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Abstract	

This	 paper	 uses	 synthetic	 data	 and	 different	 scenarios	 to	 test	 treatments	 for	

endogeneity	 problems	 under	 different	 parameter	 settings.	 The	 model	 uses	 initial	

conditions	 and	 provides	 the	 solution	 for	 a	 hypothetical	 equation	 system	 with	 an	

embedded	 endogeneity	 problem.	 The	 behavioral	 and	 statistical	 assumptions	 are	

underlined	as	 they	are	used	through	this	research.	A	methodology	 is	proposed	 for	

constructing	and	computing	simulation	scenarios.	The	econometric	modeling	of	the	

scenarios	 is	 developed	 accordingly	 with	 the	 feedback	 obtained	 from	 previous	

scenarios.	The	inputs	for	these	scenarios	are	synthetic	data,	which	are	constructed	

using	random	number	machines	and/or	Monte	Carlo	simulations.	The	outputs	of	the	

scenarios	 are	 the	 model	 estimators.	 The	 research	 results	 demonstrated	 that	 a	

treatment	for	endogeneity	can	be	developed	as	the	sample	size	increases.	

	

Keywords:	 synthetic	 data,	 endogeneity	 problems,	 scenarios,	 Monte	 Carlo	

simulations.	
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Introduction	

This	study	develops	a	statistical	application	for	providing	an	adequate	treatment	for	

endogeneity	problems.	The	application	is	a	hypothetical	equation	system	that	has	an	

embedded	 endogeneity	problem.	This	 specification	 is	 a	 general	 form	 for	 the	well-

known	 endogeneity	 problem	 in	 economics.	 To	 characterize	 the	 evolution	 of	 the	

system	of	equations	under	different	sample	sizes	and	simulation	scenarios,	it	is	first	

necessary	to	create	synthetic	data	as	the	equation	system	inputs.	The	synthetic	data	

are	constructed	using	Monte	Carlo	simulations	based	on	the	use	of	random	number	

machines.	In	this	respect,	the	author	takes	computational	advantage	of	the	already	

random	machine	modules	installed	in	Matlab.		

	

The	main	idea	behind	synthetic	data	is	the	creation	of	customized	data	and	to	feed	a	

particular	system	of	equations	with	them.	The	variation	of	key	parameter	values	in	

the	synthetic	data	and	the	variation	of	the	sample	size	allow	the	implementation	of	a	

methodology	 to	 treat	 the	 endogeneity	 problem.	 Consequently,	 feasible	 tests	 are	

generated	for	demonstrating	how	the	endogeneity	problem	decreases	substantially	

under	 controlled	 conditions	 and	 without	 restrictions	 on	 data	 access.	 Thus,	 the	

proposed	method	adjusts	the	econometric	modeling	accordingly	with	the	feedback	

obtained	from	previous	scenarios.	These	different	scenarios	change	when	synthetic	

data	 and	 the	 system	of	 equation	parameter	 values	 take	on	different	 initial	 values.	

These	 changes	 respond	 to	 changes	 in	 assumptions.	 These	 scenarios	 represent	

behavioral	 experiments,	 which	 could	 have	 been	 very	 expensive	 had	 they	 been	

performed	in	real	life.	However,	taking	advantage	of	software	developments	and	the	

increase	of	computational	capacity	in	recent	years,	this	research	provides	low-cost	

alternatives	 for	 performing	 these	 economic	 experiments	 alongside	 their	

corresponding	econometric	tests	and	analyses.	

	

This	paper	is	organized	as	follows.	The	first	section	presents	the	model	based	on	a	

system	of	 equations,	with	an	embedded	endogeneity	problem.	The	 second	section	

briefly	 describes	 the	 construction	 of	 synthetic	 data.	 The	 third	 section	 implements	
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the	 simulation	 scenarios	 and	 reports	 the	 corresponding	 results.	 The	 last	 section	

concludes.	

	

1.	Model	

Consider	 the	 following	 equation	 in	 which	 income	 is	 a	 function	 of	 different	

demographics:		

	

𝐼𝑛𝑐𝑜𝑚𝑒 = 𝛼! + 𝛼!𝑀𝑆 + 𝛼!𝐴𝑔𝑒 + 𝛼!𝐴𝑏𝑖𝑙𝑖𝑡𝑦 + 𝜖! 	

	

where	𝐼𝑛𝑐𝑜𝑚𝑒	stands	 for	 the	 returns	 of	 gaining	 a	 Master	 of	 Science	 degree;	𝑀𝑆	

stands	 for	 a	 Master	 of	 Science;	𝐴𝑔𝑒 	stands	 for	 age;	 and	𝐴𝑏𝑖𝑙𝑖𝑡𝑦 	stands	 for	 an	

unobservable	 variable	 that	 is	 linked	 with	 performance.	 The	 estimators	 are	 as	

follows:	𝛼!	stands	 for	 the	 constant;	𝛼!	stands	 for	 the	𝑀𝑆	estimator;	𝛼!	stands	 for	

𝐴𝑔𝑒 	estimator;	𝛼! 	stands	 for	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	estimator;	 and	𝜖! 	stands	 for	 the	 error	 term	

associated	with	this	equation.	This	last	term	is	assumed	to	be	normal,	independent	

and	identically	distributed,	i.e.,	𝜖!~𝑁 0,𝜎!
! .		

	

For	the	moment,	suppose	that	you	cannot	observe	the	variable	𝐴𝑏𝑖𝑙𝑖𝑡𝑦.	Hence,	you	

must	estimate	the	following	equation	given	data	availability:	

	

𝐼𝑛𝑐𝑜𝑚𝑒 = 𝛼! + 𝛼!𝑀𝑆 + 𝛼!𝐴𝑔𝑒 + 𝜖! 	

	

where	𝜖! 	stands	 for	 the	 error	 term	 associated	 with	 the	𝐼𝑛𝑐𝑜𝑚𝑒 	variable,	 which	

contains	the	unobservable	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	variable.	

	

Additionally,	assume	that	𝑀𝑆	has	a	Bernoulli	distribution:	

	

Pr 𝑀𝑆 = [𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦 ]!" + [1− 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦)]
!!!"	
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where	Pr 𝑀𝑆 	is	 the	 probability	 of	 observing	 the	 variable	𝑀𝑆;	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	is	 the	 same	

variable	 that	appeared	 in	 the	 first	equation;	and	𝜙	stands	 for	 the	standard	normal	

cumulative	distribution	function	(cdf).		

