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Abstract

We analyze the design of optimal international environmental a-

greement (IEA) by a three-stage coalition formation game. A certain

degree of participation uncertainty exists in that each country choos-

ing to sign the IEA for its best interest has a probability to make a

mistake and end up a non-signatory. The IEA rule, which specifies the

action of each signatory for each coalition formed, is endogenously de-

termined by a designer, whose goal is to maximize the expected payoff

of each signatory. We provide an algorithm to determine an optimal

rule and compare this rule to some popular rules used in the literature.
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1 Introduction

The human society is facing a serious threat of climate change, mainly due

to the emission of greenhouse gases (GHG). For a country, reducing the e-

mission of GHG can be regarded as providing a public good benefiting the

whole world. However, voluntary abatement of GHG is typically not suffi-

cient, because every country has an incentive to free ride on the abatement

effort of other countries. One method to overcome this free-riding problem

is to form a coalition wherein the members sign a self-enforcing internation-

al environmental agreement (IEA) and follow certain abatement rules. The

Kyoto Protocol and the Paris Agreement are examples of such IEAs.

The formation of these coalitions is sometimes modeled as a two-stage

game, or its variant, played by some self-interested countries.1 In stage one

(participation stage), each country decides whether to join the coalition and

sign the IEA. In stage two (abatement stage), those signing the IEA have to

follow the IEA rule, while each non-signatory can decide its own abatement

level.

Nevertheless, it is reported that IEAs do not work very well. For instance,

Kellenberg and Levinson (2014) suggest that “IEAs appear to do little more

than ratify what countries would have done absent the agreements.” There

could be many reasons for the failure of IEAs, but in this paper, we focus

only on the following two of them.

First, the IEA rule is typically exogenously given and may not provide

for much incentive to overcome the free-riding problem. For instance, a large

body of studies assume that in stage two of the game, all coalition members

should coordinate their actions and maximize the total payoffs of the coalition

formed in stage one. We call this IEA rule the maximal total payoff (MTP)

rule. In section 5, we will show that the MTP rule is generally not optimal.

In order to overcome the problem raised by exogenous IEA rules, several

studies analyzed the endogenous determination of the IEA rules. For exam-

ple, Carraro et al. (2009) discuss the MTP rule with an additional restriction

1For example, see Carraro and Siniscalco (1993), Barrett (1994), Thoron (1998), Finus
(2001), Masoudi and Zaccour (2017).
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of minimal participation; here, the threshold of forming the coalition is en-

dogenously determined. Köke and Lange (2017) considers an endogenous

rule that simultaneously determine the threshold of cooperation and the sig-

natories’ abatement level. However, these studies analyze only certain special

cases of endogenous rules and hence cannot be considered fully general. In

particular, a signatory’s abatement level as specified by these rules need not

vary endogenously according to the coalition formed in stage one, except

when the change involves the minimal participation condition.

The second reason for the IEAs’ failure is participation uncertainty: a

country initially intending to sign the IEA for its own interest has a chance

to make a mistake and end up a non-signatory. This uncertainty, which makes

it more difficult to form a large coalition, may be due to various reasons under

different cases. For example, ratification of the IEA may be prevented by

some interest groups2, or a newly elected leader may overturn the decision

made by his predecessor. In contrast, we assume that the probability that

a country not intending to sign the IEA becomes a signatory, which rarely

happens in reality, is zero. Also note that participation uncertainty is unlike

several other types of risk and uncertainty discussed in the IEA literature.3

The main purpose of this study is to extend the traditional coalition

formation models of IEA to allow for participation uncertainty and fully

general rules that are endogenously determined. We hope these extensions

will help us design a better IEA rule than the ones used in reality and those

in the literature. To this end, we employ a three-stage coalition formation

game. In stage one (designing stage), a designer4 launches an coalition and

announces an IEA rule, which is a function specifies the abatement level of

a signatory (coalition member) for each possible coalition formed in stage

two of the game. As the initiator of the coalition, the designer’s goal is to

maximize the expected payoff of each signatory. Stage two extends the usual

participation stage by assuming a given probability ε ≥ 0 that each country

choosing to sign the IEA would finally end up not being a coalition member.

