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Abstract: We consider a decentralized supply chain (DSC) under resale price maintenance (RPM)

selling a limited-lifetime product to forward-looking customers with heterogeneous valuations.

When customers do not know the inventory level, double marginalization in DSC leads to a higher

profit and lower aggregate welfare than in centralized supply chain (CSC). When customers know

the inventory, DSC coincides with CSC. Thus, overestimation of customer awareness may lead

to overcentralization of supply chains with profit loss comparable with the loss from strategic

customers. The case with unknown inventory is extended to an arbitrary number of retailers

with inventory-independent and inventory-dependent demand. In both cases, the manufacturer,

by setting a higher wholesale price, mitigates the inventory-increasing effect of competition and

reaches the same profit as with a single retailer. The high viability of RPM as a strategic-behavior-

mitigating tool may serve as another explanation of why manufacturers may prefer DSC with RPM

to a vertically integrated firm.

Keywords: limited-lifetime product, strategic customers, limited information, aggregate welfare,

oligopoly
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1 Introduction

Resale price maintenance (RPM) is any of a variety of practices through which manufacturers

restrict resellers in the prices that they may charge for the manufacturer’s products. RPM can be

imposed explicitly as a manufacturer’s suggested retail price (MSRP or list price) or as a price floor

(minimum RPM), or the price can be set implicitly by, for example, fixing the retailer margin, see

European Commission (2010). The legal status and use of RPM has been controversial for over

a century, and evidence suggests that both the scale of RPM use and the effects on the economy

are underestimated. Overstreet (1983) provides an extensive review of RPM use for the period

when this practice was per se legal. In 1988, when RPM was illegal in the USA, the Supreme

Court adopted a wide use of the Colgate doctrine according to which a manufacturer may refuse

to deal with a retailer if it does not comply with the manufacturer’s price policy. Butz (1996)

quoted antitrust authorities arguing that RPM became “ubiquitous” and “endemic”, “but based

upon ‘winks and nods’ rather than written agreements that could be used in court.”

RPM attracted growing attention after a 2007 Supreme Court declaration that manufacturer-

imposed vertical price fixing should be evaluated using a rule of reason approach. MacKay and

Smith (2014) provide explicit evidence of RPM and comment that the firms involved in this practice

“include manufacturers and suppliers of childcare and maternity gear, light fixtures and home

accessories, pet food and supplies, and rental cars. Sony has publicly used minimum RPM on

electronics such as camcorders and video game consoles, and as of mid-2012, Sony and Samsung

began enforcing minimum RPM on their televisions. Other retailers do not comment on whether or

not they enter minimum RPM agreements, perhaps due to negative consumer sentiment associated

with higher prices.”

Manufacturers of various goods including electronic devices and seasonal goods repeatedly intro-

duce new versions of their products. The rapid pace of fashion, innovations, and change of seasons

limit the lifetime of these versions, reducing customer valuations in time. As a result, such products

may regularly appear on clearance sales. According to the National Retail Federation, the practice

of markdown pricing has followed a growing trend since 1960’s (Deneckere et al. (1997) ). When

product value is relatively durable, retailers may markdown in order to price-discriminate among

customers with different valuations. Clearance sales may also result from inventory-dependent de-
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mand even when the demand can be predicted with a high accuracy. This may happen when sales

at the list price increase with the quantity of the product exposed to customers, see, for example,

Urban (2005).

Customers accustomed to markdown pricing form expectations about future clearance sales and,

using these expectations, may engage in forward-looking or patient shopping behavior by delaying

the purchase until price reduction. The time of discount can be easily anticipated for seasonal

goods, and the size of the discount is usually predictable because it is often product specific and

expressed in round numbers (20% off, 50% off, etc.). Customers realize that delaying the purchase

may reduce the sense of novelty and their enjoyment of the product, but they still make this

intertemporal trade-off. Since forward-looking behavior is an instance of strategic behavior and we

do not consider other forms of this behavior, we use these terms as synonyms.

Starting from Coase (1972), theoretical and empirical studies confirm that strategic customer

behavior hurts sellers and may reduce profit up to 50%, see, for example, a comprehensive review

in Gönsch et al. (2013). Coase conjectured that a monopolistic seller of a durable good with a

secondary market is not able to extract monopolistic profit when strategic customers know the

total amount of the product and total demand. Even the customers with high valuations of the

product may wait until the price is reduced to the competitive level because the seller has an

incentive to sell the product in small portions reducing the price with time in order to capture

customer surplus. Such “price skimming” decreases the market value of the product for the first

buyers, and they may end up with a negative surplus. Due to the customer delays, the profit from

skimming may be significantly lower than a monopolistic profit from a one-time sale of a portion

of available product. However, the seller cannot credibly commit to the one-time sale because

customers know that the seller may have extra profit by selling an additional product after this

sale is realized. This phenomenon is referred to as “dynamic inconsistency.”

Despite broad evidence of the negative effects for sellers, Desai et al. (2004), Arya and Mittendorf

(2006), and Su and Zhang (2008) prove that when customers are strategic, a decentralized supply

chain (DSC) may enjoy a higher total profit than that of the centralized supply chain (CSC). These

studies show that the Coase problem may be solved by adding an intermediary retailer. The benefit

results from double marginalization, which, without strategic customers, leads to suboptimally low

inventories procured by retailer because manufacturer sets the wholesale price higher than its own
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unit cost. This effect provides a credible commitment of the SC to a high retail price or low

quantity, which cannot be achieved for a centralized production-selling unit under the Coase setup.

Our paper complements these studies by showing that DSC with strategic customers may have

a higher profit than CSC even when the seller does not suffer from the Coase problem in its extreme

case, that is, when the secondary market can be neglected, making possible intertemporal price

discrimination, see, for example, Bulow (1982). Under price discrimination, the two-period profit

of CSC is higher than the profit if sales occur only in the first period despite the negative effect of

customer delays. This situation means that the seller does not need to commit to first-period sales.

In other words, even when CSC does not suffer from dynamic inconsistency, DSC may perform

better due to double marginalization, which, in this case, permits higher prices.

We derive this result in a two-period model for a limited-lifetime product, a contract with

RPM for DSC, and forward-looking customers with heterogeneous valuations who do not know the

retailer’s inventory level. In reality, customers often do not know inventories or may ignore this

information even when it is available. Comparison with the case of known inventory yields the value

of information disclosure or, alternatively, the value of overestimation of customers’ reaction to this

information. There are a many contracts that include RPM. In this paper we restrict attention to

contracts with a two-part tariff where the manufacturer sets both the retail price and the wholesale

price and a fixed (franchise) fee. This follows, for example, the work of Rey and Tirole (1986),

Gal-Or (1991), §5.2 of Gurnani and Xu (2006), and Rey and Vergé (2010).

Our analysis is distinct from those in the above studies because our focus is on the intertemporal

effects of strategic customers and limited life of the product. In particular, the retailer may sell

the product in both periods but must procure the total two-period inventory in the first period,

given the inputs from the manufacturer. The manufacturer solves a one-period problem because

the product is not produced in the second period. As a result, we do not use subgame perfect

equilibrium as do Desai et al. (2004) and Arya and Mittendorf (2006) who consider SC under two-

part tariffs and wholesale price contracts respectively. In terms of the equilibrium concept, our

setup is closer to that of Su and Zhang (2008) who use rational expectations equilibrium (REE)

for the wholesale price, buyback, sales rebates, and markdown money contracts.

Another flexibility for the retailer in our setup is that the second-period price is not fixed

by the manufacturer but determined endogenously by the retailer inventory decision and market
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clearing. Besides the growing empirical evidence on markdowns mentioned above, this assumption is

consistent, for example, with the sales of copyrighted materials in Japan where retailers are selling

first at MSRP and eventually “reducing prices for consumers who don’t mind waiting a while

before they buy”; see Nippop (2005). Similarly to Desai et al. (2004) and Arya and Mittendorf

(2006), we consider deterministic demand in order to have a more tractable problem. Fisher and

Raman (1996) shows that demand uncertainty in the fashion apparel industry can be significantly

reduced by analyzing preliminary sales of the product. The effects of uncertainty are considered,

for example, in Su and Zhang (2008) and Cachon and Swinney (2009).

In this framework, DSC sets prices higher and inventory lower than CSC, which is a usual effect

of double marginalization. This known effect leads to an interesting result in our setup. When

customers exhibit higher levels of strategic behavior (to be defined), more customers delay their

purchases under CSC, which is a usual consequence of forward-looking behavior. For DSC, the

number of waiting customers decreases because more strategic customers pay more attention to

the expected second-period price, which is higher under DSC. As a result, DSC enjoys more sales

in the first period at a higher price than CSC. This comparative increase in the first-period profit

outweighs a relative loss in the second-period sales.

A frequent motivation for studying RPM is the welfare effect of this policy. We show that

RPM, compared to CSC, improves neither customer surplus nor aggregate welfare. However, it is

questionable that RPM is the primary culprit in these losses for two reasons. First, some customers

with low valuations suffer from the strategic behavior of other customers with higher valuations

even when the first-period price is fixed (no manufacturer decisions). Second, CSC can reach the

same profit and hurt welfare in the same way as RPM simply by disclosing inventory information to

the customers. Therefore, under DSC with known inventory, manufacturer “turns off” unnecessary

double marginalization by setting the wholesale price equal to unit cost. The result implies, first,

that strategic customer behavior itself may be a fundamental reason of welfare losses; and second,

that overestimation of customer knowledge of inventory or underestimation of strategic customer

behavior may lead to overcentralization of SC. We show that profit loss from this overcentralization

may be comparable with the loss from strategic customers.

