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Abstract

We show that in a general equilibrium model with heterogeneity in risk
aversion or belief, shifting wealth from an agent who holds comparatively
fewer stocks to one who holds more reduces the equity premium. Since
empirically the rich hold more stocks than do the poor, the top income
share should predict subsequent excess stock market returns. Consistent
with our theory, we find that when the income share of top earners in
the U.S. rises, subsequent one year excess market returns significantly de-
cline. This negative relation is robust to (i) controlling for classic return
predictors such as the price-dividend and consumption-wealth ratios, (ii)
predicting out-of-sample, and (iii) instrumenting with changes in estate
tax rates. Cross-country panel regressions suggest that the inverse rela-
tion between inequality and returns also holds outside of the U.S., with
stronger results in relatively closed economies (emerging markets) than in
small open economies (Europe).

Keywords: equity premium; heterogeneous risk aversion; return pre-
diction; wealth distribution; international equity markets.

JEL codes: D31, D52, D53, F30, G12, G17.

1 Introduction

Does the wealth distribution matter for asset pricing? Intuition tells us that
it does: as the rich get richer, they buy risky assets and drive up prices. In-
deed, over a century ago prior to the advent of modern mathematical finance,
Fisher (1910) argued that there is an intimate relationship between prices, the
heterogeneity of agents in the economy, and booms and busts. He contrasted
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(p. 175) the “enterpriser-borrower” with the “creditor, the salaried man, or the
laborer,” emphasizing that the former class of society accelerates fluctuations
in prices and production. Central to his theory of fluctuations were differences
in preferences and wealth across people.

To see the intuition as to why the wealth distribution affects asset pricing,
consider an economy consisting of investors with different attitudes towards risk
or beliefs about future dividends. In this economy, equilibrium risk premiums
and prices balance the agents’ preferences and beliefs. If wealth shifts into the
hands of the optimistic or less risk averse, for markets to clear, prices of risky
assets must rise and risk premiums must fall to counterbalance the new demand
of these agents. In this paper, we establish both the theoretical and empirical
links between inequality and asset prices.

This paper has two main contributions. First, we theoretically explore the
asset pricing implications of general equilibrium models with heterogeneous
agents. In a two period economy populated by CRRA agents with arbitrary risk
aversion, belief, and wealth heterogeneity, we prove that there exists a unique
equilibrium, and that in this equilibrium, increasing wealth concentration in
the hands of stockholders leads to a decline in the equity premium. Although
the inverse relationship between wealth concentration and risk premiums under
heterogeneous risk aversion has been recognized at least since Dumas (1989)
and recently emphasized by Gârleanu and Panageas (2015), in order to test the
existing theory one needs to identify the preference types, which is challenging.
In contrast, we show that it is sufficient to identify the portfolio types, or agents
that have larger portfolio shares of stocks. It does not matter why some agents
hold more stocks: while we prove that high risk tolerance or optimism are suffi-
cient conditions for investing more in stocks, it may also be due to other reasons
such as lower participation costs.

Second, we empirically explore our theoretical predictions. Given the em-
pirical evidence that the rich invest relatively more in stocks,1 rising inequality
should negatively predict subsequent excess stock market returns. Consistent
with our theory, we find that when the income share of the top 1% income earn-
ers in the U.S. rises, the subsequent one year U.S. stock market equity premium
falls on average. That is, current inequality appears to forecast the subsequent
risk premium of the U.S. stock market.

Because top income shares appear nonstationary, we use a stationary com-
ponent of inequality, “cgdiff (capital gains difference),” which we define to
be the difference between the top 1% income share with and without realized
capital gains income. Regressions of the year t to year t + 1 excess return on
the year t top 1% income share indicate a strong and significant negative corre-
lation: when cgdiff rises by one percentage point, subsequent one year excess
market returns decline on average by about 3–5%, depending on the controls
included. Overall, our evidence suggests that the top 1% income share is not
simply a proxy for the price level, which previous research shows correlates
with subsequent returns, or for aggregate consumption factors: the top 1% in-
come share predicts excess returns even after we control for some classic return
predictors such as the price-dividend ratio (Fama and French, 1988) and the
consumption-wealth ratio (Lettau and Ludvigson, 2001). Our findings are also

1See, for example, Haliassos and Bertaut (1995), Carroll (2002), Campbell (2006), Wachter
and Yogo (2010), Bucciol and Miniaci (2011), and Calvet and Sodini (2014).
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robust to the inclusion of macro control variables, such as GDP growth. Since
we get very similar results when we detrend the top 1% income share using a
variety of trend extraction methods, the construction of cgdiff is not driving
our findings. Across nearly all of our specifications, the inverse relationship be-
tween top income shares and excess returns is large and statistically significant.
Using five year excess returns or the top 0.1% or 10% income share also yields
similar results.

The empirical literature on return prediction is not without controversy.
While many papers find evidence for return predictability,2 others find mixed
evidence (Ang and Bekaert, 2007), and some point out econometric issues such as
small sample bias when regressors are persistent (Nelson and Kim, 1993; Stam-
baugh, 1999) and problems with overlapping data (Valkanov, 2003; Boudoukh
et al., 2008). In an influential study, Welch and Goyal (2008) show that excess
return predictors suggested in the literature by and large perform poorly out-
of-sample. How does the top 1% share fare out-of-sample? Using the method-
ologies of McCracken (2007) and Hansen and Timmermann (2015), we show
that including the top 1% as a predictor significantly decreases out-of-sample
forecast errors relative to using the historical mean excess return. That is, top
income shares predict returns out-of-sample as well.

Given that in our regressions we lag top shares and given that our results
are robust to the inclusion of many macro/financial control variables, we do
not suspect our findings stem from reverse causation or omitted variable bias.
However, because top tax rates have an inverse relationship with top income
shares (Roine et al., 2009), as an additional robustness check, we explore two
approaches to using tax changes as an instrument for inequality in predicting
returns. First, we identify seven periods in U.S. history (over 1915-2004) where
top marginal income and estate tax rates were either trending upwards or down-
wards. We find that tax hike periods are on average associated with a declining
1% share, flat price-earnings ratios, and positive subsequent excess returns. Tax
cut periods, however, are accompanied by a rising 1% income share, increasing
price-earnings ratios, and negative subsequent excess returns. Second, since
contemporaneous and lagged changes in top estate tax rates explain a substan-
tial portion of the variation in cgdiff (Table 5), we also estimate the effect of
inequality on returns using GMM with instrumental variables (Table 6). Includ-
ing cgdiff, industrial production growth, and the log price-earnings ratio as
endogenous explanatory variables and using lags of top estate tax rate changes
and the log price-earnings ratio as instruments, top income shares are still sig-
nificant in predicting excess returns. This finding addresses another concern,
which is that part of the variation in cgdiff is not due to inequality but rather
from the timing of realizing capital gains. Including one-year-ahead changes in
capital gains tax rates as an additional instrument, we separately identify how
the timing and inequality components predict returns (Table 8). The coeffi-
cient on the inequality component is negative and significant, while the timing

2Classic examples are the price-dividend ratio (Campbell and Shiller, 1988; Fama and
French, 1988; Hodrick, 1992; Cochrane, 2008) and the consumption-wealth ratio (Lettau and
Ludvigson, 2001). Campbell and Thomson (2008) suggest that many economic variables
predict returns by imposing weak restrictions such as a nonnegative equity premium. Ra-
pach et al. (2010) show that instead of using a single predictive regression model, combining
forecasts significantly decreases the out-of-sample forecast errors. See Lettau and Ludvigson
(2010) and Rapach and Zhou (2013) for reviews on forecasting stock returns.
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coefficient is insignificant.
We uncover a similar pattern in international data on inequality and fi-

nancial markets: post-1969 cross-country fixed-effects panel regressions suggest
that when the top 1% income share rises above trend by one percentage point,
subsequent one year market returns significantly decline on average by 2%.
This relationship is particularly strong for relatively “closed” economies such as
emerging markets. In countries with low levels of investing home bias (“small
open economies”), we find a large and significant inverse relationship between
the U.S. 1% share (a potential proxy of the global 1% share) and subsequent do-
mestic excess returns. These results are consistent with our theory because our
model suggests that what predicts returns is the wealth distribution amongst
the set of potential stock and bond holders. For small open economies, local
agents comprise a small fraction of this set of investors. In large or relatively
closed economies, domestic agents are a substantial proportion of the universe
of investors.

1.1 Related literature

For many years after Fisher, in analyzing the link between individual utility
maximization and asset prices, financial theorists either employed a rational
representative agent or considered cases of heterogeneous agent models that ad-
mit aggregation, that is, cases in which the model is equivalent to one with a
representative agent. Extending the portfolio choice work of Markowitz (1952)
and Tobin (1958), Sharpe (1964) and Lintner (1965a,b) established the Capital
Asset Pricing Model (CAPM).3 These original CAPM papers, which concluded
that an asset’s covariance with the aggregate market determines its return, ac-
tually allowed for substantial heterogeneity in endowments and risk preferences
across investors. However, their form of quadratic or mean-variance preferences
admitted aggregation and obviated the role of the wealth distribution. Largely
inspired by the limited empirical fit of the CAPM and asset pricing puzzles that
arise in representative-agent models, since the 1980s theorists have extended
macro/finance general equilibrium models to consider meaningful investor het-
erogeneity. Such heterogeneous-agent models fall into two groups.

In the first group, agents have identical standard (constant relative risk aver-
sion) preferences but are subject to uninsured idiosyncratic risks.4 Although the
models of this literature have had some success in explaining returns in calibra-
tions, the empirical results (based on consumption panel data) are mixed and
may even be spuriously caused by the heavy tails in the cross-sectional con-
sumption distribution (Toda and Walsh, 2015, 2016a). In the second group,
markets are complete and agents have either heterogeneous CRRA preferences
(see Section 2.3) or identical but non-homothetic preferences (Gollier, 2001;
Hatchondo, 2008). In this class of models the marginal rates of substitution
are equalized across agents and a “representative agent” in the sense of Con-
stantinides (1982) exists, but aggregation in the sense of Gorman (1953) fails.
Therefore there is room for agent heterogeneity to matter for asset pricing.
However, this type of agent heterogeneity is generally considered to be irrele-

3See Geanakoplos and Shubik (1990) for a general and rigorous treatment of CAPM theory.
4Examples are Mankiw (1986), Constantinides and Duffie (1996), Heaton and Lucas (1996),

Brav et al. (2002), Cogley (2002), Balduzzi and Yao (2007), Storesletten et al. (2007), Kocher-
lakota and Pistaferri (2009), among many others. See Ludvigson (2013) for a review.
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vant for asset pricing because in dynamic models the economy is dominated by
the richest agent (the agent with the largest expected wealth growth rate) in the
long run (Sandroni, 2000; Blume and Easley, 2006). One notable exception is
Gârleanu and Panageas (2015), who study a continuous-time overlapping gen-
erations endowment economy with two agent types with Epstein-Zin constant
elasticity of intertemporal substitution/constant relative risk aversion prefer-
ences. Even if the aggregate consumption growth is i.i.d. (geometric Brownian
motion), the risk-free rate and the equity premium are time-varying, even in
the long run. The intuition is that when the risk tolerant agents have a higher
wealth share, they drive up asset prices and the interest rate. The effect of
preference heterogeneity persists since new agents are constantly born. Con-
sistent with our empirical findings and model, the calibration of Gârleanu and
Panageas (2015) suggests that increasing the consumption share of more risk
tolerant agents pushes down the equity premium. All of the above works are
theoretical, and our paper seems to be the first in the literature to empirically
test the asset pricing implications of models with preference heterogeneity. In
Section 2, we both present our theoretical results and further highlight how we
contribute to these literatures.

Although the wealth distribution theoretically affects asset prices, there are
few empirical papers that directly document this connection. To the best of
our knowledge, Johnson (2012) and Campbell et al. (2016) are the only ones
that explore this issue. Using incomplete markets models, they show that top
income shares or top income growth innovations are cross-sectional asset pricing
factors. However, they do not explore the ability of top income shares to predict
excess market returns (our main empirical result).5

Lastly, our study is related to the findings of Greenwald et al. (2016), whose
contribution is twofold. First, they use a cointegrating vector autoregression to
identity orthogonal innovations to consumption, labor income, and wealth (ec,t,
ey,t, and ea,t), which explain most of the post-WWII variation in the stock
market. Moreover, ea,t alone explains over 75% and strongly and significantly
predicts low subsequent excess returns. Second, the authors put structure on
these innovations using an equilibrium model with a representative laborer who
does not hold stock, a representative stockholder, and shocks to productivity,
the labor share of output, and stockholder risk aversion. The key result is that
the model-generated ea,t series is almost perfectly correlated with shocks that
decrease the risk aversion parameter of the stockholder. This suggests that
ea,t captures the risk tolerance of the representative stockholder. Our analysis
adds further microfoundation and corroboration of their story: interestingly,
there is substantial correlation between ea,t and our inequality predictor vari-
able cgdiff.6 As we show in Section 2, in heterogeneous risk aversion models
without aggregation, rising wealth concentration can effectively decrease the
risk aversion of the corresponding representative stockholder/planner. There-
fore, an alternative interpretation/microfoundation of ea,t is that it reflects the
wealth share of relatively risk tolerant stockholders vs. more risk averse ones.

5Campbell et al. (2016) do explore market return prediction in their online appendix, but
they uncover no relationship between the income of the rich and subsequent stock returns.
Our findings are different likely because they use income instead of the income share and since
they detrend top income linearly.

6Also, the component of cgdiff orthogonal to ea,t does not significantly predict excess
returns. We thank Daniel Greenwald for discovering this.
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2 Wealth distribution and equity premium

In this section we present a theoretical model in which the wealth distribution
across heterogeneous agents affects the equity premium. In Section 2.1, we
consider a static model with agents that have heterogeneous risk aversion and
beliefs, and prove the uniqueness of equilibrium. In Section 2.2, we prove that
shifting wealth from an agent that holds comparatively fewer stocks to one that
holds more pushes down the equity premium. Section 2.3 compares our results
to the existing literature. All proofs are in Appendix A.

