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Abstract

The standard generalized method of moments (GMM) estimation of
Euler equations in heterogeneous-agent consumption-based asset pricing
models is inconsistent under fat tails because the GMM criterion is asymp-
totically random. To illustrate this, we generate asset returns and con-
sumption data from an incomplete-market dynamic general equilibrium
model that is analytically solvable and exhibits power laws in consump-
tion. Monte Carlo experiments suggest that the standard GMM esti-
mation is inconsistent and susceptible to Type II errors (incorrect non-
rejection of false models). Estimating an overidentified model by dividing
agents into age cohorts appears to mitigate Type I and II errors.

Keywords: consumption-based CAPM, generalized method of mo-
ments, heterogeneous-agent model, power law

JEL codes: C58, D31, D52, D58, G12

1 Introduction

It is well-known that the representative-agent, consumption-based capital asset
pricing model (CCAPM) of Lucas (1978) and Breeden (1979) requires a relative
risk aversion coefficient on the order of 10 to 100 in order to explain the historical
equity premium, at least in the basic, frictionless case with additively separa-
ble, constant relative risk aversion (CRRA) preferences.1 To explain asset prices
with a lower risk aversion parameter, many researchers have considered the pos-
sibility of market incompleteness and estimated and tested heterogeneous-agent

∗We thank Bertille Antoine, Brendan Beare, Chris Carroll, Russell Davidson, Lynda Kha-
laf, Yixiao Sun, and seminar participants at Australian School of Business, Université Laval,
UCSD, Yale, the 17th ICMAIF at the University of Crete, and the CIREQ Conference on
Financial Econometrics for comments and feedback. We especially thank two anonymous
referees for suggestions that significantly improved the paper.

†Department of Economics, University of California San Diego. 9500 Gilman Dr, La Jolla,
CA 92130. Email: atoda@ucsd.edu

‡Darden School of Business, University of Virginia. 100 Darden Blvd, Charlottesville, VA
22903. Email: walshk@darden.virginia.edu

1See Grossman and Shiller (1981), Hansen and Singleton (1983), Mehra and Prescott
(1985), Grossman et al. (1987), Kocherlakota (1997), and Savov (2011), among many others.
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models2 using household consumption data such as the Consumer Expenditure
Survey (CEX).

In a recent paper (Toda and Walsh, 2015), we document that the cross-
sectional distributions of U.S. household consumption and its growth rate ex-
hibit fat tails. The power law exponent α > 0 is approximately four both in
the upper and lower tails.3 If this is the case, the cross-sectional moments of
consumption and its growth rate, Et[c

η
it] and Et[(cit/ci,t−1)

η], are infinite when
the moment order η exceeds the power law exponent α in absolute value. Such
nonexistence of moments renders the generalized method of moments (GMM)
estimation of aggregated household Euler equations inconsistent due to lack of
identification: even if the model is correctly specified, nonexistent moments aid
in zeroing the GMM criterion at untrue parameters (a Type I error). Further-
more, our bootstrap studies suggest that the fat tails in consumption mechan-
ically set the pricing error to zero, even when the model is incorrect (a Type
II error). As we show in Section 2.2, the problem is that when the moment
conditions contain nonexistent cross-sectional moments, the criterion function
becomes asymptotically random. The implication is that GMM estimation may
find a spurious criterion minimum due to randomness rather than to the truth
of the model.

As a remedy, Toda and Walsh (2015) propose an alternative estimation
approach (age cohort GMM) that divides households into age groups in order
to mitigate the fat tail problem. This approach is motivated by the finding
in Battistin et al. (2009) that, within age cohorts, the empirical cross-sectional
distribution of consumption is approximately lognormal, which is thin-tailed.4

However, the analysis of Toda and Walsh (2015) is only suggestive since, with
actual consumption data, we know neither the true data generating process nor
whether the asset pricing model is a good description of reality.

In this paper, we conduct a Monte Carlo study using artificial asset re-
turns and consumption data.5 The goal is to assess the robustness (or non-
robustness) of estimation/testing of heterogeneous-agent asset pricing models
when the cross-sectional consumption distribution exhibits fat tails and the
models may be true or false. Compared to the representative-agent setting, a
simulation study of a heterogeneous-agent model is challenging for two reasons.
First, solving a heterogeneous-agent asset pricing model is much more com-

2See Mankiw (1986), Constantinides and Duffie (1996), Heaton and Lucas (1996), Saito
(1998), Krebs and Wilson (2004), Storesletten et al. (2007), Krueger and Lustig (2010), Gu-
venen (2009), and Toda (2015) for theoretical/numerical works and Brav et al. (2002), Cogley
(2002), Vissing-Jørgensen (2002), Balduzzi and Yao (2007), Krueger et al. (2008), Kocher-
lakota and Pistaferri (2009), Basu et al. (2011), Constantinides and Ghosh (2014), and Se-
menov (2016) for empirical works. See Ludvigson (2013) for a review on testing CCAPM.

3A nonnegative random variable X is said to be Paretian (obey the power law in the upper
tail) if Pr(X > x) = Ax−α(1 + o(1)) as x → ∞ for some A,α > 0. It obeys the power law in
the lower tail if 1/X is Paretian, so Pr(X < x) = Bxβ(1 + o(1)) as x → 0 for some B, β > 0.
α, β > 0 are called power law exponents. See Resnick (2008) for an authoritative textbook
treatment of extreme value theory and Gabaix (2009) for a review of empirical power laws as
well as some generative mechanisms.

4Battistin et al. (2009) document the lognormality in consumption using U.S. and U.K.
data. Brzozowski et al. (2010) obtain similar results with Canadian data.

5Thus our approach is similar in spirit to Tauchen (1986), Kocherlakota (1990), and Hansen
et al. (1996), who study the finite sample properties of the GMM estimator of representative-
agent asset pricing models. Carroll (2001) uses simulated data to estimate the relative risk
aversion from the log-linearized Euler equation. Alan et al. (2009) study the finite sample
properties of a GMM estimator that is robust to measurement error.
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plicated than solving a representative-agent one: heterogeneous-agent models
rarely have closed-form solutions, and one must thus usually solve them numer-
ically as in Krusell and Smith (1998). Solving even two agent, two asset infinite
horizon general equilibrium models often entails substantial computational bur-
den (Guvenen, 2009). Second, since our aim is to study the implications of fat
tails for GMM estimation, the cross-sectional distribution of consumption must
have fat tails. But, numerical techniques do not let us, with certainty, identify
or characterize fat tails in heterogeneous-agent models.

The incomplete-market dynamic general equilibrium model of Toda (2014)
overcomes both difficulties: it is analytically solvable and computationally tractable,
and the model’s cross-sectional consumption distribution obeys the power law
in both the upper and lower tails with known power law exponents. Although
in the literature there exist heterogeneous-agent models that are analytically
solvable and exhibit fat tails, such as Benhabib et al. (2011, 2016), these models
do not feature aggregate shocks and therefore cannot be applied to the study of
asset prices. The Toda (2014) model, on the other hand, allows for an arbitrary
Markov process for the aggregate shocks. Therefore, this model is well-suited as
a laboratory for examining financial Euler equation estimation in the presence
of fat tails in the cross-sectional distribution of consumption.

Using the incomplete-market general equilibrium model as our laboratory,
we conduct two sets of experiments. First, we estimate the relative risk aver-
sion coefficient both by standard GMM and by age cohort GMM using the
simulated consumption and asset returns data from the model. We find that
standard GMM over-rejects the correct risk aversion coefficient and that the
GMM estimator has a large mean squared error. In part, this is because in many
simulations, the GMM criterion has multiple troughs, one near the true param-
eter and another at a random location, which is frequently the global minimum.
The risk aversion estimate is often well above 10 (in the moment nonexistence
range) and, in these instances, associated with a zero equity premium pricing
error. Thus, the fat tails sometimes aid in over-fitting, even though on average
standard GMM over-rejects the correct model. Age cohort GMM, in contrast,
provides more accurate risk aversion estimates and does not over-reject the true
model/parameter.

Second, we repeat our analysis but with incorrect, random asset returns.
Standard GMM quite often fails to reject the model even though it is false.
In these cases of over-fitting, risk aversion estimates are upwardly biased high
into the moment nonexistence range. Oddly, the histogram of equity premium
pricing errors across simulations is bimodal, with spurious mass at zero. The age
cohort method, on the other hand, removes the spurious pricing error peak at
zero. While some of these findings seem odd, they closely mirror the empirical
findings of Toda and Walsh (2015).

