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Abstract

This study offers a Bayesian factor modelling framework to obtain the exact distri-

bution of pricing errors in the bounds of Arbitrage Pricing Theory with the aim of

observing, first if the usage of a dynamic model, second increasing the number of

factors beyond one contributes to a significant reduction of the pricing errors ob-

tained. In doing so, we compare the pricing errors we get from a static and dynamic

latent factor model, while adopting the Fama-French data for US monthly industry

returns. We observe that the pricing errors increase slightly using a dynamic factor

model, when compared with the static factor model. Besides, inclusion of factors

beyond the first one pose an improvement with respect to the pricing errors both

for the static and the dynamic factor model. When we introduce time-varying betas

to the dynamic factor model we get the lowest pricing errors at t = 1 compared to

static and dynamic model with fixed betas, where the mean pricing errors decreased

by 33 percent compared to the static model. Yet pricing errors also become time

varying as their dynamics now depend on the dynamics of beta.
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1 Introduction

Factor models have been very popular in finance with applications in the area of Arbitrage

Pricing Theory (APT) and especially Capital Asset Pricing Model (CAPM) of asset prices.

APT implies that expected asset return is a linear function of the risk premium on systematic

factors of economy. Starting point of the usage of factor models in applications to APT

goes back to King (1966) who shows that there are market and industry factors in security

returns. One of the commonly cited rigorous proofs of APT was introduced by Ross (1976)

providing an approximate relation for expected asset returns with an unknown number of

unidentified factors in a competitive and frictionless market.1 Until Chen et al. (1986),

empirical applications of APT were based on factor analysis of security returns. Chen et al.

(1986) show how APT may be estimated and applied, using macroeconomic factors.2

While the academic literature on APT is developing on a faster pace, another line of

research is concerned with testing whether the models developed using APT can represent

the real world of asset pricing. In this respect, Gehr (1975) publishes the first test of APT

even before Ross (1976) was published, and afterwards his work has been cited by every

study accomplished in the area.3 One of the arguments against the APT has been the

approximate nature of its pricing equation. While Chen and Ingersoll (1983) provide some

arguments for an exact pricing relationship, Dybvig (1983) and Grinblatt and Titman (1983)

provide bounds on the approximation error, also known as the pricing error. One of the most

prominent study on pricing errors is by Geweke and Zhou (1996) who analyze the exact pos-

terior distribution for the pricing errors using a Bayesian static factor model. In this respect,

this study extends the analysis of Geweke and Zhou (1996) one-step further by obtaining

the distribution of pricing errors in a dynamic setup using similar Gibbs Sampling/Data

Augmentation methods. In this way, we aim to observe if the pricing errors obtained from

a static model will diminish using a model closer to real life asset pricing dynamics. This

1Chamberlain (1983) and Ingersoll (1984) are other significant treatments of APT. For example, Connor (1984) derives an
equilibrium (as opposed to no-arbitrage) version of APT. Nawalkha (1997) provides a good synthesis of many issues related to
CAPM, multifactor models, and APT.

2Burmeister and Wall (1986) also use macroeconomic factors to explain APT.
3See Chen (1983) for another discussion on testing APT. While, Dhrymes et al. (1984) criticise empirical tests of APT,

Roll and Ross (1984) is a response to Dhrymes et al. (1984), which gives valuable insight on the issue.
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paper will present if there will be improvements of pricing error over a static Bayesian latent

factor model, and show that when we include time-varying dynamics to a static model the

density of the pricing error also varies over time. Therefore the pricing error measure ala

Geweke and Zhou (1996) looses its significance to use as a comparison unit over different

models. Therefore, we only compare static factor model with the dynamic factor model that

has fixed betas.

Following the multifactor pricing within APT literature, it can easily be observed that

linear static factor models dominate the literature and they are the most widely used tools

to value return on risky assets. By introducing a dynamic model, co-movement of different

assets will also be incorporated into the analysis. Although the theory maintains a linear and

stable relationship between risk factors and returns, it does not postulate a static structure for

the factors. This is perhaps not very surprising because the theoretical underpinnings of the

unconditional APT reveal that time-invariant linear factor structures are only obtained when

one imposes strong assumptions on the underlying probability distributions and investors’

attitudes towards risk. In that respect, if the true data generating process for returns has a

dynamic structure, then pricing errors obtained from static factor model will be diminished

significantly with reduction of misspecification error, as using a static data generating process

for a dynamic procedure will cause pricing errors to increase. However, one should be very

cautious about introduction of extra parameters to the model with the usage of dynamic

structure, as the introduction of wrong dynamics will cause the estimation error to increase.

Yet the shift of focus from static factor models to dynamic factor models resulted from

the basic difficulty of examining the empirical support for the static models especially the

CAPM, which is related to the fact that the real world is inherently dynamic and not static.

Many studies being published in the area of APT raised some doubts about empirical

validity of APT.4 While tests of APT concerned many academicians, a similar line of debate

created an important literature about the number of factors in APT. Theory of APT did

not insert any clear space on the exact number of factors, that will complicate the misspec-

ification issue created within modelling procedures. Lack of agreement on the specification

4See Shanken (1982).
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of the number of factors resulted in development of new modelling techniques and testing

procedures given the fact that we can use the pricing errors obtained from models with dif-

ferent number of factors as a means to see how well the new model fits into the theory. In

this respect we increase the number of factors in each model we estimate, to observe if the

pricing errors of estimated models will be affected by using a different factor structure.

Our study contributes to a body of research focusing on different aspects of the asset

pricing, financial econometrics and Bayesian modelling literature. The motivation and aim

of this paper is closely related to the topic of improving models utilized in APT, making

them closer to real asset market dynamics, and examining how many relevant factors explain

the pricing equations and minimise the pricing errors. We use Fama and French monthly

industry portfolios in the estimation of all of our models as this data set is the most employed

set within the APT literature.5 We model monthly industry portfolio returns, first with a

static Bayesian latent factor model, then with a dynamic Bayesian factor model and lastly

with a dynamic model where the factor loadings are time-varying. In all of the models used

the latent factors and the loading are estimated in one-step. In addition to that, in line with

the two studies by Shanken (1992b), and Geweke and Zhou (1996), the measure for pricing

errors are adjusted utilizing the approach that has been offered in those two studies, and the

distribution for pricing errors is analyzed accordingly.

