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Abstract

I obtain a closed-form solution to a Huggett economy with CARA util-
ity when the vector of individual state variables follows a VAR(1) process
with an arbitrary shock distribution. The stationary equilibrium is unique
if the income process is AR(1), but not necessarily so otherwise. With
Gaussian shocks, I provide general sufficient conditions for the existence
of at least three equilibria when the income process is either ARMA(1,1),
AR(2), or has a persistent-transitory (PT) representation with negatively
correlated shocks. The possibility of multiple equilibria calls for caution
in comparative statics exercises and policy analyses using heterogeneous-
agent models.

Keywords: CARA utility, income fluctuation problem, persistent-
transitory representation.
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1 Introduction

General equilibrium models with agents that are subject to uninsurable id-
iosyncratic income risk (the so-called Bewley (1983)-Huggett (1993)-Aiyagari
(1994) models) are one of the workhorses of modern macroeconomics. Since
such heterogeneous-agent models rarely admit closed-form solutions, they are
typically solved numerically. Based on such numerical solutions, researchers
often conduct comparative statics exercises and policy analyses. If the equilib-
rium is unique, then the result of such exercises are unambiguous. However, if
there exist multiple equilibria, the conclusion may depend on the choice of the
equilibrium, both quantitatively (i.e., in terms of magnitude) and qualitatively
(i.e., in terms of direction) (Kehoe, 1985, 1991). While it is known that multi-
ple (stationary) equilibria are possible in a variety of economies,1 examples of
multiple stationary equilibria in canonical Bewley-Huggett-Aiyagari models do
not seem to be known.

∗Department of Economics, University of California San Diego. Email: atoda@ucsd.edu.
1For examples of multiple equilibria, see Kehoe (1985), Gjerstad (1996), and Toda and

Walsh (2017) for Edgeworth box economies, Gaĺı (1996) for a growth model with monopo-
listic competition, Bodenstein (2010) for an international business cycle model, Kubler and
Schmedders (2010a) for a static incomplete market model, and Kubler and Schmedders (2010c)
for overlapping generations models.
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In this paper, exploiting constant absolute risk aversion (CARA) preferences
and the VAR(1) dynamics of the state variables, I obtain a new closed-form
solution (up to a single nonlinear equation that determines the equilibrium
risk-free rate) to a canonical Huggett (1993) economy, where agents are subject
to uninsurable idiosyncratic income risk and trade a risk-free asset in zero net
supply. As an application, I explore whether or not such heterogeneous-agent
economies admit a unique stationary equilibrium. I show that (i) the stationary
equilibrium is unique if the income process is AR(1) with an arbitrary shock
distribution, but (ii) multiple stationary equilibria are possible if the income
process is more general. In particular, I show how to construct economies with at
least three stationary equilibria when the income process is either ARMA(1,1),
AR(2), or has a persistent-transitory (PT) representation that is the sum of
an AR(1) process and a transitory shock. The possibility of multiple equilibria
in CARA Huggett (incomplete market) economies may be surprising since it
is well known that CARA preferences are sufficient for equilibrium uniqueness
under complete markets (Hens and Loeffler, 1995).

The case with the persistent-transitory (PT) income process is especially
relevant because it is widely used in empirical and quantitative works. The PT
model has the general form

yt = x1t + x2t, (1.1)

where x1t, x2t are the persistent and transitory components of yt with various
specifications.2 In this paper I focus on the case in which the persistent compo-
nent x1t is AR(1) and the transitory component x2t is white noise, which is by
far the most widely used in the literature.3 When the shocks are restricted to be
Gaussian, I prove that the stationary equilibrium is unique when the correlation
between the two shocks is nonnegative, but multiple equilibria are possible when
the correlation is negative. Although this result may seem restrictive at first
glance since many papers assume zero correlation, this is not the case: I show
that multiple equilibria are possible even with correlations that are arbitrarily
close to zero, and also the recent evidence in Hryshko (2014) suggests that the
correlation between the shocks to the persistent and transitory components is
actually negative.

Taken together, the possibility of multiple stationary equilibria calls for cau-
tion in comparative statics exercises and policy analyses using incomplete mar-
ket heterogeneous-agent models.

1.1 Related literature

The closed-form solution obtained in this paper is similar to Calvet (2001) and
Wang (2003).4 Using an incomplete market CARA economy in an i.i.d. Gaus-
sian setting, Calvet (2001) shows that a continuum of nonstationary equilibria

2In Moffitt and Gottschalk (2002) and Jappelli and Pistaferri (2010), x1t is a random walk
and x2t is ARMA(1,1). In Meghir and Pistaferri (2004) and Blundell et al. (2008), x1t is a
random walk and x2t is MA(q).

3See, for example, Topel and Ward (1992), Hubbard et al. (1995), Storesletten et al. (2004),
Guvenen (2007), Ejrnæs and Browning (2014), Guvenen et al. (2014), and Hryshko (2014),
among many others.