Our results are driven by the sample analogs of nonexistent moments and
not by GMM per se: generalized empirical likelihood (GEL) estimation of the
model mostly generates worse Type I and Type II errors (see Online Appendix).
Our findings are also robust across econometric specifications. Our baseline (the
“conditional” model) uses a single risky asset and one instrument (the lagged
price-dividend ratio), but the results are similar when we exclude the instrument
(the “exactly identified” model). Dropping the instrument and adding another
risky asset (the “unconditional” model) somewhat mitigates the spurious pricing
error mode but still generates excessive Type I and II errors relative to age cohort
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GMM.
Finally, using a representative-agent asset pricing model as an example, we

provide a simple explanation for the bimodal pricing error histograms and the
Type II errors. The idea is that since the sample moment condition involves
negative powers of consumption growth, when the power is a large negative
value (corresponding to high risk aversion), the sample moment condition is
dominated by the two largest terms in absolute value (corresponding to the
two smallest consumption growth observations). Therefore as long as these two
terms have opposite signs, regardless of whether the model is true or false, we
can always set the sample moment to zero at some high risk aversion parameter.
Indeed, estimating a representative-agent model with the incorrect asset returns
(so the model is false by construction), we get bimodal pricing errors and Type
II errors, driven by high risk aversion. This explanation offers a simple remedy:
estimating an overidentified model (with consumption powers in each moment
condition) is likely to mitigate the Type II errors since the spurious estimators
differ across equations. The age cohort method is an example of this remedy.

Our paper is related to two strands of literature. The first is the literature
on model estimation under fat tails. In an asset pricing setting, Kocherlakota
(1997) tests the standard representative-agent CCAPM with fat-tailed pricing
errors using subsampling. Here the fat tails appear in the time series, whereas
in our analysis they appear in the cross-section of consumption. While he tests
the model using actual data, our focus is the estimation from simulated data, for
which we know by construction both the data generating process and whether
the model is true or false.6 Beaulieu et al. (2010) test the Fama-French multi-
factor CAPM with fat-tailed asset returns. Although not in a financial context,
Geweke (2001) describes the limitations of the constant relative risk aversion
(CRRA) utility function: expected utility may not exist when the distribu-
tion of consumption is fat-tailed. In the GARCH setting, when error moments
become infinite between 2 and 4, the convergence rate of quasi-maximum like-
lihood (QML) estimation falls below n1/2 (Berkes and Horváth, 2003), and the
asymptotic distribution may be non-Gaussian and difficult to estimate (Hall
and Yao, 2003). To address fat tail issues in the GARCH context, Hill (2015)
and Hill and Prokhorov (2016) introduce, respectively, tail-trimmed QML and
tail-trimmed GEL, each of which yields asymptotic normality and better finite
sample properties relative to a variety of standard methods.

The second literature concerns the problems with estimating asset pricing
models with model misspecification or unidentified parameters. Kan and Zhang
(1999a,b) develop the asymptotic theory and conduct simulations of the two-
pass and the GMM tests of linear factor models that contain factors that are un-
correlated with asset returns (“useless factors”). They find that when the model
is misspecified, the presence of useless factors leads to Type II errors. Kan et al.
(2013) and Gospodinov et al. (2014) develop a misspecification-robust infer-
ence and model selection method for the two-pass and GMM tests, respectively.
Burnside (2016) considers the case in which factor loadings are unidentified
and theoretically shows that the estimation results are sensitive to the way one
normalizes the stochastic discount factor. More broadly, Andrews and Cheng
(2012) study the asymptotic properties of extremum estimators when there is

6Kocherlakota (1990) compares various tests of the representative-agent CCAPM using
simulated data.
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weak identification in parts of the parameter space. Their leading example is
ML estimation of the ARMA(1,1) model, which becomes unidentified as the
true AR and MA coefficients approach one another. Simulations show that in
this case estimate distributions are bimodal and standard tests over-reject cor-
rect nulls. Our study provides another practical example of poor identification
leading to multi-humped estimate distributions and Type I errors.

Our paper is at the intersection of these literatures because in our setting fat
tails lead to inconsistency and Type II errors. Specifications that average across
Euler equations introduce nonexistent moments, which cause the GMM criterion
to be asymptotically random. Complementary to the tail-trimming explored
in Hill (2015) and Hill and Prokhorov (2016), our Monte Carlo experiments
show that age cohort GMM, and overidentifying restrictions in general, yield
improvements in mean squared error and test size/power.

2 Euler equation aggregations and inconsistency

under fat tails

2.1 Literature on Euler equation aggregations7

Consider an economy populated by households with identical additive constant
relative risk aversion (CRRA) preferences

E0

∞∑

t=0

βt c
1−γ
t

1− γ
,

where β > 0 is the discount factor, γ > 0 is the relative risk aversion coefficient,
and ct is consumption. Assuming interior solutions, the Euler equation

c−γ
it = E

[
βc−γ

i,t+1Rt+1

∣∣Fit

]
(2.1)

holds, where Rt+1 is the gross return of any asset and Fit denotes the informa-
tion set of household i at time t.

In order to estimate and test these Euler equations using micro consump-
tion data, one must overcome two potential problems: measurement error in
household-level consumption and panel shortness (individual households par-
ticipate for only short periods of time). To handle these issues, the empirical
literature on testing heterogeneous-agent asset pricing models “averages” across
households to mitigate measurement error and create a long time series. This
literature has provided several approaches to aggregating the Euler equations.

The first approach is to average the marginal rate of substitution as in Brav
et al. (2002) and Cogley (2002), which are based on the theoretical model of
Constantinides and Duffie (1996). Let Ft be the information set that contains
only aggregate variables—in this example asset returns—and let Et denote the
expectation conditional on Ft. Dividing (2.1) by c−γ

it , conditioning on aggregate
variables Ft, and applying the law of iterated expectations, we obtain

1 = Et

[
β(ci,t+1/cit)

−γRt+1

]
= Et

[
β Et+1[(ci,t+1/cit)

−γ ]Rt+1

]
.

7This section draws heavily from the literature review of Toda and Walsh (2015) in order
to make the paper self-contained.
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Since this equation holds for any asset, subtracting the equation corresponding
to the risk-free rate Rf

t and dividing by β > 0, we obtain

Et

[
mIMRS

t+1 (Rt+1 −Rf
t )
]
= 0,

where mIMRS
t+1 = Et+1[(ci,t+1/cit)

−γ ] is the −γ-th cross-sectional moment of
consumption growth between time t and t+1. Therefore, up to a multiplicative
constant (here β), mIMRS

t+1 is a valid stochastic discount factor (SDF), where
IMRS stands for “intertemporal marginal rate of substitution”. For estimation,
we can use the sample analog

m̂IMRS
t+1 (γ) =

1

I

I∑

i=1

(
ci,t+1

cit

)−γ

(2.2)

and minimize the GMM criterion

JT (γ) = T

(
1

T

T∑

t=1

m̂IMRS
t (γ)(Rs

t −Rf
t−1)

)2

, (2.3)

where Rs
t is the stock return.

One issue with the IMRS SDF is that, since it is the cross-sectional average
of the negative power of individual consumption growth, its value will be highly
sensitive to the smallest consumption growth observation or measurement error.
As a remedy, Balduzzi and Yao (2007) have suggested a more robust SDF by
averaging the Euler equation (2.1) directly. Taking the expectation of (2.1) with
respect to Ft and applying the law of iterated expectations, we obtain

Et[c
−γ
it ] = Et[βc

−γ
i,t+1Rt+1] = Et

[
β Et+1[c

−γ
i,t+1]Rt+1

]
.

Dividing both sides by Et[c
−γ
it ], we obtain

1 = Et

[
β
Et+1[c

−γ
i,t+1]

Et[c
−γ
it ]

Rt+1

]
.

