
Munich Personal RePEc Archive

Do You Save More or Less in Response

to Bad News? A New Identification of

the Elasticity of Intertemporal

Substitution

Schmidt, Lawrence and Toda, Alexis Akira

University of Chicago, University of California, San Diego

26 May 2015

Online at https://mpra.ub.uni-muenchen.de/78983/

MPRA Paper No. 78983, posted 08 May 2017 02:55 UTC



Do You Save More or Less in Response to Bad

News? A New Identification of the Elasticity of

Intertemporal Substitution∗

Lawrence D. W. Schmidt† Alexis Akira Toda‡

This Version: January 17, 2017

Abstract

We define the elasticity of intertemporal substitution (EIS) for gen-
eral recursive preferences and identify a sharp comparative static from a
general dynamic portfolio choice problem. In the homothetic case, if the
EIS is smaller (larger) than 1, an investor will increase (decrease) current
consumption in response to bad news about the future. Examples of bad
news include if (i) she becomes more risk averse, (ii) investment opportu-
nities shrink, (iii) investment returns become riskier, or (iv) she becomes
more uncertain about the distribution of returns. Bad news effectively
raises the price of future continuation utility, which produces the same
qualitative changes in savings rates as lowering the interest rate.

Keywords: elasticity of intertemporal substitution, optimal portfolio
problem, recursive preference

JEL codes: D91, E21, G11.

1 Introduction

A growing body of theoretical literature assumes that investors have recursive
(non-additive) preferences, particularly the constant relative risk aversion, con-
stant elasticity of intertemporal substitution (CRRA/CEIS) specification stud-
ied in Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1989). The
so called Epstein-Zin utility function allows two different parameters to sep-
arately govern an agent’s attitude over risky gambles and the willingness to
smooth consumption over time—namely, the relative risk aversion (RRA) and
the elasticity of intertemporal substitution (EIS). These two features are me-
chanically linked when the agent has additively separable constant relative risk
aversion (CRRA) preferences.

There remains a considerable debate with respect to “reasonable” choices for
the EIS. In finance, where the use of Epstein-Zin preferences is most common,
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the vast majority of papers assume that the EIS is weakly larger than one.
Authors’ rationale for such a choice is almost entirely pragmatic. When EIS > 1,
the equity premium becomes larger, the risk free rate becomes low and stable,
price-dividend ratios are pro-cyclical, and variance carries a negative price of
risk. These fairly uncontroversial features of the data are much more difficult
to reproduce when the EIS is less than one.1 Assuming EIS > 1 also gets
a number of comparative statics about the behavior of asset prices over the
business cycle “right”. However, to many observers, such an assumption is
extremely puzzling, because the majority of empirical estimates of the EIS are
smaller, often considerably so, than one.

This paper develops a number of comparative statics for an investor’s opti-
mal consumption-savings decision in a general portfolio problem with recursive
preferences. We generalize the definition of the EIS to this setting and show that
the relationship between the EIS and 1 has sharp implications for the investor’s
optimal response to bad news, which we formally define as any exogenous change
in preferences and/or the investment opportunity set which lowers the indirect
utility (continuation value) of reinvested wealth. Next, we provide a number
of examples of bad news. We show that, when EIS > 1, the investor will in-
crease her current consumption if (i) current or future risk aversion increases,
(ii) current or future investment opportunities shrink, (iii) the investment en-
vironment becomes riskier, or (iv) the investor becomes more uncertain about
the distribution of returns, while the opposite is the case when EIS < 1.

Thus, our main result is that changes in future investment opportunities
yield qualitatively similar changes in current consumption as risk-free changes in
contemporaneous returns. The intuition for this result is simple. The intertem-
poral decision involves the choice between contemporaneous consumption and
the indirect utility of future wealth. All else constant, higher expected returns
increase the relative price of current consumption, making it less costly for the
agent to obtain the same level of continuation utility. Better future investment
opportunities, from the agent’s perspective, have the same effect qualitatively.
As such, one can partially identify the EIS via these comparative statics.

An improvement in investment opportunities has two opposing effects on
an investor’s consumption-savings decision. The first is a substitution effect.
More attractive (e.g., higher return or safer) investment opportunities raise
the relative price of current consumption, increasing savings. The second is
a wealth effect. The improvement effectively makes the investor richer, which
decreases her motivation to accumulate savings. The same intuition applies for
decreases in risk aversion or reductions in uncertainty about the distribution
of returns. Our result says that the substitution effect dominates the wealth
effect if and only if the EIS is greater than one. Thus, these comparative statics
for the consumption-savings behavior provide a new method for testing this
critical assumption about preferences. Throughout, we place little structure
on the problem, making it clear this comparative static is a robust feature
of the preferences themselves. In particular, investors have general time and
state dependent recursive preferences, and we only impose a few mild regularity
conditions on asset returns.

We conclude by providing practical guidance on how to leverage these com-

1See Gârleanu and Panageas (2015) for a model that matches various features of financial
data with EIS < 1.
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parative statics in order to test whether the EIS is greater than, less than, or
equal to unity. While our tests only partially identify the EIS, the generality
of our theoretical framework provides several practical advantages; one could
point-identify the EIS via these sources of variation with more structural as-
sumptions. First, in contrast to standard methods of estimating the EIS, one
need not take a precise stand on the definition of the “return on wealth” or the
“risk free rate” when implementing the tests.2 Despite our use of recursive pref-
erences, one need not specify all of the inputs to the portfolio choice problem in
order to make inferences. Moreover, given proper instruments and panel data,
these tests are valid even if consumption is measured with error, some compo-
nents (e.g., human capital) of wealth are unobservable, and general equilibrium
effects cause risk premia to change over time. In some cases, the tests only re-
quire repeated cross-sectional data. Finally, implementation is straightforward,
since these tests involve simple differences-in-differences estimators.

2 The EIS debate

A fairly large empirical literature seeks to estimate the EIS, which is often
defined as the elasticity of expected consumption growth to an exogenous in-
crease in the real risk-free interest rate. Essentially all of these papers use
the intertemporal Euler equation from a consumption-based model to derive a
testable expression for the response of consumption growth to changes in the
risk-free rate. Despite this common starting point, there remains a substan-
tial debate about its magnitude. For example, Havranek et al. (2015)—who
collect 2,735 estimates of the EIS from 169 published studies—find that the
standard deviation of published estimates of the EIS from 33 articles in the top
5 economics journals is 1.4 (even after excluding several outliers).

When sufficient conditions hold for a representative agent to exist—particularly
complete markets—the Euler equation can be estimated with aggregate data.
Under further assumptions, the EIS can be identified via an instrumental vari-
ables regression of aggregate consumption growth on the risk-free rate, and its
reciprocal is identifiable by regressing the risk-free rate on expected aggregate
consumption growth. Using this approach, Hall (1988), a particularly influen-
tial paper, concludes that the EIS is at most 0.1. Other notable examples, such
as Hansen and Singleton (1983) and Campbell and Mankiw (1989), also obtain
very low estimates of the EIS. Campbell (2003), who also surveys this litera-
ture, presents a number of estimates of the EIS for a panel of countries, the vast
majority of which are substantially less than one.