2.1 Uniqueness of equilibrium

Consider a standard general equilibrium model with incomplete markets consist-
ing of I agents and J assets (Geanakoplos, 1990). Time is denoted by t = 0, 1:
agents trade assets at t = 0 and consume only at t = 1. At t = 1, there are S
states denoted by s = 1, . . . , S. Let ei ∈ R

S
++ be agent i’s endowment vector

of consumption goods in each state and A = (Asj) ∈ R
SJ be the S × J payoff

matrix of assets. By redefining the initial endowments of goods if necessary,
without loss of generality we may assume that the initial endowments of assets
are zero. By removing redundant assets, we may also assume that the matrix
A has full column rank.

Given the asset price q = (q1, . . . , qJ)
′ ∈ R

J , agent i’s utility maximization
problem is

maximize Ui(x)

subject to q′y ≤ 0, x ≤ ei +Ay,

where Ui(x) is the utility function and y = (y1, . . . , yJ)
′ ∈ R

J denotes the
number of asset shares. q′y ≤ 0 is the t = 0 budget constraint. x ≤ ei+Ay is the
t = 1 budget constraint. A general equilibrium with incomplete markets (GEI)
consists of asset prices q ∈ R

J , consumption (xi) ∈ R
SI
+ , and portfolios (yi) ∈

R
JI such that (i) agents optimize, and (ii) asset markets clear, so

∑I
i=1 yi = 0.

We make the following assumptions.

Assumption 1 (Heterogeneous CRRA preferences). Agents have constant rel-
ative risk aversion (CRRA) preferences:

Ui(x) =





(∑S
s=1 πisx

1−γi
s

) 1

1−γi
, (γi 6= 1)

exp
(∑S

s=1 πis log xs

)
, (γi = 1)

(2.1)

where γi > 0 is agent i’s relative risk aversion coefficient and πis > 0 is agent
i’s subjective probability of state s.

Note that if γi 6= 1, through the monotonic transformation x 7→ 1
1−γi

x1−γi ,
Ui is equivalent to

1

1− γi
Ui(x)

1−γi =
1

1− γi

S∑

s=1

πisx
1−γi
s ,

the standard additive CRRA utility function. The same holds when γi = 1
by considering logUi(x). The expression (2.1) turns out to be more convenient
since the utility function is homogeneous of degree 1.
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Assumption 2 (Collinear endowments). Agents have collinear endowments:

letting e =
∑I

i=1 ei ≫ 0 be the aggregate endowment, we have ei = wie, where

wi > 0 is the wealth share of agent i, so
∑I

i=1 wi = 1.

While the collinearity assumption is strong, it is indispensable in order to
guarantee the uniqueness of equilibrium: Mantel (1976) shows that if we drop
collinear endowments, then even with homothetic preferences “anything goes”
for the aggregate excess demand function, and hence there may be multiple
equilibria.7 With multiple equilibria, comparative statics may go in opposite
directions, depending on the choice of equilibrium.

Assumption 3 (Tradability of aggregate endowment). The aggregate endow-
ment is tradable: e is spanned by the column vectors of A.

Under these assumptions, we can prove the uniqueness of GEI and obtain a
complete characterization.

Theorem 2.1. Under Assumptions 1–3, there exists a unique GEI. The equi-
librium portfolio (yi) is the solution to the planner’s problem

maximize
(yi)∈RJI

I∑

i=1

wi logUi(ei +Ayi)

subject to

I∑

i=1

yi = 0. (2.2)

Letting
I∑

i=1

wi logUi(ei +Ayi)− q′
I∑

i=1

yi

be the Lagrangian with Lagrange multiplier q, the equilibrium asset price is q.

Chipman (1974) shows that under complete markets, heterogeneous homo-
thetic preferences, and collinear endowments, aggregation is possible and hence
the equilibrium is unique. Our Theorem 2.1 is a stronger result since we prove
the same for incomplete markets and we also obtain a complete characterization
of the equilibrium portfolio. Uniqueness is important for our purposes because
it rules out unstable equilibria and thus allows for the below unambiguous com-
parative statics regarding the wealth distribution.8

2.2 Comparative statics

Assuming that only a stock and a bond are traded, we can show that a redistri-
bution of wealth from an investor that holds comparatively fewer stocks to one
that holds more reduces the equity premium. To make the statement precise,
we introduce the following assumption and notations.

Assumption 4. The only assets traded are the aggregate stock and a risk-free
asset: J = 2 and A = [e, 1], where 1 = (1, . . . , 1)′ ∈ R

S
++.

7See Toda and Walsh (2016b) for concrete examples of multiple equilibria with canonical
two-agent, two-state economies.

8See Kehoe (1998) and Geanakoplos and Walsh (2016) for further discussion of uniqueness
in the presence of heterogeneous preferences.
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Let q = (q1, q2)
′ be the vector of asset prices. By the proof of Theorem

2.1, we have q ≫ 0. Since there is no consumption at t = 0, we can normalize
asset prices, so without loss of generality we may take the gross risk-free rate
Rf = 1/q2 as given. The vector of gross stock returns is R := e/q1. Since by
Assumption 2 we have ei = wie, the initial wealth of agent i is q1wi and the
budget constraint is

q1y1 + q2y2 ≤ 0 ⇐⇒ q1(y1 + wi) +
1

Rf

y2 ≤ q1wi.

Letting θ = y1+wi

wi
be the fraction of wealth invested in the stock, by the budget

constraint with equality we have 1 − θ = y2

q1Rfwi
. Therefore the consumption

vector satisfies

x ≤ ei +Ay = (y1 + wi)e+ y21 = q1wi(Rθ +Rf (1− θ)1).

Letting

ui(x) =

{
1

1−γi
x1−γi , (γi 6= 1)

log x, (γi = 1)

by homotheticity the utility maximization problem is equivalent to

max
θ

Ei[ui(R(θ))],

where R(θ) := Rθ + Rf (1 − θ) and Ei denotes the expectation under agent i’s
belief.

Now we can state our main theoretical result.

Theorem 2.2. Suppose Assumptions 1–4 hold and let {q, (xi), (yi)} be the
unique GEI with corresponding portfolio (θi). Suppose that in the initial equi-
librium agent 1 holds comparatively fewer stocks than agent 2, so θ1 < θ2. If we
transfer wealth from agent 1 to 2, then the new equilibrium has a higher stock
price q1. The equity premium E[R] − Rf (computed using any fixed probability
distribution) becomes lower.

The intuition for Theorem 2.2 is straightforward. In an economy with fi-
nancial assets, the equilibrium risk premiums and prices balance the agents’
preferences and beliefs. If wealth shifts into the hands of the natural buyer
(either the risk tolerant or optimistic agent), for markets to clear, prices of risky
assets must rise and risk premiums must fall to counterbalance the new demand
of these agents. While the conclusion of Theorem 2.2 is quite natural and in-
tuitive, proving it is another story. Since the direction of comparative statics
depends on the choice of equilibrium if there are multiple equilibria, we need to
rule out this possibility. Only with the uniqueness result in Theorem 2.1 are we
able to make the intuition rigorous.

The following propositions show that when agents have heterogeneous risk
aversion or beliefs, the portfolio share of the risky asset is ordered as risk toler-
ance or optimism. To define optimism, we take the following approach. First,
by relabeling states if necessary, without loss of generality we may assume that
states are ordered from bad to good ones: e1 < · · · < eS . Consider two agents
i = 1, 2 with subjective probability πis > 0. We say that agent 1 is more pes-
simistic than agent 2 if the likelihood ratio λs := π1s/π2s > 0 is monotonically
decreasing: λ1 ≥ · · · ≥ λS , with at least one strict inequality.
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Proposition 2.3. Suppose Assumptions 1–4 hold and agents have common
beliefs. If γ1 > · · · > γI , then 0 < θ1 < · · · < θI .

Proposition 2.4. Suppose Assumptions 1–4 hold and agents 1, 2 have common
risk aversion. Assume that agent 1 is more pessimistic than agent 2 in the above
sense. Then θ1 < θ2.

Combining Theorem 2.2 together with either Proposition 2.3 or 2.4, shifting
wealth from a more risk averse or pessimistic agent to a more risk tolerant
or optimistic agent reduces the equity premium. In particular, if the rich are
relatively more risk tolerant, optimistic, or simply more likely to buy risky assets
(for example due to fixed information or transaction costs), rising inequality
should forecast declining excess returns.

2.3 Discussion

Dumas (1989) solves a dynamic general equilibrium model with constant-returns-
to-scale production and two agents (one with log utility and the other CRRA).
He shows (Proposition 17) that when the wealth ratio of the less risk averse
agent increases, then the risk-free rate goes up and the equity premium goes
down. Although this prediction is similar to ours, he imposes an assumption on
endogenous variables (see his equation (8)).

Following Dumas (1989), a large theoretical literature has studied the asset
pricing implication of preference heterogeneity under complete markets.9 All of
these papers characterize the equilibrium and asset prices by solving a planner’s
problem. However, this approach is not suitable for conducting comparative
statics exercises of changing the wealth distribution, for two reasons. First, al-
though by the second welfare theorem, for each equilibrium we can find Pareto
weights such that the consumption allocation is the solution to the planner’s
problem, since in general the Pareto weights depend on the initial wealth dis-
tribution, changing the wealth distribution will change the Pareto weights, and
consequently the asset prices. But in general it is hard to predict how the Pareto
weights change. Second, even if we can predict how the Pareto weights change,
there is the possibility of multiple equilibria. In such cases the comparative stat-
ics often go in the opposite direction depending on the choice of the equilibrium.
Thus our results are quite different since we prove the uniqueness of equilibrium
and derive comparative statics with respect to the initial wealth distribution.

Gollier (2001) studies the asset pricing implication of wealth inequality
among agents with identical preferences. He shows that more inequality in-
creases (decreases) the equity premium if and only if agents’ absolute risk toler-
ance is concave (convex). In particular, wealth inequality has no effect on asset
pricing when agents have hyperbolic absolute risk aversion (HARA) preferences,
for which the absolute risk tolerance is linear. He also calibrates the model and
finds that the effect of wealth inequality on the equity premium is small. Our
results are different and complementary since our model features heterogeneous
CRRA agents.

Gârleanu and Panageas (2015) study a continuous-time overlapping gener-
ations endowment economy with two agent types with Epstein-Zin preferences.

9Examples are Wang (1996), Chan and Kogan (2002), Hara et al. (2007), Cvitanić et al.
(2012), Longstaff and Wang (2012), Bhamra and Uppal (2014), and the references therein.
Basak and Cuoco (1998) consider a limited market participation model with log utility.
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Unlike other papers on asset pricing models with heterogeneous preferences, all
agent types survive in the long run due to birth/death, and they also solve the
model without appealing to a planning problem. As a result, all endogenous
variables are expressed as functions of the state variable, the consumption share
of one agent type. They find that the concentration of wealth to the more
risk-tolerant type (“the rich”) tends to lower the equity premium. When the
preferences are restricted to additive CRRA, then the relation between the con-
sumption share and equity premium (more precisely, market price of risk) is
monotonic (see their discussion on p. 10). Thus our results are closely related
to theirs, but again are different and complementary since our model features
many agents, discrete time (hence our shocks are arbitrary), and incomplete
markets (without spanning).

3 Predictability of returns with inequality

In Theorem 2.2, we have theoretically shown that shifting wealth from an agent
who holds comparatively fewer stocks to one who holds more reduces the subse-
quent equity premium. Many empirical papers show that the rich hold relatively
more stocks than the poor and argue that the rich are relatively more risk toler-
ant.10 Therefore, rising inequality should negatively predict subsequent excess
stock market returns. In this section we construct a stationary measure of
inequality and show that it predicts subsequent returns.11

3.1 Connecting theory to empirics

The ideal way to test our theory is to run regressions of the form

ExcessReturnt+1 = α+ β ×WealthInequalityt + γ × Controlst + εt+1

and test whether β = 0. The first obstacle is that it is difficult to measure
wealth, and hence of wealth inequality. The 1916-2000 top wealth share series
(based on estate tax data) from Kopczuk and Saez (2004) are missing many
years in the 50s, 60s, and 70s. The wealth share data of Saez and Zucman
(2016) cover 1913-2012 but are estimates created by capitalizing income. Due
to these limitations, we perform our analysis with top income share data, which
are correlated with top wealth shares.12 We can justify this point by the fact
that the rich are more likely to be entrepreneurs, and the income from capital
investment is proportional to invested capital.

We employ the Piketty and Saez (2003) inequality measures for the U.S.,
which are available on the website of Alvaredo et al. (2015). In particular, we
consider top income share measures based on tax return data, which are at the
annual frequency and cover the period 1913-2014. These series reflect in a given
year the percent of income earned by the top 1% of earners pretax. We also

10See Haliassos and Bertaut (1995), Carroll (2002), Vissing-Jørgensen (2002), Campbell
(2006), Wachter and Yogo (2010), Bucciol and Miniaci (2011), and Calvet and Sodini (2014).

11In this section we are only concerned with predictability, or correlation. We address
causality in Section 4.

12Using first differences, the correlation between the 1% income share and the Saez and
Zucman (2016) 1% wealth share is about 0.5. In levels, the correlation is 0.7. In previous
versions of this paper, we showed that these top wealth series also predict excess returns. The
results are omitted to save space but are available upon request.
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employ the top 0.1% share, the top 10% share, and the corresponding series
that exclude realized capital gains income. Figure 1 show these series, both
including capital gains (Figure 1a) and excluding capital gains (Figure 1b). We
can immediately see that all series seem to share a common U-shaped trend
over the century, and the series including capital gains are more volatile than
those without capital gains.
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(a) Including capital gains.
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(b) Excluding capital gains.

Figure 1: U.S. top income shares (1913-2014).

In order to use the top income share as a proxy for top wealth share, a large
fraction of the income of top earners must come from capital income. To see if
this assumption is satisfied, Figure 2 plots the “capital gains ratio”, defined by

1−
Top income share excluding capital gains

Top income share including capital gains
.

