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Abstract 

In theory, historical volatility gauges the fluctuations of underlying assets or securities by 

monitoring changes in price over predetermined time period, while implied volatility looks 

into the future in its attempts to forecast the movement of the asset’s price based on current 

ones. Option trader tends to combine both volatilities with realized volatility serving as the 

baseline and implied volatility redefining the relative values of the options. Henceforth, the 

purpose of this study is twofold; first is to investigate the nature of lead-lag between the 

‘fear index’ (VIX) and its corresponding realized volatility (RVI) of S&P 500 indices. 

Second, we examine the dynamic analysis of implied volatility transmission across inter-

market correlation with newly adapted volatility indices from CBOE, VIX, OVX and GVZ 

to indicate which market is leading. Contrary to the popular perception, the paper finds that 

S&P 500 implied volatility is lagging its historical variance markedly, and surprisingly 

even its price index is leading the implied volatility as well. The study also concludes that 

Gold spearheads the market with stocks being the most sensitive to shocks. Our findings 

have clear policy implications for trading strategies and using volatilities in risk 

management.  
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1.0 INTRODUCTION 

In option trading, traders are involved in betting on an underlying asset’s volatility, thus 

the importance of understanding these volatility matrices cannot be made more 

momentous. As a trader, it is vital to comprehend that one will be presented with two 

metrics of volatility; historical as well as implied volatility, and the combination of both 

metrics will directly influence an option’s price. In theory, historical volatility gauges the 

fluctuations of underlying assets or securities by computing price changes over 

predetermined time period. It is looking back in time to see how much a stock price has 

fluctuated on daily basis over one-year period, for example. Implied volatility on the other 

hand, looks into the future as the name suggests; based on current prices, attempts to 

forecast the movement of the asset’s price. It takes forward-looking analysis on options 

premium translated into probability, and the level of demand and supply of the option will 

drive the implied volatility reading. Option trader tends to combine both volatilities with 

realized volatility serving as the baseline and implied volatility redefining the relative 

values of the options.  

In layman’s term, implied volatility is the market expectation on the future realized 

volatility on the underlying asset over the remaining life of an option (Badshah, 2009). 

Major options exchange platform including the Chicago Board of Exchange (CBOE) and 

others have launched implied volatility indices covering main industry such as gold, crude 

oil and key-player stock markets to cater for the needs of the investors. The new indices 

give measurement of the option traders’ consensus opinion on the future direction of the 

asset’s volatility over the next 30 days, given that traders’ opinion is considered 

professional judgments by the market. For example, the CBOE VIX is implying 

information of implied volatility for S&P 500 stock index while the CBOE VXN relays 

information principally for NASDAQ 100. Each implied volatility index often referred to 

as the ‘investor’s fear gauge’ (Whaley, 2000) to illustrate the fear in the market 

expectations of the future price. Thus, this paper is trying to answer these main questions;  

(1) what is the nature of lead-lag relationship between fear index (implied volatility) and 

the historical volatility? (2) How closely are the volatilities linked in respect to the price of 
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the option? (3) If such a relationship exists, why does the market need to rely on both 

indices, rather than focusing on one significant volatility?  

With information from the data, it is discovered that S&P 500 implied volatility is lagging 

behind its historical volatility, which is contrary to the current understanding on the nature 

of their relationship. Price is also surprisingly leading the implied volatility, which will be 

further disclosed in the findings.  

The paper is also trying to look into the degree of inter-market correlation, which 

benefits the investors with diversification availability in investment opportunity portfolio. 

With market integration developing robustly over the past decades due to economic 

integration through trade and investments, correlations among stock markets are also 

proven to increase across the globe (Bekeart, Harvey, & Lundblad, 2001). International 

investors may raise question on (4) is there any effect on the inter-market volatilities when 

one market experiences economic shocks, and if there is, how long does it take for the 

markets to get back into equilibrium? And finally (5) which market returns and shocks is 

leading others? It is in the interest of the paper to look for the long-run relationship amongst 

the markets and finds that Gold market leads the other volatilities and is least affected by 

any shock on other markets, while stock market has the most sensitive returns.  