2See Köke and Lange (2017).
3See, among others, Kolstad (2007), Dellink et al. (2008), Kuiper and Olaizola (2008),

Hong and Karp (2014), Cazals and Sauquet (2015), and Masoudi et al. (2016).
4For example, the United Nations.
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Stage three is the usual abatement stage that determines each country’s

abatement level and payoff.

This three-stage game can be solved by backward induction. Thus, we

determine the optimal rule that the designer would announce in stage one

and the coalition of countries that intend to sign the IEA in stage two. Note

that participation uncertainty would make it more difficult to determine the

coalition that will form in stage two. Given the IEA rule announced in stage

one, a coalition will be formed if and only if it is stable; that is, no country

would change its participation decision both before and after observing the

mistakes made by some other countries. We prove that given any IEA rule,

the cardinality of a stable coalition can be uniquely determined (Proposition

1). Furthermore, we provide an algorithm to determine an optimal rule for

the designer (Theorem 1).

Some IEA rules, for example, the MTP rule, the minimal participation

rule, and the coalition unanimity rule, are commonly used in the literature.

We show through an example that these rules are generally not optimal for

the designer. Additionally, we briefly discuss the conditions under which

these rules are optimal (Proposition 2, 3).

The remainder of this paper is organized as follows. Section 2 presents

the setup of the model and the three-stage coalition formation game. We

solve this game and derive an optimal IEA rule in section 3 and 4. Some

traditional IEA rules are discussed and compared with the optimal rule in

section 5. Finally, section 6 concludes the paper.

2 The model

Let N = {1, 2, . . . , n} be a set of homogeneous countries, where n ≥ 2.

There is a perfectly divisible good with negative externalities, for example,

greenhouse gas. Furthermore, let xi denote country i’s abatement level of

the good and x = (x1, . . . , xn) be an abatement combination.
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Given x, country i’s payoff is

ui(x) = α
∑

j∈N

xj −
1

2
x2
i , (1)

where α > 0 is the constant marginal benefit from total abatement
∑

j∈N xj

due to negative externalities of the good, and x2
i /2 is country i’s abatement

cost. Assume that payoffs are transferable, and therefore social welfare is the

total payoffs of all countries:

U(x) =
∑

i∈N

ui(x) = nα
∑

i∈N

xi −
∑

i∈N

x2
i

2
.

An abatement combination (x∗
1, . . . , x

∗
n) is said to be socially optimal if it

maximizes social welfare. The first-order conditions ∂U(x)/∂xi = 0 yield

x∗
i = nα, ∀i ∈ N. (2)

On the other hand, if each country i chooses xi to maximize its own pay-

off ui given the other countries’ abatement levels, the first-order conditions

∂ui(x)/∂xi = 0 lead to

x̄i = α, ∀i ∈ N. (3)

Note that x̄i is a dominant abatement level of i, regardless of other coun-

tries’ actions. From this, it follows that x̄ = (x̄1, . . . , x̄n) is the unique Nash

equilibrium of this non-cooperative abatement game.

Since x∗
i > x̄i, the world suffers from too much emission of the good.

This is a commonly known social dilemma due to externalities. One possible

method to partially overcome this problem is to form a coalition that reg-

ulates the countries’ actions by a self-enforcing IEA. The formation of the

coalition follows a three-stage game.

• Stage one. A designer announces an IEA rule e, which is a function

assigning a real value e(m) ≥ 0 to each integer m ∈ [1, n], where m is

the cardinality of the coalition M that will be formed in stage two. A

rule can be denoted by the vector e =
(

e(1), . . . , e(n)
)

∈ R
n
+.
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• Stage two. All countries in N simultaneously decide whether or not

to sign the IEA. Let M denote the set of countries that choose to

sign and m = |M | denote its cardinality. However, there is a one-way

uncertainty with regard to each country’s final participation decision.

Specifically, each country i ∈ M has a probability ε of making a mistake

and failing to sign the IEA, where 0 ≤ ε < 1 is exogenously given.