Many authors argue that the EIS may not be consistently estimable with
aggregate data due to a variety of reasons such as market incompleteness and
binding borrowing constraints, and instead use disaggregated data, which usu-
ally results in higher estimates. Attanasio and Weber (1993) estimate elasticities
ranging from 0.3 to 0.8, while Beaudry and van Wincoop (1996) estimate an EIS
around 1. Moreover, Mankiw and Zeldes (1991) and Vissing-Jørgensen (2002)
estimate an EIS which is considerably higher for those who participate in finan-
cial markets—the only group for whom the Euler equation can be expected to

2See Mulligan (2002) for discussion and evidence on the role of different return concepts
on estimates of the EIS.
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hold with equality—though most estimates are still smaller than one.3 Gruber
(2013), who identifies the EIS via cross-sectional and time-series heterogeneity
in tax rates, obtains estimates of around 2. However, not all estimates of EIS
using micro data are large. Cashin and Ueyama (2016), who identify the EIS
from the natural experiment of the 1997 Consumption Tax increase in Japan,
obtain an estimate of 0.21;4 Best et al. (2015) identify the EIS from the discrete
jumps in the U.K. mortgage interest rate schedule and estimate it to be 0.05—
0.25. Finally, even if the EIS is indeed large, there still remains the possibility
of publication bias: Havránek (2015) argues that estimated values of EIS in
the literature are biased upwards because researchers tend to selectively report
statistically significant, large positive estimates.

To highlight several mechanisms which make the identification problem so
challenging, we briefly discuss the linearized Euler equation, which plays a cen-
tral role in most empirical estimates of the EIS.5 Schmidt (2014) shows that the
following restriction approximately holds in a setting with Epstein-Zin prefer-
ences, arbitrary jump-diffusion dynamics, and incomplete markets:

Et[∆ log ct+1] ≈ ψEt[rt+1] + (ψ − 1)ϑt + (ψ − 1)Et[ν
∗
t+1]. (2.1)

Here ψ is the EIS, γ is the coefficient of relative risk aversion, ∆ log ct+1 is
consumption growth, and rt+1 is the continuously-compounded, real return on
wealth. The first term derives a tight link between expected consumption growth
and the expected return on wealth, which depends on the EIS. However, there
are two additional terms, ϑt and ν

∗
t+1 which capture investors’ preferences over

the higher moments of the distribution of shocks to the aggregate state vector
(e.g., stochastic volatility) and the distribution of uninsurable, idiosyncratic
shocks to wealth, respectively.6 When markets are complete and shocks to
investment opportunities are i.i.d., the last two terms in (2.1) are zero.

Since Et[∆ log ct+1] and Et[rt+1] are unobservable, it is conventional to esti-

mate the EIS ψ̂ via the following instrumental variables regression

∆ log ct+1 = ψ̂rt+1 + ut+1,

3Guvenen (2006) provides a simple model with heterogeneous agents and limited partici-
pation in which the EIS estimated from aggregate data is considerably lower than the value
which is relevant for pricing financial assets.

4Cashin and Ueyama (2016) also point out the importance of nonseparability across the
nonstorable nondurable goods, storable nondurable goods, and durable goods. Their EIS
estimate becomes 0.91 when the intratemporal substitution is restricted to be equal to the
EIS (the separable case).

5Most papers ignore approximation errors associated with the log-lineariziation. Carroll
(2001) and Ludvigson and Paxson (2001) argue that these errors can have a non-trivial effect
on estimates of the EIS.

6In the Schmidt (2014) model, each agent’s return on wealth is ri,t+1 = rt+1 + ηit+1,

where ηit+1 is an idiosyncratic shock which is ex-ante i.i.d. across agents and satisfies

E
[

exp(ηit+1)
∣

∣Ft+1

]

= 1, where Ft+1 is the filtration containing aggregate information. The

term ν∗t+1 := 1
1−γ

log E
[

exp((1− γ)ηit+1)
∣

∣Ft+1

]

is a certainty equivalent over higher mo-

ments of ηit+1. ϑt is a Jensen’s inequality term which is similar to a certainty equivalent,
defined as

ϑt :=
1

1− γ
log Et

[

exp
(

(1− γ)(rt+1 − Et[rt+1] + ν∗t+1 − Et[ν
∗
t+1]) +

1−γ
ψ−1

ρ(wct+1 − Et[wct+1])
)]

,

where ρ is a linearization constant and wct is the log wealth-consumption ratio. If the condi-
tional volatility of returns is driven by a single variable σ2

t , ϑt is proportional to σ2
t .
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using variables which are observable at time t as instruments for rt+1. Instru-
ments are necessary since the innovation in ∆ log ct+1 is generally correlated
with the innovation in rt+1.

What can go wrong when trying to estimate the EIS using this approach?
Suppose that we can indeed find an instrument zt for expected returns which
is uncorrelated with unexpected consumption growth. First, if shocks to in-
vestment opportunities are not i.i.d. and/or if markets are incomplete and the
distribution of idiosyncratic shocks is state dependent, Et[ν

∗
t+1] and ϑt in (2.1)

are omitted variables in the regression. In this case,

plim
T→∞

ψ̂ = ψ + (ψ − 1)
Cov[zt, ϑt + Et[ν

∗
t+1]]

Cov[zt, rt+1]
.

The weight of evidence in the empirical literature suggests that expected re-
turns, uncertainty about investment opportunities, and idiosyncratic risk are
all countercyclical—rising in recessions. Then, if γ > 1, we would expect ϑt and
Et[ν

∗
t+1] to be negatively correlated with Et[rt+1]. If, for example, zt was per-

fectly correlated with Et[rt+1], we would then expect ψ̂ to be biased downwards
if the true EIS is greater than 1 and vice versa for an EIS less than 1.

General equilibrium considerations suggest that, in practice, it is likely to
be difficult to find instruments for Et[rt+1] which are uncorrelated with Et[ν

∗
t+1]

or ϑt in the time series. For example, Bansal and Yaron (2004) provide ev-
idence that the presence of stochastic volatility, which is proportional to ϑt,
can impart a substantial downward bias on estimates of the EIS obtained using
the method in Hall (1988).7 Schmidt (2014) argues that predictability in ν∗t+1

is quite substantial, suggesting that the third term can also affect the ability
to estimate the EIS consistently. Slow-moving shocks to time-preferences, as
studied in Albuquerque et al. (2012), are likely to cause similar challenges.

Second, we need to have the correct measures of consumption growth ∆ct+1

and the return on wealth rt+1, both of which are potentially controversial. For
example, if our measure of ∆ct+1 is too smooth or our measure of the expected
return on wealth is too volatile, our estimate of ψ will be biased towards zero.8

In a panel setting, a number of sample selection criteria are required and mea-
surement errors are non-trivial. This potential bias is a problem because we
tend to agree that the EIS is positive but disagree about its magnitude.

Finally, even if we have an instrument and the correct measures of consump-
tion and wealth, the estimation is further complicated by the weak instrument
problem (Yogo, 2004).

