on stochastic stability, and the interpretation of our results for

finite large populations.

Sandholm (2001) shows that when each revising agent observes k actions and the game admits a 1
k

-dominant

action a∗ (i.e., action a∗ is the unique best reply against any mixed strategy assigning mass of at least 1
k

to

a∗), then the social learning converges to this action regardless of the initial state. Recently, Oyama et al.

(2015) substantially strengthens this result by extending it to iterated p-dominant actions, and by showing

that the global convergence is fast.

Our model differs from all the above-mentioned literature in that we study general environments and arbi-

trary learning rules (rather than focusing on a specific learning rule, such as myopic best replying). Moreover,

we ask what properties of the agents’ sampling procedures imply that any learning rule admits a unique steady

state and global convergence to this state.

Structure We present motivating examples in Section 2. The basic model is described in Section 3. Section

4 presents our main results. Section 5 generalizes the basic model to deal with heterogeneous populations.

In Section 6 we extend the analysis to non-stationary learning processes and to common shocks. In Section

7 we define the responsiveness of a learning rule, and use it to achieve a stronger sufficient condition for an

environment to admit a unique steady state. We conclude in Section 8. Technical proofs are presented in the

Appendix.

2 Motivating Examples

In this section we present three motivating examples, which will be revisited further below to demonstrate the

applicability of our model and the implications of our results.

Example 1 (Competing Technologies). Consider a population in which in each period a share of β ∈ (0, 1) of

the incumbent agents die, and are replaced with new agents. A population state describes the share of agents

who use each of two competing agricultural technologies, a1 and a2. Each new agent observes the action

of a single random incumbent, and receives a noisy signal about the expected payoff of the two competing

technologies. Following these observations the agent chooses one of the technologies. Assume that the learning

rules used by the agents imply that each new agent plays (on average) action a1 with a probability of ᾱ ∈ [0, 1]

after observing action a1, and with a probability of α ∈ [0, 1] after observing action1 a2. One can show that:

1This may be a natural assumption in a stationary environment if the profitability of the competing technologies is independent
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1. if ᾱ = 1 and α = 0, then any population state is a steady state of the environment, and

2. otherwise, the population converges from any initial population state to a unique steady state in which

a share
α

1+α−ᾱ
of the agents play action a1.

The second example is a simple variant of various models of indirect reciprocity and “image scoring” (see,

e.g., (Nowak & Sigmund, 1998; Takahashi, 2010; Heller & Mohlin, 2017)).

Example 2 (Indirect Reciprocity). Consider a population in which in each period each agent is randomly

matched with three opponents, and plays a Prisoner’s Dilemma with each of them. In each match (within

the same period) the agent observes, with a probability of p ∈ (0, 1), one action played in the previous round

by his current opponents. We consider two different cases of what happens with the remaining probability

of 1 − p. Case I: The agent observes no actions, and in this case the agent cooperates with probability α.

Case II: The agent observes the three actions played in the previous round by his current opponents. If an

agent observes past actions of opponents, then the agent plays the modal action of the opponent (i.e., the

agent defects when the unique observed action is defection, or when at least 2 out of the 3 observed actions

are defections). Under these conditions one can show the following. Case I: the population converges from

any initial population state to a unique steady state in which each agent defects with an average probability

of α. Case II: If, initially, the average probability of cooperation was above (below) 50%, then the population

converges to a steady state in which all agents always cooperate (defect).

Example 3 (Rock-Paper-Scissors). Consider a population in which each agent is matched with a random

opponent to play the rock-paper-scissors game. Each player has three pure actions (rock, paper, scissors),

and each action is the unique best reply to the previous action (modulo 3).2 In the initial round t = 1 the

aggregate distributions of actions is α0 ∈ ∆ (rock, paper, scissors). In each later round, a share p ∈ [0, 1] of

the population observes the opponent’s action in the previous round, and best-replies to it. The remaining

share 1 − p of the agents observe no actions, and plays the mixed action α̂.

If p = 1 it is immediate that the population’s behavior cycles “around” permutations of the initial behavior (as

is common in evolutionary models of rock-paper-scissors; see, e.g., the analysis in Cason et al. 2014). Formally,

let t ∈ {0, 1, 2, ...}:

1. In round 3 · t+ 1 agents play rock with a probability of α0 (rock), paper with a probability of α0 (paper),

and scissors with a probability of α0 (scissors).

2. In round 3·t+2 agents play rock with a probability of α0 (scissors), paper with a probability of α0 (rock),

and scissors with a probability of α0 (paper).

3. In round 3·t+3 agents play rock with a probability of α0 (paper), paper with a probability of α0 (scissors),

and scissors with a probability of α0 (rock).

However, when p < 1, one can show that the population converges to the following unique behavior (regardless

of the initial behavior α0):

of the fraction of users. Stationarity means that signal distributions are constant over time so that choice probabilities do not need
to depend on calendar time. The fact that profitability is independent of the fraction of users means that signal distributions do
not change as the population state changes, and hence there is no need to condition choice on anything other than the observed
action.

2Observe that the analysis depends only on the ordinal best-reply correspondence over pure actions, and is independent of the
cardinal payoffs.
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Pr (rock) =
α̂ (rock) + p · α̂ (scissors) + p2 · α̂ (paper)

1 + p+ p2
,

Pr (paper) =
α̂ (paper) + p · α̂ (rock) + p2 · α̂ (scissors)

1 + p+ p2
.

Pr (scissors) =
α̂ (scissors) + p · α̂ (paper) + p2 · α̂ (rock)

1 + p+ p2
,

Note that when p is close to one, the unique behavior is close to the uniform mixed profile that assigns a

probability of 1
3 to each action.3

3 Basic Model

Throughout the paper we restrict attention to distributions with a finite support. Given a (possibly infinite)

set X, let ∆ (X) denote the set of distributions over this set that have a finite support. With a slight abuse

of notation we use x ∈ X to denote the degenerate distribution µ ∈ ∆ (X) that assigns probability one to x

(i.e., we write µ ≡ x if µ (x) = 1).

Population state. Consider an infinite population of agents.4 More precisely, the population consists of

continuum of agents with mass one. Time is discrete and in every period (or “round”) each agent is faced

with a choice among a fixed set of alternatives A. Let A be an ordered finite set of at least two actions (i.e.,

|A| ≥ 2).

The population state (or state for short) is identified with the aggregate distribution of actions played in

the population, denoted γ ∈ ∆ (A). Let Γ denote the set of all population states.

Revising agents. At each period, a share of 0 < β ≤ 1 of the agents are randomly selected to reevaluate

their choice, while the remaining 1−β share of the agents play the same action as they played in the past. The

case of β = 1 describes a population in which each agent reevaluates his action in every period. The case of

β ∈ (0, 1) may be interpreted as describing a fixed population, in which each agent reevaluates his action only

once every 1
β

period, due to inertia (see, e.g., Ellison & Fudenberg, 1995). Alternatively it may be interpreted

as describing a situation where, in each period, a share of β of the agents exit the population and are replaced

with new agents (see, e.g., Banerjee & Fudenberg, 2004). Each new agent chooses an action based on a sample

of a few actions of incumbents. The agent, then keeps playing this chosen action throughout his active life,

possibly because the initial choice requires a substantial action-specific investment, and it is too costly for an

agent to reinvest in a different action later on.

Sample. Each revising agent observes a finite sequence of actions (or sample). The size of the observed

sample is a random variable ν ∈ ∆ (N), where ∆ (N) denotes the set of finite support distributions over the

natural numbers (including zero). Let M denote the set of all feasible samples, i.e.,

M = ∪l∈supp(ν)A
l,

3This uniform mixed profile is not necessarily the Nash equilibrium of the underlying game, as the latter depends on the
cardinal payoffs.

4In Section 8, we discuss the implications of our results for large finite populations.

5



where A0 = {∅} is a singleton consisting of the empty sample ∅. Let l̄ = max (supp (ν)) < ∞ be the maximal

sample size. Note that M is finite in virtue of the finite-support assumption. For each sample size l ∈ N, let

ψl : Γ → ∆
(

Al
)

denote the distribution of samples observed by each agent in the population (or sampling

rule for short), conditional on the sample having size l. A typical sample of size l is represented by the vector
−→a = (a1, ..., al).