Although this number is different from the fraction of realized capital gains
income relative to total income of any particular individual, it gives some idea
for a typical number in each income group. The time series average of “capital
gains ratio” is 12.6% for the top 1% earners and 22.4% for the top 0.1% earners.
Since capital gains ratios reflect only realized capital gains in that particular
year, the ratios between capital income (including both realized and unrealized
capital gains as well as other capital income not reported as capital gains) and
total income are likely even larger. Therefore it seems reasonable to assume
that the top income share is a good proxy for the top wealth share.

Finally, there is an econometric issue to overcome. While excess returns are
clearly stationary, the top income shares in Figure 1 are nonstationary. For
example, the Phillips-Perron test (Phillips and Perron, 1988) fails to reject a
unit root in the top 0.1%, 1%, and 10% shares (the p-values are 0.46, 0.59, and
0.84). Therefore, the regression specification

ExcessReturnt+1 = α+ β × TopSharet + εt+1

implies the error term εt+1 cointegrates with the regressor TopSharet, which vi-
olates OLS assumptions. If we were to regress a stationary variable Yt (returns)
on a nonstationary variable Xt (top 1% income share), the OLS coefficient (ig-

noring the constant term) β̂T =
∑

XtYt/
∑

X2
t would converge to 0 almost

surely because the denominator diverges to ∞ faster than does the numerator.
Granger (1981) explains this problem, stating on p. 127 that “one would not
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Figure 2: Capital gains ratio.

expect to build a model of [this] form. . . [because] one is attempting to explain
a finite variance series by an infinite variance one.” See Phillips and Lee (2013)
for a recent treatment of this issue.

Given the nonstationarity in the raw top income share series, for our base-
line results we use “cgdiff (capital gains difference),” which we define to be
the top income share (0.1%, 1%, or 10%) including capital gains minus the top
share without capital gains. Since cgdiff is stationary,13 it ensures the validity
of standard error calculations and inference and prevents spurious regressions
(Granger and Newbold, 1974). cgdiff can be interpreted as a measure of the
component of the top 1% income share due to variation in capital income.14

Since the top income share is equal to cgdiff plus the top income share ex-
cluding capital gains, cgdiff represents an additive and stationary component
of inequality. As we show in Appendix B, we get similar results when we de-
trend inequality using the Kalman filter with an AR(1) cyclical component (see
Appendix C for details). This is unsurprising since, as Figure 3 shows, the two
series behave similarly (correlation 0.73).

3.2 In-sample predictions

We calculate real annual one year U.S. stock excess market returns using the
annual data updated from Welch and Goyal (2008).15 The spreadsheet contains
historical one year interest rates and price, dividend, and earnings series for the
S&P 500 index, which are all put into real terms using consumer price index
(CPI) inflation. These data are used to calculate the series P/D and P/E, which
are the price-dividend and price-earnings ratios (in real terms) for the S&P 500.
The spreadsheet also contains the Lettau and Ludvigson (2001) consumption-
wealth ratio, commonly referred to as CAY, which spans the period 1945-2014.

13The Phillips-Perron test rejects a unit root in cgdiff at the 1% level.
14In order for this interpretation to be valid, we need to assume that agents realize capital

gains randomly (i.e., do not time when to realize capital gains). This assumption is not
strictly satisfied. For example, the largest cgdiff observation in Figure 3 occurred in 1986,
but the capital gains tax rate increased from 20% in 1986 to 28% in 1987 (but announced
in 1986), which gave investors an incentive to realize capital gains in 1986. In Section 4 we
disentangle the inequality and timing components of cgdiff.

15http://www.hec.unil.ch/agoyal/
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Figure 3: Time series plot of the stationary component of the top 1% income
share using cgdiff and the AR(1) Kalman filter (both demeaned).

For presentation, we multiply CAY by 100.
Our other controls are GDP growth and, inspired by Lettau et al. (2008)

and Bansal et al. (2014), consumption growth variance. Annual data for real
GDP and real consumption are from the website of the Federal Reserve Bank
of St. Louis (FRED)16 and span 1930-2014. We estimate consumption growth
variance using an AR(1)-GARCH(1,1) model for consumption growth.

Table 1 shows the results of regressions of one year (t to t+ 1) excess stock
market returns on our top share measure (time t cgdiff), some classic return
predictors (time t), and macro factors (time t). In column (1) we find that
when the top 1% income share with capital gains (January to December of
year t) rises above the series excluding capital gains by one percentage point,
subsequent one year excess market returns (January to December of year t+1)
decline on average by 3.5%. The coefficient is significant at the 1% level (using
a Newey-West standard error), and the R-squared statistic is 0.05. It is clear, at
least in sample, that the stationary top 1% share component (cgdiff) forecasts
the subsequent excess return on the stock market.

In Tables 13 and 14 (in Appendix B), we see that the inverse relationship
between the top 1% share and subsequent excess returns is larger in magnitude
and significant at the 1% and 5% levels, respectively, when we predict with
cgdiff(10%) or cgdiff(0.1%). Table 2 shows that all three versions of cgdiff
also significantly predict five year excess returns. Figures 4a and 4b show the
corresponding scatter and time series plots for five year returns. The top 1%
income share appears to forecast subsequent five year excess returns well except
around 1970 and the 1980s. Overall, a one percentage point increase in the
cgdiff component of inequality is associated with, roughly, a 3–5% decline in
subsequent excess returns.

16http://research.stlouisfed.org/fred2/
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Table 1: Regressions of one year excess stock market returns on cgdiff (top 1%− top 1% (without capital gains)) and other predictors

Dependent Variable: t to t+ 1 Excess Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7)

Constant
14.42
(2.91)

14.32
(4.05)

15.18
(3.37)

16.42
(15.21)

16.76
(11.10)

15.31
(3.72)

23.62
(14.82)

cgdiff(1%)
-3.51***
(1.27)

-3.72**
(1.57)

-3.76**
(1.55)

-3.33*
(1.77)

-3.37**
(1.38)

-3.48**
(1.57)

-2.90*
(1.60)

Real GDP Growth
0.27
(0.40)

-0.11
(0.80)

∆Cons. Growth Variance
-10.14
(15.10)

-23.72
(16.56)

log(P/D)
-0.71
(5.13)

-2.88
(4.48)

log(P/E)
-0.97
(4.26)

CAY
1.46*
(0.74)

1.47*
(0.77)

Sample
1913-
-2014

1930-
-2014

1935-
-2014

1913-
-2014

1913-
-2014

1945-
-2014

1945-
-2014

R2 0.05 0.06 0.07 0.05 0.05 0.13 0.15

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). “cgdiff”
is top 1% minus top 1% (no cg), neither detrended, where top 1% is the pre-tax share of income going to the top 1% of earners (including capital gains).
Consumption growth volatility is from an AR(1) − GARCH(1, 1) model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the
consumption/wealth ratio.
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Figure 4: Year t to year t+ 5 excess stock market return (annualized) vs. year
t cgdiff (top 1% income share including capital gains minus top 1% share
without capital gains), 1913-2014.

Table 2: Regressions of five year excess stock market returns on cgdiff

(top income share− top income share (without capital gains))

Dependent Variable:
t to t+ 5 Excess Market Return

Regressors (t) (1) (2) (3)

Constant
10.79
(2.02)

11.19
(2.18)

13.12
(2.30)

cgdiff(0.1%)
-3.59***
(1.28)

cgdiff(1%)
-2.71***
(1.01)

cgdiff(10%)
-3.72***
(1.22)

Sample
1913-
-2014

1913-
-2014

1917-
-2014

R2 0.17 0.17 0.21

Note: Newey-West standard errors in parentheses (k = 8). ***, **, and * indicate significance
at 1%, 5%, and 10% levels (suppressed for constants). Five year excess returns are annualized.
cgdiff(0.1%) is top 0.1% minus top 0.1% (no cg), neither detrended, where top 0.1% is the
pre-tax share of income going to the top 0.1% of earners (including capital gains). cgdiff(1%)
and cgdiff(10%) are defined analogously.

Given the strength of the relationship, a question immediately arises. Is
there some mechanical, non-equilibrium explanation for the relationship be-
tween inequality and subsequent excess returns? For example, might stock
returns somehow be determining the top share measures? For a few reasons,
the answer is likely no. First, the relationship is between initial inequality and
subsequent returns. Returns could affect contemporaneous top shares but not
lagged top shares. One might still worry that our results are driven by our
transformation of the top share series into cgdiff. However, as we see in Ap-
pendix B, we get similar results with other methods of creating a stationary
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series.17 Furthermore, instrumental variables estimates in Section 4 suggest
both that cgdiff represents inequality (vs. capital gains timing) and that the
link between inequality and subsequent returns in causal.

But, one might say, we have known at least since Fama and French (1988)
that when prices are high relative to either earnings or dividends, subsequent
excess market returns are low. The current price could indeed affect current
inequality. Are the top shares series simply proxying for the price-dividend or
price-earnings ratios, which are known to predict returns? Again, the answer
seems to be no for two reasons. First, excluding capital gains from income does
not mitigate the relationship (see footnote 17), and capital gains are the main
avenue through which prices would determine inequality. Second, as we see in
regressions (4) and (5) from Table 1, top shares predict excess returns even when
controlling for the log price-dividend or price-earnings ratio. Including these
controls does decrease the top share coefficient slightly, but it remains large
and significant. The P/D and P/E ratios, however, are not significant after
controlling for top income shares. Controlling for P/E or P/D barely impacts
the cgdiff(10%) results (columns (4) and (5) of Table 13). With respect to
cgdiff(0.1%), we lose significance when controlling for P/D, but the top share
coefficient remains large and significant when including P/E.

In regressions (2), (3), (6), and (7) from Table 1, we also control for real GDP
growth, consumption growth variance (Lettau et al., 2008; Bansal et al., 2014),18

and CAY, which Lettau and Ludvigson (2001) show forecasts excess market
returns. Including these controls (which also shortens the sample), we still see
a strong relationship between the top income share and subsequent returns.
When controlling for CAY, consumption growth variance, GDP growth, or all
three and log(P/D) (column 7), the 1% coefficient is around -3 and significant
at the 10%, 5% or 1% level. Our results are almost uniformly stronger with
cgdiff(10%), the Kalman filter (Table 15), or the HP filter (Table 16).

Our empirical analysis thus far has relied on creating stationary inequality
series. Do the raw data indicate a relationship between asset prices and the one
percent? Figure 5 suggests that the answer is yes. Over 1913-2014, there is a
clear positive correlation between the top 1% income share (not detrended) and
the contemporaneous price-dividend ratio. Of course, this scatter plot does not
establish causation, but it is more evidence in favor of our theory and suggests
that our empirical results are not simply artifacts of the construction of cgdiff.

In summary, the data appear consistent with our theory that an increasing
concentration of income decreases the market risk premium.

17Tables 15 and 16 in Appendix B repeat Table 1 but with the Kalman and HP filters,
respectively, yielding a comparable relationship between inequality and returns. Table 17
shows that we get similar results using the one-sided HP filter, the 10 year moving average
filter, and linear detrending. Furthermore, as we see in regression (3) from Table 15, which
uses the Kalman filter, when excluding capital gains, the top 1% income share coefficient
actually strengthens from -2.82 to -3.78. If returns were strongly affecting lagged inequality,
excluding capital gains would likely mitigate the result. While the top 1% coefficient is
larger in magnitude without capital gains, removing capital income increases the Newey-West
standard error and pushes the p-value from 0.02 to 0.11. This is not the case, however, when
using the HP filter. Comparing columns (1) and (3) of Table 16, we see that with the HP filter
excluding capital gains increases the magnitude of the association and maintains significance
(at the 5% level).

18We difference consumption growth variance, which appears nonstationary, and drop 1930-
1934 to reduce the impact of the initial variance.
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Figure 5: Top 1% income share (not detrended) vs. price-dividend ratio (in real
terms) for the S&P500. 1913-1945 (*), 1946-1978 (o), and 1979-2014 (+).

3.3 Out-of-sample predictions

So far, we have seen that the current top income share predicts future excess
stock market returns in-sample. However, Welch and Goyal (2008) have shown
that the predictors suggested in the literature by and large perform poorly out-
of-sample, possibly due to model instability, data snooping, or publication bias.
In this section, we explore the ability of the top income share to predict excess
stock market returns out-of-sample.

Consider the predictive regression model for the equity premium,

yt+h = β′xt + ǫt+h, (3.1)

where h is the forecast horizon (typically h = 1), yt+h is the year t to t + h
excess stock market return, xt is the vector of predictors, ǫt+h is the error term,
and β is the population OLS coefficient. Suppose that the predictors can be
divided into two groups, so xt = (x1t, x2t) and β = (β1, β2) accordingly. In this
section we are interested in whether the variables x2t are useful in predicting
yt+h, that is, we want to test H0 : β2 = 0. We call the model with β2 = 0 the
NULL model and the one with β2 6= 0 the ALTERNATIVE.

To evaluate the performance of the ALTERNATIVE model against the null,
following McCracken (2007) and Hansen and Timmermann (2015) we consider
the following out-of-sample F statistic:

F =
1

σ̂2
ǫ

T∑

t=⌊ρT⌋+1

[
(yt+h − ŷNt+h|t)

2 − (yt+h − ŷAt+h|t)
2
]
, (3.2)

where σ̂2
ǫ is a consistent estimator of Var[ǫt+h] (which we estimate from the

sample average of the squared OLS residuals of (3.1) using the whole sample),

ŷAt+h|t = β̂′
txt (ŷNt+h|t = β̂′

1txt) is the predicted value of yt+h based on xt using

the ALTERNATIVE (NULL) model (here β̂t, β̂1t are the OLS estimator of (3.1)
using data only up to time t), T is the sample size, and 0 < ρ < 1 is the
proportion of observations set aside for initial estimation of β and β1. Theorems
3 and 4 of Hansen and Timmermann (2015) show that under the null (H0 :
β2 = 0), the asymptotic distribution of F is a weighted sum of the difference of
independent χ2(1) variables.
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For the regressors in the ALTERNATIVE model, following Welch and Goyal
(2008), we consider the simplest possible case where x1t ≡ 1 (constant) and x2t

consists of a single predictor. For the predictor x2t, we consider cgdiff and
valuation ratios (log(P/D) and log(P/E)). The reason is that (i) since the top
income series is at annual frequency, the sample size is already small at around
100 (1913 to 2014), so we cannot afford to use variables that are available only
in shorter samples (e.g., CAY) for performing out-of-sample predictions, and
(ii) since Welch and Goyal (2008) find that most predictor variables suggested
in the literature are poor, there is no point in comparing many variables. The
choice of the proportion of the training sample, ρ, is necessarily subjective.
Small ρ leads to imprecise initial estimates of β, and large ρ leads to the loss of
power. Hence we simply report results for ρ = 0.2, 0.3, 0.4. Table 3 shows the
results.