The lack of a consensus as to the magnitude of the EIS is troubling, since the
relationship between the EIS and unity plays a central role in affecting dynam-
ics of most theoretical models. With recursive preferences (which nest additive
CRRA), this relationship affects not only the quantitative, but also the qual-
itative predictions of a model. For example, in the Bansal and Yaron (2004)
long-run risk model, when EIS > 1, investors are willing to pay a premium to
hedge against bad news about future economic growth rates. Valuation ratios

7However, Beeler and Campbell (2012) argue that this bias is relatively small using a
different instrumental variables approach.

8The former could plausibly occur if our measure includes the consumption of households
for whom the Euler equation does not hold, while the latter could occur if our measure of the
return on wealth does not correctly incorporate the (unobservable) return on human capital.
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are pro-cyclical, the equity premium is high, and the risk-free rate is low and sta-
ble. Setting EIS < 1 changes the basic intuition for the model and reverses each
of these predictions. A hedging premium becomes a discount, valuation ratios
become countercyclical, the equity premium becomes smaller, and the risk-free
rate is high and volatile. Similar changes occur to asset prices and quantity
dynamics in production-based models—see, for example, Kaltenbrunner and
Lochstoer (2010) and Croce (2014). Further, Drechsler and Yaron (2011) also
argue that, with Epstein-Zin preferences, an EIS > 1 is critical to match the
level and cyclicality of the variance risk premium, a well-known feature of equity
index option prices.

The remainder of this paper demonstrates that it is feasible to test the crucial
distinction about the relationship between the EIS and unity using an indirect
approach. We derive a number of comparative statics for how an investor’s
current consumption responds to news about future conditions. Consistent with
the discussion above, many qualitative predictions depend crucially whether the
EIS is greater than or less than one. In particular, when the EIS < 1, an investor
decreases consumption in response to bad news. The opposite is the case when
the EIS > 1.

3 EIS, continuation value, and consumption

3.1 Two period model without uncertainty

To build intuition, in this section we present a simple two period model with no
uncertainty. Consider an economy with two goods and let U(x1, x2) be a utility
function. The elasticity of substitution is commonly defined by

ψ = −
d log(x1/x2)

d log(U1/U2)
, (3.1)

where Ul = ∂U/∂xl is the marginal utility of good l. The idea behind this
definition is as follows. Suppose the price of good l is pl > 0 and the agent
faces a budget constraint. By the first-order condition, we have Ul = λpl, where
λ > 0 is the Lagrange multiplier. Since U1/U2 = p1/p2, (3.1) implies

ψ = −
d log(x1/x2)

d log(p1/p2)
, (3.2)

which is exactly the elasticity of the consumption ratio with respect to the
relative price—how the agent is willing to substitute between the two goods
in response to a price change. Note that while (3.1) is defined using only the
preference, (3.2) requires a model, that is, how goods are traded.

Now call good 1 “consumption at time 1” and good 2 “consumption at time
2”. In a two period model, consumption at time 2 is the same as the contin-
uation utility (in consumption equivalent); hence instead of writing U(x1, x2),
let us write f(c, v), and call c current consumption, v continuation value, and f
aggregator. Then (3.1) becomes

ψ = −
d log(c/v)

d log(fc/fv)
, (3.3)
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and we call ψ the elasticity of intertemporal substitution (EIS) of the aggregator
f .9 Clearly the numerical value of EIS is invariant to a monotonic transforma-
tion of the utility function (aggregator). To see this, let g(c, v) = F (f(c, v)),
where F is strictly increasing and differentiable. Then by the chain rule we have
gc = F ′fc and gv = F ′fv, so gc/gv = fc/fv.

The definition (3.3) is compatible with the usual definition of EIS, which is
the elasticity of consumption growth with respect to the risk-free rate. To see
this, let us write c1 = c and c2 = v. Then the consumption growth is c2/c1.
If pt denotes the price of consumption at time t = 1, 2, then by the first-order
condition and the definition of the risk-free rate Rf , we obtain fc/fv = p1/p2 =
Rf . Therefore (3.3) becomes

ψ = −
d log(c1/c2)

d logRf
=

d log(c2/c1)

d logRf
,

which is precisely the elasticity of intertemporal substitution as commonly de-
fined (elasticity of consumption growth with respect to the risk-free rate).

Our main theoretical result is that if an agent faces a bad investment oppor-
tunity (which we give a precise definition in the next section), she will decrease
current consumption if and only if EIS < 1. In the two period model with no
uncertainty, the statement is as follows. Throughout the rest of the paper, in or-
der to avoid corner or multiple solutions, we assume that the aggregator f(c, v)
is strictly increasing in each argument, strictly quasi-concave, and satisfies the
Inada condition.

Proposition 3.1. Consider an agent with endowment (e1, e2). Suppose that
the agent can save or borrow at gross risk-free rate Rf > 0. Let c = c1 be the
current consumption. Then

(

1

c
+

Rf
Rf (e1 − c) + e2

)

∂c

∂Rf
=

1

Rf

(

Rf (e1 − c)

Rf (e1 − c) + e2
− ψ

)

. (3.4)

In particular, if there is no future endowment (e2 = 0), then
(

1

c
+

1

e1 − c

)

∂c

∂Rf
=

1

Rf
(1− ψ),

so ∂c/∂Rf ≷ 0 according as ψ ≶ 1.

As a concrete example, consider the Epstein-Zin constant elasticity of in-
tertemporal substitution (CEIS) aggregator

f(c, v) =
(

(1− β)c1−1/ψ + βv1−1/ψ
)

1

1−1/ψ

, (3.5)

where 0 < β < 1 is the discount factor and ψ > 0 is the EIS.10 The budget set
is

v ≤ Rf (e1 − c) + e2 ⇐⇒ Rfc+ v ≤ Rfe1 + e2.

9Since log(fc/fv) is a function, not a variable, the notation (3.3) is not rigorous. We can

make sense of (3.3) by writing as 1
ψ

= −
d log(fc/fv)

dx
, where x is a variable, c is a constant,

and v is determined such that x = log(c/v) ⇐⇒ v = ce−x. (It does not matter whether we
treat c or v as a constant.)

10When ψ = 1, we can take the limit of (3.5) as ψ → 1 to obtain

f(c, v) = exp((1− β) log c+ β log v) = c1−βvβ .
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Using calculus, we can easily solve for the optimal consumption bundle, which
is

(c, v) =

(

(1− β)ψR−ψ
f (Rfe1 + e2)

(1− β)ψR1−ψ
f + βψ

,
βψ(Rfe1 + e2)

(1− β)ψR1−ψ
f + βψ

)

. (3.6)

Figure 1 plots the budget sets, indifference curves, and optimal consumption
bundles for different values of the interest rate when there is no future en-
dowment (e2 = 0), β = 1/2, and the interest rates are 0%, 25%, and 50%.
Different columns correspond with different choices of the EIS ψ—1/2, 1, and
2, respectively—which is constant for every interest rate.

continuation utility (v)

cu
rr

en
t 

co
n
su

m
p
ti

o
n
 (

c)

EIS = 0.5

continuation utility (v)

EIS = 1

continuation utility (v)

EIS = 2

Figure 1: Intuition for comparative statics result–CEIS aggregator example

Note: This figure characterizes the optimal intertemporal consumption plan of an investor
with Epstein-Zin preferences, where the aggregator f(c, v) is defined by (3.5) with β = 1/2, for
different values of the risk free rate Rf . Columns correspond with ψ = 1/2, 1, 2, respectively.