By the same argument as above,

mMU
t+1 =

Et+1[c
−γ
i,t+1]

Et[c
−γ
it ]

is also a valid stochastic discount factor up to a multiplicative constant, where
MU stands for “marginal utility”. For estimation, we can use the sample analog

m̂MU
t+1(γ) =

1
I

∑I
i=1 c

−γ
i,t+1

1
I

∑I
i=1 c

−γ
it

. (2.4)

Balduzzi and Yao (2007) argue that the MU SDF is less susceptible to measure-
ment error, because if the process for measurement error is i.i.d. across agents
(but not necessarily over time), then the term corresponding to the measurement
error will cancel out in the numerator and the denominator of mMU

t+1.
As pointed out by Toda and Walsh (2015), the validity of the IMRS and MU

stochastic discount factors relies on the existence of the cross-sectional moments
Et[(cit/ci,t−1)

−γ ] and Et[c
−γ
it ], respectively. However, the above studies do not

explicitly discuss the presence or implications of fat tails in the cross-sectional
distribution of consumption or consumption growth.
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2.2 Inconsistency of GMM under fat tails

Why might fat tails in the consumption distribution create problems for GMM
estimation? We can illustrate the problem in a very simple setting. Suppose
that {xt, yt}t∈Z

is i.i.d., E[x2
t ] < ∞, and yt = θ0xt + ǫt, where the error term ǫt

is independent from xt. Suppose the researcher believes that E[ǫt] = 0 and uses
the moment condition

E[(yt − θxt)zt] = 0 ⇐⇒ θ = θ0

to estimate θ by GMM (in this case, method of moments), where zt = xt is the
regressor used as an instrument. Clearly the GMM (OLS) estimator is

θ̂T =
T−1

∑T
t=1 ytzt

T−1
∑T

t=1 xtzt
= θ0 +

T−1
∑T

t=1 xtǫt

T−1
∑T

t=1 x
2
t

,

where T is the sample size. If indeed E[ǫt] = 0, by the strong law of large
numbers we have

θ̂T
a.s.−−→ θ0 +

E[xtǫt]

E[x2
t ]

= θ0 +
E[xt] E[ǫt]

E[x2
t ]

= θ0,

so θ̂T is consistent.
Now suppose, in fact, that |ǫt| is Paretian with exponent 0 < α < 1. By

Theorem 3 of Embrechts and Goldie (1980) (see also Cline (1986)), xtǫt also
has a power law exponent α. Consequently, as is well-known (e.g., Theorem
9.34 and Problem 9.10 in Breiman (1968), Theorem 3.7.2 and Exercise 3.7.2 in
Durrett (2010)), it follows that

T−1/α
T∑

t=1

xtǫt
d−→ Y,

where Y is a nondegenerate distribution (a suitably normalized Lévy α-stable
distribution). Therefore

θ̂T = θ0 + T 1/α−1T
−1/α

∑T
t=1 xtǫt

T−1
∑T

t=1 x
2
t

∼ θ0 + T 1/α−1 Y

E[x2
t ]
,

and since 1/α−1 > 0, the GMM estimator θ̂T diverges and hence is inconsistent.

(T 1−1/αθ̂T converges in distribution to Y/E[x2
t ].) The problem is that the GMM

criterion

(
1

T

T∑

t=1

(yt − θxt)xt

)2

=

(
T 1/α−1T−1/α

T∑

t=1

xtǫt − (θ − θ0)
1

T

T∑

t=1

x2
t

)2

∼ (T 1/α−1Y − (θ − θ0) E[x
2
t ])

2

diverges almost surely as T → ∞, or once rescaled is random asymptotically.
Although we have maintained an i.i.d. assumption for simplicity, we obtain the
same conclusion in the non-i.i.d. case by using the results of Davis and Hsing
(1995).
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The same issue applies to the IMRS stochastic discount factor (2.2). Sup-
pose, for simplicity, that aggregate consumption growth Gt+1 := Ct+1/Ct is
i.i.d. over time, and that the growth rate of individual consumption relative

to the aggregate consumption, gi,t+1 :=
ci,t+1/Ct+1

cit/Ct
, is also i.i.d. over time and

across individuals. Furthermore, assume that 1/gi,t+1 has a power law with
exponent α > 0. (In the data, α ≈ 4.) If γ > α, since g−γ

i,t+1 has a power law
exponent α/γ < 1, by the same argument as above, we have

m̂IMRS
t+1 (γ) =

1

I

I∑

i=1

(
ci,t+1

cit

)−γ

=
1

I
G−γ

t+1

I∑

i=1

g−γ
i,t+1

∼ Iγ/α−1G−γ
t+1Yt+1(γ),

where Yt+1(γ) has a nondegenerate distribution that depends on γ. Since by
assumption gi,t+1 is i.i.d. over time and individuals, {Yt+1(γ)} is i.i.d., and is
a suitably normalized stable distribution with index α/γ < 1. Letting Xt =

Rs
t − Rf

t−1 be the excess return, the expression inside the parenthesis of the
IMRS GMM criterion (2.3) is

1

T

T∑

t=1

m̂IMRS
t (γ)Xt ∼ T γ/α−1Iγ/α−1T−γ/α

T∑

t=1

G−γ
t Yt(γ)Xt

∼ T γ/α−1Iγ/α−1Z(γ),

where again Z(γ) is a suitably normalized stable distribution. Thus the GMM
estimator will asymptotically behave as the minimizer or Z(γ)2, which is a
random function, and hence the GMM estimator is inconsistent. A similar
argument holds for the MU SDF as well.

Given these theoretical results, we can expect that the standard GMM es-
timation of heterogeneous-agent asset pricing models will have poor properties.
However, in finite samples would the estimator be biased upwards or down-
wards? Would standard tests lead to over or under rejections? It is difficult to
answer these questions with actual data since we know neither the true data
generating process nor whether the model is true or false. Therefore we resort
to a Monte Carlo study using simulated data.

3 Simulating an economy

In this section we generate asset returns and consumption data from an incomplete-
market dynamic general equilibrium model that admits a closed-form solution.
Because the model is highly tractable and the cross-sectional consumption dis-
tribution obeys the power law in both tails, we can create an artificial economy
with a consumption distribution that has fat tails with known power law ex-
ponents and then use it as a laboratory for studying the properties of the MU
stochastic discount factor, which would be valid in this setting if not for fat fails.

3.1 Model

We present a minimal model to simulate an economy with a fat-tailed consump-
tion distribution.

8



3.1.1 Settings

We consider a heterogeneous-agent, consumption-based asset pricing model sim-
ilar to Constantinides and Duffie (1996). Time is indexed by t = 0, 1, . . . and
agents are indexed by i ∈ I = {1, . . . , I}. As in Blanchard (1985), between
consecutive periods each agent dies at constant probability 0 < δ < 1 inde-
pendently across agents and time, and is replaced by a newborn agent. This
overlapping generation feature is necessary in order to obtain a non-degenerate
cross-sectional distribution. Agents have identical standard additive CRRA
preferences

E0

∞∑

t=0

(β(1− δ))t
c1−γ
it

1− γ
,

where β > 0 is the discount factor, (1 − δ)t is the probability to survive up
to time t, γ > 0 is the relative risk aversion coefficient, and cit is agent i’s
consumption.

There are three assets, a claim to aggregate dividends (dividend claim), a
claim to aggregate consumption (consumption claim), and a one-period risk-
free bond, all in zero net supply.8 Let Ct, Dt be aggregate consumption and
dividends. The aggregate endowment is denoted by Yt. Let

xt = (log(Yt/Yt−1), log(Dt/Dt−1))
′

be the vector of log aggregate endowment and dividend growth. Since it is a pure
exchange economy, aggregate consumption Ct equals the aggregate endowment
Yt by market clearing. We assume that xt obeys a VAR(1) process

xt = (I −A)g +Axt−1 + ut, ut ∼ N(0,Σ), (3.1)

where A is a 2× 2 matrix with all eigenvalues less than 1 in absolute value, g =
(gc, gd)

′ is the unconditional mean of log aggregate consumption and dividend
growth, and ut is an error term that is i.i.d. over time.

Assume that for surviving agents, log individual endowment growth equals
aggregate endowment growth plus an uninsurable idiosyncratic shock:

log
yit

yi,t−1
= log

Yt

Yt−1
+ εit, εit ∼ N(−σ2/2, σ2), (3.2)

where σ > 0 is the idiosyncratic volatility. For simplicity, the idiosyncratic
shock εit is assumed to be i.i.d. across individual and time. Note that since
εit ∼ N(−σ2/2, σ2), we have E[eεit ] = 1. εit determines inequality over the life
cycle.

For agents that are reborn, the initial endowment equals the aggregate en-
dowment times a lognormal idiosyncratic shock:

log yit = log Yt + ηit, ηit ∼ N(−σ2
0/2, σ

2
0),

where ηit determines the innate inequality.
This economy is tractable enough so that we can compute all asset prices in

closed-form. See Appendix A for details.