Table 3: Out-of-sample performance of the top 1% series in predicting subse-
quent 1-year excess returns

Predictor in the ALTERNATIVE Model

ρ cgdiff(1%) cgdiff(10%) cgdiff(0.1%) log(P/D) log(P/E)

0.2
4.51***
(0.0019)

7.03***
(0.0006)

2.90***
(0.0088)

0.54*
(0.0755)

-0.00
(0.1205)

0.3
3.36***
(0.0057)

4.94***
(0.0019)

1.89**
(0.0222)

1.02*
(0.0604)

0.89*
(0.0573)

0.4
2.99**
(0.0073)

5.25***
(0.0012)

1.41**
(0.0402)

0.60*
(0.0959)

0.89*
(0.0664)

Note: ρ = 0.2, 0.3, 0.4 is the proportion of observations set aside to compute an initial OLS
estimate. Columns correspond to the predictors included in the ALTERNATIVE model in
addition to a constant (∅ indicates no additional regressors). The numbers in the table are the
out-of-sample F statistic computed by (3.2). p-values (in parentheses) are computed by simu-
lating 10,000 realizations from the asymptotic distribution based on Hansen and Timmermann
(2015) (one sided). ***, **, and * indicate significance at 1%, 5%, and 10% levels.

According to Table 3, we can see that across specifications, the out-of-sample
F statistic is positive and significant when we use cgdiff, while it is insignif-
icant or marginally significant for log(P/D) or log(P/E). (Note that since the
asymptotic distribution of F depends on the NULL model, the relationship be-
tween the F statistic in Table 3 and the p-values are not necessarily monotonic
across models.)

To see this result graphically, in the spirit of Welch and Goyal (2008), we plot
the difference in the cumulative sum of squared errors (the numerator of (3.2))
over the prediction period in Figure 6. The vertical axis is the cumulative sum
for the NULL model minus the ALTERNATIVE, so a positive value favors the
ALTERNATIVE. We can see that for all cgdiff specifications, the plots roughly
monotonically increase up to 1980, decrease until 1990, and then increase again.
This result is not surprising, since 1980s was a time when income inequality
increased (see Figure 1a and Table 4) but the stock market did not suffer.
On the other hand, the log(P/D) and log(P/E) specifications deteriorate after
1970. This finding is consistent with Welch and Goyal (2008), who document
that most of the prediction gains stem from the 1973–1975 Oil Shock.

In summary, the top income series seem to predict returns out-of-sample.

18



Year
1920 1940 1960 1980 2000

C
um

ul
at

iv
e 

S
S

E
 D

iff
er

en
ce

0

500

1000

1500

2000
ρ=0.2
ρ=0.3
ρ=0.4

(a) cgdiff(1%).
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(b) cgdiff(10%).
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Figure 6: Annual performance in predicting subsequent excess returns.

Note: The figures plot the out-of-sample performance of annual predictive regressions. The
vertical axis is the cumulative squared prediction errors of the NULL model minus the cumu-
lative squared prediction error of the ALTERNATIVE model (hence a positive value favors
the ALTERNATIVE). The NULL model uses only a constant. The ALTERNATIVE model
includes the predictor variables specified in each subcaption. Predictions start at t = ⌊ρT ⌋,
where T is the sample size and ρ = 0.2, 0.3, 0.4.

4 Using tax policy as instrument

The top 1% income share is an endogenous variable in the macroeconomy. While
in Section 3.2 we showed that top income shares are not simply proxying for
GDP growth, volatility, the consumption/wealth ratio, or the level of the stock
market in explaining subsequent returns, it is difficult to rule out the possibility
that omitted variables are leading to endogeneity bias.

Fortunately, research on inequality (Roine et al., 2009; Kaymak and Poschke,
2016) suggests that increases (decreases) in top marginal tax rates reduce (exac-
erbate) inequality. Indeed, the Piketty-Saez series appear to exhibit a U-shaped
trend over the century, which might be due to the change in the marginal in-
come tax rates. According to Figure 7, the marginal tax rate for the highest
income earners increased from about 25% to 90% over the period 1930–1945
and started to decline in the 1960s, reaching about 40% in the 1980s. Thus the
marginal tax rate exhibits an inverse U-shape that seems to coincide with the
trend in the Piketty-Saez series.

Furthermore, top tax rate changes are the result of Congressional bills, which
generally take years to pass and usually stem from wars or pro-long-term growth
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Figure 7: Top 1% income share including capital gains (left axis) and top
marginal tax rate (right axis), 1913-2014. Source: IRS.

or anti-deficit ideologies (de Rugy, 2003a,b; Jacobson et al., 2007; Weinzierl and
Werker, 2009; Romer and Romer, 2010). Therefore, while alterations in top tax
rates impact inequality, their timing and justification are likely not the result
of financial market fluctuations. Provided top tax rate changes have a muted
effect on returns, except via inequality, they can serve as an instrument for top
income shares. We address this “excludability” condition below.

In Section 4.1, we describe how inequality, stock prices, and subsequent
returns fluctuated in tax cut and tax hike episodes. The data yield a narrative
consistent with a causal link between inequality and subsequent excess returns.
In Section 4.2, we calculate GMM estimates using changes in top estate and
capital gains tax rates as instruments. The results suggest both that cgdiff

actually reflects inequality (vs. capital gains timing) and that rising inequality
causes low subsequent excess returns.

4.1 Tax change episodes and returns

We examine how periods of changing tax rates have affected top income shares,
stock prices, and subsequent returns. We identify seven periods in U.S. history
in which top income tax and estate rates were either rising or falling. Each
period starts the year before the first tax change became effective and ends the
year after the last change. Table 4 shows how top tax rates, the top 1% income
share, and Robert Shiller’s P/E10 ratio19 evolved over each of these periods and
provides the five year excess return starting in the final year of the period.

Each of the three tax increase periods (1915-1919, 1931-1945, and 1990-
1994) was accompanied by a decline in the 1% income share (-0.24% per year,
averaging across the periods, or around -1.44% for a typical 6 year episode).
And, in line with our theory, each period was followed by 5 years of positive
excess returns on average. The five year average excess returns (annualized)
starting in 1919, 1945, and 1994 were, respectively, 2.78%, 8.61%, and 17.83%.
In contrast, the tax cut periods (1921-1927, 1963-1966, 1980-1989, and 2000-
2004) led to an increase in the top 1% share of 0.36% per year on average
(2.16% for a 6 year episode) and an average subsequent five year excess return
(annualized) of -2.88%. In tax cut periods, when top income shares rose, Shiller’s

19Shiller (2000) argues that P/E10, the ratio of the S&P 500 index price to the 10 year
average of earnings, is a measure of stock market over-valuation. The series is available at
http://www.econ.yale.edu/~shiller/data.htm
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P/E increased on average by 6.05% per year. In tax hike periods, the P/E
ratio was flat on average. In summary, tax cut periods have been associated
with increasing concentration of income, rising stock prices, and low subsequent
excess stock returns. Tax hike periods have been times of falling inequality, low
stock price growth, and higher subsequent excess returns.

However, to interpret these excess return fluctuations as the result of redis-
tribution from the taxation of the rich, one must believe that top tax rates do
not affect returns in other ways. Since we are looking at pre-tax returns, one
possibility is that tax rate shocks directly impact returns by changing the after-
tax dividend yield. To address this concern, we also consider after-tax returns,
applying the top marginal tax rate to both dividends and interest. In Table 4,
we see that doing so has an only negligible effect on five year returns: intuitively,
most of the variation in excess returns stems from stock price movements and
not from dividends or interest, the components impacted by income taxes.

A second “excludability” concern is that top tax rate changes may stimulate
or contract the overall economy. Perhaps our tax changes are simply proxying
for economic growth, which can affect stock and bond markets. For example,
a tax cut could stimulate household income/demand, leading to higher stock
prices and lower subsequent returns. In Table 4, however, we see that average
per year growth in U.S. industrial production was actually higher on average in
hike periods than in cut periods (6.12% vs. 4.37%).20 Indeed, while industrial
production boomed during the 20’s and 60’s tax cuts, it was stagnant during the
early 2000’s cuts. Conversely, average growth was a reasonable 2.42% during
the 90’s tax increases and a strong 7.18% on average over 1931-1945.

20We use industrial production because, unlike GDP, it almost spans our entire sample.
FRED does not provide industrial production for the 1915-1919 period. Also, recall that in
Table 15 the 1% share strongly predicts excess returns even when controlling for GDP growth.
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Table 4: Top 1% income share and stock prices during and after top tax rate change episodes

Period ∆MTR ∆ETR ∆1% ER5yr ERa.t.
5yr %∆(P/E10) %∆IP Reason

1915-1919 66 25 -0.36 2.78 2.54 -17.74 N/A WWI
1921-1927 -48 -5 0.65 -8.65 -8.86 18.07 8.44 pro-growth
1931-1945 69 57 -0.27 8.61 4.70 3.86 7.18 WWII, budget balance
1963-1966 -21 0 0.19 -3.39 -1.00 -1.93 8.17 pro-growth
1980-1989 -42 -15 0.52 7.38 8.22 6.99 2.27 Reaganomics
1990-1994 11.6 0 -0.04 17.83 19.06 5.93 2.42 budget balance
2000-2004 -4.6 -7 -0.29 -6.86 -6.25 -8.01 0.12 pro-growth, stimulus

Across episode averages
Hikes -0.24 9.74 8.77 0.00 6.12
Cuts 0.36 -2.88 -1.97 6.05 4.37

Note: MTR and ETR: top marginal income and estate tax rates (%). ∆1%: average per year change in top 1% income share including capital gains. ER5yr:
annualized five year average excess return (%), starting in final year of period. ERa.t.

5yr : ER5yr, taxing interest and dividends at top marginal income rate.
%∆(P/E10): average per year % change in Shiller’s P/E. %∆IP: average per year % change in the industrial production index. Sources: de Rugy (2003a,b),
Jacobson et al. (2007), Weinzierl and Werker (2009), Romer and Romer (2010),Tax Foundation, IRS, and FRED.
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4.2 Instrumental variables regressions using changes in

top estate tax rates

In this section we formally address the causality from inequality to the equity
premium by instrumental variables regressions. So far we have assumed that
cgdiff is a measure of inequality due to variation in capital income, but other
interpretations are possible. For example, cgdiff may be varying due to the
timing of realizing capital gains.

To address this issue, let cgdiff in year t be denoted by xt, and suppose
that it can be decomposed as

xt = α+ x1t + x2t,

where α is a constant and x1t, x2t are zero mean variables that reflect inequality
and timing (an incentive to realize capital gains), respectively. Consider the
model

Rt+1 = β0 + β1x1t + β2x2t + εt+1, (4.1)

where Rt+1 is the excess stock return from year t to t + 1. (For notational
simplicity we are omitting additional control variables, but it is straightforward
to include them.) We are interested in testing β1 = 0. The problem is that
x1t, x2t are not observed separately.

To identify β1, suppose that there is an instrument z1t for x1t, so (i) z1t is
exogenous (uncorrelated with εt+1), (ii) z1t is correlated with x1t, and, further-
more, (iii) z1t is uncorrelated with x2t. Then it follows that

0 = E[z1tεt+1] = E[z1t(Rt+1 − β0 − β1x1t − β2x2t)]

= E[z1t(Rt+1 − β0 − β1(xt − α− x2t)− β2x2t)]

= E[z1t(Rt+1 − α1 − β1xt)], (4.2)

where α1 = β0+αβ1 and we have used E[z1tx2t] = 0. Therefore even if the true
inequality measure x1t is unobserved, we can identify the coefficient of interest
β1 by exploiting the moment condition (4.2).

In line with our findings in Section 4.1, both Piketty and Saez (2003) and
Piketty (2003) argue that income inequality should decline in response to expan-
sion of progressive estate taxation: capital gains comprise a substantial portion
of the income of the rich, and high estate taxes decrease the ability and incen-
tive to amass wealth in financial assets. Thus, increasing the top estate tax
rate should disproportionately reduce the wealth of the very rich and subse-
quently mitigate capital gains income inequality, which is driven by inequality
in asset holdings. On the other hand, since estate taxes apply to both realized
and unrealized capital gains, it is unlikely that estate taxes affect the timing
of realizing capital gains beyond their incentive effects. Therefore current and
lagged changes in the estate tax rates are a good candidate for an instrument.
The first stage regressions in Table 5 confirm this hypothesis: contemporaneous
and lagged changes in the top estate tax rate significantly explain a substantial
portion of the variation in cgdiff (and the 10% and 0.1% analogs).

Table 5 suggests that changes in top estate tax rates can instrument for
cgdiff in explaining excess returns. Whether one believes this instrument can
test causation depends on if lagged changes in estate tax rates are excludable
or not. One concern is that estate tax cuts stimulate the economy and thus
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Table 5: Regressions of cgdiff (top income share− top income share (no cg))
on contemporaneous and lagged changed in top estate tax rates

Dependent Variable: cgdiff (t)
Regressors 0.1% 1% 10%

Constant 1.39 1.96 1.82
∆ETRt -0.04*** -0.05*** -0.04***
∆ETRt−1 -0.02** -0.03* -0.03*
∆ETRt−2 -0.07*** -0.08*** -0.06***
∆ETRt−3 -0.05*** -0.06*** -0.05***
R2 0.29 0.27 0.22

Note: the table shows regressions of cgdiff on lagged changes in top estate tax rates (ETR).
***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants)
according to Newey-West standard errors (k = 4). For y = 0.1%, 1%, 10% cgdiff is the
difference between the top y% income shares, with and without capital gains. Sample: 1913-
2014. Sources: Tax Foundation and IRS.

stock market returns. Another concern is that even if estate tax rates only af-
fect inequality, inequality may simply be proxying for the level of stock market,
which we already know predicts returns. To control for these possibilities, we
allow cgdiff, industrial production growth, and log(P/E) to be endogenous
and instrument all three with contemporaneous and three lags of the change in
the top estate tax rate (∆ETR for t, t − 1, t − 2, t − 3) as well as the lagged
price-earnings ratio (log(P/E)t−1).