	

Furthermore,	assume	that	the	next	three	assumptions	hold:		

	

Statistical	assumptions	

a) In	 deriving	 the	method	 of	moments	 estimator,	 the	 covariance	 expected	

value	between	regressors	and	the	error	term	is	zero,	i.e.,	𝐸 𝑋
!
𝜖 = 0;		

b) The	variable	𝑀𝑆	is	uncorrelated	with	the	error	term	of	equation	(1).	Then	

its	correlation	is	𝜌!", !! = 0.	

	

Behavioral	assumption	

c) Negative	quantities	and	prices	only	exhibit	positive	values.	

	

Placing	 numbers	 to	 each	 of	 the	 equations	 above,	 the	 following	 system	 can	 be	

written:		

	

(1) 𝐼𝑛𝑐𝑜𝑚𝑒 = 𝛼! + 𝛼!𝑀𝑆 + 𝛼!𝐴𝑔𝑒 + 𝛼!𝐴𝑏𝑖𝑙𝑖𝑡𝑦 + 𝜖!;	

	

(2) 𝐼𝑛𝑐𝑜𝑚𝑒 = 𝛼! + 𝛼!𝑀𝑆 + 𝛼!𝐴𝑔𝑒 + 𝜖!;	

	

(3) Pr 𝑀𝑆 = [𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦 ]!" + [1− 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦)]
!!!"

.	

	

A	variable	is	said	to	be	endogenous	when	there	is	a	correlation	between	it	and	the	

error	 term.2	In	 the	equation	 system	above,	 the	 source	of	 endogeneity	 seems	 to	be	

related	 to	 the	 omitted	 variable.	 This	 omitted	 variable	 could	 be	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	if	 it	 is	 not	

observable.	In	fact,	this	should	be	true	if	the	correct	model	is	the	one	in	equation	(1),	

and	the	one	that	is	feasible,	given	data	availability,	is	the	model	depicted	by	equation	

																																																								
2	The	 use	 of	 a	 system	 of	 equations	 with	 a	 priory	 determination	 of	 exogenous	 and	 endogenous	

variables	is	not	rare	in	the	economics	profession,	as	expressed	in	Hart,	Mills	and	Whitaker	(1964).		
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(2).	Since	equation	(3)	establishes	a	relationship	between	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	and	𝑀𝑆,	 then	the	

endogeneity	problem	could	be	revealed	by	means	of	the	equation	system	algebraic	

manipulation.	

	

The	 first	 step	 in	 demonstrating	 the	 existence	 of	 the	 endogeneity	 problem	 in	 the	

above	equation	 system	 is	 to	 show	 that	 equation	 (2)	 contains	 the	omitted	variable	

𝐴𝑏𝑖𝑙𝑖𝑡𝑦.	 The	 second	 step	 consists	 of	 demonstrating	 that	𝑀𝑆	is	 correlated	with	 the	

error	term	of	equation	(2):	𝜌!",!! ≠ 0.	

	

Consider	that	this	hypothetical	system	has	embedded	an	endogeneity	problem.	This	

problem	 is	 evidenced	 on	 equation	 (3).	 If	 equation	 (3)	 holds,	 then	 the	 correlation	

between	𝑀𝑆	and	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	cannot	be	zero.	Equation	(3)	 links	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	and	𝑀𝑆	through	

a	non-linear	relationship.	For	a	moment,	assume	that	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	is	observable	and	that	

equation	(1)	can	be	estimated.	This	means	that	the	estimator	𝛼!	can	be	computed.	In	

this	 case,	 the	 specification	 of	 a	 correct	 statistical	model	 to	 commensurate	 income	

determinants	is	equation	(1).	

	

Now,	consider	that	the	variable	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	cannot	be	observed.	Equation	(2)	is	then	the	

only	feasible	model	for	estimation	purposes.	This	implies	that	equation	(2)	replaces	

the	econometric	model	of	equation	(1).	However,	if	the	correct	model	is	the	one	set	

on	 equation	 (1),	 it	 implies	 that	 a	measurement	 error	 associated	with	 the	 omitted	

variable	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	exists	in	equation	(2).	This	last	idea	can	be	represented	as	follows:		

	

(4)	 	𝜖! = 𝛼!𝐴𝑏𝑖𝑙𝑖𝑡𝑦 + 𝜖! .	

	

Equation	(4)	shows	that	the	omitted	variable	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	is	absorbed	by	the	error	term	

of	equation	(2).	Since	the	estimator	𝛼!	is	the	one	associated	with	𝐴𝑏𝑖𝑙𝑖𝑡𝑦,	it	appears	

in	equation	(4).	Some	partial	weight	of	𝜖! 	should	also	be	present	on	𝜖! .	For	easiness,	

consider	that	𝜖! 	is	so	small,	that	some	partial	weight	of	it	and	itself	have	almost	the	

same	magnitude.	In	this	case	and	for	the	sake	of	simplicity,	equation	(4)	contains	𝜖! .	
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The	second	step	consists	of	 showing	 that	 the	correlation	between	𝑀𝑆	and	𝜖! 	is	not	

zero	if	equation	(3)	holds.	Consider	the	following	cross	moment	or	conditional	mean	

of	𝑀𝑆	given	𝜖:	

	

𝐸 𝑀𝑆 𝜖 = 𝛽 + 𝑋
!
𝑋

!!
𝑋
!
𝑍𝛿	

	

Additionally,	consider	that	the	Gauss-Markov	theorem	holds	for	this	case:	

	

𝛽 = (𝑋!𝑋)!!𝑋′𝑌	

	

where	𝑌 	stands	 for	 the	 variable	𝐼𝑛𝑐𝑜𝑚𝑒 	and	𝑋 	represents	 a	 set	 of	 independent	

variables.	Hence,	the	last	equation	can	be	rewritten	as	follows:	

	

(5)	 	𝛽 = (𝑋!𝑋)!!𝑋′(𝛼!𝑀𝑆 + 𝛼!𝐴𝑔𝑒 + 𝛼!𝐴𝑏𝑖𝑙𝑖𝑡𝑦 + 𝜖!).	

