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Abstract 

The development of oil and gas extraction technologies, including hydraulic fracturing 
(fracking), has increased fossil fuel reserves in the US. Despite benefits, uncertainty over 
environmental damages has led to fracking bans, both permanent and temporary, in many 
jurisdictions.  We develop a stochastic dynamic learning model parameterized with a computable 
general equilibrium model to explore if uncertainty about damages, combined with the ability to 
learn about risks, can explain fracking bans in practice. Applying the model to a representative 
Colorado municipality, we quantify the quasi-option value (QOV), which creates an additional 
incentive to ban fracking temporarily in order to learn, though it only influences policy in a 
narrow range of oil and gas prices.  To our knowledge, this is the first attempt to quantify an 
economy-wide QOV associated with a local environmental policy decision.  
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1. Introduction 

New technologies for extracting oil and gas from shale deposits—most importantly, hydraulic 

fracturing (fracking)—have greatly increased fossil fuel reserves across the United States and 

beyond. While these innovations have the potential to bring substantial economic benefits 

(Hausman and Kellogg 2015), they also have the potential to create environmental costs 

(Muehlenbachs et al. 2015, Krupnick and Gordon 2015, Hill 2013). Many jurisdictions have 

temporarily banned fracking (e.g., Longmont, CO; New York State; Germany), despite, in some 

cases, seemingly positive expected net local benefits (Wobbekind et al., 2014). Plausibly, such 

bans stem from the high degree of uncertainty about potential harm, together with the 

opportunity to learn from experiences elsewhere during the ban. Of course, this is a classic quasi-

option value story applied to a situation in which a novel technology gives rise to uncertain 

environmental risks. 

Our goal in this paper is to develop a framework that can be used to quantify the quasi-option 

value (QOV) and assess its importance to the prevalence of fracking bans in practice. To do this, 

we develop a methodology for linking an empirically grounded computable general equilibrium 

(CGE) model with a dynamic QOV model, allowing for a data-driven estimation of the QOV 

associated with a real-world environmental policy choice. Since fracking affects many agents 

within a community, a CGE model that quantifies economy-wide consumption impacts over time 

provides the information needed to evaluate a potential ban. Solving a dynamic program 

containing a large-dimensional CGE presents a substantial numerical challenge, but we 

overcome it by assuming that local fracking benefits are additively separable from uncertain 

fracking damages. Under this assumption, we are able to solve the model by running the CGE 

model across all potential policy scenarios, and use the resulting consumption paths as an input 
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to a finite-time, stochastic dynamic program with Bayesian learning.  The methodology 

developed here is one of the first to place a numerical value on the economy-wide QOV 

associated with learning about local environmental damages. 

By choosing to implement a temporary ban, policymakers delay fracking benefits but learn about 

the true magnitude of fracking damages from an informative, though noisy, signal. Allowing 

fracking brings economic benefits with uncertain, potentially irreversible, damages. The 

framework allows for the quantification of the economy-wide, and hence social, quasi-option 

value that arises from the preservation of the option to avoid irreversible environmental damages. 

It also permits consideration of additional factors that influence the economic decision to 

develop unconventional plays, including the value of local oil and gas reserves.  

We parameterize the model to match a representative municipality in the US state of Colorado. 

In this setting, despite positive expected economy-wide net benefits from fracking, a ban can be 

rationalized at current oil prices4 if the learning process is sufficiently precise. Results indicate 

that a one-period reduction in the time required to reduce the variance of uncertain 

environmental damages by half is, on average, equivalent to a $1 per barrel increase in the price 

of oil. This suggests that while the ability to learn can influence optimal policy choices, the value 

of local reserves likely plays a larger role. Nevertheless, increasing the precision of future 

information about fracking damages increases the likelihood of a ban in initial periods; though 

after this initial ban, policymakers allow fracking more frequently when it is beneficial and 

continue banning when it is not. 

																																								 																					
4 The base price used for modeling is $40 per barrel.  Daily prices can be found at 

https://www.eia.gov/todayinenergy/prices.cfm. 
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The ability to delay and revisit an uncertain and irreversible decision with better information is 

valuable (Arrow and Fischer 1974, Henry 1974, Hanemann 1988, Dixit and Pindyck 1994). 

Traeger (2014) defines the QOV as the value of learning, conditional on the ability to postpone a 

decision. Yet, to our knowledge, an economy-wide QOV has not been quantified in an applied 

policy setting.  

For the most part, the existing economics literature on fracking focuses on either benefits or 

costs. Fracking benefits include increased employment (Weber 2012; Maniloff and 

Mastromonaco 2015), welfare improvements for producers and consumers of natural gas 

(Hausman and Kellogg 2015), and revenues to mineral rights owners (Brown and Fitzgerald). 

Others have investigated fracking burdens (Krupnick, Wang, and Wang 2014; Krupnick and 

Gordon 2015), including property value impacts (Muehlenbachs, Spiller, and Timmins 2015) and 

health effects (Chen, et al. 2000; Aguilera et al. 2009; Slama et al., 2009; Hill 2013). Hedonic 

analyses of fracking impacts on property values can also provide a means to capture net fracking 

impacts (Gopalakrishnan and Klaiber 2014; Bennett and Loomis 2015). Our contribution, in 

contrast, builds on the prior literatures on fracking benefits and costs, while embedding a local 

fracking policy decision within an explicit decision-theoretic framework. To our knowledge, this 

analysis is the first to quantify the value of learning about the full costs of fracking in practice, 

and the first to carefully assess the economic rationale for observed bans. 

The rest of the paper is organized as follows. Section 2 provides an overview of fracking bans in 

practice and reviews the literature on fracking and option values. Section 3 introduces the model 

and Section 4 discusses our parameterized application and economic assumptions. Section 5 

presents the results of the numerical model and Section 6 provides a discussion and concludes. 
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2. Related Literature and Background 

This section begins with an overview of local opposition to fracking5. We then describe the 

current literature on the economic benefits of fracking and the uncertain damages. Finally, we 

relate the current paper to the literature on uncertainty and learning in environmental economics. 

2.1 Fracking Bans 

Fracking bans in the US began in November 2010 when Pittsburg implemented a city-wide ban. 

Buffalo, NY followed with a largely symbolic ban in February 2011. Dryden, NY then enacted a 

ban in August 2011 and became a center of legal contention, though the ban held up in court. 

Emboldened by Dryden’s success, several New York towns6 enacted or adopted bans, 

culminating in a statewide ban issued by Governor Cuomo in December 2014. Vermont, which 

has no oil and gas development, banned fracking in March of 2012, and Connecticut enacted a 

three-year ban on storage and handling of fracking waste in August 2014. Other bans in large US 

cities include Los Angeles and Beverly Hills in CA, Philadelphia, PA, and Denton, TX7, though 

on May 2015, the State of Texas made local bans illegal.  Denton overturned its ban the 

following month.  

A similar battle occurred on the Colorado Front Range, which sits atop the Niobrara shale 

formation. The town of Longmont changed its charter to prohibit fracking in November 2012 

and was sued by the Colorado Oil and Gas Association – a large industry group – alongside the 

principal development interest, TOP Operating, and the Colorado Oil and Gas Conservation 

Commission, the state agency in charge of regulation. Seemingly unfazed by this litigation, the 

cities of Fort Collins, Lafayette, Boulder, and Broomfield passed similar measures in November 

																																								 																					
5 A list of fracking bans in practice can be found at http://www.foodandwaterwatch.org 
6 Syracuse, Albany, Woodstock, Rochester, Wawarsing, Kirkland, and Canandaigua 
7 Located on top of the Barnett shale, Denton is known as the birthplace of fracking. 
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2013. On May 2, 2016, however, the Colorado Supreme Court ruled in favor of the State’s 

rights, overturning the Longmont ban and the Fort Collins moratorium8. 