We assume that each agent independently samples different agents, and observes a random action played

by each of these agents. This kind of sampling is common in models of social learning (see, e.g., Ellison &

Fudenberg, 1995; Banerjee & Fudenberg, 2004). Formally, we define for each sample size l ∈ N, each state

γ ∈ Γ, and each sample (a1, ..., al),

ψl,γ (a1, ..., al) =
∏

1≤i≤l

γ (ai) . (1)

Environment. An environment is a tuple

E = (A, β, ν)

that includes the three components described above: a finite set of actions A, a fraction of revising agents at

each stage β, and a distribution of sample sizes ν.

Given environment E = (A, β, ν), let µl denote the mean sample size, i.e., the expected number of actions

observed by a random agent in the population. Formally:

µl =
∑

l∈supp(ν)

ν (l) · l.

Learning rule and stationary learning process. Each revising agent chooses his action in the new

population state by following a stationary (i.e., time-independent) learning rule σ : M → ∆ (A). That is,

a revising agent who observes sample m ∈ M plays action a with probability σm (a) . The remaining 1 − β

non-revising agents play the same action as in the previous round.

A stationary learning process (or learning process for short) is a pair

P = (E, σ) = (A, β, ν, σ)

consisting of an environment and a learning rule.

Population dynamics. An initial state and a learning process uniquely determine a new state. To see

this note that since the number of messages M , and actions A are finite, whereas the population is infinite,

the probability that an agent observes a message m and switches to an action a is equal to the fraction of

agents who observe a message m and switch to an action a. For this reason we say that the learning process

is deterministic, despite the fact that the choice of an individual agent may be stochastic.

Let fP : Γ → Γ denote the mapping between states induced by a single step of the learning process P .

That is, fP (γ̂) is the new state induced by a single step of the process P , given an initial state γ̂. Similarly,

for each t > 1, let f t
P (γ̂) denote the state induced after t steps of the learning process P , given an initial state

γ̂ (e.g., f2
P (γ̂) = fP (fP (γ̂)), f3

P (γ̂) = fP (fP (fP (γ̂))), etc.).

6



We say that γ∗ is a steady state with respect to the stationary learning process P , if it is a fixed point of

the induced mapping fP , i.e., if fP (γ∗) = γ∗.

Steady state γ∗ is a global attractor, if the population converges to γ∗from any initial state, i.e., if

limt−→∞f
t
P (γ̂) = γ∗ for all γ̂ ∈ Γ.

L1-distance. We measure distances between probability distributions with the L1-distance (norm). Specif-

ically, let the L1-distance between two distributions of samples ψl,γ , ψl,γ′ ∈ ∆
(

Al
)

of size l, be defined as

follows:

‖ψl,γ − ψl,γ′‖1 =
∑

m∈Al |ψl,γ (m) − ψl,γ′ (m)| .

Similarly the L1-distance between two distributions of actions γ, γ′ ∈ ∆ (A) is defined as follows:

‖γ − γ′‖1 =
∑

a∈A

|γ (a) − γ′ (a)| .

We conclude this section by demonstrating how the model captures motivating Examples 1–2.

Example 1 (Competing Technologies revisited). The environment in which agents learn which of two com-

peting technologies to use is modeled by a learning process

P = ({a1, a2} , β, ν ≡ 1, σ) ,

in which A = {a1, a2} is the set of competing technologies, β ∈ (0, 1) is the share of new agents

that join the population in each round (replacing incumbent agents who have died). Finally, let

the learning rule σ be defined as follows:

σ (a1) =







ᾱ a = a1

α a = a2.

Example 2 (Indirect Reciprocity revisited). The environment in which agents play the Prisoner’s Dilemma

and use rules representing indirect reciprocity is modeled by a learning process

P = ({c, d} , β = 1, ν, σ) ,

in which A = {c, d} is the set of actions in the Prisoner’s Dilemma, all agents revise their actions in each

round. Recall that in this environment each agent is matched with three different random opponents

in each round. For each such match, the agent observes a sample m of the opponent’s actions in the

previous round, and uses the the following learning rule σ to choose his action:

σ (m) =



















α · c+ (1 − α) · d m = ∅

c m ∈ {c, (c, c, c) , (c, c, d) , (c, d, c) , (d, c, c)}

d otherwise.

Let ν be defined as follows: ν (1) = p, and ν (0) = 1 −p in Case I, while ν (3) = 1 −p in Case II. Observe
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that the expected number of actions is smaller than one in Case I (µl = p), and larger than one in Case

II (µl = p+ 3 · (1 − p) = 3 − 2 · p).

4 Main Results

4.1 Upper Bound on the Distance between New States

Our first result shows that the distance between two new states is at most (1 − β · (1 − µl)) times the distance

between the two initial states. Formally,

Theorem 1. Let P = (A, β, ν, σ) be a stationary learning process, and let γ 6= γ′ ∈ Γ be two population states.

Then:

‖fP (γ) − fP (γ′)‖1 ≤ (1 − β · (1 − µl)) · ‖γ − γ′‖1 ,

with a strict inequality if there exists an l > 1 such that ν (l) > 0.

(Sketch of proof. Formal proof is presented for the more general result of Theorem 3.)

The distance between the final population states is bounded as follows:

‖(fP (γ)) − (fP (γ′))‖1 ≤ β ·
∑

l∈N

ν (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 . (2)

The intuition of this inequality is as follows. The first part of the RHS of Eq. (2) reflects the actions played by

the β revising agents. The social learning stage may induce different behaviors for revising agents who observe

samples of size l only if they observe different samples. Taking the weighted average of this expression with

respect to different sample sizes and different types yields the bound on how much the aggregate behaviors of

the revising agents may differ (i.e.,
∑

l∈N
ν (l) · ‖ψl,γ − ψl,γ′‖1). Finally, the mixed average of this expression

and the behavior of the non-revising agents, gives the total bound on the difference between the final population

states.

Next, observe that the distance between distributions of samples is bounded by the sample size times the

distance between the distributions of actions:

‖ψl,γ − ψl,γ′‖1 ≤ l · ‖γ − γ′‖1 ,

with a strict inequality if l > 1. Substituting the second inequality in (2) yields:

‖(fP (γ)) − (fP (γ′))‖1 ≤ β ·
∑

l∈N

ν (l) · l · ‖γ − γ′‖1 + (1 − β) · ‖γ − γ′‖1 =

(

β ·

(

∑

l∈N

ν (l) · l

)

+ (1 − β)

)

· ‖γ − γ′‖ = (β · µl + 1 − β) · ‖γ − γ′‖ = (1 − β · (1 − µl)) · ‖γ − γ′‖1 ,

with a strict inequality if there exists an l > 1 such that ν (l) > 0.

Observe that (1 − β · (1 − µl)) < 1 iff µl < 1. Recall that mapping f is weak contraction (AKA shrinking)

if ‖(f (γ)) − (f (γ′))‖ < ‖γ − γ′‖ for each γ 6= γ′. Theorem 1 implies that fP is a weak contraction mapping
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if either it holds that µl < 1, or it holds that µl = 1 and5 ν (1) < 1. The fact that the mapping fP is a weak

contraction mapping implies that fp admits a global attractor.6 Formally:

Corollary 1. Let P = (A, β, ν, σ) be a stationary learning process satisfying (1) µl < 1, or (2) µl = 1 and

ν (1) < 1. Then fP is a weak contraction mapping, which implies that (1) fP admits a unique steady state γ∗,

and (2) this unique steady state γ∗ is a global attractor (i.e., limt−→∞f
t
P (γ̂) = γ∗ for each γ̂ ∈ Γ).

4.2 Full Characterization of Environments that Admit Multiple Steady States

Our main result fully characterizes which environments admit learning rules for which the past casts a long

shadow. Specifically, it shows that an environment admits a learning rule with more than one multiple steady

state iff µ > 1 (alternatively if all agents sample exactly one action). In the opposite case (µ ≤ 1) each learning

rule admits a unique steady state, and, moreover, the population converges to the unique steady state from

any initial state. Formally:

Theorem 2. Let E = (A, β, ν) be an environment. The following two conditions are equivalent:

1. µl > 1, or ν (1) = 1.