	

where	 𝑌 	is	 written	 in	 terms	 of	 equation	 (1).	 Suppose	 that	𝛼!𝑀𝑆 + 𝛼!𝐴𝑔𝑒 =

𝑋𝛽;  𝛼!𝐴𝑏𝑖𝑙𝑖𝑡𝑦 = 𝛿𝑍;	 Z	 stands	 for	 the	 instrumental	 variable	 (IV);	𝛿	stands	 for	 the	

estimator	 of	 the	 IV;	 and	𝜖! = 𝑈;𝑈	represents	 a	 generalized	 error	 term.	 Making	

substitutions	 and	 distributing	 terms	 in	 this	 last	 expression,	 it	 can	 be	 written	 as	

follows:	

	

𝛽 = (𝑋!𝑋)!!𝑋′(𝑋𝛽 + 𝑍𝛿 + 𝑈)	

	

𝛽 = (𝑋!𝑋)!!𝑋′(𝑋𝛽)+ (𝑋!𝑋)!!𝑋′𝑍𝛿 + (𝑋!𝑋)!!𝑋′𝑈	

	

𝛽 = 𝛽 + (𝑋!𝑋)!!𝑋′𝑍𝛿 + (𝑋!𝑋)!!𝑋′𝑈	

	

Suppose	that	𝑈 = 0,	and	considering	expectations,	the	last	expression	simplifies	to:	
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𝐸 𝛽 𝑋 = 𝛽 + 𝑋
!
𝑋

!!
𝑋
!
𝑍𝛿	

	

𝐸 𝛽 𝑋 = 𝛽 + 𝑏𝑖𝑎𝑠	

	

The	 generalized	 estimator	𝛽	is	 biased	 if	𝑋!𝑍 ≠ 0	or	𝛿 ≠ 0.3	In	 this	 case,	 the	 bias	 is	

represented	 by	 the	 term  (𝑋!𝑋)!!𝑋′𝑍𝛿 .	 This	 well-known	 result	 is	 the	 omitted	

variable	formula.		

	

In	 the	 last	 equation,	𝑏𝑖𝑎𝑠	is	 proportional	 to	 a	 weighted	 portion	 of	𝐴𝑏𝑖𝑙𝑖𝑡𝑦,	 which	

depends	on	a	non-linear	association	with	𝑀𝑆.	This	association	is	set	on	equation	(3).	

Please	 note	 that	𝐵𝑖𝑎𝑠	does	 not	 depend	 on	𝐴𝑔𝑒,	 since	 this	 hypothetical	 equation	

system	does	not	provide	an	equation	where	𝐴𝑔𝑒	and	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	are	related.4	

	

Another	way	to	express	𝑏𝑖𝑎𝑠	is	as	follows:	

	

(6)	𝐸 𝛽 𝑋 = 𝛽 +
!"# !",!"#$#%&

!"# !"
𝛼!.	

	

where	𝛼!	is	the	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	estimator	of	equation	(1).	

	

From	 equation	 (4),	 it	 is	 known	 that	𝜖! = 𝛼!𝐴𝑏𝑖𝑙𝑖𝑡𝑦 + 𝜖! .	 Thus,	𝐴𝑏𝑖𝑙𝑖𝑡𝑦 	can	 be	

expressed	as	follows:	

	

𝐴𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜖! − 𝜖!

𝛼!

	

	

Plugging	the	last	expression	for	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	into	equation	(6)	results	in	the	following:		

	

(6)’	𝐸 𝛽 𝑋 = 𝛽 +
!"# !",

!!!!!

!!

!"# !"
𝛼!.	

																																																								
3	For	an	example	containing	endogeneity	bias,	see	Hayashi	(2000,	p.	187).	
4	According	to	Greene	(2012),	bias	is	caused	by	the	omission	of	relevant	variables.	
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If	𝛽	is	𝑏𝑖𝑎𝑠𝑒𝑑	as	 explained	 previously,	 then	 it	 should	 follow	 that	
!"# !",

!!!!!

!!

!"# !"
𝛼! ≠ 0	

and	thus	𝑐𝑜𝑣 𝑀𝑆,
!!!!!

!!

≠ 0.		

	

The	correlation	coefficient	for	the	𝑀𝑆	and	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	variables	is	as	follows:	

	

𝜌!",!"#$#%& = 𝑐𝑜𝑟𝑟 𝑀𝑆, 𝐴𝑏𝑖𝑙𝑖𝑡𝑦 =
!"#(!",!"#$#%&)

!!" !!"#$#%&
,	or	

	

𝜌
!",

!!!!!

!!

= 𝑐𝑜𝑟𝑟 𝑀𝑆,
𝜖! − 𝜖!

𝛼!

=

𝑐𝑜𝑣(𝑀𝑆,
𝜖! − 𝜖!

𝛼!
)

𝜎!" 𝜎
 
!!!!!

!!

 

	

since	𝑐𝑜𝑣 𝑀𝑆,
!!!!!

!!

≠ 0,	and	𝜖!~𝑁(0,𝜎!
!)	it	 follows	that	𝜌

!",
!!!!!

!!

≠ 0.	Thus,	there	is	

indeed	 a	 correlation	 between	𝑀𝑆	and	𝜖! .	 With	 these	 two	 steps,	 the	 endogeneity	

problem	 embedded	 in	 the	 hypothetical	 equation	 system	 has	 been	 made	 evident,	

since	it	matched	the	definition	of	an	endogenous	variable:	an	endogenous	variable	

exists	 when	 there	 is	 a	 correlation	 between	 it	 and	 the	 error	 term.	 This	 applies	

specifically	to	𝑀𝑆	in	equation	(2).	

	

Once	the	endogeneity	problem	has	been	made	evident	in	the	equation	system,	what	

follows	is	the	specification	for	synthetic	data	construction	and	simulation	scenarios.	

These	procedures	are	presented	 in	 the	next	 section.	The	construction	of	 synthetic	

data	 can	 be	 done	 in	 different	ways.	 One	 is	 by	means	 of	Monte	 Carlo	 simulations,	

which	are	widely	used.	It	uses	a	recursive	algorithm	and	a	fix	population.	The	seed	

fixes	 the	population	 to	 a	 given	 size.	Therefore,	 its	 seed	 limits	Monte	Carlo	 sample	

sizes.	 The	 use	 of	 random	 machines,	 which	 are	 modules	 preinstalled	 on	 Matlab,	

allows	 samples	 to	 be	 drawn	 from	 an	 infinite	 population.	 These	 samples	 have	

asymptotic	 properties	 that	 are	 absent	 in	 samples	 derived	 from	 Monte	 Carlo	
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simulations.5	The	author	opts	 for	 this	 last	method,	 since	 it	 results	 in	samples	with	

asymptotic	 properties.	 In	 the	 next	 section,	 the	 synthetic	 data	 and	 construction	 of	

scenarios	are	explained.	