Mora County, NM became the first US County to have a ban in May 2013, but a federal judge 

overturned it in January 2015. Hawaii County enacted a ban in October of 2013 and was 

followed by three California counties: Santa Cruz County in May 2014 and then Mendocino and 

San Benito Counties in November elections that year.  

Internationally, France became the first country with a moratorium in June 20119. Since then, 

Bulgaria, Luxembourg, Germany, Scotland, and Wales have banned fracking. In addition, due to 

concerns about local environmental impacts, the Cantabria Region of Spain, Nova Scotia, 

Quebec, and Five City Breaks municipality of Argentina have implemented fracking bans. 

Boudet et al. (2014) argue that fracking bans accompany a high degree of public uncertainty 

about local damages. A 2012 Pew Center poll found that 26% of Americans had heard a lot 

about fracking, 37% had heard a little, and 37% had heard nothing. Regardless of the level of 

information, it is perceptions about risk (informed or otherwise) that drive local policy. Graham 

et al. (2014) find that the public is most concerned about water quality and seismic activity, 

despite a general scientific consensus that best practices manage these particular risks well.  

2.2 Economic Benefits of Fracking 

While it is obvious that exploiting valuable fossil fuel reserves will confer economic value, it is 

less clear how much of the created value will accrue to the local economy where fracking occurs. 

Hausman and Kellogg (2015) use an econometric approach and find economy-wide total surplus 

																																								 																					
8 http://www.nytimes.com/2016/05/03/us/colorado-court-strikes-down-local-bans-on-fracking.html 
9 It was upheld in 2013. 
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gains of a third of a percent in the US. Regionally focused work has estimated significant 

employment gains – ex ante – to Pennsylvania (Considine et al. 2010), Colorado (Wobbekind et 

al. 2014), and Arkansas (CBER 2008). However, these studies use input-output models and 

results are sensitive to assumptions about household spending and savings behavior, labor supply 

elasticity, and mineral rights ownership. This means that benefits are likely to be significantly 

overstated (Kinnaman 2011). More recent ex post analyses find much smaller employment 

impacts than ex ante predictions (Weber 2012). Maniloff and Mastromonaco (2015) find that ex 

post job growth fell ‘well short’ of ex ante predictions. Furthermore, there is a debate as to the 

persistence of economic benefits in so-called ‘boom towns’ (Allcott and Keniston 2011; 

Jacobsen and Parker 2014). Contrary to previous findings by Allcott and Keniston (2011), 

Maniloff and Mastomonaco (2015) find evidence of increases in manufacturing wages which 

could harm the competitiveness of non-resource sectors.  

In the model developed here, local fracking benefits are captured using a calibrated CGE model 

that includes oil and gas production. The portion of benefits that accrue locally follows from our 

assumptions about nonlocal resource ownership.  

2.3 Fracking Damages 

Despite a consensus that risks exist, there remain significant gaps in the literature connecting risk 

pathways to economic impacts (Jackson et al. 2014; Shonkoff et al. 2014). Krupnick and Gordon 

(2015) prescribe important pathways through which routine fracking activities may impact 

humans and the environment. Examples include habitat disruption, groundwater contamination, 

air quality degradation, community disruption, and surface water contamination. Their survey of 
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215 experts from industry, academia, government, and NGOs finds a high degree of consensus 

concerning the most important pathways that arise during normal fracking activities. 

Hedonic property valuation studies have attempted to quantify the cost of these local impacts 

(Boxall, et al. 2005; Gopalakrishnan and Klaiber 2014). Typically, these studies find negative 

impacts on housing values from nearby oil and gas development, especially if the home depends 

on groundwater (Muehlenbachs, Spiller, and Timmins 2015). Bennett and Loomis (2015) 

estimate that each well drilled within a half-mile of a house in Weld County, Colorado decreases 

the home value by $1,805 in urban areas.  

Many human health studies have focused on benzene pollution10 outside the fracking context 

(Chen, et al. 2000; Aguilera et al. 2009; Slama et al., 2009; Zahran et al. 2012) and have 

highlighted significant health damages, including low birth weight. Hill (2013) shows that 

fracking in Pennsylvania increased the occurrence of low birth weight (by 25%) and term birth 

weight (by 18%). She estimates a lower bound of the public cost to be $4.1 million due to low 

infant birth weights caused by benzene air pollution from fracking in Pennsylvania in 2010.  

2.4 Learning about Environmental Risks 

Weisbrod (1964) initiated the irreversible decision literature. Arrow and Fisher (1974) and Henry 

(1974) develop the use of the quasi-option value in the environmental and resource economics 

literature, and Hanemann (1989) formalizes the notion into what is now commonly called the 

Arrow-Fisher-Hanemann-Henry Quasi-Option Value (QOV). A similar concept, the real options 

approach, developed independently in the finance literature. Pindyck (1991) shows its usefulness 

																																								 																					
10 Benzene is commonly found in shale gas development products. According to a 2011 Energy Commerce 

Committee report, BTEX compounds -- benzene, toluene, ethylbenzene, and xylene, all known carcinogens -- 

appeared in at least 60 fracking products in use between 2005 and 2009. 
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in a dynamic programming application, and Dixit and Pindyck (1994) bring the real options 

approach to the mainstream environmental and resource economics literature. Mensink and 

Requate (2005) point out that the Dixit and Pindyck option value (DPOV) and the QOV are not 

necessarily equivalent.  Specifically, they find that when postponement is initially beneficial and 

the net present value of a project is strictly positive, the DPOV captures the QOV in addition to 

the value created from doing the project in a later period in the absence of learning.  

Traeger (2014) extends Mensink and Requate (2005) and provides a general relationship 

between QOV and DPOV: the QOV is the value of learning conditional on postponement and 

the DPOV is the net value of postponement under learning. The literature proves two important 

properties of the QOV that are relevant to our model. Arrow and Fisher (1974) show that the 

QOV is increasing in prior uncertainty in the special case of linear net benefits (although 

Hanemann (1989) demonstrates that this does not hold in general). Second, Hanemann (1989) 

shows that the QOV increases as future information becomes more precise. These properties 

imply that high uncertainty and fast learning increase the QOV, making a temporary ban more 

likely. 

QOV models are routinely applied to climate policy. Chichilnisky and Heal (1993) argue that the 

failure of global warming models to account for irreversibility has led to an understated need for 

immediate action, though Ulph and Ulph (1997) show that Epstein’s (1980) irreversibility 

conditions are not met for even a simple, two-period model of global warming. Kolstad (1996a) 

jointly examines capital investment in abatement (sunk-cost irreversibility) and environmental 

damages from the stock of carbon (emissions irreversibility) and argues that either sufficiently 

fast learning or sufficiently slow carbon decay makes either decision irreversible. Kolstad 
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(1996b) concludes that capital investment irreversibility increases initial optimal emissions levels 

(lowers abatement). Fisher and Narain (2003) support this result, finding that the negative effect 

of capital irreversibility on optimal abatement outweighs the impact of irreversible 

environmental damages. Lemoine and Traeger (2014) model irreversible changes in climate 

sensitivity as an unknown threshold is crossed, but learning is strictly ex post in their model. 