4Other papers that exploit the tractability of CARA preferences with additive shocks
include Caballero (1990, 1991), Wang (2004, 2007), and Angeletos and Calvet (2005, 2006),
among others.
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may exist, but the stationary equilibrium is unique. Since macroeconomists are
typically concerned with stationary equilibria, my examples of multiple station-
ary equilibria may be surprising. Wang (2003) obtains a closed-form solution to
a Huggett economy (up to a single nonlinear equation) with CARA preferences
and AR(1) income processes in the context of the permanent income hypothesis.
My model generalizes his result to the VAR(1) case, and I prove the uniqueness
of equilibrium in the special case of AR(1) studied in Wang (2003).

In a series of papers, Kubler and Schmedders (2010a,b,c) show how to com-
pute all equilibria using the Gröbler basis in algebraic geometry when the econ-
omy is “semi-algebraic”, i.e., the equilibrium conditions reduce to a system
of finitely many polynomial equations after a suitable transformation. This is
the case when agents are finitely lived and have constant relative risk aver-
sion (CRRA) preferences with rational risk aversion coefficients. Kubler and
Schmedders (2010c) apply the Gröbner basis approach to OLG economies and
find that multiplicity becomes less likely as the life span of agents increases. My
examples show that multiplicity is possible in economies with infinitely lived
agents and robust ranges of parameters, possibly because the CARA Huggett
economy is not semi-algebraic.

This paper is also related to papers that obtain closed-form solutions to
dynamic general equilibrium models, such as Labadie (1989), Burnside (1998),
Tsionas (2003), and de Groot (2015), among others. Most of these papers pro-
vide solutions to asset pricing models, which have been applied to evaluate the
solution accuracy of numerical methods (Collard and Juillard, 2001; Schmitt-
Grohé and Uribe, 2004; Farmer and Toda, 2016). My solution to the income
fluctuation problem may be useful for evaluating the accuracy of numerical al-
gorithms to solve heterogeneous-agent models.

2 Huggett economy with closed-form solution

In this section, exploiting constant absolute risk aversion (CARA) preferences
and VAR(1) dynamics, I show how to obtain exact solutions to Huggett (1993)
economies, where there are a continuum of independent agents that are subject
to uninsurable idiosyncratic income risk and trade a risk-free asset in zero net
supply. I first solve an income fluctuation problem (Schechtman and Escudero,
1977), which I subsequently embed into a general equilibrium model.

2.1 CARA-VAR(1) income fluctuation problem

Consider an agent with additive CARA utility

E0

∞
∑

t=0

βtu(ct), (2.1)

where 0 < β < 1 is the discount factor and u(c) = −e−γc/γ has constant
absolute risk aversion γ > 0. The agent can borrow or save at an exogenous
gross risk-free rate R > 1 and is subject to uninsurable idiosyncratic income
risk. Let yt be the income in period t, which evolves according to some Markov
process, and wt be the financial wealth at the beginning of time t excluding
current income. The timing is as follows. At the beginning of period t, the
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agent sees his financial wealth wt and current income yt. The agent chooses
consumption ct and saves the rest wt + yt − ct. Hence the budget constraint is

wt+1 = R(wt − ct + yt). (2.2)

The Bellman equation is

V (w, x) = max
c

{u(c) + β E [V (R(w − c+ y), x′) |w, x]} , (2.3)

where x denotes the vector of state variables that include income but not wealth.
Since the CARA utility is defined on the entire real line, as is usual I assume
that consumption can be negative. Under an AR(1) specification for the income
process, Wang (2003) obtains a closed-form solution to the utility maximization
problem. Below, I show that a similar solution exists for a VAR(1) income
process with an arbitrary shock distribution.

Suppose that the vector of state variables xt follows the VAR(1)

xt = Axt−1 + ηt, (2.4)

where A is a square matrix with spectral radius less than 1 and ηt has a general
shock distribution that is i.i.d. over time.5 Suppose that the income in period t
is a linear function of current state variables,

yt = f ′xt,

where f is a vector of loadings of x. For example, if income follows an AR(p)
process, we can rewrite the AR(p) process as a p-dimensional VAR(1) process
using xt = (yt, . . . , yt−p+1)

′, and can pick f = (1, 0, . . . , 0)′. Even under this
generality, the optimization problem still admits a closed-form solution.

Proposition 2.1. Suppose that the moment generating function of η is finite.
Then the value function and the optimal consumption rule of the CARA-VAR(1)
income fluctuation problem are given by

V (w, x) = − 1

γa
e−γ(aw+b+d′x), (2.5a)

c(w, x) = aw + b+ d′x, (2.5b)

where

a = 1− 1/R > 0,

b =
1

γ(1−R)
log βRE[e−γ(R−1)f ′(RI−A)−1η],

d = (R− 1)(RI −A′)−1f.

As is clear from the the proof of Proposition 2.1, the model is tractable
as long as all expressions are exponential-affine (things like eκ0+κ′

1x). For ex-
ample, the discount factor β can be an exponential-affine function of current
consumption c, and the distribution of η can depend on current state variable
x as long as its moment generating function is exponential-affine in x. Wang
(2007) considers such a case in the context of the wealth distribution.