21 Table 6 shows the results of GMM esti-
mation of the moment condition (4.2) (including industrial production growth
and log(P/E) as controls).

Including industrial production growth and log(P/E) as endogenous regres-
sors and using contemporaneous and three lags of changes in the top estate tax
rate as well as the lagged log(P/E) as instruments, cgdiff is significant at the
5% level in predicting subsequent excess returns. This relationship holds regard-
less of whether we use the top 0.1%, 1%, or 10% income share in constructing
cgdiff.

Our theory suggests that inequality predicts returns, but it does not say
anything about the timing of realizing capital gains. Can we identify the coef-
ficient β2 in (4.1)? Suppose that there is an additional instrument z2t for x2t

that is uncorrelated with x1t. By the same argument as the derivation of (4.2),
we can show that the moment condition

E[z2t(Rt+1 − α2 − β2xt)] = 0 (4.3)

holds, where α2 = β0+αβ2. What would be a good candidate for z2t? Rational
agents have an incentive to realize (delay) capital gains if they expect the capital
gains tax rate to increase (decrease). Since tax rates in year t+1 are announced
in year t, we can use the change in the maximum capital gains tax rate from
year t to t + 1, ∆CGTRt+1, as an instrument z2t for the timing component of
cgdiff, x2t. Table 7 adds ∆CGTRt+1 to the first-stage regressions displayed
in Table 5. As we predicted, the change in top capital gains tax rates from

21Industrial production growth (t) is significantly correlated with ∆ETR for t, t − 1;
log(P/E)t is significantly correlated with log(P/E)t−1. Hence the rank condition for iden-
tification holds.
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Table 6: Instrumental variables GMM estimates of the effect of cgdiff

(top income share − top income share (no cg)), industrial production growth,
and log(P/E) on one year excess stock market returns

Dependent Variable:
t to t+ 1 Excess Market Return

Regressors (t) (1) (2) (3)

Constant
16.23
(26.97)

23.55
(26.35)

37.19
(27.07)

cgdiff(0.1%)
-14.39**
(5.95)

cgdiff(1%)
-11.26**
(4.79)

cgdiff(10%)
-14.89**
(6.31)

%∆IP
-1.61***
(0.54)

-1.57***
(0.52)

-1.54***
(0.49)

log(P/E)
6.45

(11.48)
4.56

(11.36)
1.44

(11.50)

J statistic
0.52

(p = 0.77)
0.57

(p = 0.75)
0.64

(p = 0.72)

Note: the table shows the results of two-step GMM estimation of the moment condition
(4.2) (including industrial production growth and log(P/E) as controls). The initial weighting
matrix is identity, and the second stage one is Newey-West (k = 4). Newey-West standard
errors are in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10%
levels (suppressed for constants). For y = 0.1%, 1%, 10% cgdiff is the difference between the
top y% income shares, with and without capital gains. %∆IP is the annual % change in the
industrial production index. P/E is the S&P500 price-earnings ratios. The instruments are a
constant, changes in the top estate tax rate (∆ETR for t, t − 1, t − 2, t − 3), and the lagged
price-earnings ratio (log(P/E)t−1). Sample: 1913-2014. Sources: Tax Foundation, IRS, and
FRED.

year t to t + 1 have positive and significant relationship with year t cgdiff.
Current and lagged changes in estate tax rates, however, continue to have a
strong inverse association with cgdiff. As rising capital gains and estate tax
rates should, all else equal, discourage wealth accumulation amongst the rich,
the positive coefficient on ∆CGTRt+1 is likely reflecting the timing component
of cgdiff (x2t): when the rich expect capital gains taxes to rise, they move
forward the realization of capital gains, which causes cgdiff to rise.

Thus, in Table 8 we jointly estimate the moment conditions (4.2) and (4.3)
(including industrial production growth and log(P/E) as controls) by multiple
equation GMM using the instruments

z1t = (1,∆ETRt,∆ETRt−1,∆ETRt−2,∆ETRt−3, log(P/E)t−1)
′,

z2t = (1,∆CGTRt+1)
′,

respectively. The coefficients are positive and insignificant for the timing compo-
nents (x2t) identified by changes in future capital gains tax rates. The inequality
components (x1t), however, have negative and significant coefficients. This is
true regardless of whether we use the top 0.1%, 1%, or 10% income share, and
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Table 7: Regressions of cgdiff (top income share− top income share (no cg))
on contemporaneous and lagged changed in top estate tax rates and the one-
period-ahead change in the captial gains tax rate

Dependent Variable: cgdiff (t)
Regressors 0.1% 1% 10%

Constant 1.39 1.96 1.82
∆ETRt -0.04*** -0.05*** -0.04***
∆ETRt−1 -0.04*** -0.05*** -0.04**
∆ETRt−2 -0.06*** -0.08*** -0.05***
∆ETRt−3 -0.06*** -0.07*** -0.04***
∆CGTRt+1 0.03*** 0.04*** 0.03***
R2 0.34 0.31 0.26

Note: the table shows regressions of cgdiff on lagged changes in top estate tax rates (ETR)
and the one-period-ahead change in the maximum capital gains tax rate (CGTR). ***, **,
and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants) according to
Newey-West standard errors (k = 4). For y = 0.1%, 1%, 10% cgdiff is the difference between
the top y% income shares, with and without capital gains. Sample: 1913-2014. Sources: Tax
Foundation and IRS.

suggests that the causal effect of cgdiff on subsequent excess returns is driven
by inequality rather than by the timing of capital gains realization.

In summary, our finding that rising top income shares lead to low subsequent
excess returns is robust to instrumenting inequality with changes in estate tax
rates, even when controlling for economic growth and the level of the stock
market. Introducing one-period-ahead capital gains tax rate changes as an
additional instrument, we are able to separately identify how the inequality and
timing components of cgdiff impact returns. The predictive power of cgdiff
established in Section 3 appears driven by the inequality component.

5 International evidence

Thus far, we have shown that in the U.S. shocks to the concentration of income
are associated with large and significant declines in subsequent excess returns
on average. We have also provided a theoretical explanation for this pattern:
if the rich are relatively more risk tolerant, when their wealth share rises rel-
ative aggregate demand for risky assets increases, which in equilibrium leads
to a decline in the equity premium. Our theoretical argument, however, is not
specific to the U.S. Therefore, we can test our theory by seeing whether or not
this pattern holds internationally. In this section, we employ cross country fixed
effects panel regressions and show that outside of the U.S. there also appears to
be an inverse relationship between inequality and subsequent excess returns.

5.1 Data

We consider 29 countries, for the time period 1969-2013, spanning the conti-
nents: Americas (Argentina, Canada, Colombia, U.S.), Europe (Denmark, Fin-
land, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain,
Sweden, Switzerland, and U.K.), Africa (Mauritius and South Africa), Asia

26



Table 8: Instrumental variables multiple equation GMM estimates of the effect
of cgdiff (top income share−top income share (no cg)), industrial production
growth, and log(P/E) on one year excess stock market returns

Dependent Variable:
t to t+ 1 Excess Market Return

Regressors (t) (1) (2) (3)

Constant (α1)
16.23
(26.97)

23.55
(26.35)

37.19
(27.07)

Constant (α2)
-20.47
(41.12)

-15.58
(41.58)

-8.15
(42.32)

cgdiff(0.1%) (inequality, β1)
-14.39**
(5.95)

cgdiff(0.1%) (timing, β2)
13.57
(11.50)

cgdiff(1%) (inequality, β1)
-11.26**
(4.79)

cgdiff(1%) (timing, β2)
9.55
(8.86)

cgdiff(10%) (inequality, β1)
-14.89**
(6.31)

cgdiff(10%) (timing, β2)
10.66
(10.75)

%∆IP
-1.61***
(0.54)

-1.57***
(0.52)

-1.54***
(0.49)

log(P/E)
6.45

(11.48)
4.56

(11.36)
1.44

(11.50)

J statistic
0.52

(p = 0.77)
0.57

(p = 0.75)
0.64

(p = 0.72)

Note: the table shows the results of two-step multiple equation GMM estimation of the
moment conditions (4.2) and (4.3) (including industrial production growth and log(P/E) as
controls). The initial weighting matrix is identity, and the second stage one is Newey-West
(k = 4). Newey-West standard errors are in parentheses (k = 4). ***, **, and * indicate
significance at 1%, 5%, and 10% levels (suppressed for constants). For y = 0.1%, 1%, 10%
cgdiff is the difference between the top y% income shares, with and without capital gains.
x1t and x2t refer to, respectively, the inequality and timing components of cgdiff. %∆IP is
the annual % change in the industrial production index. P/E is the S&P500 price-earnings
ratios. The instruments for moment condition (4.2) are a constant, changes in the top estate
tax rate (∆ETR for t, t − 1, t − 2, t − 3), and the lagged price-earnings ratio (log(P/E)t−1).
The instruments for moment condition (4.3) are a constant and ∆CGTRt+1 (the one-period-
ahead change in the maximum capital gains tax rate). Sample: 1913-2014. Sources: Tax
Foundation, IRS, and FRED.

(China, India (INI), Japan, Singapore, South Korea, Malaysia, and Taiwan),
and Oceania (Australia, Indonesia (INO), and New Zealand). Due to missing
data points for some countries, we have around 100-800 observations, depending
on the regions included. In the regressions below, we divide the countries into
the following groups: Advanced Economies (“Advanced”) (AUS, CAN, DNM,
FIN, FRA, GER, IRE, ITA, JPN, KOR, NET, NOR, NZL, POR, SIN, SPA,
SWE, SWI, TAI, UNK, and USA), IIPS (IRE, ITA, POR, and SPA), and EME
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(ARG, CHN, COL, INI, INO, MAL, MAU, and SAF).
Our panel data on inequality are from Alvaredo et al. (2015). To be con-

sistent across countries, we use top 1% income shares excluding capital gains
in most specifications. The one exception is Table 12, in which we consider
cgdiff, the difference between the top 1% share with and without capital gains
income. Due to data limitations, this restricts our sample to Canada, Germany,
Japan, and the U.S. See Appendix D for country-specific details on top income
shares.

To calculate annual stock returns (end-of-period) we acquire from Datas-
tream the MSCI total return indexes in local currency. To convert returns into
local real terms, we deflate the stock indexes by local CPI (or GDP deflator when
CPI is unavailable), which we obtain from Haver’s IMF data. See Appendix D
for country-specific details on stock market and price indexes.

Given the liquidity and safety of U.S. Treasuries, T-bill returns provide a
standard and relatively uncontroversial measure of the risk-free rate in the U.S.
In markets outside of the U.S., especially emerging ones where government and
private sector default are not uncommon, it is not immediately obvious how to
measure the risk-free rate. To make the definition of excess returns relatively
consistent across countries, we use the Haver/IMF “deposit rate” series (in most
cases), which is, depending on the country, the savings rate offered on one to
twenty-four month deposits. Specifically, we take the year t safe return to be
the average of annualized rates quoted in January to September of that year.
Local nominal rates are converted into real terms by local CPI (or GDP deflator
when CPI is unavailable). See Appendix D for more details.

5.2 International regression results

In Section 3, we showed that income concentration is inversely related to subse-
quent excess returns. However, quantitatively, this result was really about stock
returns. Indeed, redoing column (1) of Table 1 with stock returns instead of
excess returns, the 1% coefficient is -2.93 with a Newey-West p-value of 0.041.
With the Kalman and HP filter, the coefficients are, respectively, -2.20 and -
4.57 with p-values of 0.085 and 0.002. Also, with none of our top income share
measures do we find a significant relationship between inequality and risk-free
rates in the U.S. Furthermore, due to the limited availability of similar interest
rates across countries, using stock returns instead of excess returns substantially
expands the sample size. In light of these facts and because of the nebulous na-
ture of international risk-free rates, we first present the international results for
stock market returns without netting out an interest rate.

Another difference from our U.S. analysis in Section 3 is that in the post-
1969 sample there is no obvious U-shape for top income shares, which simplifies
handling the potentially nonstationary nature of inequality. In this section, we
simply include a linear time trend as one of regressors (except in Table 12, where
we use cgdiff).

Table 9 presents the panel regression results for both the whole sample and
different regions. First, we see in the column “All” that when including all
countries a one percentage point increase above trend in the top income share is
associated with a subsequent decline in stock market returns of 2% on average.
The coefficient is significant at the 5% level with standard errors clustered by
country (results are similar without clustering). Columns “IIPS” and “EME”

28



show that this inverse relationship is even stronger when we restrict the sam-
ple to the “GIIPS” (without Greece) or the emerging market economies. The
pattern is weaker in the more advanced economies.22

Table 9: Country fixed effects panel regressions of one year stock market returns
on top income shares

Dependent Variable: t to t+ 1 Stock Market Return
Regressors All Advanced IIPS EME

Top 1% (t)
-1.99**
(0.92)

−1.41+

(0.85)
-7.16*
(3.01)

-6.58**
(2.25)

Time Trend Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Obs. 790 699 106 91
R2 (w,b) (.01,.08) (.00,.07) (.05,.16) (.05,.15)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%, +15%. R2 (w,b): Within
and between R-squared. Constants suppressed. Top 1% is the pre-tax share of income going
to the top 1% of earners (excluding capital gains). The column headings refer to the countries
included (see the main text for details). Sample: 1969-2013 (see Appendix D for country
details).

As a robustness check, Table 19 in Appendix E shows the panel regressions
without time trends. The results are similar to the case with the linear time
trend.23

Table 10 is the same as Table 9 except with excess returns (using real de-
posit rates) as the dependent variable. For “EME” countries, the results are
essentially unchanged. Including all countries, the 1% coefficient falls in magni-
tude slightly to -1.49 but remains significant at the 10% level without clustering
standard errors (with country clustering, the p-value is 0.16).

