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Abstract

This study offers a Bayesian factor modelling framework to obtain the exact distri-
bution of pricing errors in the bounds of Arbitrage Pricing Theory with the aim of
observing, first if the usage of a dynamic model, second increasing the number of
factors beyond one contributes to a significant reduction of the pricing errors ob-
tained. In doing so, we compare the pricing errors we get from a static and dynamic
latent factor model, while adopting the Fama-French data for US monthly industry
returns. We observe that the pricing errors increase slightly using a dynamic factor
model, when compared with the static factor model. Besides, inclusion of factors
beyond the first one pose an improvement with respect to the pricing errors both
for the static and the dynamic factor model. When we introduce time-varying betas
to the dynamic factor model we get the lowest pricing errors at ¢ = 1 compared to
static and dynamic model with fixed betas, where the mean pricing errors decreased
by 33 percent compared to the static model. Yet pricing errors also become time

varying as their dynamics now depend on the dynamics of beta.
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1 Introduction

Factor models have been very popular in finance with applications in the area of Arbitrage
Pricing Theory (APT) and especially Capital Asset Pricing Model (CAPM) of asset prices.
APT implies that expected asset return is a linear function of the risk premium on systematic
factors of economy. Starting point of the usage of factor models in applications to APT
goes back to King (1966) who shows that there are market and industry factors in security
returns. One of the commonly cited rigorous proofs of APT was introduced by Ross (1976)
providing an approximate relation for expected asset returns with an unknown number of
unidentified factors in a competitive and frictionless market.! Until Chen et al. (1986),
empirical applications of APT were based on factor analysis of security returns. Chen et al.
(1986) show how APT may be estimated and applied, using macroeconomic factors.?
While the academic literature on APT is developing on a faster pace, another line of
research is concerned with testing whether the models developed using APT can represent
the real world of asset pricing. In this respect, Gehr (1975) publishes the first test of APT
even before Ross (1976) was published, and afterwards his work has been cited by every
study accomplished in the area.® One of the arguments against the APT has been the
approximate nature of its pricing equation. While Chen and Ingersoll (1983) provide some
arguments for an exact pricing relationship, Dybvig (1983) and Grinblatt and Titman (1983)
provide bounds on the approximation error, also known as the pricing error. One of the most
prominent study on pricing errors is by Geweke and Zhou (1996) who analyze the exact pos-
terior distribution for the pricing errors using a Bayesian static factor model. In this respect,
this study extends the analysis of Geweke and Zhou (1996) one-step further by obtaining
the distribution of pricing errors in a dynamic setup using similar Gibbs Sampling/Data

Augmentation methods. In this way, we aim to observe if the pricing errors obtained from

a static model will diminish using a model closer to real life asset pricing dynamics. This

L Chamberlain (1983) and Ingersoll (1984) are other significant treatments of APT. For example, Connor (1984) derives an
equilibrium (as opposed to no-arbitrage) version of APT. Nawalkha (1997) provides a good synthesis of many issues related to
CAPM, multifactor models, and APT.

2Burmeister and Wall (1986) also use macroeconomic factors to explain APT.

33ee Chen (1983) for another discussion on testing APT. While, Dhrymes et al. (1984) criticise empirical tests of APT,
Roll and Ross (1984) is a response to Dhrymes et al. (1984), which gives valuable insight on the issue.



paper will present if there will be improvements of pricing error over a static Bayesian latent
factor model, and show that when we include time-varying dynamics to a static model the
density of the pricing error also varies over time. Therefore the pricing error measure ala
Geweke and Zhou (1996) looses its significance to use as a comparison unit over different
models. Therefore, we only compare static factor model with the dynamic factor model that
has fixed betas.

Following the multifactor pricing within APT literature, it can easily be observed that
linear static factor models dominate the literature and they are the most widely used tools
to value return on risky assets. By introducing a dynamic model, co-movement of different
assets will also be incorporated into the analysis. Although the theory maintains a linear and
stable relationship between risk factors and returns, it does not postulate a static structure for
the factors. This is perhaps not very surprising because the theoretical underpinnings of the
unconditional APT reveal that time-invariant linear factor structures are only obtained when
one imposes strong assumptions on the underlying probability distributions and investors’
attitudes towards risk. In that respect, if the true data generating process for returns has a
dynamic structure, then pricing errors obtained from static factor model will be diminished
significantly with reduction of misspecification error, as using a static data generating process
for a dynamic procedure will cause pricing errors to increase. However, one should be very
cautious about introduction of extra parameters to the model with the usage of dynamic
structure, as the introduction of wrong dynamics will cause the estimation error to increase.
Yet the shift of focus from static factor models to dynamic factor models resulted from
the basic difficulty of examining the empirical support for the static models especially the
CAPM, which is related to the fact that the real world is inherently dynamic and not static.

Many studies being published in the area of APT raised some doubts about empirical
validity of APT.* While tests of APT concerned many academicians, a similar line of debate
created an important literature about the number of factors in APT. Theory of APT did
not insert any clear space on the exact number of factors, that will complicate the misspec-

ification issue created within modelling procedures. Lack of agreement on the specification

4See Shanken (1982).



of the number of factors resulted in development of new modelling techniques and testing
procedures given the fact that we can use the pricing errors obtained from models with dif-
ferent number of factors as a means to see how well the new model fits into the theory. In
this respect we increase the number of factors in each model we estimate, to observe if the
pricing errors of estimated models will be affected by using a different factor structure.