8The zero net supply assumption is innocuous since if the assets are in positive net supply,
by giving shares to individuals proportional to their income (at t = 0 or at birth), we can
construct an equilibrium with no trade as in Constantinides and Duffie (1996).
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3.1.2 Cross-sectional distribution

Next, we characterize the consumption distribution. Invoking the equilibrium
condition cit = yit and Ct = Yt in (3.2), the logarithm of individual consumption
relative to aggregate consumption satisfies

log
cit
Ct

= log
ci,t−1

Ct−1
+ εit.

Since εit ∼ N(−σ2/2, σ2), the log relative consumption is a random walk with
a drift µ = −σ2/2 and instantaneous variance σ2. Since endowment at birth
is lognormal, the cross-sectional distribution within an age cohort is also log-
normal. The log variance of a cohort with age a is σ2

0 + σ2a, which increases
linearly with age.

Since agents die at constant probability 0 < δ < 1 between each period
and are reborn, the age distribution is geometric with mean 1/δ. Since the
cross-sectional consumption distribution within each age cohort is lognormal
and the log variance increases linearly with age, the entire cross-sectional log
consumption distribution is a normal mixture. Under general settings, Toda
(2014) shows that in the continuous-time limit, the shape of the cross-sectional
distribution of consumption (relative to when born) converges to the double
Pareto distribution (Reed, 2001), which is a distribution with two Pareto tails.
The density function is

f(x) =

{
α1α2

α1+α2
x−α1−1, (x ≥ 1)

α1α2

α1+α2
xα2−1, (x ≤ 1)

where α1, α2 are the power law exponents of the upper and lower tails. Accord-
ing to Theorem 16 of Toda (2014), −α1 and α2 are solutions to the quadratic
equation

σ2

2
ζ2 − µζ − δ = 0.

Substituting µ = −σ2/2 and solving the equation, the power law exponents are

α1, α2 =
1

2

(√
1 +

8δ

σ2
± 1

)
, (3.3)

where σ > 0 is the idiosyncratic volatility. In this case the cross-sectional
moment of consumption Et[c

η
it] is finite if and only if −α2 < η < α1. When δ

is large compared to σ2, then we have α1, α2 ≈
√
2δ/σ ± 1/2, so the average of

the power law exponents is about
√
2δ/σ.

Since the individual endowment is lognormally distributed when agents are
born, the actual cross-sectional consumption distribution will be the product of
lognormal and double Pareto distributions, which is known as the double Pareto-
lognormal (Reed, 2003). This distribution is determined by four parameters, the
mean and variance of the lognormal component and the two power law exponents
of the double Pareto component. In our case, the variance parameter is σ0 and
the power law exponents are α1, α2 in (3.3).
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3.2 Calibration

We calibrate an economy at the annual frequency. We assume no discounting, so
β = 1. The death probability is δ = 1/30, which implies an average lifespan of
30 years. As in Toda (2014), “death” in this model should not be taken literally
and instead interpreted as the arrival of a major life event such as personal
bankruptcy, retirement, divorce, death, etc. Under this interpretation, choosing
an average of 30 years seems quite natural. The effective discount factor is then
β̃ = β(1 − δ) = 0.967, which is very close to values used in the literature. The
relative risk aversion coefficient is γ = 7, which is arguably a little high but still
lower than values used in many macro-finance papers.

For the dynamics of log consumption/dividend growth, we obtain the 1889–
2009 real per capital consumption and real dividend from Robert Shiller’s web-
site9 and estimate the VAR(1) process in (3.1) by ordinary least squares (OLS).
The result is

ĝ =

[
.0203
.0108

]
, Â =

[
−.0767 .0119
.8011 .0592

]
, Σ̂ =

[
.0012 .0015
.0015 .0125

]
.

According to (3.3), the power law exponents are around
√
2δ/σ. Since the

estimate in Toda and Walsh (2015) is 4 in the U.S., we set the idiosyncratic
volatility σ = 0.0645 to match the power law exponents. Deaton and Pax-
son (1994) find that the U.S. cross-sectional log variance within age cohorts
increases almost linearly with age (which is consistent with our model), and
the rate is .0069 per year. This value translates to an idiosyncratic volatility

of
√

2
3 .0069 = 0.0678,10 which is similar to our number (.0645). Finally, we as-

sume that individual consumption is observed with a measurement error, with
log standard deviation σǫ = 0.1 (10%).11

We can compute the price-dividend/consumption ratios, asset returns, and
the risk-free rate by (A.3), (A.5), and (A.6) in Appendix A. With the above pa-
rameter values, the average price-dividend ratio (computed by integrating (A.3)
with respect to the stationary distribution) is 32.8 (dividend yield 3.05%), av-
erage stock market return and volatility are 5.10% and 14.1%, and the average
risk-free rate and volatility are 2.99% and 1.85%, which are of the same order
of magnitude as in U.S. data.12 The correlation between the aggregate con-
sumption growth and the consumption and dividend claims are 0.94 and 0.60,

9http://www.econ.yale.edu/~shiller/data.htm
10The factor 2

3
comes from the Grossman et al. (1987) adjustment for time-aggregated data,

which is necessary because the power law exponents are computed using the continuous-time
approximation.

11We experimented with various standard deviations for measurement error (including no
measurement error), and the results were similar. The standard deviation of σǫ = 0.1 is taken
from the simulation in Balduzzi and Yao (2007).

12According to the Shiller 1889–2009 data, the historical numbers are 7.69% for stock returns
(18.4% volatility), 1.97% for the risk-free rate (5.80% volatility), and 4.29% for the dividend
yield. Since in our model the idiosyncratic shock in consumption growth is i.i.d. across indi-
vidual and time, the idiosyncratic shock does not affect the equity premium (though it lowers
the risk-free rate), as shown by Krueger and Lustig (2010). It is not difficult to obtain a larger
equity premium within heterogeneous-agent models by introducing either stochastic idiosyn-
cratic volatility (Storesletten et al., 2007), multiple sectors and production (Toda, 2015), or
rare disasters (Schmidt, 2015), but we stick to i.i.d. idiosyncratic shocks since our purpose is
to simulate a simple economy with fat-tailed consumption data and reasonable returns, not
to perform detailed and highly realistic calibration that resolves many asset pricing puzzles.
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respectively, which are relatively high. The power law exponents for consump-
tion computed by (3.3) are α1 = 4.53 for the upper tail and α2 = 3.53 for the
lower tail.

3.3 Simulation

We simulate the economy with 10,000 Monte Carlo replications, each run con-
sisting of either T = 100, 300, or 500 years and I = 4000 households at any
given time.13 The specific procedure is as follows. First, to create the panel of
ages, we generate I × T Bernoulli variables with death probability 0 < δ < 1.
Second, we set initial aggregate consumption C0 = 1 and generate T aggregate
shocks {xt}Tt=1, I × T idiosyncratic endowment growth shocks {(εit)i∈I}Tt=1,

I × T endowment level shocks at birth {(ηit)i∈I}T−1
t=0 , and compute the con-

sumption path of each household denoted by {cit} as well as the stock return
and the risk-free rate using (A.5) and (A.6). Finally, we multiply cit by the
“measurement error” eǫ, where ǫ ∼ N(−σ2

ǫ /2, σ
2
ǫ ), again i.i.d. across agents and

time. In this way we obtain a sequence of asset returns
{
(Rc

t+1, R
d
t+1, R

f
t )
}T−1

t=0
and an I × T panel of observed consumption and age.

Because the measurement error is lognormal, the cross-sectional (observed)
consumption distribution for large enough time periods becomes approximately
the product of double Pareto-lognormal and lognormal distributions, which is
again double Pareto-lognormal. One may calculate the power law exponents
α1, α2 either theoretically using (3.3) or numerically by estimating them by
maximum likelihood using the log observed consumption distribution. (In our
simulation they are almost the same number, as they should be.) We find that
the shape of the cross-sectional distribution typically converges to a steady state
after 10/δ periods (10 times the average lifespan of households). In practice, we
generate data for b+ T periods and discard the first b observations as burn in,
with b = ⌊10/δ⌋.

Figure 3.1 shows the histograms of log relative consumption and age at
t = 1 for one simulation. Since the burn in period is 10/δ = 300, this is ac-
tually the 301st observation from the simulated data. The solid lines show the
theoretical densities. For log consumption, the density is the convolution of
the normal N(−τ2/2, τ2) with τ2 = σ2

0 + σ2
ǫ (coming from idiosyncratic shock

at birth and log measurement error) and the logarithm of double Pareto with
exponents α1, α2 (which is known as Laplace (Kotz et al., 2001)). The resulting
distribution is known as normal-Laplace, which is the logarithm of the double
Pareto-lognormal and has a known closed-form density function (Reed and Jor-
gensen, 2004). Since the birth/death probability is constant, the theoretical age
distribution is geometric (exponential). According to Figure 3.1, the theoretical
densities closely track the histograms, so the continuous-time approximation is
very good.

