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A historical walkthrough? with L’Hospital, from indeterminates to
applied problems in mathematics

Luisito C Abueg
School of Economics
De La Salle University Manila

There are infinite numbers between 0 and 1. There's 0.1 and 0.12 and 0.112 and an infinite collection of others.
Of course, there is a bigger infinite set of numbers between zero and two, or between zero and a million.
Some infinities are bigger than other infinities. ... . But, Gus, my love, | cannot tell you how thankful | am
for our little infinity. | wouldn't trade it for the world. You gave me a forever within the numbered days,
and I'm grateful.  -—-Hazel Grace Lancaster, from the movie The Fault In Our Stars [2014]

Some preliminaries from elementary calculus

Recall from elementary algebra that the set of rational numbers is the smallest field of
quotients of nonzero integers, i.e.,

Qz{%:o,be Z/\b;to}

In particular, we use the notation “«" to denote a number whose numerator is nonzero
but whose denominator is [possibly approaching to] zero, i.e.,

o=—, a0, b—>0

It is for this reason that «o—c0#0 (in fact, one indeterminate form). In the language of
limits, some would not even consider this as valid: limits must be finite for them to exist.
We first recall a result in elementary calculus, stated in the following theorem:

Theorem 1. lef AcR A ffg:A— R and suppose aeR,(a,o)c A such that

. f(x)
g(x)>0,vx > a.lf Im===LeR*, then
x> g(x)

. L>0= (limf(x)=e0 & limg(x) = o)

2 This "walkthrough™ is a historical revisit of materials in calculus and literature in mathematical analysis,
done in two Good Fridays, 2015 and 2016.



i L<0=(limflx)=— & limg(x) =)

Proof. Leithold [1995]. [ |

We ask ourselves (a natural question in mathematics): is the converse true? That is, can
we find the limit of some quotient whenever it already takes the form “eo/”, called an
indeterminate form? A partial solution to answer if the converse of the previous
theorem, is provided by the next result (under an important condition: differentiability).
This is the “controversial” L'Hospital’s rules, stated in the next theorem:

Theorem 2. [G.F.A. L'Hospital (1 é%)]3 Let f(x) and g(x) have continuous n'-order
derivatives on some open interval (a,b), and let ¢ be in that interval. If f(c) = g(c) =0 (or
if f(c) = g(c) =), then

Proof. Bartle and Shebert [2011]. [ |

L'Hospital started with the problem of obtaining this limit:

V20%x —x* —adaax )
a=a

I , =

X—a O_4 GX3

Although this result tends to save us from the troubles of indeterminate forms, a lot of
noted and counterexamples have been provided in support of what classes of
functions do these rules apply. For example, successive application of the L'Hospital’s
rule does not always lead to a limit that is finite or infinite, as in the example below

Iim\/c:x+1
o Ix+l

(apart from a counterexample given by Sydsceter and Hammond [2008]). The idea is
that the problem arises “since it holds only in the implicitly understood case that g'(x)
does not change sign infinitely often in a neighborhood of infinity” (Boas [1986], Rickert
[1968], cited in Wolfram Mathematica). Often cited examples are the transcendental
functions: sine and cosine functions.

a>0

31t was known in mathematical history that L'Hospital forged a deal with Johann Bernoulli: L'Hospital paid
Bernoulli a regular salary of 300 francs per year (beginning 1691) to tell him of his discoveries, which
L'Hospital described in the introduction of the book. The first calculus textbook, I'Analyse des Infiniment
Petits pour I'intelligence des Lignes Courbes [1696], which had numerous editions during the whole of
the eighteenth century: founded on infinitesimal calculus. After L'Hospital's death, Bernoulli cried
plagiarism, for it is him who had first discovered the rule, and L'Hospital placed that rule on his book.



We now turn to a next result—in a similar historical context with L'Hospital—the
approximation of [almost all] differentiable functions of some order, due to Brook Taylor.
We state this result formally as follows:

Theorem 3. [B. Taylor (1715)] Let f(x) have continuous derivatives up to the (n+1 )Th order
on an open interval (a,b). For every pair of points x, xo in (a,b), there is a p between x, xo
such that

n_ fli)

f(x) = f(x,)+ z

(XO)(X—XO)j +R,
J!