In the middle panel, the EIS exactly equals one, and the CEIS aggregator
is Cobb-Douglas. An agent with Cobb-Douglas preferences spends a constant
fraction of wealth on each good, and, as such, current consumption stays the
same regardless of the value of the interest rate. When the EIS is less than
unity (left panel), the current consumption and continuation utility are relative
complements, so the agent consumes more of both goods. The opposite is the
case in the right panel, in which the two goods are relative substitutes. Whether
the two goods are complements or substitutes depends entirely on the EIS.

Note that after substituting the budget constraint into the aggregator, the
optimal consumption problem reduces to

max
c
f(c, v(e1 − c)),

where v(w) = Rfw + e2 is the continuation value of the reinvested wealth w.
When the risk-free rate increases, so does the continuation utility v. Our key
observation is that the continuation utility may change from many other reasons
than the change in the interest rate, and those changes affect current consump-
tion in a similar way to (3.4), where the sign of the change in consumption
depends crucially on whether EIS ≷ 1. This observation enables us to identify
whether EIS ≷ 1 through the direction of the change in current consumption.
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What can go wrong with using the usual definition of the EIS,

ψ̂ =
d log(c2/c1)

d logRf
, (3.7)

which is the elasticity of consumption growth with respect to the risk-free rate?
Consider an agent with Epstein-Zin preference as in (3.5). Suppose that there
is a borrowing constraint, and the agent can only pledge fraction 0 ≤ α < 1 of
future endowment in order to borrow. Assuming that the borrowing constraint
is binding, consumption is then c2 = (1 − α)e2 and c1 = e1 +

αe2
Rf

. Hence by

(3.7), it follows that

ψ̂ = Rf
d

dRf
log

(

(1− α)e2
e1 +

αe2
Rf

)

=
αe2

Rfe1 + αe2
< 1. (3.8)

In order for the borrowing constraint to bind, the agent must be willing to
consume less at t = 2 without the borrowing constraint. Hence by (3.6), the
borrowing constraint binds if and only if

βψ(Rfe1 + e2)

(1− β)ψR1−ψ
f + βψ

≤ (1− α)e2 ⇐⇒
Rfe1
αe2

≤
1− α

α

(

1− β

β

)ψ

R1−ψ
f − 1.

(3.9)
Hence by (3.8) and (3.9), when the borrowing constraint binds, we obtain

α

1− α

(

β

1− β

)ψ

Rψ−1

f ≤ ψ̂ < 1. (3.10)

This argument shows that it is problematic to use the usual definition of EIS
(3.7) to estimate it when borrowing constraints might be binding. According to

(3.10), when the borrowing constraint is binding, ψ̂ is always less than 1, inde-
pendent of the true value ψ. Furthermore, if the borrowing constraint is tight
(α→ 0) or the agent is impatient (β → 0), the lower bound for ψ̂ approaches 0.
Given this result, it is not surprising that the empirical estimates of EIS based
on aggregate consumption are close to zero.

3.2 Dynamic model with uncertainty

Next we consider the general case. Time is finite and is denoted by t =
0, 1, . . . , T . All random variables are defined on a probability space (Ω,F , P ).

Consider a single agent (investor) that has recursive preferences defined over

finite consumption plans from time t onwards {ct+s}
T−t
s=0

(where t = 0, 1, . . . , T ),
constructed as follows. The terminal utility is UT = uT (cT ), where uT : R+ →
R+ is increasing (typically uT (c) = c). Given the recursive utility at time t+1,
denoted by Ut+1, the time t recursive utility is defined by

Ut = ft(ct,Mt(Ut+1)), (3.11)

where ft : R2
+ → R+ is the aggregator, ct is consumption, and Mt(Ut+1) is

the certainty equivalent of the distribution of time t + 1 utility conditional
on time t information (typically Mt(X) = φ−1

t (Et[φt(X)]) for some strictly
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increasing, concave function φt : R+ → R). The terminal utility function uT ,
the aggregator ft, and the certainty equivalent Mt may be time dependent as
well as state dependent.

Consider a general optimal consumption-portfolio problem. Given the initial
wealth at time t, denoted by wt > 0, the agent decides how much to consume
(ct), and how to allocate the remaining wealth wt−ct > 0 across assets. For now
the details of the problem does not matter—for example, there may or may not
be labor income, transaction costs, portfolio constraints, etc.—we only assume
that a sequence of optimal consumption rules and value functions exist.

Let Vt(w) be the value function at time t, given wealth w. Since the problem
can be quite general, Vt(w) may depend not only on time and current wealth
but on other state variables (e.g., expected stock market return and volatility
in U.S., inflation in Brazil, current and past labor income, unemployment rate,
etc.). By the principle of optimality and the definition of the recursive utility
(3.11), we obtain the Bellman equation

Vt(w) = max
c
ft(c,Mt(Vt+1(w

′))), (3.12)

where w′ is the initial wealth at time t+1 determined by the budget constraint.
Given all state variables except for wealth, the value of Mt(Vt+1(w

′)) depends
only on the reinvested wealth w − c. Let vt(w − c) be this value and call it the
continuation value function for short, where again vt may be time and state
dependent. Then the Bellman equation (3.12) becomes

Vt(w) = max
c
ft(c, vt(w − c)). (3.13)

In this setting, we can show a similar result to Proposition 3.1. Since the
problem is now essentially static, let us suppress the time subscript and let

ψ = −
d log(c/v)

d log(fc/fv)

be the EIS of aggregator f , as in (3.3). In the simple two period model, we
perturbed the risk-free rate. In the general case, since we do not have any
structure on the problem, we need to perturb the continuation value function v
directly. Let h be any function and

c(α;h) = argmax
c

f(c, (v + αh)(w − c))

be the optimal consumption rule when v is perturbed in the direction of h by a
small amount α ∈ R.11 Then we obtain the following result.

Theorem 3.2. Let everything be as above. Then
(

1

c
+
v′

v
− ψ

v′′

v′

)

∂

∂α
c(0;h) =

h

v
− ψ

h′

v′
, (3.14)

where all functions are evaluated at w − c. In particular, if h(w) = w (so we
perturb v by adding a linear function), then

(

1

c
+
v′

v
− ψ

v′′

v′

)

∂

∂α
c(0;h) =

1

v′
(ε(w − c)− ψ), (3.15)

11Mathematically, we are considering Gâteaux derivatives.
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where ε(w) = d log v(w)/ d logw = wv′(w)/v(w) is the elasticity of continuation
value with respect to reinvested wealth. If in addition v is concave (v′′ ≤ 0), then
∂c/∂α ≷ 0 according as ψ ≶ ε.

Proposition 3.1 is clearly a special case of Theorem 3.2. In the setting of
Proposition 3.1, the continuation value function is v(w) = Rfw + e2, which is
affine in w. Set h(w) = w. Then (v + αh)(w) = (Rf + α)w + e2, so changing
α is the same as changing Rf . Since v′ = Rf > 0, v′′ = 0, and ε(w) =

wv′(w)/v(w) =
Rfw

Rfw+e2
, it follows from (3.15) that

(

1

c
+

Rf
Rf (w − c) + e2

)

∂c

∂Rf
=

1

Rf

(

Rf (w − c)

Rf (w − c) + e2
− ψ

)

,

which is precisely (3.4) with w = e1.