The study is built on previous literature by other researches on finding the 

relationship between the two volatilities but differs in two aspects. We study the S&P 500 

volatilities using Auto Regressive Distributed Lag Model (ARDL), which has never been 

adopted before in this case and the after-effect of the inter-market co-integrations. Realized 

volatility index from S&P 500 also has not been used in previous literature as the authors 

tend to estimate the historical volatilities using mean and variance of the returns. The 

findings should help a trader in search of relationship between these volatilities and its 

global market correlation as well as helping policy maker play their role in controlling or 

improving stock markets across the borders. Potential investors can also be benefitted in 

decision making process to choose portfolio with the right economic outlook and 

anticipated changes in returns. The paper is also trying to analyze the kernel of implied 

volatility concerning different markets, which has yet to be explored thoroughly and for 

which only a few references can be found. 
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The rest of this paper is organized as follows. The issues that encourage this study 

and objectives of the study will be shown in Section 1 (Introduction). Section 2 provides a 

brief review on theoretical perspectives and past literature related to the issues. Section 3 

discusses the data and methodology used throughout the research period. Empirical results 

will be discussed thereafter in Section 4 and an ending with conclusion remarks on policy 

implications in Section 5.  

2.0 LITERATURE REVIEW 

Since the 90s, it is established that implied volatility triumphed over realized or historical 

volatility when one in need to forecast the future returns’ variance of an underlying asset 

(Christensen & Prabhala, 1998) (Dumas, Fleming, & Whaley, 1998). A similar paper also 

discussed on the S&P 500 implied and realized volatility dynamic by examining the 

measurement error in both volatilities and concluded that implied gave more information 

in forecasting realized and the latter has less explanatory power to the former (Shu & 

Zhang, 2000). Fleming also argues that the implied volatility dominates the historical 

volatility rate in terms of ex ante forecasting power, using employment of ARCH variation 

model when measuring the S&P 100 indices (Fleming, 1998). These papers consistently 

argue that implied volatility outperforms past or historical variances in forecasting future 

returns. Various method and analysis were conducted among the papers to justify their 

findings.   

 There are however, researches that found conflicting outcome. Day in his study 

concluded that implied volatility is biased and inefficient, where past volatilities give batter 

predicament on future variances beyond in what contained in implied (Day, 1992). 

Supporting Day’s conclusion by using overlapping data with different sample period also 

gave out the same outcome. A much recent study also gives the same findings with the 

increasing availability of financial intra-day market data frequencies for volatility 

forcasting. Another study shows a convincing empirical result that realized volatility 

models produces more accurate forecasts compared to implied volatility (Koopman, 

Jungbacker, & Hol, 2005), again by evaluating S&P 100 index using GARCH 

methodology. However, the most striking results said that implied volatility to be a poor 

forecast of subsequent realized volatility, and virtually has no correlation altogether with 

future returns as it does not incorporate information passed through recent observed 
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volatility (Canina & Figlewski, 1993). Prahbala and Christensen argues that the latter result 

was surprising and extreme, more so because the evidence pertains S&P 100 Index option 

which is regarded as the most active option market. The goal for this paper is to reaffirms 

the contradictory findings on S&P Indices as it can give a much clearer picture to other 

markets. With a new technique and broader and recent data range, the findings of this paper 

are anticipated to enlighten the situation. 

 The paper also tries to perform a scrutinize analysis on various implied volatilities 

from three different market; gold, crude oil and stock itself. Co-integration and linear or 

non-linear causality amongst these three markets has been discussed beforehand in few 

literatures fitting to flowing of information and emerging economies across the borders. 

Evidence from Indian market indicates the presence of co-integration relationship and 

positive non-linear impact of implied volatilities of gold and oil on the Indian stock markets 

(Bouri, Jain, Biswal, & Roubaud, 2017). The paper is extremely recent and thoroughly 

discuss on the variables. Luo and Qin presented another good argument in their paper on 

Chinese stock returns over oil price uncertainty. Evidence indicates that crude oil volatility 

index (OVX) shocks have significant impact on Chinese stock returns (Luo & Qin, 2017). 

The most exemplary literature did and empirical analysis of implied volatility index by 

fixing OVX as its dependent against other implied volatilities. The results verify the 

effectiveness of cross-market volatility portfolio strategy to hedge risk by indicating strong 

influenced of other volatilities on OVX. These papers show that there are overflowing 

effects of one-market returns to another thus indicating integration amongst the volatilities. 

It is the goal of an author to try and established on which market is leading in terms of 

shocks and returns.   
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3.0 DATA AND METHODOLOGY 

3.1 Data Extraction 

The study uses data from two sources, the CBOE and the S&P 500® databases.  

The Chicago Board of Exchange (CBOE) is the world’s largest option exchange 

platform that focuses on options contracts for individual entities, corporation indices and 

interest rates. Three implied volatility indices were extracted from the CBOE, namely; 

i) CBOE S&P 500 Implied Volatility Index (VIX),  

ii) CBOE Crude Oil ETF Volatility Index (OVX), and  

iii) CBOE Gold Volatility Index (GVX), 

on daily basis data from August 31st, 2010 to April 28th, 2017 (1,677 observations). CBOE 

VIX index is considered by many to be the premier barometer of equity market volatility. 