Although the histogram of log consumption is bell-shaped and may appear
to be normal, actually it is far from normal. First, it is asymmetric because the
two power law exponents α1 = 4.53 and α2 = 3.53 are distinct (the lower tail
is fatter). Second, since consumption has power law tails, log consumption has
exponential tails, which are fatter than those of the normal distribution. To see

13In the empirical analysis of Toda and Walsh (2015), there are about 300 time periods and
4,000 households.
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Figure 3.1: Histograms of cross-sectional distributions at t = 1.

this graphically, Figure 3.2 shows the QQ (quantile-quantile) plot of log relative
consumption against the normal distribution (fitted by maximum likelihood)
and the normal-Laplace distribution (with the theoretical parameters). If the
statistical model fits well to data, the QQ plot should show a 45 degree line.
According to the result with the normal distribution (Figure 3.2a), the points
deviate from the 45 degree line in the tails, which suggests that log consumption
has much fatter tails than normal. On the other hand, the result with the
normal-Laplace distribution (Figure 3.2b) shows a straight line, so the simulated
data is close to the theoretical distribution.
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Figure 3.2: QQ plot of log relative consumption at t = 1.

Figures 3.3 shows the actual (1889–2009) and simulated (first 121 years)
asset returns, which show similar patterns.

4 Monte Carlo study

In our simulated data, we know that there is a power law in consumption, and
we know that if not for this reason, the MU SDF would give us consistent
estimates of γ, using simulated data. The question then is, how does the MU
SDF behave in the presence of the power law? Since the true relative risk
aversion coefficient (γ = 7) exceeds the power law exponent (4) and hence the
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Figure 3.3: Asset returns from actual and simulated data.

cross-sectional moment of consumption does not exist at the true γ, we expect
that the MU SDF will perform poorly because the large sample limit of the
GMM criterion is random.

We consider the possibility of both a Type I error (incorrect rejection of a
true null) and a Type II error (incorrect non-rejection of a false null). Two
sorts of Type I errors are possible in our setting. First, the nonexistence of
cross-sectional moments could prevent the true model from explaining the equity
premium. Indeed, according to χ2 tests of overidentifying restrictions, standard
GMM over-rejects the true model. Second, inconsistency could lead us to find
excessively high γ estimates and reject lower but correct values. This is what
we find. Type II errors may arise precisely because the power law behavior lets
us zero the pricing error at spuriously high γ estimates. Often, we fail to reject
the model even when the asset returns are completely random.

4.1 GMM estimation

4.1.1 Standard GMM

The standard GMM proceeds as follows. Let

gT (γ) =
1

T

T∑

t=1

m̂MU
t (γ)(Rs

t −Rf
t−1)⊗ zt−1

be the sample average of the pricing errors for the equity premium, where T is
the number of time periods, m̂MU

t (γ) is the MU stochastic discount factor in

(2.4), Rs
t is the model-generated asset returns, Rf

t−1 is the risk-free rate, and
zt−1 is the vector of instruments. As described in the introduction, we consider
three different specifications for Rs

t and zt−1. For the “exactly identified” model,
the only asset is the dividend claim (Rs

t = Rd
t ), and there are no instruments.

Instruments are not necessary for estimation but are necessary for tests of overi-
dentifying restrictions if there is only one asset. Therefore, we also consider the
“conditional” model. In this case, the dividend claim is still the only asset, but
we use two instruments, the constant 1 and the normalized price-dividend ratio
defined to be Pt−1/Dt−1 divided by its sample mean. As the exactly identified
and conditional models yield similar results, we focus on the latter, which al-
lows for more tests. The third specification is the “unconditional” model, which
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has two assets, a claim on dividends and consumption (Rs
t = (Rc

t , R
d
t )), but no

instruments. See Online Appendix for a comparison of all three specifications.
Letting W be the weighting matrix (we choose the identity matrix for the

first stage estimation), the GMM estimator of the relative risk aversion coeffi-
cient γ and the mean squared pricing error are defined by

γ̂ = argmin
γ

TgT (γ)
′WgT (γ),

e =

√
‖gT (γ̂)‖2 /K = ‖gT (γ̂)‖ /

√
K,

whereK is the number of equations in GMM.14 Since m̂MU
t (γ) and zt−1 are num-

bers close to 1, the mean squared pricing error e has the same order of magnitude
as the equity premium. This definition makes the comparison across different
models intuitive, unlike the minimized GMM criterion which tends to be larger
for overidentified models. Note, however, that since the first stage weighting
matrix is the identity matrix, the mean squared error is just a monotonic trans-
formation of the minimized GMM criterion. The calculation of standard errors
and test statistics are explained in Online Appendix.15

In addition to standard GMM using the identity matrix as the weighting
matrix, we also consider the generalized empirical likelihood (GEL) approach of
Kitamura and Stutzer (1997) since GEL estimators are known to have smaller
bias (Newey and Smith, 2004). Although there are many variants of GEL (see
Kitamura (2007) for a review), the one that uses the Kullback-Leibler informa-
tion as in Kitamura and Stutzer (1997) is particularly convenient because the
dual optimization problem is unconstrained and low dimensional.

4.1.2 Age cohort GMM

As discussed in Section 2.2, the standard GMM is inconsistent when the con-
sumption distribution has fat tails. To mitigate this issue, Toda and Walsh
(2015) propose “age cohort GMM”. Since the Euler equation aggregation in
Section 2.1 that gave us the SDFs also works within a particular age cohort,
and since the cross-sectional distribution of consumption is lognormal within
age cohorts according to the model in Section 3, we can estimate an overiden-
tified model by dividing agents into age groups. For example, divide the agents
into H age groups according to the 100h/H percentile of the age distribution
(h = 1, . . . , H), and call these groups It,1, . . . , It,H . We can form the MU SDF
for cohort h by

m̂MU
t,h (γ) =

1
|It,h|

∑
i∈It,h

c−γ
it

1
|It−1,h|

∑
i∈It−1,h

c−γ
i,t−1

,

where |It,h| is the number of households in group It,h. One caveat is that since
an agent with age a at time t−1 will have age a+1 at time t (if alive) and since

14In implementing the minimization over γ, to avoid local minima that are not the global
minimum, we first perform a grid search over γ = 0, 1, 2, . . . , 20 and then use the minimizer
as the initial value for the fmincon command in Matlab (with constraint γ ≥ 0). We supply
the analytical gradients to speed up the minimization.

15We also considered the efficient second stage estimation using the optimal weighting ma-
trix, but we focus on the first stage because we find that the second stage estimator is biased,
as reported in Altonji and Segal (1996) (linear model) and Clark (1996) (nonlinear model),
and the bias and the standard errors are larger than in the first stage. Cochrane (2005) also
recommends the first stage estimation for asset pricing models.
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each Euler equation is agent specific, the age cutoffs for the numerator must be
+1 of those of the denominator.

Let m̂MU
t (γ) = (m̂MU

t,1 (γ), . . . , m̂MU
t,H (γ))′ be the vector of SDFs and

GT (γ) =
1

T

T∑

t=1

m̂MU
t (γ)⊗ (Rs

t −Rf
t−1)⊗ zt−1

be the vector of pricing errors. Letting W be the weighting matrix, the first
stage GMM estimator of γ and the mean squared pricing error are

γ̂ = argmin
γ

TGT (γ)
′WGT (γ),

e =

√
‖GT (γ̂)‖2 /(KH) = ‖GT (γ̂)‖ /

√
KH,

where K is the number of equations in each cohort and H is the number of
cohorts. Below, we choose H = 5 (five age cohorts) and set the weighting
matrix to the identity matrix.

4.1.3 Representative-agent GMM

Finally, as a robustness check, we also estimate γ from the representative-agent
model (RA), which turns out to be valid for this particular example.16 To see
this, dividing both sides of the first-order condition (A.1) by c−γ

it P d
t , we obtain

1 = β̃ Et

[
(ci,t+1/cit)

−γRd
t+1

]
,

where Rd
t+1 = (P d

t+1+Dt+1)/P
d
t is the dividend claim return. Since by (3.2) log

individual consumption growth is equal to log aggregate consumption growth
plus the idiosyncratic shock, it follows that

1 = β̃e
1
2γ(γ+1)σ2

Et

[
(Ct+1/Ct)

−γRd
t+1

]
.