3.3 Characterization of “bad news”

By Theorem 3.2, assuming that the continuation value function v is concave,
we can identify whether ψ ≶ ε according as dc/ dα ≷ 0 at α = 0 when v(w) is
perturbed to v(w)+αw. More generally, it would be convenient if we can deter-
mine under what conditions the continuation value v(w) increases or decreases.
To this end we introduce the following definition.

Definition 3.3. Bad news at time t is any exogenous change that makes vt
smaller.

The following proposition shows that increases in risk aversion, decreases
in investment opportunities, and riskier or lower expected investment returns
all constitute bad news. For concreteness let Rt+1(θ) be the gross return on a
portfolio θ ∈ Θt, where Θt is the set of admissible portfolios at time t, and yt+1

be the labor income at time t + 1. Suppose that the certainty equivalent Mt

takes the form
Mt(U) = φ−1

t (Et[φt(U)]), (3.16)

where φt : R+ → R is strictly increasing and concave.

Proposition 3.4. The following events constitute bad news at time t:

1. the agent becomes more risk averse, i.e., φt changes to φ̃t, where g =
φ̃t ◦ φ

−1
t is increasing and concave (Pratt, 1964).

2. the investment opportunity shrinks, i.e., Θt changes to Θ̃t ⊂ Θt.

3. the portfolio return and/or labor income become riskier: Et+1[R̃t+1(θ)] ≤
Rt+1(θ) and Et+1[ỹt+1] ≤ yt+1. (For this case we need to assume that
φt ◦ Vt+1 is concave.)

Proof.

Case 1: Agent becomes more risk averse. Let w be the reinvested wealth
at time t and w′ = Rt+1(θ)w+yt+1 be the initial wealth at time t+1 determined
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by the budget constraint. By the definition of the continuation value function,
we have vt(w) = maxθMt(Vt+1(w

′)). Therefore

φ̃t(ṽt(w)) = max
θ

Et[φ̃t(Vt+1(w
′))] (∵ Definition of ṽt)

= max
θ

Et[g(φt(Vt+1(w
′)))] (∵ g = φ̃t ◦ φ

−1
t )

≤ max
θ
g(Et(φt(Vt+1(w

′)))) (∵ Jensen’s inequality)

= g

(

max
θ

Et(φt(Vt+1(w
′)))

)

(∵ g monotone)

= g(φt(vt(w))) (∵ Definition of vt)

= φ̃t(vt(w)). (∵ g = φ̃t ◦ φ
−1
t )

Applying φ̃−1
t to both sides, we obtain ṽt ≤ vt.

Case 2: Investment opportunity shrinks. Suppose the portfolio constraint
shrinks to Θ̃t ⊂ Θt. Then by the definition of vt, we have

ṽt(w) = max
θ∈Θ̃t

φ−1
t (Et[φt(Vt+1(w

′))])

≤ max
θ∈Θt

φ−1
t (Et[φt(Vt+1(w

′))]) = vt(w).

Case 3: Environment becomes riskier. By the definition of vt, law of
iterated expectations, and Jensen’s inequality, we have

φt(ṽt(w)) = max
θ

Et[φt(Vt+1(R̃t+1(θ)w + ỹt+1))]

= max
θ

Et[Et+1[φt(Vt+1(R̃t+1(θ)w + ỹt+1))]]

≤ max
θ

Et[φt(Vt+1(Et+1[R̃t+1(θ)w + ỹt+1]))]

≤ max
θ

Et[φt(Vt+1(Rt+1(θ)w + yt+1))] = φt(vt(w)).

Applying φ−1
t to both sides, we obtain ṽt ≤ vt.

We can provide even more examples of “bad news”. In Proposition 3.4, the
agent uses a single objective or subjective probability measure to calculate the
certainty equivalent Mt. However, it is possible that she is uncertain about the
probability measure itself. To capture such ambiguity, following Hayashi and
Miao (2011) and Ju and Miao (2012), we assume that the certainty equivalent
is of the form

Mt(Ut+1) = ϕ−1
t (Eµt [ϕt(φ

−1
t (Eπt [φt(Ut+1)]))]), (3.17)

where φt and ϕt capture risk aversion and ambiguity aversion, respectively.
πt ∈ Pt is the subjective probability measure over the state space, and µt is the
subjective probability measure over the set of the underlying stochastic process
Pt. When ϕt = φt, (3.17) reduces to (3.16), where the expectation is taken over
µt ◦ πt. If the agent is infinitely ambiguity averse, then (3.17) reduces to

Mt(Ut+1) = φ−1
t

(

min
πt∈Pt

Eπt [φt(Ut+1)]

)

, (3.18)
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the multi-priors model introduced by Gilboa and Schmeidler (1989) and gen-
eralized to the intertemporal setting (without the separation of EIS from risk
aversion) by Epstein and Schneider (2003) and (with the three-way separation
between EIS, risk aversion, and ambiguity aversion) by Hayashi (2005).

In this setting, the following proposition shows that increases in ambiguity
aversion or model uncertainty are treated as bad news.

Proposition 3.5. The following events constitute bad news at time t:

4. the agent becomes more ambiguity averse, i.e., ϕt changes to ϕ̃t, where
g = ϕ̃t ◦ ϕ

−1
t is increasing and concave.

5. the agent is infinitely ambiguity averse (Mt takes the form (3.18)), and
the set of subjective probability measures expands to P̃t ⊃ Pt.

Proof. Analogous to the proof of Proposition 3.4.

4 Homothetic case

We have seen so far that whether consumption increases or decreases after learn-
ing a bad news crucially depends on whether the EIS is larger than or less than
the elasticity of the continuation value with respect to wealth. However, this
result cannot be directly used to determine the magnitude of the EIS ψ, because
(i) since the functional form of v is unknown without imposing additional struc-
ture, so is its elasticity ε, and (ii) exogenous changes in the agent’s environment
do change v, but there is no reason why v should change by a linear function
αw. By imposing additional structure—homogeneity in wealth—we can make
Theorem 3.2 applicable.

4.1 Model

Preferences Let ft be the aggregator and Mt be the certainty equivalent
that defines the recursive utility. In this section we maintain the following
assumptions.

Assumption 1. Terminal utility is proportional to consumption: uT (c) = bT c
for some random variable bT > 0. The aggregator ft : R

2
+ → R+ is upper

semi-continuous, weakly increasing in both arguments, strictly quasi-concave,
and homogeneous of degree 1, i.e., ft(λc, λv) = λft(c, v) for all λ > 0.

As before, the aggregator ft can be time and state dependent. Assumption 1
essentially says that preferences are homothetic. The reason we assume uT (c) =
bT c is for generality. If the agent cares only about consumption, then uT (c) = c
(hence bT = 1) would be a natural choice. Alternatively, the agent may have a
bequest motive. If preferences over the last period’s consumption and bequest
are homothetic, then by maximizing over the consumption decision, the last
period’s value function will be linear in wealth. uT (c) = bT c can be interpreted
as such a terminal value function.