We present a review of related literature in §2, describe a general model and provide a closed-

form analysis for RPM with strategic customers and one retailer in §3. The extensions for an
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arbitrary number of retailers are considered in §4, and the conclusions are in §5. All proofs and

supplementary materials are in the online appendix.

2 Literature review

The negative effect of double marginalization has been known since Spengler (1950) who shows in

a model with linear deterministic demand that “both the consumers and the firm benefit” from

vertical integration, that is, when all production-selling decisions comply with a single criterion. A

broad literature on SC coordination, reviewed in Cachon (2003), examines the abilities of various

contracts to reach the same profit as CSC. These results raise a question: Why do decentralized

supply chains exist if their profits never exceed the one of CSC? The reasons include legal issues

that motivated the work of Spengler or prohibitively high costs of CSC construction for small firms.

The works of Desai et al. (2004), Arya and Mittendorf (2006), and Su and Zhang (2008) reviewed

in Su and Zhang (2009), provide one more reason: double marginalization can lead to a strictly

greater profit of DSC than that of CSC when it serves as a commitment device to higher prices or

low inventories while customers strategically delay their purchases. The current paper extends this

line of research by showing that when customers are strategic, DSC under RPM outperforms CSC

even without secondary markets and with competing retailers.

The study of strategic buyers starts from the famous conjecture of Coase (1972), which is

formally supported in subsequent work, for example, by Bulow (1982). These early findings have

led to further research in the context of intertemporal pricing, which is systematically reviewed in

Gönsch et al. (2013). In particular, Liu and van Ryzin (2008) concur that “capacity decisions can

be even more important than price in terms of influencing strategic customer behavior”; they study

the effects of capacity decisions when prices are fixed while customers have full information and

can be risk-averse. Liu and van Ryzin find that capacity rationing can mitigate strategic customer

behavior but is not profitable when customers are risk neutral. Under competition, which typically

increases market supply, the effectiveness of capacity rationing is reduced, and there exists a critical

number of firms beyond which rationing never occurs in equilibrium. Further development of this

work by Huang and Liu (2015) shows that capacity rationing is also less effective under inaccurate

customer expectations about the reduced-price product availability.

6



Unlike Liu and van Ryzin (2008), we consider retailers’ capacity decisions in a SC framework

when the manufacturer uses RPM and optimally sets the first-period price. Following Liu and van

Ryzin (2008), we check the robustness of RPM as a low-inventory-commitment tool with respect to

the number of retailers. First, similarly to Liu and van Ryzin (2008), we consider equal allocation

of the first-period demand among the retailers. Then we raise the bar by extending the test to

inventory-dependent demand when the first-period sales increase in retailers’ inventories, which, in

addition to competition, further boosts the supply.1 The possibility of salvage sales, included in the

case of inventory-dependent demand, further increases retailers inventories. In response to these

challenges, the manufacturer raises the wholesale price, thereby achieving a desirable inventory

level and profit of DSC that exceeds the one of CSC for any number of competing retailers. These

extensions confirm the high viability of RPM as a strategic-behavior-mitigating tool, which may

serve as another explanation of why manufacturers may prefer RPM to a vertically integrated firm.

A review of the theories explaining the existence of RPM is provided in Orbach (2008). In

particular, RPM can be welfare-reducing when it leads to retailer cartels. In other cases, RPM can

be welfare-improving, for example, when the manufacturer uses it to protect the appeal of branded

products against using them as loss leaders or supports the retailers providing costly demand-

increasing services against free riders that capture the demand by cutting the price. These theories

do not consider the effects of strategic customers. Other contracts with RPM considered in the

literature presume, for example, that manufacturer, besides retail price, fixes the quantity of the

product, procured by the retailer, see, for example, Mukhopadhyay et al. (2009). In our setting,

this assumption would lead to a passive retailer without double marginalization, which is a crucial

effect to increase the profit of SC when customers are strategic. A review of other vertical restraints

can be found in Lafontaine and Slade (2013).

3 RPM with one retailer

We consider a two-period market where a manufacturer sells a limited-lifetime product either

directly to customers (CSC) or via an intermediary retailer (DSC). Following Desai et al. (2004)

and Arya and Mittendorf (2006), we assume that the manufacturer and retailer know the demand

and, in particular, the first-period demand D. First-period buyers do not participate in the second
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period and, therefore, there is no secondary market. The manufacturer and retailer do not offer

the product for rent due to high remarketing costs or legal issues, see, for example, Bulow (1982).

3.1 Model description and general results

Under CSC, the manufacturer chooses the first-period price p1 and inventory Y. By choosing Y ,

the manufacturer chooses either one-period or two-period sales depending on the profitability of

price-discrimination compared to the first-period sales only. If Y > D, the second-period price p2

is determined by marked clearing. Following Arya and Mittendorf (2006), who adopt a basic setup

from Bulow (1982), we normalize the manufacturer’s cost to zero, and then the profit of CSC is

ΠC = p1min{Y,D}+ p2(Y )(Y −D)+, (1)

where superscript “C” means CSC.

Under DSC, the manufacturer maximizes its profit by offering a contract with RPM at the be-

ginning of the first period. Since the product is not produced in the second period, the manufacturer

faces a one-period problem. Following Desai et al. (2004), we disregard other retailer costs except

the wholesale price w. We will call an RPM contract a tuple (p1, w, F ), where p1 is the first-period

retail price or MSRP and F is a fixed fee. Equivalently, RPM can be determined by (p1,mr, F ),

where mr = (p1 − w)/p1 is a retailer margin. According to the studies of SC contracts with fixed

fee, for example, Rey and Tirole (1986) and Gurnani and Xu (2006), the manufacturer sets F that

makes the retailer indifferent between accepting and rejecting the contract. When demand is de-

terministic, the retailer accepts any contract with nonnegative profit; otherwise, the manufacturer

may not supply the product leading to zero retailer profit. Therefore, F equals retailer profit and

the manufacturer total profit equals the profit of DSC. Henceforth, we denote this profit ΠD and

the manufacturer and retailer parts of this profit Πm and Πr respectively. In practice, the difference

F −Πr is a positive constant, which does not affect the results below.

Retailer maximizes its profit by selecting the initial inventory level Y , which may lead either

to one- or two-period sales. In the latter case, the second-period price is determined by market

clearing. Then the manufacturer and retailer parts of DSC profit are

Πm = wY, (2)

Πr = −wY + p1min{Y,D}+ p2(Y )(Y −D)+. (3)
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Customers, similarly to Desai et al. (2004), arrive at the start of the first period and their

valuations v are uniformly distributed on the interval [0, 1]. We normalize the number of customers

to one, that is, the potential demand in the first-period is 1 − p1. Normalization effectively ex-

presses revenue and inventory as “unitless” quantities and the first-period price p1 as a share of

the maximum valuation implying p1 ≤ 1. The demand 1 − p1 is “potential” because it includes

all customers with valuations not less than p1. We show below that when some of the customers

strategically delay their purchases, the actual first-period demand is D = 1− vmin < 1− p1, where

vmin is the valuation of a customer who is indifferent between buying in the first period or waiting.

Then, a general expression for a seller profit with a unit cost c becomes

Π = −cY + p1min{Y, 1− vmin}+ p2(Y )(Y − 1 + vmin)+, (4)

where c = 0 for CSC and c = w = (1−mr)p1 for the retailer in DSC. Note that profit (4) increases

linearly in Y when Y ≤ 1− vmin = D. Therefore, the inventory of a profit-maximizing firm is not

less than D, that is, there are no stockouts, implying that the first-period sales equal D and the

second-period inventory is Y −D = Y − (1− vmin).

A decrease in valuations, similarly to Desai et al. (2004), is captured by factor β ∈ [0, 1]: if the

customer’s first-period valuation is v, the second-period valuation is βv. Suppose the second-period

inventory Y − 1 + vmin > 0. The number of customers remaining in the market is vmin and the

maximum second-period valuation is βvmin. Therefore, the market clearing condition for the second

period takes the form vmin βvmin−p2
βvmin = Y − 1 + vmin, or, equivalently,

p2 = β(1− Y ). (5)

We use a logical restriction β > c, which guarantees that the highest-valuation customer is prepared

to pay more than the unit cost in the second period. If this restriction does not hold, the clearance

price can never be above the unit cost. This second-period setup differs from Desai et al. (2004)

and Arya and Mittendorf (2006) where the product is produced in both periods, a seller chooses

quantities to sell in both periods, and there is second-period used-product market. The setup differs

also from Su and Zhang (2008) where the second-period price is exogenously fixed. The following

assumption is common for all cases considered in this paper.

Assumption 1. Customers know their private valuations v, list price p1, product durability β, and
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the second-period surplus discount factor ρ ∈ [0, 1). Customers are non-cooperative and do not know

total demand.

Undervaluation of the surplus from delaying a purchase, similarly to Desai et al. (2004), means

that even for a product that does not depreciate much by the second period (β is near one),

customers with any valuation may myopically ignore the second period during the first-period

deliberations, which is captured by ρ = 0. The value of ρ may depend on the market targeted by

the product, for example, for age- or culture-oriented products, and on the customer confidence

in the stability of the financial situation. Customers with a higher ρ place more emphasis on the

second period in their wait-or-buy decisions. Thus, unlike β, which models an objective decrease

in valuations, the customer’s discount factor ρ is a subjective parameter describing the level of

strategic behavior. The essence of the distinct roles of β and ρ has been succinctly captured

by Pigou (1932): “Everybody prefers present [that is, ρ < 1] pleasures or satisfaction of given

magnitude to future pleasures and satisfaction of equal magnitude [that is, β = 1], even when the

latter are perfectly certain to occur.” Frederick et al. (2002) provide a review of empirical estimates

of customers’ discount rates.