2. There exists a learning rule σ, such that the learning process (E, σ) admits two different steady states.

Proof. Corollary 1 immediately implies that ¬1⇒¬2. We are left with the task of showing that 1 ⇒ 2.

Case A: Assume that ν (1) = 1 (i.e., each revising agent in the population observes a single action).

Consider the learning rule in which each agent plays the action that he observed, i.e., σ∗ (a) = a. Let γ be an

arbitrary population state. Observe that γ is a steady state of the learning process (E, σ∗) because:

(fP (γ)) (a) = γ (a) .

Case B: Assume that µl > 1. Let a and a′ be different actions (a 6= a′ ∈ A). Let σ∗ be a learning rule

according to which each agent plays action a∗ if he has observed action a∗ at least once, and plays action a′

otherwise, that is,

σ∗
(

al
)

=







a∗ ∃i, s.t., al
i = a∗

a′ otherwise.

It is immediate that the population state in which all agents play action a′ (i.e., γ (a′) = 1 ) is a steady state

of the learning process (E, σ∗). We now show that there exists x > 0, such that the population state γx in

which all agents play action a∗ with probability x, and play action a′ with the remaining probability of 1 − x

(i.e., γx (a∗) = x and γx (a′) = 1 −x) is another steady state of the learning process (E, σ∗). Observe that the

state γx is consistent with the learning process (E, σ∗) if and only if

(fP (γx)) (a∗) =
∑

l∈supp(ν)

ν (l) ·
1

|A|l
·
∑

~a∈Al

1(∃i s.t., ai=a∗) =
∑

l∈supp(ν)

ν (l) ·
∑

a;∈Al s.t.,

1 − (1 − x)
l ≡ g (x) . (3)

5Note that µl = 1 and ν (1) < 1 jointly imply that there exists l > 1 such that ν (l) > 0
6See Pata (2014, Theorem 1.7) for a formal proof that any weak contraction mapping on a compact metric space admits a

global attractor (see also the sketch of proof in Munkres, 2000, Section 28, Exercise 7). We thank Xiangqian Yang for kindly
referring us to these proofs.
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In order to demonstrate the existence of multiple steady states we need to show that there is x∗ such

that g (x∗) = x∗. Observe that g (x) (defined in (3) above) is a continuous increasing function of x, and that

g (1) ≤ 1. Below we show that g (x) > x for x << 1, which implies by standard a continuity argument that

there is 0 < x∗ ≤ 1 such that g (x∗) = x∗ , and hence γx∗

is a steady state of the learning process (E, σ∗).

We conclude the proof by showing that g (x) > x for x << 1. Observe that when x << 1 is close to 0, then

1 − (1 − x)
l

can be (Taylor-)approximated by

1 − (1 − x)
l

= 1 −
(

1 − l · x+O
(

x2
))

= l · x+O
(

x2
)

.

This implies that when x << 1, (fP (γx)) (a∗) can be approximated by:

(fP (γx)) (a∗) =
∑

l∈supp(νl)

ν (l) ·
∑

a;∈Al s.t.,∃i, s.t., al
i
=a∗

(

l · x+O
(

x2
))

=

x ·
∑

l∈supp(νl)

ν (l) ·
∑

a;∈Al s.t.,∃i, s.t., al
i
=a∗

l +O
(

x2
)

= x · µl +O
(

x2
)

> x.

5 Heterogeneous Population

The basic model assumes that all agents share the same distribution of sample sizes, and the same learning

rule. In many applications the population might be heterogeneous, i.e., the population includes various groups

that differ in their sampling procedures and learning rules. A few examples for such models with heterogeneous

populations are:

1. Ellison & Fudenberg (1993) studies competing technologies where each technology is better for some of

the players and these different taste induce different learning rules (see also Munshi, 2004).

2. Young (1993b) studies social learning in a bargaining model in which agents differ in the size of their

samples.

3. In a companion paper (Heller & Mohlin, 2017) analyses community enforcement in which the population

includes several types of agents, and each type uses a different strategy.

5.1 Extended Model

In what follows we introduce heterogeneous populations that include different types, and we redefine the

notions of population state, environment and learning process to deal with this heterogeneity in the sampling

sizes and learning rules.

Population state. Let Θ denote a finite set of types with a typical element θ. Let λθ denote the mass of

agents of type θ (or θ-agents). For simplicity, we assume that λ has full support. We redefine a population

state (or state for short) to be a vector γ = (γθ)θ∈Θ, where each γθ ∈ ∆ (A) denotes the aggregate distribution

of actions played by θ-agents. Let γ̄ ∈ ∆ (A) denote the average distribution of actions in the population
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(i.e., γ̄ (a) =
∑

θ λθγθ (a) for each action a ∈ A). A population state is uniform if all the types play the same

aggregate distribution of actions, i.e., if γθ (a) = γ̄ (a) for each type θ ∈ Θ and action a ∈ A. We redefine Γ to

denote the set of all population with heterogeneous types.

Revising agents. As in the basic model, in each period, a share of 0 < β ≤ 1 of the agents are randomly

selected to reevaluate their choice (i.e., a mass of β · λθ of θ-agents for each θ ∈ Θ), while the remaining 1 − β

share of the agents play the same action as they played in the past.

Sample. Each revising agent observes a finite sequence of actions (or sample). The size of the sample

observed by type θ is a random variable νθ ∈ ∆ (N), where ∆ (N) denotes the set of finite support distributions

over the natural numbers (including zero). Let M , the set of all feasible samples, be redefined as follows

M = ∪θ∈Θ ∪l∈supp(νθ) A
l,

Let l̄ = maxl∈ (∪θ∈Θsupp (νθ)) < ∞ be the maximal sample size. For each sample size l ∈ N , let ψl : Γ →

∆
(

Al
)

denote the distribution of samples observed by each agent in the population (or sampling rule for short),

conditional on the sample having size l. A typical sample of size l is represented by the vector −→a = (a1, ..., al).

We analyze two kinds of sampling methods in heterogeneous populations:

1. Observing different random agents: Each agent independently samples different agents, and observes a

random action played by each of these agents. This kind of sampling is a common modeling choice in

situations in which an agent’s payoff depends not on the behavior of a specific sub-group of opponents,

but on the agent’s own action, the state of nature, and, possibly, the aggregate behavior of the population

(see, e.g., Ellison & Fudenberg, 1995; Banerjee & Fudenberg, 2004). Formally, we define for each sample

size l ∈ N, each state γ ∈ Γ, and each sample (a1, ..., al),

ψl,γ (a1, ..., al) =
∏

1≤i≤l

γ̄ (ai) . (4)

2. Observing a single random type: Each agent randomly draws a type θ̄, and then the agent samples

different agents of type θ̄, and observes a random action played by each of these θ̄-agents. This kind of

observation is relevant to models in which the agent is randomly matched with an opponent, and may

sample some actions played in the past by agents with the same type as the opponent. Formally, we

define for each size l ∈ N, each state γ ∈ Γ, and each sample (a1, ..., al),

ψl,γ (a1, ..., al) =
∑

θ∈Θ

λθ ·
∏

1≤i≤l

γθ (ai) . (5)

In the case of β = 1, this sampling method has another interpretation that is common in models of

strategic interactions among randomly matched agents (e.g., (Rosenthal, 1979; Nowak & Sigmund, 1998;

Heller & Mohlin, 2017)). According to this interpretation, each agent is involved in n ≥ l̄ interactions

in each period. In each of these interactions the agent is randomly matched with a different opponent,

and the agent observes a sample of random actions played by the opponent in the previous round.
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Observe that both cases, i.e., (4) and (5), coincide in two special cases: (1) when the population state is

uniform (as in the basic model), or (2) when agents observe at most one action (i.e., l̄ = 1).

Remark 1. All our results work also in a setup in which some types use the first sampling method (i.e.,

observing different random agents), while other types use the second sampling method (i.e., observing a single

random type).