They find that the existence of ‘tipping points’ raises the optimal first-period carbon tax. 

Learning models in which policymakers make a path of decisions over time have also been 

widely applied in the resource economics literature (Walters 1986; Holling and Meffe 1996; 

Thrower and Martinez 2000; Prato 2005; Bond and Loomis 2009) and in the climate change 

literature (Kelly and Kolstad 1999; Karp and Zhang 2006; Leach 2007; Jensen and Traeger 2013; 

Traeger 2015). In this case, small changes to policy act as experiments that impact both stocks 

(resource, capital, carbon, etc.) and information about the uncertain factor (e.g., nature’s 

response, price, temperature). In models of this form, known as open-loop or adaptive-loop 

models, consequences are not necessarily irreversible. Then, the ability to learn incentivizes a 

more aggressive initial policy when the benefits of obtaining information outweigh the costs.  

A notable exception to this result is Jensen and Traeger (2013). This model incorporates 

normally distributed Bayesian learning about uncertain climate sensitivity and stochastic 

temperature increases, which determines both the rate of learning and expected damages. 

Interestingly, when the rate of learning becomes stochastic – and signals are less informative –, 

the impact of juxtaposing uncertainty and learning is to increase optimal carbon abatement, even 

in an adaptive loop problem. 
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We model the decision to ban fracking as an irreversible decision in a context of uncertainty and 

learning for three reasons. First, in practice, fracking is a relatively new technology and little is 

known about it11. This uncertainty becomes resolved over time as the industry learns best 

practices, as municipalities learn how to regulate, as the public becomes familiar with the 

technology, and as the body of scientific analysis grows. Second, the decision to frack for most 

policymakers today is irreversible. Many of the potential damages associated with fracking (e.g., 

groundwater contamination) can have irreversible consequences and once fracking is allowed, 

the industry will resist rule changes after investing in a jurisdiction12. Irreversibility aligns our 

finite horizon dynamic model with the QOV literature, though uncertainty is never completely 

resolved. Third, fracking moratoria have been successfully enacted or adopted in the US, at both 

the state and local levels, as well as internationally. These temporary bans represent a delay in an 

irreversible action and allow the decision to be revisited in the future. The QOV approach to 

environmental problems says that uncertainty that resolves over time, potentially irreversible 

environmental damage, and the ability to postpone the decision lead to an additional benefit of 

delaying a project. In this case, even when the expected net present value of undertaking a 

project is positive, it may be economically optimal to delay the project and revisit the decision 

with better information. This model allows us to quantify the value of learning in the context of 

local fracking decisions and to present a positive economic analysis of its effects on local policy. 

3. Model 

To examine the role of uncertainty and learning in local fracking policy, we develop a dynamic 

information model that accounts for the benefits of fracking as well as uncertain irreversible 

																																								 																					
11 Although the US Government’s 1970s Eastern Shales Gas Project saw the development of ‘slickwater’ fracturing, 

the modern fracking boom is considered to have begun in the early 2000s. 
12 This has been the case in Colorado: http://www.huffingtonpost.com/news/longmont-fracking-ban/ 
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damages that can become better understood over time. A computable general equilibrium model 

is used to quantify the economic benefits of drilling in an empirically grounded way.  

3.1 Dynamic Learning Framework 

The policymaker faces a decision in discrete time periods 0,1,2,...,t T= . In each period, a local 

policymaker chooses to ban or allow fracking. Specifically, she chooses {0,1}
t
χ ∈ where “0” 

denotes BAN and “1” denotes FRACK. The policymaker in t observes the full history of past 

decisions:
 
H

t−1 = χ
0
, χ

1
,…, χ

t−1( ) . For example, a ban followed by two periods without a ban, 

would be represented as H
3
= 0,1,1( ) . 

Economy-wide consumption is represented as a series Ct+ j{ }
j=0

T−t

where Ct+ j  is the deterministic 

local consumption in period t + j . Ct+ j  depends on the prior fracking history – in particular, if 

and when fracking began. Baseline consumption is defined as the case in which fracking is 

always banned. If fracking is allowed, there is a surge in economy-wide consumption stemming 

from royalties on extracted resources Economy-wide consumption in time t is a function of the 

history, H
t−1

, and the present choice, χ
t
, and is written as C H

t( ) . 

Let η be the environmental damages of fracking, expressed in dollars. η  is a stochastic variable 

with a normal distribution but its true value is only revealed if, and when, fracking occurs. The 

parameters of the normal distribution are not known with certainty but decision-makers have a 

belief in each time period about the values of the mean and variance of the distribution. Learning 

from the noisy signal causes beliefs about η  to evolve so that in time t, . We use a 

constant relative risk-aversion (CRRA) utility function over net consumption,  and 

η ~ N µ
t
,σ

t

2( )

C H
t( )−η
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denote the coefficient of relative risk aversion asρ .  

3.1.1 Separability 

To facilitate numerical tractability, we assume that local environmental damages, η are 

additively separable from the economy-wide consumption impacts of fracking. This assumption 

dramatically reduces the dimensionality of the numerical problem because it allows us to solve 

the economy-wide model for each feasible policy path. Without it, we would need to solve the 

model for every realization in the much larger (indeed, infinite) set of potential damages.  

3.1.2 Current Net Benefit Flow 

If fracking is allowed ( ), then the expected current flow of net benefits is the expected 

utility of the higher consumption level less damages, expressed as  

where Eη  is the expectation over η . If fracking is banned ( ), the current flow of net 

benefits is the utility of baseline consumption: . For succinctness, we write the utility 

function as  where the choice variable controls whether or not 

there are damages. This implies that the expected current flow is . 

Note the expectation is trivial if the fracking ban is maintained (and no damages are incurred in 

the current period) or if fracking occurred in a previous period revealing the true damages, η* .  

χ
t
=1

E
η

C H
t( )−η( )

1−ρ

1− ρ
|µ

t
,σ

t

2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

χ
t
= 0

C H
t( )
1−ρ

1− ρ

U C H
t( ),ηχ t( ) =

C H
t( )−ηχ t( )

1−ρ

1− ρ

Eη U C H
t( ),ηχ t( ) |µt

,σ
t

2⎡
⎣

⎤
⎦
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3.1.3 Information 

Once allowed, fracking results in a constant flow of health and environmental damages, η . 

Damages persist for ten 5-year periods beyond the time when fracking begins13. Learning brings 

better information about the distribution of η . In the initial period, the policymaker has prior 

beliefs about the mean, µ
0

, and variance,σ
0

2 , of η ~ N µ
0
,σ

0

2( ) . 

Once fracking is allowed, uncertainty is resolved and 𝜂 collapses to the true damage,η* . We 

assume the decision to allow fracking is irreversible. If fracking is banned, the policymaker can 

benefit from learning through advancements in scientific knowledge over time or observations 

on fracking outcomes in other locations. Consequently, in time t, the mean and variance of η  are 

updated to µ
t
,σ

t

2( )  reflecting updated knowledge about damages. 

