Hathroubi, Salem and Trabelsi, Hédi (2014): Epidemic Corruption: A Bio-Economic Homology. Published in: European Scientific Journal , Vol. 10, No. 10 (April 2014): pp. 228-235.
Preview |
PDF
MPRA_paper_78976.pdf Download (682kB) | Preview |
Abstract
This paper aims to study corruption as an epidemic phenomenon using the epidemic diffusion model of Kermack and Mc-Kendrick (1927). We seek to determine the dynamics of corruption and its impact on the composition of the population at a given time. We determine a threshold epidemiological corruption based on the approximation of the honest population.
Item Type: | MPRA Paper |
---|---|
Original Title: | Epidemic Corruption: A Bio-Economic Homology |
English Title: | Epidemic Corruption: A Bio-Economic Homology |
Language: | English |
Keywords: | Corruption; epidemiology; SIR model |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General Z - Other Special Topics > Z1 - Cultural Economics ; Economic Sociology ; Economic Anthropology > Z13 - Economic Sociology ; Economic Anthropology ; Social and Economic Stratification Z - Other Special Topics > Z1 - Cultural Economics ; Economic Sociology ; Economic Anthropology > Z19 - Other |
Item ID: | 78997 |
Depositing User: | Professor Mohamed Ali Trabelsi |
Date Deposited: | 08 May 2017 13:39 |
Last Modified: | 29 Sep 2019 18:55 |
References: | Banerjee, A., Mullainathan, S., & Hanna H. (2012). Corruption. NBER Working paper 17968. Becker, S., Egger, P.H., & Seidel, T. (2008). Corruption epidemics. Stirling Economics Discussion Paper 2008-09. Blanchard, Ph., & al. (2005). The epidemics of corruption. http://arvix.org/abs/physics/0505031v1. Braun, M. (1983). Differential equations and their applications. SpringlerVerlag, 3rd Edition. Di Lena, G., & Serlo, G. (1982). A discrete method for the identification of parameters of a discrete epidemic model . Journal of Mathematical Biosciences vol. 60, 161-175. Di Lena, G., & Serlo, G. (1984). The identification of the periodic behavior in an epidemic model. Journal of Mathematical Biology vol. 21, 159-174. Jonathan, P. C., & al. (2013). Leading bureaucracies to the tipping point: An alternative model of multiple stable equilibrium levels of corruption. European Journal of Operational Research. 225 (3), 541-546. Kermack, W. O., & McKendrick, A. G. (1927). Contributions to the mathematical theory of epidemics. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics. 115.700-721. Ridane Raouf (1995), Homologies bio-économiques. CNUDST Edition. Tunisia. Roberts, M.G., & Heesterbeek, J.P.A. (2010). Mathematical models in epidemiology in Encyclopedia of life support system. Mathematical Modeling in Natural Phenomena. 3(7), 194-228. Rose-Ackerman, S. (1975). The economics of corruption. Journal of Public Economics. 4, 187-203. Touzeau S. (2010). Modèles épidémiologiques. Course. INRA. France. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/78997 |