In Tables 1, 9, 10, and 19 we see that the relationship between inequality
and returns is most apparent in the U.S. and emerging markets. One potential
explanation for this finding is variation in the degree of stock market home bias.
In either very large markets (such as the U.S.) or relatively closed ones (such
as emerging markets), our theory suggests that local inequality should impact
domestic stock markets. In small open markets, however, foreigners own a
substantial fraction of the domestic stock markets and mitigate the role of local
inequality. Indeed, according to measures in Mishra (2015), many of our “EME”
countries (such as India, Indonesia, Colombia, and Malaysia) exhibit some of
the highest degrees of home bias, while most of our “Advanced” and “IIPS”
members are in the bottom half of countries ranked by home bias. Averaging
his measures, Italy, the Netherlands, Singapore, Portugal, and Norway have the
lowest home bias, and the Philippines, India, Turkey, Indonesia, and Pakistan
have the highest (with Colombia and Malaysia close behind).

22Does including the time trend mitigate potential nonstationarity? The answers appears
to be yes: the Phillips-Perron test (Phillips and Perron, 1988) rejects the presence of a unit
root in the fitted residuals for each country (at least at the 5% level) except in Argentina
(p-value of 0.31), Indonesia (p-value of 0.31), and South Africa (p-value of 0.052), all three of
which have small sample size (≤ 12).

23And, somewhat surprisingly, the unit root tests on the residuals have the same results as
with the inclusion of the time trend: we only fail to reject a unit root in Argentina, Indonesia,
and South Africa, all of which are short time series.
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Table 10: Country fixed effects panel regressions of one year excess returns on
top income shares

Dependent Variable: t to t+ 1 Excess Market Return
Regressors All Advanced IIPS EME

Top 1% (t)
−1.49†

(1.04)
-0.63
(0.91)

-1.42
(4.56)

-6.55**
(2.69)

Time Trend Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Obs. 660 569 72 91
R2 (w,b) (.00,.01) (.00,.20) (.01,.20) (.05,.09)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%. R2 (w,b): Within and
between R-squared. Constants suppressed. †: p-value = 0.16, significant at 10% level without
clustering. Top 1% is the pre-tax share of income going to the top 1% of earners (excluding
capital gains). The column headings refer to the countries included (see the main text for
details). Sample: 1969-2013 (see Appendix D for country details).

While local inequality appears less important in small and open financial
markets, inequality amongst global investors should still impact excess returns
in these markets. Table 11 repeats the regressions of Table 10 but also includes
the U.S. 1% share as a proxy for global investor inequality. As conjectured, the
U.S. 1% share has a large and significant inverse correlation with subsequent
excess returns for the “Advanced” and “IIPS” groups (small open economies),
and the local 1% share is significant for emerging markets (relatively closed
economies).

Table 11: Country fixed effects panel regressions of one year excess returns on
local and U.S. top income shares

Dependent Variable: t to t+ 1 Excess Market Return
Regressors All† Advanced† IIPS EME

Top 1% (t)
-1.62
(1.17)

-0.65
(1.07)

-2.53
(4.20)

-6.16*
(2.88)

U.S. Top 1% (t)
-3.37***
(1.02)

-2.67***
(0.73)

-6.44**
(1.74)

-11.96
(8.32)

Time Trend Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Obs. 616 525 72 91
R2 (w,b) (.02,.01) (.01,.13) (.04,.00) (.09,.10)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%. †: excluding U.S. R2

(w,b): Within and between R-squared. Constants suppressed. Top 1% is the pre-tax share of
income going to the top 1% of earners (excluding capital gains). The column headings refer
to the countries included (see the main text for details). Sample: 1969-2013 (see Appendix D
for country details).

Lastly, in Table 12 we restrict the sample to the U.S., Japan, Canada, and
Germany (the only countries for which cgdiff is available) and use cgdiff

to predict returns. In the first two columns, we see that when cgdiff rises
by one percentage point, both subsequent one year returns and excess returns
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significantly fall by about 2%.24 In the last two columns, we exclude the U.S.
and include U.S. cgdiff as a regressor. The coefficient for U.S. cgdiff is
negative but not significant, while local cgdiff remains similar in magnitude
and significance.

Table 12: Country fixed effects panel regressions of one year returns on local
and U.S. cgdiff (top 1% − top 1% (no cg))

Dependent Variable: t to t+ 1 Return

Regressors R R−Rf R† R−R†
f

cgdiff (t)
-2.19***
(0.31)

-1.81*
(0.70)

-2.24**
(0.56)

-1.25*
(0.32)

U.S. cgdiff (t)
-2.87
(1.55)

-2.86
(1.36)

Time Trend No No No No
Country FE Yes Yes Yes Yes
Obs. 143 135 99 91
R2 (w,b) (.01,.04) (.01,.70) (.04,.48) (.03,.63)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%. The column heading R
(R−Rf ) denotes that the dependent variable is the stock market return (excess stock market
return). Countries included: CAN, JPN, GER, USA. †: excluding U.S. R2 (w,b): Within
and between R-squared. Constants suppressed. “cgdiff” is top 1% minus top 1% (no cg),
neither detrended, where top 1% is the pre-tax share of income going to the top 1% of earners
(including capital gains). “no cg” refers to the series that excludes capital gains. Sample:
1969-2013 (see Appendix D for country details).

6 Concluding remarks

In this paper we built a general equilibrium model with agents that are het-
erogeneous in both wealth and attitudes towards risk or beliefs. We proved
that the concentration of wealth/income drives down the subsequent equity
premium. Our model is a mathematical formulation of Irving Fisher’s narrative
that booms and busts are caused by changes in the relative wealth of the rich
(the “enterpriser-borrower”) and the poor (the “creditor, the salaried man, or
the laborer”). Consistent with our theory, we found that the income/wealth
distribution is closely connected with stock market returns. When the rich are
richer than usual the stock market subsequently performs poorly, both in- and
out-of-sample.

Could one exploit the predictive power of top income shares to beat the mar-
ket on average? The answer is probably no since the top income share—which
comes from tax return data—is calculated with a substantial lag. One would
receive the inequality update too late to act on its asset pricing information.
However, our analysis provides a novel positive explanation of excess market
returns over time. We conclude, as decades of macro/finance theory have sug-
gested, that stock market fluctuations are intimately tied to the distribution of
wealth, income, and assets.

24Unlike in the previous international regressions, when we restrict the sample to U.S.,
Japan, Canada, and Germany and use cgdiff, the 1% coefficients are only significant at the
10% level when clustering by country.
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A Proofs

A.1 Proof of Theorem 2.1

Since by Assumption 3 the aggregate endowment e is spanned by the column
vectors of A, without loss of generality we may assume A = [e,A2, . . . , AJ ].
Let ni = (wi, 0, . . . , 0)

′ be the vector of initial endowment of assets. Then by
Assumption 2 we have ei = wie = Ani. Letting z = y+ni, the budget constraint
becomes q′z ≤ q′ni and x ≤ Az. Therefore the utility maximization problem
becomes equivalent to

maximize Ui(x)

subject to q′z ≤ q′ni, 0 ≤ x ≤ Az. (A.1)

Similarly, the planner’s problem (2.2) is equivalent to

maximize

I∑

i=1

wi logUi(Azi)

subject to

I∑

i=1

zi = n, (A.2)

where n =
∑I

i=1 ni = (1, 0, . . . , 0)′ is the vector of aggregate endowment of
assets.

Step 1. logUi(x) is strictly concave.

Proof. Let us suppress the i subscript and define

f(x) = logU(x) =

{
1

1−γ
log
(∑S

s=1 πsx
1−γ
s

)
, (γ 6= 1)

∑S
s=1 πs log xs. (γ = 1)

If γ = 1, then f is clearly strictly concave. If γ 6= 1, let Σ =
∑S

s=1 πsx
1−γ
s .

Then by simple algebra we have

∇f(x) =
1

Σ



π1x

−γ
1
...

πSx
−γ
S


 ,

∇2f(x) =−
1− γ

Σ2



π1x

−γ
1
...

πSx
−γ
S



[
π1x

−γ
1 · · · πSx

−γ
S

]

+
1

Σ
diag

[
−γπ1x

−γ−1
1 · · · −γπSx

−γ−1
S

]
.
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To show that ∇2f(x) is negative definite, it suffices to show that −Σ2∇2f(x) is
positive definite. To this end, let h = (h1, . . . , hS)

′ be any vector. Then

h′[−Σ2∇2f(x)]h = (1−γ)

(
S∑

s=1

πsx
−γ
s hs

)2

+γ

(
S∑

s=1

πsx
1−γ
s

)(
S∑

s=1

πsx
−γ−1
s h2

s

)
.

Define u, v ∈ R
S by u = (· · · (πsx

1−γ
s )

1

2 · · · )′ and v = (· · · (πsx
−γ−1
s )

1

2hs · · · )
′.

Then the above expression becomes

h′[−Σ2∇2f(x)]h = (1− γ)(u · v)2 + γ ‖u‖2 ‖v‖2

= γ(‖u‖2 ‖v‖2 − (u · v)2) + (u · v)2 ≥ 0,

where we have used the Cauchy-Schwarz inequality. Equality occurs when u, v
are collinear and u · v = 0. Since u 6= 0, this is true if and only if v = ku for
some k and k ‖u‖2 = 0, so k = 0 and therefore h = 0. Hence f = logU is
strictly concave.

Step 2. The planner’s problem (2.2) has a unique solution.

Proof. Let

Ω =

{
x = (xi) ∈ R

SI
+

∣∣∣∣∣ (∃z = (zi))(∀i)xi ≤ Azi,

I∑

i=1

zi = n

}

be the set of all feasible consumption allocations. Then the planner’s problem
(A.2) is equivalent to maximizing f(x) =

∑I
i=1 wi logUi(xi) subject to x ∈ Ω.

Clearly f is continuous, and by the previous step strictly concave. Therefore
to show the uniqueness of the solution, it suffices to show that Ω is nonempty,
compact, and convex. Clearly Ω 6= ∅ because we can choose the initial endow-
ment zi = ni and xi = Ani = ei. Since Ω is defined by linear inequalities and
equations, it is closed and convex. If x ∈ Ω, by definition we can take z = (zi)

such that xi ≤ Azi for all i and
∑I

i=1 zi = n. Then

I∑

i=1

xi ≤
I∑

i=1

Azi = A
I∑

i=1

zi = An = e.

Since xi ≥ 0 and e ≫ 0, Ω is bounded.
Let x = (xi) be the unique maximizer of f on Ω. Since f is strictly increasing,

we have xi = Azi for some z = (zi) such that
∑I

i=1 zi = n. If there is another
such z′ = (z′i), then Azi = Az′i ⇐⇒ A(zi − z′i) = 0. Since by assumption A
has full column rank, we have zi − z′i = 0 ⇐⇒ zi = z′i. Therefore the planner’s
problem (A.2) has a unique solution.

Step 3. x = (xi) is a GEI equilibrium allocation and the Lagrange multiplier to
the planner’s problem gives the asset prices.

Proof. Let

L(z, q) =

I∑

i=1

wi logUi(Azi) + q′

(
n−

I∑

i=1

zi

)
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be the Lagrangian of the planner’s problem (A.2). By the previous step, a unique
solution z = (zi) exists. Furthermore, since Ui satisfies the Inada condition, it
must be Azi ≫ 0. Hence by the Karush-Kuhn-Tucker theorem and the chain
rule, we have

q′ = wi

DUi(Azi)A

Ui(Azi)
(A.3)

for all i, where DUi denotes the (1×S) Jacobi matrix of the function Ui. Since
Ui is homogeneous of degree 1, for all x ≫ 0 and λ > 0 we have Ui(λx) =
λUi(x). Differentiating both sides with respect to λ and setting λ = 1, we have
DUi(x)x = Ui(x). Hence multiplying zi from the right to (A.3), we get

q′zi = wi

DUi(Azi)Azi
Ui(Azi)

= wi.

Adding across i and using the complementary slackness condition, we get

q′n = q′
I∑

i=1

zi =

I∑

i=1

wi = 1.

Therefore
q′zi = wi = wiq

′n = q′(win) = q′ni,

so the budget constraint holds with equality. Furthermore, letting λi =
1
wi

, by
(A.3) we obtain D[logUi(Azi)] = λiq

′, which is the first-order condition of the
utility maximization problem (A.1) after taking the logarithm. Since logUi is

concave, zi solves the utility maximization problem. Since
∑I

i=1 zi = n, the
asset markets clear, so {q, (xi), (zi)} is a GEI.

Step 4. The GEI is uniquely given as the solution to the planner’s problem
(A.2).

Proof. Let {q, (xi), (zi)} be a GEI. By the first-order condition to the utility
maximization problem, there exists a Lagrange multiplier λi ≥ 0 such that

λiq
′ = D[logUi(Azi)] =

DUi(Azi)A

Ui(Azi)
. (A.4)

Since DUi ≫ 0, A = [e,A2, . . . , AJ ], and e ≫ 0, comparing the first element of
(A.4), we have

λiq1 =
DUi(Azi)e

Ui(Azi)
> 0.

Therefore λi > 0 and q1 > 0. By scaling the price vector if necessary, we may
assume q1 = 1 and hence q′n = 1 · 1 + q2 · 0 + · · · + qJ · 0 = 1. Multiplying
zi to (A.4) from the right and using DUi(x)x = Ui(x) and the complementary
slackness condition, we have

λiq
′ni = λiq

′zi =
DUi(Azi)Azi

Ui(Azi)
= 1 ⇐⇒

1

λi

= q′ni = wiq
′n = wi.

Substituting into (A.4), we obtain q′ = wiD[logUi(Azi)], which is precisely
(A.3), the first-order condition of the planner’s problem (A.2) with Lagrange
multiplier q. Since (zi) is feasible and the objective function is strictly concave,
(zi) is the unique solution to the planner’s problem.
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A.2 Proof of Theorem 2.2 and Propositions 2.3, 2.4

Let u be a general von Neumann-Morgenstern utility function with u′ > 0 and
u′′ < 0. In Theorem 2.2, we have u(x) = 1

1−γ
x1−γ or u(x) = log x, but most of

the following results do not depend on the particular functional form. Then a
typical agent’s optimal portfolio problem is

max
θ

E[u(R(θ)w)],

where w is initial wealth. The following lemma is basic (e.g., Arrow, 1965).