Similarly to Desai et al. (2004), customers are homogeneous in ρ and β. This assumption is

applicable to any products targeting specific market segments. Some empirical studies, for example,

Hausman (1979), claim a dependence of the discount rate on income (which serves sometimes as a

proxy for product valuation). Other studies, however, show that the discount rate does not vary

significantly with income, see, for example, Houston (1983). We do not include ρ = 1 because

the case ρβ = 1 needs a special analysis increasing the volume of the paper. When this case is

interesting, it is considered as a limiting case as ρβ → 1. Note also, that we do not use ρ to calculate

the actual (realized) total customer surplus (§3.3) since ρ models only customer first-period buying

behavior. However, we do use β for this goal because deterioration of the product value indeed

decreases the realized second-period surplus.

Subsections below compare the cases where customers know and do not know the inventory level.

A general sequence of events for CSC in both cases is as follows: (a) manufacturer, anticipating

strategic customer behavior, chooses p1 and Y ; (b) the first-period demand D and sales are realized;

(c) the remaining inventory Y −D is cleared at p2.

For DSC with unknown inventory, the timeline is: (a) manufacturer, anticipating the retailer
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inventory response to manufacturer decisions and customers’ behavior, offers the contract with

RPM; (b) the first-period demand D is realized; (c) the retailer accepts the contract and procures

inventory Y ; (d) the first-period sales are realized; (e) the remaining inventory Y − D is cleared;

(f) the retailer pays fixed fee to the manufacturer. When customers know the inventory, the

only difference in this sequence is that the first-period demand is realized after retailer’s inventory

decision.

3.2 Customers do not know inventory level

The availability of information about total supply of the product varies among the markets. Some

markets, such as land or real estate, have nearly perfect information, the assumption used, for

example, in Desai et al. (2004), Arya and Mittendorf (2006), and Liu and van Ryzin (2008). In many

other markets, total system-wide inventory is unobservable, which reduces the ability of retailers

to use rationing as a tool for stimulating first-period demand from strategic customers. When

customers do not observe total supply, the problem can be solved by assuming that a seller (either

centralized or a retailer in DSC) preannounces the second-period product availability α ∈ {0, 1}

and the price p2, see, for example, Yin et al. (2009). Equivalently, like in Su and Zhang (2008),

it can be assumed that customer expectations of these values are rational, which means that they

coincide with the actual values that will be realized. Both approaches to the information about α

and p2 imply that all customers share the same values of these parameters. We stick to the second

(expectations) approach in this section and, therefore, refer to the resulting outcomes as Rational

Expectation Equilibria (REE).

Assumption 2. Customers do not know total product supply but know seller’s cost c and have

expectations of product availability in the second period ᾱ ∈ {0, 1} and second-period price p̄2.

Despite knowledge of c, customers cannot infer inventory level because they do not know total

demand. Given expectations ᾱ and p̄2, customers decide whether a first or second-period purchase

maximizes their surplus, which is similar to Su and Zhang (2008)2 or Cachon and Swinney (2009):

Assumption 3. When the product is available, a customer with valuation v buys in the first period

if and only if (iff) the first-period surplus σ1 , v − p1 is not less than the expected second-period

surplus σ̄2 , ᾱρ(βv − p̄2)
+.
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Customers do not consider rationing risk in the first period because there are no first-period

stockouts due to deterministic demand and profit-maximizing firms. Since σ̄2 ≥ 0, customers with

v < p1 never buy in the first period because such a purchase would result in a negative surplus.

For the same reason, customers with βv < p2 do not buy in the second period when p2 is realized.

The lemma below describes the first-period demand.

Lemma 1. Given customer expectations, surplus-maximizing behavior is to buy in the first period

if v ≥ vmin, where the unique valuation threshold is given by vmin = max
{

p1, min
{

p1−ᾱρp̄2
1−ᾱρβ , 1

}}

.

The resulting first-period demand is D = 1− vmin.

Based on this lemma and the above assumptions, the retailer profit in DSC is Πr = Πr(Y, p1, w, p̄2, ᾱ),

where p1, w, p̄2, and ᾱ are the parameters, and we specify REE in pure strategies for DSC as follows:

(1) Given p1 and w from the manufacturer and customer expectations, let the best response of

the retailer be BR(p1, w, p̄2, ᾱ) = argmaxY Πr(Y, p1, w, p̄2, ᾱ).

(2) The tuple
[

Ŷ (p1, w), p̂2(p1, w), α̂(p1, w)
]

is a REE for given p1, w iff Ŷ (p1, w) = BR(p1, w, p̂2, α̂),

p̂2(p1, w) = β
[

1− Ŷ (p1, w)
]

, and either α̂(p1, w) = 0 if Ŷ (p1, w) = 1− v̂(p1, w) or α̂(p1, w) = 1 if

Ŷ (p1, w) > 1− v̂(p1, w) where v̂(p1, w) is the equilibrium value of vmin.

(3) The tuple (F ∗, p∗1, w
∗, Y ∗, p∗2, α

∗) is a REE for DSC-profit-maximizing p1 and w iff F ∗ =

Πr∗ = Πr(Y ∗, p∗1, w
∗, p∗2, α

∗), where (p∗1, w
∗) = argmaxp1,w ΠD(p1, w), Y

∗ = Ŷ (p∗1, w
∗), p∗2 = p̂2(p

∗
1, w

∗),

and α∗ = α̂(p∗1, w
∗).

Similar to Desai et al. (2004), we are interested in market situations when there are sales

in both periods, but, for theoretical completeness, we consider all outcomes in order to provide

the conditions when both-period sales are endogenously determined by market participants. The

following lemma offers these conditions for given unit cost c and p1. This result is used below for

CSC with c = 0 and for the retailer in DSC with c = w = (1−mr)p1.

Lemma 2. A unique REE for given p1 and c with the stated structure exists iff the respective

conditions hold:

REE1 (First-period sales): v̂ = p1, α̂ = 0, Ŷ = 1 − p1, and Π̂ = (p1 − c)(1 − p1) under

condition p1 ≤ c/β.

REE2 (Second-period sales): v̂ = 1, α̂ = 1, p̂2 =
1
2(β + c), Ŷ = 1

2 (1− c/β) , and Π̂ = (β−c)2

4β

under condition p1 ≥ 1− 1
2ρ(β − c).
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REE3 (Two-period sales): v̂ = 2p1−ρc
2−ρβ (increases in ρ), α̂ = 1, p̂2 = 1

2(βv̂ + c), Ŷ =

1− 1
2 (v̂ + c/β) , and Π̂ = −cŶ + p1(1− v̂) + p̂2(Ŷ − 1 + v̂) under condition c

β < p1 < 1− ρ
2(β − c).

This lemma implies that, for CSC with c = 0 and any p1 > 0, REE1 does not exist, which means

that the second-period sales are always attractive for a vertically integrated seller. The existence

of equilibria in other cases depends on endogenization of p1 and shown in the proposition below.

Proposition 1. When customers do not know the inventory, there exists only REE3 for both CSC

and DSC. The equilibrium values provided in Table 1 are such that pD∗
1 ≥ pC∗

1 , Y D∗ ≤ Y C∗, pD∗
2 ≥

pC∗
2 , vD∗ ≤ vC∗, and the performance of DSC is ηΠ , ΠD∗/ΠC∗ = 1 + ρ2β[β2+(2−ρβ)(2−ρβ−2β)]

(2−ρβ)2[4−β(1+ρ)2]
≥ 1.

All inequalities hold as equalities only at ρ = 0 and ρβ → 1.

Table 1: Decentralized and centralized SC under incomplete information

DSC CSC

w∗ ρβ(2−ρβ−β)
4−β(1+ρ)2

↑ ρ 0

m∗
r

2−ρβ(4−ρβ−β)
2(1−ρβ) ↓ ρ 1

p∗1
2(1−ρβ)

4−β(1+ρ)2
↓ ρ (2−ρβ)2

2[2(2−ρβ)−β] ↓ ρ

Y ∗ 3−ρβ−β−ρ
4−β(1+ρ)2

↓ ρ 3(2−ρβ)−2β
2[2(2−ρβ)−β] ↓ ρ

p∗2
β(1−ρβ)(1+ρ)
4−β(1+ρ)2

↑ ρ β(2−ρβ)
2[2(2−ρβ)−β] ↑ ρ

v∗ 2−ρβ(1+ρ)
4−β(1+ρ)2

max in ρ for β ∈ (0, 1) 2−ρβ
2(2−ρβ)−β ↑ ρ

Πr∗ 4−β{1+ρ[6(2−ρβ−β)−ρ+β2(1+ρ2)]}
[4−β(1+ρ)2]2

(2−ρβ)2

4[2(2−ρβ)−β] ↓ ρ

Πm∗ ρβ(2−ρβ−β)(3−ρβ−β−ρ)
[4−β(1+ρ)2]2

0

Π∗ 1−ρβ
4−β(1+ρ)2

↓ ρ (2−ρβ)2

4[2(2−ρβ)−β] ↓ ρ

It is known since Mathewson and Winter (1984) that RPM coordinates DSC (the profit of DSC

equals the one of CSC) even with two decision variables. Proposition 1 confirms this result in a

different setting, first, for myopic customers and, second, for ρβ → 1. In both cases, decentralized

and vertically integrated firms are identical, that is, RPM indeed removes double marginalization.

The case ρβ → 1 deserves a special attention because it also yields ηΠ → 1, which means that

the superiority of RPM over CSC cannot be shown for durable goods only (β = 1) and strategic

behavior of customers limited to ρ = 0 and ρ = 1. The convergence of the results for CSC and DSC
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when ρβ → 1 follows from the elimination of the intertemporal effects since the product is durable

(β = 1) and customers do not distinguish the surpluses from the first- and second-period sales.