Environment. We redefine an environment as a tuple

E =
(

A,Θ, β, ψl, (λθ, νθ)θ∈Θ

)

that includes the six components described above: a finite set of actions A, a finite set of types Θ, a fraction

of revising agents at each stage β, a sampling rule ψl (satisfying either (4) or (5)), a distribution over the set

of types λ, and a profile of distributions of sample sizes (νθ)θ∈Θ.

Given environment E =
(

A,Θ, β, ψl, (λθ, νθ)θ∈Θ

)

, let µl, the mean sample size, be redefined as the expected

number of actions observed by a random agent in the population. Formally:

µl =
∑

θ∈Θ

λθ

∑

l∈supp(νθ)

νθ (l) · l.

Learning rule and stationary learning process. Each revising θ-agent chooses his action in the new

population state by following a stationary (i.e., time-independent) learning rule σθ : M → ∆ (A). That is, a

revising θ-agent who observes sample m ∈ M plays action a with probability σθ,m (a) . The remaining 1 − β

non-revising agents play the same action as in the previous round. A profile of learning rules (σθ)θ∈Θ is

uniform if all types use the same learning rule, i.e., if σθ = σθ′ for each type θ, θ′ ∈ Θ.

A stationary learning process (or learning process for short) is a pair

P =
(

E, (σθ)θ∈Θ

)

=
(

A,Θ, β, ψl, (λθ, νθ, σθ)θ∈Θ

)

,

consisting of an environment and a learning rule.

As in the basic model, let fP : Γ → Γ denote the mapping between states induced by a single step of the

learning process P .

L1-distance. Each population state γ ∈ Γ corresponds to a distribution qγ ∈ (Θ ×A) as follows: qγ (θ, a) =

λθ · γθ (a). We define the distance between two population states γ, γ′ ∈ Γ as the L1-distance between the

corresponding distributions qγ , qγ; ∈ (Θ ×A):

‖γ − γ′‖1 = ‖qγ − qγ′‖1 =
∑

θ∈Θ

∑

a∈A

|λθ · γθ (a) − λθ · γ′
θ (a)| =

∑

θ∈Θ

λθ · ‖γθ − γ′
θ‖1 .

We demonstrate how the extended model captures motivating Example 3, in which there are two types

that differ in their sample sizes.

Example 3 (Rock-Paper-Scissors revisited) The environment in which agents play the rock-paper-scissors
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game is modeled by a learning process

P =
(

{rock, paper, scissors} ,Θ = {θ1, θ2} , β = 1, ψl, (λθ, νθ, σθ)θ∈Θ

)

,

where Θ = {θ1, θ2} is the set of types, all agents revise their actions in each period, ψl is determined by

Eq. (5) representing an observation of a single random type. The mass of type θ1 is p (i.e., λθ1
= p and

λθ2
= 1 − p), θ1-agents always observe a single action (νθ1

≡ 1), and θ2-agents always observe no actions

(νθ2
≡ 0). Finally, let the learning rules be defined as follows:

σθ1
(a) =



















rock a = scissors

paper a = rock

scissors a = paper.

σθ2
(∅) = (α̂ (rock) , α̂ (paper) , α̂ (scissors)) .

Observe that the expected number of actions is equal to p (i.e., µl = p).

5.2 Generalizing the Main Results for Heterogeneous Populations

Our next result generalizes Theorem 1 to heterogeneous populations. It shows that the distance between two

new states is at most (1 − β · (1 − µl)) times the distance between the two initial states. Formally,

Theorem 3. (Generalization of Theorem 1) Let P =
(

A,Θ, β, ψl, (λθ, νθ, σθ)θ∈Θ

)

be a stationary learning

process, and let γ 6= γ′ ∈ Γ be two population states. Then:

‖fP (γ) − fP (γ′)‖1 ≤ (1 − β · (1 − µl)) · ‖γ − γ′‖1 ,

with a strict inequality if there exist a type θ and an l > 1 such that νθ (l) > 0.

The intuition is similar to Theorem 1. The proof is presented in the Appendix A.

Similar to Section 4, Theorem 1 implies that fP admits a global attractor if either (1) µl < 1, or (2) µl = 1

and there is a type θ ∈ Θ such that νθ (1) < 1. Formally:

Corollary 2. Let P =
(

A,Θ, β, ψl, (λθ, νθ, σθ)θ∈Θ

)

be a stationary learning process satisfying (1) µl < 1, or

(2) µl = 1 and there is a type θ ∈ Θ such that7 νθ (1) < 1. Then fP is a weak contraction mapping, which

implies that (1) fP admits a unique steady state γ∗, and (2) this unique steady state γ∗ is a global attractor

(i.e., limt−→∞f
t
P (γ̂) = γ∗ for each γ̂ ∈ Γ).

The following result generalizes Theorem 2 to the setup of heterogeneous populations. The proof is analo-

gous to the proof of Theorem 2 and is omitted for brevity.

Theorem 4. (Generalization of Theorem 2) Let E =
(

A,Θ, β, ψl, (λθ, νθ)θ∈Θ

)

be an environment. The

following two conditions are equivalent:

1. µl > 1, or νθ (1) = 1 for each type θ ∈ Θ.

2. There exists a profile of learning rules (σθ)θ∈Θ, such that the learning process
(

E, (σθ)θ∈Θ

)

admits two

different steady states.

7Note that µl = 1 and the existence of a type θ ∈ Θ such that νθ (1) < 1, implies that there is a type θ ∈ Θ and an l > 1 such
that νθ (l) > 0
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6 Non-Stationary Learning Process and Common Shocks

6.1 The Non-Stationary Process

In this section we adapt the model of Section 5 to deal with non-stationary deterministic learning processes,

in which the process explicitly depends on calendar time. We extend our results to this setup.

Adaptations to the model. For each period t ∈ N, let βt ∈ [0, 1] denote the random share of agents who

revise their actions in period t. For each type θ ∈ Θ and period t ∈ N, let νt
θ ∈ ∆ (N) denote the distribution

of sample sizes of type θ in period t. To simplify the notation we assume that the support of the sample sizes

of each type is independent of the period, i.e., supp
(

νt1

θ

)

= supp
(

νt2

θ

)

:= supp (νθ) for each type θ ∈ Θ and

periods t1, t2 ∈ N. As in the basic model, let M denote the set of all feasible sample sizes. A non-stationary

environment is a tuple

E =
(

A,Θ, (βt)t∈N
, ψl, (λθ)θ∈Θ ,

(

νt
θ

)

θ∈Θ,t∈N

)

.

Given a non-stationary environment, let µt
l denote the expected number of actions observed in period t, i.e.,

µt
l =

∑

θ∈Θ λθ

∑

l∈supp(νθ) ν
t
θ (l) · l.

Given a non-stationary environment E, let µ̄l be the upper limit of the geometric mean of 1 − βt · (1 − µt
l)

as t goes to to infinity, i.e.,

µ̄l = limsupt̂→∞ t̂

√

∏

t≤t0

(1 − βt · (1 − µt
l)).

For each type θ ∈ Θ and period t ∈ N, let σt
θ : M → ∆ (A) denote the non-stationary learning rule

of revising θ-agents in period t. A non-stationary learning process is a pair consisting of a non-stationary

environment and a non-stationary learning rule, i.e.,

P =
(

E,
(

σt
θ

)

θ∈Θ,t∈N

)

=
(

A,Θ, (βt)t∈N
, ψl, (λθ)θ∈Θ ,

(

νt
θ, σ

t
θ

)

θ∈Θ,t∈N

)

.

As as in the basic model, a non-stationary learning process P and an initial state uniquely determine a new

state in each period t. Let f t
p (γ̂) ∈ Γ denote the state induced after t stages of the non-stationary learning

process P .

A sequence of states (γ∗
t )t∈N is a global attractor of the non-stationary learning process P , if

limt−→∞

∥

∥f t
P (γ̂) − γ∗

t

∥

∥

1
= 0

for each initial state γ̂ ∈ Γ.

