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Abstract

This paper presents a unified characterization of the unanimous and strategy-proof random

rules on a class of domains that are based on some prior ordering over the alternatives. It

identifies a condition called top-richness so that, if a domain satisfies top-richness, then an

RSCF on it is unanimous and strategy-proof if and only if it is a convex combination of

tops-restricted min-max rules. Well-known domains like single-crossing, single-peaked, single-

dipped etc. satisfy top-richness. This paper also provides a characterization of the random

min-max domains. Furthermore, it offers a characterization of the tops-only and strategy-

proof random rules on top-rich domains satisfying top-connectedness. Finally, it presents a

characterization of the unanimous (tops-only) and group strategy-proof random rules on those

domains.
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1. INTRODUCTION

We analyze the classical social choice problem of choosing an alternative from a set of feasible

alternatives based on the preferences of the individuals in a society. Such a procedure is known

as a deterministic social choice function (DSCF). Arrow, Gibbard, and Satterthwaite have identified

some desirable properties of such a DSCF such as unanimity and strategy-proofness. A DSCF is

strategy-proof if a strategic individual cannot change its outcome in her favor by misreporting her

preferences, and it is unanimous if, whenever all the individuals have the same most preferred

alternative, that alternative is chosen. The classic Gibbard (1973)-Satterthwaite (1975) impossibility

theorem states that if there are at least three alternatives and the preferences of the individuals

are unrestricted, then the only DSCFs that are unanimous and strategy-proof are dictatorial. This

assures the presence of an individual, called the dictator, who is such that the DSCF always

chooses her most preferred alternative.

Although unanimity and strategy-proofness are desirable properties of a DSCF, the assumption

of an unrestricted domain made in the Gibbard-Satterthwaite Theorem is quite strong. There

are many political and economic scenarios where the preferences of an individual satisfy natural

restrictions such as single-peaked, single-dipped, single-crossing etc. Moreover, the conclusion

of Gibbard-Satterthwaite Theorem does not apply to such restricted domains. Consequently,

domain restrictions turn out to be an obvious and useful way of evading the dictatorship result in

social choice theory.

Single-peaked property is commonly used in public good location problem. Such domain

restriction occurs in an environment where strictly quasi-concave utility functions are maximized

over a linear budget set. The study of single-peaked domains can be traced back to Black (1948)

where he shows that a Condorcet winner exists on such domains. Later, Moulin (1980) and

Weymark (2011) show that a DSCF on a single-peaked domain is unanimous and strategy-proof if

and only if it is a min-max rule. Single-dipped property is commonly used in public bad location

problem. Peremans and Storcken (1999) show that a DSCF on such a domain is unanimous

and strategy-proof if and only if it is a monotone rule between the left-most and the right-most

alternatives. Single-crossing domains are well-known for their flexibility to accommodate the non-

convexities that appear in case of majority voting.1 Single-crossing domains frequently appear

in models of income taxation and redistribution (Roberts (1977), Meltzer and Richard (1981)),

1See, for example, Romer (1975), p. 181, and Austen-Smith and Banks (2000), pp. 114-115.
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local public goods and stratification (Westhoff (1977), Epple and Platt (1998), Epple et al. (2001)),

and coalition formation (Demange (1994), Kung (2006)).2 Saporiti (2014) shows that a DSCF

on a single-crossing domain is unanimous and strategy-proof if and only if it is an augmented

representative voter scheme. Augmented representative voter schemes are min-max rules where all

the parameters are chosen from the top-set of the domain. Top-set of a domain consists of those

alternatives that appear as a top alternative in some preference in the domain.

Note that well-known restricted domains such as single-peaked, single-dipped, single-crossing

etc. are all based on some prior ordering over the alternatives. In keeping with this, the unanimous

and strategy-proof DSCFs on these domains respect this prior ordering by satisfying a property

known as uncompromisingness. Uncompromisingness ensures that a DSCF is completely deter-

mined by its outcomes at boundary profiles. A boundary profile is one where each individual’s

most preferred alternative is either the maximal or the minimal (w.r.t. the prior ordering) alterna-

tive. Another interesting property that a unanimous and strategy-proof DSCF on these domains

possesses is that it always choses an alternative from the top-set of the domain. For instance, a

unanimous and strategy-proof DSCF on a single-dipped domain chooses either the maximal or

the minimal alternative, and indeed the top-set of this domain consists of those two alternatives.

The same holds for single-crossing domains. This means every DSCF with the aforementioned

properties is a tops-restricted min-max rule. A tops-restricted min-max rule on a domain is a

min-max rule with the property that all its parameters take values belonging to the top-set of the

domain. This raises a general question as to what minimal condition on a domain ensures that

every unanimous and strategy-proof DSCF on that domain is a tops-restricted min-max rule. We

address the random version of this question in this paper.

The boundaries of social choice theory have been expanded by the notion of random social

choice functions (RSCF). An RSCF assigns a probability distribution over the alternatives at every

preference profile. Thus, RSCFs are generalization of DSCFs. The importance of RSCFs over

DSCFs has been well-established in the literature (see, for example, Ehlers et al. (2002), Peters

et al. (2014)).

The study of RSCFs dates back to Gibbard (1977) where he shows that an RSCF on the

unrestricted domain is unanimous and strategy-proof if and only if it is a random dictatorial

2Moreover, models that study the selection of policies in the market for higher education (Epple et al. (2006)) and
the choice of constitutional and voting rules (Barbera and Jackson (2004)), also use single-crossing domains. Saporiti
(2009) has a detailed exposition on various applications, interpretations, and scopes of single-crossing domains.
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rule. A random dictatorial rule is a convex combination of dictatorial rules. Ehlers et al. (2002)

characterize the unanimous and strategy-proof random rules on single-peaked domains, and

Peters et al. (2014) show that such a rule is a convex combination of min-max rules. In a recent

work, Peters et al. (2017) characterize the unanimous and strategy-proof RSCFs on single-dipped

domains and show that they are convex combinations of unanimous and strategy-proof DSCFs

on those domains. However, to the best of our knowledge, the unanimous and strategy-proof

RSCFs on single-crossing domains are not characterized yet.

1.1 OUR CONTRIBUTION

In conformity with the existing literature, stochastic dominance is used to extend preferences

over alternatives to preferences over probability distributions. We identify a condition called top-

richness that is sufficient and almost necessary to ensure that every unanimous and strategy-proof

RSCF is a convex combination of the tops-restricted min-max rules. We demonstrate by way of

example the almost necessity of our condition. Moreover, we show that top-richness is necessary

and sufficient under an additional natural assumption called regularity. A domain is regular if its

top-set contains all alternatives. As an application of our result, we obtain a characterization of

the unanimous and strategy-proof RSCFs on single-peaked, single-dipped, single-crossing, and

some other domains of practical significance.

Although the single-peaked assumption is natural in certain situations, requiring all single-

peaked preferences is quite demanding. In view of this, we look for a characterization of all

regular domains D such that (i) every unanimous and strategy-proof RSCF on Dn is a random

min-max rule, and (ii) every random min-max rule on Dn is strategy-proof. We call such domains

regular random min-max domains. We show that a domain D is regular random min-max if and

only if (i) each preference in D is single-peaked, and (ii) for every two adjacent (w.r.t. the prior

ordering) alternatives, say aj and aj+1, there are two preferences of the form P = ajaj+1 . . . and

P′ = aj+1aj . . . in D.3 Note that the number of preferences in a regular random min-max domain

can range from 2m − 2 to 2m−1, whereas that in the maximal single-peaked domain is 2m−1. Thus,

regular random min-max domains include a large class of restricted single-peaked domains.

We obtain as a bi-product of our result that unanimity and strategy-proofness guarantee

tops-onlyness on top-rich domains. Chatterji and Zeng (2015) provide a sufficient condition for

3By P = ab . . ., we mean a preference P where a is the top and b is the second-top alternatives.
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random tops-only domains, but top-rich domains do not satisfy their condition. Thus, our results

are an exclusion of theirs on tops-onlyness.

Although unanimity implies tops-onlyness under strategy-proofness, tops-onlyness itself is

well-accepted as a desirable property of a social choice function. Moulin (1980) characterizes

the tops-only and strategy-proof DSCFs on single-peaked domains. In a similar attempt, we

characterize the tops-only and strategy-proof RSCFs on top-rich domains. We demonstrate by

way of examples that top-rich domains do not guarantee uncompromisingness for tops-only and

strategy-proof rules, but it is guaranteed if an additional condition called top-connectedness is

imposed on a top-rich domain. Top-connectedness is a commonly used property in social choice

literature which says that for every two adjacent alternatives bj and bj+1 in the top-set, there

are preferences P = bjbj+1 . . . and P′ = bj+1bj . . . that differ only by their top two alternatives.

We provide a complete characterization of the tops-only and strategy-proof RSCFs on top-rich

domains satisfying top-connectedness. Our characterization shows that such an RSCF is a convex

combination of tops-restricted generalized min-max rules and non-top constant rules. A DSCF is

a tops-restricted generalized min-max rule on a domain if it is a generalized min-max rule as

defined in Weymark (2011) with parameters taking values in the top-set of the domain. A DSCF

is a non-top constant rule on a domain if for all profiles, it selects a fixed alternative that is outside

the top-set of the domain.

A domain is said to satisfy deterministic extreme point (DEP) property if every unanimous (tops-

only) and strategy-proof RSCF on the domain is a convex combination of unanimous (tops-only)

and strategy-proof DSCFs on it. The study of such domains is useful as it establishes a functional

relationship between the DSCFs and the RSCFs satisfying unanimity (tops-onlyness) and strategy-

proofness on those domains. Such a relationship can be utilized in finding the optimum RSCFs for

a society. It follows from our result that top-rich domains satisfy DEP property for unanimous

and strategy-proof RSCFs, and top-rich domains satisfying top-connectedness satisfy the same for

tops-only and strategy-proof RSCFs. Gershkov et al. (2013) characterize the optimum DSCFs on

single-crossing domains. It is worth noting that, by means of the DEP property of single-crossing

domains, their result can be translated to RSCFs.

Barberà et al. (2010) show that strategy-proofness and group strategy-proofness are equivalent

for the DSCFs on single-peaked domains and Saporiti (2009) shows the same for the DSCFs on

single-crossing domains. In the same spirit, we show that the same holds for the RSCFs on all the

domains we consider in this paper.
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The rest of the paper is organized as follows: Section 2 introduces the model and basic

definitions. Section 3 presents our main results and Section 4 contains some application of those.

Section 5 provides our results on group-strategy-proofness while Section 6 concludes the paper.

Proofs of lemmas and theorems are gathered in the Appendix.

2. PRELIMINARIES

Let A = {a1, . . . , am} be a finite set of alternatives with a prior ordering a1 ≺ . . . ≺ am.4 Let

N = {1, . . . , n} be a finite set of agents. Except where otherwise mentioned, n ≥ 2. For

a, b ∈ A, we define [a, b] = {c | either a � c � b or b � c � a}, and for B ⊆ A, we define

[a, b]B = [a, b] ∩ B.5 A complete, antisymmetric, and transitive binary relation over A (also called

a linear order) is called a preference. We denote by L(A) the set of all preferences over A. For

P ∈ L(A) and a, b ∈ A, aPb is interpreted as ”a is strictly preferred to b according to P”, and

aP!b is interpreted as “a is contiguously ranked above b in P, i.e., aPb and there is there is no

c ∈ A such that aPc and cPb”. For P ∈ L(A), by rk(P) we mean the k-th ranked alternative

in P, i.e., rk(P) = a if and only if |{b ∈ A | bPa}| = k − 1. By Pa, we denote a preference

with r1(Pa) = a, and by Pa,b, we denote a preference with r1(Pa,b) = a and r2(Pa,b) = b. For

convenience, a preference Pa,b is sometimes written as ab . . .. We denote by D ⊆ L(A) a set of

admissible preferences. For a ∈ A, let Da = {P ∈ D | r1(P) = a}. For notational convenience,

whenever it is clear from the context, we do not use braces for singleton sets, i.e., we denote sets

{i} by i. For a domain D, the top-set of D, denoted by τ(D), is defined as τ(D) = ∪P∈Dr1(P).

Whenever we write τ(D) = {b1, . . . , bk}, we assume without loss of generality that the indexation

is such that b1 ≺ . . . ≺ bk. A domain D is called regular if τ(D) = A. For P ∈ D and a ∈ A, the

upper contour set of a at P, denoted by U(a, P), is defined as the set of alternatives that are as good

as a in P, i.e., U(a, P) = {b ∈ A | bPa} ∪ a. A preference profile, denoted by PN = (P1, . . . , Pn), is

an element of Dn = D × . . . ×D.

A preference P is called single-peaked if for all a, b ∈ A, [r1(P) � a ≺ b or b ≺ a � r1(P)]

implies aPb. A domain is called single-peaked if each preference in the domain is single-peaked

and is called maximal single-peaked if it contains all single-peaked preferences.