The same equation holds for the consumption claim and the risk-free rate. Tak-
ing the difference and dividing by β̃e

1
2γ(γ+1)σ2

, we obtain the moment condition

Et

[
(Ct+1/Ct)

−γ(Rd
t+1 −Rf

t )
]
= 0.

Therefore up to a multiplicative constant, mRA
t+1(γ) = (Ct+1/Ct)

−γ is also a
valid stochastic discount factor. The GMM estimation of this representative-
agent model is completely analogous.

16One could, in principle, also estimate the IMRS SDF because in our particular model con-
sumption growth does not have fat tails and the measurement error is i.i.d. across agents and
over time. We do not perform this exercise because (i) the IMRS SDF is more susceptible to
measurement error issues in general (Balduzzi and Yao, 2007), (ii) empirical evidence suggests
that the household consumption growth also has fat tails (Toda, 2016), and (iii) the point
of this GMM exercise is to see what happens if we apply standard inferences when there are
fat tail issues, not to carry out the most reasonable inference for this particular problem. By
slightly changing the model (say by introducing time-varying idiosyncratic risk/measurement
error or fat-tailed consumption growth) it is not difficult to make the IMRS SDF invalid.
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4.2 Type I error

To study the possibility of a Type I error, we use the model-simulated consump-
tion, stock, and bond return data and estimate each model by GMM. From top
to bottom, Figure 4.1 shows the conditional model results for standard GMM,
age cohort GMM, and representative-agent GMM with sample size T = 500.17

The left panels show the scatter plot of simulated γ estimates and normalized
mean squared pricing errors for 10,000 simulations. The right panels show the
histogram of the pricing errors.

According to Figure 4.1a, across simulations there is an inverse relationship
between the MU γ estimate and the pricing error. When the MU model almost
exactly zeroes the pricing error, the γ estimate is often well above both the start
of the moment nonexistence range, > 4, and the true coefficient, 7.

However, splitting households into age groups and performing the age cohort
GMM, we no longer see this pattern: the large γ estimates corresponding to the
zero pricing errors in Figure 4.1a have disappeared in the age cohort GMM of
Figure 4.1c. Indeed, according to the histogram of the pricing errors in Figures
4.1b and 4.1d, there is much less mass around zero with the age cohort method.
And, according to the scatter plots, this mass is the result of upwardly biased
estimates in the nonexistence range. As we see in the scatter plot in Figure
4.1e, the RA γ estimates seem to be unbiased compared to the age cohort
GMM, although they have larger standard errors because the representative-
agent model exploits fewer moment restrictions. Also, the pricing errors are
almost negligible. (Note that the scale of the horizontal axis is 10−3.)

Figure 4.2 is the same as 4.1 but with the unconditional specification, which
has consumption and dividend claims but no instruments. While the patterns
are similar with respect to RA and age cohort GMM, standard GMM is some-
what improved: there is less pricing error mass at zero corresponding to up-
wardly biased estimates. As we discuss in Section 4.4, the improvements from
the age cohort and unconditional specifications suggest overidentification miti-
gates the adverse impact of fat tails on standard GMM.

Table 4.1 show the bias (the average of γ̂−γ across simulations), mean stan-
dard error truncated at 100 (to avoid excessively large numbers that appear in
the standard and representative-agent GMM but not age cohort), mean abso-
lute error (MAE, the average of |γ̂ − γ|), and root mean squared error (RMSE,

square root of the average of |γ̂ − γ|2) of each model/specification combination.
For both the conditional and unconditional model, the age cohort GMM is the
most biased but has the best finite sample properties in terms of standard er-
ror, mean absolute error, and root mean squared error. Using the unconditional
model improves standard errors, MAEs, and RMSEs but worsens the bias for
standard GMM (while lessening it with the other models).

Table 4.2 shows the Type I error probabilities, corresponding to a signifi-
cance level of .05. For T > 100, in the standard GMM columns we see the
manifestation of the high γ̂, low pricing error combinations in Figures 4.1a
and 4.2a. With both the conditional and unconditional specifications, standard
GMM over-rejects the true null (γ = 7), with sizes ranging from .075 to .092.
In contrast, for T > 100 age cohort and RA sizes range from .040 to .052. χ2

tests of overidentifying restrictions show that standard GMM also over-rejects

17We have also run the conditional model with T = 1000, which produced better finite
sample properties but very similar figures.

17



0 0.01 0.02 0.03 0.04 0.05

Pricing Error

0

5

10

15

20
R

R
A

 E
st

im
at

e

(a) Standard GMM

0 0.01 0.02 0.03 0.04 0.05

Pricing Error

0

2000

4000

6000

8000

F
re

qu
en

cy

(b) Standard GMM

0 0.01 0.02 0.03 0.04 0.05

Pricing Error

0

5

10

15

20

R
R

A
 E

st
im

at
e

(c) Age cohort GMM

0 0.01 0.02 0.03 0.04 0.05

Pricing Error

0

200

400

600

800

1000

F
re

qu
en

cy

(d) Age cohort GMM

0 0.2 0.4 0.6 0.8 1

Pricing Error ×10-3

0

5

10

15

20

R
R

A
 E

st
im

at
e

(e) Representative-agent GMM

0 0.2 0.4 0.6 0.8 1

Pricing Error ×10-3

0

100

200

300

400

500

600

700

F
re

qu
en

cy

(f) Representative-agent GMM

Figure 4.1: GMM estimation of conditional model (assets: dividend claim; in-
struments: P/D ratio). Left: scatter plot of γ estimates and pricing errors.
Right: histogram of pricing errors. T = 500.

the true model, while age cohort under-rejects and RA has the correct size.
Overall, this exercise suggests that the nonexistent moments lead to low, over-
fit pricing errors with high γ estimates in many instances and excessively high
pricing errors in others. On net, this leads standard GMM to over-reject both
the true parameter and model.

Why is the γ estimate so imprecise with the standard GMM? Spurious
troughs in the GMM criterion seem to be the cause. For the exactly identi-
fied, conditional, and unconditional specifications, in 1096, 1079, and 254 out
of 10,000 simulations (respectively), the standard GMM criterion has multiple
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Figure 4.2: GMM estimation of unconditional model (assets: dividend and
consumption claims; instruments: none). Left: scatter plot of γ estimates and
pricing errors. Right: histogram of pricing errors. T = 500.

inflection points, yielding one trough near the true γ and one or more in the
moment nonexistence range. It seems nonexistent moments may introduce spu-
rious troughs, and in some instances, a spurious one is closest to zero. Figure
4.3 illustrates this scenario. In this figure, there is a trough at γ = 5.98, which
is close to the true value (7) but not the global minimum. The other trough at
γ = 18.1 is the global minimum. In contrast, the age cohort GMM criterion has
multiple troughs in 6, 6, and 0 out of 10,000 simulations.
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Table 4.1: Finite sample properties

GMM Standard Age cohort RA

Sample size 100 300 500 100 300 500 100 300 500

Conditional model
(assets: dividend claim only; instruments: price-dividend ratio)
Bias -1.39 -.69 -.23 -2.02 -1.05 -.67 .48 .048 .043
SE100 10.9 7.44 6.36 3.09 2.17 1.82 4.88 2.72 2.10
MAE 3.23 2.32 2.04 2.41 1.61 1.33 3.85 2.18 1.67
RMSE 3.96 2.94 2.69 3.13 2.11 1.72 4.95 2.75 2.11

Unconditional model
(assets: both dividend and consumption claims; instruments: none)
Bias -1.79 -.92 -.56 -1.84 -.95 -.61 .37 .066 .064
SE100 6.42 4.13 3.28 2.64 1.87 1.56 4.06 2.33 1.80
MAE 2.73 1.91 1.57 2.15 1.42 1.16 3.28 1.88 1.45
RMSE 3.29 2.37 1.98 2.81 1.85 1.49 4.15 2.38 1.82

Note: SE100 denotes the mean of standard errors of γ̂ truncated at 100. MAE is the mean
absolute error (average of |γ̂ − γ| across simulations). RMSE is the root mean squared error
(square root of the average of |γ̂ − γ|2 across simulations).