Proposition 1 is of a particular interest because previous studies, reviewed in Su and Zhang

(2009), discovered that DSC may outperform CSC only when the latter cannot achieve its highest

profit due to the lack of low-inventory commitment and inexistence of the first-best equilibrium. We

consider a setup where CSC does not suffer from dynamic inconsistency and attains its best profit

in the equilibrium REE3 with sales in both periods. However, DSC performs even better when

customer discount factor is not zero. This result contributes one more explanation to the reasons

why manufacturers may prefer RPM over vertical integration when customers are forward-looking.

It is easy to show that the superiority of DSC arises from double marginalization, which manu-

facturer “turns on” to mitigate strategic delays when customers are not myopic. Indeed, according

to Proposition 1, DSC-prices p∗1 and p∗2 are higher and inventory is smaller than for CSC, which is

a known effect of double marginalization. The higher ρ, the more customers delay their purchases

under CSC (v∗ increases in ρ), which is a known effect of strategic behavior. Meanwhile, under

DSC, the number of waiting customers is always less than for CSC (vD∗ < vC∗ for ρ ∈ (0, 1)) and

may even decrease in ρ for β < 1. This occurs because customers with higher ρ pay more attention

on the expected second-period price, which is higher under DSC. As a result, DSC enjoys more

first-period sales at a higher price than CSC. As Proposition 1 shows, this comparative increase in

the first-period profit exceeds a relative loss in the second-period sales.

A value of decentralization can be estimated by the relative difference
[(

ΠD∗ −ΠC∗
)

/ΠC∗
]

|ρ→1 =

β(1−β)
(2−β)2

. A unique maximizer βmax = 2/3 leads to maxβ
[(

ΠD∗ −ΠC∗
)

/ΠC∗
]

|ρ→1 = 1/8, that is,

when customers are strategic and do not know the inventory, RPM can improve supply chain profit

up to 12.5% (Figure 1 (a)). For comparison, the loss of CSC profit due to strategic customers at

βmax is
(

ΠC∗|ρ=0 −ΠC∗|ρ→1

)

/ΠC∗|ρ=0 = 7/27 or 26%, which is in the middle of the range reported

in studies reviewed in Gönsch et al. (2013). Not surprisingly, the loss from strategic customers at

βmax is less for DSC:
(

ΠD∗|ρ=0 −ΠD∗|ρ→1

)

/ΠD∗|ρ=0 = 1/6 or 16.6%.

The main motivation for studying RPM is usually a welfare effect of this policy. We showed that

RPM is attractive for the manufacturer compared to a vertically integrated firm when customers

are strategic and do not know the inventory. The next subsection provides the comparison of

aggregate welfare.
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3.3 Welfare effect of RPM vs. CSC

The aggregate welfare W is a sum of a SC profit and the total customer surplus. In a two-period

model, the total (realized) customer surplus is Σ , Σ1 + Σ2, where Σ1 and Σ2 are the total

surpluses of buyers in the first and second periods. Recall that Σ2 is not discounted by ρ because

ρ is a subjective behavioral parameter and such a discount would not reflect the actual surplus. In

the extreme case of ρ = 0, such discounting would completely disregard the second-period surplus

of myopic customers. The expressions for Σ1 and Σ2 are given by the following:

Lemma 3. Σ1 = (1− vmin)
[

1+vmin

2 − p1

]

and Σ2 =
(βvmin−p2)

2

2β .

Figure 1: RPM performance with respect to vertically integrated firm

(a) Profit performance ηΠ (b) Welfare performance ηW
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Substitution of the corresponding equilibrium values from Table 1 leads to ΣD∗ for DSC and ΣC∗

for CSC. Then WD∗ = ΣD∗ + ΠD∗,WC∗ = ΣC∗ + ΠC∗, and the equilibrium welfare performance

of RPM is ηW , WD∗/WC∗. The plot of ηW in Figure 1 (b) shows that this measure, unlike

the profit performance ηΠ in Figure 1 (a), does not exceed one, which means that RPM is not

welfare-improving compared to vertically integrated firm with the maximum loss around 6%. The

definition of W and Proposition 1 imply that RPM is also not surplus-improving. This observation

is intuitive because, by Proposition 1, RPM leads to higher prices in both periods and smaller total

inventory than CSC. Similar to ηΠ and by the same reasons, ηW = 1 only when customers are

myopic (ρ = 0) or fully strategic and the product is durable (ρβ → 1).

It is known that in some cases RPM improves welfare, for example, when it is used to protect

the retailers providing demand-enhancing services against free-riders or to support the appeal of
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branded products, see the review in Orbach (2008). However, when the only goal of RPM is to

mitigate strategic customer behavior, the welfare may decrease in comparison with a centralized

firm.

In order to understand the nature of this decrease, it is illustrative to consider the effect of an

increase in strategic behavior on customer surpluses. We start from the case without RPM (p1 and

c are fixed). Consider 0 ≤ ρ′ < ρ′′ < 1. By part RESE3 of Lemma 2, v̂|ρ=ρ′ < v̂|ρ=ρ′′ because a

higher ρ means that customers pay more attention on the second-period surplus in their buy-or-wait

decision, and more customers delay the purchase, which is the essence of forward-looking behavior.

To compare the outcomes at ρ′ and ρ′′, we split the customer population with v ∈ [0, 1] as follows:

(a) customers with v ∈ [v̂|ρ=ρ′′ , 1] buy in the first period at both ρ′ and ρ′′, and their realized

surplus does not change;

(b) customers with v ∈ [v̂|ρ=ρ′ , v̂|ρ=ρ′′) buy at ρ′ and wait at ρ′′, which, by Assumption 3, means

that v−p1 < ρ(βv− p̄2) (ᾱ = 1 in RESE3) implying, by rationality of p̂2, that v−p1 < βv− p̂2|ρ=ρ′′ ,

that is, the realized surplus βv − p̂2|ρ=ρ′′ is greater than the one at ρ = ρ′ due to the increase in

their own strategicity and despite the increase in p̂2 (by Lemma 2, p̂2 increases in v̂);

(c) customers with v ∈
[

p̂2|ρ=ρ′′

β , v̂|ρ=ρ′

)

buy in the second period at both ρ′ and ρ′′, and their

realized surplus at ρ′′ is less than at ρ = ρ′ because of the retailer equilibrium reaction to the buying

behavior of the customers from group (b) (p̂2|ρ=ρ′′ > p̂2|ρ=ρ′);

(d) customers with v ∈
[

p̂2|ρ=ρ′

β ,
p̂2|ρ=ρ′′

β

)

buy in the second period at ρ′ and do not buy at all

at ρ′′ with the surplus decreased to zero by the same reason as in (c);

(e) customers with v ∈
[

0,
p̂2|ρ=ρ′

β

)

do not buy at both ρ′ and ρ′′.

One can see that even with sticky first-period price and retailer cost (no manufacturer decisions),

not all customers are better off from strategic behavior. Only group (b) benefits from being more

strategic. The surpluses of groups (c) and (d) are less for higher ρ because the retailer, responding

to the behavior of group (b), increases the second-period price, which reduces the size of group (b).

Aflaki et al. (2016) provide a detailed analysis of changes in surpluses in groups (a)-(d) for CSC

selling a durable good (β = 1) in a similar setup. The difference from the case with sticky p1 is

that group (a) benefits from strategic behavior of group (b) because the first-period price decreases

in ρ, reducing the size of group (b). Proposition 1 confirms this observation for any β > 0.

Under RPM, a surplus redistribution among groups (a)-(d) leads to a smaller total customer
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surplus than under CSC because RPM is more efficiently mitigates this behavior: vD∗ ≤ vC∗,

and the manufacturer transfers more customer surplus to DSC profit (ΠD∗ ≥ ΠC∗). However, the

fundamental problem of losses from strategic customer behavior is still present under RPM because,

by Proposition 1, DSC profit decreases in ρ.

The next subsection provides alternative evidence that the comparative welfare decrease under

RPM results from customer behavior rather than from RPM itself. This subsection shows that

a vertically integrated firm can reach the performance of RPM (with the same welfare-decreasing

effect) by revealing the inventory information to strategic customers. Then, if strategic customer

behavior is not considered as a primary cause of decrease in welfare, the legal status of opening

information about inventories to customers should be questioned by the same reason as RPM

because it decreases inventory and increases prices.

3.4 Customers know inventory level

In this section, Assumption 2 is replaced by

Assumption 4. Customers know total product supply, the seller’s cost c, second-period product

availability α ∈ {0, 1} and price p2.

Customer awareness changes the form of the second-period surplus in Assumption 3. Now,

σ2 , αρ(βv − p2) = αρβ(v − 1 + Y ), which, similarly to Lemma 1, implies that the customer

valuation threshold is vmin = max
{

p1, min
{

p1−αρβ(1−Y )
1−αρβ , 1

}}

. The result below, similarly to

Lemma 2, provides the structure of market outcomes under complete information. These outcomes

are distinct from REE and we call them Complete Information Equilibria (CIE).

Lemma 4. A unique CIE with the stated structure exists iff the respective conditions hold:

CIE1 (First-period sales): v̂ = p1, α̂ = 0, Ŷ = 1 − p1, and Π̂ = (p1 − c)(1 − p1) under

condition p1 ≤ c(1−ρβ)
β(1−ρ) .

CIE2 (Second-period sales): v̂ = 1, α̂ = 1, p̂2 = 1
2(β + c), Ŷ = 1

2 (1− c/β) , and Π̂ = (β−c)2

4β

under condition p1 ≥ P2, where P2 = P2(ρ, β, c) is provided in the proof.