For P ∈ L(A) and B ⊆ A, P|B ∈ L(B) is defined as follows: for all a, b ∈ B, aP|Bb if and

4Whenever we write minimum or maximum of a subset of A, we mean it w.r.t. the ordering ≺ over A.
5By a � b, we mean a = b or a ≺ b.
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only if aPb. For D ⊆ L(A), PN ∈ Dn, and B ⊆ A, we define D|B = {P|B | P ∈ D} and

PN |B = (P1|B, . . . , Pn|B). For B ⊆ A, a domain D of preferences is called a single-peaked domain

restricted to B if D|B is a single-peaked domain.

By △A, we denote the set of probability distributions on A. For two sets X, Y, we define the

symmetric difference of X and Y as X▽Y = (X \ Y) ∪ (Y \ X).

A Random Social Choice Function (RSCF) is a function ϕ : Dn → △A. For B ⊆ A and PN ∈ Dn,

we define by ϕB(PN) = ∑a∈B ϕa(PN), where ϕa(PN) is the probability of a at ϕ(PN).

REMARK 2.1. For all L, L′ ∈ △A and all P ∈ L(A), if LU(x,P) ≥ L′
U(x,P) and L′

U(x,P) ≥ LU(x,P) for

all x ∈ A, then L = L′.

For RSCFs ϕj, j = 1, . . . , k and nonnegative numbers λj, j = 1, . . . , k, summing to 1, we define

the RSCF ϕ = ∑
k
j=1 ϕj by ϕa(PN) = ∑

k
j=1 λj ϕ

j
a(PN) for all PN ∈ Dn and all a ∈ A. We call ϕ a

convex combination of the RSCFs ϕj.

Definition 2.1. An RSCF ϕ : Dn → △A is called unanimous if for all a ∈ A and all PN ∈ Dn,

[r1(Pi) = a for all i ∈ N] ⇒ [ϕa(PN) = 1].

Definition 2.2. An RSCF ϕ : Dn → △A is called strategy-proof if for all i ∈ N, all PN ∈ Dn, all

P′
i ∈ D, and all x ∈ A,

∑
y∈U(x,Pi)

ϕy(Pi, P−i) ≥ ∑
y∈U(x,Pi)

ϕy(P′
i , P−i).

REMARK 2.2. An RSCF is called a DSCF if it selects a degenerate probability distribution at every

preference profile. More formally, An RSCF ϕ : Dn → △A is called a DSCF if ϕa(PN) ∈ {0, 1}

for all a ∈ A and all PN ∈ Dn. The notions of unanimity and strategy-proofness for DSCFs are

special cases of the corresponding definitions for RSCFs.

Definition 2.3. Two profiles PN, P′
N ∈ Dn are called tops-equivalent if r1(Pi) = r1(P′

i ) for all i ∈ N.

Definition 2.4. An RSCF ϕ : Dn → △A is called tops-only if ϕ(PN) = ϕ(P′
N) for all tops-

equivalent PN, P′
N ∈ Dn.

Definition 2.5. A DSCF f on Dn is called a generalized tops-restricted min-max (GTM) rule if for all

S ⊆ N, there exists βS ∈ τ(D) satisfying

βT � βS for all S ⊆ T
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such that

f (PN) = min
S⊆N

[

max
i∈S

{r1(Pi), βS}

]

.

A GTM rule on Dn is called a tops-restricted min-max (TM) rule if β∅ = max(τ(D)) and βN =

min(τ(D)). If τ(D) = A, then a GTM rule is called a generalized min-max rule and a TM rule is

called a min-max rule.

Note that GTM rules are not unanimous, whereas TM rules are unanimous.

REMARK 2.3. Let f : Dn → A be a GTM rule. Define f̂ : (D|τ(D))
n → τ(D) such that f̂ (PN |τ(D)) =

f (PN). This is well-defined since f is tops-only and f (PN) ∈ τ(D) for all PN ∈ Dn. Then, f is

strategy-proof if and only if f̂ is strategy-proof.

Definition 2.6. An RSCF ϕ : Dn → △A is called a tops-restricted random min-max (TRM) rule if ϕ

can be written as a convex combination of some TM rules. If τ(D) = A, then a TRM rule is called

a random min-max rule.

Definition 2.7. An RSCF ϕ : Dn → △A is called uncompromising if ϕB(PN) = ϕB(P′
i , P−i) for all

i ∈ N, all PN ∈ Dn, all P′
i ∈ D, and all B ⊆ A such that B ∩ [r1(Pi), r1(P′

i )] = ∅.

REMARK 2.4. An uncompromising RSCF is tops-only by definition.

Definition 2.8. Let D be a domain with τ(D) = {b1, . . . , bk}. Then, D is called top-rich if

(i) for all bj, bj+1 ∈ τ(D), there exist P = bjbj+1 . . . , P′ = bj+1bj . . . ∈ D such that

U(bl, P)▽U(bl, P′) ⊆ τ(D) for all bl ∈ τ(D), and

(ii) for all r < s < t and all Pbr , Pbt ∈ D, U(bs, Pbr) ∩ U(bs, Pbt) = bs.

Condition (i) ensures some type of richness of the domain w.r.t. the top-set. It says the

following. Take two alternatives, say bj, bj+1, that are consecutive in the top-set, that is, there is no

other alternative in the top-set that lies in-between (w.r.t. the prior order ≺) those two alternatives.

Then, there must be two preferences P = bjbj+1 . . . , P′ = bj+1bj . . . such that for all b ∈ τ(D) and

c /∈ τ(D), bPc if and only if bP′c. Condition (ii) ensures that the domain respects the prior order ≺

over the alternatives in a suitable sense. For instance, as we show in Lemma A.1, one implication

of this condition is that a top-rich domain restricted to its top-set is single-peaked. However,

Condition (ii) is stronger than implying that the domain restricted to its top-set is single-peaked

as it puts some restrictions on the ranking of the alternatives outside the top-set.

Below, we provide an example of a top-rich domain.
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Example 2.1. Let the set of alternatives be A = {a1, a2, a3, a4, a5} with prior order a1 ≺ . . . ≺ a5.

Consider the domain D = {P1, . . . , P7} given in Table 1.

P1 P2 P3 P4 P5 P6 P7

a1 a1 a3 a3 a3 a5 a5

a2 a3 a1 a1 a5 a3 a4

a3 a2 a2 a4 a1 a1 a3

a4 a4 a4 a2 a2 a2 a2

a5 a5 a5 a5 a4 a4 a1

Table 1

Note that τ(D) = {b1, b2, b3}, where b1 = a1, b2 = a3, and b3 = a5. We show that D is a

top-rich domain, in particular, we show that it satisfies Conditions (i) and (ii) in Definition 2.8.

For Condition (i), consider, for instance, b1 and b2. Take P = P2 = a1a3 . . . and P′ = P4 =

a3a1 . . .. Then, rl(P) = rl(P′) for all l ≥ 3, and hence U(x, P)▽U(x, P′) = ∅ for all x ∈ τ(D) \

{b1, b2}. So, Condition (i) is satisfied for b1 and b2. Similarly, Condition (i) can be verified for b2

and b3.

For Condition (ii), consider r = 1, s = 2, t = 3, and preferences Pb1 = P1 and Pb3 = P5. Then,

U(b2, Pb1) = {a1, a2, a3} and U(b2, Pb3) = {a3, a4, a5}. Therefore, U(b2, Pb1) ∩ U(b2, Pb3) = {b2},

as required by Condition (ii). Similarly, Condition (ii) can be verified for other cases.

3. RESULTS

3.1 STRATEGY-PROOFNESS AND UNANIMITY

In this subsection, we present our main result characterizing the unanimous and strategy-proof

RSCFs on top-rich domains.

In the following theorem, we show that a unanimous and strategy-proof RSCF on a top-rich

domain never assigns a positive probability to an alternative outside the top-set, and such an

RSCF is uncompromising.

Theorem 3.1. Let D be a top-rich domain and let ϕ : Dn → △A be a unanimous and strategy-proof

RSCF. Then,

(i) ϕτ(D)(PN) = 1 for all PN ∈ Dn, and

(ii) ϕ is uncompromising.
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The proof of this theorem is relegated to Appendix A.

Our next theorem provides a characterization of the unanimous and strategy-proof RSCFs on

top-rich domains.

Theorem 3.2. Let D be a top-rich domain and let ϕ : Dn → △A be an RSCF. Then, ϕ is unanimous and

strategy-proof if and only if it is a TRM rule.

The proof of this theorem is relegated to Appendix B.

3.1.1 TOP-CONNECTED TRM DOMAINS

In this section, we provide a characterization of the domains on which (i) every TRM rule is

strategy-proof, and (ii) every unanimous and strategy-proof rule is a TRM rule. For tractability

and transparency, we restrict our attention to the top-connected domains. We call such domains

top-connected TRM domains. Below, we provide a formal definition of such domains.

Definition 3.1. Two preferences P, P′ ∈ D are called top-connected, denoted by P∼P′, if r1(P) =

r2(P′), r1(P′) = r2(P), and rl(P) = rl(P′) for all l ≥ 3.

Definition 3.2. A domain D with τ(D) = {b1, . . . , bk} satisfies the top-connectedness property if

for all j = 1, . . . , k − 1, there exist P ∈ Dbj , P′ ∈ Dbj+1 such that P∼P′.

Definition 3.3. A domain D is called a TRM domain if

(i) every TRM rule on Dn is strategy-proof, and

(ii) every unanimous and strategy-proof RSCF on Dn is a TRM rule.

Furthermore, a domain is called a top-connected TRM domain if it is a TRM domain and it

satisfies top-connectedness.

In the following, we establish a crucial property of TRM domains.

Lemma 3.1. Let D be a TRM domain. Then, D|τ(D) is a single-peaked domain.

Proof. Let τ(D) = {b1, . . . , bk}. Assume for contradiction that there exists Q ∈ D such that Q|τ(D)

is not single-peaked. Without loss of generality, this means there exist br, bs with br ≺ bs ≺ r1(Q)

such that brQbs. Consider the tops-restricted min-max rule f on Dn such that βS = br for all

10



non-empty S ( N. Consider the profile PN ∈ Dn such that P1 = Q and r1(Pi) = bs for all i 6= 1.

Then, by the definition of f , f (PN) = bs. Let P′
1 ∈ D be such that r1(P′

1) = br. Again, by the

definition of f , f (P′
1, P−1) = br. Because brQbs, this means agent 1 manipulates at PN via P′

1,

which is a contradiction. �

Our next theorem provides a characterization of top-connected TRM domains.

Theorem 3.3. A domain D is a top-connected TRM domain if and only if it is a top-rich domain satisfying

top-connectedness.

The proof of this theorem is relegated to Appendix C.

3.2 STRATEGY-PROOFNESS AND TOPS-ONLYNESS

In this subsection, we replace unanimity by tops-onlyness and characterize the tops-only and

strategy-proof RSCFs on top-rich domains. First, we introduce the notion of a non-top constant

rule that we use in our characterization.

Definition 3.4. A DSCF f : Dn → A is called a non-top constant rule if there exists c ∈ A \ τ(D)

such that f (PN) = c for all PN ∈ Dn.

The following example shows that tops-only and strategy-proof on top-rich domains is not

necessarily uncompromising.

Example 3.1. Let the set of alternatives be A = {a1, a2, a3, a4, a5} with prior order a1 ≺ . . . ≺ a5.

Consider the domain D = {a1a2a3a4a5, a2a1a4a3a5, a2a5a1a4a3, a5a2a1a3a4}. It is easy to see that

D is a top-rich domain with τ(D) = {a1, a2, a5}. Consider the RSCF, say ϕ, given in Table 2. It

can be verified that ϕ is tops-only and strategy-proof . We show ϕ is not uncompromising. Con-

sider the outcomes ϕ(a1a2a3a4a5, a1a2a3a4a5) = (.3, .2, .2, .1, .2) and ϕ(a1a2a3a4a5, a2a1a4a3a5) =

(.2, .3, .1, .2, .2). Here, agent 2 changes his top from a1 to a2, but the probabilities of a3 and a4 are

changed. Hence, ϕ is not uncompromising.

In view of Example 3.1, we look for an additional condition on top-rich domains to ensure

uncompromisingness for the tops-only and strategy-proof RSCFs. We show in our next theorem

that top-connectedness is one such condition. More formally, we show that if a top-rich domain

satisfies top-connectedness, then every tops-only and strategy-proof RSCF defined on it is un-

compromising. We further show that such a rule assigns a fixed probability to the top-set of the

domain.
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1
2 a1a2a3a4a5 a2a1a4a3a5 a2a5a1a4a3 a5a2a1a3a4

a1a2a3a4a5 (.3, .2, .2, .1, .2) (.2, .3, .1, .2, .2) (.2, .3, .1, .2, .2) (.2, .2, .2, .1, .3)
a2a1a4a3a5 (.3, .2, .2, .1, .2) (.2, .3, .1, .2, .2) (.2, .3, .1, .2, .2) (.2, .2, .1, .2, .3)
a2a5a1a4a3 (.3, .2, .2, .1, .2) (.2, .3, .1, .2, .2) (.2, .3, .1, .2, .2) (.2, .2, .1, .2, .3)
a5a2a1a3a4 (.3, .2, .2, .1, .2) (.2, .3, .1, .2, .2) (.2, .3, .1, .2, .2) (.2, .2, .1, .2, .3)

Table 2

Theorem 3.4. Let D be a top-rich domain satisfying top-connectedness and let ϕ : Dn → △A be a

tops-only and strategy-proof RSCF. Then,

(i) ϕ is uncompromising,

(ii) there exists 0 ≤ α ≤ 1 such that ϕτ(D)(PN) = α for all PN ∈ Dn, and

(iii) ϕc(PN) = ϕc(P′
N) for all PN, P′

N ∈ Dn and all c ∈ A \ τ(D).

