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Abstract 
 

 Pepper is an important agriculture commodity especially for the state of Sarawak. 

It is important to forecast its price, as this could help the policy makers in coming up with 

production and marketing plan to improve the Sarawak’s economy as well as the farmers’ 

welfare. In this paper, we take up time series modelling and forecasting of the Sarawak 

black pepper price. Our empirical results show that Autoregressive Moving Average 

(ARMA) time series models fit the price series well and they have correctly predicted the 

future trend of the price series within the sample period of study. Amongst a group of 25 

fitted models, ARMA (1, 0) model is selected based on post-sample forecast criteria. 

 

Keywords: Time series, pepper (Piper nigrum L.), Autoregressive Moving Average 

model, forecasting, forecast accuracy. 
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1. Introduction  

 

Pepper (Piper nigrum L.), which has been used as spice since 4th B. C.  was first 

brought into Malacca in the year 1583 by the Portugese (I. Abd. Rahman Azmil, 1993). 

Pepper crop cultivation gained its popularity in Johore and Singapore during the early 

19th century and was widely planted in Sarawak since the mid-19th century. Today, 95% 

(10,100 hectares) of the crop is grown in Sarawak and only 5% is grown in other parts of 

Malaysia.  Due to this, in the world market the pepper produced in Malaysia is commonly 

known as Sarawak pepper. 

 

In Malaysia, pepper is available as black pepper or white pepper. The difference 

between these two forms of pepper is in the way it is processed. Black pepper is prepared 

by drying mature berries of Piper nigrum under the sun for about 3 to 10 days, while 

white pepper is produced by rotting the ripe or nearly ripe berries in running water in 

order to remove the pulp and pericap before drying process begins (Zahara Merican, 

1985). Up to 80% of the crop is processed into black pepper while the remaining 20% is 

turned into white pepper. However, the quality of white pepper is higher than that of 

black pepper and hence white pepper fetches a higher price. 

  

Until 1980, Malaysia was traditionally the largest pepper producing country in the 

world. After that Malaysia lost it leading position to India and Indonesia (I. Abd. Rahman 

Azmil, 1993) and is currently ranked the third largest producer of pepper (Pepper 

Maketing Board Homepage, 1998). Pepper’s contribution to the local socio-economy is 

substantial. Around 45,000 farming families and more than 115,000 workers are involved 

in pepper industry. The crop generates about a third of Sarawak’s agriculture export 

earnings (Pepper Marketing Bulletin, January to March, 1999). 

 

It is clear that pepper is an important agricultural commodity and hence it would 

be important to forecast its price, as this could help the policy makers in coming up with 

production and marketing plans, to improve the Sarawak’s economy as well as the 

farmers’ welfare. However, in Malaysia, time series modelling and forecasting in the 

agriculture sector is relatively limited. Fatimah and Roslan (1986) confirmed the 
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suitability of Box-Jenkins (1976) univariate ARIMA models in agricultural prices 

forecasting. It has also been shown (Fatimah and Gaffar, 1987) that ARIMA models are 

highly efficient in short term forecasting. Mad Nasir (1992) has noted that ARIMA 

models have the advantage of relatively low research costs when compared with 

econometric models, as well as efficiency in short term forecasting. Lalang et al. (1997) 

has also shown that ARIMA model is the most suitable technique for modelling palm oil 

prices. As for pepper prices there is no record of studies using time series models and in 

view of this it is important to conduct a study of pepper prices using time series models. 

 

In section 2 of this paper, we briefly discuss ARMA time series modelling. In 

section 3, we present the methodology and results of fitting suitable time series models to 

Sarawak black pepper price and finally in section 4 our conclusions appear. 

 

2. ARMA Time Series Modelling 

 

A sequence of uncorrected random variables each with mean 0 and variance σ2 is 

called a white noise process and is denoted by Zt ∼ WN (0, σ2).  

 

An ARMA (p, q) time series model is defined as a sequence of observations {Xt} 

that satisfy the following difference equation (Brockwell and Davis, 1996), 

 

Xt  ­  φ1Xt – 1  ­  φ2Xt – 2  ­  … ­  φpXt – p = Zt + θ1Zt – 1  + θ2Zt -- 2 +… + θq Zt  – q     (1) 

 

where φ1 , …, φp , θ1 , …, θq are numerically specified values of parameters 

 and {Zt } ∼ WN (0, σ2). 

 

 The process as defined in (1) is a weakly stationary process. A weakly stationary 

process is a process with constant mean and covariance (Brockwell and Davis, 1996).  