It is based on real-time prices of options on the S&P 500® Index and is designed to reflect 

investors’ consensus view of 30-days in future for expected stock market volatility. Using 

the VIX methodology, CBOE OVX measures the market’s expectation of 30-day volatility 

of crude oil prices od US Oil Fund options spanning its strike prices. The last index, CBOE 

GVZ also measures expectation of 30 days volatility but onto Gold Shares.  

The S&P 500® is chosen to represent the option trading platform market for the 

study as it is widely regarded as the best single gauge of large-capital US equities. The 

index includes 500 top companies with approximately 80% coverage of available market 

capitalization. Using the same time frame observation, two indices are extracted;  

i) The S&P 500 Price Index (PI), and  

ii) The S&P 500 Realized Volatility Index (RVI).  

The PI is self-explanatory while the RVI is the variations of the real-price of the option.  
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3.2 Methodology 

The goal of the study is to study the relationship between the options’ implied and realized 

volatility (1) and its effect towards pricing (2 & 3). The identified model will incorporate 

the other two implied volatilities to answer the (4)th and (5)th questions, which are looking 

into cross-market interrelationship. The functional form of the model is, 𝑷𝑰 = 𝒇(𝑹𝑽𝑰, 𝑽𝑰𝑿, 𝑶𝑽𝑿, 𝑮𝑽𝒁) where, 

PI = S&P 500 Price Index, 

RVI = S&P 500 Realized Volatility Index, 

VIX = CBOE S&P 500 Implied Volatility Index, 

OVX = CBOE Crude Oil ETF Volatility Index, and 

GVZ = CBOE Gold Volatility Index.  

In proceeding with the research, a few test were ran and it is disclosed that the most 

suitable method to be adapted is by using the Autoregressive Distributed Lag Model 

(ARDL) method because of the stationary status of the data (variables contains a mixture 

of I(0) and I(1)) at the leveled form. Below are the required tests in completing this study. 

i) Unit Root Test: To test whether the data are stationary or non-stationary at 

both Leveled and Differenced forms.  

ii) Lag Order Selection: Determines the number of lag for the data 

iii) Bound Test: (ARDL approach to co-integration) Examines the existence of 

long-run relationship among the variables,  

iv) Diagnostic Test: Tests whether the models are well specified or not 

v) Error Correction Model (ECM): Observes the lead-lag situation of the 

variables; which variables are endogenous and which are exogenous 

vi) Variance Decomposition (VDC): Finds relative value of exogeneity and 

endogeneity 

vii) Impulse Response Function (IRF): Graphical visual of VDC by way of 

tracing variables response towards shock.   
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4.0 EMPIRICAL RESULT 

This section will report the findings of each test taken for the ARDL methodology approach 

in running the data. 

4.1 Unit Root Test 

Most time series data exhibit trending behavior non-stationarity in the mean value. Thus 

the first step to analyze time series data is to determine the most appropriate form of the 

variable within available data set to remove any trending comportment applicable. The 

most common trend removal is by first-differencing the data for I(1). For this study, two 

methods of unit root testing are used to justify the usage of ARDL instead of the ordinary 

regression (Ordinary Least Square Method) or the Vector Auto-Regression (VAR) model. 

Both methods, Augmented Dickey Fuller (ADF) test and Phillip-Perron (PP) test indicate 

whether the variables are stationary at level form, I(0) or in the first-differenced form, I(1). 

Both test correct autocorrelation problem but PP also adjusts for Heteroskedasticity issue 

using Newey-West adjusted variance method. The result from both test depends on each 

variable t-statistic value; if T-stat > Critical Value, the variables are stationary and if T-stat 

< Critical Value, then the variable is considered non-stationary.  Both tests are performed 

on extracted data and the results as below; 

Log (Level) Form, I(0) 

VARIABLE   ADF VALUE T-STAT. RESULT 

PI 
AIC 3 4708.3  -2.560  Non-Stationary 

SBC 1 4695.1  -2.675  Non-Stationary 

VIX 
AIC 5 2001.8  -5.062  Stationary 

SBC 1 1989.6  -6.019  Stationary 

RVI 
AIC 5 2097.4  -5.378  Stationary 

SBC 4 2077.1  -5.142  Stationary 

OVX 
AIC 5 2690.8  -2.401  Non-Stationary 

SBC 3 2680.9  -2.634  Non-Stationary 

GVZy 
AIC 5 2486.3  -4.429  Stationary 

SBC 3 2479.3  -4.628  Stationary 

Critical Value = -3.4154       

Table 1: ADF Test Result for Leveled Form 
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First-Differenced Form, I(1) 