The proof of this theorem is relegated to Appendix D.

Now, we provide a characterization of the tops-only and strategy-proof RSCFs on top-rich

domains satisfying top-connectedness.

Theorem 3.5. Let D be a top-rich domain satisfying top-connectedness and let ϕ : Dn → △A be an

RSCF. Then, ϕ is tops-only and strategy-proof if and only if it is a convex combination of GTM rules and

non-top constant rules.

The proof of this theorem is relegated to Appendix E.

4. APPLICATION

In this section, we demonstrate the applicability of our results in characterizing the unanimous

and strategy-proof random rules on some well-known domains.

4.1 SINGLE-PEAKED DOMAINS

As discussed earlier, many domains of practical importance satisfy single-peakedness property.

Ehlers et al. (2002) characterize the unanimous and strategy-proof RSCFs on maximal single-

peaked domains as fixed-probabilistic-ballots rules, and Peters et al. (2014) show that such an

12



RSCF is a convex combination of min-max rules. In what follows, we characterize all single-

peaked domains where every unanimous and strategy-proof RSCF is a convex combination of

min-max rules. We call such domains regular random min-max domains.

4.1.1 REGULAR RANDOM MIN-MAX DOMAINS

We begin with the formal definition of regular random min-max domains.

Definition 4.1. A domain D is called a regular random min-max domain if

(i) D is regular,

(ii) every random min-max rule on Dn is strategy-proof, and

(iii) every unanimous and strategy-proof RSCF on Dn is a random min-max rule.

Now, we introduce the notion of a weakly top-connected single peaked domain. Two pref-

erences P, P′ ∈ D are called weakly top-connected if P = ab . . . and P′ = ba . . . for some a, b ∈ A.

Note that P and P′ might have different orderings over the alternatives other than their top two

alternatives.

Definition 4.2. A domain D is called a weakly top-connected single peaked domain if D is a single-

peaked domain and for all 1 ≤ j < m, there exist P ∈ Daj , P′ ∈ Daj+1 such that P and P′ are

weakly top-connected.

REMARK 4.1. A weakly top-connected single-peaked domain trivially satisfies Condition (i) in

Definition 2.8.

Our next theorem provides a characterization of regular random min-max domains.

Theorem 4.1. A domain is a regular random min-max domain if and only if it is a weakly top-connected

single-peaked domain.

Proof. (If Part) Let D be a weakly top-connected single-peaked domain. We show that D is a

regular random min-max domain. By Remark 4.1, D satisfies Condition (i) in Definition 2.8.

Moreover, since D is single-peaked, Condition (ii) in Definition 2.8 is also satisfied. Therefore, D

is a top-rich domain with τ(D) = A. So, by Theorem 3.2, D is a regular random min-max domain.
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(Only-if Part) Let D be a regular random min-max domain. Then, by definition, D is a TRM

domain with τ(D) = A. Therefore, by Lemma 3.1, D is single-peaked. We show D is weakly

top-connected. Assume for contradiction that for some j < m, there do not exist P, P′ ∈ D such

that P = ajaj+1 . . . and P′ = aj+1aj . . .. Without loss of generality, assume that r2(P) 6= aj+1 for all

P ∈ Daj . Since D is single-peaked, this means j 6= 1 and r2(P) = aj−1 for all P ∈ Daj . Consider

the DSCF f on Dn as follows:6

f (PN) =



















r1(P1) if r1(P1) 6= aj,

aj if r1(P1) = aj and ajP2aj−1,

aj−1 otherwise.

It can be verified that f is unanimous and strategy-proof. We show that f is not a min-max

rule. In particular, we show that f is not uncompromising. This is sufficient as every min-max

rule is uncompromising. Let PN ∈ Dn be such that r1(P2) = a1. Then, by the definition of f ,

f (PN) = aj−1 when r1(P1) = aj, and f (P′
1, P−1) = aj+1 when r1(P′

1) = aj+1. This clearly violates

uncompromisingness for agent 1. This completes the proof of the only-if part. �

4.1.2 STRATEGY-PROOF AND TOPS-ONLY RANDOM RULES

In this subsection, we provide a characterization of the tops-only and strategy-proof RSCFs on

top-connected single-peaked domains. First, we show by means of an example that weakly

top-connected single-peaked domains do not guarantee uncompromisingness for the tops-only

and strategy-proof RSCFs on those domains.

Example 4.1. Let the set of alternatives be A = {a1, a2, a3, a4} with prior order a1 ≺ . . . ≺ a4.

Consider the domain D = {a1a2a3a4, a2a1a3a4, a2a3a1a4, a3a2a4a1, a3a4a2a1, a4a3a2a1}. It can be

easily verified that D is a weakly top-connected single-peaked domain. Consider the RSCF, say

ϕ, given in Table 3. It is left to the reader to verify that ϕ is tops-only and strategy-proof . We

show that ϕ is not uncompromising. Consider the outcomes ϕ(a1a2a3a4, a2a3a1a4) = (.3, .3, .2, .2)

and ϕ(a1a2a3a4, a3a2a4a1) = (.2, .2, .3, .3). Here, agent 2 changes his top from a2 to a3, but the

probabilities of a1 and a4 are changed. Hence, ϕ is not uncompromising.

In view of Example 4.1, we strengthen weak top-connectedness by requiring top-connectedness.

6Here D satisfies the unique seconds property defined in Aswal et al. (2003) and the SCF f considered here is
similar to the one used in the proof of Theorem 5.1 in Aswal et al. (2003).
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1
2 a1a2a3a4 a2a1a3a4 a2a3a1a4 a3a2a4a1 a3a4a2a1 a4a3a2a1

a1a2a3a4 (.3, .3, .2, .2) (.3, .3, .2, .2) (.3, .3, .2, .2) (.2, .2, .3, .3) (.2, .2, .3, .3) (.2, .2, .3, .3)
a2a1a3a4 (.3, .3, .2, .2) (.3, .3, .2, .2) (.3, .3, .2, .2) (.2, .2, .3, .3) (.2, .2, .3, .3) (.2, .2, .3, .3)
a2a3a1a4 (.3, .3, .2, .2) (.3, .3, .2, .2) (.3, .3, .2, .2) (.2, .2, .3, .3) (.2, .2, .3, .3) (.2, .2, .3, .3)
a3a2a4a1 (.3, .3, .2, .2) (.3, .3, .2, .2) (.3, .3, .2, .2) (.2, .2, .3, .3) (.2, .2, .3, .3) (.2, .2, .3, .3)
a3a4a2a1 (.3, .3, .2, .2) (.3, .3, .2, .2) (.3, .3, .2, .2) (.2, .2, .3, .3) (.2, .2, .3, .3) (.2, .2, .3, .3)
a4a3a2a1 (.3, .3, .2, .2) (.3, .3, .2, .2) (.3, .3, .2, .2) (.2, .2, .3, .3) (.2, .2, .3, .3) (.2, .2, .3, .3)

Table 3

Clearly, a top-connected single-peaked domain is a top-rich domain satisfying top-connectedness.

Moreover, such a domain is regular by definition. Therefore, there does not exist any non-top

constant rule on such domains. This yields the following corollary.

Corollary 4.1. Let D be a top-connected single-peaked domain and let ϕ : Dn → △A be an RSCF. Then,

ϕ is tops-only and strategy-proof if and only if it is a convex combination of generalized min-max rules.

4.2 SINGLE-CROSSING DOMAINS

In this subsection, we introduce the notion of single-crossing domains and provide a characteriza-

tion of the unanimous (tops-only) and strategy-proof RSCFs on these domains.

Definition 4.3. A domain D is called a single-crossing domain w.r.t. an ordering < over D if for all

a, b ∈ A and all P, P′ ∈ D,

[a ≺ b, P < P′, and bPa] =⇒ bP′a.

A domain is called single-crossing if it is single-crossing w.r.t. some ordering over the domain.

Definition 4.4. A single-crossing domain D̄ is called maximal if there does not exist a single-

crossing domain D such that D̄ ( D.

REMARK 4.2. A maximal single-crossing domain with m alternatives contains m(m − 1)/2 + 1

preferences.7

Definition 4.5. A domain D is called a successive single-crossing domain if there is a maximal

single-crossing domain D̄ w.r.t. some ordering <, and P′, P′′ ∈ D̄ with P′ ≤ P′′ such that

D = {P ∈ D̄ | P′ ≤ P ≤ P′′}.

7For details see Saporiti (2009).

15



The notion of a successive single-crossing domain is introduced in Carroll (2012). In the

following example, we present a maximal single-crossing domain and a successive single-crossing

domain with 5 alternatives.

Example 4.2. Let the set of alternatives be A = {a1, a2, a3, a4, a5} with prior order a1 ≺ . . . ≺ a5.

Consider the domain D̄ = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a2a3a4a1a5, a2a4a3a1a5, a4a2a3a1a5,

a4a2a3a5a1, a4a3a2a5a1, a4a3a5a2a1, a4a5a3a2a1, a5a4a3a2a1}. Then, D̄ is a maximal single-crossing

domain w.r.t. the ordering < over D̄ given by a1a2a3a4a5 < a2a1a3a4a5 < a2a3a1a4a5 < a2a3a4a1a5 <

a2a4a3a1a5 < a4a2a3a1a5 < a4a2a3a5a1 < a4a3a2a5a1 < a4a3a5a2a1 < a4a5a3a2a1 < a5a4a3a2a1.

Note that the cardinality of A is 5 and that of D̄ is 5(5− 1)/2+ 1 = 11. Now, consider the domain

D = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a2a3a4a1a5}. Then, D is a successive single-crossing

domain.

Our next lemma shows that every successive single-crossing domain is a top-rich domain

satisfying top-connectedness.

Lemma 4.1. Let D be a successive single-crossing domain. Then, D is a top-rich domain satisfying

top-connectedness.

Proof. Let D be a successive single-crossing domain. Then, by the definition of successive single-

crossing domain, there is a a maximal single-crossing domain D̄ w.r.t. some ordering < such

that D = {P ∈ D̄ | P̃ ≤ P ≤ ˜̃P} for some P̃, ˜̃P ∈ D̄ with P̃ ≤ ˜̃P. Suppose τ(D) = {b1, . . . , bk}.

We show that for all j = 1, 2, . . . , k − 1, there are P ∈ Dbj and P′ ∈ Dbj+1 such that P ∼ P′. Take

bj, bj+1 ∈ τ(D) and take P̄ ∈ Dbj and P̂ ∈ Dbj+1 . Since bjP̄bj+1, bj+1P̂bj, and bj ≺ bj+1, it follows

from the definition of single-crossing domain that P̄ < P̂. Using a similar argument, Pbl < P̄

for all l < j, and Pbl > P̂ for all l > j + 1. Therefore, there must be P ∈ Dbj and P′ ∈ Dbj+1 that

are consecutive in the ordering < meaning that there is no P′′ ∈ D with P < P′′
< P′. We show

P ∼ P′. Suppose not. Let a be the alternative such that aP!bj+1. Consider the preference P′′ that

is obtained by switching the alternatives a and bj+1 in P, i.e., P′′▽P = {(a, bj+1), (bj+1, a)}. We

show P′′ /∈ D̄. In particular, we show that P′′ 6< P and P′ 6< P′′. This is sufficient since P and P′

are consecutive in the ordering <. Suppose P′′
< P. Since aPbj+1, P < P′, and bj+1P′a, by the

single-crossing property of D̄, it must be that a ≺ bj+1. However, because bj+1P′′a and aPbj+1,

this contradicts P′′
< P. Now, suppose P′

< P′′. Since P < P′, there must be a pair of alternatives

c, d with c ≺ d such that cPd and dP′c. Moreover, because P and P′ are not top-connected, it must
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be that {c, d} 6= {a, bj+l}. Since c ≺ d, dP′c, and P′
< P′′, by the single-crossing property of D̄,

we have dP′′c. However, by the construction of P′′, we have cP′′d, a contradiction. Thus, we

have P′′ /∈ D̄. However, this means D̄ ∪ P′′ is a single-crossing domain w.r.t. the ordering <
′

over D̄ ∪ P′′, where <
′ is obtained by placing P′′ in-between P and P′ in the ordering <, i.e., <′

coincides with < over D̄ and P <
′ P′′

<
′ P′. This contradicts that D̄ is a maximal single-crossing

domain. Therefore, P ∼ P′.