The rest of this paper is organized as follows. Section 2 lays out a sample version of

the Fama and French monthly industry portfolios data set used and gives brief descriptive

statistics. In Section 3, we introduce static Bayesian factor model and we explain estimation,

identification and pricing errors we get from it. In Section 4, we extend the static factor

model introduced in the previous section, estimate and identify a dynamic factor model and

get a new set pricing errors. In section 5, we introduce time varying betas to the dynamic

factor model and get pricing errors that change over time. Section 6 concludes.

5 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html for the specifics of the data set.
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2 Data and Descriptive Statistics

Fama and French (1997) find that the risk loadings of the industry sorted portfolios exhibit

great time variation and are difficult to be estimated precisely. To solve this problem,

economists added new factors to the three factor model of Fama and French and worked

out if the additional factor can solve the problem of variation. Despite the continuing

controversy about the interpretation of Fama and French results, their three factor model

remains a cornerstone in the literature on cross-sectional asset pricing tests. Yet, there is

no model that performs better in explaining the cross-section of average returns on size and

book to market sorted portfolios. Since their model is the most referred in the asset pricing

literature, we use Fama and French industry portfolio data set as a benchmark. Usage of this

specific data set will simplify comparing our results to the results of similar works published

within the framework of APT literature.

While estimating the latent factor models and extracting the distribution for the pricing

errors we use three groups of industry portfolios. All three groups are the returns on the

value weighted industry portfolios grouped by Fama and French.6

In all our estimations we used three groups of industries of which the first group is

composed of five, second group is composed of ten and finally third group of data is composed

of seventeen industries.7 By increasing the number of cross sections, we will be able to

observe how the pricing errors behave accordingly. Portfolio returns are monthly returns

from January 1990 to May 2005; as a result the times series dimension of data set is 185.

6The empirical results obtained from all of the models utilized in the paper yielded qualitatively and quantitatively very
similar posterior distributions for pricing errors when equal weighted portfolios are used as data set, so we do not illustrate the
results related to equal weighted industry portfolio data set.

7Definitions of the industries are given in Appendix A.
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Table 1: Descriptive Statistics of Industry Portfolio Returns

5 Industry Portfolio Returns*

Portfolios µ σ Skewness Kurtosis JB-prob.** Autocorrelation
ρ1 ρ2 ρ3 ρ4 ρ12 ρ24

Industry 1 0.950 1.210 -0.280 3.980 9.91** 0.073 -0.035 -0.089 -0.123 0.077 0.092
Industry 2 1.000 1.200 -0.310 3.540 5.280 -0.045 -0.010 -0.051 -0.064 0.084 0.118
Industry 3 1.120 1.260 -0.030 3.170 0.250 -0.034 0.044 0.013 -0.064 0.054 -0.003
Industry 4 0.980 1.720 -0.390 3.920 11.20** 0.014 -0.012 0.081 -0.081 -0.026 0.057
Industry 5 1.090 1.640 -0.510 4.820 33.35** 0.040 -0.012 -0.066 -0.136 0.007 0.009

10 Industry Portfolio Returns*

Portfolios µ σ Skewness Kurtosis JB-prob.** Autocorrelation
ρ1 ρ2 ρ3 ρ4 ρ12 ρ24

Industry 1 0.990 1.130 -0.150 3.780 5.470 0.053 -0.020 -0.139 -0.088 0.119 0.146
Industry 2 0.830 0.980 -0.300 3.470 4.380 0.083 -0.069 0.006 -0.094 0.072 0.003
Industry 3 1.070 1.400 -0.470 3.670 10.14** -0.016 -0.021 -0.085 -0.113 0.081 0.097
Industry 4 1.080 0.630 0.600 4.070 20.00** -0.095 -0.051 -0.065 -0.037 0.069 0.106
Industry 5 1.280 1.420 -0.290 3.500 4.450 0.002 -0.002 0.042 -0.090 -0.022 0.048
Industry 6 0.560 1.080 -0.060 4.290 12.87** 0.042 -0.010 0.113 -0.084 0.004 0.098
Industry 7 1.020 0.890 -0.170 3.260 1.380 0.084 -0.049 -0.044 -0.110 0.068 0.039
Industry 8 1.120 1.260 -0.030 3.170 0.250 -0.034 0.044 0.013 -0.064 0.054 -0.003
Industry 9 0.840 1.130 -0.320 3.420 4.530 0.045 -0.072 0.091 0.031 0.012 0.089
Industry 10 1.090 1.640 -0.510 4.820 33.35** 0.040 -0.012 -0.066 -0.136 0.007 0.009