VARIABLE   ADF VALUE  T-STAT.  RESULT 

PI 
AIC 4 4708.1  -19.728  Stationary 

SBC 2 4692.5  -23.663  Stationary 

VIX 
AIC 4 1989.4  -21.677  Stationary 

SBC 1 1974.1  -30.551  Stationary 

RVI 
AIC 3 2083.2  -16.867  Stationary 

SBC 1 2070.6  -24.934  Stationary 

OVX 
AIC 4 2680.0  -21.040  Stationary 

SBC 1 2664.5  -29.245  Stationary 

GVZ 
AIC 5 2470.6  -19.672  Stationary 

SBC 2 2457.8  -27.187  Stationary 

Critical Value = -2.8637       

Table 2: ADF Test Result for Differenced Form 

From the tables, ADF Test in the Log (Level) Form shows a mixture of stationary and non-

stationary data, with 2 variables are already stationary at its actual form, where its t-

statistics value are significantly greater than the critical value. The above said variables are 

the realized volatility index (RVI), implied volatility index (VIX) and the gold volatility 

index (GVZ). On the other hand, all variables are deemed stationary at its first-differenced 

form as illustrated in Table 2. To further prove the result, PP Tests are run and the results 

illustrated below yield the same outcome as the ADF Test.   

Log (Level) Form, I(0) 

VARIABLE T-STAT. RESULT 

PI -2.883  Non-Stationary 

VIX -7.330  Stationary 

RVI -3.664  Stationary 

OVX -2.828  Non-Stationary 

GVZ -6.248  Stationary 

Critical Value = -3.4154   

Table 3: PP Test result for Leveled Form  
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First-Differenced Form, I(1) 

VARIABLE  T-STAT.  RESULT 

PI -42.810  Stationary 

VIX -57.839  Stationary 

RVI -37.834  Stationary 

OVX -44.496  Stationary 

GVZ -51.564  Stationary 

Critical Value = -3.2840   

Table 4: PP Test result for First Differenced form 

Thus, as our variables have combination of both I(0) and I(1), ARDL approach is the best 

method available to test the long run relationship among the variables; VAR requires 

stationary in I(0).  

4.2 Lag Order Selection 

To proceed with ARDL steps, order of the lag of the vector must be determined by 

performing test statistics and choice criteria of selecting the order. Using optimal order 

given by the highest value of Akaike Information Criterion (AIC), Schwarz Bayesian 

Criterion (SBC) and adjusted Likelihood Ratio (LR), the following results are obtained. 

Optimal 

Order 
AIC SBC Adjusted LR 

3 13226.2     

1   13120.6   

1     
279.3455 

[.000] 

Table 5: Lag Order of the VAR 

The highest value of AIC gives the optimal order of three (3) while SBC inclines the first 

(1) order of VAR. By theory, AIC does tends to choose the higher lag order while SBC 

chooses the lower lag. Thus, it is consistent with our findings and the paper will still run 

both AIC and SBC while obtaining tests result, but when needed, AIC with lag order of 3 

will be prioritized based on our nature of data. Having daily data gives us a bigger space 

to chose the higher lag.    
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4.3 Bound Test (ARDL approach to co-integration) 

Differ from VAR approach, ARDL method uses bound test as a tool to discover any long-

run relationship or co-integration among the variables chosen.  It is important to note that 

the regression constructed while running the test must not indicate any prior information 

on the direction of the relationship. In other words, if the variables co-integrated, one may 

prove any theoretical relationship between them. The test is testing; 

H0: δ1 = δ2 = δ3 = 0  - Long-run relationship does not exists 

H1: : δ1 ≠ δ2 ≠ δ3 ≠ 0 - Long-run relationship exists 

The result will give away an F-stats value to be compared with the 95% critical value of 

boundaries under unrestricted intercept and no trend (Pesaran, Shin, & Smith, 2001). If the 

F-stats obtained are lesser than the lower bound, then we cannot reject the null. If it is 

greater, then we can reject the null and say long-run relationship exists. If the stats are 

within the boundary, then the result is inconclusive. Outcome for bound test for this study 

is as tabled below.  