The flow of information is modeled as an observed, time-dependent, noisy signal ( s
t
) on the true 

(but unknown) value of damages,η* . From the perspective of the decision-maker, η* has not 

been realized and is expressed as14 

 s
t
=η +ε

t
 (1) 

where ε
t
 is a normally distributed i.i.d. random variable with mean µε = 0 and variance σ ε

2 . As 

the sum of two normally distributed i.i.d. random variables, s
t
 is normally distributed 

s
t
~ N µ

t
,σ

t

2
+σ ε

2( ) . Therefore, posterior beliefs are  

																																								 																					
13 We could alternatively model fracking damages as a one-time event. The crucial assumption is that conditional on 

fracking, future damages are exogenous from the perspective of the current decision-maker. 
14	Note	that	the	signal	is	produced	by	a	draw	around	the	true	damages	so	that	the	process	generating	the	

signal	is	𝑠! = 𝜂∗ + 𝜖! .	
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µ
t+1 =

σ ε

2µ
t
+σ

t

2
s
t

σ ε

2
+σ

t

2
 

(2a) 

and  

 
σ

t+1

2
=

σ
t

2σ ε

2

σ
t

2
+σ ε

2
 

(2b) 

Provided σ ε

2
<∞ , the learning process converges to the true η =η*  as t goes to infinity. 

Meanwhile, the rate of learning depends on the variance of the signal noise. If 𝜎!
! is large, the 

signal is relatively uninformative and learning is slow. As σ ε

2 shrinks, the signal becomes more 

informative and uncertainty is resolved faster. 

 3.1.4 Bellman Equation 

The decision is posed as a recursive problem with three state variables. The first is the history of 

past decisions:
 
H

t−1 = χ
0
, χ

1
,…, χ

t−1( ) . The other states characterize beliefs about damages, 

which are normally distributed and are fully characterized by the mean (µ
t
) and variance (σ

t

2 ). 

Irreversibility is modeled by a restricted choice set χ
t
∈ χ

t−1,1{ } , and we assume a ban is in 

place as of t = 0 . 

The Bellman equation in time t is written as follows:  
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(3) 

The first term on the right-hand side of equation 3 is the expected current flow of utility, 

conditional on beliefs, µ
t
and σ

t

2 . The second and third terms describe the continuation value if 

fracking is banned or allowed, respectively. Although we are mainly interested in situations for 

which the option to ban remains (i.e. fracking has not occurred), the equation also depicts the 

value in time t if fracking has already occurred. In this case, the choice set is χ
t
∈ 1,1( )⇒ χ

t
=1 . 

Moreover, the true value of damages, η* , is realized in the period in which fracking occurred 

implying µ
t
=η* , σ

t

2
= 0 . Then, if fracking already occurred, the value function as of time t 

collapses to V
t
H

t−1,η
*
, 0( ) =

C
t
H

t( )−η*⎡⎣ ⎤⎦
1−ρ

1− ρ
+βV

t+1 H t
,η*, 0( ) . 

3.2 Option Values 

Traeger (2014)15 suggests a convenient way to summarize the determinants of optimal policy. 

For the current setting, this so-called Quasi-Option Value Rule can be summarized as follows:    

 

FRACK if NPVt >QOVt + SOVt =Vt
soph

BAN if NPVt ≤QOVt + SOVt =Vt
soph  

(4) 

Vt
soph is the full value of sophistication, NPV

t
 is the present value of the expected net gain from 

fracking, QOVt is the quasi-option value, and SOV
t
 is the simple option value. All values are 

																																								 																					
15	Building	on	Arrow	and	Fisher	(1974),	Henry	(1974),	and	Hanneman	(1989).	

V
t
H

t−1,µt
,σ

t

2( ) = max
χ
t
∈ χ

t−1,1{ }
Eη{ U H

t
, χη( ) |µt

,σ
t

2⎡⎣ ⎤⎦

+ 1− χ
t( )βEs

V
t+1 H t

,
σ ε

2µ
t
+σ

t

2
s

σ ε

2
+σ

t

2
,
σ ε

2σ
t

2

σ ε

2
+σ

t

2

⎛

⎝
⎜

⎞

⎠
⎟ |µt

,σ
t

2
⎡

⎣
⎢

⎤

⎦
⎥

+χ
t
βEη Vt+1 H t

,η, 0( )⎡⎣ ⎤⎦}
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expressed in utility units, and functional arguments are suppressed. Vt
soph captures the 

presumption that a fully sophisticated decision-maker would value both the ability to delay a 

project ( SOV
t
) and the ability to learn about the project (QOVt ) when flexibility is preserved.  

Traeger (2014) shows that Vt
soph

,  QOVt,  SOVt , and NPV
t
 can be constructed from three value 

functions: learning, postponement, and now or never. These can be defined in the context of our 

model as follows: 

• V
t

l
⋅ | χ

t
= 0( ) : the present value of a ban by a policymaker who anticipates learning;  

• V
t

p
⋅ | χ

t
= 0( ) : the present value of a ban by a policymaker who anticipates the ability to 

revisit the decision – to postpone it – but does not anticipate the ability to learn;  

• V
t

n
⋅ | χ

t
=1( ) : the present value of fracking to a policymaker who does not anticipate the 

decision will be revisited — a now or never perspective. 

The respective value functions become 

 

	 (5) 

The first and second equations in (5) differ in the stochastic variable over which the expected 

continuation values are calculated. The first equation takes the expectation of 𝑠, the signal, and 

anticipates updated beliefs about the damage distribution. In the second equation, no signal is 

anticipated, so beliefs do not change over time and there is only uncertainty over the damage 
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⎤
⎦
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⎣

⎤
⎦

V
n

t H t−1,µt,σ t

2
| χ t =1( ) = Eη U C H t,η( )( )+βVt+1 H t( ),η, 0( ) |µt,σ t

2⎡
⎣

⎤
⎦
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parameter, η . Consequently, the state variables in this case are not time-dependent and the 

expectation is taken with respect to η  rather than s . Conditional on allowing fracking, the value 

is the same in each case:V
t

l
⋅ |1( ) =Vt

p
⋅ |1( ) =Vt

n
⋅ |1( ) . Following Traeger (2014) we calculate 

NPV
t
=V

t

n
⋅ |1( )−Vt

n
⋅ | 0( )  and Vt

soph
⋅ | 0( ) =Vt

l
⋅ | 0( )−Vt

n
⋅ | 0( )  and decompose the full value of 

sophistication into the option values: 

 
 (6) 

Using the Arrow-Fisher-Henry-Hanneman Quasi-option Value Rule (Equation 4) we can express 

our current period value function as (Equation 3) V
t
⋅( ) =max NPV

t
,QOV

t
+ SOV

t{ } and see the 

impact of learning, captured by the QOV, on welfare. Since QOVt  is non-negative (Traeger 

2014) and increasing with more precise information, the ability to learn weakly increases the 

value function in Equation 3.  

4. Parameterizing the Model 

This section describes the process used to embed the calibrated CGE model results within the 

dynamic QOV framework ,which allows us to quantify the benefits and costs of fracking under 

the possibility of learning about uncertain environmental damages. The model is applied to a 

representative Colorado municipality to investigate a practical situation in which a fracking ban 

may be optimal. We first describe the development of the CGE model used to calculate the 

consumption benefits of fracking with a focus on how the policy simulations are set up. Next, we 

present the process used to construct a distribution of damages based on initial beliefs about the 

V
t

l
⋅ | 0( )−Vt

n
⋅ | 0( )

full value of sophistication

! "### $###
=V

t

l
⋅ | 0( )−Vt

p
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p
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range of damages.  These two parameterized components are combined to generate a 

parameterized Bellman equation as presented in Equation 3. 