	

2.	Synthetic	data	construction	and	simulation	scenarios		

Consider	 the	 next	 four	 stages	 for	 describing	 synthetic	 data	 construction	 and	

scenario	estimations:	

	

1. Take	initial	parameter	values	 for	the	variables	that	composed	equations	

(1);	(2)	and	(3):	𝛼!,𝛼!,𝛼!,𝛼!, 𝛾!, 𝛾!,𝜎!
!;	

	

2. With	 the	 help	 of	 the	 random	 number	 generators,	 which	 are	 modules	

preinstalled	on	Matlab,	generate	20	observations	for	each	variable	in	this	

research	equation	system;	

	

3. Proceed	to	estimate	the	income	equation	with	different	sample	sizes,	i.e.,	

50	and	100	observations.	Compare	these	equation	estimators	in	terms	of	

percentage	deviations	from	initial	parameter	values.	Register	the	results	

properly	in	the	corresponding	tables;	

	

4. Changing	 initial	parameters	values	reproduces	alternative	scenarios.	Let	

steps	2	and	3	adjust	automatically	to	these	new	values	and	take	note.	

	

It	 is	 important	 to	 underline	 that	 the	 variables	 created	 in	 steps	 one	 and	 two	

represent	 synthetic	data.	They	are	generated	with	 random	number	machines,	 and	

every	 time	 the	 run	button	 is	hit	 in	 the	Matlab	 software,	 the	 algorithm	 is	updated.	

This	 allows	 omitting	 the	 step	 of	 taking	 draws	 from	 the	 determined	 size	 of	 one	

																																																								
5	“Since	the	variables	were	generated	with	random	number	[generators],	every	time	the	code	is	run,	

the	variables	get	updated.	This	allows	the	analyst	to	omit	an	additional	step	of	taking	draws	from	the	

population	in	the	Monte	Carlo	simulation.	So,	the	population	from	which	the	samples	are	being	taken	

is	 infinite,	 instead	of	 being	bounded	 to	100	or	1,000	population	 size.”	 Carbajal	 (2013,	p.	 4	bracket	

added).	
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population,	as	when	the	Monte	Carlo	method	is	used.	This	 is	 the	case	because	this	

procedure	 restricts	 the	draws	 that	 could	be	 taken	given	a	 certain	population	 size.	

Regardless	of	whether	Monte	Carlo	or	 the	random	machines	method	 is	used,	both	

allow	for	the	creation	of	synthetic	data.	

	

Equation	(2)	was	solved	using	𝑀𝑆	synthetic	data.	This	is	important	because	it	allows	

it	 to	 have	 a	 determined	 distribution	 and	 asymptotic	 properties.	 That	 is,	 the	

population	moments	 are	 shared	by	 the	 synthetic	data	 samples.	The	variable	𝑀𝑆	is	

key	to	estimating	the	system	of	equations	and	to	showing	an	endogeneity	problem	

treatment.	

	

For	 instance,	 assume	 that	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	is	 not	 available.	 Thus,	 equation	 (2)	 nests	 the	

variable	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	in	its	error	term	as	described	in	equation	(4).	Furthermore,	assume	

that	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	is	 available	 and	 denote	 it	 with	 the	 name	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠	to	 distinguish	 it	

from	 the	 case	when	 it	 is	 not	 observable.	The	Pr(𝑀𝑆)	 on	 equation	 (3)	 can	 then	be	

computed	 given	 that	 the	 variable	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠	is	 used	 as	 an	 input.	 Using	 these	 two	

types	of	variables,	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	and	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠,	 the	differences	of	having	an	endogenous	

problem	without	and	with	 treatment	will	become	obvious	 in	 the	next	section.	The	

treatment	 implements	the	use	of	IV.	 Instrumental	variables	are	a	common	method	

in	economics	to	correct	endogeneity	problems.	

	

3.	Scenarios	and	results	

3.a.	First	scenario	

n=20	observations	case	

	

Follow	steps	1-3	from	the	previous	section.	Set	the	number	of	repetitions	to	20,	for	

each	 of	 the	 variables	 on	 equations	 one	 to	 three.	 Initial	 parameter	 values	 are	

assigned	as	follows:	

	

𝛼! =10;	

𝛼! =20;	
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𝛼! =30.	

	

After	 running	 a	 regression	 for	 equation	 (2)	 using	 the	 method	 of	 ordinary	 least	

squares,	the	following	estimators	are	obtained:	

	

𝛼! =41.7398;	

𝛼! =19.9312;	

𝛼! =30.1700.	

	

The	estimator	for 𝛼!	is	closed	to	its	assigned	value.	The	difference	between	them	is	

(30.17-30)/30*100=0.56%	 (overestimation).	 Something	 similar	 occurs	 with	𝛼! ,	

where	the	difference	between	the	true	value	and	its	estimator	is	close	to	(19.9312-

20)/20*100=-0.344%	(underestimation).	Regarding	the	coefficient	estimate	 for	𝛼!,	

it	is	very	far	from	its	true	value.		

	

The	 following	 95%	 confidence	 intervals	 are	 obtained	 after	 running	 the	

corresponding	regressions:	

	

For	𝛼! =41.7398,	[13.3659	70.1137],	with	a	true	value	of	𝛼! =10;	

for	𝛼! =19.9312,	[19.4721	20.3904],	with	a	true	value	of	𝛼! =20;	

for	𝛼! =30.1700,	[29.4188	30.9213],	with	a	true	value	of	𝛼! =30.	

	

As	we	can	see	from	the	information	given	above,	the	confidence	interval	contained	

the	 truth-value.	 One	 exception	 is	 represented	 by	𝛼! .	 For	 instance,	𝛼! =20	 is	

contained	 in	 the	 confidence	 interval	 [19.4721	 20.3904].	 Likewise,	𝛼! =30	 is	

contained	in	[29.4188	30.9213].	