Our study contributes to a body of research focusing on different aspects of the asset
pricing, financial econometrics and Bayesian modelling literature. The motivation and aim
of this paper is closely related to the topic of improving models utilized in APT, making
them closer to real asset market dynamics, and examining how many relevant factors explain
the pricing equations and minimise the pricing errors. We use Fama and French monthly
industry portfolios in the estimation of all of our models as this data set is the most employed
set within the APT literature.” We model monthly industry portfolio returns, first with a
static Bayesian latent factor model, then with a dynamic Bayesian factor model and lastly
with a dynamic model where the factor loadings are time-varying. In all of the models used
the latent factors and the loading are estimated in one-step. In addition to that, in line with
the two studies by Shanken (1992b), and Geweke and Zhou (1996), the measure for pricing
errors are adjusted utilizing the approach that has been offered in those two studies, and the
distribution for pricing errors is analyzed accordingly.

The rest of this paper is organized as follows. Section 2 lays out a sample version of
the Fama and French monthly industry portfolios data set used and gives brief descriptive
statistics. In Section 3, we introduce static Bayesian factor model and we explain estimation,
identification and pricing errors we get from it. In Section 4, we extend the static factor
model introduced in the previous section, estimate and identify a dynamic factor model and
get a new set pricing errors. In section 5, we introduce time varying betas to the dynamic

factor model and get pricing errors that change over time. Section 6 concludes.

5 See http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/data_library.html for the specifics of the data set.



2 Data and Descriptive Statistics

Fama and French (1997) find that the risk loadings of the industry sorted portfolios exhibit
great time variation and are difficult to be estimated precisely. To solve this problem,
economists added new factors to the three factor model of Fama and French and worked
out if the additional factor can solve the problem of variation. Despite the continuing
controversy about the interpretation of Fama and French results, their three factor model
remains a cornerstone in the literature on cross-sectional asset pricing tests. Yet, there is
no model that performs better in explaining the cross-section of average returns on size and
book to market sorted portfolios. Since their model is the most referred in the asset pricing
literature, we use Fama and French industry portfolio data set as a benchmark. Usage of this
specific data set will simplify comparing our results to the results of similar works published
within the framework of APT literature.

While estimating the latent factor models and extracting the distribution for the pricing
errors we use three groups of industry portfolios. All three groups are the returns on the
value weighted industry portfolios grouped by Fama and French.®

In all our estimations we used three groups of industries of which the first group is
composed of five, second group is composed of ten and finally third group of data is composed

" By increasing the number of cross sections, we will be able to

of seventeen industries.
observe how the pricing errors behave accordingly. Portfolio returns are monthly returns

from January 1990 to May 2005; as a result the times series dimension of data set is 185.

6The empirical results obtained from all of the models utilized in the paper yielded qualitatively and quantitatively very
similar posterior distributions for pricing errors when equal weighted portfolios are used as data set, so we do not illustrate the
results related to equal weighted industry portfolio data set.

"Definitions of the industries are given in Appendix A.



Table 1: Descriptive Statistics of Industry Portfolio Returns

5 Industry  Portfolio Returns*
Portfolios w o Skewness Kurtosis JB-prob.** Autocorrelation

P1 P2 P3 P4 P12 P24
Industry 1 0.950 1.210 -0.280 3.980 9.91%* 0.073 -0.035 -0.089 -0.123  0.077  0.092
Industry 2 1.000 1.200 -0.310 3.540 5.280 -0.045 -0.010 -0.051 -0.064 0.084 0.118
Industry 3 1.120 1.260 -0.030 3.170 0.250 -0.034  0.044 0.013 -0.064 0.054 -0.003
Industry 4 0.980 1.720 -0.390 3.920 11.20%* 0.014 -0.012 0.081 -0.081 -0.026 0.057
Industry 5 1.090 1.640 -0.510 4.820 33.35%* 0.040 -0.012 -0.066 -0.136  0.007  0.009
10 Industry  Portfolio Returns*
Portfolios W o Skewness Kurtosis JB-prob.** Autocorrelation

P1 P2 p3 P4 P12 P24
Industry 1 0.990 1.130 -0.150 3.780 5.470 0.053 -0.020 -0.139 -0.088 0.119 0.146
Industry 2 0.830 0.980 -0.300 3.470 4.380 0.083 -0.069 0.006 -0.094 0.072  0.003
Industry 3 1.070 1.400 -0.470 3.670 10.14**  -0.016 -0.021 -0.085 -0.113  0.081  0.097
Industry 4 1.080 0.630 0.600 4.070 20.00%*  -0.095 -0.051 -0.065 -0.037  0.069 0.106
Industry 5 1.280 1.420 -0.290 3.500 4.450 0.002 -0.002 0.042 -0.090 -0.022 0.048
Industry 6 0.560 1.080 -0.060 4.290 12.87%* 0.042 -0.010 0.113 -0.084 0.004 0.098
Industry 7 1.020 0.890 -0.170 3.260 1.380 0.084 -0.049 -0.044 -0.110  0.068  0.039
Industry 8 1.120 1.260 -0.030 3.170 0.250 -0.034  0.044 0.013 -0.064 0.054 -0.003
Industry 9 0.840 1.130 -0.320 3.420 4.530 0.045 -0.072 0.091 0.031 0.012 0.089
Industry 10 1.090 1.640 -0.510 4.820 33.35%* 0.040 -0.012 -0.066 -0.136  0.007  0.009
17 Industry Portfolio Returns*
Portfolios W o Skewness Kurtosis JB-prob.** Autocorrelation