4.1 CGE Model 

We use a CGE model that is an adaptation of Cutler and Davies (2007) who built a model for 

Fort Collins, CO. Here, we parameterize that model to represent an oil-and-gas-producing 

Colorado municipality with 50,000 residents whose policymaker is considering the removal of a 

fracking ban. These changes to the Fort Collins model were made in order to isolate the 

determinants of a ban, looking across economic parameters that vary across regions where bans 

have been implemented. The land, labor, and capital employment in each of seventeen 

production sectors is parameterized using census and county assessor’s data from Fort Collins, 

CO. Data to calculate input-output coefficients for intermediate inputs come from IMPLAN 

(IMPLAN.com).  Fort Collins is large relative to the Colorado average, so the economy is scaled 

down to 50,000 people16, holding constant: production technologies, labor supply per household, 

and per capita demand. 

All production sectors of the CGE model include intermediate inputs, land, capital, and labor. 

Output and factor prices are endogenous, with perfectly mobile labor in five household groups. 

Land and capital are quasi-fixed but respond over time to differences in rental rates. This implies 

that returns to land and capital are sector-specific in any time period. Local differences between 

demand and supply are met by imports (or exports when production exceeds demand). The CGE 

model also contains local, state, and federal government sectors. 

																																								 																					
16 The average size of Colorado cities above 10,000 people is ~55,000, excluding the capital city of Denver (United 

States Census Bureau / American FactFinder. "Annual Estimates of the Resident Population: April 1, 2010 to July 1, 

2014" and United States Census Bureau. "B01001 Sex by Age." 2010 - 2014 American Community Survey. U.S. 

Census Bureau's American Community Survey Office). 
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In addition to the standard factors of production, output in the oil and gas sector depends on a 

natural capital factor that captures the remaining accessible natural resource stock in the ground. 

The size of this factor depends on whether or not a fracking ban is in place. Since reserves 

depend on allowable technology, a ban means the oil and gas sector has access to a smaller stock 

than if fracking were allowed. Thus, there is some (conventional) production even with a ban. 

Fitzgerald and Rucker (2014) estimate average annual royalty rates for oil (13.3%-13.8%) and 

gas (10.5% - 12.7%). Based on this, we assume that 12.5% of oil and gas production value is 

paid to the owners of those rights17.  

The simulations computed are inspired by the 2013 Fort Collins moratoria, which was enacted to 

be five years. We calibrate the CGE model using annual data but in the QOV model, we use 5-

year periods that are constructed by summing the output of the CGE model over 5 years.  In 

addition, we assume that policymakers revisit the ban/frack decision every (five year) period for 

five model periods (25 years), after which the option to allow fracking vanishes. Regardless of 

when fracking is allowed, benefits and damages accrue for ten periods. In the base scenario, the 

policymaker is risk averse with a constant relative risk aversion coefficient of 2, though we also 

consider the implications of risk neutrality. The base oil and gas prices are assumed to be $40 per 

barrel and $2.50 per thousand cubic feet respectively.  Finally, the annual discount rate is set to 5 

percent.  

The simulations are constructed in the following way. To generate the no-fracking baseline, we 

simulate normal growth where total factor productivity and export demand are assumed to 

increase by one percent separately in the first period. The model then moves to a new steady 

																																								 																					
17 See Appendix A for a complete description of the data. 
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state after a 50-year time horizon. The second simulation assumes that fracking occurs in the first 

period along with normal growth. The mining of oil and gas increases by a factor of three. This is 

based on EIA estimates of oil reserves in Colorado, which climbed from 386 million barrels in 

2010 to 1200 million barrels as of 2014. This observed increase in oil reserves occurred almost 

exclusively because of the introduction of fracking, and natural gas reserves experienced a 

similar increase (Colorado Oil & Gas Conservation Commission). When reserves are exhausted, 

the excess extraction capital immediately exits the local economy.  In the simulation, this occurs 

in the next (5-year) period. Separate simulations are computed for policy scenarios when 

fracking is allowed in years 6, 11, 16 and 21 to reflect the decision to allow fracking in each of 

these periods. This generates levels of household consumption associated with all policy 

scenarios used in the QOV model. 

The recursive CGE model is solved with an annual time step and a 50-year time horizon. 

Consumption across years is aggregated to obtain 5-year consumption values, used as an input 

into the dynamic programming model. Figure 1 illustrates the consumption paths with spikes 

occurring at the time of fracking. After the initial shock, fracking stops as reserves are depleted 

and consumption falls, reaching a new steady state. To test for sensitivity to the price of oil and 

gas, the CGE model is used to evaluate the impact of fracking bans over a range of prices. Oil 

and gas prices are assumed to move together, increasing and decreasing from base values in 

equal proportions. Given our base specification, the annuitized value of the consumption benefits 

of fracking in the initial period is equal to ~$113.6 million per (5-year) period. 
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Figure 1: Consumption Paths From CGE Model 

 

Note: The x-axis is the policy period, which are five-year increments. The y-axis is consumption in 

billions of dollars.  All simulations include normal growth shocks in year 1. 

 

4.2 Parameterization of Damages 

In order to solve the model, we also parameterize the initial beliefs about the distribution of the 

monetary value of fracking damages,η .  Given additive separability, this can occur 

independently from the parameterization of economic benefits described above.  Recall that η  is 

normally distributed with initial beliefs about the mean and standard error equal to µ
0

 and σ
0

2 , 

respectively.  The magnitude of these damages must be weighed against the consumption 

benefits of fracking, calculated in section 4.1. 

To parameterize current beliefs about this distribution, we define a plausible range within which 
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the monetary value of damages is likely to fall. First, we assume a 5% chance of negative 

damages (i.e., benefits) from fracking.  This could occur if, for example, fracking allows natural 

gas to displace coal in local energy production, leading to cleaner air.  At the other extreme, we 

assume that damages could exceed a high-damage scenario with a probability of 5%. 

To define the high-damage scenario, we calculate the monetary cost of purchasing water rights to 

permanently replace the current surface water supply18.  We assume the municipality would 

obtain shares in the Colorado-Big Thompson (C-BT) System, where water rights have sold for 

$50,000 per acre-foot (http://bizwest.com/water-prices-reach-historic-highs/).  To calculate the 

number of shares that the municipality would need to purchase, we use the Colorado City of Fort 

Collins’ water use as an example.  If Fort Collins Utilities had to purchase C-BT shares to cover 

100% of its population of 150,000, it would need to purchase 51,805 acre-feet19.  Assuming the 

representative municipality of 50,000 people would use the same initial mix of C-BT and non-C-

BT water sources and consumption per capita as Fort Collins, it would need to purchase 17,268 

acre-feet from C-BT (valued at $50,000 per acre-foot) for a total one-time cost of $863 million.  

Amortized over 10 (5-year) periods with a discount rate of 5%, this high-damage estimate 

becomes approximately $200 million per period.   

The 5% upper ($200 million) and lower ($0) tails of fracking damages allow us to calculate the 

mean and standard error of the distribution.  Figure 2 displays the distribution of fracking 

																																								 																					
18 Although surface water moves very rapidly, on the order of meters per second, the pollutants can linger for 

decades if they are highly recalcitrant, like organochlorines or polychlorinated biphenyls (Baumann and Whittle 

1988; Hooper et. al 1990; Garton et. al 1996) or radioactive (radon is naturally occurring in the uranium-rich soil of 

Colorado). 