Lemma A.1. Let everything be as above and θ be the optimal portfolio. Then
the following is true.

1. θ is unique.

2. θ ≷ 0 according as E[R] ≷ Rf .

3. Suppose E[R] > Rf . If u exhibits decreasing relative risk aversion (DRRA),
so −xu′′(x)/u′(x) is decreasing, then ∂θ/∂w ≥ 0, i.e., the agent invests
comparatively more in the risky asset as he becomes richer. The opposite
is true if u exhibits increasing relative risk aversion (IRRA).

Proof. 1. Let f(θ) = E[u(R(θ)w)]. Then f ′(θ) = E[u′(R(θ)w)(R−Rf )w] and
f ′′(θ) = E[u′′(R(θ)w)(R−Rf )

2w2] < 0, so f is strictly concave. Therefore
the optimal θ is unique (if it exists).

2. Since f ′(θ) = 0 and f ′(0) = u′(Rfw)w(E[R]−Rf ), the result follows.

3. Dividing the first-order condition by w, we obtain E[u′(R(θ)w)(R−Rf )] =
0. Let F (θ, w) be the left-hand side. Then by the implicit function theorem
we have ∂θ/∂w = −Fw/Fθ. Since Fθ = E[u′′(R(θ)w)(R − Rf )

2w] < 0, it
suffices to show Fw ≥ 0. Let γ(x) = −xu′′(x)/u′(x) > 0 be the relative
risk aversion coefficient. Then

Fw = E[u′′(R(θ)w)(R−Rf )R(θ)]

= −
1

w
E[γ(R(θ)w)u′(R(θ)w)(R−Rf )].

Since E[R] > Rf , by the previous result we have θ > 0. Therefore R(θ) =
Rθ + Rf (1 − θ) ≷ Rf according as R ≷ Rf . Since u is DRRA, γ is
decreasing, so γ(R(θ)w) ≤ γ(Rfw) if R ≥ Rf (and reverse inequality if
R ≤ Rf ). Therefore

γ(R(θ)w)(R−Rf ) ≤ γ(Rfw)(R−Rf )

always. Multiplying both sides by −u′(R(θ)w) < 0 and taking expecta-
tions, we obtain

wFw = −E[γ(R(θ)w)u′(R(θ)w)(R−Rf )]

≥ −E[γ(Rfw)u
′(R(θ)w)(R−Rf )] = 0,

where the last equality uses the first-order condition.
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Proof of Theorem 2.2. Let θi be the optimal portfolio of agent i. By Lemma
A.1, θi ≷ 0 according as Ei[R] ≷ Rf .

Suppose that θ1 < θ2 and we transfer some wealth ǫ > 0 from agent 1 to 2.
Let θ′i be the new portfolio of agent i. The change in agent 1 and 2’s demand
in the risky asset is

∆ = (w1 − ǫ)θ′1 + (w2 + ǫ)θ′2 − (w1θ1 + w2θ2)

= w1(θ
′
1 − θ1) + w2(θ

′
2 − θ2) + ǫ(θ′2 − θ′1).

Suppose that the stock price q1 does not change. Since agents have CRRA
preferences, we have θ′i = θi, so ∆ = ǫ(θ2 − θ1) > 0. Since agents i > 2 are
unaffected unless the risk-free rate changes, there is a positive excess demand
in the risky asset.

Regard θi as a function of the stock price q1. By the maximum theorem,
θi is continuous, and so is the aggregate demand. Since θi < 0 if Rf > Ei[R]
by Lemma A.1, and R = e/q1, the aggregate excess demand of the risky asset
becomes negative when q1 > Ei[e]/Rf . Therefore by the intermediate value
theorem, there exists an equilibrium stock price higher than the original one.
Since by Theorem 2.1 the equilibrium is unique, in the new equilibrium the
stock price is higher, and hence the equity premium is lower.

Lemma A.2. Consider two agents indexed by i = 1, 2 with common beliefs.
Let wi, ui(x), γi(x) = −xu′′

i (x)/u
′
i(x), and θi be the initial wealth, utility func-

tion, relative risk aversion, and the optimal portfolio of agent i. Suppose that
γ1(w1x) > γ2(w2x) for all x, so agent 1 is more risk averse than agent 2. Then

E[R] > Rf =⇒ θ2 > θ1 > 0,

E[R] < Rf =⇒ θ2 < θ1 < 0,

so the less risk averse agent invests more aggressively.

Proof. Since γ1(w1x) > γ2(w2x), we have

d

dx

(
u′
2(w2x)

u′
1(w1x)

)
=

w2u
′′
2u

′
1 − u′

2w1u
′′
1

(u′
1)

2
=

1

x

u′
2

u′
1

(γ1(w1x)− γ2(w2x)) > 0,

so u′
2(w2x)/u

′
1(w1x) is increasing. Suppose E[R] > Rf . By Lemma A.1, we

have θ1 > 0. Then R(θ1) ≷ Rf according as R ≷ Rf . Since u′
2(w2x)/u

′
1(w1x)

is increasing (and positive), we have

u′
2(R(θ1)w2)

u′
1(R(θ1)w1)

(R−Rf ) >
u′
2(Rfw2)

u′
1(Rfw1)

(R−Rf )

always (except when R = Rf ). Multiplying both sides by u′
1(R(θ1)w1) > 0 and

taking expectations, we get

E[u′
2(R(θ1)w2)(R−Rf )] = E

[
u′
2(R(θ1)w2)

u′
1(R(θ1)w1)

u′
1(R(θ1)w1)(R−Rf )

]

> E

[
u′
2(Rfw2)

u′
1(Rfw1)

u′
1(R(θ1)w1)(R−Rf )

]

=
u′
2(Rfw2)

u′
1(Rfw1)

E [u′
1(R(θ1)w1)(R−Rf )] = 0,
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where the last equality uses the first-order condition for agent 1. Letting f2(θ) =
E[u2(R(θ)w2)], the above inequality shows that f ′

2(θ1) > 0. Since f2(θ) is
concave and f ′

2(θ2) = 0 by the first-order condition, we have θ2 > θ1.
The case E[R] < Rf is analogous.

Proof of Proposition 2.3. Since agents have common beliefs, we have θi ≷ 0
for all i if E[R] ≷ Rf . Since the stock is in positive supply, in equilibrium we
must have E[R] > Rf . Therefore by Lemma A.2, if γ1 > · · · > γI , we have
0 < θ1 < · · · < θI .

Proof of Proposition 2.4. Let u(x) be the common CRRA utility function
of agents 1 and 2, and

fi(θ) = Ei[u(R(θ))] =

S∑

s=1

πisu(Rf +Xsθ)

be the objective function of agent i, where Xs = Rs − Rf denotes the excess
return in state s. By the first-order condition, we have

f ′
i(θi) =

S∑

s=1

πisu
′(Rf +Xsθi)Xs = 0. (A.5)

Letting q be the stock price, since Rs = es/q and e1 < · · · < eS , we have
X1 < · · · < XS . Since πis > 0 and u′ > 0, by (A.5), it must be X1 < 0 < XS .
Let s∗ = max {s |Xs < 0} be the best state with negative excess returns. Clearly
1 ≤ s∗ < S.

Using the definition of the likelihood ratio λs = π1s/π2s, by (A.5) we obtain

0 = f ′
1(θ1) =

S∑

s=1

π1su
′(Rf +Xsθ1)Xs = λs∗

S∑

s=1

λs

λs∗
π2su

′(Rf +Xsθ1)Xs.

Since by assumption the likelihood ratio λs is monotonically decreasing, we have
λs/λs∗ ≥ (≤) 1 for s ≤ (≥) s∗. Furthermore, since beliefs are heterogeneous,
either λ1/λs∗ > 1 or λS/λs∗ < 1 (or both). Combined with X1 < 0 < XS and
Xs < (≥) 0 for s ≤ (≥) s∗, it follows that

0 = λs∗

S∑

s=1

λs

λs∗
π2su

′(Rf +Xsθ1)Xs

< λs∗

S∑

s=1

π2su
′(Rf +Xsθ1)Xs = λs∗f

′
2(θ1),

where the inequality is due to the fact that replacing λs/λs∗ ≥ (≤) 1 by 1 for
s ≤ (≥) s∗ makes the term less negative (more positive), and the inequality is
strict for s = 1 or s = S. Therefore f ′

2(θ1) > 0, and since f2 is strictly concave
and f ′

2(θ2) = 0, we obtain θ1 < θ2.
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B Robustness of predictability

As described in Section 3.2, Tables 13 and 14 show that the inverse relationship
between the top 1% share and subsequent excess returns is larger in magni-
tude and significant at the 1% and 5% levels, respectively, when we predict
with cgdiff(10%) or cgdiff(0.1%). Tables 15–17 explore the robustness (with
respect to detrending) of the result that when the top income share is above
trend, subsequent one year excess returns are significantly below average. Table
18 shows the pairwise correlations between the explanatory variables used in
Section 3.2.

As described in Section 3.2, Table 15 repeats the analysis of Table 1 but with
the Kalman filter with an AR(1) cyclical component as discussed in Appendix C,
which is one-sided (the cycle estimate in year t is based only on data up to year
t). The results are roughly the same as in Table 1. Table 16 is similar to Table
15 but with the HP filter with a smoothing parameter of 100, which is standard
for annual frequencies. The one difference is that column (2) uses the HP filter
with a smoothing parameter of 10, whereas column (2) of Table 15 considers
the AR(2) Kalman filter. With the exception of the 1945-2014 specifications
including CAY (regressions (9) and (10)), the HP results are stronger and more
significant, with top share coefficients ranging from around -4 to -6 and most
p-values below 1%. When including CAY, the 1% coefficient is roughly the same
in both the Kalman and HP specifications.25

Table 17 explores other detrending techniques. In column (1), we use the
one-sided HP filter with a smoothing parameter of 100. The one-sided HP filter
detrends each data point by applying the filter only to the previous data. In
column (2), we estimate and remove two linear trends, a downward one pre-
1977 and an upward one post-1977. Each case gives a slightly stronger result
than in our baseline regression but a slightly weaker result than with the two-
sided HP filter. Finally, in column (3) we estimate the trend using a ten year
moving average. Compared with the AR(1) Kalman filter, this method, which is
also one-sided, yields a slightly weaker but still significant relationship between
inequality and subsequent excess returns.

As we saw in Section 3.2, controlling for the price-dividend (or price-earnings
ratio) mitigates to a small degree the estimated effect of inequality on subsequent
excess returns. But, in the post-1944 sample, when controlling for the price-
dividend ratio, CAY, and the other macro factors, the 1% coefficient increases
in magnitude (from -2.82 to -4.86) and becomes significant at the 1% level.
However, because the rich hold more stock than do the poor, high prices and the
resulting capital gains likely have some direct impact on the top income shares.
To see this point, Table 18 shows the correlations between top income shares
and classic return predictors. The only control variables significantly correlated
with the top share measures are log(P/D) and log(P/E). This relationship is
consistent both with the idea that rising income concentration pushes up stock
prices and that the rich are disproportionately exposed to stocks.

25In contrast to the Kalman filter, the HP filter uses past, current, and future data to obtain
a smooth trend, thereby potentially introducing a look-ahead bias. For example, since the
rich are likely to be more exposed to the stock market, when the stock market goes up at year
t+1, the rich will be richer than usual. But then the trend in the top income share will shift
upwards, and the year t deviation of the top income share will be lower. Therefore the low
income share at year t may spuriously predict a high stock return at t+1. This might explain
the generally stronger results in Table 16.

44



Table 13: Regressions of one year excess stock market returns on cgdiff (top 10%−top 10% (without capital gains)) and other predictors

Dependent Variable: t to t+ 1 Excess Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7)

Constant
17.89
(3.47)

16.66
(4.53)

18.29
(4.01)

19.08
(14.36)

24.09
(9.78)

18.75
(4.27)

23.17
(14.23)

cgdiff(10%)
-5.46***
(1.69)

-5.36***
(1.97)

-5.67***
(2.05)

-5.34**
(2.19)

-5.05***
(1.83)

-5.46***
(1.94)

-5.36**
(2.25)

Real GDP Growth
0.32
(0.40)

0.02
(0.71)

∆Cons. Growth Variance
-12.59
(15.07)

-26.88*
(16.13)

log(P/D)
-0.43
(4.84)

-1.58
(4.59)

log(P/E)
-2.58
(3.86)

CAY
1.53**
(0.73)

1.60**
(0.73)

Sample
1917-
-2014

1930-
-2014

1935-
-2014

1917-
-2014

1917-
-2014

1945-
-2014

1945-
-2014

R2 0.08 0.08 0.10 0.08 0.09 0.17 0.20

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). “cgdiff”
is top 10% minus top 10% (no cg), neither detrended, where top 10% is the pre-tax share of income going to the top 10% of earners (including capital gains).
Consumption growth volatility is from an AR(1) − GARCH(1, 1) model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the
consumption/wealth ratio.
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Table 14: Regressions of one year excess stock market returns on cgdiff (top 0.1%−top 0.1% (without capital gains)) and other predictors

Dependent Variable: t to t+ 1 Excess Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7)

Constant
13.44
(2.69)

12.93
(3.82)

13.20
(3.25)

17.07
(16.41)

16.13
(11.29)

13.25
(3.61)

27.16
(15.31)

cgdiff(0.1%)
-4.23**
(1.66)

-4.19**
(2.07)

-3.94*
(2.07)

-3.80
(2.55)

-4.01**
(1.86)

-3.60
(2.23)

-2.11
(2.41)

Real GDP Growth
0.24
(0.41)

-0.20
(0.81)

∆Cons. Growth Variance
-8.52
(15.24)

-22.07
(16.82)

log(P/D)
-1.27
(5.58)

-4.69
(4.60)

log(P/E)
-1.11
(4.39)

CAY
1.46**
(0.73)

1.42*
(0.79)