MODELS F-STATS RESULT 

F (PI | VIX, RVI, OVX, GVZ) 1.2522 No Long-run relationship 

F (VIX | PI, RVI, OVX, GVZ) 4.6651 Long-Run relationship exist 

F (RVI | PI, VIX, OVX, GVZ) 16.2745 Long-Run relationship exist 

F (OVX | PI, VIX, RVI, GVZ) 1.2847 No long-run relationship  

F (GVZ | PI, VIX, RVI, OVX) 3.5662 Inconclusive 

95% Band (2.649, 3.805)     

Table 6: ARDL approach for Co-integration 

From table 6, we found a mixture of conclusion on the relationship among the variables. 

However, statistically speaking, from the two models above, [F (VIX| PI, RVI, OVX, 

GVZ) and F (RVI| PI, VIX, OVX, GVZ)], we can confirm that there is long-run 

relationship among the 5 chosen variables. This suggests that all the variables are moving 

together in a long run without restricting the degree and direction, and the bond among the 

variables is not spurious. The result indicates that each variable has information for the 

other and theoretical underpinning the variable subsists.   
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4.4 Diagnostic Test 

Running diagnostic test helps to identify if the model is well specified or not. Correction 

for any problem is needed if any particular problem is detected. Tabled below is the result 

obtained for our data. If the p-value acquired is less than 5%, this indicates that the model 

suffers for that particular problem, and vice versa.  

TEST 
F-STAT                          

[p-Value] 
RESULT 

Serial Correlation 
0.039 

No  
[0.844] 

Functional Form  
0.485 

No  
[0.486] 

Normality Not applicable No 

Heteroskedasticity 
68.836 

Problem detected 
[0.000] 

Table 7: Diagnostic Test using Akaike Information Criterion 

No major problem is serial correlation and functional form can be found from the 

model, and normality issues also not to be considered, as it is not applicable in our data. 

Notwithstanding, our test has detected Heteroskedasticity problem in the data use, which 

indicates that the standard deviations of a variable are non-constant, monitored over a 

period of time. It is expected from our data to lead to Heteroskedasticity problem as we are 

testing the variances themselves. Both implied and realized volatility are variances for each 

particular underlying assets and conditional Heteroskedasticity is often seen in finance; 

prices of stock as example (Akgiray, 1989). Thus, having S&P 500 price index as a variable 

would normally lead to this problem. However, we have considered for this setback in our 

first step, in finding the unit root test. Using the PP-test, we can carefully say that the results 

found have been corrected for Heteroskedasticity problem arises.  

4.5 Error Correction Model (ECM) 

With the findings that there exists long-run relationship between the indices, coefficients 

of each variable can be estimated using the Error Correction Model. Co-integration and 

error correction mechanism are exceptionally interrelated, where the former depicts on 
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long-run correlation, the latter indicates any short run relation between the variables 

(Asteriou & Hall, 2007). To run ECM, the following regression models are constructed. 