Assumption 2 (CRRA certainty equivalent). The certainty equivalent Mt

exhibits constant relative risk aversion (CRRA), i.e.,

Mt(U) =

{

Et[U
1−γt ]

1

1−γt , (γt 6= 1)

exp (Et[logU ]) , (γt = 1)
(4.1)
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where γt > 0 is the coefficient of relative risk aversion.

Although it is not trivial that we should define the CRRA certainty equiv-
alent for the case γt = 1 by using the exponential and logarithmic functions,
Lemma A.1 in the Appendix shows that it is indeed a natural definition. Again
the relative risk aversion (RRA) coefficient γt > 0 may be time and state de-
pendent.

The recursive preferences satisfying Assumptions 1 and 2 nest Epstein-Zin
CRRA/CEIS (constant relative risk aversion/constant elasticity of intertem-
poral substitution) preferences, which obtain by setting uT (c) = c, ft(c, v) =

((1 − β)c1−1/ψ + βv1−1/ψ)
1

1−1/ψ , and γt = γ, where ψ > 0 is the elasticity of
intertemporal substitution and 0 < β < 1 is the discount factor. Of course, we
get the standard additive CRRA preference when ψ = 1/γ.

Clearly we can allow for ambiguity aversion by using the form (3.17) with

φt(x) =
x1−γt

1−γt
and ϕt(x) =

x1−ηt

1−ηt
, where γt, ηt > 0 are the relative risk aversion

and ambiguity aversion coefficients.

Investment opportunity There are finitely many assets indexed by j ∈ J =
{1, . . . , J}. Asset returns are exogenous from the perspective of the investor,
i.e., the investor is a price taker. Let Rjt+1 ≥ 0 be the gross return on asset j
between time t and t+ 1, which is a random variable. Let θj be the fraction of
wealth invested in asset j. θj > 0 (< 0) means a long (short) position in asset

j. Let θ = (θ1, . . . , θJ) be the portfolio, where
∑J
j=1

θj = 1. At each point in
time, the investor may be constrained in the asset position she can take. For
example, she may face margin or short sales constraints. Let Θt ⊂ R

J be the
set of feasible portfolios at time t, which again can be time and state dependent.

Let θ ∈ Θt be a portfolio. The gross return on this portfolio between time t
and t+ 1 is denoted by

Rt+1(θ) =

J
∑

j=1

Rjt+1θ
j . (4.2)

If short sales are allowed, it may be the case that Rt+1(θ) ≤ 0 in some states,
leaving the agent with negative wealth. We rule out this possibility by letting
the agent with negative wealth bankrupt and get utility −∞, so she chooses only
portfolios that satisfy Rt+1(θ) > 0 almost surely. By redefining the portfolio
constraint if necessary, we assume that Rt+1(θ) > 0 almost surely for all θ ∈ Θt.

Assumption 3. The portfolio constraint Θt ⊂ R
J is nonempty, compact, and

convex, and Rt+1(θ) > 0 almost surely for all θ ∈ Θt.

Assumption 3 implies that there is some limit to short sales (compactness)
and that portfolios are infinitely divisible (convexity). These assumptions are
quite natural in a developed capital market.

Optimal consumption-portfolio decision The investor is endowed with
initial wealth (capital) w0 > 0 in period 0 but nothing thereafter. Her budget
constraint is therefore

wt+1 = Rt+1(θt)(wt − ct), (4.3)

where wt is wealth at the beginning of time t, ct is consumption, and θt ∈
Θt is the portfolio. The objective of the agent is to maximize the recursive
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utility defined by (3.11) subject to the budget constraint (4.3) and the portfolio
constraint θt ∈ Θt.

Let Vt(w) be the value function of the agent with wealth w at time t. Sub-
stituting the budget constraint into the definition of recursive utility, we obtain
the Bellman equation

Vt(w) = max
0≤c≤w
θ∈Θt

ft

(

c,Et[Vt+1(Rt+1(θ)(w − c))1−γt ]
1

1−γt

)

. (4.4)

The following lemma, which generalizes the classic portfolio problems of Samuel-
son (1969) and Hakansson (1970, 1971), shows that the optimal consumption-
portfolio rule and the value function are linear.

Lemma 4.1. Suppose Assumptions 1–3 hold. Define {bt}
T−1

t=0
by

bt = max
0≤c̃≤1

ft

(

c̃, (1− c̃)max
θ∈Θt

Et[(bt+1Rt+1(θ))
1−γt ]

1

1−γt

)

(4.5)

and let c̃t, θt be maximizers of (4.5). Then the value function is Vt(w) = btw,
the optimal consumption rule is c = c̃tw, and the optimal portfolio is θt.

Proof. If t = T , there is no portfolio decision to make and the value function
is VT (w) = max0≤c≤w bT c = bTw. Assume that the claim holds for time t + 1
onwards. Then

Vt(w) = max
0≤c≤w
θ∈Θt

ft

(

c,Et[Vt+1(Rt+1(θ)(w − c))1−γt ]
1

1−γt

)

= max
0≤c≤w
θ∈Θt

ft

(

c,Et[(bt+1Rt+1(θ)(w − c))1−γt ]
1

1−γt

)

= max
0≤c≤w

ft

(

c, (w − c)max
θ∈Θt

Et[(bt+1Rt+1(θ))
1−γt ]

1

1−γt

)

= w max
0≤c̃≤1

ft

(

c̃, (1− c̃)max
θ∈Θt

Et[(bt+1Rt+1(θ))
1−γt ]

1

1−γt

)

= btw,

where the first line is the Bellman equation (4.4), the second line is by the
induction hypothesis Vt+1(w) = bt+1w, the third line is by the monotonicity
and the upper semi-continuity of f , and the fourth line is by the homotheticity
of f and (4.5).

Remark. The acute reader may have noticed that in order to justify the above
proof, we need in addition the continuity of Et[(bt+1Rt+1(θ))

1−γt ] with respect
to θ so that the maximum with respect to θ ∈ Θt is attained. We can prove
the continuity using the Dominated Convergence Theorem, provided that the
integrand is bounded above by some integrable function. This is the case, for
example, if all random variables take finitely many values. In Lemma 4.1 we
implicitly assume that some sufficient condition for continuity is satisfied.

Remark. Since by Assumption 1 the aggregator f is strictly quasi-concave,
the optimal consumption rule c̃t is unique. Since the portfolio constraint Θt is
convex and the objective function for the optimal portfolio problem

1

1− γt
Et[(bt+1Rt+1(θ))

1−γt ]
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is concave, the optimal portfolios form a convex set. If, in addition, there are
no redundant assets (so asset returns R1

t+1, . . . , R
J
t+1 are linearly independent),

then the optimal portfolio is unique.

4.2 Response of consumption to “bad news”

Armed with Lemma 4.1, we apply Theorem 3.2 to the homothetic case. By
homogeneity, the value function is linear: Vt(w) = btw. By the proof of Lemma
4.1, the continuation value function is

vt(w) = wmax
θ∈Θt

Et[(bt+1Rt+1(θ))
1−γt ]

1

1−γt =: ρtw, (4.6)

which is also linear. Then the elasticity of continuation value is identically equal
to 1, and any exogenous change in the agent’s environment affects only the
coefficient of the continuation value. Since vt(w) + αw = (ρt + α)w, perturbing
the continuation value by a linear function is equivalent to changing ρ. Therefore
by Theorem 3.2 we immediately obtain the following results.