Now, we show that U(bs, Pbr) ∩ U(bs, Pbt) = {bs} for all r < s < t and all Pbr , Pbt ∈ D.

Assume for contradiction that a ∈ U(bs, Pbr) ∩ U(bs, Pbt) for some a 6= bs. Take Pbs ∈ D. Using

a similar argument as before, we have Pbr < Pbs < Pbt . Because a ∈ U(bs, Pbr) ∩ U(bs, Pbt), we

have aPbr bs, bsPbs a, and aPbt bs. Now, if a ≺ bs, then by the single-crossing property of D, bsPbs a

and Pbs < Pbt together imply bsPbt a, a contradiction. On the other hand, if bs ≺ a, then by the

single-crossing property of D, aPbr bs and Pbr < Pbs together imply aPbs bs, a contradiction. This

completes the proof. �

Our next two corollaries characterize the unanimous (tops-only) and strategy-proof RSCFs on

successive single-crossing domains. Note that if a domain D satisfies Condition (ii) in Definition

2.8, then any subdomain (i.e., subset) of D also satisfies the same. Moreover, if a domain satisfies

top-connectedness, then it satisfies Condition (i) in Definition 2.8.

Corollary 4.2. Let D be a subset of a successive single-crossing domain satisfying Condition (i) in

Definition 2.8 and let ϕ : Dn → △A be an RSCF. Then, ϕ is unanimous and strategy-proof if and only if

it is a TRM rule.

Corollary 4.3. Let D be a subset of successive single-crossing domain satisfying top-connectedness and

let ϕ : Dn → △A be an RSCF. Then, ϕ is tops-only and strategy-proof if and only if it is a convex

combination of GTM and non-top constant rules.

4.3 SINGLE-DIPPED DOMAINS

In this subsection, we introduce the notion of single-dipped domains and present a characteriza-

tion of the unanimous (tops-only) and strategy-proof RSCFs on these domains. We begin with

the formal definition of single-dipped domains.

Definition 4.6. A preference P is called single-dipped if P has a unique minimal element d(P), the

dip of P, such that for all a, b ∈ A, [d(P) � a ≺ b or b ≺ a � d(P)] ⇒ bPa. A domain is called
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single-dipped if each preference in it is single-dipped.

A single-dipped domain vacuously satisfies Condition (ii) in Definition 2.8. Therefore, a

single-dipped domain satisfying Condition (i) in Definition 2.8 is a top-rich domain. This yields

the following two corollaries.

Corollary 4.4. Let D be a single-dipped domain satisfying Condition (i) in Definition 2.8 and let ϕ :

Dn → △A be an RSCF. Then, ϕ is unanimous and strategy-proof if and only if it is a TRM rule.

Corollary 4.5. Let D be a single-dipped domain satisfying top-connectedness and let ϕ : Dn → △A be

an RSCF. Then, ϕ is tops-only and strategy-proof if and only if it is a convex combination of GTM and

non-top constant rules.

4.4 BINARY-RESTRICTED DOMAINS

The notion of binary-restricted domains is introduced in Peters et al. (2017). However, their notion

is based on weak preferences, i.e., preferences with indifferences. For the sake of completeness,

we present below the definition of binary-restricted domains for strict preferences.

Definition 4.7. A domain D is called a stricly binary-restricted domain if |τ(D)| = 2.

The following corollaries are an immediate consequence of Theorem 3.2 and Theorem 3.5.

Corollary 4.6. Let D be a strictly binary-restricted domain satisfying Condition (i) in Definition 2.8 and

let ϕ : Dn → △A be an RSCF. Then, ϕ is unanimous and strategy-proof if and only if it is a TRM rule.

Corollary 4.7. Let D be a strictly binary-restricted domain satisfying top-connectedness and let ϕ : Dn →

△A be an RSCF. Then, ϕ is tops-only and strategy-proof if and only if it is a convex combination of GTM

and non-top constant rules.

4.5 OTHER DOMAINS

In this subsection, we present a class of top-rich domains that are neither single-peaked nor

single-dipped nor single-crossing domains. In order to illustrate the practical significance of

such domains, let us consider a public good location problem of the following type. Suppose

that there are ten available locations b1, . . . , b5, c1, . . . , c5 to locate a public good amongst which

only b1, . . . , b5 are the residential areas. Assume that the agents base their preferences over the
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locations on some type of distances (geometric/traffic or so). Suppose further that the ties are

broken on both sides. Naturally, the top-alternative in any such preference can only be one of

the locations b1, . . . , b5. Figure 1 presents the communication graph together with the distances

between the locations, and Table 4 presents the domain that is based on the graph in Figure 1.

b1 b2 b3 b4 b5

c1
c2

c3

c4

c5

2.5

2.7

2.3
2.9

3.3

2 2 2 2

Figure 1

P1 P2 P3 P4 P5 P6 P7 P8

b1 b2 b2 b3 b3 b4 b4 b5

b2 b1 b3 b2 b4 b3 b5 b4

c1 c1 c2 c2 c3 c3 c4 c4

c2 c2 c3 c3 c2 c2 c5 c5

c3 c3 c1 c1 c4 c4 b3 b3

b3 b3 b1 b1 b2 b2 c3 c3

b4 b4 b4 b4 b5 b5 c2 c2

c4 c4 c4 c4 c1 c1 b2 b2

c5 c5 c5 c5 c5 c5 c1 c1

b5 b5 b5 b5 b1 b1 b1 b1

Table 4

It is fairly straightforward to verify that the domain in Table 4 is a top-rich domain satisfying

top-connectedness. This yields the following corollaries.

Corollary 4.8. Let D be the domain in Table 4 and let ϕ : Dn → △A be an RSCF. Then, ϕ is unanimous

and strategy-proof if and only if it is a TRM rule.

Corollary 4.9. Let D be the domain in Table 4 and let ϕ : Dn → △A be an RSCF. Then, ϕ is tops-only

and strategy-proof if and only if it is a convex combination of GTM and non-top constant rules.
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4.6 DETERMINISTIC EXTREME POINT PROPERTY

In this subsection, we introduce the notion of deterministic extreme point property and show that

top-rich domains satisfy this property.

Definition 4.8. A domain D is said to satisfy deterministic extreme point property for unanimous

(tops-only) and strategy-proof RSCFs if every unanimous (tops-only) and strategy-proof RSCF on

Dn can be written as a convex combination of unanimous (tops-only) and strategy-proof DSCFs

on Dn.

The following two corollaries are obtained from Theorem 3.2 and Theorem 3.4.

Corollary 4.10. Top-rich domains satisfy deterministic extreme point property for unanimous and strategy-

proof RSCFs.

Corollary 4.11. Top-rich domains satisfying top-connectedness satisfy deterministic extreme point prop-

erty for tops-only and strategy-proof RSCFs.

5. GROUP STRATEGY-PROOFNESS

In this section, we consider group strategy-proofness and provide a characterization of the

unanimous (tops-only) and group strategy-proof RSCFs on top-rich domains. We begin with the

formal definition of group strategy-proofness.

Definition 5.1. An RSCF ϕ : Dn → △A is group strategy-proof if for all non-empty coalitions

C ⊆ N, all PN ∈ Dn, and all P′
C ∈ D|C|, there is i ∈ C such that for all x ∈ A

∑
y∈U(x,Pi)

ϕy(PN) ≥ ∑
y∈U(x,Pi)

ϕy(P′
C, P−C).

Group strategy-proofness implies that, whenever a non-empty coalition of agents misreport

their preferences, there is an agent in that coalition who does not strictly benefit from the misrep-

resentation.

REMARK 5.1. A convex combination of some unanimous (tops-only) and group strategy-proof

DSCFs is a unanimous (tops-only) and group strategy-proof RSCF.

Theorem 5.1. Let D be a top-rich domain. Then, an RSCF ϕ : Dn → △A is unanimous and group

strategy-proof if and only if it is a TRM rule.
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Proof. (If Part) A TRM rule is unanimous by definition. Therefore, in view of Remark 5.1, it

is sufficient to show that each TM rule is group strategy-proof. Let f be a TM rule. Define

f ′ : (D|τ(D))
n → A such that f ′(PN |τ(D)) = f (PN). By Remark 2.3, f ′ is well-defined. Because

D|τ(D) is single-peaked and f ′ is a min-max rule on (D|τ(D))
n, it follows from Barberà et al. (2010)

that f ′ is group strategy-proof. By the definition of f ′, this implies f is group strategy-proof. This

completes the if part of the proof.

(Only-if Part) Since every group strategy-proof RSCF is strategy-proof, the proof of this part

follows from Theorem 3.2. �

Theorem 5.2. Let D be a top-rich domain satisfying top-connectedness. Then, an RSCF ϕ : Dn → △A

is tops-only and group strategy-proof if and only if it is a convex combination of GTM rules and non-top

constant rules.

Proof. (If Part) Since GTM rules and non-top constant rules are all tops-only, a convex combination

of those is also tops-only. Moreover, non-top constant rules are clearly group strategy-proof.

Therefore, in view of Remark 5.1, it is sufficient to show that each GTM rule is group strategy-

proof. Let f be a GTM rule. Define f ′ : (D|τ(D))
n → A as in the proof of Theorem 5.1. Since f is a

GTM rule, f ′ is a generalized min-max rule. Moreover, because D|τ(D) is single-peaked and f ′

is a generalized min-max rule on (D|τ(D))
n, it follows from Barberà et al. (2010) that f ′ is group

strategy-proof.8 By the definition of f ′, this implies f is group strategy-proof. This completes the

if part of the proof.

(Only-if Part) Since every group strategy-proof RSCF is strategy-proof, the proof of this part

follows from Theorem 3.5. �

6. CONCLUSION

In this paper, we have shown that an RSCF on a top-rich domain is unanimous and strategy-proof

if and only if it can be written as a convex combination of tops-restricted min-max rules. We have

also provided a characterization of all domains where an RSCF is unanimous and strategy-proof

if and only if it is a random min-max rule. Further, we have characterized the tops-only and

strategy-proof RSCFs on top-rich domains satisfying the top-connectedness property. Finally, we

8Actually, Barberà et al. (2010) show that every min-max rule is group strategy-proof on the maximal single-
peaked domain. However, employing the same set of arguments, one can show that generalized min-max rules are
also group strategy-proof on the maximal single-peaked domains.
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establish the equivalence of strategy-proofness and group strategy-proofness on all the domains

we consider in this paper.

A. PROOF OF THEOREM 3.1

We present the proof of Theorem 3.1 in this section. First, we prove two lemmas that we use in

our proof. The following lemma establishes a crucial property of the top-rich domains.

Lemma A.1. Let D be a top-rich domain. Then, D|τ(D) is single-peaked.

Proof. Let D be a top-rich domain with τ(D) = {b1, . . . , bk}. We show that D|τ(D) is single-

peaked. Without loss of generality, assume for contradiction that there exists P ∈ D such that

r1(P) = bj and bl′Pbl for some l, l′ with l′ < l < j. Take P′ ∈ Dbl′ . Then, bl′ ⊆ U(bl, P) ∩ U(bl, P′),

which is a contradiction to Condition (ii) in Definition 2.8. This completes the proof. �

In the following, we prove a technical lemma that we use repeatedly in the proof of Theorem

3.1.

Lemma A.2. Let D be a domain and let ϕ : Dn → △A be a unanimous and strategy-proof RSCF. Let

PN ∈ Dn, P′
i ∈ D, and B ⊆ A be such that Pi|B = P′

i |B and ϕa(PN) = ϕa(P′
i , P−i) for all a /∈ B. Then,

ϕ(PN) = ϕ(P′
i , P−i).

Proof. Suppose not. Let b ∈ B be such that ϕb(PN) 6= ϕb(P′
i , P−i) and ϕa(PN) = ϕa(P′

i , P−i) for

all a ∈ B with aPib. In other words, b is the maximal element of B according to Pi that violates

the assertion of the lemma. Without loss of generality, assume that ϕb(PN) < ϕb(P′
i , P−i). Since

ϕc(PN) = ϕc(P′
i , P−i) for all c ∈ U(b, Pi) \ b, this means ϕU(b,Pi)

(PN) < ϕU(b,Pi)
(P′

i , P−i). Hence,

agent i manipulates at PN via P′
i , which is a contradiction. �

Proof of Theorem 3.1

SKETCH OF THE PROOF. We prove the theorem by using the method of induction. We start with

the base case n = 1. The theorem follows trivially for this case. Assuming that the theorem holds

for all sets with k < n agents, we proceed to prove it for n agents. First, we consider the set of

profiles D̂n = {PN ∈ Dn | P1 = P2} where agents 1 and 2 have the same preference. Since the

restriction of ϕ to D̂n induces a unanimous and strategy-proof RSCF on Dn−1, by the induction

hypothesis, we claim that the theorem holds for the restriction of ϕ to D̂n, i.e., ϕτ(D)(PN) = 1 for
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all PN ∈ D̂n and ϕ restricted to D̂n is uncompromising (in a suitable sense). Next, we show that

the same holds for the profiles where agents 1 and 2 have the same top alternative. Finally, in

order to prove the theorem for profiles where agents 1 and 2 have arbitrary top alternatives, we

use another level of induction on the ‘distance’ between the top alternatives of agents 1 and 2.