17 Industry Portfolio Returns*

Portfolios µ σ Skewness Kurtosis JB-prob.** Autocorrelation
ρ1 ρ2 ρ3 ρ4 ρ12 ρ24

Industry 1 1.010 1.080 -0.090 4.200 11.39** 0.044 -0.038 -0.152 -0.091 0.138 0.133
Industry 2 0.860 0.900 0.070 3.380 1.290 -0.026 -0.046 -0.002 -0.126 0.051 0.027
Industry 3 1.050 0.620 0.600 3.970 18.46** -0.101 -0.034 -0.058 -0.015 0.062 0.087
Industry 4 0.790 1.270 -0.320 4.420 18.66** 0.206 -0.058 -0.129 -0.134 0.105 0.029
Industry 5 0.680 0.930 -0.490 3.700 11.08** -0.001 0.017 -0.020 -0.145 0.162 0.133
Industry 6 0.860 1.060 0.210 4.120 11.04** -0.042 -0.043 -0.066 -0.110 0.068 0.127
Industry 7 1.140 1.770 -0.160 2.940 0.830 -0.036 0.030 -0.017 -0.101 0.095 0.014
Industry 8 1.190 1.220 -0.150 4.190 11.61** 0.053 -0.085 -0.002 -0.114 0.136 0.087
Industry 9 0.790 0.560 0.120 5.070 33.45** -0.018 -0.020 -0.004 -0.069 0.009 0.009
Industry 10 0.920 1.010 -0.420 4.300 18.49** 0.107 -0.035 -0.080 -0.080 0.046 0.075
Industry 11 1.240 1.050 -0.490 4.230 19.18** 0.005 0.005 0.064 -0.077 0.026 0.059
Industry 12 0.890 1.110 -0.200 3.340 2.180 0.067 -0.087 0.023 -0.071 0.055 -0.032
Industry 13 1.020 1.620 -0.650 4.630 33.58** 0.072 -0.006 -0.031 -0.103 0.008 0.094
Industry 14 0.840 1.130 -0.320 3.420 4.530 0.045 -0.072 0.091 0.031 0.012 0.089
Industry 15 1.040 1.020 -0.100 3.180 0.550 0.088 -0.045 -0.060 -0.084 0.080 0.059
Industry 16 1.310 1.770 -0.340 4.740 26.84** 0.016 -0.001 -0.053 -0.108 -0.003 -0.015
Industry 17 0.760 1.440 -0.440 3.560 8.38** 0.055 -0.049 0.045 -0.110 -0.049 0.073

*Industry definitions are given in Appendix A.

**Denotes the rejection of the null hypothesis of normality at the 5% level of significance, JB stands for Jarque-Bera.
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Table 2: Principal Component Analysis

5 Industry Portfolio Returns*

Component Eigenvalue Difference Proportion Cumulative
1 3.516 2.950 0.703 0.703
2 0.565 0.050 0.113 0.816
3 0.515 0.260 0.103 0.919
4 0.259 0.110 0.052 0.971
5 0.146 – 0.029 1.000

10 Industry Portfolio Returns*

Component Eigenvalue Difference Proportion Cumulative
1 5.579 4.290 0.558 0.558
2 1.288 0.410 0.129 0.687
3 0.873 0.270 0.087 0.774
4 0.607 0.120 0.061 0.835
5 0.489 0.120 0.049 0.884
6 0.373 0.080 0.037 0.921
7 0.289 0.070 0.029 0.950
8 0.218 0.060 0.022 0.972
9 0.157 0.030 0.016 0.987
10 0.126 – 0.013 1.000

17 Industry Portfolio Returns*

Component Eigenvalue Difference Proportion Cumulative
1 9.515 7.900 0.559 0.559
2 1.613 0.200 0.095 0.655
3 1.417 0.560 0.083 0.783
4 0.862 0.240 0.051 0.789
5 0.618 0.120 0.037 0.825
6 0.494 0.030 0.029 0.854
7 0.465 0.100 0.027 0.882
8 0.366 0.100 0.022 0.903
9 0.263 0.000 0.016 0.918
10 0.260 0.020 0.015 0.934
11 0.237 0.030 0.014 0.948
12 0.203 0.010 0.012 0.960
13 0.195 0.030 0.011 0.971
14 0.162 0.020 0.009 0.981
15 0.143 0.040 0.008 0.989
16 0.102 0.020 0.006 0.995
17 0.084 – 0.005 1.000

*Industry definitions are given in Appendix A.

Mean, standard deviation and autocorrelation of the data set is presented in Table (1).

The mean for the five industry portfolio ranges from 0.95 percent per month to 1.12 percent

per month. The lowest standard deviation is found to be 1.20. As shown in the descriptive

statistics table, there is evidence of autocorrelation in the industry returns. The mean for
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the ten industry portfolio ranges from 0.56 percent per month to 1.28 percent per month.

The lowest standard deviation is found to be 0.63. Considering the mean for seventeen

industry portfolio, the mean for the portfolios range from 0.68 percent and 1.31 percent.

Last columns of Table (1) give us the autocorrelation coefficients of the industry portfolio

data set. A close examination of the coefficients between ρ1 to ρ24 signals an autocorrelation

structure for the data set used.

Table (2) lays out the principal component analysis of the Fama-French industry portfo-

lios used for the analysis in the coming sections of the paper. For the five industry portfolio,

the difference between the largest eigenvalue 3.52, and the second one 0.56, is substantially

large. In addition to that, the first eigenvalue explains 70 percent of the total variation of

returns. Principal component analysis points out that for the five industry portfolio returns

the first component explains significant amount of the total variation. If we examine ten in-

dustry and seventeen industry portfolio results, the first component explains the biggest total

variation and the difference between the first and the second eigenvalue decreases sharply.8

3 Static Model and Pricing Errors

Let us introduce the general form of the static factor model.9 In its most commonly used

form, APT provides an approximate relation for expected asset returns with an unknown

number of unidentified factors. One of the important assumptions behind APT is that the

markets are competitive and frictionless. In the purest sense, the return generating process

8Harding (2008) explains the bias of APT models estimated by PCA towards a single factor model.
9The model used in this section of the paper, i.e. methodology, inference and identification is the same used in Geweke

and Zhou (1996).
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for asset returns being considered for the system of N assets is:

rt = α + βft + εt (1)

E[ft] = 0

E[ftf
′
t ] = I

E[εt|ft] = 0

E[εtε
′
t|ft] = Σ

In the system equation rt is an (N × 1) vector of returns, α is an (N × 1) vector with

α = [α1 α2 ... αN ]
′, β is an (N ×K)matrix with β = [β1 β2 ... βN ]

′, ft is an (K×1)

vector and εt is an (N ×1) random vector with εt = [ε1 ε2 ... εN ]
′. It is further assumed

that the factors account for the common variation in asset returns so that the disturbance

term for large well-diversified portfolio vanishes. This requires that the disturbance terms

be sufficiently uncorrelated across assets. We also make the standard assumptions that εt

and ft are independent and both follow multivariate normal distributions.