CIE3 (Two-period sales): v̂ = p1
2−ρβ−ρ2β
2(1−ρβ) − cρ2 , α̂ = 1, p̂2 =

1
2 [βp1(1 + ρ) + c(1− ρβ)], Ŷ =

1− 1
2 [p1(1+ρ)+c(1/β−ρ)], and Π̂ = −cŶ+p1(1−v̂)+p̂2(Ŷ−1+v̂) under condition c(1−ρβ)

β(1−ρ) < p1 < P2.
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This lemma shows that customer knowledge of Y changes p1-boundaries and the form of Y -

response of the seller to p1 and c under CIE3 compared to Lemma 2. In particular, the definition

of the boundary P2 between CIE2 and CIE3 is more complicated. As shown in the proof, this

boundary is not less than the boundary between REE2 and REE3. However, Proposition 2 below

shows that only the equilibrium with two-period sales (CIE3) exists for both CSC and DSC.

Proposition 2. When customers know the inventory, there exists only CIE3 for both CSC and

DSC. The equilibrium values p∗1, Y
∗, p∗2, v

∗, and Π∗ of CSC coincide with the correspondent values

of DSC under incomplete info provided in Table 1. Under DSC, the manufacturer sets m∗
r ≡ 1 (or

w∗ ≡ 0) leading to the same result as CSC.

Proposition 2 confirms that SC can use customer knowledge of inventory as an efficient tool

for mitigating strategic behavior even when customers are risk neutral. This tool is at least as

efficient as double marginalization since the manufacturer in DSC endogenously chooses the contract

equivalent to a vertically integrated firm by setting the retailer margin to one and, respectively, the

wholesale price to zero, which effectively “turns off” double marginalization.

At the same time, Propositions 1 and 2 imply that overestimation of customer reaction on

information about inventory may lead to overcentralization of SC. A profit loss in this case can be

estimated by the value of inventory disclosure, which, similarly to the value of decentralization, can

be evaluated at ρ → 1 because myopic customers do not use this information. Indeed, for ρ = 0, the

profits of CSC under complete and incomplete information coincide: ΠCC∗|ρ=0 = ΠCI∗|ρ=0 =
1

4−β .

Since the profit of CSC under complete info coincides with the one of DSC under incomplete info, the

value of disclosure for CSC equals the value of decentralization: maxβ
[(

ΠCC∗ −ΠCI∗
)

/ΠCI∗
]

|ρ→1 =

maxβ
[(

ΠDI∗ −ΠCI∗
)

/ΠCI∗
]

|ρ→1 = 1/8, that is, customer reaction on information about inventory

can change the profit of CSC up to 12.5%.

This result is consistent with Li and Yu (2016) who show in a setup similar to Su and Zhang

(2008) that DSC profit is not higher than the one of CSC when customers take into account the

inventory level. These findings complement Yin et al. (2009) who discovered that “display one”

format (unknown total current inventory) can benefit a seller by increasing a sense of scarcity when

customers know the demand and compete with each other.

The comparison of cases with incomplete and complete info sheds more light on why RPM may

have higher profit than CSC. Suppose that CSC under incomplete info, for a given first period
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price, sets a lower inventory, for example, equal to Y ∗ for DSC in Table 1. This decision would

be irrational and lead to a lower profit because customers do not observe changes in inventory but

know that a vertically integrated firm is a low-cost seller and rationally expect low second-period

price. Therefore, the first-period sales would remain the same whereas the second period sales

would decrease due to a higher price. The situation changes when customers know and do not

ignore the information about inventory. In this case, CSC does not need a commitment device and

reaches the same profit as DSC with RPM for any level of strategic customer behavior.

It is known that the total supply to the market typically increases in the number of competing

retailers. Then, intuitively, an inventory-reducing tool for mitigating strategic customer behavior

may become less efficient with the growing level of competition. For example, Liu and van Ryzin

(2008) showed that retailers may not use capacity rationing starting from rather small numbers of

sellers. The next section studies the effects of the level of retailer competition on the performance

of RPM under incomplete info.

4 RPM with Oligopolistic retailers

Similarly to §3.1 and under the assumptions of §3.2 (customers do not know inventory), manu-

facturer offers the same contract with RPM to an arbitrary number of identical retailers. The

assumption of retailer symmetry is common for studying the effects of the level of competition,

when retailers do not differ in their cost structure or brand value, see, for example, Liu and van

Ryzin (2008).

When retailers procure more inventory than for the first-period sales only, they engage in clear-

ance sales in the second period. As the product offerings are undifferentiated, the retailers lower

their prices until all remaining inventory is cleared, that is, the second-period price p2 (identical for

all retailers) is sufficiently low for the total clearance demand to equal the total remaining inven-

tory. Alternatively, Liu and van Ryzin (2008), §4.4, assume that the same second-period price is

exogenously fixed for all retailers. Each retailer maximizes its profit by selecting the initial inven-

tory level. The resulting game among the retailers is similar to the classical Cournot-Nash model,

but with a distinct two-period structure. There are studies confirming that Cournot assumption,

leading to the same price among retailers, is not implausible in cases of non-price competition, see,
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for example, Karnani (1984), and Perakis and Sun (2014). One of the arguments is that retailers

choose their inventory-based decisions independently, whereas price cuts are easily observable and

can be matched almost instantaneously. Flath (2012) shows that the markets of music records,

bicycles, and thermos bottles are appropriately described by the Cournot model. For example, the

Japanese market of music records, besides plausibility of the Cournot model, is characterized by

legal use of RPM system (saihan seido) and strategic customer behavior (Nippop (2005)).

We now describe the market dynamics. Let retailers be indexed by set I of size n = |I|, and

retailer i ∈ I inventory and sales in the first period be yi and qi. As the second-period market

is cleared, each retailer’s second-period supply and sales are equal to yi − qi. Then the total

product supply and first-period sales are Y =
∑

i∈I y
i and Q =

∑

i∈I q
i respectively. The total

second-period supply is Y −Q, the retailer i profit is

Πi = −wyi + p1q
i + p2(y

i − qi), (6)

and the profit of DSC is ΠD = Πm +Πr, where Πr =
∑

i∈I Π
i and Πm is given by (2). First-period

sales qi are determined based on a customer decision model.

4.1 Customer decision model

The customer decision model includes two aspects: demand allocation between two periods and

among the retailers. The first aspect remains the same as in §3.2, that is, customers decide to

buy or wait using their expectations of the second-period product availability ᾱ and price p̄2. In

particular, by Lemma 1, the first-period demand is D = 1 − vmin. For allocation of the demand

among the retailers we use two cases of a well-known attraction model with inventory-dependent

demand.

Studies such as Yin et al. (2009) reasonably assume that if all inventory is displayed to the

customers, the customers know the total amount of this inventory. In some markets, however, this

assumption may exaggerate customer rationality. For example, buyers of goods such as apparel or

music records attracted by displayed inventory usually do not count all available units in all outlets

in order to make a purchase. Therefore, an outlet with a higher inventory attracts more customers,

but customers do not use the information about total inventory and rely on their expectations while

deciding to buy or wait. In this sense, we consider a complimentary case to “display all” format in
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Yin et al. (2009) by assuming that customers can observe the inventory but do not know its total

level, and demand is allocated according to the resulting vector of inventory-driven attractions of

all retailers.3

According to studies reviewed in Urban (2005), a typical form of attraction associated with

inventory y is yγ where γ ∈ [0, 1] is the inventory elasticity of attraction. Then the attraction

model for the first-period demand di of retailer i is

di(D, yi,y−i) , D

(

yi
)γ

∑

j∈I (y
j)γ

, i ∈ I, (7)

where y−i , (y1, . . . , yi−1, yi+1, . . . , yn) is the vector of inventories of other retailers. Function (7)

is a symmetric form of the general attraction model. This form is widely used both in theoretical

and empirical research, see, for example, Karnani (1984) and Gallego et al. (2006). An empirical

study of Naert and Weverbergh (1981) concludes that the attraction model is “more than just

a theoretically interesting specification.” This model “may have a significantly better prediction

power than the more classic market share specifications.” This conclusion is supported by later

research, see, for example, Klapper and Herwartz (2000).

The case γ = 0 means that a retailer’s attraction does not depend on yi, and di ≡ D
n for

any yi > 0 and i ∈ I.4 Liu and van Ryzin (2008), in §4.4, use this case to study the effect

of rationing on strategic behavior of risk-averse customers. Cachon (2003), in §6.5, considers a

newsvendor competition model where retail demand is “divided between the n firms proportional

to their stocking quantity,” which matches the case of γ = 1 in (7). This case can be viewed as

a fluid limit of the following simple randomized allocation model. Suppose all retailers pool their

(discrete) inventory into an urn (one may think of different retailers’ inventory being identified by

different colors). Each customer randomly picks an item from the urn (without replacement), and

the retailer to whom the item belongs is credited for the sale. In such allocation model, the case of

intermediate 0 < γ < 1 corresponds to pooling of attractions rather than inventories.