+1

where

_ f(nH) (p) (X _ Xo )n+1
(n+1)!

n+1

is the remainder, which is provided by J.L. Lagrange [1765].
Proof. Bartle and Shebert [2011]. [ |

It is also known that Colin Maclaurin® worked on these approximation methods that
made his name be credited for a special case (where the center of approximation xo =
0)°. In fact, an immediate consequence of these results is the following |orob|em:6 let |
be an open interval, and let f be twice contfinuously differentiable and real-valued. If
f"(a) exists at a point ain [, then

m f(x + h) = 2f(x)+f(x = h)

-0 h2

f”(x) :Ih|
Although it is natural to ask: why is there a theorem on approximation of functions? To

answer the above question, recall that every polynomial is of the form

k
Y ax, a,#0, geR

n
We can interpret this sum with every summand as a term in the sequence (O,(Xk)k_o . We

n
k . . . . .
call ZOKX a series. A generalization of polynomials are series of the form
k=0

4 Maclaurin held the record being the "youngest professor” for three hundred years, until 2008. The current
record is now held by a woman of age 18, in South Korea.

5 Theory of fluxions (1742).

¢ In Berkeley problems in Mathematics (2003).



ZCIK(X—XO)'( is called a power series centered at xo. Calculus was invented with the
k=0

tacit assumption that power series provided a unified function theory; i.e., every
function can be approximated by a power series (Wade [2010]). However, A.L. Cauchy
(1823) has shown that there is a function that contains one point in its domain that will
not correspond to any Taylor approximation or a Taylor series expansion (in particular,
at the origin):

= [oor) 1

We now turn to a replete of indeterminates in the history of calculus, as depicted in
contemporary sources. We only provide a few examples, although a lot may have not
been covered in this discussion.

The replete of indeterminates in calculus and approximation of differentiable functions

The derivative and differentiation
Geometric interpretation
Y

1. “Consistency” of the definition of the derivative

To begin with, we look more closely into the standard definition of a differentiable
function y = f(x): Let f be a function defined on an open interval (a,b) and let x e (a.b).

The derivative of f at x is given by
Fix) = lim f(x + h)—f(x)
h—0 h

if this limit exists. We then say that f is differenfiable at x, and this process is called



differentiation. Observe carefully that carrying out the right hand side of this definition,
we get an indeterminate form “«/«". Thus, appealing to L'Hospital, we obtain

d
—| f(x + h)—f(x)
=100 il L it =i
h—0 h h—0 ih h—0
dh

Thus, this definition is “consistent” with the result of L'Hospital.

Taylor’s approximation

Mean value theorem
Yy

f(b)

2. Mean value theorems for differentiation

Next, we investigate a special case of Taylor's approximation, when n = 0: the mean
value theorem ([for differentiation]. Formally, Taylor's approximation reduces to the
following:

f(x)=f(x,)

0

fx)=fxo)+FP)(x—%,) = =fp)

F(x) =)

Note that the expression is just the slope of the line connecting the points
0

(x.f(x)), and (xo.f(x0)), which is often referred to as the ‘rise-over-run” in elementary

algebra. Clearly, as the “run” (more formally, the change in x) approaches zero, this

slope approaches the slope of the tangent line (which is f'(x)) at x. Clearly, appealing
to L'Hospital, we again obtain a “consistent” result.”

7 Although noteworthy, the hypothesis of continuity cannot be relaxed, as provided by an example in
Danao [2001].



A similar argument can also be applied in the more general case of the mean value
theorem for integration (referred to as Cauchy’s® mean value theorem), given two
functions f and g under the same hypotheses as in the mean value theorem for
integration: there is a p between x and xo such that

fix)-f(x,) _ o)
alx)-glx,) glp)

The usual issue arises: as X—X,, the left hand side of the above approaches an

indeterminate form "0/0", which appeals for L’Hospi’rol.9

Mean value theorem

Analogue for integration
Vi

3. Mean value theorems for integration

We also look at the “other case” of a mean value theorem, this time for integration.
Formally, we state the result as follows: let f:[a,b] - R be continuous and let

g:lab] —R, be integrable, then, there is a p between a and b such that

| :f(x)g(x)dx _ f(p)j: glx)dx

8 Note that by setfting g(x) = x, we obtain the mean value theorem for differentiation.

? Wade [2010] mentioned that this generalized version of the mean value theorem is necessary for
comparison of functions, say f and g, and may also be related with other properties that may arise due
to differentiation (e.g.. indeterminacy of the ratio f/g).