The absence of riskless arbitrage opportunities implies an approximate linear relationship

between the expected asset returns and their risk exposures as the number of assets satisfying

Equation (1) tends towards infinity:10

αi ≈ λ0 + βi1λ1 + ...+ βiKλK , i = 1, ..., N, (2)

where λ0 is the intercept of the pricing relationship and λk is the risk premium on the

k-th factor. Equation (2) is the implication of no asymptotic arbitrage, and in contrast

with the much stronger assumption of competitive equilibrium, Connor’s (1984) equilibrium

10Ross (1976), Chamberlain and Rothschild (1983).
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version APT replaces the approximation with an equality.11 Considering, the measurement

of pricing errors, we will use the measure offered by Geweke and Zhou (1996):

Q2 =
1

N

N
∑

i=1

(αi − λ0 − βi1λ1 − ...− βiKλK)
2. (3)

Q2 given in Equation (3) is the average of the squared pricing errors across the assets.

Under the strict assumption of competitive equilibrium, Equation (2) becomes an exact

relationship, implying that pricing error (Q) is zero. However, for the asymptotic APT,

the pricing error converges to zero as the number of assets approach to infinity. On the

other hand, if the competitive equilibrium assumption does not hold, pricing error will not

converge to zero as long as the number of assets is finite Shanken (1992a).

Following Geweke and Zhou (1996), conditional on α and β, the minimised mean squared

pricing error can be written as:

Q2 =
1

N
α′[IN − β∗(β′∗β∗)−1β′∗]α. (4)

where β∗ = (1N , β) and 1N is an N × 1 vector of ones.

By utilizing the maximum likelihood techniques, the exact sampling distribution of the

pricing error is difficult to determine. However, the exact posterior density is easy to con-

struct using Bayesian MCMC methods. Therefore, for both the static and dynamic Bayesian

factor models α and β are sampled with each iteration of the Gibbs sampler. Since the pric-

11Ross (1976) assumes that the market, which consists of infinitely many securities is efficient. This assumption is needed
to make sure that the total risk of a portfolio is diversifiable. The approximation (≈) in the APT pricing equation arises
in economies with finite number of securities because the total risk (variance) of the arbitrage portfolio is not completely
diversifiable in a finite economy. Ross (1976), Dybvig (1983) and Grinblatt and Titman (1983) provide theoretical arguments
to show that the average pricing error would empirically be negligibly small. Shanken (1982) argues that even if the average
pricing error is small, individual pricing errors may be large. Dybvig and Ross (1985) show that Shanken’s arguments hold
under very special conditions, which are not likely to be encountered in real situations. Robin and Shukla (1991) show that the
pricing errors for some securities are large. A version of the APT based on competitive equilibrium (Chen and Ingersoll (1983),
Connor (1984), Wei (1988)), rather than no-arbitrage, shows that the strict pricing equality will hold if one of the factors is the
market or a residual market factor. Most APT applications assume that the pricing errors are negligible and use the pricing
equation as if it were a strict equality.
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ing error is a function of α and β, it is trivial to compute and store a Markov Chain for the

pricing error for each iteration.12 The resulting sample provides the exact posterior density

of the pricing error. The availability of an exact posterior density for a function of param-

eters is a significant advantage of the Bayesian approach. In this framework, we derive the

posterior distribution of Q for both static and dynamic factor model and use this measure

as an informal metric to determine whether pricing errors are economically significant. We

then compare model performance using this informal metric.13

Static factor model and the basic assumptions are simply illustrated with Equation (1)

above. Letting Θ be the parameter space that is associated with α, β and Σ, the joint

posterior density function of the parameters based on Bayes’ rule will be:

P (α, β,Σ) ∝ |Σ|−1/2f(R|α, β,Σ)

where, R is the T ×N matrix returns and f(R|α, β,Σ) is the density of the data condi-

tional on the parameters. We stated that εt ∼ N(0,Σ) and ft ∼ N(0, I). Consequently,

R|Θ ∼ N(fβ′, |Σ)

f(R|Θ) = [(2π)TN |ββ′ + |Σ|T ]−1/2exp{−0.5tr(ββ′ + Σ)−1R′R}

and the unconditional variance of rt is, Ω = ββ′ + Σ

The prior density for the factor scores is given by βi : Nk(βi, Bi
−1
). The prior distribution

12Convergence statistics are illustrated in Appendix B.
13For example, if Q is found to have its posterior mass concentrated at 5 percent for monthly data, this implies that the

average pricing error is likely to be about 5 percent for monthly returns. Because, on the average, the asset returns are only
about 1 percent for monthly data, 5 percent average pricing error will be considered as too high and so the APT restrictions
will be rejected (Geweke and Zhou (1996)).
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for Σ will be accordingly; we will assign an inverse gamma distributions for the σ2
i s, that is

σ2
i ∼ IG(ν0i/2, ν0is

2
0i/2)

The information concerning parameters can be controlled by the magnitude of shape

parameter of inverted gamma distribution.

For the static factor model used in this part, we should address a small statement about

the identification, i.e. the model is invariant under transformations of the form β∗ = βP ′

and f ∗
t = Pft, where P is any orthogonal K× k matrix. There are different ways to identify

the model by imposing constraints on β. The identification method used in this paper is to

constrain β in such a manner that the matrix β is a block lower triangular matrix, assumed

to be of full rank, with diagonal elements strictly positive. That is:

β =

















β11 0 . . . 0

β21 β22 . . . 0
...

...
...

...

βK1 βK2 . . . βKK

















where βii > 0, i = 1, ..., K. This condition uniquely identifies the loadings and the

associated factors. This type of identification procedure is utilised in Geweke and Zhou

(1996) and Aguilar and West (2000). In this form of identification, the loading matrix has

r = NK−K(k−1)/2 free parameters. With N non-zero σi parameters, the resulting factor

form of Ω has N(K + 1) −K(K − 1)/2 parameters, compared with the total N(N + 1)/2

in an unconstrained model where K = N . In this respect the constraints provide an upper

bound on the number of factors that has to be estimated.14

Expected return pricing errors or α’s are useful characterisation of a model’s performance.