Model (7) allows for tractable analysis when γ = 0 or γ = 1. In both cases, similarly to

§3.2, deterministic demand and profit-maximizing retailers immediately imply that there are no

stockouts in the first period. Therefore, the total first-period sales are Q = D = 1 − vmin, the

individual first-period sales are qi = di(D, yi,y−i), and the resulting second-period inventories are
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yi − qi, i ∈ I. Since D = D(p̄2, ᾱ), implying di = di(p̄2, ᾱ, y
i,y−i), the retailer i profit is

Πi = Πi(yi,y−i, p1, w, p̄2, ᾱ) = −wyi + p1d
i(p̄2, ᾱ, y

i,y−i) + p2(Y )
[

yi − di(p̄2, ᾱ, y
i,y−i)

]

. (8)

Using the same notion of rationality as in §3.2, we extend the definition of REE to n symmetric

retailers and define the rational expectations symmetric Cournot-Nash equilibrium (RESE) in pure

strategies for DSC as follows:

1. Given p1 and w from the manufacturer, customer expectations ᾱ and p̄2, and y−i, let the

best response of retailer i be BRi(y−i, p1, w, p̄2, ᾱ) = argmaxyi Π
i(yi,y−i, p1, w, p̄2, ᾱ).

2. For given ᾱ and p̄2, let ỹ = ỹ(p1, w, p̄2, ᾱ) denote a symmetric Cournot-Nash equilibrium

inventory level in the retailer game, that is, ỹ(p1, w, p̄2, ᾱ) = BRi [(ỹ, . . . , ỹ), p1, w, p̄2, ᾱ] , where

(ỹ, . . . , ỹ) ∈ R
n−1
+ , and Ỹ (p1, w, p̄2, ᾱ) = nỹ(p1, w, p̄2, ᾱ) be the corresponding total inventory.

3. The tuple
[

Ŷ (p1, w), p̂2(p1, w), α̂(p1, w)
]

is a RESE for given (p1, w) iff Ŷ (p1, w) = Ỹ (p1, w, p̂2, α̂),

p̂2(p1, w) = β
[

1− Ŷ (p1, w)
]

, and either α̂(p1, w) = 0 if Ŷ (p1, w) = 1− v̂(p1, w) or α̂(p1, w) = 1 if

Ŷ (p1, w) > 1− v̂(p1, w) where v̂(p1, w) is the equilibrium value of vmin.

4. The tuple (F ∗, p∗1, w
∗, Y ∗, p∗2, α

∗) is a RESE for ΠD-maximizing (p1, w) iff F ∗ =
∑

i∈I F
i∗, F i∗ =

Πi∗ = Πi(yi∗,y−i∗, p∗1, w
∗, p∗2, α

∗) for all i ∈ I, where (p∗1, w
∗) = argmaxp1,w ΠD(p1, w), yi∗ =

1
n Ŷ (p∗1, w

∗), p∗2 = p̂2(p
∗
1, w

∗), and α∗ = α̂(p∗1, w
∗).

The cases γ = 0 and γ = 1 of model (7) are studied below in §4.2 and §4.3 respectively.

4.2 Inventory-independent demand

Following §4.4 of Liu and van Ryzin (2008), this subsection assumes that the first-period demand

is equally distributed among the retailers, which is a particular case of (7) with γ = 0. Using (8),

retailer i profit with the unit cost c = w and p2 = β(1− Y ) is

Πi = −wyi + p1
1− vmin

n
+ β(1− Y )

(

yi − 1− vmin

n

)

. (9)

The lemma below extends the result of Lemma 2 for the case of n symmetric retailers with inventory-

independent demand and c = w.

Lemma 5. For demand (7) with γ = 0, a unique RESE with the stated structure exists iff the

respective conditions hold:
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RESE1 (First-period sales): v̂ = p1, α̂ = 0, Ŷ = 1 − p1, and Π̂r = (p1 − c)(1 − p1) under

condition p1 ≤ c/β.

RESE2 (Second-period sales): v̂ = 1, α̂ = 1, p̂2 = β+cn
n+1 , Ŷ = n

n+1 (1− c/β) , and Π̂r =

n(β−c)2

(n+1)2β
under condition p1 ≥ 1− n

n+1ρ(β − c) , P2.

RESE3 (Two-period sales): v̂ = (n+1)p1−nρc
1+n(1−ρβ) , α̂ = 1, p̂2 =

βp1+cn(1−ρβ)
1+n(1−ρβ) , Ŷ = 1−p1+cn(1−ρβ)/β

1+n(1−ρβ) ,

which increases in n, and Π̂r = −cŶ + p1(1− v̂) + p̂2(Ŷ − 1 + v̂) under condition c
β < p1 < P2.

Lemma 5 confirms, in particular, that under RESE3, for given p1 and w = c, the total supply

to the market Ŷ , indeed, increases in the number of retailers n, which may challenge the efficacy of

manufacturer’s RPM-policy as an inventory-reducing tool in response to strategic customer delays.

The following proposition provides the equilibrium reaction of the manufacturer to the level of

competition n. The proposition analyses only DSC since CSC is the same as in §3.2.

Proposition 3. For DSC with n retailers and demand (7) with γ = 0, there exists only RESE3.

The manufacturer sets w∗ = β{n−1+ρ[1+n(1−ρβ−β)]}

n[4−β(1+ρ)2]
∈

[

0, 12
)

, which increases in n and in ρ, and

leads to the equilibrium values Y ∗, p∗1, p
∗
2, v

∗, and ΠD∗ that do not depend on n and coincide with

the correspondent values for n = 1 provided in Table 1.

Proposition 3 shows that RPM overpowers the force of competition when demand is inventory-

independent. The manufacturer, as in Proposition 1, uses the wholesale price, which is absent in

CSC, in order to adjust total supply to the market and achieve the highest possible profit. Indeed,

as can be seen from Lemma 5, the total inventory Ŷ decreases in w; therefore, the manufacturer sets

a higher w∗ for a higher number of retailers and enjoys the same profit as for SC with monopolistic

retailer regardless of the level of competition. Comparing this result with the findings of §4.4 in

Liu and van Ryzin (2008), we can conclude that RPM is a more effective inventory-reducing tool

under competition than retailer capacity-rationing.

The following subsection examines RPM in another extreme case γ = 1 of demand allocation

model (7). This case is of a particular interest because, in addition to inventory-increasing force

of competition considered for γ = 0, retailers have one more incentive to increase inventory since

their market shares directly depend on displayed inventories.
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4.3 Inventory-dependent demand

Following §6.5 in Cachon (2003), this subsection assumes that the first-period demand is distributed

among the retailers proportionally to their inventory levels, which is a particular case of (7) with

γ = 1. Then, by (8), retailer i profit is Πi = −cyi + p1y
i 1−vmin

Y + p2(Y )yi
[

1− 1−vmin

Y

]

.

An important difference of case γ = 1 from the above is that retailers’ market share competition

may drive the second-period price below cost (Corollary 1 below), which is usually a peculiarity of

models with random demand. Since the second-period price results from market clearing, sales at

loss obviously indicate an increase in total product supply compared to the cases above.

While clearance sales train strategic customers, sales at loss foster bargain hunters whose valua-

tions are below the retailer unit cost. Some studies, for example Cachon and Swinney (2009) and Su

and Zhang (2008), assume that, in the second period, there is a market of bargain hunters who can

buy any remaining product at a unit salvage value s < c. Unlike these studies, we assume that the

participants of the second-period market endogenously choose between clearance and “salvaging”

sales. We need this endogeneity to determine manufacturer’s reaction to this choice. Besides “bar-

gain hunters” interpretation, salvage value allows for availability of alternative sales channels for

retailers such as liquidations.walmart.com, www.shoplc.com, and www.salvagesale.com. As a

result, p2 never goes below s, and Eq. (5) becomes

p2 = max {s, β(1− Y )} . (10)

An opportunity to sell large quantities at a fixed (not decreasing in Y like in clearance sales)

price may serve as an additional incentive for retailers to oversupply the market and additionally

challenge RPM policy as an inventory-reducing tool.5

Given the above, Proposition 4 below extends the result of Lemma 2 on retailer’s reaction to

given p1 and c for n symmetric retailers under inventory-dependent demand6 with γ = 1.

Proposition 4. For demand (7) with γ = 1, a unique RESE with the stated structure exists iff the

respective conditions hold:

RESE1 (First-period sales): v̂ = p1, α̂ = 0, Ŷ = 1 − p1, and Π̂r = (p1 − c)(1 − p1) under

condition p1 ≤ nc
n−1+β , P1.

RESE2 (Second-period sales): v̂ = 1, α̂ = 1, p̂2 = c + β−c
n+1 , Ŷ = n

n+1 (1− c/β) , and Π̂r =

n(β−c)2

(n+1)2β
under condition p1 ≥ 1− n

n+1ρ(β − c) , P2.
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RESE3 (Two-period sales, p̂2 > s): v̂ = p1−ρβ(1−Ŷ )
1−ρβ , α̂ = 1, p̂2 = β(1− Ŷ ), where Ŷ is the

larger root of equation (29) in Appendix, and Π̂r = −cŶ +p1(1− v̂)+ p̂2(Ŷ −1+ v̂), under condition

P1 < p1 < P2 and, for n ≥ 2, one of the following: (a) n−1
n (p1−s) (1− v̂) Ŷ ≤ (c−s) (1− s/β)2, or

(b) condition (a) does not hold, Ŷ < 1− s
β , and

1
nΠ̂

r ≥ Π̌i ,

(

Y̌ − n−1
n Ŷ

)

[

−(c− s) + (p1 − s)(1− v̂)/Y̌
]

,

where Π̌i is the maximum profit of a firm deviating from RESE3 in such a way that p2 = s (total

inventory exceeds 1 − s/β), Y̌ = min

{

v̂ − s
β +B,

√

n−1
n

Ŷ (p1−s)(1−v̂)
c−s

}

, and B is the number of

bargain hunters.

The equilibrium characteristics Ŷ , v̂, and Π̂r are continuous on the boundaries between these

forms of RESE. Moreover, in RESE3, Ŷ ≥ n
n+1(1− c/β).

In this proposition, the p1-bounds P1 and P2 separate RESE3 from RESE1 and 2 respectively.