	

The	 coefficient	 estimate	 for	𝑀𝑆 	(𝛼! )	 is	 close	 to	 the	 lower	 bound	 of	 its	 95%	

confidence	interval.	The	coefficient	estimate	for	𝐴𝑔𝑒	(𝛼!)	is	near	to	the	upper	bound	

of	 its	 95%	 confidence	 interval.	 The	 coefficient	 for	 the	 constant	 (𝛼!)	 represents	
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merely	 the	 average	 of	 the	 observations,	 so	 it	 is	 around	 the	 middle	 of	 its	 95%	

confidence	interval.	

	

n=	50	observations	case,	results	

 

𝛼! =75.8929;	

𝛼! =19.8502;	

𝛼! =30.0290.	

 

Remember	 that	 the	 following	 values	 for	 the	 above	 parameters	 are	 assigned	 as	

follows:	

	

𝛼! =10;	

𝛼! =20;	

𝛼! =30.	

	

The	estimate	 for 𝛼!	is	closed	to	 its	assigned	value.	The	difference	between	them	is	

(30.0290-30)/30*100=0.09%	 (overestimation).	 Something	 similar	 occurs	 with	𝛼!,	

where	the	difference	between	the	estimate	and	 its	 true	value	 is	close	to	(19.8502-

20)/20*100=-0.749%	(underestimation).	Regarding	the	coefficient	estimate	 for	𝛼!,	

it	is	very	far	from	its	true	value.		

	

n=	100	observations	case,	results	

 

𝛼! = 129.2581;	

𝛼! = 19.9555;	

𝛼! = 29.9135. 

 

Remember	 that	 the	 following	 values	 for	 the	 above	 parameters	 are	 assigned	 as	

follows:	
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𝛼! =10;	

𝛼! =20;	

𝛼! =30.	

	

The	 estimate	 for 𝛼!	is	 close	 to	 its	 assigned	 value.	 The	 difference	 between	 them	 is	

(29.9135-30)/30*100=-0.288%	 (underestimation).	 Something	 similar	 occurs	 with	

𝛼! ,	 where	 the	 difference	 between	 the	 estimate	 and	 its	 true	 value	 is	 close	 to	

(19.9555-20)/20*100=-0.222%	 (underestimation).	 Regarding	 the	 coefficient	

estimate	for	𝛼!,	it	is	very	far	from	its	true	value.		

	

The	differences	of	the	estimates	with	100	observations	and	the	previous	estimates	

with	 20	 and	 50	 observations,	 are	 compared	 in	 Table	 1.	 This	 comparison	 aims	 to	

verify	whether	there	is	an	improvement	in	the	estimator	convergence	with	its	initial	

value,	given	an	increase	in	the	sample	size.6		

	

Table	1.	Estimator	convergence.	Sample	sizes	20,	50	and	100.	

Estimator	 Differences	(%)	

20	observations	

Differences	(%)	

50	observations	

Differences	(%)	

100	

observations	

Improvement?	

𝛼!	 -0.344	 -0.749	 -0.222	 Yes	

𝛼!	 0.560	 0.090	 -0.288	 Yes	

	

From	Table	1,	the	differences	measured	in	percentage	terms	have	decreased	as	the	

number	 of	 observations	 increased	 in	 the	 sample.	 For	 instance,	 the	 difference	

between	 the	 estimator	 and	 its	 true	 value	 for	𝛼!	is	 -0.344%	with	 20	 observations,	

and	it	decreases	to	-0.749%	with	50	observations;	thus,	this	percentage	decreases.	It	

decreases	even	more	with	100	observations,	i.e.,	-0.222%	(in	absolute	terms);	thus,	

the	 percentage	 decreases.	 A	 similar	 improvement	 is	 seen	 in	𝛼!	because	 it	 passes	

																																																								
6	According	to	Neese	and	Hollinger	(1985),	the	process	of	varying	the	number	of	observations	affects	

the	confidence	intervals’	sensitivities.	
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from	0.56%	with	20	observations	 to	0.09%	with	50	observations	and	 -0.288	with	

100	observations;	thus,	the	percentage	decreases.	

 

From	Table	1,	 it	 can	be	 confirmed	empirically	 that	as	 the	number	of	observations	

increases,	 the	 coefficient	 estimates	 become	 closer	 and	 closer	 to	 their	 true	 values.	

This	 is	 simply	 a	 confirmation	 of	 the	 Law	 of	 Large	 Numbers,	 the	 Central	 Limit	

Theorem	 and	 the	 Asymptotic	 Distribution	 of	 the	 OLS	 estimators.7	The	 intuition	 is	

that	 as	 the	 number	 of	 observations	 increases	 to	 infinity,	 the	 estimators	 will	

converge	with	their	initial	value.	Remember	that	this	research	equation	system	has	

embedded	an	endogeneity	problem.	Convergence	is	possibly	achieved,	because	the	

increase	 in	 sample	 size	 diminishes	 the	 estimator	 bias,	 and	 the	 aforementioned	

asymptotic	 properties	 hold.	 If	 this	 intuition	 is	 true,	 then	 this	 research	 results	 are	

aligned	with	those	of	Alvarez	and	Arellano	(1988)	and	Anderson	and	Hsiao	(1981).8	

	

3.b.	Second	scenario	

In	 the	scenario	above,	 the	variable	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	was	unobservable.	This	assumption	has	

now	changed	and	𝐴𝑏𝑖𝑙𝑖𝑡𝑦	is	observed.	This	observable	variable	is	called	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠.	

Equation	(3)	can	be	rewritten	in	terms	of	this	observable	variable.	

	

(3)’	 	Pr 𝑀𝑆 = [𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠 ]
!"
+ [1− 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠)]

!!!".	