Analysing them helps to guard against accepting an uninteresting model: one that prices

14The constraint is N(N + 1)/2−N(K + 1) +K(K − 1)/2 ≥ 0 provides an upper bound on K. For example N = 5 implies
K ≤ 2, N = 17 implies K ≤ 8, and so on.
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assets badly, but produces large enough standard errors so as not to be rejected by the certain

model comparison criteria. It also helps to guard against the equally dangerous possibility

of rejecting a good model: one that produces economically tiny pricing errors, with such

smaller standard errors that the model is still statistically rejected.

Pricing errors may occur either because the model is viewed formally as an approxima-

tion, as in many linear factor pricing models, or because the empirical counterpart to the

theoretical APT factor model is error ridden.15 Pricing errors or closely related expected re-

turn errors are commonly used to assess asset pricing models. For instance, in linear factors

of returns the principle of no-arbitrage is used to characterise the sense in which security

market prices can be approximately represented in terms of the prices of a small number of

factors.16

After getting the posterior distribution for both α and β, it is straightforward to find the

posterior distribution of a function of them that is Q. The posterior mean of pricing error

is provided in Table (3) for static factor model and for all of the industry portfolios used

in estimation. The results are reported for the whole sample period, that is from January

1990 to May 2005. The first column of the table refers to the number of factors used when

estimating the model.17 The second and the third column of Table (3) report the posterior

mean and the standard deviation of Q.

15See Roll’s (1977) critique of the single-period capital asset pricing model.
16See, Ross (1976), Huberman (1982), Chamberlain and Rothschild (1983) and Shanken (1987).
17 Before deciding on the number of factors we have used the Information criteria proposed by Bai and Ng 2002. However,

the Information Criteria that Bai and Ng has proposed suffers from a severe finite sample problem as it is derived under the
condition that both N → ∞ and T → ∞. Therefore, we switched to BIC for model comparison that has better small sample
properties. Accordingly, for all three data sets, BIC concluded with four factors. It is common in asset pricing literature to use
three factors. Combining the information we got from the BIC and the number of factors that has been used in the literature,
we decided not to increase the number of factors beyond four.
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Table 3: Average Pricing Errors with Static Factor Model

5 Industry Portfolio Returns*

Factors Q Std. Error 90% Interval Quantiles
0.025 0.25 0.5 0.75 0.975

K=1 0.1824 0.0805 [0.0499, 0.3147] 0.054 0.124 0.174 0.231 0.363
K=2 0.1647 0.0847 [0.0254, 0.3041] 0.030 0.100 0.155 0.219 0.351

10 Industry Portfolio Returns*

Factors Q Std. Error 90% Interval Quantiles
0.025 0.25 0.5 0.75 0.975

K=1 0.2902 0.0793 [0.1598, 0.4207] 0.153 0.232 0.285 0.341 0.463
K=2 0.2644 0.0772 [0.1373, 0.3916] 0.129 0.209 0.258 0.315 0.429
K=3 0.2383 0.0742 [0.1163, 0.3603] 0.108 0.185 0.233 0.286 0.396
K=4 0.2210 0.0693 [0.1069. 0.3350] 0.098 0.172 0.217 0.266 0.369

17 Industry Portfolio Returns*

Factors Q Std. Error 90% Interval Quantiles
0.025 0.25 0.5 0.75 0.975

K=1 0.3329 0.0641 [0.2275, 0.4383] 0.222 0.287 0.328 0.373 0.473
K=2 0.3005 0.0619 [0.1987, 0.4023] 0.190 0.258 0.296 0.339 0.435
K=3 0.2607 0.0491 [0.1791, 0.3422] 0.171 0.227 0.258 0.292 0.365
K=4 0.2415 0.0469 [0.1644, 0.3187] 0.154 0.210 0.239 0.272 0.339

*Industry definitions are given in Appendix A.

Mean of Q seems rather small when compared with the magnitude of expected returns,

showing that there are small deviations in expected returns across the industries. We also

provide the 90 percent Bayesian confidence interval. As can be seen from the table, the

difference between mean and confidence interval is not significant, which indicates that the

posterior density of the pricing error is concentrated heavily around its mean. What is

striking about results is that the mean of the pricing error declines when we increase the

number of factors. Although, reduction is not very significant, the results suggest that the

pricing errors decline with the introduction of new factors for the static factor model. For the

5 industry monthly returns mean pricing errors decrease 9.7 percent with the introduction

of the second factor. The decrease of pricing errors between the first and fourth factor is

24 percent for the 10 industry returns and this decrease is 28 percent for the 17 portfolio

industry returns.
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4 Dynamic Model and Pricing Errors

The shift of focus from static factor models to dynamic factor models resulted from the basic

difficulty of examining the empirical support for the static models, especially the CAPM,

which is related to the fact that the real world is inherently dynamic and not static. There-

fore, within this part of the paper we will use the same metric Q to get the density of

the pricing errors but in a more complex model where the factors have a lag structure. In

the dynamic factor modelling context, the analogue of model that has been represented in

Equation (1) can be written as:

rt = α + β(L)ft + εt (5)

ft,K = φ1ft−1,K + ...+ φqft−q,K + ut, k = 0, 1, ..., n

E[ft] = 0

E[ftf
′
t ] = I

E[ut|ft] = 0

E[εtε
′
t|ft] = Σ

Σ = diag(σ2
1, ..., σ

2
N)

where β(L) is an (N ×K) matrix of polynomials in the lag operator, and the errors εt

may be serially, but not necessarily cross sectionally correlated and ut is an i.i.d. innovation,

uncorrelated across factors. We allow the factor loading β(L) to be a lag polynomial to

capture the idea that different sectors in the portfolio may respond to the common factors

with different lags. In the model, the factors are assumed to evolve as independent AR(q)

processes that are invariant over time.