19	Fort Collins Utilities (FTCU) delivers water to 130,200 people out of the approximately residents 152,061 (2013 

estimate). Approximately 19% of FTCU’s average raw water supply comes from the C-BT.  The rest comes from 

the Poudre River, assumed polluted beyond use. If FTCU were to obtain the remaining 81% while scaling supplies 

to the entire Fort Collins population, this would require the purchase of 51,805 acre-feet of water from the C-BT. 
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damages given the specified two tails.  From Figure 2, we can see that the mean of the per-period 

fracking damages is ~$100 million per period.  The standard deviation of this distribution is $60 

million.  Therefore, our initial beliefs are µ
0
=$100 million and σ

0
=$60 million. .   

Figure 2: Distribution of Environmental Damages Given Calibrated 
Initial Beliefs 

 

Note: The x-axis is the value of the damage parameter, in millions of dollars. The y-

axis is the probability. The 5% tails are shaded. 

 

If fracking is allowed, fracking damages will be realized and, from the perspective of the 

policymaker, drawn from this distribution.  If, on the other hand, fracking is banned, a 

policymaker anticipates receiving a signal that will provide information about the distribution of 

fracking damages.   
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Recall that the annuitized present value of the consumption benefits of fracking today is 

approximately $113.6 million per period.  This suggests that, in expectation, the net benefits of 

fracking are positive.  Under a naïve net-present value rule, a risk neutral policymaker would 

therefore allow fracking because the expected benefits exceed the expected costs.  Nevertheless, 

a policymaker that anticipates learning about the distribution of damages will wait before 

allowing fracking if the QOV is sufficiently valuable.  To find the conditions under which a 

policymaker would continue to ban fracking we solve the parameterized dynamic option value 

model using the rule described in Equation 4. 

5. Results 

We first solve the model for a range of initial beliefs about damages and a range of assumptions 

about the rate of learning and examine if the ability to learn influences the optimal policy 

decisions.  Then, we compare the role of learning to other factors such as the value of oil and gas 

reserves.  Next, we quantify a monetary value of the QOV and use Monte Carlo simulations to 

show that faster learning leads to better decision-making over time. We finish with tests for the 

robustness of the results.  

5.1. Optimal policy 

To explore the impact of learning on the optimal policy decision, we solve the model for a range 

of values for the standard error of the signal noise, presented in Equation 1. Specifically, we are 

interested in estimating Equation 4 which compares theNPV
t
 (the present value of the expected 

net increase in utility units from fracking) with estimates of QOVt (quasi-option value) and SOV
t

(simple option value). If the NPV is greater (less) than the sum of QOV and SOV, then it is 

optimal to FRACK (BAN). 
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Using the results from the CGE model discussed above and the estimates for QOV and SOV, 

Figure 3 presents the optimal initial-period policy for fast (σ ε = $1), medium (σ ε =  $200 

million), and slow (σ ε = $500 million) rates of learning as a function of initial beliefs about 

environmental damages. We also display the no-learning case. These curves mark the initial 

belief combinations where the policymaker is indifferent between allowing fracking and 

maintaining the ban. Intuitively, as learning becomes faster, there are fewer combinations of 

initial beliefs (less area under the curve) for which fracking is optimal. The parameterized initial 

beliefs are labeled and it becomes clear that the optimal policy in the calibrated model is 

sensitive to the rate of learning. When learning is slow, the optimal policy is to allow fracking 

since new information is relatively uninformative and unlikely to change next period’s policy. In 

this case, the expected gains from fracking dominate the value of learning in influencing the 

optimal policy. Under the parameterized beliefs, it is optimal to maintain a ban, receive precise 

information about fracking damages, and revisit the decision next period if learning is fast. The 

ban occurs despite positive expected net benefits from fracking, so a simplistic benefit-cost 

framework that does not anticipate learning—a now or never approach—would allow fracking.  

When σ ε = $211 million, the risk averse policymaker is indifferent between fracking and 

banning given the parameterized initial beliefs.  This implies that the policymaker should 

implement a ban if she anticipates at least a 7.5% reduction in 𝜎!
! over the first 5 years (1 model 

period). 

Notice that all three policy boundary curves converge to the same mean, µ
0
=$111.8 million as 

σ
0
→ 0 . This occurs because information is only valuable under uncertainty. We denote this 

mean belief where policy switches under no uncertainty as µ̂ so that µ̂ = $111.8 million. Beliefs 
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that µ
0
< µ̂  with low initial uncertainty (southwest corner) will result in a FRACK policy. 

Similarly, beliefs that µ
0
> µ̂  and the initial uncertainty is high (northeast corner) will result in a 

BAN policy. Increasing uncertainty while holding µ
0
= µ̂  makes a ban more likely, due to the 

ability to learn about the true distribution. Even with no learning, risk aversion means that higher 

uncertainty can push towards a BAN. 

 

 

 

 

 

 

 

 

 

5.2. Learning and the Value of Energy Resources 

Figure 3 reveals that learning can play a pivotal role in the policy decision holding other 

economic factors constant. Now, we compare the impact of improved learning to changes in the 

resource value. We use the CGE model to compute the benefits of fracking for four oil and gas 

Figure 3: First Period Optimal Policy 

 

Note: The x-axis is the initial mean damage belief. The y-axis is the initial standard error 

belief. Each curve demarks where policy switches. Fast learning is 𝜎! = $1, medium 

learning is 𝜎! =$200 million, and slow learning is 𝜎! = $500 million; and the initial 

beliefs used in the calibration exercise are 𝜇!,𝜎! = (100,60) million dollars. The slope 

of the line is the willingness to pay for lower uncertainty with decreased net benefits. 
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prices. Then, we fit a benefit function, b t, f , p( ) , that maps current time period (t), when 

fracking began (f), and price of oil (p) into a dollar value of consumption benefits, (C): 

b : t, f , p( )→C . With this, we populate a consumption benefit matrix for a range of oil prices 

from $30 to $90 per barrel in $5 intervals and solve for both the value of learning and the value 

of fracking using Equation 5. The results are presented in Figure 4. The speed of learning is 

expressed as the number of signals required to reduce the standard error by half of its initial 

level. The figure highlights the policymaker’s willingness to trade off faster learning for 

decreased economic benefits through a lower reserve value. We display the policy boundary 

curve with calibrated beliefs as well as for higher and lower initial standard errors for the 

damages distribution.  

Figure 4 shows that improvements in the rate of learning can tilt the decision towards a 

temporary ban, but that the price of oil – and the value of reserves – has a substantial influence 

on the decision. Improving the rate of learning only affects the first period decision in a small 

range of prices. This is true even in the high-initial variance case (dotted line Figure 4). On the 

other hand, a price change from $45 to $55 per barrel likely changes optimal policy in this 

context. In our parameterized scenario (solid black line with dot markers in Figure 4), a five 

period reduction in the number of periods required for the variance belief to reduce by half is 

equivalent to an increase in oil price from $41.92 to $47.88 per barrel – around a $6 change. 

For comparison, between August 2015 and August 2016, oil prices ranged from ~$30 per barrel 

to nearly $55. This suggests that changes in price expectations consistent with existing oil price 

volatility could have a much larger impact on decision-making than improvements in the speed 

of learning. More generally, this suggests that the decision to frack or ban hinges on the local 
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value of reserves, which, in turn, is influenced by the size of the reserve, the price of oil and gas, 

and local mineral rights ownership. Our calibrated example shows that the ability to learn can 

play a pivotal role, provided the value of reserves falls within a relatively narrow range20. 