Corollary 4.2. Suppose Assumptions 1–3 hold. Then

(

1

c
+

1

w − c

)

∂c

∂ρ
=

1

ρ
(1− ψ). (4.7)

In particular, ∂c/∂ρ ≷ 0 according as ψ ≶ 1.

Proof. Since v(w) = ρw, we have v′ = ρ, v′′ = 0, and ε = wv′(w)/v(w) = 1.
Substituting these quantities into (3.15) and evaluating at w − c, we obtain
(4.7).

Corollary 4.3. Let s ≤ t. Then ∂cs/∂ρt ≷ 0 according as ψ ≶ 1.

Proof. Since the aggregator is monotonic, when ρt goes up or down, so does ρs
for all s ≤ t. Hence the conclusion holds by Corollary 4.2.

Corollary 4.3 shows that when the agent learns that the coefficient of the con-
tinuation value will become smaller at some future date, the agent will decrease
(increase) consumption in every prior date if ψ < 1 (ψ > 1). Furthermore, since
vt(w) = ρtw, according to Definition 3.3 a bad news is any exogenous event
that decreases ρt. By Propositions 3.4 and 3.5, increases in risk or ambiguity
aversion, reduction in investment opportunities, and riskier or more uncertain
environment all constitute bad news.12

So far, we have derived comparative statics of the saving rate of a single
investor, who takes asset returns as given. The same result holds in a general
equilibrium model studied by Toda (2014). In this model, there are a continuum
of ex ante identical agents indexed by i ∈ I = [0, 1]. There are J constant-
returns-to-scale stochastic saving technologies indexed by j ∈ J = {1, . . . , J}.
The gross investment return of agent i on technology j between time t and

12Working with additive CRRA preferences, many papers have found that increased risk
increases or decreases savings depending on whether relative risk aversion is greater or less
than 1 (Phelps, 1962; Levhari and Srinivasan, 1969; Merton, 1969; Sandmo, 1970; Rothschild
and Stiglitz, 1971). Corollary 4.2 is considerably more general, and what matters is the EIS,
not risk aversion.
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t + 1 is denoted by Aji,t+1. Thus if agent i invests capital K at the end of

period t, she will collect capital Aji,t+1K at the beginning of period t+ 1. The
subscript i indicates that the investor may face idiosyncratic risk. Let Fit be
agent i’s information set and Ft =

⋂

i Fit be the σ-algebra generated by the

aggregate variables. Assume that agents are symmetric, so Ajit is i.i.d. across
agents conditional on Ft, and that the idiosyncratic risk is transitory (since A’s
are rates of return, the shocks are permanent in levels), so the distribution of
Aji,t+1 conditional on Fit is the same as the one conditional on Ft. One can
also allow for arbitrarily many assets in zero net supply, whose dividends are
Ft-measurable.

Under these assumptions and using a similar argument to Toda (2014), we
can show that there exists a unique equilibrium, the zero net supply assets are
not traded in equilibrium, and that the optimal consumption-portfolio rule is
the one in Lemma 4.1 with Rt+1(θ) replaced by

Ri,t+1(θ) =

J
∑

j=1

Aji,t+1θ
j .

Since the structure of the general equilibrium model is identical to that of a
single agent problem, Proposition 3.4 continues to hold. We note this result in
the following corollary.

Corollary 4.4. The following constitutes bad news:

3’ the vector of investment returns Ai,t+1 = (A1
i,t+1, . . . , A

J
i,t+1) becomes

riskier to (second-order stochastically dominates) Ãi,t+1, so

E
[

Ãi,t+1

∣

∣

∣
Ai,t+1

]

≤ Ai,t+1.

5 Empirical identification strategies

Here, we will discuss how to develop formal econometric tests of the comparative
statics developed in the previous section. Given our above concerns about the
identification issues caused by general equilibrium effects, we will emphasize
tests which rely on the availability of panel data on consumption/savings.

In the framework developed thus far, the subscript on the value function may
be interpreted as indexing either age or calendar time. To make a clearer dis-
tinction between the two, we will index the value function by a, setting A := T ,
and add a second subscript t for calendar time. V ia,t(w) will denote the value
function of agent i, who is a years old with wealth w at calendar time t. We will
do the same with risk aversion coefficients and portfolio constraints, which can
depend on calendar time and age. The i notation allows for cross-sectional het-
erogeneity in preferences, constraints, and/or investment opportunities. Next,
we place structure on the state space governing the common and individual-
specific variation in determinants of the portfolio problem over time.

Assumption 4. The following statements are true:

1. The aggregate state of the economy at time t is denoted by st, where {st}
is an exogenous, stationary, finite-dimensional, Markov process.
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2. Conditional on st, all cross-sectional variation in preferences and invest-
ment opportunities is completely characterized by the Markovian random
vector {αit}, which satisfies αi,t+1 ⊥ αj,t+1|st+1, st, αit, αjt for all i 6= j.
The distribution of αi,t+1 given individual i’s information set at time t
only depends on αit and st.

Assumption 4.1 imposes stationarity restrictions on the variation in invest-
ment opportunities over calendar time. Changes in st generate common time
series variation in realized returns and characteristics of the future portfolio
choice problem across investors. Next, Assumption 4.2 allows for heterogeneity
of a fairly general form. For example, investors may differ in their degrees of risk
aversion, portfolio constraints, and return distributions. While, at first glance,
heterogeneity in returns might seem like an unnatural assumption, differences
in tax rates, portfolio management fees and/or transaction costs are all capable
of generating return differentials in the data. These cross-sectional differences
may be persistent over time (via the Markov structure of αit), and changes in
the aggregate states can interact with changes in the cross-sectional distribution
of α in general ways.

When Assumptions 1–4 hold, it immediately follows that the value function
is linear and takes the form: V ia,t(w) = ba(αit, st)w. Analogously, the continua-

tion value per dollar of future wealth satisfies ρia,t = ρa(αit, st). If consumption,

wealth, and ρia,t were observable, then (4.7) implies a very straightforward way
to estimate the EIS, provided that it is stable over time or across individuals.
To see this, rewriting (4.7), we obtain

ψt = 1−
∂ log ct

wt−ct

∂ log ρt
,

so EIS is 1 minus the elasticity of consumption-to-savings ratio with respect to
ρ. Thus constant savings rates would imply a unit EIS.

Most estimates of the EIS from the literature predominantly rely on (calen-
dar) time series variation in rates of return. These approaches compare savings
behavior in different aggregate states, which are characterized by different values
of st and st+k. If, for example, investment opportunities are more attractive in
st relative to st+k and other aspects of the portfolio problem are held constant,
then we can partially identify the EIS by testing whether similar types of agents
save more or less at time t+ k or t.