5Without loss of generality, we may assume that the VAR(1) process (2.4) does not contain
a constant term. This is because we have put no structure on the distribution of η, so if there
is a constant term we can always shift the distribution of η so that the constant term is 0.
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2.2 General equilibrium

Next I embed the income fluctuation problem into a general equilibrium model. I
consider a Huggett (1993) economy, where there are a continuum of independent
agents that trade a risk-free asset in zero net supply.6 The equilibrium concept
I use is the stationary equilibrium, which consists of a constant gross risk-free
rate R > 1 such that (i) agents solve the income fluctuation problem, and
(ii) the risk-free asset market clears.

Using the budget constraint (2.2), the consumption rule (2.5b), and a =
1− 1/R, individual wealth evolves according to

w′ = R(w − (aw + b+ d′x) + f ′x)

= w +R(−b+ (f − d)′x). (2.6)

Since wealth is a random walk in levels, with infinitely lived agents there is
no stationary wealth distribution. In order to obtain a stationary distribution,
I assume that agents enter/exit the economy at constant probability p as in
Yaari (1965) and Blanchard (1985). Because agents survive each period with
probability 1 − p, the effective discount factor is β̃ = β(1 − p). Suppose that
there are perfectly competitive insurance companies that offer annuities and life
insurances. Let R̃ be the effective risk-free rate that agents face. If an agent
saves or borrows 1, the position grows to R̃ next period if the agent survives, and
0 if he dies (an agent who dies with positive assets surrender to the insurance
company; the debt of an agent who dies with negative assets is covered by life
insurance). Hence by accounting we obtain

R = (1− p)R̃+ p0 ⇐⇒ R̃ =
R

1− p
.

The following theorem shows the existence of equilibrium.

Theorem 2.2. There exists a stationary equilibrium in the CARA-VAR(1)
Huggett economy. The effective risk-free rate R̃ solves

E[v(R̃)′η]− log β̃R̃E[ev(R̃)′η] = 0, (2.7)

where v(R̃) = γ(1 − R̃)(R̃I − A′)−1f . The gross risk-free rate R = R̃(1 − p)
satisfies 1− p < R < 1/β.

In light of the subsequent applications, it is convenient to consider Gaussian
VAR(1) processes. In this case the equilibrium condition (2.7) simplifies as
follows. For notational simplicity, assume there is no death (p = 0), so β̃ = β
and R̃ = R. The case p > 0 is completely analogous.

Corollary 2.3. Suppose that the income process is Gaussian VAR(1), so η ∼
N(µη,Ση) in (2.4). Then the equilibrium condition (2.7) is equivalent to

log βR+
1

2
v(R)′Σηv(R) = 0. (2.8)

6It is straightforward to generalize the results to Aiyagari (1994) models with capital
accumulation. I do not consider this case since the point of the paper is to show that multiple
equilibria are possible even in simple endowment economies.
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Proof. Let v = v(R). Since η ∼ N(µη,Ση), we have E[v′η] = v′µη and the
moment generating function of η is

Mη(v) = E[ev
′η] = ev

′µη+
1
2 v

′Σηv.

Therefore the equilibrium condition (2.7) is equivalent to

0 = −E[v′η] + log βR+ log E[ev
′η] = log βR+

1

2
v′Σηv.

While v(R) is a rational function of R, because (2.8) contains logR, the
CARA-Gaussian VAR(1) Huggett economy is not semi-algebraic. Consequently,
the Gröbner basis method in Kubler and Schmedders (2010a) is not applicable.

If there exist multiple equilibria, it is interesting to rank the equilibria in
terms of welfare. To compute the equilibrium welfare, assume that newborn
agents are endowed with zero financial wealth and the initial state variable
is drawn from the stationary distribution. Then the ex ante welfare is V =
E[V (0, x)], where V (w, x) is given by (2.5a) and the expectation is taken over
the stationary distribution of x. To convert this quantity into consumption
equivalent, suppose that an agent consumes a constant amount c in every period,
with associated utility equal to V . Then we have

V = − 1

γ
e−γc

∞
∑

t=0

βt = − 1

γ(1− β)
e−γc ⇐⇒ c = − 1

γ
log(−γ(1− β)V ).

Letting v = γ(1−R)(RI −A′)−1f , (2.5a) with w = 0 becomes

V (0, x) = − 1

γa
e−γb+v′x,

where a = 1− 1/R. If the VAR is Gaussian, then x ∼ N(µx,Σx), so using the
moment generating function of the Gaussian distribution, we can compute V as

V = E[V (0, x)] = − 1

γa
e−γb+v′µx+

1
2 v

′Σxv.

Therefore the welfare in consumption equivalent is

c = − 1

γ

(

log
1− β

1− 1/R
− γb+ v′µx +

1

2
v′Σxv

)

. (2.9)

Σx can be computed using vec(Σx) = (I − A ⊗ A)−1 vec(Ση). Since η ∼
N(µη,Ση) with µη = (I −A)µx, we can compute b using Proposition 2.1.

3 Uniqueness and multiplicity of equilibria

Theorem 2.2 shows that a Huggett economy with CARA preference and VAR(1)
income process always has an equilibrium, whose interest rate is the solution to
the single nonlinear equation (2.7). In this section, I show that the equilibrium
is unique if the income process is AR(1), but not necessarily so otherwise.