 

      The process of time series modelling involves transformation of data in order to 

achieve stationarity, followed by identification of appropriate models, estimation of 

parameters, validation of the model and finally forecasting. A complete description of 
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these processes and steps of time series modelling is clearly explained in Chapter 5 of 

Brockwell and Davis (1996).  

 

3. Methodology and Results 

 

In this section, we present the methodology and results of fitting suitable time 

series models to Sarawak black pepper price obtained from the Pepper Marketing Board, 

Malaysia. The data consisted of 331 observations from January 1972 to July 1999 and 

was divided into two portions for the purpose of this study. The first 318 observations 

were used for model fitting purpose, while the rest were kept for post-sample forecast 

accuracy checking. 

 

The process of model fitting for the Sarawak black pepper price, was done by 

using a computer software known as “Interactive Time Series Modelling – PEST 

module”(due to Brockwell, Davis and Mandario, 1996).  

 

A time series plot of Sarawak black pepper price appears in Figure 1. It is clear 

that there exists a generally increasing non-linear trend. Hence the original series is not 

stationary in the sense as defined in Section 2. A plot of the sample autocorrelation 

functions, ACF and the sample partial autocorrelation functions, PACF of the series is 

shown in Figure 2. The graph of ACF of the series displays a slow decrease in the size of 

ACF values, which is a typical pattern for a non-stationary series.  
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Figure 1: Monthly Sarawak black pepper price in Kuching (January 1972 to July 1999). 

 

 

 

 

      Figure 2: Sample ACF and PACF of the Sarawak black pepper price series. 

 

 

 

 

 

 

 

 

 

 

 

 

To achieve stationarity, the trend component should be extracted from the original 

series. This could be achieved by using either method of differencing or classical 

decomposition. We differenced the original series at lag 1 in order to achieve a more or 
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less constant level. The mean was also subtracted from the series so that it could be 

modelled as a zero mean stationary process (Figure 3). 

 

Figure 3: Graph of Sarawak black pepper price after a lag 1 differencing. 

 

It is obvious, from the sample ACF of the differenced series (Figure 4), that most 

of the spikes had decayed to a level not significantly different from 0. Moreover, the 

dominant spike at lag 1 of the PACF is not so outstanding as before. Hence, this series 

appears to be stationary and we therefore modelled it as a stationary ARMA model. 

 

Next, we identified tentative models for this transformed series by inspecting the 

ACF and PACF. The ACF revealed that autocorrelation coefficients are significant at 

95% confident level at lag 1, 9, 11, 24 and 36. The ACF values at other lags are all not 

significantly different from 0. This suggested that fitting moving average models of 24, 

11, 9 and 1 should be attempted.    On the other hand, auto regressive models of order 1, 

2, 9, 11 and 24 should also be taken into consideration as the PACF values at lag 1, 2, 9, 

11 and 24 are significantly different from 0 at 95% confident level. ARMA (p, q) models 

where p and q could be of order 1 or 2 were also considered in this study. 
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Figure 4: Sample ACF and PACF of Sarawak black pepper price after a lag 1  
                differencing.  

 

 

 

Besides fitting ARMA (p, q) models, we also attempted to fit models by taking 

seasonality into account, as there exists of a seasonal trend in the Sarawak black pepper 

price (Sulau, 1981). In addition, the sample ACF of the original series displays a very 

slowly damped periodicity. According to Brockwell and Davis (1996), this indicates the 

presence of seasonal period. Furthermore, a close inspection of the graph of the sample 

ACF in Figure 4 revealed that autocorrelation coefficients were significant at 95% 

confident level at lag 1, 9, 11, 24 and 36. Since 24 and 36 are multiples of 12, it is 

reasonable to suspect that there is a seasonality of order 12. The presence of seasonality is 

reinforced, by the fact that PACF values at lag 24 and 36 are also significant at 95% 

confident level. 

  
Following the classical decomposition method in “PEST”, a seasonal trend with a 

period of 12, and a quadratic trend from the series were eliminated. The ACF and PACF 

of the transformed series are presented in Figure 5. Since the ACF values decay, the 

model is likely to come from AR family. AR models of order 1 and 2 were among those 

being considered, as the PACF values at lag 1 and 2 are significant at 95% confident 

level. 
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Figure 5: Sample ACF and PACF of Sarawak black pepper price after a classical  

                decomposition with seasonal period and a quadratic trend being taken away. 

 

 

 

 

Next, the coefficients of each of the above tentative models were estimated using 

the "PEST” module. Results of the estimated models and the corresponding AICC values 

[see equation (2)] appear in Tables 1 and 2. 