Similarly to the case γ = 0, the input area of RESE1 shrinks in β, disappearing for β = 1, because

of increasing profitability of the second-period market when retailers can gain from two-period price

discrimination. Unlike γ = 0, this area shrinks also in n, disappearing for n → ∞, due to increasing

quantity competition for the market share, which may force retailers to procure more inventory

than just for the first period. Another important difference from γ = 0 is the additional conditions

(a) and (b) of RESE3 existence for n ≥ 2, which result from the presence of bargain hunters. These

conditions are discussed after Proposition 5 below.

The following corollary shows that competition with γ = 1 may lead to the second-period price

below cost, which contrasts the case γ = 0 where the second-period sales are always profitable. We

demonstrate this effect in a market for a durable good with myopic customers and some n > 2.

The second-period price in this case remains above the unit cost in a duopoly.

Corollary 1. For β = 1, ρ = 0, and c < p1 < 1, RESE1 and RESE2 cannot be realized and, in

RESE3, the second-period price is below cost iff n > 2 + p1−c
1−p1

.

Since a lower price corresponds to a higher inventory, the case γ = 1 provides an additional

challenge to RPM as an inventory-reducing tool for mitigating strategic delays. Assuming that

c = w, the following proposition answers the question: does there exist a feasible wholesale price

w that, similarly to the case γ = 0, leads to a one-retailer profit for DSC under oligopoly with

inventory-dependent demand?7
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Proposition 5. For DSC with n retailers and demand (7) with γ = 1, the wholesale price

w∗ = 1
n[4−β(1+ρ)2]

(

ρβ(2− ρβ − β) + (n−1)(1−ρβ)(4−β−2ρβ−ρ2β)
3−ρβ−β−ρ

)

∈
[

0, 12
]

leads to the equilibrium

values Y ∗, p∗1, p
∗
2, v

∗, and ΠD∗ that do not depend on n and coincide with the correspondent values

for n = 1 provided in Table 1. This w∗ increases in n, increases in ρ except for w∗|n→∞ ≡ 1
2 at

β = 1, and w∗|γ=1 > w∗|γ=0 for any n ≥ 2. For these equilibrium values, the condition P1 < p1 < P2

of RESE3 existence always holds and condition (a) always holds for s = 0.

This proposition confirms that even under oligopoly with an arbitrary number of retailers and

inventory-dependent demand, there may exist a contract with RPM leading to the same profit of

DSC as with a single retailer, which, by Proposition 1, is more profitable than CSC. It is easy to

check that, for n = 1, the expression for w∗ in Proposition 5 coincides with w∗ in Table 1. Inequality

w∗|γ=1 > w∗|γ=0 explains that the manufacturer overcomes the challenge of inventory-dependent

demand (γ = 1) by setting a higher wholesale price than in the case γ = 0 (Proposition 3).

Proposition 5 does not guarantee RESE3 existence for n ≥ 2 in general because conditions (a)

and (b) in Proposition 4 depend on salvage value s, which is not controlled by the manufacturer.

These conditions hold only if s is sufficiently lower than retailer’s unit cost w∗. Condition (a) means

that the profit of a potential deviator from RESE3 to salvage-value sales monotonically decreases

in inventory, while condition (b) means that the deviator’s profit has a local maximum, which does

not exceed the profit under RESE3. According to Proposition 5, RESE3 always exists when the

salvage value equals manufacturer’s cost (s = 0). As was discussed in Su and Zhang (2008), salvage

value can be relatively high for mass markets with ample salvage opportunities whereas for niche

markets these opportunities are rare leading to small values of s.

If there is a liquidation channel with s > 0, RESE3 may not exist because the retailers may

prefer this channel to market clearing. This can happen when customers’ strategicity is low because,

by Proposition 5, w∗ is minimized at ρ = 0, and so the salvage sales are most attractive for the

retailers. A formal analysis in the appendix shows that DSC profit in this case may even exceed

ΠD∗ given in Table 1 if the number of bargain hunters B and s are relatively high. However, the

equilibrium with p2 = s may exist for small s and B at a high level of competition leading to DSC

profit less than ΠD∗ given in Table 1.8 The case of small DSC profit in the “salvaging” outcome

marginally benefits the retailers because the manufacturer reduces fixed fee under the condition in

the contract that retailers ignore salvaging opportunities and stick to RESE3. The resulting profit
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of DSC will still exceed the one of CSC.

5 Conclusions

A number of theories explain why manufacturers may use resale price maintenance (RPM) in a

supply chain (SC) contract. It is known, in particular, that even simplest forms of RPM may

coordinate SC, that is, RPM does not suffer from double marginalization and lead to the same

profit as a centralized SC (CSC). However, these theories do not consider a pervasive phenomenon

of forward-looking customers, who hurt sellers’ profits and reallocate customer surplus. This paper

contributes to the RPM literature by showing that SC profit under RPM is higher than the one of

CSC when customers are strategic and do not know or ignore the inventory level.

This study extends also the line of research initiated by Spengler (1950) who argued that an-

titrust law should differ vertical integration from the horizontal one because double marginalization

in decentralized SC (DSC) hurts both the seller and the aggregate welfare. Subsequent work pro-

vides the forms of double-marginalization-free contracts that lead to the same profits of DSC and

CSC, see a review in Cachon (2003); and recent studies, reviewed in Su and Zhang (2009), find that

when customers are strategic, the profit of DSC may even exceed the one of CSC when CSC cannot

credibly commit to low inventory. Our paper complements these recent findings by including RPM

into the list of such contracts. Another new insight is that the seller does not need to suffer from the

Coase problem in its extreme form in order to benefit from double marginalization. In particular,

secondary market can be neglected and intertemporal price discrimination can be more profitable

than one-period sales despite customer strategic delays. In this case, double marginalization ben-

efits the seller as a commitment device to a higher prices than under CSC in both periods, which

mitigates strategic delays and reduces profit loss.

One more qualitative impact of this paper is that the efficacy of double marginalization as a low-

inventory commitment device can be robust with respect to the number of competing retailers. This

conclusion holds for RPM under two types of competition: with inventory-independent demand,

when the first-period demand is allocated equally among the retailers, and with inventory-dependent

demand when retailer’s demand increases in inventory level. For the former case, we borrowed the

model of demand allocation from Liu and van Ryzin (2008) who showed that retailer capacity
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rationing is not robust under competition. The latter case is more challenging because the retailers

procure more inventories to increase their market shares in the first period. Nevertheless, in both

cases, RPM enjoys the same profit as with a single retailer by setting a higher wholesale price.

If customers know the inventory level, CSC effectively uses customer awareness and has the

same profit as DSC, which coincides with the DSC profit under unknown inventory. In this case,

the manufacturer in DSC sets the wholesale price equal to its unit cost effectively “turning off”

unnecessary double marginalization. The comparison with the case of known inventory implies that

inventory disclosure can be equivalent to double marginalization as a low-inventory commitment

device. On the other hand, if customer reaction on disclosed inventories is overestimated (or

strategicity is underestimated), a SC can be overcentralized leading to a profit loss comparable

with the loss from strategic customers.

The presence of strategic customers changes the conclusions of Spengler (1950) because DSC

with RPM is preferable for manufacturer but still hurts welfare, that is, the manufacturer has

an incentive for welfare-reducing decentralization. Moreover, for both types of competition, RPM

performs like with a single retailer, that is, formally, the case of RPM use for mitigating strategic

behavior can be qualified as a subcase of conspiracy theory leading to a retailer cartel. However,

this simple argument can be misleading. First, because CSC can also achieve the same result by

disclosing inventory level, that is, consistently using this argument, the legal status of inventory

disclosure should be equivalent to the one of RPM. This “strange” equivalency questions the ar-

gument. Second, because even when the first-period price is sticky (no manufacturer decisions),

the surplus of low-valuation customers decreases due to strategic delays of a part of high-valuation

customers. The decrease results from inventory-reducing response of retailers.

The observations above imply that a primary source of welfare loss in this problem is the

behavior of strategic customers. Therefore, a future research may determine the best SC-profit

improving strategies that mitigate strategic delays and, at the same time, do not decrease welfare

because welfare-decreasing strategies may be infeasible due to legal actions. In particular, we show

that the maximum loss of welfare under RPM compared to CSC is around 6%; that is, if RPM

is multipurpose, for example, besides mitigating customers’ delays, it also protects the retailers

providing demand-enhancing services against free-riders or supports the appeal of branded products,

the combined effect may be welfare-improving. Another promising welfare-increasing strategy is
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studied in Aflaki et al. (2016), where retailers increase customer cost of being strategic, for example,

by making markdowns less predictable. Aviv et al. (2016) show that when customers are strategic

and the first-period price is sticky, a most-favored-customer clause eliminates strategic delays and

increases welfare in the majority of market situations especially at high levels of competition.

Notes

1Urban (2005) provides a review of 60 theoretical and empirical papers studying inventory-dependent demand in

various industries without strategic customers.

2As suggested by Su and Zhang (2008), §6.1, the form of σ̄2 below implies that ρ can be interpreted also as

customer risk aversion or systematic misestimation of ᾱ. In these cases, ρ may exceed one.

3Using “cost” terminology, see, e.g., Aflaki et al. (2016), this assumption means that the customer cost of estimating

total inventory is prohibitively higher than the cost of expectations ᾱ and p̄2, which are a byproduct of a regular

buying practice and do not require additional efforts.

4Even though attractions are not continuous at 0 in this case, we demonstrate that the analysis is still possible.

5A similar effect in a different setup is discussed in §6.3 of Su and Zhang (2008).

6This result and the case p2 = s are discussed in more detail in a working paper Bazhanov et al. (2015).