The distance between two alternatives bj+l, bj ∈ τ(D) is defined as l. Assuming that the theorem

holds for profiles where the distance between the top alternatives of agents 1 and 2 is less than l,

we prove it for the profiles where the said distance is l. By induction, this completes the proof of

the theorem.

Proof. We prove the theorem by using induction on the number of agents. Let D be a top-rich

domain with τ(D) = {b1, . . . , bk}.

Let |N| = 1 and let ϕ : D → △A be a unanimous and strategy-proof RSCF. Then, by unanimity,

ϕτ(D)(PN) = 1 for all PN ∈ D, and hence ϕ satisfies uncompromisingness.

Assume that the theorem holds for all sets with k < n agents. We prove it for n agents. Let

|N| = n and let ϕ : Dn → △A be a unanimous and strategy-proof RSCF. Suppose N∗ = N \ {1}.

Define the RSCF g : Dn−1 → △A for the set of voters N∗ as follows: for all PN∗ = (P2, P3, . . . ,

Pn) ∈ Dn−1,

g(P2, P3, . . . , Pn) = ϕ(P2, P2, P3, P4, . . . , Pn).

Evidently, g is a well-defined RSCF satisfying unanimity and strategy-proofness (See Lemma 3

in Sen (2011) for a detailed argument). Hence, by the induction hypothesis, gτ(D)(PN∗) = 1 for all

PN∗ ∈ Dn−1 and g satisfies uncompromisingness. In terms of ϕ, this means ϕτ(D)(PN) = 1 for all

PN ∈ Dn with P1 = P2. In the next lemma, we show that ϕτ(D)(PN) = 1 and ϕ is tops-only over

all profiles PN where agents 1 and 2 have the same top alternative, i.e., r1(P1) = r1(P2).

Lemma A.3. Let PN , P′
N ∈ Dn be two tops-equivalent profiles such that P1, P2 ∈ Dbj for some bj ∈ τ(D).

Then, ϕτ(D)(PN) = 1 and ϕ(PN) = ϕ(P′
N).

Proof. Note that since g is uncompromising, g satisfies tops-onlyness. Because g is tops-only

and P1, P2 ∈ Dbj , we have g(P1, P−{1,2}) = g(P2, P−{1,2}), and hence ϕ(P1, P1, P−{1,2}) = ϕ(P2,

P2, P−{1,2}). We show ϕ(P1, P2, P−{1,2}) = ϕ(P1, P1, P−{1,2}). Using strategy-proofness of ϕ for

agent 2, we have ϕU(x,P1)
(P1, P1, P−{1,2}) ≥ ϕU(x,P1)

(P1, P2, P−{1,2}) for all x ∈ A, and using

that for agent 1, we have ϕU(x,P1)
(P1, P2, P−{1,2}) ≥ ϕU(x,P1)

(P2, P2, P−{1,2}) for all x ∈ A. Since
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ϕ(P1, P1, P−{1,2}) = ϕ(P2, P2, P−{1,2}), it follows from Remark 2.1 that ϕ(P1, P1, P−{1,2}) = ϕ(P1,

P2, P−{1,2}). Using a similar logic, we have ϕ(P′
1, P′

1, P′
−{1,2}) = ϕ(P′

1, P′
2, P′

−{1,2}). Because g is

tops-only and PN, P′
N are tops-equivalent, we have g(P1, P−{1,2}) = g(P′

1, P′
−{1,2}). This means

ϕ(P1, P1, P−{1,2}) = ϕ(P′
1, P′

1, P′
−{1,2}), and hence ϕ(P1, P2, P−{1,2}) = ϕ(P′

1, P′
2, P′

−{1,2}). Moreover,

as ϕτ(D)(P1, P1, P−{1,2}) = 1, it follows that ϕτ(D)(P1, P2, P−{1,2}) = 1. �

Lemma A.4. Let PN , P′
N ∈ Dn be such that P1, P2 ∈ Dbj and P′

1, P′
2 ∈ Dbj+l for some 1 ≤ j ≤ j + l ≤ k,

and r1(Pi) = r1(P′
i ) for all i 6= 1, 2. Then, ϕb(PN) = ϕb(P′

N) for all b /∈ [bj, bj+l]τ(D).

Proof. Note that because g is uncompromising and gτ(D)(PN∗) = 1 for all PN∗ ∈ Dn−1, gb(P1,

P−{1,2}) = gb(P′
1, P−{1,2}) for all b /∈ [bj, bj+l]τ(D). Moreover, since g is tops-only and r1(Pi) =

r1(P′
i ) for all i ∈ {3, 4, . . . , n}, we have g(P′

1, P−{1,2}) = g(P′
1, P′

−{1,2}). By the definition of g,

g(P1, P−{1,2}) = ϕ(P1, P1, P−{1,2}) and g(P′
1, P−{1,2}) = ϕ(P′

1, P′
1, P−{1,2}). As r1(P1) = r1(P2)

and r1(P′
1) = r1(P′

2), Lemma A.3 implies ϕ(P1, P2, P−{1,2}) = ϕ(P1, P1, P−{1,2}) and ϕ(P′
1, P′

2,

P′
−{1,2}) = ϕ(P′

1, P′
1, P′

−{1,2}). Combining all these, we have ϕ(P1, P2, P−{1,2}) = ϕ(P′
1, P′

2, P′
−{1,2})

for all b /∈ [bj, bj+l]τ(D). �

Lemma A.5. Let PN , P′
N ∈ Dn be such that P1, P2, P′

1 ∈ Dbj and P′
2 ∈ Dbj+l , and r1(Pi) = r1(P′

i ) for all

i 6= 1, 2. Then, ϕc(PN) = ϕc(P′
N) for all c /∈ U(bj+l, P′

1) ∩ U(bj, P′
2).

Proof. By Lemma A.3, ϕ(P1, P2, P−{1,2}) = ϕ(P′
1, P′

1, P′
−{1,2}). Hence, it suffices to show that ϕc(P′

1,

P′
1, P′

−{1,2}) = ϕc(P′
1, P′

2, P′
−{1,2}) for c /∈ U(bj+l, P′

1) ∩ U(bj, P′
2). We prove this for c /∈ U(bj+l, P′

1),

the proof of the same when c /∈ U(bj, P′
2) follows from symmetric argument.

Take c /∈ U(bj+l, P′
1). Note that by strategy-proofness of ϕ,

ϕU(c,P′
1)
(P′

1, P′
1, P′

−{1,2}) ≥ ϕU(c,P′
1)
(P′

1, P′
2, P′

−{1,2}) ≥ ϕU(c,P′
1)
(P′

2, P′
2, P′

−{1,2}).

Moreover, by Lemma A.4, ϕb(P′
1, P′

1, P′
−{1,2}) = ϕb(P′

2, P′
2, P′

−{1,2}) for all b /∈ [bj, bj+l]τ(D), and

hence ϕB(P′
1, P′

1, P′
−{1,2}) = ϕB(P′

2, P′
2, P′

−{1,2}) for all B ⊆ A such that [bj, bj+l]τ(D) ⊆ B. Since

c /∈ U(bj+l , P′
1) and r1(P′

1) = bj, by the definition of top-rich domain, we have [bj, bj+l]τ(D) ⊆ U(c,

P′
1), and hence ϕU(c,P′

1)
(P′

1, P′
1, P′

−{1,2}) = ϕU(c,P′
1)
(P′

2, P′
2, P′

−{1,2}). Thus, we have

ϕU(c,P′
1)
(P′

1, P′
1, P′

−{1,2}) = ϕU(c,P′
1)
(P′

1, P′
2, P′

−{1,2}). (1)
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Let d be the alternative such that dP′
1!c. Then, [bj, bj+l]τ(D) ⊆ U(d, P′

1), and hence

ϕU(d,P′
1)
(P′

1, P′
1, P′

−{1,2}) = ϕU(d,P′
1)
(P′

1, P′
2, P′

−{1,2}). (2)

Subtracting (2) from (1), we have ϕc(P′
1, P′

1, P′
−{1,2}) = ϕc(P′

1, P′
2, P′

−{1,2}), which completes the

proof of the lemma. �

Lemma A.6. Let Pbj,bj+1 , Pbj+1,bj ∈ D be such that U(bl, Pbj,bj+1)▽U(bl, Pbj+1,bj) ⊆ τ(D) for all bl ∈

τ(D). Then, for all i ∈ N and all P−i ∈ Dn−1,

[ϕτ(D)(Pbj,bj+1 , P−i) = 1] =⇒ [ϕτ(D)(Pbj+1,bj , P−i) = 1].

Proof. Suppose not. Let Pbj,bj+1 and Pbj+1,bj be as defined in the lemma. Let c ∈ A \ τ(D) be

the highest ranked alternative in Pbj+1,bj that receives positive probability at ϕ(Pbj+1,bj , P−i), i.e.,

ϕc(Pbj+1,bj , P−i) > 0 and ϕd(Pbj+1,bj , P−i) = 0 for all d ∈ A \ τ(D) such that dPbj+1,bj c.

First, we show U(c, Pbj,bj+1)∩ τ(D) = U(c, Pbj+1,bj)∩ τ(D). Suppose not. Then, without loss of

generality, there exists b ∈ τ(D) such that b ∈ U(c, Pbj,bj+1) \ U(c, Pbj+1,bj). However, this means

c ∈ U(b, Pbj+1,bj) and c /∈ U(b, Pbj,bj+1), and hence c ∈ U(b, Pbj,bj+1)▽U(b, Pbj+1,bj). Since c /∈ τ(D),

this contradicts the assumption of lemma.

Next, we show ϕB′(Pbj,bj+1 , P−i) = ϕB′(Pbj+1,bj , P−i), where B′ = U(c, Pbj,bj+1) ∩ τ(D). As-

sume for contradiction that ϕB′(Pbj,bj+1 , P−i) 6= ϕB′(Pbj+1,bj , P−i). Suppose ϕB′(Pbj,bj+1 , P−i) <

ϕB′(Pbj+1,bj , P−i). Since ϕτ(D)(Pbj,bj+1 , P−i) = 1, we have ϕ
U(c,P

bj ,bj+1 )
(Pbj,bj+1 , P−i) = ϕB′(Pbj,bj+1 ,

P−i). Therefore, agent i manipulates ϕ at (Pbj,bj+1 , P−i) via Pbj+1,bj . Now, suppose ϕB′(Pbj,bj+1 ,

P−i) > ϕB′(Pbj+1,bj , P−i). Let d be the alternative such that dPbj+1,bj !c. Then, by our assumption

on c, ϕ
U(d,P

bj+1,bj )
(Pbj+1,bj , P−i) = ϕB′(Pbj+1,bj , P−i). Hence, agent i manipulates at (Pbj+1,bj , P−i) via

Pbj,bj+1 .

Now, we complete the proof of the lemma. Since c is the highest ranked alternative in

A \ τ(D) that receives positive probability at ϕ(Pbj+1,bj , P−i), it follows that ϕ
U(c,P

bj ,bj+1 )
(Pbj+1,bj ,

P−i) = ϕc(Pbj+1,bj , P−i) + ϕB′(Pbj+1,bj , P−i). Moreover, since ϕB′(Pbj,bj+1 , P−i) = ϕB′(Pbj+1,bj , P−i)

and ϕτ(D)(Pbj,bj+1 , P−i) = 1, we have ϕB′(Pbj,bj+1 , P−i) = ϕ
U(c,P

bj ,bj+1 )
(Pbj,bj+1 , P−i). Combining all

these, we have ϕ
U(c,P

bj ,bj+1 )
(Pbj+1,bj , P−i) > ϕ

U(c,P
bj ,bj+1 )

(Pbj,bj+1 , P−i), which means i manipulates

at (Pbj,bj+1 , P−i) via Pbj+1,bj , a contradiction. This completes the proof of the lemma. �

To simplify notation for the following lemma, for j < l, we define the distance from bl to bj,
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denoted by bl − bj, as l − j.

Lemma A.7. The RSCF ϕ is tops-only and ϕτ(D)(PN) = 1 for all PN ∈ Dn.9

Proof. We prove this lemma by using induction on the distance between the top alternatives of

agents 1 and 2.

Take 0 ≤ l ≤ k − 1. Suppose ϕτ(D)(PN) = 1 and ϕ(PN) = ϕ(P̃N) for all tops-equivalent

profiles PN , P̃N ∈ Dn with |r1(P2)− r1(P1)| ≤ l. We show ϕτ(D)(P′
N) = 1 and ϕ(P′

N) = ϕ(P̃′
N) for

all tops-equivalent profiles P′
N, P̃′

N ∈ Dn with |r1(P′
2)− r1(P′

1)| = l + 1.