In contrast with the classical model, idiosyncratic errors will also have a different structure
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in the dynamic factor model setup, given as:

εi,t = ψi1εi,t−1 + ...+ ψiqεi,t−q

The notation that will be utilised within the framework of dynamic factor model will be

accordingly:

F = [f1, ..., fK ]
′ Φ =











φ11 . . . φ1q

...
. . .

...

φ1q . . . φqq











Ψ =











ψ11 . . . ψ1q

...
. . .

...

ψ1q . . . ψqq











β =











β11 . . . β1K
...

. . .
...

β1N . . . βNK











σ2
f =











σ2
1 . . . 0
...

. . .
...

0 . . . σ2
k











σ2
i =











σ2
1 . . . 0
...

. . .
...

0 . . . σ2
N











and α = [α1, ..., αN ].

In the model defined above, εt and ft are assumed to be independent and follow multivari-

ate normal distributions. In addition, all the innovations of the model are assumed to be zero

mean, contemporaneously uncorrelated random variables. Therefore, all the comovement is

mediated by the factors, which in turn all have autoregressive representations.

In the dynamic factor model literature (both Classical and Bayesian), estimation and

identification of latent factors and loadings have been done mostly by utilising Kalman fil-

tering techniques. For instance, Stock and Watson (1989, 1992, 1993) use some classical
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statistical techniques employing the Kalman filter/smoother to estimate the model parame-

ters and extract an estimate of the unobserved factor. However, using the Kalman filter to

estimate the model becomes more difficult as the computation of the state equation becomes

more and more cumbersome with increasing number of factors. In that respect, an alterna-

tive procedure can be based on a recent development in the Bayesian literature on missing

data problems, that of “Data Augmentation” proposed by Tanner and Wong (1987). As in

static model we use “Data Augmentation” to estimate the dynamic model. In this way, we

can compare the pricing errors in a more convenient way.18

In Table (4) below we illustrate the mean, standard deviation, 90 percent Bayesian in-

terval and the quantiles for the pricing errors we get using Bayesian dynamic latent factor

model. When we examine the results given in Table (4), we see that the mean for the pricing

errors with all three portfolio increases if we compare the results with Table (3). We can

argue that in fact both models perform similarly with respect to the examination of the pos-

terior distribution of pricing error. Yet, if we want to use the mean pricing errors as a model

comparison criteria we can definitely state that the static model outperforms the dynamic

model as static model produces smaller pricing errors. More importantly, as in static factor

model mean pricing errors decrease as we increase the number of factors. for the 5 industry

portfolio this decrease is 9.5 percent. For the 10 and 17 industry portfolios the decrease in

the mean pricing errors between the first and fourth factors are 25 percent and 14 percent

respectively.

18Convergence statistics are illustrated in Appendix B.
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Table 4: Average Pricing Errors with Dynamic Factor Model

5 Industry Portfolio Returns*

Factors Q Std. Error 90% Interval Quantiles
0.025 0.25 0.5 0.75 0.975

K=1 0.1974 0.0922 [0.0456, 0.3491] 0.054 0.129 0.186 0.253 0.407
K=2 0.1786 0.1047 [0.0063, 0.3509] 0.028 0.101 0.162 0.236 0.429

10 Industry Portfolio Returns*

Factors Q Std. Error 90% Interval Quantiles
0.025 0.25 0.5 0.75 0.975

K=1 0.3042 0.0883 [0.1589, 0.4495] 0.155 0.241 0.297 0.358 0.497
K=2 0.3182 0.1025 [0.1496, 0.4868] 0.149 0.245 0.308 0.378 0.551
K=3 0.2526 0.0833 [0.1156, 0.3896] 0.115 0.192 0.244 0.304 0.437
K=4 0.2269 0.0813 [0.0931, 0.3696] 0.091 0.169 0.221 0.275 0.409

17 Industry Portfolio Returns*

Factors Q Std. Error 90% Interval Quantiles
0.025 0.25 0.5 0.75 0.975

K=1 0.3497 0.0704 [0.2338, 0.4655] 0.23 0.302 0.343 0.39 0.505
K=2 0.3676 0.0849 [0.2280, 0.5072] 0.222 0.307 0.361 0.419 0.554
K=3 0.3166 0.0681 [0.2044, 0.4287] 0.196 0.269 0.312 0.359 0.46
K=4 0.3012 0.0676 [0.1899, 0.4125] 0.182 0.254 0.296 0.341 0.448

*Industry definitions are given in Appendix A.

5 Dynamic Model with Time-Varying Betas and Pric-

ing Errors

In practice, many portfolio managers constantly update and re-estimate factor returns and

indeed Ferson and Harvey (1991, 1993) and Ferson and Korajczyk (1995) find that estimated

betas exhibit statistically significant time variation.19 If we succeed in capturing the dynam-

ics of beta risk by allowing variation for factor loadings in the dynamic factor model, and if

the true data generating process have the time variation for the betas, then it is expected

that the model will outperform the previous static model and dynamic factor model where

19In the majority of the literature, beta is defined to be constant over a certain period of time. However, this static beta
result is at contradiction with another line of literature with an early evidence of Blume (1971) whom finds that beta is time
varying.Fama and MacBeth (1973) propose a rolling regression approach to estimate the beta, where they assume that beta
is constant only during short time intervals. Fabozzi and Francis (1977) propose a beta that is dependent on the state of the
market. Ferson and Harvey (1999) show that the beta is influenced by the macroeconomics variables hence is time varying.
Faff et al. (2003) formulated the dynamics of beta as a random walk.
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the betas are fixed. However, if the beta risk is inherently misspecified , there is a real

possibility that we commit serious pricing errors that potentially could be bigger than with

a constant beta model.

