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Abstract

We study a symmetric private value auction with signaling,
in which the auction outcome is used by an outside observer to
infer the bidders’ types. We elicit conditions under which an es-
sentially unique D1 equilibrium bidding function exists in four
auction formats: first-price, second-price, all-pay and the Eng-
lish auction. We obtain a strict ranking in terms of expected
revenues: the first-price and all-pay auctions dominate the Eng-
lish auction but are dominated by the second-price auction.
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1 Introduction

Signaling constitutes an important concern in many publicly observable
choices of individuals and organizations. Humans tend to care about
what others think about them, either because of innate tastes, as humans
intrinsically care about others’ esteem, or by instrumental reasons, as a
higher status often gives access to better mates, partners or resources.!
Firms care about how other market parties perceive them, because this
affects their access to capital and business opportunities. Signaling is
also documented to matter in auctions, in art or charity auctions as well
as in a more generic industrial or financial context.

Mandel (2009) distinguishes three main motives for buying art: in-
vestment, direct consumption and signaling. While art serves as an
investment, owners can also enjoy its aesthetic qualities and the prestige
derived from showing it to friends and acquaintances. Mandel (2009)
suggests that the two latter motives explain an old puzzle: why art sys-
tematically seems to underperform as an investment compared to bonds
and equity, especially when taking the high variance of its yields into ac-
count. The underperformance of art is particularly important for famous
masterpieces (Mei and Moses, 2002), which likely have a greater signal-
ing value. Similarly, charities often raise funds by auctioning objects
provided to them by celebrities. In recent years, an extensive literature
has analyzed charity auctions as auctions in which bidders’ preferences
are altruistic.”? However, the predictions of these theoretical contribu-
tions were invalidated in a field experiment (Carpenter et al. 2005), while
a broad theoretical and empirical literature suggests that signaling and

status are important motives for contributions to charities.®> Moreover,

ISee Frank (1985, 1999) for a broad introduction to social status in economics,
Miller (2000) for an introduction to the biological roots of status concerns, Mason
(1998) for a history of economic thought w.r.t. status concerns and Truyts (2010)
for a recent survey of the literature.

Cole, Mailath and Postlewaite (1992) derive preferences for status from a two-sided
one-to-one matching problem. If the equilibrium matching is assortative, one must
appear more attractive than one’s peers to secure the best attainable partner.

2See for example Engers and McManus (2007) and Goeree et al. (2005).

3Glazer and Konrad (1996) and Harbaugh (1998a,b) show that signaling is an
important explanation for observed patterns in donations to universities. Kumru
and Vesterlund (2010) find that donations are significantly higher if the charity first



the very mechanism of auctioning celebrities’ belongings seems to exploit
signaling motives. Where altruistic donators can get a warm glow from
discreet contributions, it takes a unique object and a public event to
make donators shine who (also) care about their public image. Finally,
the public behavior of any sizable firm is under constant scrutiny by
market analysts and other market parties. A firm’s performance in an
auction, irrespective of whether it won or lost the auction, is informa-
tive to outsiders trying to judge e.g. its profitability, financial situation,
strategy or management quality. In these auctions, bidders not only care
about their payment and about winning the object, but also about what
the auction outcome reveals about their type to outsiders. These infer-
ences about the individual qualities of a bidder depend on the outcome
and format of the auction, and in turn affect the equilibrium bidding

strategies and thus the outcome of the auction.

We study a symmetric independent private value auction with sig-
naling. A single and indivisible commodity is allocated by means of an
auction to the one out of n bidders who submits the highest bid. Each
bidder independently draws a private valuation for the auctioned object
according to the same distribution and this valuation is her private in-
formation. The bidders’ payoffs consist of a standard and a signaling
component. As in the standard auction model, a winner’s ex post pay-
off equals her private valuation for the object minus her payment and
a loser’s payoff is minus her payment (which is non-zero in the all-pay
auction). In addition, we assume that each bidder also cares about the
beliefs of an outside party, the receiver, about her type. The receiver is
assumed to observe and use the auction outcome, in casu the identity
and payment of the auction’s winner, to form beliefs about the private
valuation of all bidders. We study how this form of signaling affects
the bidding behavior and auction outcome. How does the payment rule
affect the inferences by the receiver and thereby the bidding strategies?
Does expected revenue equivalence still apply, or can we strictly rank

different auction formats in terms of expected revenues?

collects from high status sponsors because donators like to be associated with higher
status groups.



Note that, in general, a bidder’s private valuation can reflect e.g.
purchasing power, a taste for art, generosity, profitability prospects, ex-
pected market penetration or a combination of such factors. In order
to keep the model as simple and generic as possible, we disregard how
these qualities map into a private valuation, and how the receiver seeks
to reverse this mapping to form beliefs about these ultimate qualities

from the auction outcome.

Because of the combination of a signaling game and an auction in
a single game, such that the beliefs of the receiver directly enter the
payoff function of the bidders, a general mechanism design approach to
this problem is beyond the current state of the art. For this reason, we
analyze the implications of signaling in four well-known auction formats:
the first-price auction, the second-price auction, the all-pay auction and
the English auction. Auctions with signaling inherit the usual equilib-
rium multiplicity of signaling games, due to a lack of restrictions on
out-of-equilibrium beliefs. Therefore, we restrict out-of-equilibrium be-
liefs by means of the D1 criterion of Banks and Sobel (1987). The D1
criterion is the most common way of restricting out-of-equilibrium be-
liefs in signaling games with multiple types, and imposes a monotonicity
on out-of-equilibrium beliefs: an out-of-equilibrium bid b is never at-
tributed to a certain bidder type if a higher type bids in equilibrium
less than b. We show that only fully separating equilibria survive the D1
criterion if the density function characterizing the ex ante distribution
of bidders’ types is non-increasing. We elicit conditions for the existence
of an essentially unique D1 equilibrium bidding function in these four
auctions formats, and we show that for a finite number of bidders, the
first-price and all-pay auctions outperform the English auction in terms
of expected revenues, but are in turn outperformed by the second-price
auction. This strict revenue ranking is due to the different amounts
of information available to the receiver and the bidders in the different
auction formats. In a fully separating equilibrium, the winner’s payment
allows the receiver to pinpoint the winner’s type in the first-price and
all-pay auctions, but only imposes a lower bound on the receiver’s be-

liefs about the winner’s type in the second-price and English auction.
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This will be shown to boost the equilibrium bids of the lowest types in
the second-price and English auctions, compared to the other formats,
and can induce the highest types to bid strictly more in the first-price
auction than in the second-price and English auctions. In addition, the
presence of an increasing price(-clock) in the English auction weakens
bidders’ incentives to overbid their true valuation for signaling purposes,

compared to the sealed-bid auctions.

Signaling in auctions had been studied by at least two strains of the-
oretical literature. The closest to our analysis are models of information
transmission in auctions in function of an aftermarket. Goeree (2003)
studies oligopolists’ bidding for a single-license patent on a cost reduc-
ing technology. Each oligopolist has private information about the cost
reduction which winning the patent would imply for her firm and other
oligopolists try to infer the winner’s production cost reduction from the
auction outcome to determine their strategies in the aftermarket Cournot
competition game. However, Goeree’s setting and results are in several
respects different from ours. First, Goeree (2003) assumes that the re-
ceiver (the other oligopolists) observes the winner’s bid, rather than
her payment. Second, the structure of the aftermarket imposes a sin-
gle crossing condition on the winning bidder’s payoffs in Goeree (2003):
higher types benefit more from an improvement in the receiver’s beliefs.
And third, in Goeree (2003) only the winning bidder cares about the re-
ceiver’s inference. Together, these three assumptions imply that Goeree
obtains an expected revenue equivalence of the first-price, second-price
and English auctions.

Giovannoni and Makris’ (2014) paper is probably the closest to the
present analysis. They study takeovers by a standard IPV auction. A
firm’s private valuation is interpreted by a post-auction jobmarket for
managers as a signal of its manager’s ability to extract revenue from
an acquisition. Giovannoni and Makris focus on 4 different information
treatments: all bids revealed, no bids revealed, the highest bid revealed
and the second highest bid revealed, and assume that the receiver ob-
serves in addition whether a firm has lost or won the auction. They elicit

conditions under which these information treatments can be ranked in



terms of expected revenues for a large class of auctions. However, the
present analysis differs from Giovannoni and Makris’ in that we focus
on different auction formats, in our treatment of the outside observer’s
beliefs, in that we demonstrate the uniqueness of a D1 equilibrium, and
in terms of the presented results and intuitions. Unlike Giovannoni and
Makris, we obtain a strict revenue ranking of different auction formats
with the same information treatment.

In a setting similar to Goeree (2003), Katzman and Rhodes-Kropf
(2008) show that the auctioneer’s announcement policy of bids can change
the auction’s revenue and efficiency, while Das Varma (2003) elicits con-
ditions for equilibrium existence for a first-price auction with an after-
market with linear demand functions and Cournot or Bertrand com-
petition. Liu (2012) analyzes takeovers through an ascending auction,
and shows how the winner’s bidding strategy can signal the firm’s post-
takeover value to the market. Marinovic (2014) studies how different
accounting rules affect the seller and bidders’ incentives to signal their
value in a first-price auction asset acquisition context. Molnar and Vi-
rag (2008) show how the shape of the bidder’s profit function w.r.t. the
outside observer’s inferences affects an auctioneer’s revenue maximizing
information treatment. Haile (2003) studies how bidders’ incentives for
signaling their type in function of a resale auction depend on the auction
formats and information assumptions.

A second strain of literature studies signaling to other bidders in
dynamic auctions. Avery (1998) shows that bidders may use ‘jump bids’
in the English auction to signal a high valuation in order to scare away
competing bidders, thus decreasing the auction’s expected revenue and
breaking expected revenue equivalence. Hoérner and Sahuguet (2007)
compare in a dynamic auction context jump bids and cautious bids as
strategic signals about private valuation towards other bidders. Finally,
this paper studies how an auctioneer can extract different rents from
agents seeking to signal their type to an uninformed party through the
auction mechanism, and thus relates to a larger literature about the
supply of signaling mechanisms by a profit maximizing monopolist (see
e.g. Rayo (2013)).