Proposition 3.1. Suppose that the income process is AR(1) with an arbitrary
shock distribution, so A = φ with |φ| < 1 and f = 1 in the VAR(1) model. Then
the equilibrium is unique.
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The CARA-AR(1) Huggett economy has been studied in the context of the
permanent income hypothesis by Wang (2003), who proved the existence of
equilibrium. The uniqueness result in Proposition 3.1 seems to be new. Once
we move away from the AR(1) specification, multiple equilibria are possible.
Below, I consider several such cases.

3.1 ARMA(1,1) income process

First, as the income process I consider the ARMA(1,1):

yt = φyt−1 + εt + θεt−1, εt ∼ N(µε, σ
2). (3.1)

This case is of particular interest because (i) it is a direct generalization of
AR(1), (ii) it is fairly widely used (MaCurdy, 1982; Moffitt and Gottschalk,
2002; Jappelli and Pistaferri, 2010), and (iii) the sufficient condition for the
existence of multiple equilibria is especially simple. Letting

xt =

[

yt
εt

]

, ηt =

[

εt
εt

]

, A =

[

φ θ
0 0

]

, µη =

[

µε

µε

]

, and Ση = σ2

[

1 1
1 1

]

,

we have xt = Axt−1+ηt with ηt ∼ N(µη,Ση), so we can think of the ARMA(1,1)
economy as a VAR(1) economy with f = (1, 0)′. Since

(RI −A′)−1 =

[

R− φ 0
−θ R

]−1

=
1

R(R− φ)

[

R 0
θ R− φ

]

,

the equilibrium condition (2.8) becomes

log βR+
1

2
γ2σ2

(

(R− 1)(R+ θ)

R(R− φ)

)2

= 0. (3.2)

Let g(R) be the left-hand side of (3.2). Since g(1) = log β < 0 and g(1/β) >
0, g(R) = 0 has a solution in (1, 1/β). To show that g can have multiple zeros,
following the idea of Toda and Walsh (2017), it suffices to construct an example
with g(R2) = 0 with g′(R2) < 0. In fact, if such an R2 exists, since g(1) < 0 and
g(R) > 0 for sufficiently large R < R2, by the intermediate value theorem there
exists R1 ∈ (1, R2) such that g(R1) = 0. Similarly there exists R3 ∈ (R2, 1/β)
such that g(R3) = 0, so there are at least three equilibria.

Since

g′(R) =
1

R
+ γ2σ2 (R− 1)(R+ θ)

(R(R− φ))3
((1− φ− θ)R2 + 2θR− φθ),

if γ, σ are chosen to satisfy (3.2), after some algebra we obtain

g′(R) < 0 ⇐⇒ 1 + κ
(1− φ− θ)R2 + 2θR− φθ

(R+ θ)(R− φ)
< 0, (3.3)

where κ = − 2 log βR
R−1 > 0 since 1 < R < 1/β. Since the ARMA(1,1) process is

stationary if and only if |φ| < 1, we can choose θ freely. Therefore constructing
an example with multiple equilibria is quite simple.
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Proposition 3.2. Fix any R > 1, 0 < β < 1/R, γ > 0, and µε ∈ R. If θ satis-
fies (3.3), then the CARA-ARMA(1,1) Huggett economy with the ARMA(1,1)
income process (3.1) has at least three equilibria, with one equilibrium risk-free
rate being R. In particular, (3.3) is satisfied by either

1. taking θ < −R and θ sufficiently close to −R, or

2. taking β < 1
R
e

1
2(1−R) , 1 + 1

κ
− (R − 1)2 < φ < 1, and θ > 0 sufficiently

large.

Proof. If (3.3) holds, then g′(R) < 0 by choosing σ > 0 to satisfy (3.2), or
g(R) = 0. Therefore there exist at least three equilibria.

Case 1: θ < −R and θ is sufficiently close to −R. In this case, the
denominator of the second term in (3.3) is negative and close to zero. Since
κ > 0, to show (3.3), it suffices to show that the numerator is positive when θ
is close to −R. Letting θ → −R, the numerator becomes

(1− φ− θ)R2 + 2θR− φθ → (1− φ+R)R2 − 2R2 + φR

= R(R− 1)(R− φ) > 0.

Case 2: β < 1

R
e

1
2(1−R) , 1 + 1

κ
− (R − 1)2 < φ < 1, and θ > 0 is

sufficiently large. Letting θ → ∞, (3.3) becomes

1 + κ(−R2 + 2R− φ) < 0 ⇐⇒ φ > 1 +
1

κ
− (R− 1)2.

Since φ < 1 for stationarity, if 1 > 1 + 1
κ
− (R− 1)2, then we can take φ in this

interval and construct three equilibria by taking θ > 0 sufficiently large. The
condition for such a φ to exist is

1 > 1+
1

κ
− (R−1)2 ⇐⇒ ⇐⇒ (R−1)2 > − R− 1

2 log βR
⇐⇒ β <

1

R
e

1
2(1−R) .