Let PN, P′
N be such that P1, P′

1 ∈ Dbj , P2 ∈ Dbj+l , P′
2 ∈ Dbj+l+1 , and r1(Pi) = r1(P′

i ) for all

i 6= 1, 2. Further, let P̄1 = Pbj,bj+1 , P̂1 = Pbj+1,bj , P̂2 = Pbj+l ,bj+l+1 , and P̄2 = Pbj+l+1,bj+l be such that

U(bl, P̄i)▽U(bl, P̂i) ⊆ τ(D) for all i = 1, 2 and all bl ∈ τ(D). Note that such preferences exist by

the definition of top-rich domain. Then, by the induction hypothesis, ϕ(PN) = ϕ(P′
1, P̂2, P′

−{1,2}).

Now, we prove the following claims.

Claim 1. ϕτ(D)(P̄1, P̄2, P′
−{1,2}) = 1 and ϕ(P̄1, P̄2, P′

−{1,2}) = ϕ(P′
1, P̄2, P′

−{1,2}) = ϕ(P̄1, P′
2, P′

−{1,2}).

By the induction hypothesis, ϕτ(D)(P′
1, P̂2, P′

−{1,2}) = 1 and ϕ(PN) = ϕ(P̄1, P̂2, P′
−{1,2}) = ϕ(P′

1,

P̂2, P′
−{1,2}). Let P′′

1 ∈ {P′
1, P̄1}. By Lemma A.5,

ϕc(P′′
1 , P′′

1 , P′
−{1,2}) = ϕc(P′′

1 , P̂2, P′
−{1,2}) for all c /∈ U(bj+l, P′′

1 ) ∩ U(bj, P̂2), (3)

and

ϕc(P′′
1 , P′′

1 , P′
−{1,2}) = ϕc(P′′

1 , P̄2, P′
−{1,2}) for all c /∈ U(bj+l+1, P′′

1 ) ∩ U(bj, P̄2). (4)

As r1(P̂2)− r1(P′′
1 ) ≤ l, it follows from the induction hypothesis that ϕτ(D)(P′′

1 , P′′
1 , P′

−{1,2}) =

ϕτ(D)(P′′
1 , P̂2, P′

−{1,2}) = 1. Since U(bj+l, P′′
1 ) ∩ U(bj, P̂2) ∩ τ(D) = [bj, bj+l]τ(D), (3) implies

ϕb(P′′
1 , P′′

1 , P′
−{1,2}) = ϕb(P′′

1 , P̂2, P′
−{1,2}) for all b /∈ [bj, bj+l]τ(D). (5)

Moreover, since P̂2 = Pbj+l ,bj+l+1 , P̄2 = Pbj+l+1,bj+l , and ϕτ(D)(P′′
1 , P̂2, P′

−{1,2}) = 1, by Lemma

A.6, ϕτ(D)(P′′
1 , P̄2, P′

−{1,2}) = 1. This, in particular, means ϕτ(D)(P̄1, P̄2, P′
−{1,2}) = 1. Because

U(bj+l+1, P′′
1 ) ∩ U(bj, P̄2) ∩ τ(D) = [bj, bj+l+1]τ(D), (4) implies

9 Chatterji and Zeng (2015) provides a sufficient condition for a domain to be tops-only for RSCFs. However,
top-rich domains do not satisfy their condition.
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ϕb(P′′
1 , P′′

1 , P′
−{1,2}) = ϕb(P′′

1 , P̄2, P′
−{1,2}) for all b /∈ [bj, bj+l+1]τ(D). (6)

Combining (5) and (6), ϕb(P′′
1 , P̂2, P′

−{1,2}) = ϕb(P′′
1 , P̄2, P′

−{1,2}) for all b /∈ [bj, bj+l+1]τ(D). Since

P̂2 = Pbj+l ,bj+l+1 and P̄2 = Pbj+l+1,bj+l , we have by strategy-proofness that ϕ{bj+l ,bj+l+1}
(P′′

1 , P̂2,

P′
−{1,2}) = ϕ{bj+l ,bj+l+1}

(P′′
1 , P̄2, P′

−{1,2}). Let B′ = [bj, bj+l+1]τ(D) \ {bj+l, bj+l+1}. Then, ϕB′(P′′
1 , P̂2,

P′
−{1,2}) = ϕB′(P′′

1 , P̄2, P′
−{1,2}). Note that by Lemma A.1, P̂2|B′ = P̄2|B′ . Therefore, by Lemma

A.2,

ϕb(P′′
1 , P̂2, P′

−{1,2}) = ϕb(P′′
1 , P̄2, P′

−{1,2}) for all b 6= bj+l, bj+l+1. (7)

By the induction hypothesis, ϕ(P̄1, P̂2, P′
−{1,2}) = ϕ(P′

1, P̂2, P′
−{1,2}). Again, by Lemma A.1,

bj+l P̄1bj+l+1 and bj+lP
′
1bj+l+1, which means ϕ(P̄1, P̄2, P′

−{1,2}) = ϕ(P′
1, P̄2, P′

−{1,2}). Using a similar

logic, ϕ(P̄1, P̄2, P′
−{1,2}) = ϕ(P̄1, P′

2, P′
−{1,2}). This completes the proof of Claim 1.

Claim 2. ϕc(P′
1, P̄2, P′

−{1,2}) = ϕc(P′
N) for all c /∈ U(bj+l+1, P′

1) ∩ U(bj, P′
2).

By (6), ϕb(P′
1, P′

1, P′
−{1,2}) = ϕb(P′

1, P̄2, P′
−{1,2}) for all b /∈ [bj, bj+l+1]τ(D). Since [bj, bj+l+1]τ(D) ⊆

U(bj+l+1, P′
1) ∩ U(bj, P′

2), we have ϕc(P′
1, P′

1, P′
−{1,2}) = ϕc(P′

1, P̄2, P′
−{1,2}) for all c /∈ U(bj+l+1,

P′
1) ∩ U(bj, P′

2). Moreover, by Lemma A.5, ϕc(P′
1, P′

1, P′
−{1,2}) = ϕc(P′

N) for all c /∈ U(bj+l+1,

P′
1) ∩ U(bj, P′

2). Hence, ϕc(P′
1, P̄2, P′

−{1,2}) = ϕc(P′
N) for all c /∈ U(bj+l+1, P′

1) ∩ U(bj, P′
2). This

completes the proof of Claim 2.

Claim 3. ϕb(P′
1, P̄2, P′

−{1,2}) = ϕb(P′
N) for all b ∈ [bj, bj+l+1]τ(D).

First, we show ϕbj
(P′

1, P̄2, P′
−{1,2}) = ϕbj

(P′
N). By Claim 1, ϕ(P′

1, P̄2, P′
−{1,2}) = ϕ(P̄1, P′

2, P′
−{1,2}).

Moreover, as r1(P̄1) = r1(P′
1) = bj, by strategy-proofness, ϕbj

(P̄1, P′
2, P′

−{1,2}) = ϕbj
(P′

N). Combin-

ing, we have ϕbj
(P′

1, P̄2, P′
−{1,2}) = ϕbj

(P′
N).

Now, we complete the proof of Claim 3 by induction. Take s < l + 1. Suppose ϕbj+r
(P′

1, P̄2,

P′
−{1,2}) = ϕbj+r

(P′
N) for all 0 ≤ r ≤ s. We show ϕbj+s+1

(P′
1, P̄2, P′

−{1,2}) = ϕbj+s+1
(P′

N). We show

this in two steps. In Step 1, we show that if an alternative outside τ(D) appears above bj+s+1 in

the preference P′
1, then it receives zero probability at ϕ(P′

N). In Step 2, we use this fact to complete

the proof of the claim.

STEP 1. Take c ∈ A \ τ(D) such that cP′
1bj+s+1. We show ϕc(P′

N) = 0. Assume for contradiction

that ϕc(P′
N) > 0. Since cP′

1bj+s+1, by the definition of top-rich domain, we have bj+s+1P′
2c. Let

t ∈ {2, . . . , k − j− l} be such that U(bj+s+1, P′
2)∩ τ(D) = [bj+s+1, bj+l+1]τ(D) ∪ [bj+l+2, bj+l+t]τ(D).
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By Claim 1, ϕτ(D)(P′
1, P̄2, P′

−{1,2}) = 1, and hence

ϕU(bj+s+1,P′
2)
(P′

1, P̄2, P′
−{1,2}) = ϕ[bj+s+1,bj+l+1]τ(D)

(P′
1, P̄2, P′

−{1,2}) + ϕ[bj+l+2,bj+l+t]τ(D)
(P′

1, P̄2, P′
−{1,2})

= 1 − ϕ[b1,bj+s]τ(D)
(P′

1, P̄2, P′
−{1,2})− ϕ[bj+l+t+1,bk]τ(D)

(P′
1, P̄2, P′

−{1,2}).

(8)

By Claim 2, ϕbi
(P′

1, P̄2, P′
−{1,2}) = ϕbi

(P′
N) for all i ∈ [1, j− 1]∪ [j+ l + t+ 1, k], and by the assump-

tion of Claim 3, ϕbi
(P′

1, P̄2, P′
−{1,2}) = ϕbi

(P′
N) for all i ∈ [j, j + s]. Combining all these, we have

ϕ[b1,bj+s]τ(D)
(P′

1, P̄2, P′
−{1,2}) = ϕ[b1,bj+s]τ(D)

(P′
N) and ϕ[bj+l+t+1,bk]τ(D)

(P′
1, P̄2, P′

−{1,2}) = ϕ[bj+l+t+1,bk]τ(D)
(P′

N).

Note that the sets [b1, bj+s]τ(D), U(bj+s+1, P′
2), [bj+l+t+1, bk]τ(D), and {c} are pairwise disjoint.

Therefore, ϕ[b1,bj+s]τ(D)
(P′

N) + ϕU(bj+s+1,P′
2)
(P′

N) + ϕ[bj+l+t+1,bk]τ(D)
(P′

N) + ϕc(P′
N) ≤ 1. Hence,

ϕU(bj+s+1,P′
2)
(P′

N) ≤ 1 − ϕ[b1,bj+s]τ(D)
(P′

N)− ϕ[bj+l+t+1,bk]τ(D)
(P′

N)− ϕc(P′
N)

= 1 − ϕ[b1,bj+s]τ(D)
(P′

1, P̄2, P′
−{1,2})− ϕ[bj+l+t+1,bk]τ(D)

(P′
1, P̄2, P′

−{1,2})− ϕc(P′
N).

(9)

As ϕc(P′
N) > 0, (8) and (9) imply ϕU(bj+s+1,P′

2)
(P′

1, P̄2, P′
−{1,2}) > ϕU(bj+s+1,P′

2)
(P′

N), which means

agent 2 manipulates at P′
N via P̄2, a contradiction. This completes Step 1.

STEP 2. In this step, we complete the proof of the claim. In view of Claim 1, it is sufficient to show

that ϕbj+s+1
(P̄1, P′

2, P′
−{1,2}) = ϕbj+s+1

(P′
N).

Suppose ϕbj+s+1
(P̄1, P′

2, P′
−{1,2}) > ϕbj+s+1

(P′
N). If d ∈ U(bj+s+1, P′

1) \ τ(D), then by Step 1,

ϕd(P′
1, P̄2, P′

−{1,2}) = ϕd(P′
N), and by Claim 1, ϕd(P′

1, P̄2, P′
−{1,2}) = ϕd(P̄1, P′

2, P′
−{1,2}). On the

other hand, if d ∈ U(bj+s+1, P′
1) ∩ τ(D) and d 6= bj+s+1, which in turn means d = bj′ for some

j′ ≤ j + s, then by Claim 2 and the assumption of Claim 3, ϕd(P′
1, P̄2, P′

−{1,2}) = ϕd(P′
N). Also, by

Claim 1, ϕ(P′
1, P̄2, P′

−{1,2}) = ϕ(P̄1, P′
2, P′

−{1,2}). Combining all these, we have ϕd(P̄1, P′
2, P′

−{1,2}) =

ϕd(P′
N) for all d ∈ U(bj+s+1, P′

1) \ bj+s+1. Therefore, ϕbj+s+1
(P̄1, P′

2, P′
−{1,2}) > ϕbj+s+1

(P′
N) implies

ϕU(bj+s+1,P′
1)
(P̄1, P′

2, P′
−{1,2}) > ϕU(bj+s+1,P′

1)
(P′

N), which means agent 1 manipulates at P′
N via P̄1.

Now, suppose ϕbj+s+1
(P̄1, P′

2, P′
−{1,2}) < ϕbj+s+1

(P′
N). By Claim 1, ϕτ(D)(P̄1, P′

2, P′
−{1,2}) = 1. Let

u ≤ j be such that U(bj+s+1, P̄1) ∩ τ(D) = [bu, bj+s+1]τ(D). Then, by the assumption of Claim 3,

ϕb(P̄1, P′
2, P′

−{1,2}) = ϕb(P′
N) for all b ∈ [bj, bj+s]τ(D), and by Claim 2, ϕb(P̄1, P′

2, P′
−{1,2}) = ϕb(P′

N)

for all b ∈ [bu, bj−1]τ(D). Therefore, ϕbj+s+1
(P̄1, P′

2, P′
−{1,2}) < ϕbj+s+1

(P′
N) implies ϕU(bj+s+1,P̄1)

(P̄1,

P′
2, P′

−{1,2}) < ϕU(bj+s+1,P̄1)
(P′

N), which means agent 1 manipulates at (P̄1, P′
2, P′

−{1,2}) via P′
1. This

28



completes the proof of Claim 3.