The paper is organized as follows. Section 2 introduces the formal
setting and equilibrium concept. Sections 3, 4 and 5 respectively charac-
terize the D1 perfect Bayesian equilibrium of the first-price and all-pay
auctions, the second-price auction and the English auction. The ex-
pected revenues of these auctions are compared in Section 6. Section 7

concludes. All proofs are collected in Appendix.

2 Formal Setting

Consider n bidders, indexed i, competing for a single object which is
allocated through an auction to the highest bidder. Bidder ¢’s valuation
for the object (her ‘type’), is denoted V;, and is assumed ii.d. and
drawn according to a C? distribution function F with support on [v, 5] C
R,. Let f = F’ denote the density function. Bidder i’s realization of V;,
denoted v;, is her private information, but the number of bidders and
the distribution F' are common knowledge.

To participate in the auction, a bidder submits a non-negative bid.
As all bidders share the same beliefs about the other bidder’s valuations,
they are assumed to follow a symmetric bidding strategy S : [v, 7] —
R,.* Let b = B (v) denote the vector of bids given a vector of valuations
v, with b; the effective bid of i—th bidder. An auction mechanism maps
a vector of bids b to a winner, denoted 7*, and vector of payments p. We

assume a fair tie breaking in case of multiple highest bids.’

Besides the auction’s outcome, bidders also care about the beliefs of
an uninformed party, the receiver, about their type. This receiver can
represent e.g. the general public or press, business contacts or acquain-
tances of the bidder or experts related to the object sale. The receiver is
assumed to observe the auction’s winner and her payment (i*, p;«). This
either represents a scenario in which the winner and her payment are
reported in media outlets, or it reflects a distinction between a payment

being ‘hard’ verifiable evidence, and claims of bids being ‘soft’ informa-

4We denote the bidding strategy in any auction format by 3, and only add an ad-
ditional superscript to specify the auction format when comparing bidding functions
of different auction formats for an expected revenue comparison.

>That is, for all i € {j|b; = max b} we have Pr (i =i*) = m.



tion, which is difficult to verify. We keep this information assumption
constant throughout the different auction formats to ensure compara-
bility.5 The receiver’s beliefs, denoted ji, are a probability distribution
over the type space, such that p, (v| (i*, p;)) is the probability of bidder
i being of valuation type v given (i*,ps). Let p(v|(i*,p;+)) then be a
probability distribution over vectors of valuations v given (i*, p;+) . The

receiver’s beliefs are (Bayesian) consistent with a bidding strategy 3 if

Pr(i*,pe |8 (o) L f (),
BWN)IL f () dv”

p(v| (4%, p)) =

B fPr (7%, pis (1)

The utility of bidder ¢, given an auction outcome (i*,p), consists of
two parts. The first part is standard: the valuation for the object for
the winner of the auction, minus the payment (which can be nonzero
for all bidders in the all-pay auction). The second part is the expected

value of the receiver’s beliefs about bidder i’s type given (i*, p;+ ), denoted

E (Vilp; (Vili*, pir)):

v; — pi + B (Vi|u,; (Vi]i*, pi+)) for winner ¢ = ¢*

ui(vi, pilp;) = " .
—pi+ B Vil (Vili*, i) for loser i # i

This utility function either represents a psychological game, in which

bidders care directly about the receiver’s beliefs, as humans care about

the good opinion of others, or is reduced form of a game in which the

receiver chooses an action given her beliefs, while the bidders care about

this action.® In the latter case, an explicit analysis of the receiver’s prob-

61n the all-pay auction in particular, an alternative information treatment in which
all payments (and thus all bids) are revealed seems equally plausible, especially in
light of the above distinction between ‘hard’ and ‘soft’ information. However, we
prefer to maintain a single information treatment to ensure maximal comparability
of equilibrium bidding and expected revenues in the different auction formats.

"Note that then u; (v| (i*,pi+)) = f{vm:v} (V] (i*,pi=)) dv

81t can strike readers as counterintuitive that losing bidders seem to win something
in terms of the receiver’s inference. However, this is only true if non-participants
receive payoff zero. Rather, we assume that the receiver always forms beliefs about
the bidders. Under exogenous participation, a non-participating bidder obtains payoff
E (V), because the auction reveals no information about her. In this case, losing
bidders lose in equilibrium compared to their non-participation payoff. We return to
this issue in Section 7, where we discuss endogenous entry.



lem is easily integrated, but does not add much. Although somewhat
restrictive, this linear payoff structure is the most natural benchmark
case to study the role of signaling in auctions, because it guarantees a
tractable solution and ensures that the auction formats under consider-
ation are expected revenue equivalent without signaling.’

We study the symmetric perfect Bayesian equilibria (PBE) of this auc-
tion game with signaling. A PBE is then described by a pair bidding
strategy and beliefs (3, 1) such that:

1. The bidding function S maximizes expected utility for all v, given

that all other bidders play  and given the receiver’s beliefs

2. The receiver’s beliefs 11 are Bayesian consistent with the bidding

function S, as in (1) .

Because this equilibrium concept imposes no restrictions on out-of-
equilibrium beliefs, i.e. how the receiver interprets auction outcomes
which should never occur on the equilibrium path, we face the usual
equilibrium multiplicity of signaling games. Therefore, we use the D1
criterion of Banks and Sobel (1987), which refines the set of equilibria by
restricting out-of-equilibrium beliefs. The D1 criterion restricts out-of-
equilibrium beliefs by considering which bidder types are more likely to
gain from an out-of-equilibrium bid, compared to their equilibrium ex-
pected utility. More precisely, if the set of beliefs for which a bidder gains
from a deviation to an out-of equilibrium bid b (w.r.t. her equilibrium

expected utility) is larger for one bidder type than for another, then the

9Note that Goeree (2003) can allow for a more general implicit payoff function.
However, the receiver’s equilibrium beliefs are necessarily degenerate in his setting.
In the present setting with nondegenerate equilibrium beliefs, such payoff functions
entail far more complications and a loss of some tractable solutions and results.
Moreover, the main inuitions are more clearly presented with a linear structure. One
can also conceive a payoff function

v; — pi +vE (Vi|p; (Vi]é*, pi-)) for winner ¢ = ¢*
—pi +vE (Vilp; (Vi|i*,pi=))  for loser i # 47,

with 0 < 7 < oo measuring the relative importance of signaling. This would not
change our results qualitatively, but merely complicate the analysis.



D1 criterion requires out-of-equilibrium beliefs to attribute zero proba-
bility the latter type having deviated to b.!° The D1 criterion imposes a
certain monotonicity on out-of-equilibrium beliefs, which excludes many

implausible equilibria, as illustrated below.

3 First-price and all-pay auctions

In this Section, we derive the essentially unique D1 perfect Bayesian
equilibrium bidding strategies for the first-price auction and all-pay auc-
tion. In the first-price auction, the winner pays her own bid. Because
the receiver observes the identity of the winner and her payment, she
observes the winner’s bid. Thus, if 3’ (.) > 0, the winner’s type is fully
revealed in equilibrium. The receiver is not able to distinguish among
the different losers. The following simple example demonstrates that
without imposing the D1 criterion, a multiplicity of equilibria can be

supported by often implausible out-of-equilibrium beliefs.

Example 1 (Zero revenue auction) Let n = 2 and F the uniform
distribution on [0,1]. Then a PBE exists in which all bidder types bid
zero, 5(.) =0, and p; (v|(.,0)) =1 for allv and i, while for any p;+ > 0
beliefs about the winner are degenerate at v =0, i.e. fi; (V'] (i*,px)) =0
for allv' > 0. In this case, the expected utility of a v type in equilibrium is

Y + 1, i.e. both winner and loser are inferred by the receiver as E (V) =
1
2
deviating to a bid € > 0 wins with certainty, pays € and is inferred as a

and both bidders win the auction with a probability of % A bidder

zero valuation type, which implies expected utility v — €, which is strictly

10As outlined in Appendix, the exact formal implementation of the D1 criterion
depends on the auction format. Formally, for types v’,v” and out-of-equilibrium
message m, beliefs u, a utility function u (m, u|v) and equilibrium utility levels u* (v),
define the following two sets of beliefs which make a type v sending m resp. strictly
better off than in equilibrium and equally well off as in equilibrium:

M* (m,v) = {plu (m, plo) > u* (v)}
MO (m, ) = {ufu (m, plo) = u* (v)}

Then the D1-criterion requires

M™ (m,v") UM (m,v') € M* (m,v") = pu(v'|m) = 0.
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below 3 + % for all v € [0,1]. As no bidder makes a strictly positive bid,
the illustrated beliefs are consistent with the PBE bidding strategies.

Note that, among the commonly used equilibrium selection crite-
ria for signaling games, the less restrictive Intuitive criterion of Cho
and Kreps (1987) cannot rule out the (admittedly extreme) equilibrium
in example 1.!' This motivates our use of the D1 criterion to restrict
out-of-equilibrium beliefs. Although the D1 criterion typically excludes
(semi)pooling PBE in monotonic signaling games at the one hand, and
although (semi)pooling strategies are normally easily excluded in canon-
ical auction games with the present preference structure at the other
hand, the exercise of excluding (semi)pooling equilibria by means of the
D1 criterion is less obvious when both games are combined into an auc-
tion with signaling. The reason is that bidders cannot be excluded to bid
above their valuation for the object (and typically do so in equilibrium).
As usual, the D1 criterion ensures that the receiver puts zero probability
on all types lower than the maximal type in a pool when observing a bid
marginally above the common bid in this pool. In monotonic signaling
games this implies that a marginal increase above the pool’s signal is
rewarded by a discrete jump in terms of inference by the receiver, which
immediately excludes (semi)pooling equilibria. In the present setting,
however, such a marginal increase in bid also increases a deviating bid-
der’s chances of winning the auction, and thereby her expected payment,
by a discrete amount.