Adapted results. Minor adaptations to the proof of Theorem 3 and a simple inductive argument imme-

diately imply that the distance between two states at time to is at most
∏

t≤t0
(1 − βt · (1 − µt

l)) the initial

distance. Formally:

Corollary 3. Let P =
(

A,Θ, (βt)t∈N
, ψl, (λθ)θ∈Θ , (ν

t
θ, σ

t
θ)

θ∈Θ,t∈N

)

be a non-stationary learning process, let

γ̂, γ̂′ ∈ Γ be two population states, and let t̂ ∈ N. Then:

∥

∥

∥f t̂
p (γ̂) − f t̂

p (γ̂′)
∥

∥

∥

1
≤ ‖γ̂ − γ̂′‖1 ·

∏

t≤t̂

(

1 − βt ·
(

1 − µt
l

))

·
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This, in turn, immediately implies that in any non-stationary environment in which µ̄l < 1, any profile of

non-stationary learning rules admits a global attractor. Formally:

Corollary 4. Let E =
(

A,Θ, (βt)t∈N
, ψl, (λθ)θ∈Θ , (ν

t
θ)

θ∈Θ,t∈N

)

be a non-stationary environment satisfying

µ̄l < 1. Then for any profile of non-stationary learning rules (σt
θ)

θ∈Θ,t∈N
, the non-stationary learning process

P =
(

E, (σt
θ)

θ∈Θ,t∈N

)

admits a global attractor.

The example presented in Case A of the proof of Theorem 2 demonstrates that the above bound of µ̄l < 1

is binding in the sense that there is an environment with µ̄l = 1 that admits a profile of learning rules with

multiple steady states.

6.2 Process with Common Shocks

In this section we further extend our model to deal also with common stochastic shocks to the learning rules,

and we extend our results to this setup.

Additional adaptations to the model. In what follows we further adapt the model of Section 6.1 by

allowing common stochastic shocks to the learning rules of the agents.

Let (Ω,F , p) be an arbitrary probability space. Each element ω ∈ Ω represents the state of nature, which

determines the realizations of all common shocks to the learning rules in all periods. For each type θ ∈ Θ

and period t ∈ N, let σt
θ : Ω × M → ∆ (A) denote the state-dependent learning rule of revising θ-agents

in period t (which also depends on the state of nature). A learning process with common shocks is a pair

consisting of a non-stationary environment and a state-dependent learning rule, i.e., P =
(

E, (σt
θ)

θ∈Θ,t∈N

)

=
(

A,Θ, (βt)t∈N
, ψl, (λθ)θ∈Θ , (ν

t
θ, σ

t
θ)

θ∈Θ,t∈N

)

.

Learning processes with commons shocks are important in modeling situations in which there are stochastic

factors that influence the learning rules of all revising agents in period t. For example , Ellison & Fudenberg

(1995) model a situation in which new agents in period t choose between two agricultural technologies, and

each such new agent observes a noisy signal about the expected payoff of each technology conditional on the

weather in period t (which is common to all agents), where the (unknown) state of nature determines the

weather in all periods.

The state of nature, the learning process, and the initial population state uniquely determine the population

state in each period. Let f t
p (ω) (γ̂) ∈ Γ denote the population state induced after t stages of the non-stationary

learning process P , given an initial population state γ̂, and state of nature ω ∈ Ω.

We say that a sequence of state-dependent population states (γ∗
t )t∈N

, where γ∗
t : Ω → Γ, is a state-dependent

global attractor of the learning process with commons shocks P if, for each ω ∈ Ω, limt−→∞f
t
P (ω) (γ̂) = γ∗

t (ω)

for each initial state γ̂ ∈ Γ.

Example 4 below demonstrates how to apply the extended model to a social learning process with competing

technologies with common shocks:

Example 4 (Competing Technologies with Common Shocks). Consider a stochastic environment in which

there are two possible regimes {1, 2}. There are two technologies: a1 and a2. Technology a1 is advantageous

in regime 1, while technology a2 is advantageous in regime 2. In round 1 the regime is uniformly distributed.

In each subsequent round, the regime is the same as in the previous round with probability 99%, and it is a
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new regime with probability 1%. In each round, a share of 25% of the incumbents die, and are replaced with

new agents. Each new agent observes the action of a single random incumbent and a noisy signal about the

current regime, and based on these observations, the agent chooses one of the two technologies. Assume that

the learning rule used by the agents implies that each new agent plays action a1:

1. with a probability of 95% after observing action a1 in regime 1;

2. with a probability of 80% after observing action a1 in regime 2;

3. with a probability of 20% after observing action a2 in regime 1;

4. with a probability of 5% after observing action a2 in regime 2.

One can show that the environment admits a unique steady state that is a state-dependent global attractor.

The induced aggregate behavior of the population converges towards playing action a1 with an average prob-

ability of 80% in regime 1, and it converges towards playing action a1 with an average probability of 20% in

regime 2.

This learning process with common shocks is modeled as

P =
(

{a1, a2} , {θ} , (βt ≡ 25%)t∈N
, ψl, λθ,

(

νt
θ ≡ 1, σt

θ

)

t∈N

)

.

The set of states of nature Ω =
{

(ωn)n∈N

}

is the set of infinite binary sequences, where each ωn ∈ {1, 2}

describes the regime in round n. The definition of (F , p) is derived from the Markovian process determining

the regime in each round in a standard way. Given state ω = (ωn)n∈N , let the learning rule be defined as

follows:

σθ (a1, ω) =































95% a = a1 and ωt = 1

80% a = a1 and ωt = 2

20% a = a2 and ωt = 1

5% a = a2 and ωt = 2.

Adapted Results. Minor adaptations to the proof of Theorem 3 and a simple inductive argument imme-

diately imply that the distance between two states at time t̂ is at most
∏

t≤t̂ (1 − βt · (1 − µt
l)) the initial

distance. Formally:

Corollary 5. Let P =
(

A,Θ, (βt)t∈N
, ψl, (λθ)θ∈Θ , (ν

t
θ, σ

t
θ)

θ∈Θ,t∈N

)

be a learning process with commons shocks,

let γ̂, γ̂′ ∈ Γ be two population states, and let t̂ ∈ N. Then, for each ω ∈ Ω,

∥

∥

∥f t̂
p (ω) (γ̂) − f t̂

p (ω) (γ̂′)
∥

∥

∥

1
≤ ‖γ̂ − γ̂′‖1 ·

∏

t≤t0

(

1 − βt ·
(

1 − µt
l

))

·

An immediate corollary of Corollary 5 is that any environment with common shocks in which µ̄l < 1, given

any profile of learning rules, admits a stochastic global attractor. That is, in the long run, the population’s

behavior depends only on the state of nature, but it is independent of the initial population state in time zero.

Formally:
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Corollary 6. Let E =
(

A,Θ, (βt)t∈N
, ψl, (λθ)θ∈Θ , (ν

t
θ)

θ∈Θ,t∈N

)

be an environment satisfying µ̄l < 1. Then for

any profile of stochastic learning rules (σt
θ)

θ∈Θ,t∈N
, the learning process with common shocks P =

(

E, (σt
θ)

θ∈Θ,t∈N

)

admits a global stochastic attractor.

7 Responsiveness and Effective Sample Size

Our results so far have not assumed anything about the agents’ learning rules. Obviously, additional infor-

mation on the profile of learning rules, may allow us to achieve stronger results. In this section, we present

simple notions of responsiveness and expected effective sample size, and use them to derive a tighter upper

bound for processes that admit global attractors.

7.1 Additional Definitions

Fix a stationary learning process P =
(

A,Θ, β, ψl, (λθ, νθ, σθ)θ∈Θ

)

. For each type θ, each sample size l ∈

supp (ν), and each action a ∈ A , let σθ,l (a) (σθ,l (a)) be the minimal (maximal) probability that learning rule

σ assigns to action a after observing a sample of size l, i.e.,

σθ,l (a) = minm∈Alσθ,m (a) (σθ,l (a) = maxm∈Alσθ,m (a) ) .