When we allow time varying factor loadings the dynamic factor model that we have

described with Equation (1) and (5) will be modified as:

rt = α + βtft + ǫt (6)

Again, the law of motion of the factors is an AR(q) process and ǫt follows an AR(p)

process. The law of motion for the factor loading coefficients follows a random walk without

drift, which is the most common usage in the literature. Therefore the dynamics of the beta

can be given as:

βt = βt−1 + ηt (7)

where, ηt is an i.i.d. disturbance. We assume that all the errors are normally distributed

and uncorrelated with each other. The difference of this model with time varying loadings

from the previously estimated dynamic and static factor model is that, the variance of the

innovation for the factor is normalized to one. The reason for this normalization is related

closely with the identification of the model, i.e. in Equation (6), if we increase the standard

deviation of ft by a factor of κ and at the same time divide all the βt’s by κ, we will obtain

exactly the same process for the observable. The identification problem is solved in the

literature by normalizing the standard deviation of the factor innovation to one and letting

the βt’s be unconstrained. A related identification issue is that the sign of the factor and

factor loadings are not separately identified. To solve this problem we follow the conventional

approach and normalize the sign of the factor loadings.

To estimate the model defined by Equation (6) and Equation (7) we will draw Bayesian
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inference from the joint posterior distribution p(F, θ|y). The parameters are represented by

θ. The joint distribution cannot be obtained directly. However, the conditioning features of

the model allow us to implement the Gibbs-sampling methodology for Bayesian inference.

Gibbs-sampling can be implemented by successive iteration of the following steps given

appropriate prior distributions and arbitrary starting values for the model’s parameters.

The sampling procedure is very similar to the one described in previous part. We just have

extra parameters that come with the introduction of Equation (7).

Q2
t =

1

N
α′[IN − β∗

t(β
′∗

tβ
∗
t)

−1β′∗

t]α. (8)

where β∗
t = (1N , βt) and 1N is a vector of ones.

In the third and fourth part of this paper, we used Equation (4) to get the posterior

distribution of the pricing errors employing Bayesian static and dynamic factor models. In

this part of the paper, we use a GLS type of weighting matrix to adjust the pricing errors

given by Equation (8) to see if the weighting matrix will affect the pricing errors. If we will

use the mean pricing error as a basis of model comparison, how it is measured gains great

importance. Related to the CAPM literature, the minimised errors are defined as Q′WQ,

where W is the weighting matrix. This method is equivalent to estimating the parameters

to minimise the weighted sum of squared pricing errors. When we estimated the static and

dynamic factor models in the previous parts we calculated the average pricing errors with

weighting matrix that is equal to the identity matrix advocated by Cochrane (1996). The

identity weighting matrix gives equal weight to all the moment conditions and examines the

ability to price the assets used in the tests. An advantage using the identity weighting matrix

is that we can compare the performance across models.20 The only assumption needed is

that the weighting matrix is nonsingular.

20In general, the optimal weighting matrix assigns big weights to assets with small variances in their pricing errors, and it
assigns small weights to assets with large variances of their pricing errors. In other words, weighting matrix W changes with
different models. Using a common weighting matrix allows us to have a uniform measure of performance across different models
for a common set of portfolios.
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Hansen (1982) uses a different weighting matrix, that is WT = [T.V ar(QT )]. This mea-

sure is based on sample pricing error and is good for statistical efficiency, however it is not

good measure for model comparison. Cochrane (1996), on the other hand, argues that using

such a matrix similar to defined in Hansen (1982) can be a problem with respect to E(RR′)

(R being the returns), where the structure may be nearly singular in which case the inver-

sion is problematic. To avoid inversion problems and to keep the weighting matrix the same

across assets, we applied the method advised by Cochrane (1996) for static and dynamic

factor models. The reason behind choosing such an approach is due to the fact that: first,

it is equivalent to a traditional least squares approach often used in finance, and second,

it provides the best graphical representation of predicted returns on the basic assets versus

their average returns.

In this part of the paper, we estimate the model only for 5 industry portfolio using a one

factor model. As the pricing errors in Equation (8) now becomes time varying as it is clear

that the density will depend on the density of beta and the density of the beta will change

with time. In this respect, it will become impossible to compare the results of this model

with the previous two models. We only illustrate the results for the t = 1 in Table (5).

Table 5: Descriptive Statistics of MCMC Chain Drawn from “Q” of Time Varying Dynamic
Factor Model

Time-Varying Model* Time-Varying Model (GLS)*

Mean 0.123 0.122
Median 0.111 0.110
Maximum 0.560 0.567
Minimum 0.006 0.009
Std. Dev. 0.064 0.064
Skewness 1126.000 0.173
Kurtosis 5015.00 5252.00
Jarque-Bera 3804.78 4405.15
Probability 0.0000 0.0000
Observations 10000 10000

*At t = 1.

Table (5) illustrates the mean pricing errors for the time-varying beta model. If we

compare the mean pricing errors at time t = 1 of the time-varying dynamic factor model
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with the pricing errors of the previously estimated models, we can clearly state that the

value is significantly smaller with the added dynamics for the beta. When compared with

the static model, mean pricing error decreases by 33 percent and this number is bigger for

dynamic factor model with fixed betas. In Figure (1), we can see how the distribution of

the pricing errors changes between time-varying model and dynamic factor model with fixed

betas. Lastly, to observe how the distribution of the pricing errors of time varying model

changes between time=1 and time=185, we plotted the histograms of the pricing errors for

these two time points and Figure (1) clearly points the shifts of the quantiles over time.

Figure 1: Histogram Plot of Mean Pricing Errors
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6 Conclusion

In this paper we propose an alternative method for examining the APT pricing restrictions,

using a metric first proposed by Geweke and Zhou (1996) and estimate three sets of models.

Furthermore, to examine the results of such an estimation practice, we use portfolios of

Fama and French that is monthly data set of 15 years grouped by industry. Utilizing Fama-

French monthly portfolios and using a Bayesian methodology, we form the exact posterior

distribution for the pricing errors and then calculate quantiles for the pricing error measure

by estimating first a static factor model, then extending it to a dynamic factor model and

lastly a dynamic model with time-varying betas. In all our models the factors are latent and

all the models are estimated in one-step.