In what follows, we restrict F' to be concave, i.e. f'(.) < 0. This

condition is (amply) sufficient to ensure that the D1 criterion has enough

1 The Intuitive criterion requires that no bidder type can gain from deviating to
an out-of-equilibrium bid for all possible beliefs that assign zero probability to types
who can never gain from such a deviation (w.r.t. their equilibrium payoff), i.e. not
for any beliefs by the receiver. In example 1, first, bidders with a valuation strictly
lower than ¢ (b) = 2b — 1 can never gain from a deviation to out-of-equilibrium bid
be [%, 1] , and are excluded from the support of out-of-equilibrium beliefs. Second,
in this case, no bidder type can gain from a deviation to b for all remaining out-
of-equilibrium beliefs. The worst out-of-equilibrium belief puts all probability mass
on type 0 (b), such that a deviator gets v + 2b — 1 — b, which is strictly below the
equilibrium payoff ”;1 for all v. For b < %, no types can be excluded, such that
the worst possible out-of-equilibrium beliefs are better than the equilibrium beliefs
(which put all mass on the 0 type). No bidder can ever gain from a deviation to a
bid b > 1.

11



bite in the present setting to exclude complicated (semi)pooling in the
D1 PBE, keeping our analysis tractable. Although restrictive, this con-
dition is likely satisfied if we believe that only the top end of e.g. the
income distribution participates in art or charity auctions. More im-
portantly, however, this condition will prove close to a necessary con-
dition for the existence of a fully separating PBE in the second-price
auction and English auction. Because we seek to compare the equilib-
rium bidding and expected revenues of the first-price auction with the
second-price and English auctions, we impose this condition from the
start. Note that this condition implies the common log-concavity of F
or the non-decreasing hazard rate condition. It neither implies, nor is im-
plied by the log-concave density condition imposed by Goeree (2003).12
A similar condition is found in Segev and Sela (2014). This condition

implies that only fully separating equilibria survive the D1 criterion.?

Lemma 1 If f'(.) <0, all DI PBE are fully separating, with 3’ (.) > 0.

If the D1 PBE of the first-price auction is fully separating, then the
winner’s type is fully revealed to receiver, as ' (8 (v;-)) = v;». If the
winner’s type is known to be v;«, the expectation of a loser’s valuation is
ﬁ f;i* xdF (z). However, if a ¥ type does not win, she ez ante does
not know the winner’s valuation (except that it is above @), such that
her expectation of the receiver’s inference about a loser is

I3 w5 [ wdF (x) dF"1 (y)

(@)

Moreover, if 3 is strictly increasing and valuations are drawn inde-

pendently, the probability of winning for a bidder with a valuation v

12Clearly, Goeree’s (2003) condition allows for a broader class of type distributions.
However, Goeree ensures the existence of a fully separating equilibrium by imposing
that the winning bidder’s payoffs are strictly convex w.r.t. the uninformed party’s
inference. In the present setting with linear payoffs, this is achieved by a stronger
restriction on the type distribution.

13We use ‘fully separating’ to indicate that no bid is chosen by different types in
equilibrium. In the present setting, this does not imply that the receiver’s equilibrium
beliefs are degenerate, which is sometimes used as an alternative definition of ‘fully
separating’ equilibrium.

12



is ! (v). Given an equilibrium bidding function 3 and correspond-
ing beliefs, we understand a type v bidder’s problem as maximizing her
expected utility by choosing which type © to mimic, by submitting the
latter’s equilibrium bid [ (9) to obtain her expected inference by the re-
ceiver and probability of winning. As such, the v type bidder’s problem

1S

n—1 (~ ~ ~ n—1 7~ fg) ﬁ fyy rdF (.13) an_l <y>
max (F" 1 (0)) (v=B@)+0)+(1— (F" ' (1)) (ET=Yay

The first order condition can be written

52 (P @ 50) = (P 0)) 04 014 (7 0) =y | 2P (@) (77 @)
NG)
Of course, in equilibrium S must be such that each bidder strictly
prefers her own type’s equilibrium bid. Therefore, we impose v = v,
solve the differential equation in (2) and simplify the bidding function.
Finally, we verify the second order condition for each v to ensure that
each type maximizes her expected utility by choosing her equilibrium bid
B (v). Let E (Vl(n*l)ﬂf < v) denote the expected value of the highest
order statistic out of n — 1 draws, for a distribution truncated at the
right at v, and let E (V|V < wv) denote the expected value of a single
draw, for F' truncated at the right at v. The essentially unique D1 PBE
bidding function for the first-price auction is then characterized in the

following Proposition.

Proposition 1 For n > 3 and f'(.) < 0, an essentially unique first-
price auction D1 PBE exists, and its bidding strategy is

n—1

: (E (vl(”*”|v < v) _EB(V|V < v)) (3)

n —

with lim B (v) = v, B(v) = v + 2=% (E (Vl(n_l)) - E(V)) and finally

v—ut n—

g () > 1.

Remark that for arbitrary F' there is no fully separating equilibrium

in the first-price auction with two bidders. The equilibrium bidding

13



strategy in (3) is only essentially unique because the equilibrium bid of
the v valuation type is undetermined: because she has zero probability
of winning the auction in equilibrium, any bid in the interval [0, v] is
payoff equivalent. In the limit, however, the lowest valuation types bid
v. In terms of inference by the receiver, the lowest valuation types have
little to gain from winning. Winning reveals them as lowest types, while
they are better off in terms of inference by losing against a higher type.
Yet, if an interval of lowest valuation types would bid weakly below v
(while respecting ' (.) > 0), then the v type can profitably deviate to
a bid v to win with non-zero probability, pay v for an object valued v
and be inferred by the receiver to have a valuation strictly above v. As
suggested above, all bidders with a valuation strictly higher than v bid
above their valuation of the object. The difference between a bidder’s
valuation for the object and her equilibrium bid strictly increases with
the bidder’s valuation. For n — +o00, the highest valuation types bid
B (v) =20 — E (V), which equals their valuation for the object plus the
difference in the receiver’s inference about them if winning (o) rather
than losing (£ (V')) the auction.

Example 2 (Uniform on [0,1]) In this case, the bidders’ problem is

-1 1-9"
on 1 —qpn—1°

max (v — B (8) + ) 7" + (1 — ") =

The D1 PBE bidding function is

We now proceed to the all-pay auction. Contrary to the first-price
auction, all the losers pay their own bid in the all-pay auction. As before,
the receiver observes only the identity and payment of the winner. The
all-pay auction suffers from the same equilibrium multiplicity due to
out-of equilibrium beliefs as the first-price auction, and imposing the D1-
criterion excludes all (semi)pooling equilibria if f is non-increasing. The
proof is technically identical to that of the first-price auction (Lemma

1). As such, the winner’s type is fully revealed to the receiver, and the
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latter’s expected inference is equivalent in the first-price and the all-pay
auction. In the absence of signaling, the expected payoff in the all-
pay auction equals the expected payoff in the first-price auction minus
(1 —F"1(2)) (B(?)) (such that bidders pay their bid with probability 1
instead of F" ! (v)).

In the absence of signaling, both these auctions are revenue equiva-
lent. The addition of an identical term to the expected payoffs of both
auction formats, i.e. the expected inference of the receiver, affects the
equilibrium bidding functions and the expected payments is the same
way in both auctions. As a result, the equilibrium bidding function of
the all-pay auction can be obtained by an adaptation of the usual proof

of the revenue equivalence theorem (see e.g. Krishna (2009)).

Proposition 2 If f'(.) < 0 and n > 3, then a unique all-pay auction
D1 PBE exists, and its bidding function is

B(v) = F"7 ' (v)5' (v),

with B'(.) the the first-price auction D1 PBE bidding function, 1im+ B (v) =
0 and B (v) = ' (v). ’

As for the first-price auction, no D1 PBE exists in general for two
bidders.

4 Second-price auction

In the second-price sealed bid auction, the winner pays the second high-
est bid. Because the receiver only observes the identity and payment of
the winner, the latter only allows her to bound the set of possible bids
of the winner from below and the set of possible bids of the losers from
above. This difference in information available to the receiver consider-
ably alters the bidders’ expected payoff and equilibrium bidding.

The second-price auction also suffers from a multiplicity of equilib-
ria due to insufficient restrictions on out-of-equilibrium beliefs, which is

equally remedied by imposing the D1 criterion. However, the role of
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out-of-equilibrium beliefs slightly differs between the first- and second-
price auctions. A bidder deviating unilaterally to a bid above the high-
est equilibrium bid always wins the auction. But such a deviation will
not be revealed, because the winner only pays the second highest bid,
which has an equilibrium interpretation. Therefore, bids cannot be con-
strained from above by possibly implausible out-of-equilibrium beliefs
in the second-price auction, and a zero revenue auction as in Example
1 is impossible for the second-price auction. Out-of-equilibrium beliefs
for bids below the minimal equilibrium bid affect bidding in neither
the first- nor the second-price auction because such deviations are never
observed, such that implausible out-of-equilibrium beliefs can never con-
strain equilibrium bidding from below. However, discontinuities in the
bidding function at intermediate valuations can be supported by par-
ticular out-of-equilibrium beliefs. Such deviations are revealed to the
receiver if they constitute the second highest bid, in which case they fix
the inference about all losing bidders, including the deviator. Similar to
Lemma 1, the following Lemma demonstrates that any D1 PBE bidding

function is strictly increasing for non-increasing density functions.

Lemma 2 If f'(.) < 0 and n > 3, then ' (.) > 0 in any D1 PBE of

the second-price auction.

We now proceed step by step to construct the problem of a v type
bidder choosing which type © to mimic in the second-price auction. As
before, a strictly increasing bidding function implies that a type v bidder
choosing the ¥ type’s equilibrium bid wins with probability F"~! (7). In

this case, her payoff is:

1 v w1 1 ﬁffde ) rna "
v——Fnl(ﬁ)/vﬁ(x)dF ()—i—anl({]) : 1—F($)dF (z).