	

The	initial	parameter	values	for	this	scenario	are:	

	

𝛼!=10;	

																																																								
7	For	a	clear	demonstration	of	the	Central	Limit	Theorem,	see	Hogg,	McKean	and	Craig	(2013,	p.	307).	

More	 information	 is	 available	 on	 Hamilton	 (1994)	 regarding	 the	 Law	 of	 Large	 Numbers	 and	

Asymptotic	Distributions.	
8	When	Alvarez	and	Arellano	(1988)	derive	the	asymptotic	properties	of	different	kind	of	estimators	

(GMM,	 LIML	 and	WG)	when	N	 tends	 to	 infinity,	 they	 find	 that	 these	 estimators	 are	 asymptotically	

equivalent	to	the	WG	estimators.	In	this	study,	this	could	imply	that	if	the	initial	parameter	values	are	

set	equal	to	the	WG	estimators,	then	other	types	of	estimators	could	reach	asymptotic	convergence	to	

WG	estimators	as	the	sample	size	increases	and	bias	diminishes.	In	the	case	of	Anderson	and	Hsiao	

(1981),	 when	 N	 tends	 to	 infinity,	 the	MLE	 delivers	 consistent	 estimators	 depending	 on	 the	 initial	

conditions.	The	author	understands	as	consistent	estimators	those,	which	are	efficient	and	unbiased.	
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𝛼!=50;	

𝛼!=30;	

𝛾!=40;	

𝛾!=50;	

𝜎!
!=1.	

	

where	𝜎!
! 	represents	 the	 variance	 of	 the	 error	 term;	𝛾! 	and	𝛾! 	represent	 the	

estimators	of	equation	(3).	

	

In	this	scenario,	equation	(2)	includes	equation	(3)’.	This	 implies	that	𝑀𝑆	has	been	

computed	in	a	previous	stage	and	is	later	entered	as	input	in	equation	(2).	

	

n=	20	observations	case	

	

The	estimators	for	equation	(2)	are:	

	

𝛼! = 126.2643;	

𝛼! =  20.2350;	

𝛼! =  30.0320.	

	

The	associated	95%	confidence	intervals	are:	

	

For	𝛼! = 126.2643,	[117.7658	134.7627],	with	a	true	value	of	𝛼! =10;	

for	𝛼! =20.2350,	[20.0225	20.4475],	with	a	true	value	of	𝛼! =50;	

for	𝛼! =30.0320,	[29.7946	30.2694],	with	a	true	value	of	𝛼! =30.	

	

From	the	information	above,	the	confidence	intervals	do	not	contain	the	true	initial	

value	for	𝛼!	and	𝛼!.	That	is,	𝛼! =10	is	not	inside	the	range	of	the	following	interval	

[117.7658	134.7627];	𝛼! =50	is	not	contained	in	[20.0225	20.4475].	Reversing	this	

behavior	trend,	we	see	that	𝛼! =30	is	contained	in	[29.4188	30.9213].	This	behavior	

is	likely	observed,	because	now	equation	(2)	nests	equation	(3)’.	
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n=	50	observations	case	

	

Once	 the	 sample	 size	 is	 increased	 from	 20	 to	 50	 observations,	 the	 following	

estimators	are	computed:	

 

𝛼! = 128.6414;	

𝛼! =  20.0608;	

𝛼! =  29.9382.	

	

n=	100	observations	case	

 

𝛼! = 23.1880;	

𝛼! = 49.9987;	

𝛼! = 30.1105. 

	

Next,	in	Table	2,	the	information	for	this	scenario	is	summarized:	

	

Table	2.	Estimator	convergence.	Sample	sizes	20,	50	and	100.	

Estimator	 Differences	(%)	

20	observations	

Differences	(%)	

50	observations	

Differences	(%)	

100	

observations	

Improvement?	

𝛼!	 -59.530	 -59.878	 -0.002	 Yes	

𝛼!	 0.106	 -0.002	 0.368	 No	

	

From	Table	2,	it	can	be	observed	that	the	differences	measured	in	percentage	terms	

have	 decreased	 as	 the	 number	 of	 observations	 increased	 from	 20	 to	 50.	 For	

instance,	 the	 difference	 between	 the	 estimator	𝛼!	and	 its	 true	 value	 is	 -59.530%	

with	 20	 observations,	 and	 it	 decreases	 to	 -59.878%	 with	 50	 observations;	 it	

decreases	 even	 more	 with	 100	 observations,	 i.e.,	 -0.002	 (in	 absolute	 terms).	 The	
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difference	 for	 the	 estimator	𝛼!	and	 its	 true	 value	 decreases	when	 the	 sample	 size	

increases	 from	 20	 to	 50	 observations,	with	 values	 of	 0.106	 and	 -0.002,	when	 the	

number	of	 observations	 increases	 from	50	 to	100,	 there	 is	 no	 improvement	 in	 its	

difference.		

	

In	general,	Table	2	shows	empirically	that	as	the	number	of	observations	increases,	

𝛼! 	estimators	 become	 closer	 and	 closer	 to	 its	 true	 value.	 This	 is	 simply	 a	

confirmation	 of	 the	 Law	 of	 Large	 Numbers,	 the	 Central	 Limit	 Theorem	 and	 the	

Asymptotic	Distribution	of	the	OLS	estimators,	as	explained	previously.	In	the	case	

of	𝛼!,	convergency	is	not	achieved,	since	the	endogeneity	problem	is	now	included	

in	the	estimation	of	equation	(2).	

	

3.c.	Third	scenario		

Proceed	to	find	a	new	method	of	moments	for	equation	(2).	This	scenario	includes	

the	 use	 of	 IV	 to	 correct	 the	 endogeneity	 problem	 of	 the	 second	 scenario.	 The	

variable	Z	is	referred	as	the	instrument	or	IV.		

	

To	determine	whether	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠	could	be	used	as	IV,	it	is	necessary	to	compute	the	

correlation	coefficient	between	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠	and	𝜖! .	Note	 that	 in	 the	model	section,	 it	

was	found	that	𝜌
!",

!!!!!

!!

≠ 0 .	In	this	scenario,	the	correlation	needed	is	𝜌!"#$#%&"#',!!  .	

It	can	be	computed	with	the	aid	of	synthetic	data:	𝜌!"#$#%&"#',!! = −0.0050.	This	value	

is	 close	 to	 zero.	 It	 is	 decided	 that	 this	 empirical	 correlation	 coefficient	 value	 is	

almost	zero	and	that	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠	and	𝜖! 	are	not	correlated.	

	

The	 theoretical	 justification	 for	 the	 use	 of	 instrumental	 variables	 can	 be	 found	 in	

Greene	(2012).	Remember	that	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠	is	observable	to	the	econometrician.	

	

The	IV	assumptions	are	as	follows:	
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• Exogeneity.	 They	 are	 uncorrelated	 with	 the	 error	 term	𝐸(𝑍′𝜖!) = 0 ,	

where	𝑍′	indicates	IV	transpose;	

• Relevance.	They	are	correlated	with	the	independent	variables.	