Since the upper bound of β in the second case, 1
R
e

1
2(1−R) , attains the maxi-

mum 1
2e

− 1
2 = 0.3033 when R = 2, the second case is not useful for constructing

realistic examples (with β close to 1). Therefore I consider the first case, and
take R = 1.03 (one of the equilibrium risk-free rates is 3%), β = 0.95, φ = 0.6,
and θ = −1.04, which satisfy (3.3). (3.2) is then satisfied by taking γ = 10
and σ = 30.7804. Figure 1 shows the graph of g (left-hand side of the equilib-
rium condition (3.2)). Since the graph crosses the horizontal axis three times,
there exist three equilibria. The equilibrium risk-free rates are R1 = 1.0146,
R2 = 1.03, and R3 = 1.0443. Assuming µy = 100, the welfare in consumption
equivalent computed by (2.9) is c1 = 98.0962, c2 = 92.9687, and c3 = 85.7410,
so the equilibrium with the lowest interest rate is the most efficient. (Under
complete markets, since agents consume 100 in each period, the welfare is 100.
Thus with incomplete markets the welfare declines by 1.9%, 7.0%, and 14.3%,
respectively.) The intuition is that in Huggett economies it is the poor agents
that borrow, so making the interest rate low alleviates the burden of poor agents,
who have high marginal utility.
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Figure 1. Graph of the equilibrium condition (3.2) for R = 1.03, β = 0.95, γ = 10, φ = 0.6,
θ = −1.04, and σ = 30.7804 in the ARMA(1,1) economy.

3.2 Persistent-transitory (PT) income process

Next, I consider the following income process with a persistent-transitory (PT)
representation with AR(1) and white noise components:

yt = x1t + x2t,

x1t = φx1,t−1 + η1t,

x2t = η2t,

where ηt = (η1t, η2t)
′ ∼ N(µη,Ση). The PT process is by far the most widely

used in the literature.7 We can rewrite this process as VAR(1) by setting A =
[

φ 0
0 0

]

and f = (1, 1)′. Since

(RI −A′)−1 =

[

R− φ 0
0 R

]−1

=

[ 1
R−φ

0

0 1
R

]

,

the equilibrium condition (2.8) becomes

log βR+
1

2
γ2(R− 1)2

(

σ2
1

(R− φ)2
+

2ρσ1σ2

R(R− φ)
+

σ2
2

R2

)

= 0, (3.4)

where Ση =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

. Letting g(R) be the left-hand side of (3.4), we

obtain

g′(R) =
1

R
+ γ2(R− 1)

(

σ2
1(1− φ)

(R− φ)3
+

ρσ1σ2(2R− φ(1 +R))

R2(R− φ)2
+

σ2
2

R3

)

. (3.5)

In this case we have the following proposition.

Proposition 3.3. If ρ ≥ 0, the CARA-PT Huggett economy has a unique
equilibrium. Otherwise, multiple equilibria are possible. In particular, suppose
that the parameter values are chosen as follows:

7See, for example, Topel and Ward (1992), Hubbard et al. (1995), Storesletten et al. (2004),
Guvenen (2007), Ejrnæs and Browning (2014), Guvenen et al. (2014), and Hryshko (2014),
among many others.
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1. Take any R > 1.

2. Take any γ, σ1 such that γσ1 > 2
√
R− 1.

3. Take any ρ such that −1 < ρ < − 2
√
R−1

γσ1
.

4. Take any σ2 > 0 such that R2 + γ2(ρσ1σ2R+ σ2
2(R− 1)) < 0.

5. Take φ sufficiently close to 1 such that g′(R) < 0.

6. Take β > 0 such that g(R) = 0.

Then there exist at least three equilibria, with one equilibrium risk-free rate being
R.

Proof. Suppose that ρ ≥ 0. Since R > 1 and |φ| < 1, we have 1 − φ > 0 and
2R−φ(1+R) = R(1−φ)+(R−φ) > 0, so all terms in (3.5) are positive. Since
g′(R) > 0, (3.4) has at most one solution, so the equilibrium is unique.

To construct an example with multiple equilibria, it suffices to choose pa-
rameters such that g(R) = 0 and g′(R) < 0. Letting φ → 1 in (3.5), we have
g′(R) < 0 if and only if

1

R
+ γ2(R− 1)

(

ρσ1σ2(R− 1)

R2(R− 1)2
+

σ2
2

R3

)

< 0

⇐⇒ R2 + γ2(ρσ1σ2R+ σ2
2(R− 1)) < 0. (3.6)

Therefore if the parameters satisfy this last inequality, we can choose φ suffi-
ciently close to 1 such that g′(R) < 0. Regarding the last expression in (3.6) as
a quadratic function of σ2, we can choose σ2 > 0 to make (3.6) hold if ρ < 0
and

(γ2ρσ2R)2 − 4γ2R2(R− 1) > 0 ⇐⇒ ρ < −2
√
R− 1

γσ1
.

Since |ρ| < 1, we can choose ρ to make the inequality hold if

−1 < −2
√
R− 1

γσ1
⇐⇒ γσ1 > 2

√
R− 1.

Therefore if γ, σ1 satisfy this inequality, we can choose parameters such that
g′(R) < 0. Since β does not enter g′(R), we can choose β such that g(R) = 0,
namely

0 < β =
1

R
exp

(

−1

2
γ2(R− 1)2

(

σ2
1

(R− φ)2
+

2ρσ1σ2

R(R− φ)
+

σ2
2

R2

))

<
1

R
.