Let rθ,l denote the maximal responsiveness of revising θ-agents to changes in observed samples of size l,

which is defined as follows:

rθ,l = min

(

1,
1

2
·
∑

a∈A

(

σθ,l (a) − σθ,l (a)
)

)

, (6)

and let rθ,0 = 0. The responsiveness effectively limits the maximal influence of different samples of length l

on the behavior of θ-agents to be at most rθ,l ≤ 1. Observe that when there are two actions (i.e., A = {a, b}),

then rθ,l is simply the difference between the maximal and minimal probability assigned to each action, i.e.,

rθ,l = σθ,l (a) − σθ,l (a) = σθ,l (b) − σθ,l (b) (A = {a, b}) . (7)

When there are more than two actions, 1
2 ·
∑

a∈A

(

σθ,l (a) − σθ,l (a)
)

may be larger than one. We bound rθ,l

from above by one in Eq.(6) because, any change of sample cannot affect an agent’s mixed behavior by more

than one (as measured by the L1-distance over the set of mixed actions).

We call the product of the sample size and the responsiveness, rθ,l · l the effective sample size. For each

type θ, let µe
θ ∈ R

+denote the expected effective sample size of θ-agents, i.e.,

µe
θ =

∑

l∈supp(νθ)

νθ (l) · rθ,l · l.

Finally, let µ ∈ R
+denote the effective sample size in the population, i.e.,

µe
l =

∑

θ∈Θ

λθ · µe
θ.

It is immediate that the effective sample size is always weakly smaller than the expected sample size in the
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population; i.e., µe
l ≤ µl for each stationary learning process s P =

(

A,Θ, β, ψl, (λθ, νθ, σθ)θ∈Θ

)

.

7.2 A Tighter Bound on the Distance between New States

Our main result in this section shows that the distance between two new states is at most (1 − β · (1 − µe
l ))

times the distance between the two initial states. This bound is tighter than the one presented in Theorem 1,

as we replace expected sample size µl with the (weakly) smaller effective sample size µe
l . Formally,

Theorem 5. Let P =
(

A,Θ, β, ψl, (λθ, νθ, σθ)θ∈Θ

)

be a stationary learning process, and let γ 6= γ′ ∈ Γ be two

population states. Then:

‖fP (γ) − fP (γ′)‖1 ≤ (1 − β · (1 − µe
l )) · ‖γ − γ′‖1 ,

where the inequality is strict if there exist a type θ and an l > 1 such that νθ (l) > 0.

Proof. The key step of the proof is to show the following inequality:

‖(fP (γ)) − (fP (γ′))‖1 ≤ β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · rθ,l · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 . (8)

Inequality (8) is the same as (2) in the proof of Theorem 1, except for the factor of rθ,l ≤ 1 on the RHS. All

other arguments of the proof of Theorem 1 remain the same. We prove (8) in Lemma 6 in Appendix B.

Observe that (1 − β · (1 − µe
l )) < 1 iff µe

l < 1, and in this case fP is a contraction mapping, which implies

that fP admits a global attractor. This allows us to strengthen Corollary 1 as follows.

Corollary 7. Let P =
(

A,Θ, β, ψl, (λθ, νθ, σθ)θ∈Θ

)

be a learning process satisfying (1) µe
l < 1, or (2) µe

l = 1

and there is a type θ ∈ Θ such that νθ (1) < 1. Then fP is a contraction mapping, which implies that (1) fP

admits a unique steady state γ∗, and (2) this unique steady state γ∗ is a global attractor (i.e., limt−→∞f
t
P (γ̂) =

γ∗ for each γ̂ ∈ Γ).

We demonstrate the implications of Corollary 7 by revisiting Example 1.

Example. 1 (Competing Technologies revisited). Recall, that each agent observes a single action, which

implies that the expected number of observed actions is one (i.e., µl = 1). Hence the results of the previous

sections do not imply the that the learning process admits a unique steady state. To simplify notation, assume

that α > α. Observe that the effective number of observations, µe
l , is equal to:

µe
l = µe

θ = rθ,l=1 · 1 =
1

2
·
∑

a∈A

(

σθ,l (a) − σθ,l (a)
)

=
1

2
· ((α− α) + ((1 − α) − (1 − α))) = α− α,

which is strictly less than one if α < 1 or α > 0. Corollary 7 implies that the learning process converges to a

global attractor (which is the unique steady state) whenever α < 1 or α > 0.

Our final result shows that given any environment in which the expected sample size µl > 1, and any

number 1 < y ≤ µl, there is a learning rule with an effective sample size of µe
l = y with multiple steady states.

Formally:

Proposition 1. Let E =
(

A,Θ, β, ψl, (λθ, νθ)θ∈Θ

)

be an environment satisfying µl > 1. Let 1 < y ≤ µl. Then

there exists a profile of learning rules (σθ)θ∈Θ, such that the learning process
(

E, (σθ)θ∈Θ

)

admits two different

steady states, and satisfies µe
l = y.
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Proof. Let a and a′ be different actions (a 6= a′ ∈ A). Let (σ∗
θ)

θ∈Θ be a uniform learning process according to

which each agent plays action a∗ with a probability of y
µl

if he has observed action a∗ at least once, and plays

action a′ otherwise, that is,

σ∗
θ

(

al
)

=







y
µl

· a∗ +
(

1 − x
µl

)

· a′ if ∃i, s.t., al
i = a∗

a′ otherwise.

Observe that the responsiveness of
(

E, (σ∗
θ)

θ∈Θ

)

is equal to x because:

µe
l =

∑

θ∈Θ

λθ · µe
θ =

∑

θ∈Θ

λθ ·
∑

l∈supp(νθ)

νθ (l) · rθ,l · l =
∑

θ∈Θ

λθ ·
∑

l∈supp(νθ)

νθ (l) ·
1

2
·
∑

a∈A

(

σθ,l (a) − σθ,l (a)
)

· l =

∑

θ∈Θ

λθ ·
∑

l∈supp(νθ)

νθ (l) ·
1

2
·

((

y

µl

− 0

)

+

(

1 −

(

1 −
y

µl

)

+ 0 + ...+ 0

))

· l =

∑

θ∈Θ

λθ ·
∑

l∈supp(νθ)

νθ (l) ·
y

µl

· l =
y

µl

·
∑

θ∈Θ

λθ ·
∑

l∈supp(νθ)

νθ (l) · l =
y

µl

· µl = y.

It is immediate that the uniform population state in which all agents play action a′ (i.e., γθ (a′) = 1 for each

type θ ∈ Θ) is a steady state of the learning process
(

E, (σ∗
θ)

θ∈Θ

)

. An analogous argument to the one presented

in Case B of the proof of Theorem 2 shows that there exists x > 0 such that the uniform population state

γx in which all agents play action a∗ with probability x, and play action a′ with the remaining probability of

1 − x, is another steady state of the learning process
(

E, (σ∗
θ)

θ∈Θ

)

.

8 Concluding Remarks

Repeated Interactions without Calendar Time. In many real-life situations agents are randomly

matched within a community, and these interactions have been going on since time immemorial. Modelling

such situations as repeated games with a definite starting point and strategies that can be conditioned on

calendar time may be a problematic modelling choice, as it seems implausible that agents would be aware of

the the exact time that has transpired since the starting point, and aware of the very distant history of play

of other agents. An alternative approach, is to model behavior in such situations as steady states of environ-

ments without a calendar time (see, e.g., (Rosenthal, 1979; Okuno-Fujiwara & Postlewaite, 1995; Phelan &

Skrzypacz, 2006; Heller & Mohlin, 2017), and the working paper version of Phelan & Skrzypacz, 2006).

An interesting question about such environments is whether the distribution of strategies used by the

players to choose their actions as a function of their observations is sufficient to uniquely determine the steady

states, or whether the same distribution of rules may admit multiple steady states. Our main result shows that

the former is true whenever the expected number of observed actions is less than one, while if the expected

number of observed actions is more than one, then there is always a distribution of rules with multiple steady

states.

Multiple Locally Stable Steady States. Recall that steady state γ∗ is locally (asymptotically) stable

if a population starting from any sufficiently close initial state converges to γ∗. Our main result (Theorem
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2) shows that an environment admits a profile of learning rules with multiple steady states if and only if

µl ≤ 1 and some agents sometimes observe more than one action. The construction we present to demonstrate

the existence of a learning rule with multiple steady states for any environment in which µl > 1 has one

unappealing property. The construction shows that both γ0 (the state in which everyone plays action a′) and

γx for some x > 0 (the state in which agents on average play action a∗ with a probability of x, and play action

a′ otherwise) are steady states. However, one can see that state γx is locally stable. By contrast, any small

perturbation in the population’s state will move the population away from γ0 (and towards γx).