We are now ready to complete the proof of Lemma A.7. First, we show ϕτ(D)(P′
N) = 1. By

Claim 3, ϕb(P′
1, P̄2, P′

−{1,2}) = ϕb(P′
N) for all b ∈ [bj, bj+l+1]τ(D). By Claim 2, ϕb(P′

1, P̄2, P′
−{1,2}) =

ϕb(P′
N) for all b ∈ [b1, bj−1]τ(D) ∪ [bj+l+2, bk]τ(D). Combining, we have ϕτ(D)(P′

1, P̄2, P′
−{1,2}) =

ϕτ(D)(P′
N). Moreover, by Claim 1, ϕτ(D)(P′

1, P̄2, P′
−{1,2}) = 1, and hence ϕτ(D)(P′

N) = 1.

Now, we show ϕ(P′
N) = ϕ(P̃′

N) for all tops-equivalent profiles P′
N, P̃′

N ∈ Dn. By Claim 1,

2, and 3, ϕ(P̄1, P̄2, P′
−{1,2}) = ϕ(P′

N). Moreover, as P̃′
1 ∈ Dbj and P̃′

2 ∈ Dbj+l+1 , applying Claim

1, 2, and 3 to P̃′
N, we have ϕ(P̄1, P̄2, P̃′

−{1,2}) = ϕ(P̃′
N). Hence, to show ϕ(P′

N) = ϕ(P̃′
N), it

is enough to show ϕ(P̄1, P̄2, P′
−{1,2}) = ϕ(P̄1, P̄2, P̃′

−{1,2}). Recall that P̂2 = Pbj+l ,bj+l+1 . Since

r1(P̂2)− r1(P′
1) = l and r1(P′

i ) = r1(P̃′
i ) for all i 6= 1, 2, by the assumption of Lemma A.7, we

have ϕ(P̄1, P̂2, P′
−{1,2}) = ϕ(P̄1, P̂2, P̃′

−{1,2}). Also, by (7), ϕb(P̄1, P̂2, P′
−{1,2}) = ϕb(P̄1, P̄2, P′

−{1,2})

for all b 6= bj+l , bj+l+1, which means ϕb(P̄1, P̄2, P′
−{1,2}) = ϕb(P̄1, P̄2, P̃′

−{1,2}) for all b 6= bj+l , bj+l+1.

Using a similar argument as for the proof of (7), it follows that ϕ(P̄1, P̄2, P′
−{1,2}) = ϕ(P̂1, P̄2,

P′
−{1,2}) for all b 6= bj, bj+1, and hence ϕ(P̄1, P̄2, P′

−{1,2}) = ϕ(P̄1, P̄2, P̃′
−{1,2}) for all b 6= bj, bj+1.

Note that if l ≥ 1, then ϕb(P̄1, P̄2, P′
−{1,2}) = ϕb(P̄1, P̄2, P̃′

−{1,2}) for all b ∈ A. Therefore, we

show ϕ(P̄1, P̄2, P′
−{1,2}) = ϕ(P̄1, P̄2, P̃′

−{1,2}) for r1(P̄1) = bj and r1(P̄2) = bj+1. Because ϕb(P̄1, P̄2,

P′
−{1,2}) = ϕb(P̄1, P̄2, P̃′

−{1,2}) for all b 6= bj, bj+1 and all tops-equivalent P′
−{1,2}, P̃′

−{1,2} ∈ Dn−2,

we have ϕb(P̄1, P̄2, P′
−{1,2}) = ϕb(P̄1, P̄2, P̃′

3, P′
−{1,2,3}) for all b 6= bj, bj+1. As r1(P′

3) = r1(P̃′
3),

by Lemma A.1, bjP
′
3bj+1 if and only if bjP̃

′
3bj+1. Therefore, if ϕbj

(P̄1, P̄2, P′
−{1,2}) 6= ϕbj

(P̄1, P̄2,

P̃′
3, P′

−{1,2,3}), then agent 3 manipulates either at (P̄1, P̄2, P′
−{1,2}) via P̃′

3 or at (P̄1, P̄2, P̃′
3, P′

−{1,2,3})

via P′
3. Hence, ϕ(P̄1, P̄2, P′

−{1,2}) = ϕ(P̄1, P̄2, P̃′
3, P′

−{1,2,3}). Continuing in this manner, we have

ϕ(P̄1, P̄2, P′
−{1,2}) = ϕ(P̄1, P̄2, P̃′

−{1,2}). Therefore, ϕ(P′
N) = ϕ(P̃′

N) for all tops-equivalent profiles

P′
N, P̃′

N ∈ Dn. This completes the proof of the lemma. �

Lemma A.8. The RSCF ϕ satisfies uncompromisingness.

Proof. We prove this in two steps. In Step 1, we provide a sufficient condition for uncompromis-

ingness, and in Step 2, we use that to prove the lemma.

STEP 1. We show that if for all j, j + 1 ∈ {1, . . . , k}, all Pi = Pbj,bj+1 ∈ D, all P′
i = Pbj+1,bj ∈ D, all

P−i and all b 6= [r1(Pi), r1(P′
i )],

ϕb(Pi, P−i) = ϕb(P′
i , P−i), (10)

then ϕ is uncompromising.
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Suppose (10) holds. Since ϕ is tops-only, (10) implies for all Pi ∈ Dbj , all P′
i ∈ Dbj+1 , all P−i, and

all b /∈ [r1(Pi), r1(P′
i )],

ϕb(Pi, P−i) = ϕb(P′
i , P−i). (11)

Similarly, for all P̄i ∈ Dbj+1 , all P̄′
i ∈ Dbj+2 , all P−i, and all b /∈ [r1(P̄i), r1(P̄′

i )],

ϕb(P̄i, P−i) = ϕb(P̄′
i , P−i). (12)

Combining (11) and (12), we have for all Pi ∈ Dbj , all P̄′
i ∈ Dbj+2 , all P−i, and all b /∈ [r1(Pi), r1(P̄′

i )],

ϕb(Pi, P−i) = ϕb(P̄′
i , P−i). Continuing in this manner, we have for all Pi, P′

i ∈ D, all P−i, and all

b /∈ [r1(Pi), r1(P′
i )], ϕb(Pi, P−i) = ϕb(P′

i , P−i), which means ϕ is uncompromising.

STEP 2. In this step, we show that ϕ satisfies (10). First, we show (10) for agent 1. Without

loss of generality, assume r1(P2) = bj+l. Note that by Lemma A.7, ϕτ(D)(PN) = 1. Therefore,

by Lemma A.5, ϕb(P1, P2, P−{1,2}) = ϕb(P2, P2, P−{1,2}) for all b /∈ [bj, bj+l]τ(D) and ϕb(P′
1, P2,

P−{1,2}) = ϕb(P2, P2, P−{1,2}) for all b /∈ [bj+1, bj+l]τ(D). This means ϕb(P1, P2, P−{1,2}) = ϕb(P′
1,

P2, P−{1,2}) for all b /∈ [bj, bj+l]τ(D). By strategy-proofness, ϕ{bj,bj+1}
(P1, P2, P−{1,2}) = ϕ{bj,bj+1}

(P′
1,

P2, P−{1,2}). Let B′ = [bj, bj+l]τ(D) \ {bj, bj+1}. Since P1|B′ = P′
1|B′ , in view of Lemma A.2, we have

ϕb(P1, P2, P−{1,2}) = ϕb(P′
1, P2, P−{1,2}) for all b 6= bj, bj+l. This proves (10) for agent 1. Using a

symmetric argument, (10) can be shown for agent 2. Therefore, by Step 1, we have

ϕb(Pi, P−i) = ϕb(P′
i , P−i) for all P−i, all b /∈ [r1(Pi), r1(P′

i )], and all i = 1, 2. (13)

Now, we show (10) for agents i ∈ {3, . . . , n}. It is enough to show this for i = 3. If P1 = P2, then

by the induction hypothesis, ϕb(P3, P−3) = gb(P1, P3, P−{1,2,3}) = gb(P1, P′
3, P−{1,2,3}) = ϕb(P′

3,

P−3) for all P3, P′
3 ∈ D and all b /∈ [r1(P3), r1(P′

3)]. Let r1(P1) = bp and r1(P2) = bq. Since

ϕτ(D)(PN) = 1 for all PN ∈ Dn, it follows from Lemma A.5 that ϕb(P1, P1, P3, P−{1,2,3}) = ϕb(P1,

P2, P3, P−{1,2,3}) for all b /∈ [bp, bq]τ(D) and ϕb(P1, P1, P′
3, P−{1,2,3}) = ϕb(P1, P2, P′

3, P−{1,2,3}) for all

b /∈ [bp, bq]τ(D). Combining all these, we have

ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′
3, P−{1,2,3}) for all b /∈ [bp, bq]τ(D) ∪ [bj, bj+1]τ(D). (14)
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Also, by strategy-proofness,

ϕ{bj,bj+1}
(P1, P2, P3, P−{1,2,3}) = ϕ{bj,bj+1}

(P1, P2, P′
3, P−{1,2,3}). (15)

Now, we distinguish two cases.

Case 1. Suppose [p, q ≤ j + 1] or [p, q ≥ j].

Let B′ = [bp, bq]τ(D) \ [bj, bj+1]τ(D). Then, by (14) and (15), ϕB′(P1, P2, P3, P−{1,2,3}) = ϕB′(P1, P2,

P′
3, P−{1,2,3}). Since P3|B′ = P′

3|B′ , by Lemma A.2, ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′
3, P−{1,2,3})

for all b ∈ B′. Therefore,

ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′
3, P−{1,2,3}) for all b /∈ {bj, bj+1}. (16)

This completes the proof of the lemma for Case 1.

Case 2. Suppose p < j ≤ j + 1 < q or q < j ≤ j + 1 < p.

We prove the lemma for the case p < j ≤ j + 1 < q, the proof of the same for the case

q < j ≤ j + 1 < p follows from symmetric arguments. By (13), for all b /∈ [bj, bq]τ(D), ϕb(P1,

P2, P3, P−{1,2,3}) = ϕb(P1, P3, P3, P−{1,2,3}) and ϕb(P1, P2, P′
3, P−{1,2,3}) = ϕb(P1, P3, P′

3, P−{1,2,3}).

Moreover, since r1(P1) ≤ bj+1, r1(P3) = bj and r1(P′
3) = bj+1, it follows from (16) that ϕb(P1, P3,

P3, P−{1,2,3}) = ϕb(P1, P3, P′
3, P−{1,2,3}) for all b /∈ [bj, bj+1]τ(D). Combining all these, ϕb(P1, P2, P3,

P−{1,2,3}) = ϕb(P1, P2, P′
3, P−{1,2,3}) for all b /∈ [bj, bq]τ(D). By strategy-proofness, ϕ{bj,bj+1}

(P1, P2,

P3, P−{1,2,3}) = ϕ{bj,bj+1}
(P1, P2, P′

3, P−{1,2,3}). Let B′ = [bj, bq]τ(D) \ {bj, bj+1}. Since P3|B′ = P′
3|B′ ,

by Lemma A.2, we have ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′
3, P−{1,2,3}) for all b ∈ B′. Hence,

ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′
3, P−{1,2,3}) for all b /∈ {bj, bj+1},

which completes the proof of the lemma for Case 2.

Since Cases 1 and 2 are exhaustive, this completes the proof of Lemma A.8. �

Theorem 3.1 now follows by applying Lemma A.7 and Lemma A.8. �
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B. PROOF OF THEOREM 3.2

In this section, we present the proof of Theorem 3.2. Our proof uses the following theorem, which

is taken from Peters et al. (2014).

Theorem B.1 (Theorem 3(a) in Peters et al. (2014)). Let D be the maximal single-peaked domain.

Then, every tops-only and strategy-proof RSCF ϕ : Dn → △A is a convex combination of tops-only and

strategy-proof DSCFs f : Dn → A.

The following lemma establishes the structure of an uncompromising RSCF on a regular

single-peaked domain.

Lemma B.1. Let D be a regular single-peaked domain and let ϕ : Dn → △A be uncompromising and

strategy-proof. Then, ϕ is a convex combination of the generalized min-max rules on Dn.10

Proof. Note that since ϕ is uncompromising, by Remark 2.4, ϕ is tops-only. Let D̂ be the maximal

single-peaked domain. Let ϕ̂ : D̂n → △A be the tops-only extension of ϕ on D̂. More formally,

for all P̂N ∈ D̂n, ϕ̂(P̂N) = ϕ(PN), where PN ∈ Dn is such that PN, P̂N are tops-equivalent. This is

well-defined as ϕ is tops-only and D is regular. Since D̂ is single-peaked and ϕ is uncompromising

and strategy-proof, ϕ̂ is also strategy-proof. Hence, by Theorem B.1, ϕ̂ is a convex combination of

the generalized min-max rules on D̂n. By the definition of ϕ̂, this means ϕ is a convex combination

of the generalized min-max rules on Dn, which completes the proof. �

Now, we proceed to prove Theorem 3.2.