However, each j /∈ M never makes a mistake and would certainly not

sign the IEA. LetM denote the set of signatory countries that choose to

sign the IEA and make no mistake, and m = |M | denote its cardinality.

Given m and ε ∈ (0, 1), m follows a binomial distribution so that the

probability that m = k is

b(k;m, 1− ε) =
m!

k!(m− k)!
εm−k(1− ε)k, ∀k = 0, 1, . . . ,m.

Additionally, if ε = 0, then b(m;m, 1) = 1, b(k;m, 1) = 0, ∀k < m.

• Stage three. Given rule e and the coalition M , each signatory i ∈ M

carries out its abatement xi = e(m) according to e, while each non-

signatory j /∈ M chooses its dominant abatement level xj = α. All

countries receive their respective payoffs according to (1).

Now, let G(n, α, ε) denote this three-stage game. Assume that each coun-

try is risk neutral and chooses its action to maximize its expected payoff. We

also assume that a country will choose to sign the IEA if it is indifferent be-

tween signing and not signing. The designer will choose e ∈ R
n
+ to maximize

the (identical) expected value of the payoff of each signatory i ∈ M .

3 Stable coalition and equilibrium scale

We solve game G(n, α, ε) by backward induction. Consider stage three first.

Given e and m, let

X(m, e) = me(m) + (n−m)α
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denote the total abatement of all countries. Now, a signatory’s payoff is

uC(m, e) = αX(m, e)−
e(m)2

2
, if m ≥ 1. (4)

Additionally, let

uC(0, e) = ui(x̄) = (n− 1/2)α2. (5)

A non-signatory’s payoff is

uI(m, e) = αX(m, e)−
α2

2
, if m < n.

In stage two of G(n, α, ε), given e and m−i = |M\{i}|, country i’s ex-

pected payoff is

uC(m−i + 1, e) =

m−i
∑

k=0

b(k;m−i, 1− ε)
[

εuI(k, e) + (1− ε)uC(k + 1, e)
]

if i chooses to sign the IEA (i ∈ M), and it is

uI(m−i, e) =

m−i
∑

k=0

b(k;m−i, 1− ε)uI(k, e)

if i chooses not to sign (i /∈ M). In other words, uC(m, e) and uI(m, e) are

the expected payoffs of a country that chooses to sign and not to sign the

IEA, respectively, when exactly m countries choose to sign the IEA.

We use the concept of stable coalition to predict which countries choose

to sign the IEA in stage two. Roughly speaking, a coalition M is stable if the

countries in the coalition are the only ones choosing to sign the IEA before

any mistake occurs (ex ante stable), and countries that do not make mistakes

will not change their decisions after some other countries have made mistakes

(ex post stable).

Formally, following d’Aspremont et al. (1983) and many others, coalition

M is said to be ex ante stable relative to e if no country i ∈ M is willing

to unilaterally leave M and no country j /∈ M is willing to unilaterally join

M before uncertainty is realized. Hence, a coalition M /∈ {∅, N} is ex ante
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stable relative to e if

uC(m, e) ≥ uI(m− 1, e), uC(m+ 1, e) < uI(m, e).

In addition, M = ∅ is ex ante stable relative to e if uC(1, e) < uI(0, e), while

M = N is ex ante stable relative to e if uC(n, e) ≥ uI(n− 1, e).

A coalition M 6= ∅ is said to be ex post stable relative to e if no signatory

will regret its decision to sign the IEA and withdraw after uncertainty is

realized, no matter how many countries in M have made mistakes; that is,

uC(k + 1, e) ≥ uI(k, e), ∀k ∈ [0,m− 1].

In addition, M = ∅ is trivially ex post stable relative to any e ∈ R
n
+.