The second term is the expected payment if 5 (0) is the winning bid
and the third term is the receiver’s expected inference about a winner
of valuation . If the second highest bidder is of type x, then the infer-

L vdFW) Byt because the second highest bid

ence about the winner is
1-F(x)
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is unknown to the bidder, the third term takes the expectation over the
second highest bid.

Second, with probability (n — 1) F"~2(0) (1 — F (9)) bid 3 (9) is the
second highest bid. In this case, the receiver’s inference about any losing

bidder is }
hy +n_2fy$dF(£U)
n—1 n—-1 F(@)

as one of the n — 1 losers has valuation ¢ while the n — 2 others’ valua-

tions are weakly lower than ©. Finally, with probability 1 — F"~! (¢) —
(n—1) F"2(0) (1 — F (7)), a type © bidder is neither the highest nor
second highest bidder. For this case, a bidder forms an expectation over
the second highest bid to asses the receiver’s expected inference about
the losing bidders.!*

The expected utility of a valuation v bidder choosing type ©’s bidding
strategy is then:

[ o-nenarir [ St o
i n—2[ wdF ()
n—1+n—1 F(0) )

v n—9 [YzdF (x
JF/3 (n:*n_ifvmy)( )>d((”—l)F”‘Q(y)—(n—Z)F"‘I(y))-

+(n—1) F"*(0) (1 - F (9)) (

4Note that these inferences differ significantly from those presented in Giovannoni
and Makris (2014) for the same case.
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The first order condition is

~ n—1 /~\\/ n—1 /~\\/ f;[lde( )
B (o) (F*1(0) =v (F (U))+1_—F(ﬁ)(

vf () F (0) —
+F”2()(1—F(@))<1+(n—2) o ()sz(f;

Fr (@)

) J, 2dF (« ))

)

F(0)

fj zdF (m)) |

° 2dF (x
(0 =2) £ ) P 0) — (= 1) £ () P2 (9) <@ b (g bdb @) )>

—((n—=2) f (8) F"*(0) — (n = 2) f (0) F"* (v)) (” T =D TE

After dividing both sides by (F*~! (9))" = (n — 1) F*~2 (%) f (¥) , impos-

ing ¥ = v and simplifying, we obtain
., [JxdF (z)  1—F(v) n—2( [ zdF (x)
=TT T Fo e <“F<v>< F o) ))
YxdF (z
—nil (w@—Q)%).

The essentially unique D1 PBE bidding function for the second-price

(4)

auction is then characterized by the following Proposition.

Proposition 3 If eithern > 4 and f'(.) <0 orn =3 and f'(.) <0,
then an essentially unique second-price auction D1 PBE exists, and its

bidding strateqy is

n—2v—-E(V|V <v) — F(v)
PO =y B 20+ g
withlim,—, 8 (v) = E (V)42 5755 andlim,_; B (v) = 04+222 (0 - E (V).

For the second-price auction, the qualification ‘essential’ reflects that
the equilibrium bidding function is undetermined at both extremes of the
typespace. If ' (.) > 0, then a v type has the highest or second-highest
bid with zero probability, such that all bids in [0, E((V)+ L#] are

n—12f(v)
in equilibrium payoff equivalent. At the other hand, for finite n a v type
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wins with probability 1 and does not pay her own bid, such that all bids
weakly above lim, . 5 (v) are in equilibrium payoff equivalent. However,
the D1 equilibrium bidding function is uniquely determined on (v, ).
The limit of the equilibrium bidding function at v lies strictly above the
average valuation for the object, and thus well above the equilibrium
bid in the first-price auction. The reason is that if a very low valuation
type wins the auction, the winner is inferred as slightly higher than
a E (V) type by the receiver, while all losers are inferred almost as v
types, because the second highest bidder’s type is below the winner’s
valuation. Therefore, the lowest types bid at least their valuation v plus
the difference in inference by the receiver E (V) —v in equilibrium. A
further comparison with the equilibrium bidding function of the English
auction in the next Section will provide more intuition for the second-
price D1 PBE bidding function. °

Note that in the second-price auction, there is also no fully separating
equilibrium with two bidders, and even not with three bidders if the
density f is constant over some interval of the support. In the following
example with a uniform distribution on [0, 1], we comment on this non-

existence of an equilibrium with two or three bidders.

Example 3 (Uniform on [0,1]) For F uniform on[0,1,], the expected
payoff of a v type bidder imitating a v type is

n—1x ?
ot (vi + HTTU> —(n— 1)/ " 2B (z) dw
0

Y (n—1)"2(1—7) <Z:ig+ v )

+(1=""=(n-1)"*(1-7))

The D1 PBE bidding function is

2n—1+(n—3)v

Blv)= 2(n—1)

15Note that the above equilibrium bidding function differs from that in Giovannoni
and Makris (2014), presumably because of the difference in the receiver’s inferences.
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If n = 2, a losing bidder is always identified by her true valuation v,
while winners are identified only as the average between the valuation of
the loser (in expectation half of her own valuation) and the mazximum

valuation 1, i.e. the expected inference for n = 2 s

@(§+Z)+(1—@)@=§@(2—@).

For two bidders, the receiver’s inference increases more with v if a bidder
loses, but the probability of losing decreases with v, such that the marginal
effect of v on the receiver’s expected inference, i.e. % (1 —0), decreases
with v at a constant rate % This decrease more than offsets the higher
valuation types’ incentives to bid strictly more than lower types, which
inhibits the existence of a D1 PBE Atn = 3, both these effects cancel out

ezactly. Thus, for n < 3, we have no D.1. equilibrium bidding function.

A similar logic applies if f is constant over an interval in the support
of a more general distribution function, such that Proposition 3 requires
either that n >4 and f'(.) <0 or that n =3 and f'(.) <0.

5 English auction

An important reason for the popularity of the second-price auction among
auction theorists is its common strategic equivalence with the English
auction, which is more frequently used in reality. However, this equiv-
alence ceases to exist in the presence of signaling. This result can be
surprising, because the introduction of other externalities, such as finan-
cial externalities in charity auctions (e.g. Engers and McManus (2007)),
did not break up the strategic equivalence.

The English auction can be studied in various formalizations. We
consider a minimal information “button auction” (see e.g. Milgrom
(2004)), in which the auctioneer lets the price continuously increase on a
price clock. Each bidder chooses when to exit the auction by releasing a
button, and such exit is irrevocable. The last bidder holding her button
wins, and fixes the price by releasing her button. Bidders only observe
whether two or more bidders are still pushing their button or not, and

the latter implies that the auction has a winner. This minimal informa-
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tion setting remains closest to the second-price auction, as bidders can
learn little about the other bidders’ valuations during the auction. We
maintain the assumption that the receiver only observes the identity and

the payment of the winner.'6

In this auction, each bidder has to decide on each moment (or price)
whether to stay in or to exit. Note then that in equilibrium, the exit price
is increasing with v because the prospects in terms of inference by the
receiver at a certain price are identical for different types, while the lower
type values winning the auction strictly less. Again, we restrict out-of-
equilibrium beliefs by means of the D1 criterion to avoid the multiplicity

of equilibria, and establish that any D1 PBE is fully separating.

Lemma 3 In any D1 PBE, the exit rule [ is a continuous and strictly

increasing function of v.

In the usual English auction, the winner drops out immediately af-
ter the second last bidder’s exit. An inspection of the payoff func-
tion shows that once a bidder has won the auction, our setting does
not provide her with means to credibly reveal a higher valuation to
the receiver (contrary e.g. to Goeree (2003)). In the present setting,
the winner’s problem would be to choose an exit price b;» to maximize
Vi — b + E (V] (V]i*, b)) . The lack of single crossing property, due
to the additive structure of the payoff function, implies that if the re-
ceiver would interpret a higher bid in such way that the winner prefers
to bid strictly above the second highest bid, then all types of winners
would strictly prefer to do so. Therefore, if the penultimate quitter has
valuation v’, then the receiver must have an expectation E (V|V > /)
of the winner’s valuation for any payment above 3 (v'), and the winner

must exit immediately at 5 (v') .

16Obviously other information regimes, e.g. the receiver observing all bids, are
equally plausible in this setting. The plausibility of these different scenarios depends
on the specific context and the identity of the receiver (e.g. another bidder or the
general public reading media outlets). We prefer the present assumption because
it keeps the kind of information the receiver disposes of constant throughout the
different auction formats.
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If the bidding strategy (i.e. exit price) is strictly increasing with
type and if the winner exits at the second highest bid, then the second
highest bidder fixes the payoff of all bidders. Since bidders do not observe
previous exits by lower valuation bidder’s, the latter’s strategy does not
affect equilibrium bidding. Of course, a bidder does not know whether
she has the second highest valuation, but she optimizes her strategy as
if this were the case. A type v bidder then leaves the auction when the

price hits the bid of a v type, such that

1 7 7 n_gfjxdF(x)
1—F(17)/6xdF(x):n—1+n—1 oy ®

The left hand side of (5) is the payoff a type v bidder gets if she wins at
price 3 (0) , while the right hand side is a loser’s payoff, if she releases the

v—B(0) +

button at price 5 (9) with only two bidders left. This exit rule defines
a unique equilibrium bidding function of the second highest valuation
type, which determines the auction price. This is equivalent to having
at each price b type 7 (b) leaving the auction, such that the optimal

exit price of type v satisfies

o -1 _ BTH) rdF (x
v—>b+ 1 / 6 (b)+n 2fy ( )
B

1—F (871 () Js) G A (B~ (1)
(6)
Note in (6) that the receiver’s inference about the winner and about
all losers increases with b (or ©). However, the following proposition
establishes that in equilibrium the costs of mimicking a higher type in
terms of payment increase faster than the benefits in terms of inference,
such that this equality establishes the essentially unique D1 equilibrium

exit rule for the English auction.