P1 P2 P3 P4 P12 P24
Industry 1 1.010 1.080 -0.090 4.200 11.39%* 0.044 -0.038 -0.152 -0.091 0.138 0.133
Industry 2 0.860 0.900 0.070 3.380 1.290 -0.026 -0.046 -0.002 -0.126  0.051  0.027
Industry 3 1.050 0.620 0.600 3.970 18.46** -0.101 -0.034 -0.058 -0.015 0.062 0.087
Industry 4 0.790 1.270 -0.320 4.420 18.66** 0.206 -0.058 -0.129 -0.134  0.105  0.029
Industry 5 0.680 0.930 -0.490 3.700 11.08**  -0.001 0.017 -0.020 -0.145 0.162 0.133
Industry 6 0.860 1.060 0.210 4.120 11.04**  -0.042 -0.043 -0.066 -0.110  0.068  0.127
Industry 7 1.140 1.770 -0.160 2.940 0.830 -0.036  0.030 -0.017 -0.101  0.095 0.014
Industry 8 1.190 1.220 -0.150 4.190 11.61%* 0.053 -0.085 -0.002 -0.114 0.136  0.087
Industry 9 0.790 0.560 0.120 5.070 33.45%*  -0.018 -0.020 -0.004 -0.069 0.009  0.009
Industry 10 0.920 1.010 -0.420 4.300 18.49%* 0.107 -0.035 -0.080 -0.080 0.046 0.075
Industry 11 1.240 1.050 -0.490 4.230 19.18%* 0.005  0.005 0.064 -0.077 0.026  0.059
Industry 12 0.890 1.110 -0.200 3.340 2.180 0.067 -0.087 0.023 -0.071  0.055 -0.032
Industry 13 1.020 1.620 -0.650 4.630 33.58%* 0.072  -0.006 -0.031 -0.103  0.008  0.094
Industry 14 0.840 1.130 -0.320 3.420 4.530 0.045 -0.072 0.091 0.031 0.012 0.089
Industry 15 1.040 1.020 -0.100 3.180 0.550 0.088 -0.045 -0.060 -0.084 0.080 0.059
Industry 16  1.310 1.770 -0.340 4.740 26.84** 0.016 -0.001 -0.053 -0.108 -0.003 -0.015
Industry 17 0.760 1.440 -0.440 3.560 8.38%* 0.055 -0.049 0.045 -0.110 -0.049 0.073

*Industry definitions are given in Appendix A.

**Denotes the rejection of the null hypothesis of normality at the 5% level of significance, JB stands for Jarque-Bera.



Table 2: Principal Component Analysis

5 Industry  Portfolio Returns*

Component Eigenvalue Difference Proportion Cumulative

1 3.516 2.950 0.703 0.703
2 0.565 0.050 0.113 0.816
3 0.515 0.260 0.103 0.919
4 0.259 0.110 0.052 0.971
5 0.146 - 0.029 1.000

10 Industry  Portfolio Returns*

Component Eigenvalue Difference Proportion Cumulative

1 5.579 4.290 0.558 0.558
2 1.288 0.410 0.129 0.687
3 0.873 0.270 0.087 0.774
4 0.607 0.120 0.061 0.835
5 0.489 0.120 0.049 0.884
6 0.373 0.080 0.037 0.921
7 0.289 0.070 0.029 0.950
8 0.218 0.060 0.022 0.972
9 0.157 0.030 0.016 0.987
10 0.126 0.013 1.000

17 Industry  Portfolio Returns*

Component Eigenvalue Difference Proportion Cumulative

1 9.515 7.900 0.559 0.559
2 1.613 0.200 0.095 0.655
3 1.417 0.560 0.083 0.783
4 0.862 0.240 0.051 0.789
5 0.618 0.120 0.037 0.825
6 0.494 0.030 0.029 0.854
7 0.465 0.100 0.027 0.882
8 0.366 0.100 0.022 0.903
9 0.263 0.000 0.016 0.918
10 0.260 0.020 0.015 0.934
11 0.237 0.030 0.014 0.948
12 0.203 0.010 0.012 0.960
13 0.195 0.030 0.011 0.971
14 0.162 0.020 0.009 0.981
15 0.143 0.040 0.008 0.989
16 0.102 0.020 0.006 0.995
17 0.084 - 0.005 1.000

*Industry definitions are given in Appendix A.

Mean, standard deviation and autocorrelation of the data set is presented in Table (1).
The mean for the five industry portfolio ranges from 0.95 percent per month to 1.12 percent
per month. The lowest standard deviation is found to be 1.20. As shown in the descriptive

statistics table, there is evidence of autocorrelation in the industry returns. The mean for



the ten industry portfolio ranges from 0.56 percent per month to 1.28 percent per month.
The lowest standard deviation is found to be 0.63. Considering the mean for seventeen
industry portfolio, the mean for the portfolios range from 0.68 percent and 1.31 percent.
Last columns of Table (1) give us the autocorrelation coefficients of the industry portfolio
data set. A close examination of the coefficients between p; to pas signals an autocorrelation
structure for the data set used.

Table (2) lays out the principal component analysis of the Fama-French industry portfo-
lios used for the analysis in the coming sections of the paper. For the five industry portfolio,
the difference between the largest eigenvalue 3.52, and the second one 0.56, is substantially
large. In addition to that, the first eigenvalue explains 70 percent of the total variation of
returns. Principal component analysis points out that for the five industry portfolio returns
the first component explains significant amount of the total variation. If we examine ten in-
dustry and seventeen industry portfolio results, the first component explains the biggest total

variation and the difference between the first and the second eigenvalue decreases sharply.®

3 Static Model and Pricing Errors

Let us introduce the general form of the static factor model.? In its most commonly used
form, APT provides an approximate relation for expected asset returns with an unknown
number of unidentified factors. One of the important assumptions behind APT is that the

markets are competitive and frictionless. In the purest sense, the return generating process

8Harding (2008) explains the bias of APT models estimated by PCA towards a single factor model.

9The model used in this section of the paper, i.e. methodology, inference and identification is the same used in Geweke
and Zhou (1996).



for asset returns being considered for the system of N assets is:

re = a+Bfi+e (1)
Elfi] = 0
Elff] = 1
Ele|fi] = 0
Elewe|f] = &

In the system equation r; is an (N x 1) vector of returns, a is an (N x 1) vector with
a=[a; a ... ay),fisan (N x K)matrix with 5 =[8; P2 ... Bn], frisan (K x1)
vector and &; is an (N x 1) random vector with e, = [e; e ... epn|". It is further assumed
that the factors account for the common variation in asset returns so that the disturbance
term for large well-diversified portfolio vanishes. This requires that the disturbance terms
be sufficiently uncorrelated across assets. We also make the standard assumptions that &,
and f; are independent and both follow multivariate normal distributions.