Finally, M is said to be stable relative to e if it is both ex ante stable

relative to e and ex post stable relative to e. Ultimately, a stable coalition

will not provide any incentive for any country to change its decision regarding

participation under any circumstance. Consequently,

(a) M = ∅ is stable relative to e if

uC(1, e) < uI(0, e); (6)

(b) M /∈ {∅, N} is stable relative to e if

uC(m+ 1, e) < uI(m, e), uC(k + 1, e) ≥ uI(k, e), ∀k ∈ [0,m− 1]; (7)

(c) M = N is stable relative to e if

uC(k + 1, e) ≥ uI(k, e), ∀k ∈ [0, n− 1]. (8)

Because of the symmetry of countries, whether a coalition M is stable

relative to rule e depends only on m = |M |. If a coalition M is stable

relative to e, then we say that m is an equilibrium scale relative to e.

The following proposition establishes the existence and uniqueness of an

equilibrium scale relative to any given rule. Let m(e) denote this unique
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equilibrium scale relative to e. In other words, if the designer announces rule

e in stage one, then in stage two there will be m(e) countries choosing to sign

the IEA. In the proof of this proposition, we provide an algorithm to derive

m(e) for each e ∈ R
n
+.

Proposition 1. There is a unique equilibrium scale relative to each e ∈ R
n
+.

Proof. First, we prove that there exists at most one equilibrium scale relative

to any e. Assume for a contradiction that both m1 and m2 are equilibrium

scales relative to some e, where m1 < m2. Since m1 is an equilibrium scale,

we have uC(m1 + 1, e) < uI(m1, e), which contradicts the assumption that

m2 is also an equilibrium scale.

If uC(1, e) < uI(0, e), then m(e) = 0; otherwise, we have uC(1, e) ≥

uI(0, e). Furthermore, if uC(2, e) < uI(1, e), then m(e) = 1; otherwise, we

have uC(1, e) ≥ uI(0, e), uC(2, e) ≥ uI(1, e). Proceeding in this manner, we

shall either find an equilibrium scale m(e) < n, or eventually have uC(k, e) ≥

uI(k − 1, e), k = 1, 2, . . . , n, which implies that m(e) = n.

Given e ∈ R
n
+, let EuC(e) denote the expected payoff of a signatory. Since

there are m(e) countries intending to sign the IEA, the probability that there

are exactly k signatories is b
(

k;m(e), 1− ε
)

for all k ≤ m(e). Thus, we have

EuC(e) =

m(e)
∑

k=0

b
(

k;m(e), 1− ε
)

uC(k, e). (9)

It follows from (5) that that when no country signs the IEA, the designer

will take a non-signatory’s payoff as a substitute for a signatory’s payoff; we

make this trivial assumption only to ensure that the objective of the designer

is always well-defined.

4 An optimal rule

Now, consider stage one of G(n, α, ε). The objective of the designer in this

stage is to maximize EuC(e) by choosing an appropriate rule e. If a rule e

exists such that EuC(e) ≥ EuC(e′) for all e′ ∈ R
n
+, then we say that e is
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optimal. The following theorem shows that there always exists an optimal

rule. The proof explicitly demonstrates how to construct an optimal rule.

Theorem 1. For any game G(n, α, ε), there exists an optimal rule e∗.

Proof. For each integer s ∈ [0, n], let E(s) = {e ∈ R
n
+ |m(e) = s} be the set

of rules whose equilibrium scale is s. Additionally, for each s ∈ [1, n], define

E(s) =
{(

e(1), . . . , e(s)
)

∈ R
s
+ | uC(k+1, e) ≥ uI(k, e), ∀k ∈ [0, s−1]

}

. (10)

Now, it is obvious that, if e =
(

e(1), . . . , e(n)
)

∈ E(s), then
(

e(1), . . . , e(s)
)

∈

E(s). The proof of the following lemma is in the appendix.

Lemma 1. For each s ∈ [1, n], E(s) is a non-empty bounded closed set.

If m(e) = 0, then from (6), we have e(1) 6= α. Therefore, EuC(e) =

(n− 1
2
)α2 for all e ∈ E(0) = {e ∈ R

n
+ | e(1) 6= α}.

If m(e) = 1, then from (7), we can easily obtain E(1) = {e ∈ R
n
+ | e(1) =

α, e(2) ∈ (−∞, α) ∪ (3α,∞)}, EuC(e) = εuC(0, e) + (1 − ε)uC(1, e) = (n −
1
2
)α2 for all e ∈ E(1).