An interesting problem, which we leave for future research, is to characterize necessary and sufficient

conditions for when an environment admits a learning rule with multiple locally stable states. Preliminary

analysis suggests that the expected number of observations might have to be significantly above 1 to allow

multiple locally stable steady states. In particular, for environments in which each agent chooses between two

actions, it can be shown that: (1) when agents observe at most two actions, at most one steady state is locally

stable, and (2) when agents observe 3 actions with probability p and no actions otherwise, the environment

may admit multiple locally stable steady states only if p ≥ 2
3 (i.e., if µl = 3 · p ≥ 2).

Large Finite Populations. Our model studies infinite populations, and it is important to know what are

the implications of our results for large finite populations. The key difference between an infinite and a finite

population, is that in the former, the law of large numbers implies that the new state of the population is a

deterministic function of the initial state and the learning rule (assuming that the environment does not have

common stochastic shocks). By contrast, in finite populations the new population state is a random variable.

If the finite population is sufficiently large then we expect the resulting stochastic process to be close to the

deterministic process over finite time horizons. However, when time goes to infinity, rare random events will

occasionally take the population away from one (locally stable) steady state towards another steady state.8

When dealing with finite large populations, one should therefore interpret our main result (Theorem 2) as

follows. In environments in which µl < 1, all learning processes admit a unique globally stable state γ∗. The

population will quickly converge to state γ∗, and will almost always remain very close to this state. A rare

event in which the realized observations of many agents substantially differ from their expected values, may

take the population temporarily away from γ∗, but with a very high probability the population will quickly

converge back to γ∗.

In environments in which µl > 1, there are learning rules that admit multiple steady states. The fact that

the population is finite and that the new population state is a random variable will typically quickly take the

population away from steady states that are not locally stable. If the environment admits multiple locally

stable steady states, then the initial state will determine which of these locally stable states the population

will converge to in the medium run. Moreover the process will likely stay there for a significant amount of

time.

The literature on stochastic evolutionary game theory (starting with the pioneering works of Foster &

Young, 1990; Kandori et al., 1993; Young, 1993a; see Young, 2015, for a recent survey) studies situations the

long-run behavior in environments with multiple locally stable steady states, and in which there is a small

level of noise in the agents’ behavior. We think that it would be interesting to extend the methodology of this

literature in order to apply it to the setup analyzed in this paper. It might be that such future research can

8For a textbook overview of the deterministic approximation of stochastic evolutionary process we refer to Sandholm (2011).
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characterize various cases in which, if the population size is sufficiently large, in the long run the population

will spend almost all of the time in one of these locally stable states.

Observations of Action Profiles. In Heller & Mohlin (2017) we investigate environments in which an agent

may observe action profiles played in past interactions between his current opponent and her past opponents.

All of our results can be extended to this setup, with relatively minor adjustments to the proofs. Specifically

one should count an observation of an action profile (in a two-player game) as two actions when calculating

the expected number of observed actions µl. Our main result still holds in this setup: an environment admits

a profile of learning rules with multiple steady states, essentially, if and only if µl ≤ 1.

A Proof of Theorem 3

The distance between the final population states is bounded as follows (where the second inequality is strict

if νθ (l) > 0 for some θ ∈ Θ and l ≥ 2):

‖(fP (γ))θ − (fP (γ′))θ‖
1

≤ β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 ≤

β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · l · ‖γ − γ′‖1 + (1 − β) · ‖γ − γ′‖1 =

(

β ·

(

∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · l

)

+ (1 − β)

)

· ‖γ − γ′‖ = (β · µL + 1 − β) · ‖γ − γ′‖ = (1 − β · (1 − µl)) · ‖γ − γ′‖1 .

The first inequality is proven in Lemma 1. The second inequality (is strict if νθ (l) > 0 for some θ ∈ Θ and

l ≥ 2) is implied by the inequality

‖ψl,γ − ψl,γ′‖1 ≤ l · ‖γ − γ′‖1 (with a strict inequality if l ≥ 2),

which is proven in Lemma 4.

Proofs of the various Lemmas used in the Proof of Theorem 3

Lemma 1. For each learning environment E and states γ 6= γ′ ∈ Γ,

‖(fP (γ)) − (fP (γ′))‖1 ≤ β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 .

Proof.

‖(fP (γ)) − (fP (γ′))‖1 =
∑

θ∈Θ

λθ · ‖(fP (γ))θ − (fP (γ′))θ‖
1

≤

∑

θ∈Θ

λθ ·

(

β ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γθ − γ′
θ‖1

)

=

β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) ·
∑

θ∈Θ

λθ · ‖γθ − γ′
θ′‖1 =
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β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 ,

where the inequality is due to Lemma 2.

Lemma 2. For each social learning environment E, type θ ∈ Θ, and each two states γ 6= γ′ ∈ Γ:

‖(fP (γ))θ − (fP (γ′))θ‖
1

≤ β ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γθ − γ′
θ‖1 .

Proof.

‖(fP (γ))θ − (fP (γ′))θ‖
1

=
∑

a∈A

|(fP (γ))θ (a) − (fP (γ′))θ (a)| =

∑

a∈A

∣

∣

∣

∣

∣

∣





∑

l∈supp(νθ)

β · νθ (l)
∑

m∈Al

ψl,γ (m) · σθ,m + (1 − β) · γθ



 (a)

−



β ·
∑

l∈supp(νθ)

νθ (l) ·
∑

m∈Al

ψl,γ′ (m) · σθ,m + (1 − β) · γ′
θ



 (a)

∣

∣

∣

∣

∣

∣

=

∑

a∈A

∣

∣

∣

∣

∣

∣

β ·
∑

l∈supp(νθ)

νθ (l) ·
∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a) + (1 − β) · (γθ (a) − γ′
θ (a))

∣

∣

∣

∣

∣

∣

≤ (9)

∑

a∈A



β ·
∑

l∈supp(νθ)

νθ (l) ·

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

+ (1 − β) · |γθ (a) − γ′
θ (a)|



 =

β ·
∑

l∈supp(νθ)

νθ (l) ·
∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

+ (1 − β) ·
∑

a∈A

|γθ (a) − γ′
θ (a)| ≤ (10)

β ·
∑

l∈supp(νθ)

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γθ − γ′
θ′‖1 ,

where the (9) is a triangle inequality, and (10) is due to Lemma 3.

Lemma 3. For each social learning environment E, each size l ∈ N, each type θ ∈ Θ, and any two states

γ 6= γ′ ∈ Γ:

∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

≤ ‖ψl,γ − ψl,γ′‖1 .

Proof.
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∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

≤
∑

a∈A

∑

m∈Al

|ψl,γ (m) − ψl,γ′ (m)| · σθ,m (a)

=
∑

m∈Al

|ψl,γ (m) − ψl,γ′ (m)| ·
∑

a∈A

σθ,m (a)

=
∑

m∈Al

|ψl,γ (m) − ψl,γ′ (m)| · 1,

where the inequality is a triangle inequality.

Lemma 4. For each social learning environment E, type θ ∈ Θ, sample size l ∈ N, and states γ 6= γ′ ∈ Γ

‖ψl,γ − ψl,γ′‖1 ≤ l · ‖γ − γ′‖1 ,

with a strict inequality if l > 1.