The absence of riskless arbitrage opportunities implies an approximate linear relationship
between the expected asset returns and their risk exposures as the number of assets satisfying

Equation (1) tends towards infinity:'°

ai%/\o—i-ﬁil)\l—'—...—l—ﬂﬂ()\[(,i:1,...,N, (2)

where ) is the intercept of the pricing relationship and Ay is the risk premium on the
k-th factor. Equation (2) is the implication of no asymptotic arbitrage, and in contrast

with the much stronger assumption of competitive equilibrium, Connor’s (1984) equilibrium

10R0ss (1976), Chamberlain and Rothschild (1983).



version APT replaces the approximation with an equality.!’ Considering, the measurement

of pricing errors, we will use the measure offered by Geweke and Zhou (1996):

N
Q2 = %Z(Oﬁ — X — BaA — . — 52'1()\1()2- (3)
i=1

Q? given in Equation (3) is the average of the squared pricing errors across the assets.
Under the strict assumption of competitive equilibrium, Equation (2) becomes an exact
relationship, implying that pricing error (Q)) is zero. However, for the asymptotic APT,
the pricing error converges to zero as the number of assets approach to infinity. On the
other hand, if the competitive equilibrium assumption does not hold, pricing error will not
converge to zero as long as the number of assets is finite Shanken (1992a).

Following Geweke and Zhou (1996), conditional on o and 3, the minimised mean squared
pricing error can be written as:

Q2 — %O/[IN . 6*(6/*5*)_15,*]05- (4)

where * = (1y, ) and 1y is an N x 1 vector of ones.

By utilizing the maximum likelihood techniques, the exact sampling distribution of the
pricing error is difficult to determine. However, the exact posterior density is easy to con-
struct using Bayesian MCMC methods. Therefore, for both the static and dynamic Bayesian

factor models o and 3 are sampled with each iteration of the Gibbs sampler. Since the pric-

HRoss (1976) assumes that the market, which consists of infinitely many securities is efficient. This assumption is needed
to make sure that the total risk of a portfolio is diversifiable. The approximation (&) in the APT pricing equation arises
in economies with finite number of securities because the total risk (variance) of the arbitrage portfolio is not completely
diversifiable in a finite economy. Ross (1976), Dybvig (1983) and Grinblatt and Titman (1983) provide theoretical arguments
to show that the average pricing error would empirically be negligibly small. Shanken (1982) argues that even if the average
pricing error is small, individual pricing errors may be large. Dybvig and Ross (1985) show that Shanken’s arguments hold
under very special conditions, which are not likely to be encountered in real situations. Robin and Shukla (1991) show that the
pricing errors for some securities are large. A version of the APT based on competitive equilibrium (Chen and Ingersoll (1983),
Connor (1984), Wei (1988)), rather than no-arbitrage, shows that the strict pricing equality will hold if one of the factors is the
market or a residual market factor. Most APT applications assume that the pricing errors are negligible and use the pricing
equation as if it were a strict equality.

10



ing error is a function of a and f3, it is trivial to compute and store a Markov Chain for the
pricing error for each iteration.'? The resulting sample provides the exact posterior density
of the pricing error. The availability of an exact posterior density for a function of param-
eters is a significant advantage of the Bayesian approach. In this framework, we derive the
posterior distribution of () for both static and dynamic factor model and use this measure
as an informal metric to determine whether pricing errors are economically significant. We
then compare model performance using this informal metric.'3

Static factor model and the basic assumptions are simply illustrated with Equation (1)

above. Letting © be the parameter space that is associated with «, 5 and X, the joint

posterior density function of the parameters based on Bayes’ rule will be:

P(a, 3,%) o< [S] V2 f(Rla, 3, %)

where, R is the T' x N matrix returns and f(R|a, 8,%) is the density of the data condi-
tional on the parameters. We stated that e, ~ N(0,%) and f; ~ N(0, ). Consequently,

R|® ~ N(f5',]%)
F(RI©) = [(2m)"™|86" + 2] 2eap{~0.5tr (36 + X) ' R'R}

and the unconditional variance of r; is, Q = 5" + X

The prior density for the factor scores is given by 8; : Ni(/3;, E_l). The prior distribution

12Corwergence statistics are illustrated in Appendix B.

BFor example, if @) is found to have its posterior mass concentrated at 5 percent for monthly data, this implies that the
average pricing error is likely to be about 5 percent for monthly returns. Because, on the average, the asset returns are only
about 1 percent for monthly data, 5 percent average pricing error will be considered as too high and so the APT restrictions
will be rejected (Geweke and Zhou (1996)).

11



for ¥ will be accordingly; we will assign an inverse gamma distributions for the o?s, that is

o7 ~ 1G(ni/2, v0is5;/2)

The information concerning parameters can be controlled by the magnitude of shape
parameter of inverted gamma distribution.

For the static factor model used in this part, we should address a small statement about
the identification, i.e. the model is invariant under transformations of the form g* = P’
and f = Pf;, where P is any orthogonal K x k matrix. There are different ways to identify
the model by imposing constraints on 5. The identification method used in this paper is to
constrain 3 in such a manner that the matrix [ is a block lower triangular matrix, assumed

to be of full rank, with diagonal elements strictly positive. That is:

6un 0 ... 0
5 = 5:21 ﬁ:22 : : 0
| Br1 Br2 - Bri |

where §; > 0, ¢ = 1,..., K. This condition uniquely identifies the loadings and the
associated factors. This type of identification procedure is utilised in Geweke and Zhou
(1996) and Aguilar and West (2000). In this form of identification, the loading matrix has
r=NK — K(k—1)/2 free parameters. With N non-zero o; parameters, the resulting factor
form of 2 has N(K + 1) — K(K — 1)/2 parameters, compared with the total N(N + 1)/2
in an unconstrained model where K = N. In this respect the constraints provide an upper
bound on the number of factors that has to be estimated.'*

Expected return pricing errors or «’s are useful characterisation of a model’s performance.