If m(e) = 2, then again from (7), we have E(2) = {e ∈ R
n
+ | e(1) =

α, e(2) ∈ [α, 3α], e(3) ∈ (−∞, f1(e(2)))∪ (f2(e(2)),∞)}, where f1 and f2 are

two functions that can be easily determined, but are irrelevant to our analysis.

When e ∈ E(2), EuC(e) = ε2uC(0, e) + 2ε(1 − ε)uC(1, e) + (1 − ε)2uC(2, e)

depends only on e(1) and e(2). Therefore, we have maxe∈E(2) EuC(e) =

max(e(1),e(2))∈E(2) EuC(e). Similarly, for s ∈ [2, n], we have

max
e∈E(s)

EuC(e) = max
(e(1),...,e(s))∈E(s)

EuC(e).

Now, for any s ∈ [1, n], there exists e∗s =
(

e∗s(1), . . . , e
∗
s(n)

)

∈ E(s)

such that EuC(e∗s) ≥ EuC(e′) for all e′ ∈ E(s). That is, EuC(e∗s) =

maxe∈E(s) EuC(e). In fact, from Lemma 1, we can derive
(

e∗s(1), . . . , e
∗
s(s)

)

by solving the constrained optimization problem max(e(1),...,e(s))∈E(s) EuC(e),5

and
(

e∗s(s+1), . . . , e∗s(n)
)

can be any vector as long as uC(s+1, e∗s) < uI(s, e∗s).

5Apply the Kuhn–Tucker theorem.
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Finally, the maximal value of EuC(e) equals max1≤s≤n maxe∈E(s) EuC(e).

An optimal rule e∗ can thus be found, where

EuC(e∗) = max
1≤s≤n

{EuC(e∗1), EuC(e∗2), . . . , EuC(e∗n)}.

This ends the proof of the proposition.

As an example, consider game G(5, 2, 0.1). In Table 1, we list for each

s ∈ [1, 5] the value of EuC(e∗s), which is the maximal value of EuC(e) under

the condition m(e) = s, as well as the corresponding rules
(

e∗s(1), . . . , e
∗
s(s)

)

.

Since EuC(e∗5) > EuC(e∗4) > EuC(e∗3) > EuC(e∗2) > EuC(e∗1), we have e∗ =

e∗5 = (2, 2, 3.61, 6.44, 10), and EuC(e∗) = 42.78.

Table 1: Calculating optimal rule e∗ for G(5, 2, 0.1)

s
(

e∗s(1), . . . , e
∗

s(s)
)

EuC(e∗s)

1 (2) 18

2 (2, 4) 19.62

3 (2, 4, 6) 24.32

4 (2, 2.95, 5.23, 8) 32.13

5 (2, 2, 3.61, 6.44, 10) 42.78

5 Discussion

Now, we discuss some special rules commonly used in the literature and

compare them to the optimal rule e∗.

(a) A rule ea is called the MTP rule if it always aims to maximize the

total payoffs of all signatories. Because of the symmetry of players,

we have m · uC(m, ea) ≥ m · uC(m, e′), or uC(m, ea) ≥ uC(m, e′), for

all m ∈ [1, n] and e′ ∈ R
n
+. That is, for all m ∈ [1, n], ea maximizes

uC(m, e), and thus ea(m) = αm.

(b) A rule eb is called a minimal participation rule6 if there existsm∗ ∈ [2, n]

such that eb(m) = α when 1 ≤ m < m∗, and eb(m) = q > α when

6See Köke and Lange (2017).
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m ≥ m∗. In other words, this rule requires an abatement level q for

signatories when at least m∗ countries sign the IEA. In particular, if

m∗ = n, eb is called the coalition unanimity rule7.

(c) A rule ec is called an MTP rule with minimal participation8 if there

exists m∗ ∈ [2, n] such that ec(m) = α for all 1 ≤ m < m∗, and

ec(m) = αm for all m ≥ m∗. Hence, ec is a combination of ea and eb.