Proof. (If Part) Let D be a top-rich domain with τ(D) = {b1, . . . , bk} and let ϕ : Dn → △A be a

TRM rule. Since ϕ is a TRM rule, it is unanimous by definition. We show that ϕ is strategy-proof.

Let ϕ = ∑
t
l=1 λl fl, where λls are non-negative numbers summing to 1 and fls are TM rules. To

show that ϕ is strategy-proof, it is enough to show that fls are strategy-proof. For all l ∈ {1, . . . , t},

define f̂l : (D|τ(D))
n → τ(D) as f̂l(PN |τ(D)) = fl(PN). Note that by Lemma A.1, D|τ(D) is a

single-peaked domain. Therefore, it follows from Moulin (1980) that f̂l is strategy-proof for all l.

By Remark 2.3, this means fl is strategy-proof for all l. This completes the proof of the if part.

(Only-if Part) Let D be a top-rich domain with τ(D) = {b1, . . . , bk} and let ϕ : Dn → △A be a

unanimous and strategy-proof RSCF. Define ϕ̂ : (D|τ(D))
n → △τ(D) as ϕ̂b(PN |τ(D)) = ϕb(PN)

10If the set of alternatives is an interval of real numbers, then uncompromisingness implies strategy-proofness for
the RSCFs on the maximal single-peaked domain (see Lemma 3.2 in Ehlers et al. (2002)). However, the same does not
hold for the case of finitely many alternatives.
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for all b ∈ τ(D). This is well-defined as by Theorem 3.1 and Remark 2.4, ϕτ(D)(PN) = 1

for all PN ∈ Dn and ϕ is tops-only. Because ϕ satisfies uncompromisingness, ϕ̂ also satisfies

uncompromisingness. Hence, by Lemma B.1, ϕ̂ is convex combination of generalized min-max

rules on (D|τ(D))
n. Moreover, since ϕ is unanimous, ϕ̂ is a also unanimous. This means ϕ̂ is a

convex combination of min-max rules on (D|τ(D))
n. By the definition of ϕ̂, this means ϕ is a TRM

rule. This completes the proof of the only-if part. �

C. PROOF OF THEOREM 3.3

Proof. If part of the theorem follows from Theorem 3.2. We prove the only-if part. Let D be a

top-connected TRM domain. We show that D is a top-rich domain satisfying top-connectedness.

In particular, we show that D satisfies Condition (i) and (ii) in Definition 2.8.

Lemma C.1. The domain D satisfies Condition (i) in Definition 2.8.

Proof. Let τ(D) = {b1, . . . , bk}. Take j < k. Since D is top-connected, there are P, P′ ∈ D such

that r1(P) = bj, r1(P′) = bj+1, and P∼P′. Therefore, U(bj, P)▽U(bj, P′) = bj+1 and U(bj+1,

P)▽U(bj+1, P′) = bj. Moreover, by top-connectedness, for all l /∈ {j, j + 1}, U(bl, P)▽U(bl,

P′) = ∅. This shows D satisfies Condition (i) in Definition 2.8. �

Lemma C.2. The domain D satisfies Condition (ii) in Definition 2.8.

Proof. Let τ(D) = {b1, . . . , bk}. By Lemma 3.1, for all r < s < t and all Pbr , Pbt ∈ D, we have

U(bs, Pbr) ∩ U(bs, Pbt) ∩ τ(D) = bs. We show that U(bs, Pbr) ∩ U(bs, Pbt) = bs. Assume for

contradiction that U(bs, Pbr) ∩ U(bs, Pbt) ) bs for some r, t with r < s < t. Without loss of

generality, assume that bs is the maximum alternative for which U(bs, Pbr) ∩ U(bs, Pbt) ) bs for

some r < s < t, that is, for all v > s and all u, w with u < v < w, U(bv, Pbu) ∩ U(bv, Pbw) = bv.

Since D|τ(D) is single-peaked by Lemma 3.1, there cannot be any b ∈ τ(D) \ bs such that b ∈ U(bs,

Pbr) ∩ U(bs, Pbt). Therefore, suppose x /∈ τ(D) is such that x ∈ U(bs, Pbr) ∩ U(bs, Pbt). In the

following, we construct a unanimous and strategy-proof DSCF on Dn that is not a TRM rule.

Consider the following DSCF:

f (PN) =



















r1(P2) if r1(P2) � r1(P1),

x if r1(P1) ≺ bs ≺ r1(P2) and xPibs for all i ∈ {1, 2},

med{bs, r1(P1), r1(P2)} otherwise,
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where med represents the median w.r.t. ≺.

Clearly, f is not a TRM rule since f (PN) = x for some PN ∈ D and x /∈ τ(D). Moreover, f

is unanimous by definition. We show that f is strategy-proof. Note that agents i ∈ N \ {1, 2}

cannot manipulate as f does not depend on their preferences. Let P = {PN ∈ Dn | f (PN) 6= x}.

Then, by the definition of f , f restricted to P is a tops-restricted min-max rule. This, together with

the facts that D|τ(D) is single-peaked and P|τ(D) ⊆ Dn|τ(D), means f cannot be manipulated by

some agent i ∈ N at a profile PN ∈ P via some P′
i such that (P′

i , P−i) ∈ P . Now, we distinguish

the following cases.

CASE 1. Suppose PN ∈ Dn \ P .

By the definition of P , this means r1(P1) ≺ bs ≺ r1(P2), xPibs for all i ∈ {1, 2}, and f (PN) = x.

We show that agent 1 cannot manipulate f at PN, the proof of the same for agent 2 is symmetric.

Let P′
1 ∈ D be such that r1(P′

1) ≺ bs. Then, by the definition of f , f (P′
1, P−1) ∈ {x, bs}. Since

xP1bs, agent 1 cannot manipulate at PN via P′
1. Let P′

1 ∈ D be such that r1(P′
1) � bs. Suppose

f (P′
1, P−1) = b. Then, by the definition of f , b ∈ τ(D) and b � bs. Becuase P1|τ(D) is single-peaked

and xP1bs, we have xP1b. Therefore, agent 1 cannot manipulate f at PN via P′
1.

CASE 2. Suppose PN ∈ P . We distinguish the following subcases.

CASE 2.a. Suppose r1(P1) ≺ r1(P2). Suppose further that r1(P1) ≺ r1(P2) ≺ bs. Then, by the

definition of f , f (P′
1, P−1) 6= x for all P′

1 ∈ D, and hence agent 1 cannot manipulate f at PN . Note

that since f (PN) = r1(P2), agent 2 does not have any incentive to manipulate at PN . Now, suppose

r1(P1) ≺ bs ≺ r1(P2). Then, f (PN) = bs. Moreover, since PN ∈ P , there exists i ∈ {1, 2} such that

bsPix. So, by the definition of f , the other agent j ∈ {1, 2} \ i cannot change the outcome to x, and

hence cannot manipulate. Also, as f (PN) = bs and bsPix, agent i does not have any incentive to

manipulate. Finally, suppose bs ≺ r1(P1) ≺ r1(P2). Then, by the definition of f , f (P′
2, P−2) 6= x

for all P′
2 ∈ D, and hence agent 2 cannot manipulate f at PN. Moreover, since f (PN) = r1(P1),

agent 1 does not have any incentive to manipulate at PN.

CASE 2.b. Suppose r1(P2) ≺ r1(P1). Then, by the definition of f , f (PN) = r1(P2). Therefore, agent

2 does not have any incentive to manipulate at PN. If r1(P2) � bs, then f (P′
1, P−1) 6= x for all

P′
1 ∈ D, and hence agent 1 cannot manipulate at PN via P′

1. Now, suppose bs ≺ r1(P2). We show

r1(P2)P1x. Recall that x /∈ τ(D), which in particular means r1(P2) 6= x. Therefore, assume for

contradiction that xP1r1(P2). Since x ∈ U(bs, Pbr) ∩ U(bs, Pbt), we have xPbr bs. Also, since D|τ(D)

is single-peaked and bs ≺ r1(P2), we have bsPbr r1(P2). Combining all these, we have xPbrr1(P2).
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This means br ≺ r1(P2) ≺ r1(P1) and x ∈ U(r1(P2), Pbr) ∩ U(r1(P2), P1). Since bs ≺ r1(P2), this is

a contradiction to the maximality of bs. So, agent 1 cannot manipulate f at PN. This shows that f

is strategy-proof. �

Now, the proof of Theorem 3.3 follows from Lemma C.1 and Lemma C.2. �

D. PROOF OF THEOREM 3.4

Proof. Let D be a top-rich domain satisfying top-connectedness with τ(D) = {b1, . . . , bk} and let

ϕ : Dn → △A be a tops-only and strategy-proof RSCF. Take PN ∈ Dn and i ∈ N. Suppose r1(Pi) =

bj. Let ϕτ(D)(PN) = α for some 0 ≤ α ≤ 1. Take Pbj,bj+1 ∈ D. By tops-onlyness, ϕ(Pbj,bj+1 , P−i) =

ϕ(PN). Now, take Pbj+1,bj ∈ D such that Pbj,bj+1 ∼ Pbj+1,bj . By strategy-proofness, ϕd(Pbj,bj+1 ,

P−i) = ϕd(Pbj+1,bj , P−i) for all d ∈ A \ {bj, bj+1}. Again, take P′′
i ∈ D with r1(P′′

i ) = bj+1. By tops-

onlyness, ϕ(Pbj+1,bj , P−i) = ϕ(P′′
i , P−i). Therefore, ϕτ(D)(P′′

i , P−i) = α and ϕB(Pi, P−i) = ϕB(P′′
i ,

P−i) for all B ⊆ A \ {bj, bj+1}. Continuing in this manner, it follows that ϕτ(D)(PN) = ϕτ(D)(P̂i,

P−i) = α and ϕB(PN) = ϕB(P̂i, P−i) for all B ⊆ A \ [r1(Pi), r1(P̂i)]|τ(D) and all P̂i ∈ D. Since i is

arbitrary, this proves ϕτ(D)(PN) = α for all PN ∈ Dn, and ϕ is uncompromising and ϕc(PN) =

ϕc(P′
N) for all PN, P′

N ∈ Dn and all c ∈ A \ τ(D). �

E. PROOF OF THEOREM 3.5

Proof. (If Part) Let D be a top-rich domain satisfying top-connectedness with τ(D) = {b1, . . . , bk}

and let ϕ : Dn → △A be a convex combination of GTM rules and non-top constant rules. Then, ϕ

is tops-only by definition. We show that ϕ is strategy-proof. Note that non-top constant rules are

trivially strategy-proof. Therefore, since ϕ is a convex combination of GTM rules and non-top

constant rules, it is enough to show that every GTM rule is strategy-proof. Let f : Dn → A be

a GTM rule. Define f̂ : (D|τ(D))
n → τ(D) as f̂ (PN |τ(D)) = f (PN). By Lemma A.1, D|τ(D) is

single-peaked domain. Therefore, it follows from Moulin (1980) that f̂l is strategy-proof for all l.

Hence, by Remark 2.3, fl is strategy-proof.

(Only-if Part) Let D be a top-rich domain satisfying top-connectedness with τ(D) = {b1, . . . ,

bk} and let ϕ : Dn → △A be a tops-only and strategy-proof RSCF. In view of Theorem 3.4, let

0 ≤ α ≤ 1 be such that ϕτ(D)(PN) = α for all PN ∈ Dn. If α = 0, then ϕb(PN) = 0 for all b ∈ τ(D)

and all PN ∈ Dn. Therefore, by Theorem 3.4, ϕ is a convex combination of non-top constant rules.
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Suppose α > 0. Define ϕ̂ : (D|τ(D))
n → △τ(D) as ϕ̂b(PN |τ(D)) =

1
α ϕb(PN) for all b ∈ τ(D) and

all PN |τ(D) ∈ (D|τ(D))
n. Then, the RSCF ϕ̂ is well-defined by Theorem 3.4. Clearly, ϕ̂ satisfies

uncompromisingness. Hence, by Lemma B.1, ϕ̂ is a convex combination of generalized min-max

rules. Suppose ϕ̂ = ∑
L
l=1 λl fl, where for l = 1, . . . , L, λls are non-negative numbers summing to

1, and fl is a generalized min-max rule for all l. By Theorem 3.4, we have ϕc(PN) = ϕc(P′
N) for all

c ∈ A \ τ(D) and all PN, P′
N ∈ Dn. Let λc = ϕc(PN) for all c ∈ A \ τ(D) and all PN ∈ Dn. Then,

ϕ = ∑
L
l=1 αλl fl + ∑c∈A\τ(D) λc fc, where fc is the non-top constant rule given by fc(PN) = c for all

PN ∈ Dn. Since ∑c∈A\τ(D) ϕc(PN) = 1 − α, this means ϕ is a convex combination of generalized

min-max and non-top constant rules. �
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