Given our results above, one can use many different sources of identifying
variation which involve different realizations of {αit} across agents, rather than
the aggregate state st. Suppose that, due to a bad realization of αit, investor i
learns at t that her future investment opportunities will look less attractive—
e.g., because her capital income will be taxed at a higher rate or her future
portfolio constraints tighten—relative to a different investor j, who had a sim-
ilar value of αj,t−1 (so αj,t−1 ≈ αi,t−1) but whose realization of αjt left her
expectations about the individual-specific component of future investment op-
portunities unchanged. Then, regardless of the realization of the aggregate state
st, if both investors have an EIS < 1, our model would predict that her savings
rate would increase relative to agent j—i.e., log(cit/wit) − log(cjt/wjt) ≤ 0,
whereas log(ci,t−1/wi,t−1) − log(cj,t−1/wj,t−1) = 0. Further note that, if both
agents held similar portfolios (as would be the case if αi,t−1 = αj,t−1), then
∆wit = ∆wjt, which further implies a testable restriction which may be written
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in terms of consumption growth: log(cit/ci,t−1)− log(cjt/cj,t−1) ≤ 0. We could
also substitute out consumption using the budget constraint and test equivalent
conditions on savings/reinvestment rates.

These simple comparative statics lend themselves naturally to differences-
in-differences estimation procedures, and are testable with panel or repeated
cross-sectional data on consumption and wealth. For concreteness, imagine
that the econometrician can observe a binary variable dit := dt(αit) which
identifies whether or not an individual receives bad news about future in-
vestment opportunities at time t. In our example above, dt(αit) = 1 and
dt(αjt) = dt−1(αj,t−1) = dt−1(αi,t−1) = 0. If the “treated” and “control”
groups both have similar levels of wealth at t − 1, and variation in dit is in-
dependent of all other individual characteristics (particularly preferences and
the realized return on wealth from t − 1 to t), then one can simply compare
the consumption levels of the two groups.13 If wealth is observable or we have
panel or pseudo-panel data, then the requisite identifying assumptions are even
weaker. Finally, measurement errors in either consumption or wealth are no
cause for concern if they are orthogonal to the instrument dit.

6 Conclusion

Essentially any dynamic model involves a tradeoff between consumption today
and consumption tomorrow, which is characterized by the EIS. Both positive
predictions and normative implications from dynamic models depend fundamen-
tally on this tradeoff. For example, agents’ preferences about macroeconomic
stabilization and predicted responses to changes in monetary and/or fiscal pol-
icy changes are fundamentally linked to the EIS. These estimates also play a
critical role in determining the costs of distortionary capital taxation. Yet, de-
spite its central role in these calculations, there remains a substantial debate
about its magnitude. Our new empirical identification methodology can enable
researchers to provide a new perspective on this longstanding debate.

13If we have panel data on consumption, then we can compare consumption growth of
treated individuals with similar controls, eliminating the requirement that initial wealth levels
are the same. The same idea works with repeated cross-sections if the source of identifying
variation is related to spatial variation—for instance, if one state raises its capital tax rate
relative to another. One could compare average consumption levels in treated states with
control states after the law change, relative to the levels of similar individuals in the period
prior to the change.
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A Proofs

Proof of Proposition 3.1. By the budget constraint we have c2 = Rf (e1 −
c1) + e2 > 0. Therefore by the definition of EIS,

ψ =
∂ log(c2/c1)

∂ logRf
= Rf

∂

∂Rf
(log(Rf (e1 − c) + e2)− log c)

= Rf

(

e1 − c−Rf
∂c
∂Rf

Rf (e1 − c) + e2
−

1

c

∂c

∂Rf

)

⇐⇒ Rf

(

1

c
+

Rf
Rf (e1 − c) + e2

)

∂c

∂Rf
=

Rf (e1 − c)

Rf (e1 − c) + e2
− ψ.

Dividing both sides by Rf > 0, we obtain (3.4).

Proof of Theorem 3.2. Let c = c(α;h), v = (v+αh)(w−c), and cα = dc/ dα.
Then by the chain rule, at α = 0 we obtain

d

dα
log(c/v) =

cα
c

−
−v′cα + h

v
.

Since c = c(α;h) solves

max
c
f(c, (v + αh)(w − c)),

by the first-order condition we have

fc − fv(v
′ + αh′) = 0 ⇐⇒ log

fc
fv

= log(v′ + αh′),

where v′, h′ are evaluated at w − c. Again by the chain rule,

d

dα
log

fc
fv

=
−v′′cα + h′

v′
.

By the definition of EIS, we obtain

ψ = −
cα
c − −v′cα+h

v
−v′′cα+h′

v′

⇐⇒
ψ

v′
(−v′′cα + h′) = −

cα
c

+
1

v
(−v′cα + h)

⇐⇒

(

1

c
+
v′

v
− ψ

v′′

v′

)

cα =
h

v
− ψ

h′

v′
,

which is (3.14). If h(w) = w, then the right-hand side becomes

w − c

v(w − c)
− ψ

1

v′(w − c)
=

1

v′(w − c)
(ε(w − c)− ψ),

where ε(w) = wv′(w)/v(w) is the elasticity of v. Since the value function is

increasing in wealth, we have v′ > 0. Therefore if v′′ ≤ 0, then 1

c +
v′

v −ψ v
′′

v′ > 0
unambiguously, so dc/ dα ≷ 0 according as ψ ≶ ε.
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Lemma A.1. Let X be an almost surely positive random variable and suppose
that E[Xr] is finite for 0 < |r| < ǫ and E[logX] is finite. Then

lim
r→0

E[Xr]
1

r = exp(E[logX]).

Proof. It suffices to prove whenX is a discrete random variable (simple function)
since the Lebesgue integral of a measurable function is defined by the limit of
the integrals of approximating simple functions. Suppose that X takes values
x1, . . . , xN with probability p1, . . . , pN , and let

f(r) = log E[Xr] = log

(

N
∑

n=1

pnx
r
n

)

.

Since f(0) = log
(

∑N
n=1

pn

)

= 0, it follows that

lim
r→0

1

r
log E[Xr] = lim

r→0

f(r)− f(0)

r
= f ′(0)

=

∑N
n=1

pnx
r
n log xn

∑N
n=1

pnxrn

∣

∣

∣

∣

∣

r=0

=

N
∑

n=1

pn log xn = E[logX].

Therefore limr→0 E[X
r]

1

r = exp (E[logX]).

Lemma A.2. Let X be an almost surely positive random variable and define
φ : R → [0,∞] by

φ(r) =

{

E[Xr]
1

r , (r 6= 0)

exp(E[logX]). (r = 0)

Then φ is increasing in r ∈ R.

Proof. Let p, q > 1 be numbers such that 1/p+1/q = 1. Let ‖f‖p =
(∫

|f |
p
dµ
)

1

p

denote the Lp norm of a function f . Let f = Xr, g = 1, and s = pr. By Hölder’s
inequality ‖fg‖

1
≤ ‖f‖p ‖g‖q, we obtain

E[Xr] ≤ E[Xpr]
1

p ⇐⇒

{

E[Xr]
1

r ≤ E[Xs]
1

s , (r > 0)

E[Xr]
1

r ≥ E[Xs]
1

s . (r < 0)

Noting that s = pr ≷ r according as r ≷ 0 since p > 1, it follows that E[Xr]
1

r

is increasing in r for r ∈ (−∞, 0) and r ∈ (0,∞). Since φ(r) is continuous at
r = 0 by Lemma A.1, it is increasing on R.
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