Table 4.2: Type I error probabilities

GMM Standard Age cohort RA

Sample size 100 300 500 100 300 500 100 300 500

Conditional model
(assets: dividend claim only; instruments: price-dividend ratio)
Reject γ = 7 .025 .075 .076 .038 .040 .040 .025 .050 .050
Reject model .13 .12 .16 .046 .004 .000 .086 .060 .059

Unconditional model
(assets: both dividend and consumption claims; instruments: none)
Reject γ = 7 .046 .092 .087 .047 .044 .042 .040 .052 .052
Reject model .12 .13 .13 .036 .011 .011 .059 .050 .052

Note: γ = 7: t-test. Model: χ2 test of overidentifying restrictions. Significance level: .05.

4.3 Type II error

To study the possibility of a Type II error, we use the model-simulated con-
sumption data in conjunction with false asset returns data. More precisely, we
generate a random permutation of the time index, and we use the model asset
returns for this time index coupled with the consumption data of the calendar
time. Because the equity premium is the same (2.11%) as with the true process
and because the stochastic discount factor is always positive, the independence
of the SDF and the excess stock returns (which holds by construction) implies
that in large samples the moment condition does not hold.

From top to bottom, Figure 4.4 shows the conditional model results for
standard GMM, age cohort GMM, and representative-agent GMM, respectively.
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Figure 4.3: Normalized mean squared pricing error from a simulation with two
troughs. Model: standard GMM. Specification: conditional (assets: dividend
claim; instruments: P/D ratio).

The left panels show the scatter plot of simulated γ estimates and normalized
mean squared pricing errors for 10,000 simulations. The right panels show the
histogram of the pricing errors.

Figure 4.4b shows the histogram of the pricing errors estimated by standard
GMM. In 1877 out of 10,000 simulations, the pricing errors are within 10−3 of
zero! With age cohort GMM (Figure 4.4d), in contrast, only 7 of 10,000 simu-
lations yield pricing errors within 10−3 of zero. Also, the age cohort histogram
is centered on about 2%, exactly as one would expect since the true equity
premium is 2.11% and the pricing errors are normalized. Oddly, however, the
standard GMM pricing error histogram is bimodal, with one peak at 2% and
the other at zero. Moreover, as we see in Figures 4.4a and 4.4c, the spurious
mode at zero is driven by upwardly biased estimates in the nonexistence range.
This behavior is odd but perhaps unsurprising given the findings of Toda and
Walsh (2015): the bootstrapped scatter plots and histograms of that analysis
display precisely the same pattern!

Figure 4.5 is the same as 4.4 but with the unconditional specifications. As
with Type I errors, switching from the conditional to unconditional model, which
has two assets but no instruments, mitigates somewhat the spurious mass at zero
for standard GMM (and for the RA model as well). However, Figures 4.5b and
4.5f still exhibit excess mass at zero, relative to age cohort, corresponding to
high γ estimates.

Thus the standard GMM seems to lead to Type II errors (incorrect non-
rejection of a false model) due to excessively low pricing errors. We can see
formally the low power of standard GMM by comparing the histograms of the
pricing errors of the true and false models. For example, under the null (con-
sumption and return data generated from the true model), for standard GMM
with the conditional specification (T = 500) the 95 percentile of the pricing
error is .0139. Since the number of pricing errors larger than .0139 with the
false model is 5756 out of 10,000 simulations, the rejection rate (power) is only
57.6%. On the other hand, for age cohort GMM, it is 91.6%.

Table 4.3 shows the Type II error probability (1 minus rejection rate or
power) for each model using various tests. The row labeled “Pricing errors”

21



0 0.01 0.02 0.03 0.04 0.05

Pricing Error

0

5

10

15

20
R

R
A

 E
st

im
at

e

(a) Standard GMM

0 0.01 0.02 0.03 0.04 0.05

Pricing Error

0

500

1000

1500

2000

2500

F
re

qu
en

cy

(b) Standard GMM

0 0.01 0.02 0.03 0.04 0.05

Pricing Error

0

5

10

15

20

R
R

A
 E

st
im

at
e

(c) Age cohort GMM
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(d) Age cohort GMM
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(e) Representative-agent GMM
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(f) Representative-agent GMM

Figure 4.4: GMM estimation of conditional model (assets: dividend claim; in-
struments: P/D ratio) with false stock returns. Left: scatter plot of γ estimates
and pricing errors. Right: histogram of pricing errors. T = 500.

shows the result for the exact test just described using pricing errors. “Asymp-
totic χ2 test” uses the χ2 statistic from the first stage GMM and the critical
value from the asymptotic distribution. “Exact χ2 test” uses the same χ2 statis-
tic but obtains the critical value as the simulated 95 percentile under the null.
The standard GMM is a disaster. Even with T = 500 and using the uncondi-
tional specification, the Type II error probability is 18 to 30 percent, depending
on the test. With the conditional model, the range is 36 to 99 percent! The
representative-agent GMM is similar when using the χ2 statistic, although the
performance is better when using the pricing errors probably because they are so
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0 0.005 0.01 0.015 0.02 0.025 0.03

Pricing Error

0

200

400

600

800

1000

F
re

qu
en

cy

(f) Representative-agent GMM

Figure 4.5: GMM estimation of unconditional model (assets: dividend and
consumption claims; instruments: none) with false stock returns. Left: scatter
plot of γ estimates and pricing errors. Right: histogram of pricing errors. T =
500.

small under the correct null. In contrast, the age cohort GMM has much higher
power with respect to the pricing error and exact χ2 test: the Type II error
probability is around 3 to 17 percent, depending on the specification and test.
Age cohort GMM, however, performs poorly with respect to the asymptotic χ2

test.
In summary, a plausible explanation for the emergence of the spurious peak

at zero is that the fat tails mechanically aid in zeroing out the pricing errors.
Indeed, using the sample versions of nonexistent moments seems to cause over-
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Table 4.3: Type II error probabilities

GMM Standard Age cohort RA

Sample size 100 300 500 100 300 500 100 300 500

Conditional model
(assets: dividend claim only; instruments: price-dividend ratio)
Pricing errors .79 .58 .42 .71 .28 .08 .35 .15 .10
Asymptotic χ2 test .75 .53 .36 .86 .87 .75 .76 .54 .37
Exact χ2 test .96 .98 .99 .85 .43 .17 .83 .57 .38

Unconditional model
(assets: both dividend and consumption claims; instruments: none)
Pricing errors .74 .44 .24 .64 .18 .029 .33 .10 .057
Asymptotic χ2 test .68 .32 .18 .89 .78 .44 .73 .39 .24
Exact χ2 test .85 .55 .30 .86 .44 .14 .76 .39 .25

Note: The table shows, with respect to different tests, the probability of failing to reject that
the model explains false, randomly generated returns. See text for explanations of the various
tests. Significance level: .05.

fitting of models. This conjecture seems to hold for the representative-agent
model as well. In this case, aggregate consumption growth is lognormal, so the
tails are thin. However, by raising a lognormal variable to a high power, we can
get tails that are quite fat. As in the case with standard GMM, the histogram
of representative-agent GMM in Figure 4.4f shows a bimodal pattern. In 2172
out of 10,000 simulations, the pricing errors are within 10−3 of zero, and the
spurious mode at zero is driven by upwardly biased estimates of γ around 20 to
80 according to the scatter plot in Figure 4.4e.

4.4 Source of bimodal pricing errors

What is the source of bimodality in the pricing error, with a spurious peak
at zero?18 We can provide an intuitive explanation as follows. Consider the
GMM estimation of the representative-agent model with no instruments (single
equation). Then the GMM estimator is the solution of

1

T

T∑

t=1

(Ct/Ct−1)
−γ(Rs

t −Rf
t−1) = 0. (4.1)

For notational simplicity, let Gt = Ct/Ct−1 be the aggregate consumption

growth and Xt = Rs
t − Rf

t−1 be the excess stock market return. Furthermore,
relabel time so that G1 ≤ G2 ≤ · · · ≤ GT . Then (4.1) becomes

1

T

T∑

t=1

G−γ
t Xt = 0. (4.2)

18A number of previous studies have shown that instrumental variable estimation and fat
tails may cause bimodality in test statistic distributions. See Nelson and Startz (1990) and
Fiorio et al. (2010), for example. Andrews and Cheng (2012) show that weak identification
can cause bimodal or skewed estimator and test statistic distributions.
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Since {Gt}Tt=1 is sorted in ascending order and γ > 0, we have G−γ
1 ≫ G−γ

2 ≫
· · · ≫ G−γ

T . Hence the first two terms dominate the others, and (4.2) becomes

G−γ
1 X1 +G−γ

2 X2 = 0 (4.3)

approximately. But provided that X1, X2 have opposite signs and |X2| > |X1|,
(4.3) has a solution

γ =
log(−X2/X1)

log(G2/G1)
> 0. (4.4)

Since Gt’s are sorted in ascending order, G1 and G2 are relatively close to each
other, so log(G2/G1) is a small positive number. Therefore the γ estimate in
(4.4) will typically be a large number. Note that this argument holds regardless
of whether the model is true or false. If asset returns are completely random, we
would expect that we can make the pricing error close to zero with probability
Pr(−X2/X1 > 1), which will be the probability of Type II errors.