As a concrete example, take R = 1.01 (one of the equilibrium risk-free rates
is 1%), γ = 10, σ1 = 0.25, and ρ = φ = −0.99. Since (3.5) is quadratic in σ2, to
give it the best chance to be negative, take the minimizer

σ2 = −ρσ1R(2R− φ(1 +R))

2(R− φ)2
= 9.4053.

Then (3.5) is equal to −6.7432, so we have g′(R) < 0. Finally, take β to satisfy
g(R) = 0, which implies β = 0.9302. Figure 2 shows the graph of g (left-hand
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side of the equilibrium condition (3.4)). Since the graph crosses the horizontal
axis three times, there exist three equilibria. The equilibrium risk-free rates are
R1 = 1.0047, R2 = 1.01, and R3 = 1.0204. Assuming µy = 100, the welfare in
consumption equivalent (2.9) is c1 = 98.1648, c2 = 95.9506, and c3 = 92.9373,
so again the equilibrium with the lowest interest rate is the most efficient.

Risk-free rate (%)

0 0.5 1 1.5 2 2.5 3
-0.1

0

0.1

0.2

0.3

0.4

Figure 2. Graph of the equilibrium condition (3.4) for R = 1.01, β = 0.9302, γ = 10, ρ = φ =
−0.99, σ1 = 0.25, and σ2 = 9.4053 in the PT economy.

3.3 AR(2) income process

Finally, I consider the AR(2) income process:

yt = φ1yt−1 + φ2yt−2 + εt, εt ∼ N(µε, σ
2). (3.7)

Letting

xt =

[

yt
yt−1

]

, ηt =

[

εt
0

]

, A =

[

φ1 φ2

1 0

]

, µη =

[

µε

0

]

, and Ση =

[

σ2 0
0 0

]

,

we have xt = Axt−1 + ηt with ηt ∼ N(µη,Ση), so we can think of the AR(2)
economy as a VAR(1) economy with f = (1, 0)′. Since

(RI −A′)−1 =

[

R− φ1 −1
−φ2 R

]−1

=
1

R2 − φ1R− φ2

[

R 1
φ2 R− φ1

]

,

the equilibrium condition (2.8) becomes

log βR+
1

2
γ2σ2

(

R(R− 1)

R2 − φ1R− φ2

)2

= 0. (3.8)

Let g(R) be the left-hand side of (3.8). Since the spectral radius of A is less
than 1, clearly we have R2 −φ1R−φ2 > 0 for R ≥ 1. Therefore g is continuous
in R ≥ 1. By some algebra, we have

g′(R) =
1

R
+ γ2σ2 R(R− 1)

(R2 − φ1R− φ2)3
((1− φ1)R

2 − 2φ2R+ φ2).

11



Therefore if γ, σ are chosen to satisfy (3.8), we obtain

g′(R) < 0 ⇐⇒ R(1 +Rκ)φ1 + (1 + (2R− 1)κ)φ2 > R2(1 + κ), (3.9)

where κ = − 2 log βR
R−1 > 0 since 1 < R < 1/β. Putting all the pieces together, we

obtain the following proposition.

Proposition 3.4. Fix any R > 1, γ > 0, and µε ∈ R. For any discount factor

β such that 0 < β < 1
R
e

1−R
2 , there exists a Gaussian AR(2) income process (3.7)

such that the CARA-AR(2) Huggett economy has at least three equilibria, with
one equilibrium risk-free rate being R. In particular, letting κ = − 2 log βR

R−1 > 1,
we can construct such an example by taking

R+ 1 + (R− 1)κ

1 + (R− 1)κ
< φ1 < 2, (3.10a)

max

{

−1,
R2(1 + κ)−R(1 +Rκ)φ1

1 + (2R− 1)κ

}

< φ2 < 1− φ1. (3.10b)

Proof. If 0 < β < 1
R
e

1−R
2 , then κ = − 2 log βR

R−1 > 1. Hence the denominators in
the left-hand sides of (3.10) are positive.

Let us show that there exist at least three equilibria if φ1 > 0 and φ2 satisfies
(3.10b). If (3.10b) holds, in particular −1 < φ2 < 1 − |φ1|, so by Lemma A.1
the spectral radius of A is less than 1. Again by (3.10b), we have

R2(1 + κ)−R(1 +Rκ)φ1

1 + (2R− 1)κ
< φ2,

which is equivalent to (3.9). Letting g be the left-hand side of (3.8), we have
g′(R) < 0. Since 0 < βR < 1, for any parameter values we can choose σ > 0 to
satisfy (3.8), or g(R) = 0. Therefore there exist at least three equilibria.

Finally, let us show that there exists φ2 satisfying (3.10b) if φ1 satisfies
(3.10a). Since R > 1 and κ > 1, we have

R+ 1 + (R− 1)κ

1 + (R− 1)κ
< 2 ⇐⇒ (R− 1)(κ− 1) > 0,

so there exists φ1 that satisfies (3.10a). In this case 0 < φ1 < 2. For any such
φ1, since −1 < 1− φ1 and

R2(1 + κ)−R(1 +Rκ)φ1

1 + (2R− 1)κ
< 1− φ1 ⇐⇒ φ1 >

R+ 1 + (R− 1)κ

1 + (R− 1)κ
,

we can take φ2 that satisfies (3.10b).