Figure 4: First Period Optimal Policies for 3 Different Initial Beliefs 

 

Note: The x-axis represents the speed of learning as the number of signals for 𝜎! =  .5𝜎! where a 

time period is 5 years. The y-axis is the price of oil in dollars per barrel. The 3 curves are a mean-
preserving spread. The slopes are the willingness to avoid a slower rate of learning in terms of 

reduced net benefits.  

 

5.3 Quantifying the Option Value 

Despite the relative importance of the value of reserves, the calibrated economy-wide QOV 

remains large, even in comparison to the consumption benefits of fracking. In order to calculate a 

monetary value of the QOV, we solve the model under risk neutrality. This enables us to express 

																																								 																					
20 This also suggests that the option value associated with learning about the price of oil may be quite large 

compared to learning about damages. This should be explored in future work.  
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all value functions and option values in monetary units. Since the monetary value of the QOV 

increases with risk aversion it is likely these results represent a lower bound for the impact of 

learning on policy decisions. 

FIGURE 5: Value Functions and QOV under Risk Neutrality 

 

Note: The x-axis is the standard error of the noisy signal. The y-axis is the monetary value in 
millions of dollars. As learning becomes slower, the QOV decreases pulling the full value of 

sophistication, which approaches the SOV asymptotically. The maximum value of the QOV occurs 

where 𝜎! → 0  and is 61.1 million dollars. 

 

Figure 5 shows how the numerical value of the first-period QOV depends on the standard error 

of the signal (σ ε ). Recall that the QOV is the difference between the V soph  and the simple option 

value (Equation 6).  All three reflect present values denominated in initial-period monetary units. 

The QOV is largest ($101.5 million - $40.4 million = $61.1 million) when σ ε  is smallest 

(learning is fast) and decreases, as learning slows. With risk neutrality, policy switches in our 
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calibrated setting when 𝜎! = $177 million (labeled in Figure 5). At this learning rate, the initial 

variance drops 10% after the first signal. Recall that the cutoff under risk aversion (ρ = 2 ) in 

Figure 3 was σ ε = $211 million, showing that a risk neutral policymaker requires faster learning 

(all else equal) to justify a fracking ban.   

These QOV represents the value of information acquired during a temporary ban and its 

numerical value indicates that it is an economically important social value. When learning is fast, 

the QOV represents 12.76% of the $478.99 million in gross consumption benefits that fracking 

brings (in present value terms). To our knowledge, this is the first attempt to quantify a 

numerical, economy-wide QOV associated with an environmental policy decision. 

5.4. Policy Simulation 

Thus far, our results indicate that faster learning increases the QOV, incentivizing a moratorium 

on fracking, in the initial period. However, this does not show that policymakers interested in 

supporting economic development activities should prefer slow learning. Instead, as is intuitive, 

faster learning leads to better decision-making over time, both increasing fracking instances 

when it is beneficial and decreasing instances when it is not. To illustrate this, we simulate policy 

decisions for the base model (ρ = 2 ) over a range of η* , from $60 million to $180 million (i.e., 

spanning the calibrated µ̂ so that when η* is greater (less) than µ̂ banning (fracking) is optimal ex 

post).  The signals (described in Equation 1) depend on η* even when initial beliefs are held 

constant. We consider the fast and medium learning rates defined in section 5.1 and presented in 

Figure 3. This means that the first period decision is always BAN (H
1
= 0 ) For each learning 

rate, σ ε , and then for each η* , we draw 1000, four-element, signal sequences, s
t{ }

t=1

t=4
, from the 
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distribution η*,σ 0

2
+σ ε

2( ) . The calibrated beliefs (100, 60), in millions of dollars, are the initial 

damage beliefs (µ
0
,σ

0

2 ), which evolve over time according to Equations 2a and 2b, depending 

on the random signal sequence. We evaluate and compareVt
soph

H t−1,µt,σ t

2( )  and 

NPV
t
H

t−1,µt
,σ

t

2( ) for t = 2,3, 4, 5  to find the optimal policy in accordance with Equation 4.  

The results of the simulations are presented in Figure 6. Results are displayed as the probability 

of making the correct (or incorrect) decision by the end of the 5-period decision horizon. In the 

left panel, damages are less than the benefits so fracking is beneficial. Under fast learning, 

fracking occurs 94% of the time by period 2 while with medium learning, it takes all 5 periods 

before at least 79% of simulations result in beneficial fracking. Note that 97% of the fast learning 

simulations frack by period 5, the terminal decision period. Recall that the policy switches at 

𝜇 = $111.8 million but the annualized consumption benefits are $113.6 million. The reason that 

3% of the fast-learning simulations do not frack when it is beneficial is risk aversion.  That is, 

regardless of the level of certainty, a risk averse policymaker with mean beliefs 

µ
t
∈ $111.8,$113.6( ),  t =1, 2,3, 4 will ban fracking under uncertainty even though it would bring 

an increase in net welfare ex post.  

The right panel presents the result of simulations in which damages exceed the benefits, so a 

fracking ban optimizes ex post welfare. In this case, under fast learning an initial ban results in 

the optimal decision in every instance (i.e., the probability of fracking is always zero). On the 

other hand, under medium learning, there is a 45% chance fracking will eventually be allowed, 

even though it would reduce ex post welfare.  
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Figure 6 illustrates that, despite incentivizing a moratorium in the first period, faster learning 

results in more fracking when it is beneficial and less when it is not. 

Figure 6: Simulation Results: Probability of Fracking in or before each Period 

 

Note: The x-axis is the time period in which fracking begins. Each time period represents 5 years. The y-axis 

is the percentage of simulations in which fracking occurs in time, 𝑡. The left panel is the simulations for which 

𝜂∗is less than the present value of consumption benefits. The right panel is the simulations for which 𝜂∗ 

exceeds the present value of consumption benefits In comparison to medium learning (𝜎!=$200 million), 

faster learning (𝜎! = $1) results in more fracking and sooner when it’s beneficial and no fracking when it is 

not. 

 

5.5. Sensitivity analyses 

In Figure 7, we explore the sensitivity of our conclusions to assumptions about initial damage 

distributions and risk aversion. First, we test robustness of the results to changes in initial beliefs. 

The results in Figure 4 present the policy boundary curves under a mean-preserving spread of the 

initial damage distribution. Here, we hold fixed the standard error and let the mean change. The 
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left panel of Figure 7 shows that the main conclusions are robust to these changes. Conditional 

on the initial beliefs, increasing the rate of learning has a relatively small impact on the policy 

decision. Initial beliefs about the mean do have a notable impact on the (still narrow) price range 

within which increasing the rate of learning plays a pivotal role in determining optimal policy.  

In the right panel of Figure 7, we assess the impact of changing the coefficient of relative risk 

aversion. The panel replicates the base curve in Figure 4 using a range of values for 𝜌. As 

expected, increasing 𝜌 raises the oil prices for which a ban is optimal. It also increases the 

importance of the rate of learning in influencing the policy decision, indicated by the steeper 

slope of the high risk aversion boundary curve in Figure 7. Despite this, even at high levels of 

risk aversion, the range of prices where learning is influential remains narrow. 