The same argument holds for the standard GMM estimation with MU SDF.
Recall that the MU SDF is defined by

m̂MU
t (γ) =

1
I

∑I
i=1 c

−γ
it

1
I

∑I
i=1 c

−γ
i,t−1

.

When cross-sectional consumption has fat tails, the terms corresponding to the
minimum consumption at each period dominate, and we have

m̂MU
t (γ) ≈

1
I (mini cit)

−γ

1
I (mini ci,t−1)−γ

=

(
mini cit

mini ci,t−1

)−γ

.

Thus the same argument holds by replacing Ct/Ct−1 in (4.1) by mini cit/mini ci,t−1.
In particular, the MU γ estimates from standard GMM will be biased upwards
as in Figures 4.1a and 4.4a because the γ given by (4.4) tends to be large. In
Section 2.2 we showed formally that GMM minimizes a random function Z(γ)2,
and we now have an intuitive explanation for this phenomenon: the GMM es-
timate depends on random outlier draws, even when T is large.

Now we can see what the age cohort GMM achieves. For a false model,
the pricing error is spuriously set to zero at the γ given by (4.4). Note that
this γ depends on the value of G2/G1, the fraction between the two smallest
observations. With the MU SDF, Gt corresponds to mini cit/mini ci,t−1. By
dividing agents into age cohorts, the value of mini cit/mini ci,t−1 for each cohort
will in general be distinct. Therefore except for by chance, it would not be
possible to set the pricing errors simultaneously zero across age cohorts. Only
if the model is true can we set the pricing errors simultaneously zero at the true
γ. This gives age cohort GMM statistical power higher than that of standard
GMM. A similar argument holds for the unconditional specification with two
assets since the signs of Rc

t − Rf
t−1 and Rd

t − Rf
t−1 will often not be the same.

Standard GMM, in contrast, may zero the pricing error at the arbitrary γ from
(4.4) whether or not returns are generated from the true model.

5 Conclusion

In order to use GMM to estimate and test heterogeneous-agent consumption-
based asset pricing models, many studies have employed the technique of aver-
aging across the Euler equations of individual households. We simulate asset

25



prices and a fat tailed consumption distribution from a tractable incomplete-
market dynamic general equilibrium model and show in a Monte Carlo study
that there are potential pitfalls to this practice of averaging: in the presence of
fat tails in the cross-section, the resulting GMM criterion may contain sample
analogs of nonexistent moments, which diverge in large samples. We establish
that fat tails in consumption create over-rejection of true models/parameters
and Type II errors (non-rejection of incorrect models) in the standard aggre-
gated Euler equation GMM estimation of the relative risk aversion coefficient.
The “age cohort” estimation method suggested in Toda and Walsh (2015) ap-
pears to mitigate these problems. Our broad message is that standard inference
methods may be invalid in settings prone to power laws.

When should we worry about fat tails, and what should we do to avoid spu-
rious estimation? Our Monte Carlo exercise sheds some light on these issues.
First, even the representative-agent model (which does not have fat tails) is
prone to spurious estimation by raising a positive random variable (here con-
sumption growth) to a high power, which makes the tails fatter. So one should
be careful when estimating a model that involves a power function. Second,
spurious estimation seems to result from minimizing the sample GMM criterion
by canceling the two outliers with opposite signs. Since the location of this
spurious trough is random, estimating an overidentified model will likely miti-
gate the problem. Finally, when in doubt we can always conduct a bootstrap
exercise, for example the stationary bootstrap of Politis and Romano (1994).
According to the findings of Toda and Walsh (2015), a bimodal histogram of
bootstrapped GMM criterions suggests spurious estimation.

A Asset prices

Since agents have identical homothetic preferences and all shocks are multiplica-
tive (additive in logs), it is known that even if there are arbitrarily many assets,
as long as the payoffs of the assets do not depend on idiosyncratic shocks, there
will be no trade in assets in equilibrium, that is, the equilibrium is autarky
(Constantinides and Duffie, 1996; Krueger and Lustig, 2010; Toda, 2014). Thus
individual consumption cit equals individual endowment yit. By the first-order
condition for the stock, we have

c−γ
it P d

t = β̃ Et[c
−γ
i,t+1(P

d
t+1 +Dt+1)], (A.1)

where P d
t is the price of the dividend claim and β̃ = β(1 − δ) is the effective

discount factor. Dividing both sides by c−γ
it Dt and defining the price-dividend

ratio in state xt by Vd(xt) := P d
t /Dt, we obtain

Vd(xt) = β̃ Et[(ci,t+1/cit)
−γ(Dt+1/Dt)(Vd(xt+1) + 1)]

= β̃ Et [exp (−γ log(Ct+1/Ct)− γεi,t+1 + log(Dt+1/Dt)) (Vd(xt+1) + 1)] .

Letting vd = (−γ, 1)′ and using the fact that εit is i.i.d., we obtain

Vd(xt) = β̃ Et[exp(−γεi,t+1)] Et [exp(v
′
dxt+1)(Vd(xt+1) + 1)]

= β̃e
1
2γ(γ+1)σ2

Et[exp(v
′
dxt+1)(Vd(xt+1) + 1)], (A.2)
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where we have used

E[exp(−γε)] =

∫ ∞

−∞

e−γx 1√
2πσ

e−
(x+σ2/2)2

2σ2 dx

=

∫ ∞

−∞

e
1
2γ(γ+1)σ2 1√

2πσ
e−

(x+(γ+1/2)σ2)2

2σ2 dx = e
1
2γ(γ+1)σ2

if ε ∼ N(−σ2/2, σ2). When {xt} follows a VAR(1) process (3.1), Burnside
(1998) iterates (A.2) and obtains a closed-form solution as follows. Let

Σ̃ = (I −A)−1Σ(I −A′)−1,

Σn =

n∑

k=1

AkΣ̃(A′)k,

Bn =

n∑

k=1

Ak = A(I −An)(I −A)−1,

Ωn = nΣ̃−BnΣ̃− Σ̃B′
n +Σn.

Then we have

Vd(x) =
∞∑

n=1

β̃n exp

((
1

2
γ(γ + 1)σ2 + v′dg

)
n+ v′dBn(x− g) +

1

2
v′dΩnvd

)
.

(A.3)
It is easy to show that this series converges if and only if

β̃ exp

(
1

2
γ(γ + 1)σ2 + v′dg +

1

2
v′dΣ̃vd

)
< 1. (A.4)

Since vd = (−γ, 1)′, inside of the exponential is a quadratic function in each of σ
and γ. Therefore in order for an equilibrium to exist, the idiosyncratic volatility
σ or risk aversion γ cannot be too high.

We can compute the asset returns as follows. Let xt = (x1t, x2t)
′. Then the

dividend growth is Dt+1/Dt = ex2,t+1 , and the stock return is

Rd
t+1 =

P d
t+1 +Dt+1

P d
t

=
(P d

t+1/Dt+1 + 1)(Dt+1/Dt)

P d
t /Dt

=
Vd(xt+1) + 1

Vd(xt)
ex2,t+1 .

(A.5)
We can compute the return to the consumption claim similarly by computing
Vc(xt) as in (A.2) with vc = (1 − γ, 0)′ instead of vd and using (A.5) to define
Rc

t+1 with Vc, x1,t+1 instead of Vd, x2,t+1. The calculation of the risk-free rate

Rf
t is similar. Letting vf = (−γ, 0)′, by the Euler equation we have

1

Rf
t

= β̃ Et[(ci,t+1/cit)
−γ ] = β̃ Et[exp(−γ log(Ct+1/Ct)− γεi,t+1)]

= β̃ exp

(
1

2
γ(γ + 1)σ2 + v′f (g +A(xt − g)) +

1

2
v′fΣvf

)
. (A.6)
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Distribution and Generalizations. Birkhäuser, Boston, 2001.
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