Analysing them helps to guard against accepting an uninteresting model: one that prices

M The constraint is N(N+1)/2— N(K+1)+ K(K —1)/2 > 0 provides an upper bound on K. For example N = 5 implies
K <2, N =17 implies K < 8, and so on.

12



assets badly, but produces large enough standard errors so as not to be rejected by the certain
model comparison criteria. It also helps to guard against the equally dangerous possibility
of rejecting a good model: one that produces economically tiny pricing errors, with such
smaller standard errors that the model is still statistically rejected.

Pricing errors may occur either because the model is viewed formally as an approxima-
tion, as in many linear factor pricing models, or because the empirical counterpart to the
theoretical APT factor model is error ridden.'® Pricing errors or closely related expected re-
turn errors are commonly used to assess asset pricing models. For instance, in linear factors
of returns the principle of no-arbitrage is used to characterise the sense in which security
market prices can be approximately represented in terms of the prices of a small number of
factors.!¢

After getting the posterior distribution for both o and 3, it is straightforward to find the
posterior distribution of a function of them that is (). The posterior mean of pricing error
is provided in Table (3) for static factor model and for all of the industry portfolios used
in estimation. The results are reported for the whole sample period, that is from January
1990 to May 2005. The first column of the table refers to the number of factors used when
estimating the model.!” The second and the third column of Table (3) report the posterior

mean and the standard deviation of ().

155ee Roll’s (1977) critique of the single-period capital asset pricing model.

1656, Ross (1976), Huberman (1982), Chamberlain and Rothschild (1983) and Shanken (1987).

17 Before deciding on the number of factors we have used the Information criteria proposed by Bai and Ng 2002. However,
the Information Criteria that Bai and Ng has proposed suffers from a severe finite sample problem as it is derived under the
condition that both N — co and T' — oo. Therefore, we switched to BIC for model comparison that has better small sample
properties. Accordingly, for all three data sets, BIC concluded with four factors. It is common in asset pricing literature to use
three factors. Combining the information we got from the BIC and the number of factors that has been used in the literature,
we decided not to increase the number of factors beyond four.

13



Table 3: Average Pricing Errors with Static Factor Model

5 Industry Portfolio Returns*

Factors Q Std. Error  90% Interval Quantiles

0.025 0.25 0.5 0.75  0.975
K=1 0.1824 0.0805 [0.0499, 0.3147] 0.054 0.124 0.174 0.231 0.363
K=2 0.1647 0.0847 [0.0254, 0.3041] 0.030 0.100 0.155 0.219 0.351

10 Industry Portfolio Returns*

Factors Q Std. Error  90% Interval Quantiles

0.025 0.25 0.5 0.75 0.975
K=1 0.2902 0.0793 [0.1598, 0.4207] 0.153 0.232 0.285 0.341 0.463
K=2 0.2644 0.0772 [0.1373, 0.3916] 0.129 0.209 0.258 0.315 0.429
K=3 0.2383 0.0742 [0.1163, 0.3603] 0.108 0.185 0.233 0.286 0.396
K=4 0.2210 0.0693 [0.1069. 0.3350] 0.098 0.172 0.217 0.266 0.369

17 Industry Portfolio Returns*

Factors Q Std. Error  90% Interval Quantiles
0.025 0.25 0.5 0.75 0.975

0.222  0.287 0.328 0.373 0473
0.190 0.258 0.296 0.339 0.435
0.171 0.227 0.258 0.292 0.365
0.154 0.210 0.239 0.272  0.339

0.3329 0.0641
0.3005 0.0619
0.2607 0.0491
0.2415 0.0469

0.2275, 0.4383
0.1987, 0.4023
0.1791, 0.3422
0.1644, 0.3187

= A
[0

*Industry definitions are given in Appendix A.

Mean of () seems rather small when compared with the magnitude of expected returns,
showing that there are small deviations in expected returns across the industries. We also
provide the 90 percent Bayesian confidence interval. As can be seen from the table, the
difference between mean and confidence interval is not significant, which indicates that the
posterior density of the pricing error is concentrated heavily around its mean. What is
striking about results is that the mean of the pricing error declines when we increase the
number of factors. Although, reduction is not very significant, the results suggest that the
pricing errors decline with the introduction of new factors for the static factor model. For the
5 industry monthly returns mean pricing errors decrease 9.7 percent with the introduction
of the second factor. The decrease of pricing errors between the first and fourth factor is
24 percent for the 10 industry returns and this decrease is 28 percent for the 17 portfolio

industry returns.
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4 Dynamic Model and Pricing Errors

The shift of focus from static factor models to dynamic factor models resulted from the basic
difficulty of examining the empirical support for the static models, especially the CAPM,
which is related to the fact that the real world is inherently dynamic and not static. There-
fore, within this part of the paper we will use the same metric () to get the density of
the pricing errors but in a more complex model where the factors have a lag structure. In
the dynamic factor modelling context, the analogue of model that has been represented in

Equation (1) can be written as:

re = a+B(L)fi +e (5)
Jfixk = Oificax + oo+ Ogfiqx +u, k=0,1,....n
Elf] = 0
Elff] = 1
Elulfe] = 0
Elewe|f] = &

Y = diag(o},...,0%)

where B(L) is an (N x K) matrix of polynomials in the lag operator, and the errors ¢,
may be serially, but not necessarily cross sectionally correlated and u; is an i.i.d. innovation,
uncorrelated across factors. We allow the factor loading (L) to be a lag polynomial to
capture the idea that different sectors in the portfolio may respond to the common factors
with different lags. In the model, the factors are assumed to evolve as independent AR(q)
processes that are invariant over time.