To compare these rules, we reconsider the example in the previous section

where n = 5, α = 2. First, the MTP rule ea satisfies ea(m) = 2m for all

m ∈ [1, n]. Next, consider a coalition unanimity rule eb where eb(m) = 2

when m < 5 and eb(5) = 10. Finally, consider an MTP rule with minimal

participation ec where ec(4) = 8, ec(5) = 10, and ec(m) = 2 when m < 4.

For these rules and the optimal rule e∗, we list the corresponding m(e) and

EuC(e) for some particular value of ε in Table 2.9 We shall explain and

discuss the data in this table.

Table 2: Simulation for G(5, 2, ε)

ea eb ec e∗

ε m(e) EuC(e) m(e) EuC(e) m(e) EuC(e) m(e) EuC(e)

0 3 26 5 50 4 36 5 50

0.1 3 24.32 5 36.90 4 29.81 5 42.78

0.2 3 22.86 5 28.49 5 35.86 5 36.88

0.3 3 21.63 5 23.38 5 29.86 5 32.02

0.4 3 20.59 5 20.49 5 25.15 5 28.03

0.5 4 21.88 5 19 5 21.81 5 24.79

0.6 4 20.38 5 18.33 5 19.71 5 22.22

0.7 5 20.26 5 18.08 5 18.59 5 20.26

0.8 5 18.94 5 18.01 5 18.13 5 18.94

0.9 5 18.22 5 18.00 5 18.01 5 18.22

For the designer, a rule e has two important aspects that may affect the

value of his objective EuC(e). On the one hand, the designer may wish

7See Chander and Tulkens (1997).
8See Carraro et al. (2009).
9For each ε in the table, the maximal value of EuC(e), where e ∈ {ea, eb, ec}, is

highlighted in bold to show which of the three rules is best for the designer.
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more countries to sign the IEA and that the signatories engage in a high

abatement level. Thus, the rule should provide for a strong incentive for

cooperation or strong punishment for free riding by creating a large payoff gap

between signing and not signing. On the other hand, the designer may also

wish to reduce the harm that uncertainty brings on the expected payoffs of

signatories. This can be accomplished only by designing a rule by which even

when some countries do not sign the IEA due to mistakes, other signatories

can still maintain a relatively high level of abatement, leading to a small

payoff gap between signing and not signing.

We call these two aspects of the rules as incentive effect and uncertainty

effect respectively. A rule has a strong/weak incentive effect if it provides

strong/weak incentives for countries to sign the IEA; a rule has a strong/weak

uncertainty effect if a certain ε has a small/large impact on EuC(e).

The incentive effect and uncertainty effect are typically contradictory. For

example, a rule with a strong uncertainty effect usually has a weak incentive

effect. This is because any factor of the rule protecting the signatories from

harm caused by uncertainty will require those signatories to maintain a high

level of abatement regardless of the other countries’ mistakes. However, this

requirement would also reduce the incentive for cooperation. An appropriate

rule should have a good balance between the two conflicting effects.

From Table 2, of the three special rules we discussed above, the coalition

unanimity rule eb is optimal when ε = 0. This is because eb obviously has

a strong incentive effect and weak uncertainty effect, but the latter is irrel-

evant when ε = 0. Moreover, the next proposition shows that the coalition

unanimity rule is almost optimal when uncertainty is sufficiently small.

Proposition 2. Suppose eb(n) = αn, and eb(m) = α for all m < n. For any

µ > 0, there exists γ > 0 such that if ε < γ, EuC(eb) > EuC(e′)− µ, for all

e′ ∈ R
n
+.

Proof. It is obvious that m(eb) = n. Given any µ > 0, when ε is sufficiently

small, EuC(eb) =
∑n

k=0 b
(

k;n, 1 − ε
)

uC(k, eb) can be arbitrarily close to

uC(n, eb), and thus EuC(eb) > uC(n, eb) − µ. From (4), it is easy to verify

that uC(n, eb) ≥ uC(m, e′) for all m ≤ n and all e′ ∈ R
n
+. Hence, EuC(eb) >

13



uC(n, eb) − µ ≥
∑m(e′)

k=0 b
(

k;m(e′), 1 − ε
)

uC(k, e′) − µ = EuC(e′) − µ, for all

e′ ∈ R
n
+.