As a concrete example, take R = 1.05 (one of the equilibrium risk-free rates

is 5%) and γ = 1. Since 1
R
e

1−R
2 = 0.9289, take β = 0.9 to satisfy the assumption

of Proposition 3.4. Then in order to satisfy (3.8), it must be σ = 0.0243. With
these numbers (3.10a) becomes 1.9433 < φ1 < 2, so take φ1 = 1.98. Then
(3.10b) becomes −0.9806 < φ2 < −0.98, so take φ2 = −0.9803. Figure 3
shows the graph of g (left-hand side of the equilibrium condition (3.8)). Since
the graph crosses the horizontal axis three times, there exist three equilibria.
The equilibrium risk-free rates are R1 = 1.0120, R2 = 1.05, and R3 = 1.0679.
Assuming µy = 100, the welfare in consumption equivalent (2.9) is c1 = 87.7905,
c2 = 76.8134, and c3 = 76.0348, so again the equilibrium with the lowest interest
rate is the most efficient.

12
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Figure 3. Graph of the equilibrium condition (3.8) for R = 1.05, β = 0.9, γ = 1, φ1 = 1.98,
φ2 = −0.9803, and σ = 0.0243 in the AR(2) economy.

4 Concluding remarks

The paper generalizes the closed-form solution to the CARA-AR(1) Huggett
economy in Wang (2003) to the case in which the vector of individual state vari-
ables follows a VAR(1) process with an arbitrary shock distribution. Although
the AR(1) case has a unique stationary equilibrium, the economy with VAR(1)
dynamics may have multiple equilibria. In particular, when the income process
is either ARMA(1,1), AR(2), or has a persistent-transitory (PT) representation
that consists of AR(1) and white noise, I provide general sufficient conditions
for the existence of at least three equilibria. With multiplicity of equilibria, the
quantitative implications such as comparative statics with respect to parameter
values may depend on the choice of the equilibrium. Applied researchers should
be aware of this possibility even in simple Huggett economies.

A Proofs

Proof of Proposition 2.1. I prove by guess-and-verify. Substituting (2.5a)
into the Bellman equation, we obtain

− 1

γa
e−γ(aw+b+d′x)

= max
c

{

− 1

γ
e−γc − β

γa
E
[

e−γ(aR(w−c+f ′x)+b+d′x′)
∣

∣

∣
w, x

]

}

. (A.1)

The first-order condition with respect to c is

e−γc − βRE
[

e−γ(aR(w−c+f ′x)+b+d′x′)
∣

∣

∣
w, x

]

= 0. (A.2)

Substituting (A.2) into (A.1), we obtain

− 1

γa
e−γ(aw+b+d′x) = − 1

γa

(

a+
1

R

)

e−γc. (A.3)
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Comparing the coefficients, (A.3) trivially holds if a = 1 − 1/R and c = aw +
b+ d′x. In this case,

aR(w − c+ f ′x) = aw + (1−R)b+ (1−R)(d− f)′x,

so (A.2) becomes

e−γ(aw+b+d′x) = βRE
[

e−γ(aw+(1−R)b+(1−R)(d−f)′x+b+d′x′)
∣

∣

∣
w, x

]

⇐⇒ e−γd′x = βRE
[

e−γ((1−R)b+(1−R)(d−f)′x+d′(Ax+η)
∣

∣

∣
x
]

. (A.4)

Since (A.4) is an identity, comparing the coefficients of y, we obtain

d = (1−R)(d− f) +A′d ⇐⇒ d = (R− 1)(RI −A′)−1f. (A.5)

(Note that since the spectral radius of A is less than 1 and R > 1, the matrix
RI −A′ is regular.) Substituting (A.5) into (A.4), we obtain

1 = βRE
[

e−γ((1−R)b+((R−1)(RI−A′)−1f)′η)
]

⇐⇒ b =
1

γ(1−R)
log βRE[e−γ(R−1)f ′(RI−A)−1η].

To show that this is the solution, it remains to show the transversality con-
dition. Dividing (A.2) by −γa and using (2.5a), (2.5b), we obtain

V (w, x) = βRE [V (w′, x′) |w, x] ⇐⇒ V (wt, xt) = βREt[V (wt+1, xt+1)].

Iterating this equation we obtain

βt E0[V (wt, xt)] =
1

Rt
V (w0, x0) → 0

as t → ∞ since R > 1. Therefore the transversality condition holds.

Proof of Theorem 2.2. Let C,W be the aggregate consumption and wealth.
By the optimal consumption rule (2.5b), we have C = aW + b+ d′ E[x], where
E[x] is the unconditional mean of the VAR(1) (2.4). Since the risk-free asset is
in zero net supply, which is the only saving vehicle, we have W = 0. By market
clearing, aggregate consumption must equal aggregate income, so C = f ′ E[x].
Combining these three equations, the equilibrium condition is

b+ d′ E[x] = f ′ E[x] ⇐⇒ b = (f − d)′ E[x]. (A.6)

For the rest of the proof, to simplify the notation assume that p = 0, so R̃ = R
and β̃ = β.