 

Various methods were employed to check the suitability of each model. These 

include checking the distribution as well as ACF and PACF of the model’s residuals, 

Ljung-Box (1978) Portmanteau Statistics, Mcleod-Li (1983) Portmanteau Statistics, 

Turning Point Test, Difference-Sign Test, and Rank Test. 
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Table 1: Estimated models for the first difference series. 

No. ESTIMATED MODEL AICC 
1 ARMA (26, 0) 

X t = 0.2479X t – 1   – 0.1603X t – 2   + 0.1019X t – 7  + 0.1741X t – 9   + 0.1420X t – 11  

      – 0.1252X t – 17  + 0.1574X t – 24  + Z t  where  {Z t}  ~ WN (0, 0.00612) 
 

- 697.641 

2 ARMA (11, 0) 

X t = 0.2688X t – 1   – 0.1604X t – 2   + 0.1574X t – 8  + 0.1402X t – 10   + 0.6906X t – 11   + Z t   

                     where  {Z t}  ~ WN (0, 0.00612) 
 

- 690.620 

3 ARMA (9, 0) 

X t = 0.2814X t – 1   + 0.1417X t – 7  + 0.1497X t – 9   + Z t  where {Z t}  ~ WN (0, 0.00654) 
 

- 687.228 

4 ARMA (2, 0) 

X t = 0.2882X t – 1   – 0.1343X t – 2   + Z t   where  {Z t}  ~ WN (0, 0.00612) 
 

- 681.710 

5 ARMA (1, 0) 

X t = 0.2544X t – 1   + Z t    where  {Z t}  ~ WN (0, 0.00612) 
 

- 678.018 

6 ARMA (0, 26) 

X t = Z t + 0.2949Z t – 1   + 0.0574Z t – 7  + 0.1399Z  t –  9  + 0.1686Z  t – 11 + 0.1880Z  t – 24    
      where  {Z t} ~ WN (0, 0.00626) 
 

- 694.754 

7 ARMA (0, 24) 

X t = Z t + 0.2944Z t – 1   + 0.0573Z t – 7  + 0.1397Z  t –  9  + 0.1683Z  t – 11  + 0.1876Z  t – 24    

      where  {Z t} ~ WN (0, 0.00626) 
 

- 694.754 

8 ARMA (0, 11) 

X t = Z t + 0.2864Z t – 1   + 0.0886Z t – 7  + 0.1529Z  t –  9   – 0.1343Z  t – 11  

                                                                  where  {Z t} ~ WN (0, 0.00642) 
 

- 689.867 

9 ARMA (0, 9) 

X t = Z t + 0.3214Z t – 1   + 0.0623Z t – 7  + 0.1620Z  t –  9  where  {Z t} ~ WN (0, 0.00642) 
 

- 687.228 

10 ARMA (0, 7) 

X t = Z t + 0.3285Z t – 1   + 0.0838Z t – 7    where  {Z t} ~ WN (0, 0.00665) 
 

- 683.321 

11 ARMA (0, 1) 

X t = Z t + 0.3109Z t – 1     where  {Z t} ~ WN (0, 0.00670) 
 

- 682.946 

12 ARMA (1, 1) 

X t = – 0.2300X t – 1   + Z t + 0.2864Z t – 1   where  {Z t} ~ WN (0, 0.00668) 
 

- 680.028 

13 ARMA (2, 1) 

X t = 0.4942X t – 1   – 0.1841X t – 2  + Z t + 0.2864Z t – 1 where  {Z t} ~ WN (0, 0.00642) 
 

- 679.736 

14 ARMA (2, 1) 

X t = 0.2892X t – 1   – 0.1343X t – 2   + Z t   where  {Z t} ~ WN (0, 0.00642) 
 

- 681.710 
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Table 2: Estimated models for the seasonally adjusted series. 