In contrast with the classical model, idiosyncratic errors will also have a different structure
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in the dynamic factor model setup, given as:

Eit = Yin€iz—1+ ... FVig€it—q

The notation that will be utilised within the framework of dynamic factor model will be

accordingly:
lel s ¢1q
FZ[fl?"'afK]/ ¢ = : ' :
¢1q s ¢qq
Y .. Yy P ... bBik
v | - ) g=| : - )
77Z)1q s 2bt;{q /BIN cee 5NK
o7 0 o7 0
0 o 0 o3
and a=[ag,...,ay].

In the model defined above, €; and f; are assumed to be independent and follow multivari-
ate normal distributions. In addition, all the innovations of the model are assumed to be zero
mean, contemporaneously uncorrelated random variables. Therefore, all the comovement is
mediated by the factors, which in turn all have autoregressive representations.

In the dynamic factor model literature (both Classical and Bayesian), estimation and
identification of latent factors and loadings have been done mostly by utilising Kalman fil-

tering techniques. For instance, Stock and Watson (1989, 1992, 1993) use some classical
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statistical techniques employing the Kalman filter /smoother to estimate the model parame-
ters and extract an estimate of the unobserved factor. However, using the Kalman filter to
estimate the model becomes more difficult as the computation of the state equation becomes
more and more cumbersome with increasing number of factors. In that respect, an alterna-
tive procedure can be based on a recent development in the Bayesian literature on missing
data problems, that of “Data Augmentation” proposed by Tanner and Wong (1987). As in
static model we use “Data Augmentation” to estimate the dynamic model. In this way, we
can compare the pricing errors in a more convenient way.'®

In Table (4) below we illustrate the mean, standard deviation, 90 percent Bayesian in-
terval and the quantiles for the pricing errors we get using Bayesian dynamic latent factor
model. When we examine the results given in Table (4), we see that the mean for the pricing
errors with all three portfolio increases if we compare the results with Table (3). We can
argue that in fact both models perform similarly with respect to the examination of the pos-
terior distribution of pricing error. Yet, if we want to use the mean pricing errors as a model
comparison criteria we can definitely state that the static model outperforms the dynamic
model as static model produces smaller pricing errors. More importantly, as in static factor
model mean pricing errors decrease as we increase the number of factors. for the 5 industry
portfolio this decrease is 9.5 percent. For the 10 and 17 industry portfolios the decrease in
the mean pricing errors between the first and fourth factors are 25 percent and 14 percent

respectively.

18Convergence statistics are illustrated in Appendix B.
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Table 4: Average Pricing Errors with Dynamic Factor Model

5 Industry Portfolio Returns*

Factors Q Std. Error  90% Interval Quantiles
0.025 0.25 0.5 0.75 0.975

1 0.1974 0.0922 [0.0456, 0.3491] 0.054 0.129 0.186 0.253 0.407
2 0.1786 0.1047 [0.0063, 0.3509] 0.028 0.101 0.162 0.236  0.429

K=
K=

10 Industry Portfolio Returns*

Factors Q Std. Error  90% Interval Quantiles

0.025 0.25 0.5 0.75 0.975
K=1 0.3042 0.0883 [0.1589, 0.4495] 0.155 0.241 0.297 0.358 0.497
K=2 0.3182 0.1025 [0.1496, 0.4868] 0.149 0.245 0.308 0.378 0.551
K=3 0.2526 0.0833 [0.1156, 0.3896] 0.115 0.192 0.244 0.304 0.437
K=4 0.2269 0.0813 [0.0931, 0.3696] 0.091 0.169 0.221 0.275 0.409

17 Industry Portfolio Returns*

Factors Q Std. Error  90% Interval Quantiles

0.025 0.25 0.5 0.75 0.975
K=1 0.3497 0.0704 [0.2338, 0.4655] 0.23  0.302 0.343 0.39 0.505
K=2 0.3676 0.0849 [0.2280, 0.5072] 0.222 0.307 0.361 0.419 0.554
K=3 0.3166 0.0681 [0.2044, 0.4287] 0.196 0.269 0.312 0.359 0.46
K=4 0.3012 0.0676 [0.1899, 0.4125] 0.182 0.254 0.296 0.341 0.448

*Industry definitions are given in Appendix A.

5 Dynamic Model with Time-Varying Betas and Pric-
ing Errors

In practice, many portfolio managers constantly update and re-estimate factor returns and
indeed Ferson and Harvey (1991, 1993) and Ferson and Korajczyk (1995) find that estimated
betas exhibit statistically significant time variation.'® If we succeed in capturing the dynam-
ics of beta risk by allowing variation for factor loadings in the dynamic factor model, and if
the true data generating process have the time variation for the betas, then it is expected

that the model will outperform the previous static model and dynamic factor model where

1971 the majority of the literature, beta is defined to be constant over a certain period of time. However, this static beta
result is at contradiction with another line of literature with an early evidence of Blume (1971) whom finds that beta is time
varying.Fama and MacBeth (1973) propose a rolling regression approach to estimate the beta, where they assume that beta
is constant only during short time intervals. Fabozzi and Francis (1977) propose a beta that is dependent on the state of the
market. Ferson and Harvey (1999) show that the beta is influenced by the macroeconomics variables hence is time varying.
Faff et al. (2003) formulated the dynamics of beta as a random walk.
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the betas are fixed. However, if the beta risk is inherently misspecified , there is a real
possibility that we commit serious pricing errors that potentially could be bigger than with
a constant beta model.