	

The	 asymptotic	 properties	 of	 the	 IV	 estimator	 indicate	 in	 general,	 that	 if	𝑍	has	 a	

finite	 variance,	 then	 the	 remaining	 regression	 equation	 components	 also	 have	 a	

finite	variance:	

	

𝑝𝑙𝑖𝑚
𝑍
!
𝜖!

𝑛
= 𝑝𝑙𝑖𝑚

𝑍
!
𝑌

𝑛
− 𝑝𝑙𝑖𝑚

𝑍
!𝑋𝛽

𝑛
= 0 

	

Rearranging,	

	

𝑝𝑙𝑖𝑚
𝑍
!
𝑌

𝑛
= 𝑝𝑙𝑖𝑚

𝑍
!
𝑋

𝑛
𝛽 + 𝑝𝑙𝑖𝑚

𝑍
!
𝜖!

𝑛
	

	

If	𝑝𝑙𝑖𝑚
!
!
!!

!
= 0,	then	

𝑝𝑙𝑖𝑚
𝑍
!
𝑌

𝑛
= 𝑝𝑙𝑖𝑚

𝑍
!
𝑋

𝑛
𝛽 + 0	

	

𝑝𝑙𝑖𝑚
𝑍
!
𝑌

𝑛
= 𝑝𝑙𝑖𝑚

𝑍
!
𝑋

𝑛
𝛽	

	

If	𝑍	has	 the	 same	number	of	 variables	 as	𝑋,	 then	 the	 rank	of	𝑍!𝑋	is	 k.	This	 implies	

that	𝑍!𝑋	is	a	square	matrix	and	its	inverse	exists:	

	

𝛽 = 𝑝𝑙𝑖𝑚
𝑍
!
𝑋

𝑛

!!

𝑝𝑙𝑖𝑚
𝑍
!
𝑌

𝑛
	

	

This	last	expression	in	closed-form	leads	to	the	IV	estimator:	
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𝑏!" = (𝑍!𝑋)!!𝑍′𝑌	

	

Consider	𝐸(𝑍𝜖!) = 0 	moment	 condition.	 When	 this	 moment	 condition	 holds,	 it	

replaces	 the	 standard	 orthogonal	 condition	 and	 the	 derivation	 of	 a	 new	 general	

method	of	moment	estimator	can	be	found,	for	the	income	equation:	

	

(3)’	 	Pr 𝑀𝑆 = [𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠 ]
!"
+ [1− 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠)]

!!!".	

	

Taking	the	log	in	both	sides	of	equation	(3)’	produces	the	following	expression:9	

	

𝑙𝑛 Pr 𝑀𝑆 = 𝑙𝑛[𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠 ]
!"
+ 𝑙𝑛[1− 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠)]

!!!"	

	

𝑙𝑛 Pr 𝑀𝑆 = ln {[𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠 ]
!"

1− 𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠
!!!"}	

	

Applying	the	exponential	to	the	last	line	yields	the	following:	

	

(7)	Pr 𝑀𝑆 = [𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠 ]
!"

1− 𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠
!!!".	

	

This	 last	 equation	has	a	 similar	 form	as	 the	Bernoulli	probability	density	 function	

(pdf):10	

	

(8)	𝑝 𝑥 = 𝑝![1− 𝑝]!!! , 𝑥 = 0,1.	

	

When	𝑥 	takes	 on	 values	 of	 0	 and	 1,	 an	 indicator	 function	 is	 produced.	 The	

population	moments	for	a	Bernoulli	pdf	are	as	follows:	

	

𝜇 = 𝑝	

																																																								
9	With	 this	operation	 the	corresponding	equation	 is	 linearized.	The	corresponding	estimators	 from	

the	equation	with	and	without	log	should	be	equivalent,	because	they	differ	only	in	scale.	Kantz	and	

Schereiber	(2003,	p.	109)	provide	further	insight	regarding	this	equivalence.	
10	Casella	and	Berger	(1990)	provide	a	full	Bernoulli	pdf	description.	
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𝜎
!
= 𝑝[1− 𝑝]	

	

Equalizing	equations	(7)	and	(8)	yields	the	following:	

	

𝑝 = 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠)	

	

Thus,	the	moments	of	the	population	are	as	follows:	

	

𝜇 = 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠)	

	

𝜎
!
= 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠)[1− 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠]	

	

The	sample	moments	for	equation	(8)	are	as	follows:	

	

1

𝑛
𝑥!

!

!!!

= 𝑥	

	

1

𝑛
𝑥!
!
−

1

𝑛
𝑥!

!

!!!

!!

!!!

= 𝑠
!	

	

where	𝑥	is	the	sample	mean	and	𝑠!	is	the	sample	variance.	

	

To	link	the	theory	to	the	data,	take	the	population	moments	(theory	moments)	and	

sample	 moments	 (empiric	 moments)	 and	 equalized	 them.	 Solve	 the	 following	

system	of	two	equations:	

	

𝑝 = 𝑥	

	

𝑝 1− 𝑝 = 𝑠
!	
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Solving	this	system	yields	the	following:	

	

𝑝 = 𝑥	

	

𝑝 1− 𝑝 = 𝑥 − 𝑥
!	

	

Thus,	a	synthetic	data	can	be	constructed	for	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠,	considering	the	theory	and	

empirical	moment	values	of	𝜇 = 𝑝 = 𝑥,	and	𝜎! = 𝑝 1− 𝑝 = 𝑥 − 𝑥
!.	In	this	way,	the	

reliability	 of	 inference	 based	 on	 its	 statistical	 adequacy	 is	 secured.	 Additionally,	

these	results	are	backed	by	the	analytical	model,	which	gauges	the	same	functional	

relationships,	information	and	optima	among	the	relevant	variables.11	

	

Once	 constructed,	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠	generates	 a	 standard	 normal	 cdf	 from	 the	 random	

uniform	 variable	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠	with	 the	 values	 of	𝜇 = 0	and	σ! = 1.	 This	 computation	

will	produce	the	variable	𝑝 = 𝜙(𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠).	This	procedure	assures	that	the	

previous	computation	is	correct.	