Proposition 4 Ifn > 3 and f'(.) < 0, then an essentially unique D1
PBE exists for the (minimal information, button) English auction, and

its exit rule is

n—29 [, wdF (x) [FazdF (x)
(“>:n—1(“_ Fv) >+1—F<U)’ )
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with lim,_,,+ 8 (v) = E (V) and lim,_; 3 (v) =0+ =2 (v — E(V)).

Given the optimal exit strategy of a winner in the English auction,
the second-price and English auctions are equivalent in terms of informa-
tion for the receiver. A closer comparison of equilibrium bidding in both
auctions can therefore also further clarify the equilibrium in the second-
price auction. When comparing the equilibrium bidding functions of the
second-price and English auctions, we note both are identical up to the

two following additional terms in the former:

1-—F(w)n-—2 (U_fyvxdF(:U)> N (1—F(v))

F(o) n—1 o) ) s "
which vanish for v — ©. A closer inspection of (4) shows that these
two additional terms, the third right hand side term in (4), reflect the
effect on the receiver’s expected inference about all the losing bidders
of a marginal increased bid for a given probability of being the second
highest bidder.

The main difference between the second-price and English auctions is
that in the latter, the set of possible second highest bids is bounded from
below by the increasing price clock. If the English auction has no winner
at price b, then all active bidders can take it as a given that the second
highest bid is at least b, and that the receiver’s expected inference about
the winner will be bounded from below by 57! (b). This lower bound
on the second highest bid also bounds the receiver’s expected inference
about the losers from below. Therefore, each bidder just compares her
payoft as a winner and as a loser with the second higher bid and quits
if both are equal. If she turns out not being the second highest bidder,
then the payoff of losing certainly exceeds her payoff of winning. As
such, (7) means that an active bidder exits when the price equals her
valuation plus the difference between the receiver’s inference about the

winner and a loser if this exit price were the second highest bid.

In the second-price auction, no increasing price clock bounds the sec-

ond highest bid. First, in case of winning, a high valuation bidder must
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consider the possibility of paying the bid of a very low valuation bidder
when winning, consequently being inferred as the expected value of any
type above the latter by the receiver. The benefits of the potentially
lower payment are compensated by the low inference by the receiver. In
the case of losing the auction, a bidder can bound the receiver’s infer-
ence about her type from below by means of her own bid. Compared
to the English auction, this provides an additional marginal benefit to
bidding in the second-price auction, which disappears as v approaches v

(for which the probability of losing goes to zero).

Example 4 (Uniform on [0,1]) For F' the uniform distribution, equal-
ity (5) becomes

which implies the D1 PBE exit rule

1 2n —3

6(1})25—1——2(”_1)1}.

6 Expected revenue comparison

We now compare the expected revenue of the four auction designs an-
alyzed so far. We denote the expected revenue by FRF, with k =
I,I1,E, A indicating respectively first-price auction, the second-price
auction, the English auction and the all-pay auction. As pointed out in
Section 3, the all-pay and first-price auctions are equivalent in terms of
expected payments, such that ER’ = ERA. The following proposition
shows that for finite n, we obtain a strict ranking in term of expected

revenue of the English, first-price and second-price auctions.

Proposition 5 (Expected revenue ranking) If f'(.) < 0 and n >
4, and if n is finite, then in the D1 PBE:

ER" > ER" = ER* > ERF.

The following example illustrates this strict expected revenue ranking

for F' being the uniform distribution.
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Example 5 (Uniform on [0, 1]) For the uniform distribution on [0, 1],
Figure 6 represents the D1 PBE bidding functions for the auction for-

mats studied so far. The expected revenue of the first-price, second-price
and English auctions is then:

-1 ! -1
ER = ERA = " / vdv”:;n—
0

2n (n+1)’
i nm-—1) ! n—2 n—1
ER ECEn (2n—1+ (n—3)v) (v 2 —v" 1) dv
_3(n—-1)n+2
S 2(n2—1)

and

1 n@2n-=3) /(' . _ ! 1 (2n-3)
E E:_ A S nld _/ nd _ - &)
R 2+ 5 (/Ov v Ov v 2+2(n+1)

such that the first-price auction outperforms the English auction,

ERE—ERI:1+(2n_3) 3(n—1)n+2 n

= — <0
2 2(n+1) 2(n?—1) n?—1 ’

and but is outperformed by the second-price auction:

3(n—1)n+2 3n-1 1
ER" — ER' = — = 0.
22 —1) 2+l 2m-1)
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The D1 PBE bidding for U [0, 1] with n = 10, for the first-price (solid),
second-price (dashed) and English (grey) auctions, with (bold) and

without (thin) prestige motives.

This strict ranking in terms of expected revenues reflects the different
amounts of information which are available to the receiver and the bid-
ders in the different auction formats. The absence of a price clock in
the sealed bid second-price auction implies an additional marginal ben-
efit of a higher bid in comparison with the English auction: one’s bid
constrains the receiver’s expected inference in case of losing the auction
from below. Because of this additional effect, the equilibrium bids are
strictly lower in the English auction than in the second—price auction for
all bidders with a valuation strictly below the upper bound #. Since the
winner pays the bid of the second highest bidder in both auctions, the
second-price auction dominates the English auction.

At the other hand, the uniform example shows that the equilibrium
bidding function of the first-price auction can be strictly above that of
the English auction near the upper bound v. The reason is that the gap
in terms of the receiver’s expected inference between winning and los-
ing is smaller in the English auction. At the one hand, when quitting
at lim,_; 3 (v) losing v types are interpreted as —= + “=2E (V) in the
English auction rather than as £ (V') in the first-price auction. At the
other hand, when staying at lim, _.; 5 (v) in the English auction or bid-
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ding lim,_.; 5 (v) in the first-price auction, a winning v type is in both
auctions inferred to be a v type. Moreover, bidders pay their own bid in
the first-price auction, and that of the second highest bidder in the Eng-
lish auction. This is sufficient for the first-price auction to outperform
the English auction in expectation, but insufficient for it to dominate
the second-price auction.

Note that this strict ranking of the second-price and English auctions
in terms of expected revenue contrasts with Giovannoni and Makris’
(2014) finding that the expected revenue depends only on the informa-
tion revealed to the receiver, and not on the actual auction format, as
long as the auction is such that the highest bidder wins, no information
about other bids is available during the auction and the expected pay-
ment of the lowest bidder type is zero. In the present case, the receiver
observes the same information — the winner’s identity and the second
highest bid — in both the second-price and English auctions, and yet

these auctions generate a different expected revenue.

However, note that expected revenue equivalence is restored asymp-
totically for n going to infinity. In the limit, the bid of the v type is
identical in all auctions:

lir+n lim 8" (v) = 20 — B(V)
for k = I,II,E;A. If n — oo, both the winner of the auction and
the second highest bidder have type © with probability 1. As such,
the v type winner pays her own bid in all auctions. In addition, the
¥ type’s winning bid must make her indifferent between winning and
losing, because another bidder with a valuation of almost v type would

otherwise benefit from outbidding her.

7 Discussion

We have studied auctions with signaling, in which all bidders care about
the expected value of the beliefs about their type of an outside party,
who observes the identity and payment of the auction’s winner. We char-

acterize the bidding equilibrium and expected revenues in 4 well-known
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auction formats: the first-price, second-price, all-pay and English auc-
tions. We show that if the outside party’s beliefs satisfy the common
refinement criterion (D1) and if the type distribution function is concave,
then any equilibrium bidding function must be fully separating. More-
over, we obtain a strict ranking of the expected revenues of these auction
formats for a finite number of bidders. The first-price and all-pay auc-
tions, which are equivalent in terms of expected payments, do strictly
better than the English auction and strictly worse than the second-price
auction. Revenue equivalence is only restored asymptotically, if the num-
ber of bidders goes to infinity.

These differences in expected revenues stem from the differences in
information for the receiver and the bidders in the different auction for-
mats. First, in the second-price and English auctions, the winner does
not pay her own bid, such that the winner’s payment only imposes a
lower bound on the receiver’s expected beliefs about the winner’s type.
This incites the lowest valuation types to bid considerably above their
valuation. The reason is that if they win the auction, they pay the bid
of an even lower type, while the receiver’s expected inference about the
winner is just above the average valuation and the expected inference
about the losers is close to the lowest possible valuation. In the first-
price auction, in contrast, a winning low valuation bidder reveals her
true low type.

Second, the highest types tend to bid higher in the first-price auction
than in the English auction, because the gap in terms of expected infer-
ences by the receiver between winning and losing the auction is larger
in the former. Moreover, the winner has to pay her own bid in the first-
price auction. This explains the superiority of the first-price over the
English auction.

Third, the increasing price clock in the English auction constrains the
set of potential second highest bidders at each moment. If the auction
has no winner at a certain price, then the second highest bidder in the
auction is at least willing to pay this price. In the sealed bid auctions,
such a constraint is absent and a bidder can only depend on her own bid

to constrain the expected inference of the receiver about her in the case
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of her losing the auction. This additional return to bidding in sealed bid
auctions explains the superiority of the second-price auction over the

English auction, and over the first-price auction.

In short, we show that the auction’s format affects its expected rev-
enues if bidders care about a receiver’s inferences about their type. This
disaccords with Goeree’s (2003) finding of revenue equivalence in the
presence of signaling incentives. This difference originates from three
crucial differences between Goeree’s setting and the present model. First,
Goeree assumes that the uninformed party observes the winner’s bid,
rather than her payment. In the second-price auction, this implies a full
revelation of the winner’s type in Goeree’s setting. In the present set-
ting, the incomplete revelation of the winner’s type causes the low types
to bid significantly above their valuation in the second-price auction.
Second, higher bidder types care more about the receiver’s inferences
in Goeree’s setting, and this single crossing condition allows winning
bidders to fully reveal their type in the English auction. This equally
constrains the equilibrium bids of the lowest types in comparison to the
present setting. Third, unlike in Goeree (2003), losing bidders also care
about the receiver’s inferences in the present setting, and this increases
in particular the equilibrium bidding the sealed bid auctions.