We call this p an average value of f on [a,b]. in particular, if g is the constant function 1,
the above reduces to

b J-bf(x)dx
L fixlox =flp)lo-al = flp)=2—ro

It is also natural to ask, what happens [to the above] when b approaches a2 Formally,
the said question translates to the problem

b
f(x)dx
imf(p) =lim=———

Note that the right hand side above is of the form "“0/0", thus we apply L'Hospital’s rule
and obtain

b d b
j F(x)dlx j F(x)dIx
limf(p)=lim2e—  —jimdtda
b-a boa b—q b-a i(b—c)
db

b
Observe that the numerator j_bj. f(x)dx is the first form of the fundamental theorem of

calculus, which is precisely f(b). Hence,

9 (*fx)a

—_— X)ax
lim 9B _iim ) _ ¢q)
b-a i(b—o) b-a ]

db

The appeal to graphs seems to be apparent: as b approaches a, the point p in
between b and a is ultimately “pulled” towards a.

4. A “convergence lemma’”: from a constant-elasticity-substitution production
function to a Cobb-Douglas production function.

Consider a constant-elasticity-substitution (CES) function

-1/p

f(x,y):A[ox‘p+(l—o)y‘p] , A>0, ae(0,]), peR*

Taking the natural logarithm of f, we obtain
1 . )
Inf(x,y):InA+(—jIn[ox P+(1—-aly p]
P

Define

z= (gjln[ox‘p +(1-aly?]



Note that as p approaches zero, z takes an indeterminate form “0/0". Applying
L'Hospital’s rule, we obtain

_ __In[ax®+(1-a)y™ ]
limz=-lim
p—0 p—0 p

ax P(=N)Inx+(1-a)y (=) Iny
-p e s
_ _lim ax P +(1-a)y
p—0 ]
=—-alnx-(1-a)iny

Hence,
Iirrg)lnf(x,y) =InA+alnx+ (1-a)lny
p—

By continuity of the natural exponential function, it follows that
exp[lirrglnf(x,y)} =exp[InA+alnx+(1-a)iny ]
p—

which is

limf(x,y)= Ax%y"°
p—0

i.e., the Cobb-Douglas function. Hence, the CES function “converges” to Cobb-
Douglas as p — 0.

5. Logarithmic mean

An application to statistics and economics'®, we investigate in some detail the
properties of the logarithmic mean, which stems on results from mean value theorem
and L'Hospital’s rule. By definition, the logarithmic mean of two distinct positive numbers
a and b is given by the expression

ﬁﬂ(o,b):ﬂ, b>a

€

With this definition, we raise the following questions: first, it is natural to ask, if this
expression a valid definition of a mean!! (i.e., a measure of central tendency), second,
it is clear that this mapping is not continuous at a (is there a way out of this problem?),
and third, is this related—in any way—to the natural logarithmic function?2

10 See Balk (2004:108fn) on some historical note, with applications in price indices by Dumagan (2013), and
Dumagan and Balk (2016).

11 Standard literature in theory of statistical distributions and expectations of random variables would
require certain properties, as presented in various examples in Hogg McKean, and Craig (2013).



To answer the first question, recall the following (from advanced calculus and
elementary stafistics) that given two real numbers (without loss of generality, say,
positive) a and b, we define the arithmetic mean u and the geometric mean y as

ula.b) = C’;b . yla.b)=ab

Ifa=b, thenu =y =a. Observe that as b — a, the logarithmic mean approaches “0/0",
and indeterminate form. Thus, we apply L'Hospital’s rule and obtain

. . b-a . 1 .
lj'ﬂgfﬂ(ab):!j'ﬂgl 5y im—y— =limb=a
n _ Py—
a (b/a) a

applying chain rule on the denominator (of the middle expression above). Thus, the
above shows that the logarithmic mean has a removable discontinuity at b = a: the
logarithmic mean is not defined at a, but there is a limit as b approaches a. Hence,

b-a
¢ (ab)=1In(b/a)
a b=a

b+#a

This is just consistent with the “finite version” of the laws of large numbers. It can be
shown that the logarithmic mean is always positive (observe how the restrictions have
changed), which is another property a valid mean. Thus, we have also answered the
second question. Now, observe that the natural logarithmic function

y=f(x)=Inx, x>0

is continuously differentiable on its domain, Choose two points a and b, and apply the
mean value theorem: there is a p between a and b such that

b)-fla
1) fib)=fla)
P b-a
Solving for p, we obtain
b-a
P=inbra) P

10



The logarithmic mean
Application to statistics and economics

Inb-Ina

b-a

In summary, we have shown that the logarithmic mean is a valid measure of central
tendency for positive numbers: first, if b = a, then the mean is also a; second, the mean
is always positive; and third, it is always between a and b. It is also confinuously
differentiable: inherent from the natural logarithmic function.

1
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