In contrast, from Table 2, the MTP rule ea is an optimal rule only when

ε is large enough. This turns out to be a general outcome according to the

next proposition, which suggests that the MTP rule has a relatively strong

uncertainty effect.

Proposition 3. There exists θ > 0 such that if ε > θ, ea is optimal.

Proof. See the appendix.

Consider game G(5, 2, ε) again and suppose that one country deviates

from the grand coalition M = N because of a mistake. This deviation will

cause each remaining signatory to reduce its abatement level by e(5)− e(4),

which is ea(5)−ea(4) = 2 under the MTP rule, and is eb(5)−eb(4) = 8 under

the coalition unanimity rule. This example illustrates why the MTP rule has

a stronger uncertainty effect than the coalition unanimity rule.

The fact that the MTP rule may not be optimal under a small uncertainty

seems to be counterintuitive at first glance. Once a coalition is formed, it

is quite natural to require all signatories to act as one player and maximize

their total payoffs. This explains why the MTP rule is so popular in the

coalition formation literature. However, a shortcoming of the MTP rule is

that it has a weak incentive effect and hence cannot effectively overcome the

free-riding problem. Indeed, when ε is sufficiently small, the designer should

require the maximization of total payoffs of coalition members for only a

stable coalition, rather than for all coalitions. These redundant requirements

lead to a weak incentive effect and undermine the MTP rule.

Finally, from Table 2, the MTP rule with minimal participation ec can

be regarded as a mixture of ea and eb. Hence, for the designer, ec is better

than ea and eb when ε is neither too large nor too small.
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6 Concluding remarks

In this study, we introduce a three-stage coalition formation game to analyze

the endogenous determination of the IEA rule under participation uncer-

tainty. We provide an algorithm to derive an optimal rule, which reaches an

appropriate balance between providing sufficient incentive for cooperation

and reducing the losses caused by participation uncertainty.

We find that some commonly used rules are generally not optimal. In

particular, the MTP rule has a weak incentive effect and is not optimal

unless the uncertainty is very large; while the coalition unanimity rule has

a weak uncertainty effect, it is optimal only when there is no participation

uncertainty. Some of the failures of the IEAs in reality or in theory can be

attributed to the inappropriate rules used under certain situations.

Some further works and extensions may be worth studying in future re-

search. First, an open question is whether optimal rules are always (ex

ante) efficient in the sense that they result in full participation and induce

enough abatement level before uncertainty is realized; that is, m(e∗) = n and

e∗(n) = nα. This question is important, because if the answer is positive,

then we can be fairly optimistic about what IEAs may accomplish as long as

their rules are properly designed. However, by now the author can neither

prove the statement nor find an counterexample.

Second, we can study models with more general settings, for example,

models with heterogeneous countries, or models with more general payoff

function. Third, we may consider more complex IEA rules. For example, a

rule may contain an emission function ei(M) specifying the abatement level

of i ∈ M and a transfer function ti(M) characterizing the amount of money

transferred to country i when coalition M is formed. Last but not least,

some other goals of the designer can be studied. For instance, sometimes it

makes more sense to assume that the designer will maximize expected social

welfare rather than the signatories’ welfare.

Finally, note that in addition to the IEA issue, the MTP rule is widely

applied in some other areas involving the voluntary provision of goods with

externalities, such as cartel formation in oligopoly markets, cooperation in
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R&D, and sharing natural resource.10 In a typical application, players first

decide whether to join a coalition, and then all coalition members act ac-

cording to the MTP rule. However, in most of these works, participation

uncertainty is implicitly assumed to be zero, which implies that the MTP

rule may not be an optimal rule for coalition members and the designer.

Therefore, it is reasonable and necessary to re-examine the outcome of these

works by endogenizing the choice of the coalition rules.

Appendix

Proof of Lemma 1.