In Giovannoni and Makris (2014), losing bidders care about the re-
ceiver’s inferences as well, and Giovannoni and Makris equally obtain a
strict expected revenue ranking of the first-price and second-price auc-
tions (albeit with a different bidding function for the latter). Moreover,
Giovannoni and Makris (2014) show that the expected revenue depends
only on the information revealed to the receiver, and not on the actual
auction format, if three conditions are satisfied: if the auction is such
that the highest bidder wins, if no information about the other bidders’
behavior is available during the auction and if the expected payment of
the lowest bidder type is zero. The fact that both the first-price and
the second-price auctions outperform the English auction in terms of
expected revenues in the present setting, shows how strict these three
conditions apply. In equilibrium, the receiver obtains the same informa-

tion in the second-price and the English auctions, and during the English
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auction bidders have no information about the other bidders’ behavior
except whether or not they have all left the auction, at which point the
auction ends. And yet, this last bit of information proves sufficient to
reverse the expected revenue ranking, and put the English auction be-
low the first-price auction. This shows that the effects of signaling in
auctions depend heavily on small institutional details, and calls for more

research on this issue.

The assumption that losing bidders equally care about the receiver’s
inferences reflects a situation in which the receiver is interested in bid-
ders’ valuations as a reflection of individual characteristics, such that the
auction’s outcome is informative about these characteristics, irrespective
of whether a bidder won or lost. If participation is exogenously given,
then non-participating bidders get inference £ (V') in absence of infor-
mation transmission, and are in equilibrium generically strictly better off
than losing participating bidders. Does that mean that bidders prefer to
stay out if entry were endogenous? Not really. If entry were endogenous
and if the receiver observes the entry decision of each bidder besides the
winner’s identity and payment, then the participation decision becomes
informative. Consider then a cutoff type v, with © < v, such that higher
valuation types participate, while lower types stay out. If the v type
bidder stays out, she gets E (V|V < 0) . If the cutoff type © participates,
she wins with probability zero if 3’ (.) > 0, and gets a receiver’s inference
between © and the winner’s valuation. Hence, the cutoff type v is strictly
better off participating, and endogenous participation implies full par-
ticipation. Moreover, this means that the auctioneer can and should ask
for a strictly positive entry fee. The auctioneer can guarantee full partici-
pation while asking all bidders to pay an entry fee which makes the type
v bidder indifferent between participation and non-participation (and
payoff v). Unfortunately, a characterization of the optimal entry fee is
in this setting, in particular for the second-price and English auctions,

not a trivial excercise, and is as such outside the scope of this paper.

The present analysis illustrates that the auction format and infor-

mation assumptions matter if bidders use the auction outcome for sig-
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naling their valuation to an uninformed party. Although the present
setting seems a natural and interesting benchmark case, a broad variety
of alternative settings merit attention. Different information assump-
tions can be equally plausible, depending on the particular application
one has in mind. If we maintain all other assumptions, but assume
like Goeree (2003) that only the winner cares about the receiver’s be-
liefs, then we still expect the second-price auction to outperform the
first-price auction. If we maintain all other assumptions, but assume
that the receiver observes all bids, then the conditions for the existence
of a fully separating equilibrium become far more stringent.'” Besides
different information settings, different auction formats deserve further
attention. Moreover, bidders may care in different ways about the in-
ferences of receiver. Haile (2003) shows that the foresight of a resale
auction can make bidders prefer to signal a low valuation. This question
is also considered in Goeree (2003) and Giovannoni and Makris (2014).
In this case, the bidding equilibrium is surely not a mirror image of the
equilibria in the present paper, and the existence of a fully separating

equilibrium seems unlikely in many settings.
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A Appendix

A.1 Proof of Lemma 1

We proceed in three steps: 1. for any D1 PBE the bidding function /3
is weakly increasing, 2. In any D1 PBE, there is no pooling with the v
type and 3. In any D1 PBE, there is no pooling above the v type.

Claim 1 (5 weakly increasing) In any D1 PBE, if type v' chooses V,
then no v" < v’ bids b" > V.

Proof. To save on notation, let p (b) denote the probability of winning
the auction with bid b and FE,, (b) and E; (b) the expected values of the
receiver’s inference about respectively a winning and losing bidder who
bids b. Assume that type v’ bids ¥’ in equilibrium and gets expected
inferences E,, (V') and E] (I') . Let (E!, E') a pair of inferences such that
type ¢’ is indifferent between bidding 0" and getting inference (E, E}')

and her equilibrium payoff, i.e.

P () () =)+ B (V) + p () [Eu (V) — Ea (¥)
= () (' = V) + By +p () [l — B

or

") —p )]0 =A=pO)b" —p )V + E (V) +
p () [Ew (0) — E (V)] = (B +p (V) [E,, — E7])

and note that p (b”) — p(b') > 0. Then if p (0”) — p(b') > 0, it must be
that
[p(¥7) = p ()] 0" < A,

such that
p () (" = V)+E (0)+p (V) [Ey (V) = Er (V)] > p (D7) (v" = b")+E+p (V) [Ey, — E]].

Hence, the lower valuation type needs a higher compensation in terms

of inference for a higher bid.
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Assume then that the equilibrium expected utility of type v” is low
enough to make M* (b",v') C M* (", v")UM?P (b”,v") . Then it must be
that the v” strictly prefers bundle (¥, Ey, (V') , E; (V') to her equilibrium
strategy, a contradiction. Therefore p (v”|b"”) = 0 in the D1 PBE, and
no v” type with v” < v’ chooses a b” bid with " > V' if type v’ bids ¢/ in

equilibrium. m

Claim 2 (No pooling with v) No type v >v pools with type v in the
D1 PBE.

Assume an equilibrium in which a non-degenerate set of types O =
{v\ﬂ (v) = 5} pool at b, such that ve O. By Claim 1, O is a convex set.

If b >v, then a type v bidder can strictly improve herself by deviating
to v. Such deviation is never observed, such that the receiver’s inference
about the v bidder is not worse, but she avoids winning the auction to
pay b in excess of her valuation v.

If b <v, then note that the expected inference about a bidder in O is
E, (i)) = ﬁ JovdF (v) and E, (i)) . The probability of winning when

pooling at b is %O))H. Consider then type sup (O). If she bids a

b+ e, with ¢ > 0, she wins at least with probability F (sup (0))" ",
in which case E,, <l~)+ 6) > sup (O) and Ej (5 + 6) > Fj <l~)> , while
sup (0) — b — e > 0 for ¢ sufficiently small. But in equilibrium it must
be that

F(SupflO))nq (Sup ©)— b+ B, (5>> N (1 _ F(sup (O>>n—1> 5 (6)

> F (sup (0))" (2 sup (0) — b — g) + (1 - F (sup (0))" ) (E + g)

which is only true for ¢ — 0 if sup (O) =v and n = 1.

Claim 3 (No pooling above v) In the DI PBE, no bid b is chosen
by two types v # v".

Proof. Assume a D1 PBE in which b is the lowest bid chosen by a
nondegenerate set of types O = {v|6 (v) = i)} . Note that O is convex
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by Claim 1 and inf (O) >v by Claim 2. By the continuity of f and of
the utility function w.r.t. all arguments, the inf (O) must in equilibrium
be indifferent between separating at lim, 600y~ B (v) and pooling at b.
Note then that the indirect utility difference between sup (O) and inf (O)

in the pooling equilibrium is

P (5) (sup (O) — inf (0)) .

In the separating equilibrium this is by the envelope theorem
sup(O) sup(O)
/ F" 1 (2) dz = sup (O) F" ! (sup (O))—inf (O) F"* (inf (O))—/ rdF" 7 (2).
inf(O) inf(O)
We now show that
sup(O) _
/ F" ! (x)dz > p (b) (sup (O) — inf (0)) (8)

nf(O)

if f(.) <0.
First write the probability of winning the auction while bidding b

~ 2 (n—1\ Fr1i (inf (0)) (F (sup (O)) — F (inf (O)))’
p<b>=Z< ) (inf (0)) (£ (sup (0)) — F (inf (0)))"

i=0 U i+1

Note then that p (b) (sup (O) — inf (0)) = fiilfu()g))) F=Y(x)dr = 0 for

sup (O) = inf (O) . Differentiate both sides of (8) to sup (O), to obtain

ap (b)

dsup (0) (sup (O) —inf (0)) +p (1_7) < Frl (sup (0)),

which can be written as

o [F"! (sup (0)) = p (B) = F* " (inf (0))] < F** (sup (0)) = p (B)
(9)
with

f (sup (0))

F(sup(0)— F(inf (0))
sup(O)—inf(O)

o =
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because

dsup (O) i f (sup (0))

, ) P14 (inf (0)) (F (sup (0)) = F (inf (0))) ™ —=

s — o (b) — F*1- (in f (sup (0))
= T w00 =p () = T HOD] Gy 0) - F (O

in which the last equality uses

i
i+ 1

n—1
1p(B) = (1 - F*" (sup (0)+. (” - 1) =14 (inf () (F (sup (0)) — F (inf (0)))’
i=0
Note then that f'(.) < 0 implies a < 1, such that (9) and therefore (8)
are always satisfied for £ (sup (O)) > F' (inf (O)) and f' (.) < 0. Then the
sup (O) type can achieve a strictly higher expected utility if she would
deviate to the bid she makes in the fully separating equilibrium because
the expected inference after such a deviation is at least the expected
inference she gets in the fully separating equilibrium. This excludes any

different types pooling in a D1 PBE. =

A.2 Proof of Proposition 1

We proceed again in 3 steps: 1. establish shape of the bidding function;
2. show that 8’ (.) > 0 implies that the second order condition is satisfied
and 3. show that 5’ (.) > 0.

Claim 4 (Bidding function) [ is as written in Proposition 1.

Proof. Substitute ¥ = v in (2) to obtain

0

5 (B) F"H (v) =20 (F" (0) +F"" ()= / wdF () (F* ().