	

Equation	(7)	can	represent	a	probit	model.	Its	log	likelihood	function	is	as	follows:	

	

𝑙𝑛𝑃𝑟 𝑀𝑆 = 𝑀𝑆𝑙𝑛 𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠 + 1−𝑀𝑆 ln [1− 𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠 ]	

	

The	 maximum	 likelihood	 estimator	 for	 the	 variable	𝑀𝑆𝑙𝑛 𝜙 𝛾! + 𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠 	is	

2.887,	 with	 a	 standard	 error	 of	0.927.	 These	 figures	 for	 1−𝑀𝑆 ln 1− 𝜙 𝛾! +

𝛾!𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠 	are	-1.875	and	 0.916,	respectively.	

	

Thus,	plugging	the	above	estimators	values	into	equation	(7)	a	value	for	𝑀𝑆	can	be	

obtained.	 Table	 3	 reports	 the	 results	 after	 estimating	 the	 corresponding	 equation	

system	for	different	sample	sizes.	

	

																																																								
11	Spanos	(2011).	
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n=	20	observations	case	

	

The	initial	parameter	values	for	this	scenario	are	as	follows:	

	

𝛼! =10;	

𝛼! =20;	

𝛼! =30.	

	

After	 running	 a	 regression	 for	 equation	 (2)	 using	 the	 method	 of	 ordinary	 least	

squares,	the	following	estimators	are	obtained:	

	

𝛼! =32.9122;	

𝛼! =0.0000;	

𝛼! =27.6321.	

	

n=	50	observations	case	

	

𝛼! =109.3834;	

𝛼! =0.0000;	

𝛼! =29.2389.	

	

n=	100	observations	

	

𝛼! =81.0565;	

𝛼! = −0.0000;	

𝛼! =30.2680.	
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Table	3.	Estimator	convergence.	Sample	sizes	20,	50	and	100.	

Estimator	 Differences	(%)	

20	observations	

Differences	(%)	

50	observations	

Differences	(%)	

100	

observations	

Improvement?	

𝛼!	 0.000	 0.000	 0.000	 No	

𝛼!	 -7.893	 -2.5735	 0.8933	 Yes	

	

From	the	results	reported	in	Table	3,	it	can	be	noted	that	the	estimate	coefficient	for	

𝛼!	is	 0	 for	 20;	 50	 and	 100	 observations.	 This	means	 that	 once	 the	 variable	𝑀𝑆	is	

controlled	by	an	observable	random	event,	such	as	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠,	it	has	an	impact	close	

to	zero	in	the	determination	of	income.	

	

3.d.	Five	scenario	

In	this	case,	consider	the	following	values	for	𝜎!
!;	𝛾!	and	𝛼!:	

	

𝛼! = 50;	

𝛾! = 60;	

𝜎!
!
= 2.	

	

The	 corresponding	 estimators	 and	 their	 differences	 with	 respect	 to	 the	 initial	

parameters	values	are	reported	in	Table	4.		

	

n=	20	observations	

	

𝛼! =17.4690;	

𝛼! =0.0000;	

𝛼! =31.4482.	

	



	 24	

n=	50	observations	

	

𝛼! =109.3834;	

𝛼! =0.0000;	

𝛼! =29.2389.	

	

n=	100	observations	

	

𝛼! =137.6044;	

𝛼! = −0.0000;	

𝛼! =29.7237.	

	

Table	4.	Estimator	convergence.	Sample	sizes	20,	50	and	100.	

Estimator	 Differences	(%)	

20	observations	

Differences	(%)	

50	observations	

Differences	(%)	

100	

observations	

Improvement?	

𝛼!	 0.000	 0.000	 0.000	 No	

𝛼!	 4.827	 -2.537	 -0.921	 Yes	

	

After	changing	the	parameters	values	for	𝜎!
!;	𝛾!	and	𝛼!,	 it	is	found	that	the	variable	

𝑀𝑆	continues	to	exhibit	a	virtually	null	impact	over	the	determination	of	income	as	

in	Table	3,	under	different	 initial	parameter	values.	This	 implies	 that	MS	was	only	

significant	 for	 the	 econometric	 model	 when	 it	 incorporates	 the	 omitted	 variable	

𝐴𝑏𝑖𝑙𝑖𝑡𝑦.	Once	an	endogeneity	treatment	based	on	the	IV	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠	is	implemented,	

the	variable	MS	stops	being	a	relevant	factor	in	the	determination	of	income.	

	

Conclusion	

By	 increasing	 the	 sample	 size,	 the	 income	 estimators	 begin	 converging	 with	 the	

assigned	 initial	 parameter	 values.	 Perhaps	 these	 estimators	 become	 consistent,	

implying	 efficiency	 and	 a	 decreasing	 bias	 as	 an	 asymptotic	 result.	 Once	 the	
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endogeneity	problem	embedded	in	a	hypothetical	equation	system	is	controlled	by	

the	 observable	 IV	𝐴𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑖𝑠,	 it	 is	 found	 that	𝑀𝑆	has	 virtually	 a	 nil	 impact	 in	 the	

determination	 of	 income.	 This	 result	 suggests	 that	𝑀𝑆	has	 nothing	 to	 do	with	 the	

determination	of	 income	and	 that	 the	 statistical	 inference	 from	 scenarios	3.a.	 and	

3.b.	 is	 incorrect,	 since	 they	 have	 the	 endogeneity	 problem	 without	 treatment.	

Scenario	 3.c.	 applies	 GMM	 to	 estimate	 equation	 (7)	 assuring	 a	 correct	 equation	

system	computation.	 Scenario	3.d.	 treats	 the	endogeneity	problem	by	means	of	 IV	

and	 its	 results	 are	 consistent	 under	 different	 initial	 parameter	 values.	 The	

recommendation	derived	from	the	use	of	synthetic	data	and	simulation	scenarios	is	

to	find	an	exogenous	determinant	of	income	to	avoid	incorrect	statistical	inference	

induced	 by	 the	 endogeneity	 problem.	 In	 case	 that	 exogenous	 determinants	 of	

income	are	not	available,	a	feasible	treatment	for	endogeneity	by	means	of	synthetic	

data	 consist	 in	 increasing	 the	 sample	 size.	 To	 see	 this	 consider	 scenario	 3.c.	

asymptotic	 results,	 which	 are	 similar	 to	 scenario	 3.d.	 IV	 endogeneity	 correction	

results.		
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