Proof. Case I - Observing different random agents:

‖ψl,γ − ψl,γ′‖1 =
∑

−→a ∈Al

|ψl,γ (−→a ) − ψl,γ′ (−→a )| = (11)

∑

−→a ∈Al

∣

∣

∣

∣

∣

∣

∏

1≤i≤l

γ̄ (ai) −
∏

1≤i≤l

γ̄′ (ai)

∣

∣

∣

∣

∣

∣

= (12)

∑

−→a ∈Al

∣

∣

∣

∣

∣

∣

∑

1≤i≤l

(γ̄ (ai) − γ̄′ (ai)) ·
∏

i<j≤l

γ̄ (aj) ·
∏

1≤k<i

γ̄′ (ak)

∣

∣

∣

∣

∣

∣

≤ (< if l > 1) (13)

∑

−→a ∈Al





∑

1≤i≤l

|γ̄ (ai) − γ̄′ (ai)| ·
∏

i<j≤l

γ̄ (aj) ·
∏

1≤k<i

γ̄′ (ak)



 =

∑

1≤i≤l





∑

−→a ∈Al

|γ̄ (ai) − γ̄′ (ai)| ·
∏

i<j≤l

γ̄ (aj) ·
∏

1≤k<i

γ̄′ (ak)



 =

∑

1≤i≤l

(

∑

ai∈A

|γ̄ (ai) − γ̄′ (ai)|

)

·





∑

(ai+1,...,al)∈Al−i

∏

i<j≤l

γ̄ (aj)



 ·





∑

(a1,...,ai−1)∈Ai−1

∏

1≤k<i

γ̄′ (ak)



 = (14)

∑

1≤i≤l

(

∑

ai∈A

|γ̄ (ai) − γ̄′ (ai)|

)

· 1 · 1 =
∑

1≤i≤l

(‖γ̄ − γ̄′‖1) = l · ‖γ̄ − γ̄′‖1 ≤ l · ‖γ − γ′‖ .

Eq. (11) is due to the independence of different observations. Eq. (12) is implied by adding to the sum

elements that cancel out (i.e., a “telescoping series” in which each new element appears once with a positive
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sign and once with a negative sign).9 Eq. (13) is a triangle inequality, and it is strict if l > 1 because the sum

inside the “
∣

∣

∣

∣

∣

∣
” in (13) includes both positive and negative elements. Eq. (14) holds because each sum adds

the probabilities of disjoint and exhausting events. The final inequality is implied by Lemma 5.

Case II - Observing a single random type:

‖ψl,γ − ψl,γ′‖1 =
∑

−→a ∈Al

|ψl,γ (−→a ) − ψl,γ′ (−→a )| = (15)

∑

−→a ∈Al

∣

∣

∣

∣

∣

∣

∑

θ∈Θ

λθ ·





∏

1≤i≤l

γθ (ai) −
∏

1≤i≤l

γ′
θ (ai)





∣

∣

∣

∣

∣

∣

= (16)

∑

−→a ∈Al

∣

∣

∣

∣

∣

∣

∑

θ∈Θ

λθ ·





∑

1≤i≤l

(γθ (ai) − γ′
θ (ai)) ·

∏

i<j≤l

γθ (aj) ·
∏

1≤j<i

γ′
θ (aj)





∣

∣

∣

∣

∣

∣

≤ (< if l > 1) (17)

∑

−→a ∈Al

∑

θ∈Θ

λθ ·





∑

1≤i≤l

|γθ (ai) − γ′
θ (ai)| ·

∏

i<j≤l

γθ (aj) ·
∏

1≤j<i

γ′
θ (aj)



 =

∑

1≤i≤l

∑

θ∈Θ

λθ ·





∑

−→a ∈Al

|γθ (ai) − γ′
θ (ai)| ·

∏

i<j≤l

γθ (aj) ·
∏

1≤j<i

γ′
θ (aj)



 =

∑

1≤i≤l

∑

θ∈Θ

λθ ·

(

∑

ai∈A

|γθ (ai) − γ̄θ
′ (ai)|

)

·





∑

(ai+1,...,al)∈Al−i

∏

i<j≤l

γθ (aj)



 ·





∑

(ai,...,ai−1)∈Ai−1

∏

1≤j<i

γ′
θ (aj)



 =

(18)
∑

1≤i≤l

∑

θ∈Θ

λθ ·

(

∑

ai∈A

|γθ (ai) − γ̄θ
′ (ai)|

)

· 1 · 1 =
∑

1≤i≤l

∑

θ∈Θ

λθ · ‖γθ − γ′
θ‖1 =

∑

1≤i≤l

‖γ − γ′‖1 = l · ‖γ − γ′‖1 .

Eq. (15) is due to the different observations being independent conditional on the observed type θ. Eq. (16)

is implied by adding to the sum elements that cancel out (i.e., a “telescoping series”). Eq. (17) is a triangle

inequality, and it is strict if l > 1 because the sum inside the “
∣

∣

∣

∣

∣

∣
” in (17) includes both positive and negative

elements. Eq. (18) holds because each sum adds the probabilities of disjoint and exhausting events.

Lemma 5. ‖γ̄ − γ̄′‖1 ≤ ‖γ − γ′‖1 for each two states γ 6= γ′ ∈ Γ.

Proof.

‖γ − γ′‖1 =
∑

θ∈Θ

λθ · ‖γθ − γ′
θ‖1 =

∑

θ∈Θ

λθ ·
∑

a∈A

|γθ (a) − γ′
θ (a)| =

∑

a∈A

∑

θ∈Θ

λθ · |γθ (a) − γ′
θ (a)| ≥

∑

a∈A

∣

∣

∣

∣

∣

∑

θ∈Θ

λθ (γθ (a) − γ′
θ (a))

∣

∣

∣

∣

∣

=
∑

a∈A

∣

∣

∣

∣

∣

∑

θ∈Θ

λθγθ (a) −
∑

θ∈Θ

λθγ
′
θ (a)

∣

∣

∣

∣

∣

=
∑

a∈A

|γ̄ (a) − γ̄′ (a)| = ‖γ̄ − γ̄′‖1 ,

where the various equalities are immediately implied by the definitions on the L1-norm and γ̄, and the inequality

is a triangle inequality.

9We use the convention that a product of an empty set (e.g.,
∏

1≤j<1
) is equal to one.
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B Lemma Required for the Proof of Theorem 5

Lemma 6. For each social learning environment E, each size l ∈ N, each type θ ∈ Θ, and any two states

γ 6= γ′ ∈ Γ:

∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

≤ rθ,l · ‖ψl,γ − ψl,γ′‖1 .

Proof. We begin with a preliminary definition. Let Al
γ>γ′ ⊆ Al be the set of samples that have higher

probabilities given state γ than given state γ′, i.e.,

Al
γ>γ′ =

{

m ∈ Al|ψl,γ (m) > ψl,γ′ (m)
}

.

We now prove the lemma:

∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

=

∑

a∈A

∣

∣

∣

∣

∣

∣

∣

∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a) −
∑

m∈Al

γ′>γ

(ψl,γ′ (m) − ψl,γ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

∣

≤

∑

a∈A

∣

∣

∣

∣

∣

∣

∣

∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m)) · σθ,l (a) −
∑

m∈Al

γ′>γ

(ψl,γ′ (m) − ψl,γ (m)) · σθ,l (a)

∣

∣

∣

∣

∣

∣

∣

=

∑

a∈A

∣

∣

∣

∣

∣

∣

∣

σθ,l (a) ·
∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m)) − σθ,l (a) ·
∑

m∈Al

γ′>γ

(ψl,γ′ (m) − ψl,γ (m))

∣

∣

∣

∣

∣

∣

∣

= (19)

∑

a∈A

∣

∣

∣

∣

∣

∣

∣

(

σθ,l (a) − σθ,l (a)
)

·
∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m))

∣

∣

∣

∣

∣

∣

∣

=

∑

a∈A

(

σθ,l (a) − σθ,l (a)
)

·
∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m)) =

∑

a∈A

(

σθ,l (a) − σθ,l (a)
)

· 0.5 ·





∑

m∈Al

|(ψl,γ (m) − ψl,γ′ (m))|



 =

0.5 ·
∑

a∈A

(

σθ,l (a) − σθ,l (a)
)

· ‖ψl,γ − ψl,γ′‖1 .

Equality (19) is implied by the fact that ψl,γ and ψl,γ′ are both distributions, and the sum of the differences

in the probabilities that they assign to samples of size l must be equal to zero. Thus we have shown that

∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

≤ 0.5 ·
∑

a∈A

(

σθ,l (a) − σθ,l (a)
)

· ‖ψl,γ − ψl,γ′‖1 , (20)
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which together with Lemma 3 implies that the LHS of (20) is weakly smaller than rθ,l · ‖ψl,γ − ψl,γ′‖1 .
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