DPIt = 𝑎0 ∑ 𝑏𝑖𝐷𝑉𝐼𝑋𝑡−𝑖n
𝑖=1 + ∑ c𝑖𝐷𝑅𝑉𝐼𝑡−𝑖 + ∑ 𝑑𝑖𝐷𝑂𝑉𝑋𝑡−𝑖n

𝑖=1
n

𝑖=1 + ∑ 𝑒𝑖𝐷𝐺𝑉𝑍𝑡−𝑖n
𝑖=1 + Ɛ𝑡−1 

DVIXt = 𝑎0 ∑ 𝑏𝑖𝐷𝑃𝐼𝑡−𝑖n
𝑖=1 + ∑ c𝑖𝐷𝑅𝑉𝐼𝑡−𝑖 + ∑ 𝑑𝑖𝐷𝑂𝑉𝑋𝑡−𝑖n

𝑖=1
n

𝑖=1 + ∑ 𝑒𝑖𝐷𝐺𝑉𝑍𝑡−𝑖n
𝑖=1 + Ɛ𝑡 − 1 

DRVIt = 𝑎0 ∑ 𝑏𝑖𝐷𝑉𝐼𝑋𝑡−𝑖n
𝑖=1 + ∑ c𝑖𝐷𝑃𝐼𝑡−𝑖 +  ∑ 𝑑𝑖𝐷𝑂𝑉𝑋𝑡−𝑖n

𝑖=1
n

𝑖=1 + ∑ 𝑒𝑖𝐷𝐺𝑉𝑍𝑡−𝑖n
𝑖=1 + Ɛ𝑡−1 

DOVXt = 𝑎0 ∑ 𝑏𝑖𝐷𝑉𝐼𝑋𝑡−𝑖n
𝑖=1 + ∑ c𝑖𝐷𝑅𝑉𝐼𝑡−𝑖 +  ∑ 𝑑𝑖𝐷𝑃𝐼𝑡−𝑖n

𝑖=1
n

𝑖=1 + ∑ 𝑒𝑖𝐷𝐺𝑉𝑍𝑡−𝑖n
𝑖=1 + Ɛ𝑡−1 

DGVZt = 𝑎0 ∑ 𝑏𝑖𝐷𝑉𝐼𝑋𝑡−𝑖n
𝑖=1 + ∑ c𝑖𝐷𝑅𝑉𝐼𝑡−𝑖 +  ∑ 𝑑𝑖𝐷𝑂𝑉𝑋𝑡−𝑖n

𝑖=1
n

𝑖=1 + ∑ 𝑒𝑖𝐷𝑃𝐼𝑡−𝑖n
𝑖=1 + Ɛ𝑡 − 1 

Running using both Akaike Information and Schwarz Bayesian criterions, the following is 

attained. The first two table gives the long-run coefficient for the indices, varies in preset 

dependent variable.  

  

  
Dependent Variable 

PI VIX RVI OVX GVZ 

LPI 
  -0.488* 0.607* 1.199* 0.061 

  [.000] [.001] [.033] [.817] 

LVIX 
-1.832*   1.851* 1.612* 0.620 

[.008]   [.000] [.025] [.052]* 

LRVI 
0.208 0.143*   -0.152 0.047 

[.471] [.028]   [.699] [.772] 

LOVX 
0.118 0.188* -0.105   -0.118 

[.612] [.001] [.301]   [.417] 

LGVZ 
0.791* 0.311* -0.114 -0.005   

[.000] [.001] [.448] [.992]   

*significant at 5%         

Table 8: Estimated Long-Run Coefficient based on AIC  
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Dependent Variable 

PI VIX RVI OVX GVZ 

LPI 
  -0.493* 0.588* 1.271* 0.054 

  [.000] [.001] [.005] [.812] 

LVIX 
-1.980*   1.797* 1.771* 0.607 

[.002]   [.000] [.001] [.021]* 

LRVI 
0.350 0.133*   -0.229 0.038 

[.173] [.037]   [.430] [.783] 

LOVX 
0.153 0.194* -0.089   -0.111 

[.436] [.001] [.375]   [.383] 

LGVZ 
0.834 0.312* -0.079 0.002   

[.068] [.001] [.594] [.995]   

*significant at 5%         

Table 9: Estimated Long-Run Coefficient based on SBC 

The given result for both criterion give away VIX as the dependent variable with 

all variables are significant at 5% critical value, which is in line with the bound test which 

give positive long-run relationship between the variables. This gives indication that implied 

volatility is led by other variables including its realized volatility. To further check on this, 

ECM is determined. The p-value of ECM will give endogeneity and exogeneity of the 

variables. Exogenous variable is a leader variable which may or may not depend on other 

variables while endogenous variable is a follower which depends more to other variables 

rather than itself. The null hypothesis for this test is the variable is considered to be 

exogenous if the p-value is higher than the critical value. If it is the other way round, we 

will reject null hypothesis, and therefore deemed the variable endogenous.  
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Dependent Variable 

PI VIX RVI OVX GVZ 

dPI 
  -5.528* 0.847* -1.137* 0.383 

  [.000] [.008] [.000] [.122] 

dVIX 
-0.103*   0.267* 0.184* 0.300* 

[.000]   [.000] [.000] [.000] 

dRVI 
0.006* 0.100*   0.040* 0.002 

[.012] [.000]   [.023] [.772] 

dOVX 
-0.020* 0.162* 0.091*   0.123* 

[.000] [.000] [.026]   [.000] 

dGVZ 
0.004 0.183* -0.008 0.088*   

[.145] [.000] [.445] [.000]   

ECM (-1) 
-2.1911 -6.5627 -9.0668 -2.9988 -4.5112 

[.029] [.000] [.000] [.003] [.000] 

RESULT 
Endogenou

s 

Endogenou

s 

Endogenou

s 

Endogenou

s 

Endogenou

s 

*significant at 5%         

Table 10: ECM based on AIC 

  

  
Dependent Variable 

PI VIX RVI OVX GVZ 

dPI 
  -5.519* 0.039* -1.148* 0.002 

  [.000] [.001] [.000] [.812] 

dVIX 
-0.102*   0.213* 0.192* 0.259* 

[.000]   [.000] [.000] [.000] 

dRVI 
0.001 0.098*   -0.004 0.002 

[.132] [.000]   [.408] [.783] 

dOVX 
-0.019* 0.163* -0.006   0.117* 

[.000] [.000] [.367]   [.000] 

dGVZ 
0.003* 0.185* -0.005 0.080*   

[.010] [.000] [.593] [.000]   