Integrate and divide both sides by F™~! (9) to find

B(v) = FH_LW)/ ™ () + Fn_;l@/ F*l(@)de (10)

v

1 vy -
“Fer ), Fw ), O
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Apply partial integration on the second and last RHS term in (10), to

obtain respectively

Fn_;w) / PPl () do = v — Fn_;l(v)/vvxml (2)

and

o | 7 @ @)

FZ:l //xdF (F"= (y)) dF (y)

Cn-1f zdF(z) 1 [J2dF" ()
" n—2 F(@)  n-2 Frl(z)

and substitute these in (10) to obtain

n—1 (ff vdF"(x) [ xdF (:v)> |

n— 2 B

= P PO

To find the lower bound in the first-price auction, note that by the

intermediate value theorem two values v; and vs exist such that

n—1 <U JodF (@) [JdFT! (aﬁ))

== \TEe T P
Moreover,

lim v; = lim vy = v,

v—yvt v—vt

such that lim S(v)=v. =

Claim 5 (Second order condition) The second order conditions are

satisfied iff ' (.) >0

Proof. We first show that a strictly increasing bidding function implies
local strict concavity of the bidder’s problem, and then that the equilib-

rium bid is a global expected utility maximizing choice for each bidder.

38



First, use the first order condition (2) to define

G (@,0) = (F"(D)) (v = B(8) +0)+(1 = 5/ (2)) (F* (7)) -

which defines 3 (v) for @ = v. By the implicit function theorem 3’ (v) > 0
if and only if strictly higher v prefer to imitate a strictly higher v, i.e. if

Gy (B,0) (P (3))
Gl (17, U) Gl (’177 U)

>0,

which is only satisfied if G (0,v) < 0 for all v at o = v.
By construction, G (9,v) = 0 is satisfied at o = v, while G5 (0,v) > 0
for all ¥ > v, such that type v’s utility reaches a unique maximum at

v=v. N
Claim 6 (Strictly increasing ) [ is strictly increasing.

Proof. Write

) n—1f() fyv xdF" 1 (z) f; xdF (z)
o (B ()
(

)
B n—1Ff() fyv F1(z)dx fva(x) dx
_1+n—2 (v)(( >’

Fr=1(v)  F(v)
with the last equation by partial integration. To see that

n
n—1)

fyv Fr=t (z) dx B fyv F(x)dx .

IO T R

note that this term is 0 for n = 2, and that

0 Jo Pt (o) da

%(”“1) Pt (o) )
[PF N @)de (p— 1) [ JPF R (@) de [V (2) da

T ) FQ) < )>Ov

Fr=2 (v) - -l (v)

such that 8’ (v) >1forn>3. =
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A.3 Proof of Proposition 2

The proof that all D1 PBE bidding functions of the all-pay auction sat-
isfy 8’ (.) > 0 is almost identical to the proof of Lemma 1, and therefore
omitted. Let denote EP*(?) denote the expected payment of a bidder
choosing type ©’s equilibrium bid, with £ = I, A indicating resp. the

first-price and all-pay auction. Let

VL (YodF (z)dFnt
E@)=F" 0) 7+ (1- (F (1)) = F(y)(ifv— (anl)(ﬁ))) .

represent the receiver’s expected inference about a bidder choosing type

¥’s equilibrium bid. Then the expected payoft of a valuation v bidder

choosing a v type’s equilibrium bid is
F(0)" ‘v — EP*(®) + E(D).
The first order condition for expected payoff maximization is
(F(@)" v — (EP*®)) + (E(9)) = 0.

Substituting ¥ = v solving for EP*, we obtain

EP*(v) = EP*(v) + / v wdF (x)" " + / ' (E(2)) dx

As EP!(v) = F(v)" ' 6% (v), EPA(v) = *(v) and EP!(v) = EP*(v)

0, it follows that 3*(v) = F(v)" '8! (v).

A.4 Proof of Lemma 2

This proof proceeds in the same 3 steps as the proof of Lemma 1, and
the first and third step are similar to those in the proof of Lemma 1.
Let Pr(1|b), Pr(2]b) and Pr(3|b) = 1 — Pr(1]b) — Pr (2|b) resp. denote
the probabilities of winning, having the second highest bid and having
a lower bid with bid b, and let E* (b), E? (b) and E' (b) be the expected
inferences of the receiver if a bidder with bid b resp. wins, has the second

highest bid and loses, and let E? (b) be the expected payment of a winner
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with bid b.

Claim 7 (Weakly increasing) If a v’ type bids V' in equilibrium, then

no v" < v bids b" >V in equilibrium.

Proof. Assume the opposite. Because both & and b” are sent in equi-
librium, it must be that Pr(1[6”) > Pr(1|¢'). Then if v” bids 0" in

equilibrium, it must be that

Pr(1|0") (v" — EP (V") + E* (b")) + Pr (2b") E* (b")
+ (1 —Pr (10") — Pr (2|")) E' (")

> Pr (1) (v" — EP (V') + E' (V))

+Pr (2]6") B2 (W) + (1 — Pr (1|t)) — Pr (2]b')) E* (V') .

But given that Pr (1[6”) > Pr (1|¢'), this implies that the v’ type strictly
prefers a b” bid above b, which contradicts the equilibrium. Assume
then that in equilibrium the v” type’s equilibrium expected utility is so
low that M* (b, v") C M+ (b",v") U M° (b, v"), then it must be that
the v” strictly prefers the bundle (b, E* (v'), E? (V),E" (V') , E? (V)) to
her equilibrium strategy, a contradiction. Hence, if type v’ bids b in
equilibrium, then u (v”[0") = 0, and no v” type with v” < v' chooses a
b" bid, with 0" >0 . =

Claim 8 (No pooling with v) In the D1 PBE, no other type pools

with v.

Proof. Suppose a nondegenerate set of types O = {v| B(v) = l;} , with
ve O, pool in equilibrium at bid b. If n > 3, then if type v (or a type just
above her) deviates to a bid b— ¢, for € > 0, she has zero probability of
having the highest or second highest bid, while the expected inference if
she loses remains unchanged at F' (5) . In equilibrium, such a deviation

cannot be profitable such that:

Pr (1) (v—b+ B (b)) +Pr (2b) £2 (b)+ (1 Pr (1) — Pr (20) ) B (b) > E' (B)
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or that

G " ) O O . @) =m0

Note that because E? (5) < E! (5) , it must be that
v— b+ B (b) > B? (b) (11)

If the sup (O) type would deviate to a bid b+ ¢, for £ > 0 small enough
such that b + ¢ is out-of-equilibrium and no equilibrium bids are in

<B, b+ 8), she still pays b and gets expected inference E* <B> if winning,
is inferred as E? <Z~) + 5) > B2 (5) if having the second highest bid and
has expected inference F' <l~)+€> if losing. For sup(O) to bid b in

equilibrium, it must be that

Pr <1|l~)—|— E) <sup (0) —b+ E* <l~)>> + (12)
Pr(20b+e) B2 (b+2) + (1-Pr(1b+e) —Pr(2b+2)) B (b+¢) <
Pr (1|Z~)) (sup (0) = b+ E! (5)) + Pr (2|5) E? <5> + Pr (3]5) E' <5) :
Note then that
P (3\5+5)

"0y

0
(13)

i.e. if the sup (O) type is neither winning nor second when pooling at

E! <B+e>+

b, then the second highest bidder either has a higher valuation or she is

in O. In the former case, the receiver’s expected inference is E! (Z) + 8) .

In the latter case it must be E? (l;) . Substituting (13) this in (12), we

42



obtain

o) -4 15223 3
Pr(2b+¢) (B2 (b+e) — 2 (B)) <0,

which can only be satisfied is sup (O) =v. =

Claim 9 (No Pooling) In the D1 PBE there is no pooling at bids

strictly above v.

Proof. Assume that b is the lowest bid at which a nondegenerate set of
types O = {v\ B ) = I;} pool. The same envelope theorem argument
as for the first-price auction also works for the second. Note then again
that the expected utility difference between sup (O) and inf (O) while
pooling at b is p (1/6) (sup (O) — inf (O)) , while in separation this is by
the envelope theorem
sup(O) sup(0)
/ FN7Y () dx = sup (O) FN! (sup (O))—inf (O) F¥~! (inf (O))—/ rdFN 1 (7).
inf (0) inf(0)
If inf (O) = sup (O), these are both equal to zero, but by the same

differential argument as for Claim 3,

sup(O)

p (8) (sup (0) — inf (0)) < / o @

The condition f’(.) < 0, imposed to guarantee the existence of a sepa-

rating equilibrium, always guarantees this inequality. m

A.5 Proof of Proposition 3

The proof proceeds in three steps: deriving the bidding function, showing
that the second order condition is satisfied if the bidding functions is
strictly increasing and showing that the proposed bidding function is
strictly increasing. The second step is almost identical to Claim 5, and

is omitted.
Claim 10 (Bidding function) f is as written in Proposition 3

43



Proof. From (4), collect terms to obtain

—92 1 JadF (x) U xdF (x 1 (1-F
p -2 L (o k plozdfle), 1 (1-F()

n—1F(v) F (v) 1-F@) (n-1) f(v)
] ] (14)
n—=2 [ F(z)dx N 1 [ f(z)de N [} xdF (z) (15)

T n—1 F2(v) n—=1) f(v) 1—F(v)’
where (15) is obtained from (14) by partially integrating the first term.
MTAR ol : Jy F(z)dz F(v SURT [JxdF(z)

Then by L’'Hépital’s rule, lim,, ., “ 4 o = 2F(y()f(y), while lim,, 5 == )

—0/®) v, such that

—f(v)
lim 3 (0) :EW”m
yyﬂmzv+2:i@—EWW
.

Claim 11 (Second order condition) The second order condition is

satisfied iff 5'(.) > 0.

Proof. The proof that 5 (.) > 0 implies that the second order condition

is satisfied is identical to that of Claim 5. =

Claim 12 (Strictly increasing ) [ is strictly increasing if n > 4
and f'(.) <0 orifn=3and f'(.) <O0.