No. ESTIMATED MODEL AICC 
1 ARMA (12, 0) 

 X t =  1.2120X t – 1   + 0.4376X t – 2   + 0.2482X t – 3  –  0.1673X t – 4   + 0.1512X t – 9     –  0.1599X t – 10    

       + 0.1172X t – 11  – 0.1430X t – 12  + Z t                     where  {Z t}  ~ WN (0, 0.00579) 

 

- 712.689 

2 ARMA (3, 0) 

X t = 1.2648X t – 1   – 0.4209X t – 2   + 0.1387X t – 3   + Z               where  {Z t} ~ WN (0, 0.00613) 

 

- 706.017 

3 ARMA (2, 0) 

X t = 1.2316X t – 1   – 2.4874X t – 2  + Z t                                    where  {Z t} ~ WN (0, 0.00624) 

 

- 702.019 

4 ARMA (1, 0) 

X t = 0.9863X t – 1   + Z t                                 where  {Z t} ~ WN (0, 0.00666) 

 

- 686.687 

5 ARMA (1, 1) 

X t = 0.9790X t – 1     + Z t  + 3.0214Zt – 1                             where  {Z t} ~ WN (0, 0.00681) 

 

- 707.289 

6 ARMA (2, 2) 

X t = 1.4710X t – 1   – 0.4878X t – 2   + Z t + 0.2258Zt – 2                where  {Z t} ~ WN (0, 0.00626) 

 

- 694.164 

7 ARMA (0, 24) 

X t = Z t + 1.0575Z t – 1   + 1.0567Z t – 2   +  0.9523Z t  –  3  +   0.7705Z  t – 4  +  0.8030Z t – 5   

             + 0.7780Z t – 6   + 0.9331Z t  –  7  +  0.9642Z  t – 8   +   0.8875Z t – 9     + 0.7792Z t – 10   

             +  0.8356Z t –  11 + 0.6404Z  t – 12  + 0.7271Z t – 1 3  + 0.5007Z t – 14  +  0.5459Z t –  15    

             + 0.6316Z t – 16  +   0.4892Z t – 17  + 0.5793Z t – 18  + 0.5244Z t –  19  + 0.4737Z t – 20  

                  +  0.5858Z t – 21   + 0.4793Z t – 22  + 0.4998Z  t –  23  + 0.3606Z  t – 24   

                                                                                                     where  {Z t} ~ WN (0, 0.00670) 

 

- 647.389 

8 ARMA (12, 0) 

X t = 1.2234X t – 1   – 0.4129X t – 2   + 0.1608X t – 3  + 0.0381X t – 4   + 0.1425X t – 9   – 0.1428X t – 10   

      + 0.1068X t – 11  +   0.1447X t – 12  + Z t              where  {Z t} ~ WN (0, 0.00577) 

 

- 714.055 

9 ARMA (3, 0) 

X t = 1.2650X t – 1   – 0.4210X t – 2   + 0.1382X t – 3  + Z t             where  {Z t} ~ WN (0, 0.00613) 

 

- 705.730 

10 ARMA (2, 0) 

X t = 0.1232X t – 1   – 0.2490X t – 2   + Z t                                   where  {Z t} ~ WN (0, 0.00624) 

 

- 701.791 

11 ARMA (1, 0) 

X t =  0.9866X t – 1   + Z t                                    where  {Z t} ~ WN (0, 0.00670) 

 

- 683.387 

Note: Models 1 to 7 contain linear trend. Models 8 to 11 contain quadratic trend. 
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We used the well-known minimum biased-corrected information criterion of 

Akaike, AICC (Hurvich and Tsai, 1989) to choose the best model. Out of a class of 

appropriate models, the best-fitted model is the one with the smallest AICC statistic. 

AICC statistic is given by 

 

AICC = – 2ln Likelihood ( φ̂ , θ̂ , σ̂ 2) + [2n(p + q + 1)]/(n – p – q – 2).         (2) 

 

where   φ̂   = a class of autoregressive parameters; 

          θ̂   = a class of moving average parameters; 

         σ̂ 2  = variance of white noise; 

 n    = number of observations; 

         p    = order of the autoregressive component; 

and       q    = order of the moving average component 

 

 According to the minimum AICC criterion, ARMA (12, 0) model (no. 8, Table 2) 

for the seasonally adjusted series had been chosen to be the most appropriate. The 

equation of this model is given by 

 

X t = 1.2234X t – 1   – 0.4129X t – 2   + 0.1608 X t – 3  + 0.0381X t – 4   + 0.1425X t – 9   

                  – 0.1428X t – 10  + 0.1068X t – 11  +  0.1447X t – 12  + Z t          (3) 

         

where {Z t}  ~ WN (0, 0.00577)    

 

 

Forecast produced using this model is shown in Figure 6. It is clear from this 

figure that the actual price values are contained in the 95% forecast intervals as indicated 

by the dotted lines. Moreover, the trend of the fitted values is generally consistent to that 

of the actual values. These findings suggest that ARMA (12, 0) model can capture the 

actual black pepper price future movement almost perfectly. 
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Figure 6: Graph of monthly average Sarawak black pepper price (13 actual and 
                forecasted values from July 1998 to July 1999). 