When we allow time varying factor loadings the dynamic factor model that we have

described with Equation (1) and (5) will be modified as:

o= a+Bifi+e (6)

Again, the law of motion of the factors is an AR(q) process and ¢; follows an AR(p)
process. The law of motion for the factor loading coefficients follows a random walk without
drift, which is the most common usage in the literature. Therefore the dynamics of the beta

can be given as:

B = Bioi+m (7)

where, 7; is an i.i.d. disturbance. We assume that all the errors are normally distributed
and uncorrelated with each other. The difference of this model with time varying loadings
from the previously estimated dynamic and static factor model is that, the variance of the
innovation for the factor is normalized to one. The reason for this normalization is related
closely with the identification of the model, i.e. in Equation (6), if we increase the standard
deviation of f; by a factor of x and at the same time divide all the 3;’s by k, we will obtain
exactly the same process for the observable. The identification problem is solved in the
literature by normalizing the standard deviation of the factor innovation to one and letting
the f;’s be unconstrained. A related identification issue is that the sign of the factor and
factor loadings are not separately identified. To solve this problem we follow the conventional
approach and normalize the sign of the factor loadings.

To estimate the model defined by Equation (6) and Equation (7) we will draw Bayesian
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inference from the joint posterior distribution p(F’,6|y). The parameters are represented by
0. The joint distribution cannot be obtained directly. However, the conditioning features of
the model allow us to implement the Gibbs-sampling methodology for Bayesian inference.
Gibbs-sampling can be implemented by successive iteration of the following steps given
appropriate prior distributions and arbitrary starting values for the model’s parameters.
The sampling procedure is very similar to the one described in previous part. We just have

extra parameters that come with the introduction of Equation (7).

1

Q2t = NO/[IN - ﬂ*t(ﬂl*tﬁ*t)ilﬁ/*t]w (8)

where *, = (1y, ;) and 1y is a vector of ones.

In the third and fourth part of this paper, we used Equation (4) to get the posterior
distribution of the pricing errors employing Bayesian static and dynamic factor models. In
this part of the paper, we use a GLS type of weighting matrix to adjust the pricing errors
given by Equation (8) to see if the weighting matrix will affect the pricing errors. If we will
use the mean pricing error as a basis of model comparison, how it is measured gains great
importance. Related to the CAPM literature, the minimised errors are defined as Q'WQ,
where W is the weighting matrix. This method is equivalent to estimating the parameters
to minimise the weighted sum of squared pricing errors. When we estimated the static and
dynamic factor models in the previous parts we calculated the average pricing errors with
weighting matrix that is equal to the identity matrix advocated by Cochrane (1996). The
identity weighting matrix gives equal weight to all the moment conditions and examines the
ability to price the assets used in the tests. An advantage using the identity weighting matrix
is that we can compare the performance across models.?’ The only assumption needed is

that the weighting matrix is nonsingular.

201y general, the optimal weighting matrix assigns big weights to assets with small variances in their pricing errors, and it
assigns small weights to assets with large variances of their pricing errors. In other words, weighting matrix W changes with
different models. Using a common weighting matrix allows us to have a uniform measure of performance across different models
for a common set of portfolios.
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Hansen (1982) uses a different weighting matrix, that is W = [T.Var(Qr)]. This mea-
sure is based on sample pricing error and is good for statistical efficiency, however it is not
good measure for model comparison. Cochrane (1996), on the other hand, argues that using
such a matrix similar to defined in Hansen (1982) can be a problem with respect to E(RR’)
(R being the returns), where the structure may be nearly singular in which case the inver-
sion is problematic. To avoid inversion problems and to keep the weighting matrix the same
across assets, we applied the method advised by Cochrane (1996) for static and dynamic
factor models. The reason behind choosing such an approach is due to the fact that: first,
it is equivalent to a traditional least squares approach often used in finance, and second,
it provides the best graphical representation of predicted returns on the basic assets versus
their average returns.

In this part of the paper, we estimate the model only for 5 industry portfolio using a one
factor model. As the pricing errors in Equation (8) now becomes time varying as it is clear
that the density will depend on the density of beta and the density of the beta will change
with time. In this respect, it will become impossible to compare the results of this model

with the previous two models. We only illustrate the results for the ¢ = 1 in Table (5).

Table 5: Descriptive Statistics of MCMC Chain Drawn from “Q” of Time Varying Dynamic
Factor Model

Time-Varying Model* Time-Varying Model (GLS)*

Mean 0.123 0.122
Median 0.111 0.110
Maximum 0.560 0.567
Minimum 0.006 0.009
Std. Dev. 0.064 0.064
Skewness 1126.000 0.173
Kurtosis 5015.00 5252.00
Jarque-Bera 3804.78 4405.15
Probability 0.0000 0.0000
Observations 10000 10000

*At t = 1.

Table (5) illustrates the mean pricing errors for the time-varying beta model. If we

compare the mean pricing errors at time ¢ = 1 of the time-varying dynamic factor model
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with the pricing errors of the previously estimated models, we can clearly state that the
value is significantly smaller with the added dynamics for the beta. When compared with
the static model, mean pricing error decreases by 33 percent and this number is bigger for
dynamic factor model with fixed betas. In Figure (1), we can see how the distribution of
the pricing errors changes between time-varying model and dynamic factor model with fixed
betas. Lastly, to observe how the distribution of the pricing errors of time varying model
changes between time=1 and time=185, we plotted the histograms of the pricing errors for

these two time points and Figure (1) clearly points the shifts of the quantiles over time.

Figure 1: Histogram Plot of Mean Pricing Errors
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6 Conclusion

In this paper we propose an alternative method for examining the APT pricing restrictions,
using a metric first proposed by Geweke and Zhou (1996) and estimate three sets of models.
Furthermore, to examine the results of such an estimation practice, we use portfolios of
Fama and French that is monthly data set of 15 years grouped by industry. Utilizing Fama-
French monthly portfolios and using a Bayesian methodology, we form the exact posterior
distribution for the pricing errors and then calculate quantiles for the pricing error measure
by estimating first a static factor model, then extending it to a dynamic factor model and
lastly a dynamic model with time-varying betas. In all our models the factors are latent and
all the models are estimated in one-step.