(a) From (10), E(s) is obviously a closed set in R
s
+ for each s ∈ [1, n].

(b) Now, we prove that E(s) is a bounded set in R
s
+ by induction on s. We

can easily see that E(1) = {α} is bounded in R
1
+. Assume inductively that

E(k) is bounded in R
k
+, 1 ≤ k ≤ n−1. That is, there exist T1, T2, . . . , Tk > 0,

such that for each
(

e(1), . . . , e(k)
)

∈ E(k): e(q) < Tq, 1 ≤ q ≤ k.

Now, consider E(k+1). According to (10), for each
(

e(1), . . . , e(k+1)
)

∈

E(k + 1), we have e(q) < Tq, 1 ≤ q ≤ k. Additionally, e(k + 1) satisfies

uC(k + 1, e) ≥ uI(k, e); that is,

−
1

2
e(k + 1)2 + a(k + 1)e(k + 1) + A(k) > 0,

where A(k) depends on
(

e(1), . . . , e(k)
)

. Thus, e(k + 1) is also bounded,

implying that E(k + 1) is bounded in R
k+1
+ . Consequently, E(s) is bounded

in R
s
+ for each s ∈ [1, n].

(c) It remains to be proved that E(s) is not empty. Given s ∈ [1, n], we

can construct
(

ê(1), . . . , ê(s)
)

as follows:

(n1) ê(s) = αs.

(n2) ê(k) = α, 1 ≤ k ≤ s− 1.

10See, for example, d’Aspremont et al. (1983), Katz (1986), Poyago-Theotoky (1995),
Ray and Vohra (2001), Miller and Nkuiya (2016).
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For any m < n and any rule e, we have

uC(m+ 1, e)− uI(m, e)

=(1− ε)
m
∑

k=0

b(k;m, 1− ε)
[

uC(k + 1, e)− uI(k, e)
]

.
(11)

Note that from (n2), uC(k + 1, ê) − uI(k, ê) = 0, k ∈ [1, s − 2]; from (n1)

and (n2), uC(s, ê) − uI(s − 1, ê) = 1
2
α2(s − 1)2 ≥ 0. Hence, from (11),

uC(m + 1, ê) ≥ uI(m, ê), m ∈ [0, s − 1]. Therefore,
(

ê(1), . . . , ê(s)
)

∈ E(s),

implying E(s) 6= ∅.

Proof of Proposition 3.

From the definition of ea, we can easily verify that

uC(m, ea)−uI(m− 1, ea) = −
1

2
α2(m− 1)(m− 3) =











= 0, if m = 1, 3

> 0, if m = 2

< 0, if 3 < m ≤ n

.

Further, from (11), when ε is sufficiently large, uC(m+1, ea)−uI(m, ea) ≥ 0

for all m ∈ [0, n− 1], implying that m(ea) = n.

When ε is very large, we have b
(

0;n, 1 − ε
)

≫ b
(

1;n, 1 − ε
)

≫ · · · ≫

b
(

n;n, 1−ε
)

. According to (9), a necessary condition for rule e0 to be optimal

is that e0(1) maximizes uC(1, e); that is, e0(1) = α, since otherwise we can

find e′ such that uC(1, e′) > uC(1, e0), and hence uC(1, e′) > uC(1, e0), which

implies that EuC(e′) > EuC(e0) for a sufficiently large ε.

Now, assume that e0(k) maximizes uC(k, e) for all k ∈ [1,m], where

m < n. If e0 is optimal for a sufficiently large ε, e0(k + 1) also maximizes

uC(k + 1, e), since otherwise let e′ be such that e′(s) = e0(s), s ≤ k, and

uC(k + 1, e′) > uC(k + 1, e0), implying that uC(k + 1, e′) > uC(k + 1, e0) and

EuC(e′) > EuC(e0), which contradicts the assumption that e0 is optimal.

Thus, we have proved that if e0 is optimal when ε is large enough, then

e0(k) maximizes uC(k, e) for all k ∈ [1, n], which implies that e0 = ea. That

is, ea is optimal when ε is sufficiently large.
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