Sample
1913-
-2014

1930-
-2014

1935-
-2014

1913-
-2014

1913-
-2014

1945-
-2014

1945-
-2014

R2 0.05 0.05 0.05 0.05 0.05 0.10 0.13

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). “cgdiff” is
top 0.1% minus top 0.1% (no cg), neither detrended, where top 0.01% is the pre-tax share of income going to the top 0.1% of earners (including capital gains).
Consumption growth volatility is from an AR(1) − GARCH(1, 1) model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the
consumption/wealth ratio.
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Table 15: Regressions of one year excess stock market returns on top income shares and other predictors (using Kalman filter)

Dependent Variable: t to t+ 1 Excess Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Constant
8.49
(1.76)

8.40
(1.76)

8.44
(1.74)

9.10
(1.73)

7.62
(2.36)

8.75
(1.53)

22.65
(13.35)

19.10
(10.86)

9.53
(1.88)

25.18
(15.44)

Top 1%
-2.82**
(1.21)

-4.11**
(1.63)

-4.69***
(1.62)

-2.22*
(1.18)

-2.60**
(2.12)

-4.23**
(1.78)

-4.86***
(1.76)

Top 1% (p = 2)
-2.64**
(1.15)

Top 1% (no cg)
-3.78
(2.36)

Top 0.1%
-4.66***
(1.58)

Real GDP Growth
0.37
(0.37)

0.35
(0.79)

∆Cons. Growth Variance
-17.11
(16.43)

-30.05*
(17.18)

log(P/D)
-4.34
(3.94)

-4.98
(4.23)

log(P/E)
-3.98
(3.88)

CAY
1.85**
(0.75)

1.92***
(0.71)

Sample
1913-
-2014

1913-
-2014

1913-
-2014

1913-
-2014

1930-
-2014

1935-
-2014

1913-
-2014

1913-
-2014

1945-
-2014

1945-
-2014

R2 0.04 0.04 0.02 0.05 0.06 0.09 0.05 0.04 0.13 0.19

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). Unless
otherwise stated, Top 1% is the pre-tax share of income going to the top 1% of earners (including capital gains). “no cg” refers to the series that excludes capital
gains. The top shares series are detrended with the Kalman filter (p = 1) unless otherwise noted. Consumption growth volatility is from an AR(1)−GARCH(1, 1)
model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the consumption/wealth ratio.
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Table 16: Regressions of one year excess stock market returns on top income shares and other predictors (using HP filter)

Dependent Variable: t to t+ 1 Excess Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Constant
8.10
(1.73)

8.10
(1.72)

8.12
(1.73)

8.11
(1.70)

5.59
(2.34)

7.57
(1.59)

24.54
(13.26)

22.97
(11.30)

7.74
(1.67)

28.97
(14.50)

Top 1%
-4.21***
(1.24)

-5.22***
(1.70)

-5.54***
(1.50)

-3.93***
(1.18)

-4.24***
(1.26)

-4.03***
(1.46)

-4.21***
(1.46)

Top 1% (HP param.= 10)
-5.89***
(1.75)

Top 1% (no cg)
-4.40**
(2.18)

Top 0.1%
-6.00***
(1.53)

Real GDP Growth
0.60*
(0.36)

0.02
(0.72)

∆Cons. Growth Variance
-16.28
(15.90)

-27.81*
(15.76)

log(P/D)
-5.02
(3.89)

-6.38
(4.12)

log(P/E)
-5.57
(4.06)

CAY
1.59***
(0.58)

1.50**
(0.70)

Sample
1913-
-2014

1913-
-2014

1913-
-2014

1913-
-2014

1930-
-2014

1935-
-2014

1913-
-2014

1913-
-2014

1945-
-2014

1945-
-2014

R2 0.09 0.10 0.03 0.09 0.10 0.13 0.10 0.10 0.14 0.20

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). Unless
otherwise stated, Top 1% is the pre-tax share of income going to the top 1% of earners (including capital gains). “no cg” refers to the series that excludes capital
gains. The top shares series are detrended with the HP filter (smoothing parameter of 100 unless otherwise stated). Consumption growth volatility is from an
AR(1)−GARCH(1, 1) model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the consumption/wealth ratio.
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Table 17: Regressions of one year excess stock market returns on top income
shares (using different trend estimates)

Dependent Variable: t to t+ 1 Excess Market Return
Regressors (t) (1) (2) (3)

Constant
7.97
(1.89)

8.16
(1.68)

8.78
(1.87)

Top 1% (one-sided HP)
-3.63*
(1.87)

Top 1% (linear detrending)
-3.11***
(0.98)

Top 1% (10 year MA trend)
-1.97**
(0.96)

Sample
1936-
-2014

1913-
-2014

1922-
-2014

R2 0.04 0.09 0.04

Note: Newey-West standard errors in parentheses (k = 4). ***, **, and * indicate significance
at 1%, 5%, and 10% levels (suppressed for constants). Top 1% is the pre-tax share of income
going to the top 1% of earners (including capital income). The one-sided HP filter uses a
smoothing parameter of 100. The MA trend is a 10 year moving average. To linearly detrend,
we impose a downward time trend before 1977 and an upward one after.

49



Table 18: Pairwise correlations between explanatory variables

Top 1%
Kal.

cgdiff

(10%)
Top 1%
(no cg)

Top 0.1%
Kal.

cgdiff

(1%)
cgdiff

(0.1%)
%∆RGDP ∆CGV log(P/D) log(P/E) CAY

Top 1% (Kal.) 1.00
cgdiff(10%) 0.73* 1.00
Top 1% (no cg) 0.87* 0.44* 1.00
Top 0.1% (Kal.) 0.95* 0.75* 0.83* 1.00
cgdiff(1%) 0.73* 0.97* 0.41* 0.70* 1.00
cgdiff(0.1%) 0.68* 0.93* 0.39* 0.67* 0.99* 1.00
%∆RGDP 0.12 0.06 0.03 0.13 0.01 -0.04 1.00
∆CGV -0.22 -0.12 -0.19 -0.20 -0.08 -0.05 -0.01 1.00
log(P/D) 0.37* 0.62* 0.26* 0.33* 0.68* 0.70* -0.04 0.00 1.00
log(P/E) 0.16 0.39* 0.08 0.11 0.44* 0.46* -0.21 -0.04 0.74* 1.00
CAY 0.18 -0.05 0.17 0.17 -0.10 -0.13 -0.16 0.11 -0.21 -0.09 1.00

Note: This table shows annual frequency time series correlations for the explanatory variables used in Section 3.2. * indicates significance
at the 5% level. Top 1% (Kal.) is the pre-tax share of income going to the top 1% of earners (including capital gains), detrended with the
Kalman filter (p = 1). Top 0.1% (Kal.) is defined analogously. “no cg” refers to the Kalman filtered series that excludes capital gains.
“cgdiff” is top 1% minus top 1% (no cg), neither detrended. cgdiff(0.1%) and cgdiff(10%) are calculated analogously. Consumption
growth volatility (CGV) is from an AR(1) − GARCH(1, 1) model. %∆RGDP is the percentage change in real GDP. P/D and P/E are
the S&P500 price-dividend and price-earnings ratios. CAY is the consumption/wealth ratio. The samples are 1913-2014 for the top share
series and price ratios, 1930-2014 for GDP, 1935-2014 for consumption volatility, 1945-2014 for CAY.
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C Kalman filter

This appendix explains how we detrend the top income/wealth share using the
Kalman filter.

Let yt be the observed top income/wealth share data at time t. Let

yt = gt + ut, (C.1)

where gt is the trend and ut is the cyclical component. We conjecture that the
trend is an I(2) process, and the cycle is an AR(p) process, so

(1− L)2gt = ǫt, ǫt ∼ i.i.d. N(0, σ2
ǫ ), (C.2a)

φ(L)ut = wt, wt ∼ i.i.d. N(0, σ2
w), (C.2b)

where L is the lag operator and

φ(z) = 1− φ1z − · · · − φpz
p

is the lag polynomial for the autoregressive process. For concreteness, assume
p = 1 so φ(z) = 1− φ1z. Then (C.1) and (C.2) can be written as

[
gt

gt−1

]
=

[
2 −1
1 0

] [
gt−1

gt−2

]
+

[
ǫt
0

]
, (C.3a)

yt = φ1yt−1 + gt − φ1gt−1 + wt. (C.3b)

Letting ξt = (gt, gt−1)
′, vt = (ǫt, 0)

′, xt = yt−1, A = φ1, F =

[
2 −1
1 0

]
, and

H =
[
1 −φ1

]
, (C.3) reduces to

ξt = Fξt−1 + vt, (C.4a)

yt = Axt +Hξt + wt. (C.4b)

(C.4a) is the state equation and (C.4b) is the observation equation of the state
space model. We can then estimate the model parameters φ1, σ

2
ǫ , σ

2
w as well as

the trend {gt} by maximum likelihood: see Chapter 13 of Hamilton (1994) for
details. The extension to a general AR(p) model is straightforward.

D International data

Unless otherwise noted, the top income share series is the “Top 1% income
share” excluding capital gains from Alvaredo et al. (2015) (see also their docu-
mentation), the price index is the Haver/IMF CPI, and the interest rate is the
Haver “Deposit Rate” series.

1. Argentina (ARG)

Coverage 1998-2005.

Local Currency Deposit Rate 30-59 day deposit rate.

2. Australia (AUS)

Coverage 1970-2011.

Local Currency Deposit Rate 1972-2011.
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3. Canada (CAN)

Coverage 1970-2011.

1% Income Share LAD series post-1995.

Local Currency Deposit Rate 90 day deposit rate. 1971-2011.

4. China (CHN)

Coverage 1993-2004.

Local Currency Deposit Rate 1 year deposit rate.

5. Colombia (COL)

Coverage 1994-2011.

6. Denmark (DNM)

Coverage 1971-1973, 1975-2011.

1% Income Share “Adults” series.

Local Currency Deposit Rate 1980-2002.

7. Finland (FIN)

Coverage 1988-2010.

1% Income Share “Tax data” series pre-1993 and “IDS” 1993–. We average the two
for 1990-1992.

Local Currency Deposit Rate 23 month deposit rate, 1988-2005.

8. France (FRA)

Coverage 1970-2010.

9. Germany (GER)

Coverage 1972, 1975, 1978, 1981, 1984, 1986, 1990, 1993, 1996, 1999, 2002-2009.

Local Currency Deposit Rate 3 month deposit rate, 1978-2003.

Price Index GDP deflator pre-1991.

10. India (INI)

Coverage 1993-2000.

Local Currency Deposit Rate Bank discount rate from Haver.

11. Indonesia (INO)

Coverage 1988, 1991, 1994, 1997, 1999-2005.

Local Currency Deposit Rate 3 months deposit rate.

12. Ireland (IRE)

Coverage 1988-2010.

Local Currency Deposit Rate 1988-2006.

Price Index http://www.cso.ie

13. Italy (ITA)

Coverage 1975-1996, 1999-2010.

Local Currency Deposit Rate 1983-2004.

14. Japan (JPN)

Coverage 1970-2011.

Local Currency Deposit Rate 3 month deposit rate.

15. South Korea (KOR)

Coverage 1996-2013.
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Local Currency Deposit Rate 1 year deposit rate.

16. Malaysia (MAL)

Coverage 1989, 1994-1996, 2001-2004, 2006, 2010-2013.

Local Currency Deposit Rate 3 month deposit rate.

Price Index blabla

17. Mauritius (MAU)

Coverage 2003-2009, 2011-2012.

Local Currency Deposit Rate 3 month deposit rate.

18. Netherlands (NET)

Coverage 1971, 1974, 1976, 1978, 1982, 1986, 1990-2013.

19. New Zealand (NZL)

Coverage 1988-2012.

1% Income Share “Adults” series.

Local Currency Deposit Rate 6 month deposit rate, 1990-2012.

20. Norway (NOR)

Coverage 1970-2012.

Local Currency Deposit Rate 1979-2010.

21. Portugal (POR)

Coverage 1990-2006.

Local Currency Deposit Rate 180-360 day deposit rate, 1990-2000.

22. South Africa (SAF)

Coverage 1993-1994, 2003-2012.

1% Income Share Pre-1990, “Married Couples and Single Adults” series. Post-1990,
“Adults” series.

Local Currency Deposit Rate 88-91 day deposit.

23. Singapore (SIN)

Coverage 1970-1992, 1994-2013.

Local Currency Deposit Rate 3 month deposit rate, 1977-2013.

Price Index blabla

24. Spain (SPA)

Coverage 1982-2013.

Local Currency Deposit Rate 6-12 month deposit rate, 1982-2013.

25. Sweden (SWE)

Coverage 1970-2013.

Local Currency Deposit Rate 1970-2006.

26. Switzerland (SWI)

Coverage 1970, 1972, 1974, 1976, 1978, 1980, 1982, 1984, 1986, 1988, 1990, 1992,
1994, 1996-2011.

Local Currency Deposit Rate 3 month deposit rate,

Price Index 1982-2011.

27. Taiwan (TAI)

Coverage 1988-2014.
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Local Currency Deposit Rate Missing.

Price Index CPI, Datastream.

28. United Kingdom (UNK)

Coverage 1970-2013.

1% Income Share Pre-1990, “Married Couples and Single Adults” series. Post-1990,
“Adults” series.

Local Currency Deposit Rate 90 day T-bill rate.

Price Index GDP deflator pre-1988.

29. United States (USA)

Coverage 1970-2013.

Local Currency Deposit Rate 3 month T-bill rate.

E Additional international results

Table 19: Country fixed effects panel regressions of one year stock returns on
top income shares

Dependent Variable: t to t+ 1 Stock Market Return
Regressors All Advanced IIPS EME

Top 1% (t)
-1.45**
(0.67)

-1.05*
(0.56)

-5.42**
(1.47)

-5.53*
(2.45)

Time Trend No No No No
Country FE Yes Yes Yes Yes
Obs. 790 699 106 91
R2 (w,b) (.01,.11) (.00,.06) (.05,.06) (.04,.18)

Note: Clustered standard errors in parentheses, ***1%, **5%, *10%. R2 (w,b): Within and
between R-squared. Constants suppressed. Top 1% is the pre-tax share of income going to
the top 1% of earners (excluding capital gains). The column headings refer to the countries
included (see the main text for details). Sample: 1969-2013 (see Appendix D for country
details).
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