We get four important results at the end of our analysis. First, the measure we use
illustrates that the pricing errors are not significantly small enough to ignore. Second, the
measure we used during our analysis shows that the mean pricing errors change according to
the model used and making the model more complex thinking that it will represent the real
life asset prices in a more convenient way does not necessarily produce the smallest pricing
errors. Third, the pricing error measure developed looses its capability as a model comparison
metric when we introduce time-varying dynamics to either a or 5 or both as the density of
the pricing error also changes according to the dynamics of a or 5. The last conclusion is
related to the number of factors used in APT. APT literature does not insert a clear number
of factors for the pricing models which leaves a gray area for research. We examine this
gray area by increasing the number of factors beyond one in all the models estimated to
see whether introducing factors beyond one will improve the models with respect tom mean
pricing errors. We observe that pricing errors reduce with the introduction of factors beyond

one and the reduction is significant.
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Appendix A Industry Definitions

5 Industry Definition

Industry 1 Consumer Durables, NonDurables, Wholesale, Retail, and Some Services (Laundries, Repair Shops)
Industry 2 Manufacturing, Energy, and Utilities

Industry 3 Business Equipment, Telephone and Television Transmission

Industry 4 Healthcare, Medical Equipment, and Drugs

Industry 5 Other

10 Industry Definition

Industry 1 Consumer NonDurables, Food, Tobacco, Textiles, Apparel, Leather, Toys

Industry 2 Consumer Durables, Cars, TV’s, Furniture, Household Appliances

Industry 3 Manufacturing, Machinery, Trucks, Planes, Chemicals, Office Furniture, Paper, Com. Printing
Industry 4 Oil, Gas, and Coal Extraction and Products

Industry 5 Business Equipment, Computers, Software, and Electronic Equipment

Industry 6 Telephone and Television Transmission

Industry 7 Wholesale, Retail, and Some Services (Laundries, Repair Shops)

Industry 8 Healthcare, Medical Equipment, and Drugs

Industry 9 Utilities

Industry 10 Other

17 Industry Definition

Industry 1 Food

Industry 2 Mining and Minerals

Industry 3 Oil and Petroleum Products

Industry 4 Textiles, Apparel and Footware

Industry 5 Consumer Durables

Industry 6 Chemicals

Industry 7 Drugs, Soap, Tobacco

Industry 8 Construction and Construction Materials
Industry 9 Steel Works etc

Industry 10 Fabricated Products

Industry 11 Machinery and Business Equipment
Industry 12 Automobiles

Industry 13 Transportation

Industry 14 Utilities

Industry 15 Retail Stores

Industry 16 Banks, Insurance Companies, and Other Financials
Industry 17 Other

Appendix B Convergence Diagnostics

Although MCMC algorithms allow an enormous expansion of the class of candidate models
for a given dataset , they also suffer from a well-known potentially serious drawback: It
is often difficult to decide when it is appropriate to terminate them and conclude their
convergence.?!  Almost all of the applied work involving MCMC methods has relied on
applying diagnostic tools to output produced by the algorithm when tackling the convergence

problem. We will apply two different convergence diagnostics to the output that we get from

2L Carlin and Cowles (1996) has a very good review about the different convergence diagnostics.



(1983) and Geweke (1992) will be used.*

the MCMC algorithm. Specifically, the diagnostics proposed by Heidelberger and Welch

Table B.1: MCMC Diagnostic Tests for the Posterior Distribution of Q

Heidelberger-Welch Diagnostic (Static Model)*

Number of Factors
K=1

K=
K=
K=

=W N

5 Industry Portfolio
0.18 (0.002)**
0.17 (0.002)

10 Industry Portfolio
0.29 (0.003)
0.27 (0.002)
0.24 (0.002)
0.22 (0.003)

17 Industry Portfolio
0.33 (0.002)
0.30 (0.002)
0.26 (0.001)
0.24 (0.001)

Heidelberger-Welch Diagnostic (Dynamic Model)*

Number of Factors
K=1

K=
K=
K=

=W N

5 Industry Portfolio
0.20 (0.003)*
0.18 (0.003)

10 Industry Portfolio
0.30 (0.003)
0.32 (0.004)
0.25 (0.002)
0.23 (0.002)

17 Industry Portfolio
0.35 (0.002)
0.37 (0.002)
0.32 (0.002)
0.30 (0.002)

Geweke’s Diagnostic (Static Model)***

Number of Factors
K=1

A
N0

5 Industry Portfolio
0.95 (failed)
-0.77 (failed)

10 Industry Portfolio
-0.15 (failed)
-2.44 (passed)
-1.26 (failed)

1.37 (failed)

17 Industry Portfolio
0.24 (failed)
0.08 (failed)
-1.06 (failed)
-0.17 (failed)

Geweke’s Diagnostic (Dynamic Model)***

Number of Factors
K=1
K=2
K=3
K=4

5 Industry Portfolio
-1.21 (failed)
-0.33 (failed)

10 Industry Portfolio
0.69 (failed)
-1.56 (passed)
-1.46 (failed)
-0.11 (failed)

17 Industry Portfolio
0.89 (failed)
0.03 (failed)
0.22 (failed)
1.31 (failed)

*The Cramer-von-Mises statistic to test the null hypothesis that the sampled values come from a stationary distribution.
**The numbers in paranthesis stand for the p-value of the test.

**z-score for difference in means of first 10% of chain and last 50% (stationarity).

Table (B.1) illustrates the MCMC diagnostic test results for average pricing errors. Where
Geweke’s diagnostic criteria states failure for most of the chains drawn, Heidelberg-Welch

diagnostic criteria shows no problem with the convergence.

2275 evaluate the convergence diagnostics the “CODA library for R” has been utilized.
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