Proof. Write

, n—2 1 Jo F(x)dz fF) ([ adF (z)
ﬁh&zn—lF@)G_wa)<Wﬁﬁ >+1—F@)<1—F@)_U>
1 1 (v) ff f(x)dx
(n=1) (1 I ) | 10
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and apply partial integration on the second RHS term in (16) to find

oy n=2 L (o L F@de ) [T (- F (2) de
ﬁ(v)_n—lF@)(l 20 ") >+ (1-F (@)

(17)

(n=1) (=1 (f()

1 1 f(v) fff (x) d:z:'

Note then that all RHS terms in (17) are nonnegative if ' (.) < 0, except

[ F(x)dx [ dF?%(z)
—ﬁ. If () <0 eand 1; >v, then 2f (v) FE0) e = b
such that 1 — 2f (v) fFQ—((:))x > 0. At the other hand, the last term

— (n£1) 7 '(vz ffz’v{)(f)dx is strictly positive for v < ¥. Both terms are zero for

f"(.) = 0. The main step is now to prove that f’(.) <0 implies

f) [, A= F(x))de
(1—F ()

> - (18)

DN | —

First note that F' is the uniform distribution, inequality (18) is satisfied
with equality. Note that f’(.) < 0 implies that 1 — F'(.) is convex and

write the inequality as

Jy (L= F(@)dr 1= F (@)
1-F(@) = f@

In figure A.5, that the LHS of (19), for v = v°, is the grey area divided
by the distance 1—F (v°) . Moreover, w = —f (v°), such that this
tangent line through (v°,1 — F'(v°)) crosses the X-axis at v° + l}ij(f;).
For f'(.) =0, it must be that v° + I}Z)(;’)O) = v, such that the inequality
in (19) is always satisfied with equality. If however f’(v) < 0 at some

v > v°, this strictly increases the LHS but not the RHS of (19), such
that the inequality is strictly satisfied. Thus, f’(.) < 0 implies that

2

(19)

f) [7(1—F(x))de
(1—F (v)’

1
(n—1)

>1>
-2
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1-Fivi

r'y

1-Fiv®)

A J

1-Fiw®) -
o
v v+ v \%

Five)

Hence, 5 (.) > 0 for n > 3, while for n = 3, we need f'(.) < 0 to
guarantee 3’ (.) > 0. m

A.6 Proof of Lemma 3

Claim 13 (5 weakly increasing) If in a DI PBE V' ezits at V/, then

no v" < v exits at b’ > V.

Proof. Assume that v” stays until b”. If type ¢’ exits at b/, then what she
can win by staying is not better than what can be expected by exiting.
The expected payoff of exiting at b’ is identical for the v' and v" types,
while v’ benefits strictly more from winning than v”, such that v” should
strictly prefer to exit at b’. =

Assume then a PBE with ¢ exiting at ¢/, v < ¢" and b > I/ an
out-of-equilibrium exit strategy. Then if type v” equilibrium strategy is
so low that M* (0", v") C M+ (b, v") U M° (b, v"), then type v" would
strictly prefer to exit at b’ above her equilibrium strategy, a contradic-
tion. Hence, M* (V",v") U M° (",v") € M™* (V”,v'), such that in any
D1 PBE we have 3’ (.) > 0.

Claim 14 (No pooling) In any D1 PBE, no two types v' # v" exit at

the same price b.

Let b be the lowest price at which a nondegenerate set of types O =

{v\ p(v) = 5} exit. By Claim 13, O is convex. For a non-degenerate
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set O, a sufficiently small ¢ > 0 can be found for which the winning
equilibrium payoff at price b+eis strictly greater than at b. If b+ ¢ is

out-of-equilibrium, then for ¢ sufficiently small and O nondegenerate

7 fsip(O) vdF (z) 7 fiif(O) zdF (z)
W (O) b=t T Gap (o)) TP T R o)y Y

while the expected payoff of a loser exiting at b+ ¢ is at least as large
as that of a loser exiting at b. If b is chosen in PBE by higher types, this
increases the RHS of inequality 20. Hence, 3 (.) > 0.

A.7 Proof of Proposition 4

Equation (7) is obtained by setting o = v in (5) and solving for . To
see that f’(.) <0 implies 8’ (.) > 0, write

L_f@)(y_jjwﬁ%@)]+ F ) (ﬁhﬂF@j_U>.

n—2
n—1

B (v) = F (v) 1-F(v) \ 1-F(v)

The second RHS term is always strictly positive for v € [v,v). To see
that the first RHS term is always positive, note that the term between

square brackets is strictly positive if

Y2dF (x
F(v) > (v—%) F' (v),

which is always satisfied. Indeed for f’(.) < 0, F' is concave such that
F)>F (v)(v—v) > (v - %) F’ (v), with the last inequality
strict for v € (v, 7).

For £ as in (7), the exit rule in (5) fixes for every v a unique 0, as

B ) 1 v 5 n—2[ xdF (z)
%(‘W“l_—m/ﬁ e e W 21 ) ):—1'

Note also that no type v wishes to mimic a different type v. By

construction [ (9) is such that (5) is satisfied with equality for v = ¢ and

such that for v > ¥ the benefits of winning (LHS) are strictly greater
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than the RHS when mimicking v’s strategy. The latter is the opposite
if v <.

A.8 Proof of Proposition 5

Let 3%(.) denote the equilibrium biding function and ER* be the ex-
pected revenue for k = [, 11, E respectively the first-price auction, the
second-price auction, the English auction. We first write the expected

revenue of the 3 auctions in a more convenient form.

/6 )dF" ()
_ / 2dF" (y / Jy wdF @) o

n—l/ fny‘an 1

n—2 Fr=1(y

dF " (y)

n—2 n—2

B (W) + Mg () - e /’/ Loeof () (P2 () dyaf (x) do
a0 e ()

_E (Vf”)) ity <V2(")> _nzl /ﬁ } ) /ﬁ LocyadF (z) (F" () dy

(V) (21)

The expected revenue of the second-price auction is

ER" = /v B (z)d (nF" ! (z) — (n— 1) F" ()
—nn=2) [ (1= PP ) e

i (x)dx
n_z/’fFQ) (1= F @) F" () £ () dy

(y)
fy xdF () L
+n(n—1) TP (L=F ) F"*(y) [ (y)dy

+n/7u—F@WFW%www

v
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= 1 (VQ(M)> -

n— n—3

LB () B (W) [ (0= PP ) dy

E(V)+ nL_?)E (1/'1(”_2))

The expected revenue of the English auction is:

. ez FeP@\ | [adF@)
ER —(n—l)n/y <m<v— o )+1_F(U)>F () (1= F (v)) f(v)do

:n(n—2)/UUF"_2(v)f(v)dv—n(n—2)/vvF”_l (v) f (v)dv

o Y 2dF (z
- (n—2)n/Y J F(U)( )F”_Q (v) (1 = F (v)) f(v)dv

+(n—1) n/ fffd]f(g) F* (0) (1 = F (v)) f(v)dv
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n—2

2 () - ()
— n/ / Fr=3 (o) (1 — F (0)) f(v)dvzdF ()
—i—n/VU/VIdF"l (v) xdF (z),

such that

2
E_ _ n (n,1)> _ n®—3n+1 ( (n)>
ER n_lE(V)JrnE(V'l e (v").

Claim 15 (English and first-price auction revenue) In the DI PBE
ER" > ERF.

Proof. We use that
E <V2 ”>) —nE (Vf”‘”) —(n-1)E (v}’”) (22)

to write

ERE = __"

EW)+E (V") + —=E (V)

n—1 n—1

such that

BR - BRF= " p(v)+ B () e (1)

|
ah
3
&
S
+
&5
/N
=
3
~—
_|_
£
=
&5
/N
S
3
~—
N—

T (n—=1)(n—2)

Note then that because

we have for n > 3 (which is required for a D1 PBE)

ERI-BRF = 1)1(n 5 (— éE (Vi) +m-1E (v}”)) > 0.
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Claim 16 (First- and second-price auction revenue) Inthe DI PBE
ER" > ER'.

Proof. We use (22) to write

"B () (W) - 2
ER" =n——E (V, _ nE (V, ——E(V)

+B (V) +n [ (0= F @) P ) dy

Then

-2 _ _
n —
n _

—F V)+E (V(”)) + n/ (1= F(y)*F"2(y)) dy

( (n—1) (V( >)+n ;E<V1("_1)>— ” E(Y))

n— 2

E
(1) - =20 (1) 451
1

e Y +f (1= F(y) FnQ())dy

Note then that

v v

/VU (L= F ) F"2 () dy = / F (y) dy — 2/U F™t (y) dy + / F* (y) dy
—2F (v}”*l)) B (Vf’”) _ <V1(7h2)>

Y

because by partial integration

7= / ' (yF"2 (y)) dy = / e (y) dy + / ydFn? ()

v v

and the same for the other terms. Then

st = (o (V) e (v - )
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Then write

ER' — ER' = "/y <_Z—:;FH W)+ 5~ ;an A 2)1(” - 3)) )

YA RS

with u = F'(y) and define

- n—1 n—2 n—2 n—3 1
G (u) = n—2" n—3 (n—2)(n—3)
Note then that
! 1 1 1
G (u)du = — — =0
/0 (1) du n—2+n—3 (n—2)(n—3)
while G (0) = —m and G (1) = 0. Moreover,

Gu=(n-Du+n-2))u"*=0

- . . _ _g\n—4
at u = 2=2, a maximum since G” (2=2) = — (n — 2) (22)""" < 0. Thus,

G (u) must be strictly positive on an interval [0, u*) and strictly negative
on (u*,1), while [, . G (u)du=— [. ) G (u)du.

Note then that y (u) = F~!(u) is a strictly increasing function. Then
by the intermediate value theorem we can find two values 0 < y; < ys
such that

ER' — ERY =y, /

[0,u*)

G(u)du+y2/ G (u)du

(u*,1)

while by the above

ER' — ER™ = (3, — yl)/ G (u) du < 0.

(u*,1)
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