Figure 7: Model Sensitivity 

 

Note: The x-axis is imputed number of signals until initial beliefs about standard error is reduced 

by half, a transformation of signal variance. The y-axis is the price of oil in dollars per barrel. 

The overall results hold under a variety of initial beliefs and risk aversion specifications.  
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6. Discussion and Conclusion 

Uncertainty about fracking damages and the ability to learn create a QOV that can impact the 

economic rationale for imposing a temporary ban on fracking activities. In our calibrated setting, 

we show that a moratorium can be justified if beliefs about environmental damage variance are 

expected to drop at least 7.5% before the decision is revisited (or 10% for a risk neutral 

policymaker). Faster learning also leads to better decision-making over time. Though learning 

can influence optimal policy, we find that its role is relatively unimportant when compared to 

plausible (indeed historical) fluctuations in the price of oil. 

Although we emphasize a model of fracking policy, the developed methodology expands the 

class of problems that can be quantitatively approached with an option value framework. 

Juxtaposing a detailed CGE model with a dynamic learning framework makes it possible to 

quantify the impact of uncertainty and learning within an empirically grounded general 

equilibrium setting. The approach could be useful in other policy contexts, including public 

infrastructure investment or public safety measures. 

In addition to the policy-relevant observations above, several other policy implications can be 

drawn from the analysis. First, uncertainty may push local policymakers to temporarily ban 

fracking until better information about associated damages becomes available. Consider the 2005 

Energy Policy Act, which amended the 1974 Safe Drinking Water Act to exclude fracking 

injection fluids (other than diesel fuels) from the EPA’s oversight, while exempting extraction 

companies from disclosing the chemicals involved in fracking operations. This served to increase 

public uncertainty about the dangers of fracking which makes adopting a ban more attractive 

ceteris paribus. 
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Next, the rate of learning influences local policy decisions in a context of uncertain fracking 

damages. A high rate of learning makes a first period ban more appealing but makes fracking, if 

beneficial, more likely in subsequent periods. The value function when the decision remains 

(Equation 3) is weakly increasing in the rate of learning, implying that faster learning cannot 

decrease welfare. Consequently, the public has an interest in reducing the noisiness around 

fracking information through, for example, research and improved industry transparency. 

Although the potential for learning could push a community to implement a temporary ban, it 

also creates the incentive to remove the ban if this is in their interest. Many policy options exist 

to support the opportunity for learning.  These include funding for scientific research on impacts, 

information provision that enables homeowners to better negotiate with oil and gas companies 

(see Timmins and Vissing 2014), encouraging municipalities to fund their own studies21, and 

providing assistance with local impact studies.  

Our quantification of the QOV highlights an intriguing dimension of local fracking policy. The 

information-revealing signal about fracking damages is a public good. The ability to ban fracking 

and learn from others’ experiences in similar, perhaps nearby, regions implies a free-rider 

problem where local jurisdictions obtain the benefits of information without contributing to its 

production. The full value of sophistication represents the local jurisdiction’s willingness to pay 

for the ability to ban fracking and learn but there are currently no institutions that allow for its 

capitalization.  

While useful, the model presented here has some important limitations. First, we assume that 

fracking policy is a binary (yes/no) decision. Feasibly, policymakers could choose both when to 

																																								 																					
21 After the 2013 moratorium, The City of Fort Collins hired a consulting firm to study the direct impacts of 

fracking. The report was able to provide dollar ranges of health and property damages: 

http://www.fcgov.com/oilandgas. 
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frack and at what intensity. When decisions are adaptable over time, the ability to learn tends to 

increase the level of development in early periods (Karp and Zhang 2006). Allowing a small 

amount of fracking in certain areas of a given jurisdiction could result in very precise 

information about the true value of damages. Then, policymakers could adjust the amount of 

fracking to ensure optimality. This is similar to the result in Karp and Zhang (2006) that the 

ability to learn about climate sensitivity can increase early emissions levels. Despite this, binary 

policies such as local bans are common in practice and likely reflect political or legal constraints 

that prevent policymakers from employing more delicate instruments. Indeed, many bans have 

arisen through the blunt instrument of local referenda.  

Second, we ignore the stochastic nature of energy prices. In reality, policymakers also learn 

about the value of the reserves they control. If prices have an upward drift, for example, this 

would create a further incentive to wait before fracking is allowed and oil and gas reserves are 

exploited. Future work should consider the interaction between stochastic energy prices and 

uncertain environmental damages. 

Another limitation is that consumption benefits do not capture distributional effects. It could be 

that the economic benefits accrue to a small fraction of the local population. Routine burdens, 

including noise and light pollution or increased traffic, tend to affect those most closely located 

to fracking operations (Gopalakrishnan and Klaiber 2014), but as Hill (2013) points out these are 

often socio-economically disadvantaged groups that may not receive the benefits from fracking. 

A mismatch between those that benefit and those that incur the costs from fracking is not 

considered here but future work should investigate how this could affect the local political 

economy of fracking policy decisions. 
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Despite the limitations of the model developed here, it provides a useful tool for evaluating the 

economy-wide net benefits of oil and gas development for a range of economies, from local to 

national scales.  A numerical QOV model has the potential to explain existing decisions or to 

inform policy choices in the future.  Our results suggest that when the net benefits of fracking, 

including consumption benefits and environmental damages, are not clear, the ability to learn 

about uncertain fracking damages over time can play a pivotal role in the decision-making 

process.  This was revealed in our calibrated example but this lesson can be applied more 

generally to other economies considering a binary policy choice with irreversible consequences. 
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Appendix A 

Using data from the Colorado Oil and Gas Conservation Commission 

(https://cogcc.state.co.us/#/home), we estimate average production value for the top five 

Colorado oil and gas-producing counties, (excluding Weld County) under an oil price of $40 per 

barrel and a natural gas price of $2.50 per thousand cubic feet. Weld County is excluded from 

our calculation of an average because it has very high reserves and is not typical of a county 

considering a fracking ban. Weld is the county where most of Colorado’s development has taken 

place (Colorado Oil and Gas Commission). The county average excluding Weld produces total 

annual output value of $121 million and $302 million for oil and gas respectively, of which 

12.5% is paid to the owners of the local resource stock. In the base specification, we assume that 

fracking reserves last 10 years and that 85% of mineral rights owners are absentee. Although the 

average local ownership in Colorado is 28% (Brown, Fitzgerald, and Weber 2015), this is largely 

influenced by Weld County. 
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Appendix B 
 

We present a proof of concept and notes on the mapping of the variance of the noisy signal to 

number of periods until initial variance is reduced by half. 

Specifically, we demonstrate that the period, t, in which variance 𝜎!
!
=  𝑘𝜎!

! (for some 𝑘 ∈
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!
.  

Proof: Bayes’ Rule for updating variance is  
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Result (A2) will be used shortly. Now, manipulating the expression above, we 

have 
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Express using (A3) and substitute in for the last term in the expression above.  
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Repeated iterations allow us to arrive at  
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(A6) 

Now suppose that a future variance, is some fraction of initial variance,  

such that . 

Then  

 and the proposition holds. 

We select 𝑘 =
!

!
 and interpret the ‘units’ of learning to be the number of periods until initial 

variance has decreased by 50% -- the initial variance half life. Selecting 𝑘 =
!

!
 has the 

convenience that 𝑡 =
!!
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!
,  allowing for another interpretation of learning.  
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