ECM (-1) 
-2.6053 -6.766 -9.75 -3.9463 -5.2326 

[.009] [.000] [.000] [.000] [.000] 

RESULT Endogenous Endogenous Endogenous Endogenous Endogenous 

*significant at 5%         

Table 11: ECM based on SBC 
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Tables 10 and 11 above indicate the outcome of ECM for both AIC and SBC. Both 

test directed to the same conclusion, which led to conclusion that all variables included in 

the model are endogenous. This means that all variables are dependent upon each other 

depending on the direction and degree of dependency. Both tables also agree with the 

previous result and gave away second regression as the most suitable and all indices are 

significant at 95% confidence interval. The coefficient of dPI exhibits the expected 

negative sign (price of stocks decreases with an expected increment in its own volatility 

and volatility of other key commodities) and denotes that the variables need roughly 50% 

speed adjustment correction after 3 months from when shocks are taken place. Other 

volatilities are positively correlated with VIX, which is also as expected, as variations in 

stock’s option will give the same effect to other affected or correlated market.  

4.6 Variance Decomposition (VDC) 

The next step in analysing ARDL approach is to determine the relative value of ECM result. 

ECM gave us the absolute value of the variables, which concludes endogeneity in all 

indices, thus, variance decomposition is important to reconfirm the result as well as rank 

the variables accordingly to its dependency. In other words, this step will capture which 

variable is the most endogenous and which is the most exogenous.  

VDC decomposes the variance of the forecast error of a variable in proportion 

attributable to a shock in each variable in the system. The relative exogeneity or 

endogeneity is determined by ranking the variables based on percentage of self-dependency 

of its own past shock. The most exogenous variable is predominantly explained by its own 

shock and least explained by other variables. Two method of decomposing variance are 

used; orthogonolized and generalized VDC. The only difference is that orthogonalized 

VDC is biased to the first order of the variable in the computed VAR. To this method, 

ordering is crucial thus assumes that when one variable is shocked, others will be switched 

off. However, setting all other errors to zero may stipulate a misleading picture of the actual 

dynamic relationships between the variables. Generalized VDC to the contrary, drops the 

assumption thus ordering is not important. The following two tables demonstrate the 

outcome of the tests.   
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Horizon 10           

DPI DVIX DRVI DOVX DGVZ TOTAL RANKING 

DPI 48.09% 32.69% 1.50% 12.53% 5.18% 100% 4 

DVIX 31.64% 45.94% 2.42% 12.46% 7.53% 100% 5 

DRVI 3.53% 6.01% 85.79% 3.26% 1.41% 100% 1 

DOVX 15.39% 16.50% 1.68% 61.05% 5.38% 100% 3 

DGVZ 8.00% 11.91% 1.07% 6.64% 72.38% 100% 2 
 Horizon 50           
 DPI DVIX DRVI DOVX DGVZ TOTAL RANKING 

DPI 48.09% 32.69% 1.50% 12.53% 5.18% 100% 4 

DVIX 31.64% 45.94% 2.42% 12.46% 7.53% 100% 5 

DRVI 3.53% 6.01% 85.79% 3.26% 1.41% 100% 1 

DOVX 15.39% 16.50% 1.68% 61.05% 5.38% 100% 3 

DGVZ 8.00% 11.91% 1.07% 6.64% 72.38% 100% 2 

Table 12: Generalized VDC using AIC 

  

  

Horizon 10           

DPI DVIX DRVI DOVX DGVZ TOTAL RANKING 

DPI 97.88% 0.32% 0.68% 0.91% 0.22% 100% 1 

DVIX 67.79% 31.16% 0.43% 0.57% 0.05% 100% 5 

DRVI 4.03% 3.09% 92.61% 0.23% 0.04% 100% 2 

DOVX 24.83% 3.59% 0.41% 70.74% 0.42% 100% 4 

DGVZ 10.88% 5.84% 0.24% 1.37% 81.67% 100% 3 

  
Horizon 50           

DPI DVIX DRVI DOVX DGVZ TOTAL RANKING 

DPI 97.88% 0.32% 0.68% 0.91% 0.22% 100% 1 

DVIX 67.79% 31.16% 0.43% 0.57% 0.05% 100% 5 

DRVI 4.03% 3.09% 92.61% 0.23% 0.04% 100% 2 

DOVX 24.83% 3.59% 0.41% 70.74% 0.42% 100% 4 

DGVZ 10.88% 5.84% 0.24% 1.37% 81.67% 100% 3 

Table 13: Orthogonalized VDC using AIC 

As both AIC and SBC gave similar outcome in the ECM, we proceeded with AIC 

for this step to keep it simple. As you can see from the table, it is clear that orthogonalized 
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VDC is biased towards the ordering. The tests differs in raking the most exogenous variable 