Step 1. If an equilibrium exists, then

γ(1−R)f ′(RI −A)−1 E[η]− log βRE[eγ(1−R)f ′(RI−A)−1η] = 0. (A.7)

By (A.5) we obtain

f − d =
(

I − (R− 1)(RI −A′)−1
)

f

= (RI −A′ − (R− 1)I)(RI −A′)−1f

= (I −A′)(RI −A′)−1f. (A.8)
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Taking the unconditional expectation of (2.4), we obtain

E[x] = AE[x] + E[η] ⇐⇒ E[x] = (I −A)−1 E[η]. (A.9)

Combining (A.6), (A.8), and (A.9), it follows that

b = f ′
(

(RI −A′)−1
)′
(I −A)(I −A)−1 E[η] = f ′(RI −A)−1 E[η].

(A.7) then follows from this equation and Proposition 2.1.

Step 2. If an equilibrium exists, then βR < 1.

Suppose that an equilibrium exists, and let X = γ(1 − R)f ′(RI − A)−1η.
Since log(·) is concave, by Jensen’s inequality and (A.7), we obtain

0 = E[X]− log E[βReX ] < E[X]− E[log(βReX)] = − log βR.

Therefore βR < 1.

Step 3. An equilibrium exists. The gross risk-free rate satisfies 1−p < R < 1/β.

Let g(R) = E[v(R)′η]−log E[βRev(R)′η], where v(R) = γ(1−R)(RI−A′)−1f .
Since v(1) = 0 and β < 1, we obtain g(1) = − log β > 0. By the previous step,
we obtain g(1/β) < − log(β/β) = 0. By the intermediate value theorem, there
exists R ∈ (1, 1/β) such that g(R) = 0. If p > 0, by the same argument as
above we obtain 1 < R̃ < 1/β̃ ⇐⇒ 1− p < R < 1/β.

Proof of Proposition 3.1. Using the equilibrium condition (A.7), we obtain

γ
1−R

R− φ
E[ε]− log βRE[eγ

1−R
R−φ

ε] = 0. (A.10)

Since R > 1 > φ, let x = γ 1−R
R−φ

∈ (−γ, 0). Solving for R, we get

R =
γ + φx

γ + x
= φ+

γ(1− φ)

γ + x
,

which is decreasing in x. Substituting this R into (A.10), we obtain

E[ε]x− log

(

β
γ + φx

γ + x

)

− log E[eεx] = 0. (A.11)

Let h(x) be the left-hand side of (A.11). To show the uniqueness of equi-
librium, it suffices to show that h(x) = 0 has at most one solution x ∈ (−γ, 0).
Let us show that h is strictly increasing on (−γ, 0), which completes the proof.

For any x ∈ (−γ, 0), letting m = E[εeεx]/E[eεx], we obtain

h′(x) = E[ε]− φ

γ + φx
+

1

γ + x
− E[εeεx]

E[eεx]
,

h′′(x) =
φ2

(γ + φx)2
− 1

(γ + x)2
− E[ε2eεx] E[eεx]− (E[εeεx])2

(E[eεx])2

= −γ(1− φ)(φ(γ + x) + γ + φx)

(γ + φx)2(γ + x)2
− E[(ε−m)2eεx]

E[eεx]
< 0

since φ < 1 and x > −γ. Therefore h is strictly concave on (−γ, 0). Substituting
x = 0, we have h′(0) = 1−φ

γ
> 0, so h′(x) > 0 for all x ∈ (−γ, 0) because

h′′(x) < 0. Therefore h is strictly increasing.
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Lemma A.1. Let A =

[

φ1 φ2

1 0

]

, where φ1, φ2 ∈ R. Then the spectral radius

of A is less than 1 if and only if −1 < φ2 < 1− |φ1|.

Proof. Let ΦA(z) = |zI −A| = z2 − φ1z − φ2 be the characteristic polynomial
of A and D = φ2

1 + 4φ2 its discriminant. If D ≥ 0 ⇐⇒ φ2 ≥ −φ2
1/4, then A

has two real eigenvalues. In this case the spectral radius is less than 1 if and
only if −1 < φ1/2 < 1 and ΦA(±1) > 0, or |φ1| < 2 and −φ2

1/4 ≤ φ2 < 1− |φ1|.
Note that since

1− |φ1|+
φ2
1

4
=

1

4
(2− |φ1|)2 > 0

if |φ1| < 2, we have −φ2
1/4 < 1− |φ1|. If D < 0 ⇐⇒ φ2 < −φ2

1/4 ≤ 0, then A
has two complex eigenvalues that are conjugate of each other. Letting ζ, ζ̄ be
the roots of ΦA, we have −φ2 = ζζ̄ = |ζ|2, so the spectral radius is less than 1
if and only if −φ2 < 1 ⇐⇒ φ2 > −1. Combining the two cases together, the
spectral radius of A is less than 1 if and only if −1 < φ2 < 1− |φ1|.
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