We get four important results at the end of our analysis. First, the measure we use

illustrates that the pricing errors are not significantly small enough to ignore. Second, the

measure we used during our analysis shows that the mean pricing errors change according to

the model used and making the model more complex thinking that it will represent the real

life asset prices in a more convenient way does not necessarily produce the smallest pricing

errors. Third, the pricing error measure developed looses its capability as a model comparison

metric when we introduce time-varying dynamics to either α or β or both as the density of

the pricing error also changes according to the dynamics of α or β. The last conclusion is

related to the number of factors used in APT. APT literature does not insert a clear number

of factors for the pricing models which leaves a gray area for research. We examine this

gray area by increasing the number of factors beyond one in all the models estimated to

see whether introducing factors beyond one will improve the models with respect tom mean

pricing errors. We observe that pricing errors reduce with the introduction of factors beyond

one and the reduction is significant.
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Appendix A Industry Definitions

5 Industry Definition

Industry 1 Consumer Durables, NonDurables, Wholesale, Retail, and Some Services (Laundries, Repair Shops)
Industry 2 Manufacturing, Energy, and Utilities
Industry 3 Business Equipment, Telephone and Television Transmission
Industry 4 Healthcare, Medical Equipment, and Drugs
Industry 5 Other

10 Industry Definition

Industry 1 Consumer NonDurables, Food, Tobacco, Textiles, Apparel, Leather, Toys
Industry 2 Consumer Durables, Cars, TV’s, Furniture, Household Appliances
Industry 3 Manufacturing, Machinery, Trucks, Planes, Chemicals, Office Furniture, Paper, Com. Printing
Industry 4 Oil, Gas, and Coal Extraction and Products
Industry 5 Business Equipment, Computers, Software, and Electronic Equipment
Industry 6 Telephone and Television Transmission
Industry 7 Wholesale, Retail, and Some Services (Laundries, Repair Shops)
Industry 8 Healthcare, Medical Equipment, and Drugs
Industry 9 Utilities
Industry 10 Other

17 Industry Definition

Industry 1 Food
Industry 2 Mining and Minerals
Industry 3 Oil and Petroleum Products
Industry 4 Textiles, Apparel and Footware
Industry 5 Consumer Durables
Industry 6 Chemicals
Industry 7 Drugs, Soap, Tobacco
Industry 8 Construction and Construction Materials
Industry 9 Steel Works etc
Industry 10 Fabricated Products
Industry 11 Machinery and Business Equipment
Industry 12 Automobiles
Industry 13 Transportation
Industry 14 Utilities
Industry 15 Retail Stores
Industry 16 Banks, Insurance Companies, and Other Financials
Industry 17 Other

Appendix B Convergence Diagnostics

Although MCMC algorithms allow an enormous expansion of the class of candidate models

for a given dataset , they also suffer from a well-known potentially serious drawback: It

is often difficult to decide when it is appropriate to terminate them and conclude their

convergence.21 Almost all of the applied work involving MCMC methods has relied on

applying diagnostic tools to output produced by the algorithm when tackling the convergence

problem. We will apply two different convergence diagnostics to the output that we get from

21Carlin and Cowles (1996) has a very good review about the different convergence diagnostics.



the MCMC algorithm. Specifically, the diagnostics proposed by Heidelberger and Welch

(1983) and Geweke (1992) will be used.22

Table B.1: MCMC Diagnostic Tests for the Posterior Distribution of Q

Heidelberger-Welch Diagnostic (Static Model)*

Number of Factors 5 Industry Portfolio 10 Industry Portfolio 17 Industry Portfolio
K=1 0.18 (0.002)** 0.29 (0.003) 0.33 (0.002)
K=2 0.17 (0.002) 0.27 (0.002) 0.30 (0.002)
K=3 – 0.24 (0.002) 0.26 (0.001)
K=4 – 0.22 (0.003) 0.24 (0.001)

Heidelberger-Welch Diagnostic (Dynamic Model)*

Number of Factors 5 Industry Portfolio 10 Industry Portfolio 17 Industry Portfolio
K=1 0.20 (0.003)* 0.30 (0.003) 0.35 (0.002)
K=2 0.18 (0.003) 0.32 (0.004) 0.37 (0.002)
K=3 – 0.25 (0.002) 0.32 (0.002)
K=4 – 0.23 (0.002) 0.30 (0.002)

Geweke’s Diagnostic (Static Model)***

Number of Factors 5 Industry Portfolio 10 Industry Portfolio 17 Industry Portfolio
K=1 0.95 (failed) -0.15 (failed) 0.24 (failed)
K=2 -0.77 (failed) -2.44 (passed) 0.08 (failed)
K=3 – -1.26 (failed) -1.06 (failed)
K=4 – 1.37 (failed) -0.17 (failed)

Geweke’s Diagnostic (Dynamic Model)***

Number of Factors 5 Industry Portfolio 10 Industry Portfolio 17 Industry Portfolio
K=1 -1.21 (failed) 0.69 (failed) 0.89 (failed)
K=2 -0.33 (failed) -1.56 (passed) 0.03 (failed)
K=3 – -1.46 (failed) 0.22 (failed)
K=4 – -0.11 (failed) 1.31 (failed)

*The Cramer-von-Mises statistic to test the null hypothesis that the sampled values come from a stationary distribution.
**The numbers in paranthesis stand for the p-value of the test.

**z-score for difference in means of first 10% of chain and last 50% (stationarity).

Table (B.1) illustrates the MCMC diagnostic test results for average pricing errors. Where

Geweke’s diagnostic criteria states failure for most of the chains drawn, Heidelberg-Welch

diagnostic criteria shows no problem with the convergence.

22To evaluate the convergence diagnostics the “CODA library for R” has been utilized.
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