(realized volatility in generalized but price index in the other) but the gave the same rank 

to our implied volatility, which is the most endogenous. As financial market is very 

sensitive towards any changes in price or financial instruments, shocks can be seen almost 

immediately and effectively translated across the market. After 10-days, all of the shocks 

are in or nearing equilibrium and stay coherent over time, until another shock is introduced, 

proven by the 50-day horizon table. The results are still consistent 50 days later.  

Due to its biasness nature, this study chooses to proceed with generalized VDC. 

The result shows that variance of the realized volatility is 85% dependable on its own past 

after 10 days. Implied volatility (VIX) however, being the most endogenous, only 46% 

explained by its own past and much more affected by other variables. Price is expected to 

be endogenous due to its market nature. Thus, it is safe to conclude that in the case for S&P 

500, its realized volatility (RVI) is leading the implied volatility (VIX) and also the price 

index (PI). Price is also exogenous to the fear index, which is in contrary to the argument 

made by Badshah in his 2016 paper.  

 We are also with intention in looking into the endogeneity of all three implied 

variances (stocks, gold and crude oil) as our sub-purpose to see which market is more stable 

and leading the other. Our result is as expected, without drawing in assumption during the 

test. Being the most stable market, gold is the most exogenous among the three markets 

followed by crude oil and stock options. As expected, gold is highly likely to be 

independent of other markets with high dependency of its own past. Stock being the most 

sensitive market will have the biggest shock if any turmoil were to occur.  

4.7 Impulse Response Analysis (IRF) 

To clearly see the result of shocking the variable and its effect depending on its exogeneity 

or endogeneity, impulse response analysis is arranged. IRF maps out the dynamic response 

path of a one-period standard deviation shock of a variable to another and to itself. The 

response is illustrated graphically to give the visual impression of the dynamic correlation 

within the whole system. Hence, one may say that IRF is VDC represented in graph format, 

thus can better illustrate the shock consequence.  
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Akin to VDC, IRF can also be tested through two method; orthogonalized and 

generalized IRF. Hence, the biasness of orthogonalized VDC carries thru hence leading to 

problematic assumption in IRF, which stress on shock affected only one variable at a single 

time. Such assumption is precarious as it is only applicable if and only if the variable is 

independent and stands on its own without explanation from others. Figures below are 

illustration of our results.  

 

Figure 1: Orthogonalized IRF  
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Figure 2: Generalized IRF 

Figure 1 depicts Orthogonalized Impulse Response Function for all variables by 

shocks each variable to see dynamic relationship. The results are quite similar to the 

generalized IRFs as shown in Figure 2. When the impulse shock is for all other variables, 

DVIX takes the biggest or second biggest risk while others fluctuates around the zero line. 

DVIX shock also tends to take the longest time to dies out in all shocks response which is 

I line with our findings in above testing.   
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5.0 CONCLUSION AND POLICY IMPLICATIONS 

Great deals of researches have been conducted to look into the relationship between 

implied volatility, historical and realized volatility, yet no uniformity can be screened out 

from the findings. Some sides on implied volatility leads other volatilities, as it is ‘the 

market’ expectation on returns while others including this paper, empirically suggesting 

that it is realized volatility that is more independent as it relies heavily on its own past. One 

striking cause that can be pointed out is the difference in methodology adopted in the 

studies on top of the different datasets and markets that the researches chose to underpin in 

their respective study.  

 For this literature, we find that realized volatility is the leader in the volatilities for 

S&P 500 stock options market, over its implied volatility represented by the VIX. Without 

any estimation, the outcome should be true to its nature. The paper also abled to lay out the 

cross market relationship between gold, crude oil and stocks in search for the market that 

can be controlled and the controller. Gold, being a single independent market, triumphs 

with the least effect on shocks of other variable and responded only to its own shocks.  

It is in the interest of the author that policy maker may be able to use the study in laying 

out implication of the outcome for trading strategies, hedging portfolios, pricing of 

derivatives and risk management. It is also the goal for a better investment route in inter-

markets portfolio with the spill over from the fear index to developed and emerging 

markets as one market uncertainty interacts differently with other markets’ return in its 

own direction and degree. Thus, a more rounded and sound policy can be reformed to cater 

for this need.  
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