 

 

Though the AICC statistics is useful in modelling time series, the performance of 

the model has still to be evaluated by post sample forecast accuracy criterion. In this 

paper we use the criteria as summarized in Table 3 to evaluate our models. 

 

Table 3. Forecast accuracy criteria. 
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 where xt = actual values, x̂ t = forecast values and n = number of periods. 

 

 

The smaller the values of MAE, RMSE and MAPE, the better the model is 
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Table 4: Accuracy criterion of fitted models for the first-differenced series. 

No.      Models AICC MAE RMSE MAPE (%) 

1 ARMA (26, 0) - 697.641 230.452 280.417 17.643 

2 ARMA (11, 0)
 

- 690.620 248.718 306.985 19.164 

3 ARMA (9, 0)
 

- 687.228 127.014 148.556 9.608 

4 ARMA (2, 0) - 681.710 141.575 175.341 10.818 

5 ARMA (1, 0) - 678.018 139.175 161.960 10.503 

6 ARMA (0, 26)
 

- 694.754 189.135 236.855 14.570 

7 ARMA (0, 24)
 

- 694.754 189.081 236.810 14.566 

8 ARMA (0, 11)
 

- 689.867 120.184 148.927 9.160 

9 ARMA (0, 9)
 

- 687.228 127.014 148.556 9.608 

10 ARMA (0, 7)
 

- 683.321 138.848 158.274 10.381 

11 ARMA (0, 1) - 682.946 140.780 163.894 10.618 

12 ARMA (1, 1) - 680.028 141.311 166.169 10.684 

13 ARMA (2, 1) - 679.736 142.568 177.392 10.900 

14 ARMA(2, 1)
 

- 681.710 141.586 175.276 10.818 

 

 

 

Table 5: The accuracy criterion of fitted models for the seasonally adjusted series. 
 

No.     MODEL AICC MAE RMSE MAPE (%) 
1 ARMA(12, 0) - 712.689 86.420 100.343 6.356 

2 ARMA(3, 0) - 706.017 101.178 121.699 7.027 

3 ARMA(2, 0) - 702.019 112.598 135.689 7.790 

4 ARMA(1, 0) - 686.687 73.880 91.906 5.462 

5 ARMA(1, 1) - 707.289 107.352 129.453 7.420 

6 ARMA(2, 2)
 

- 694.164 221.617 233.244 15.725 

7 ARMA(0, 24) - 647.389 364.753 378.010 15.725 

8 ARMA(12, 0)
 

- 714.055 90.160 105.487 6.555 

9 ARMA(3, 0) - 705.730 106.874 130.349 7.393 

10 ARMA(2, 0) - 701.791 119.949 142.294 8.327 

11 ARMA(1, 0) - 683.387 72.842 89.371 5.358 
             

Note: Model 1 to 7 contains linear trend. Model 8 to 11 contains quadratic trend. 

 

  

According to the post sample accuracy criteria, ARMA (1, 0) model of the 

seasonally adjusted series (no. 11, Table 2) performs the best. It has the smallest MAE 

(72.842), RMSE (89.371) and MAPE (5.358) values simultaneously. Its equation is  

 

 Xt = 0.9866X t – 1 + Z t                     (7) 

where Zt  ∼ WN (0, 0.0067).    
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Forecast produced using ARMA (1, 0) model is shown in Figure 7. Similar to the 

interpretation as for ARMA (12, 0) model, Figure 7 also indicates that ARMA (1, 0) 

model can capture the actual black pepper price future movement almost perfectly. 

 

 

Figure 7: Graph of monthly average Sarawak black pepper price (13 actual and 
                forecasted values from July 1998 to July 1999). 

 
 

 

4. Conclusions 
 
 

This paper takes up the modelling and forecasting of Sarawak black pepper price 

using the Autoregressive Moving Average (ARMA) time series models. Our empirical 

results suggest that ARMA models fit the price series well and they are capable of 

predicting the future trend of the price movement. According to the minimum AICC 

criterion, ARMA (12, 0) model was considered the best model for the Sarawak black 

pepper price. However, based on post sample accuracy criterion, ARMA (1, 0) model 

emerged as the best model. This result agrees with Lalang et al. (1997) that best model 
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selected based on AICC criterion does not have to be the best, in term of post sample 

accuracy. 

 

Finally, the recommended model for Sarawak black pepper price is ARMA (1, 0) 

model. This model is a parsimonious one and just depends on the most recent observation 

for forecasting. However continuous monitoring and updating of this model should be 

regularly taken up. 
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