7The expression for w∗ provided in Proposition 5 can be easily generalized for any 0 < γ < 1 using the approach

in the proof and the equation for Y with general γ in Bazhanov et al. (2015).

8Exogenously restricted B, resulting in the total inventory less than the one that maximizes individual retailer

profits, leads to an interesting effect when the total, and therefore, individual profits of symmetric retailers are

greater due to reduced sales at loss in the second period. This known effect results from market share competition of

noncooperative retailers with inventory-dependent demand. A similar effect increased the profits of tobacco companies

after the advertising ban on TV and radio for the cigarette industry in 1971.
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Resale Price Maintenance with Strategic Customers

A Online Appendix

A.1 Proof of Lemma 1 (first-period demand)

By Assumption 3, σ1 ≥ 0 is equivalent to v ≥ p1 and σ1 ≥ σ̄2 is equivalent to v−p1 ≥ ρᾱ(βv−p̄2) ⇔

v ≥ p1−ᾱρp̄2
1−ᾱρβ . Combining these inequalities, we obtain the stated expression for vmin. Because all

customers with v ≥ vmin would buy in the first period, the total demand is D = 1− vmin.

A.2 Proof of Lemma 2 (REE, n = 1)

REE1 (only first-period sales) simplifies (4) to Π = (p1 − c)Y yielding a unique profit-maximizing

Y = 1− vmin and the maximum profit Π = (p1 − c)(1− vmin), which can be formulated as

Lemma 6. For given model inputs and customer expectations, retailer rationality implies that the

effective domain of the inventory decision is Y ≥ 1− vmin and (p1− c)(1− vmin) is the lower bound

for the optimal profit.

Customer rationality demands that ᾱ = 0 and, by Lemma 1, vmin = p1, implying that the

candidate REE is described by v̂ = p1, Ŷ = 1− v̂, and, therefore, α̂ = 0 and Π̂ = (p1 − c)(1− p1).

Since vmin does not depend on Y and, by (5), p2 = β(1− Y ), profit (4) is concave quadratic in

Y when Y > 1− vmin. Therefore, the candidate REE1 exists iff there is a local maximum of Π at

Y = 1− v̂, i.e., profit (4) is not increasing in Y for any Y > 1− v̂ : ∂Π
∂Y |Y=1−v̂+0 ≤ 0, which, using

Y = 1− v̂, is −c+ βv̂ ≤ 0 ⇔ p1 ≤ c/β.

REE2 (only second-period sales) exists iff all customers delay their purchases, i.e., vmin = 1,

which simplifies profit (4) to Π = −cY + β(1 − Y )Y. FOC yields the candidate REE with Ŷ =

1
2(1−c/β), p̂2 = β(1−Ŷ ) = 1

2(β+c), and Π̂ = −cŶ+β(1−Ŷ )Ŷ = 1
2β (β−c)

[

−c+ 1
2(β − c)

]

= (β−c)2

4β .

The condition of existence vmin = 1 holds only if ᾱ = 1 and, by Lemma 1, if p1−ρp̄2
1−ρβ ≥ 1. By customer

rationality, p̄2 = p̂2 =
1
2(β + c) leading to p1 − ρ

2(β + c) ≥ 1− ρβ or p1 ≥ 1− ρ
2(β − c).

REE3 : There are sales in both periods iff Y > 1 − vmin and p1 ≤ vmin < 1 (there are sales

in the first period) with vmin = p1 only if ρ = 0. Profit (4) is Π = −cY + p1(1 − vmin) + β(1 −

Y )(Y −1+vmin), which is concave quadratic in Y (vmin is constant in Y ). Therefore, the candidate
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REE exists iff the local maximum of Π at Y = Ŷ is such that Ŷ > 1 − v̂ and v̂ < 1. FOC is

−c − β(Y − 1 + vmin) + β(1 − Y ) = 0 ⇔ 2βY = β(2 − vmin) − c ⇔ Ŷ = 1 − 1
2(v̂ + c/β), where

v̂ = p1−ρp̂2
1−ρβ and, by customer rationality, p̂2 = β(1− Ŷ ). Substitution of Ŷ and collection of terms

with v̂ leads to v̂ = 2p1−ρβ(v̂+c/β)
2(1−ρβ) ⇔ v̂(1 + ρβ

2(1−ρβ)) = 2p1−ρc
2(1−ρβ) ⇔ v̂ = 2p1−ρc

2−ρβ , which increases in

ρ since ∂v̂
∂ρ = 2(βp1−c)

(2−ρβ)2
> 0. The last inequality follows from condition Ŷ > 1 − v̂, which becomes

−1
2(v̂ + c/β) > −v̂ ⇔ v̂ > c/β ⇔ 2p1 − ρc > 2c/β − ρc ⇔ p1 > c/β. Condition v̂ < 1 is

2p1 − ρc < 2− ρβ ⇔ p1 < 1− ρ
2(β − c). Note that v̂ = p1 ⇔ ρc = ρβp1, which, indeed, holds only

if ρ = 0 whenever p1 > c/β.

A.3 Proof of Proposition 1 (RPM, incomplete info, n = 1)

We start from determining a profit-maximizing p1(c) for REE3. Substitution of v̂(p1, c) into

Ŷ [v̂(p1, c), c], and p̂2[v̂(p1, c), c] given by Lemma 2 leads to Ŷ (p1, c) = 1− βp1+c(1−ρβ)
β(2−ρβ) and p̂2(p1, c) =

c+ βp1−c
2−ρβ . Plugging in these expressions into Π̂ yields Π̂(p1, c) = (p1 − c)2(1−p1)−ρ(β−c)

2−ρβ + (βp1−c)2

β(2−ρβ)2
,

which is concave quadratic in p1. FOC is 2(1−p1)−ρ(β−c)
2−ρβ − 2 p1−c

2−ρβ + 2 βp1−c
(2−ρβ)2

= 0, which is equiva-

lent to p1

(

2β
2−ρβ − 4

)

= 2c
2−ρβ − 2c − 2 + ρ(β − c) or p1

β−2(2−ρβ)
2−ρβ =

c+(2−ρβ)( ρ
2
(β−c)−1−c)

2−ρβ , yielding

p1(c) =
(2−ρβ)[1− ρ

2
(β−c)]+c(1−ρβ)

2(2−ρβ)−β .

For CSC (c = 0), a profit-maximizing p1 is p∗1 =
(2−ρβ)2

2[2(2−ρβ)−β] . Plugging in p∗1 and c = 0 into the

formulas for v̂, Ŷ , p̂2, and Π̂ in Lemma 2 leads to the expressions in Table 1: v∗ = 2−ρβ
2(2−ρβ)−β , Y

∗ = 1−
v∗

2 = 4(2−ρβ)−2β−(2−ρβ)
2[2(2−ρβ)−β] = 3(2−ρβ)−2β

2[2(2−ρβ)−β] , p
∗
2 =

β(2−ρβ)
2[2(2−ρβ)−β] . In order to obtain the expression for ΠC∗,

note that 1−v∗ = 2−ρβ−β
2(2−ρβ)−β and Y ∗−(1−v∗) = v∗

2 = 2−ρβ
2[2(2−ρβ)−β] . Then ΠC∗ = p∗1(1−v∗)+p∗2[Y

∗−

(1 − v∗)] = (2−ρβ)2

2[2(2−ρβ)−β]
2−ρβ−β

2(2−ρβ)−β + β(2−ρβ)
2[2(2−ρβ)−β]

2−ρβ
2[2(2−ρβ)−β] =

(2−ρβ)2[2(2−ρβ)−2β+β]
4[2(2−ρβ)−β]2

= (2−ρβ)2

4[2(2−ρβ)−β] .

The intuitive monotonicity of these values in ρ can be shown by direct differentiation. By Lemma

2, there exists only REE3 since p∗1 always satisfies the condition of REE3 existence and profit ΠC∗

under REE3 always exceeds profits ΠC1∗ and ΠC2∗ under REE1 and REE2 respectively. Indeed,

p∗1 > 0, and condition p∗1 < 1− ρβ/2 ⇔ 2− ρβ > β always holds. Profit ΠC∗ ≡ ΠC3∗ has infimum

at ρ → 1 (since ∂ΠC∗

∂ρ < 0), which is infρ→1Π
C3∗ = (2−β)2

4(4−3β) . This expression is maximal at β = 2/3

(since
∂ΠC3∗|ρ→1

∂β = 2−3β
2(4−3β)2

) and minimal at the boundaries: infρ→1Π
C3∗|β=1 = infρ→1Π

C3∗|β=0 =

1
4 , whereas, by Lemma 2, ΠC1∗ = maxp1 p1(1− p1) =

1
4 and ΠC2∗ = β

4 .

For DSC, By Lemma 1 and the general equations for profits (2) and (3),

ΠD(p1, w) = p1[1− v(p1, w)] + p2(p1, w)[Y (p1, w)− 1 + v(p1, w)] (11)
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when sales are in both periods. The proof is based on the following lemma.

Lemma 7. Assume that Y = a0 − a1p1 − aww, p2 = b1p1 + bww, v = d1p1 − dww and the resulting

quadratic profit ΠD(p1, w) is concave in p1 and w. Then maximization of ΠD yields a unique solution

w∗ = −g12g10 + 2g20g11
4g11g22 + g212

and p∗1 = −g10 + w∗g12
2g11

(12)

where g10 = 1+b1(a0−1), g11 = −d1+b1(d1−a1), g12 = dw−b1(aw+dw)+bw(d1−a1), g20 = bw(a0−1),

and g22 = bw(aw + dw) are the coefficients of ΠD(p1, w) = p21g11 − w2g22 + p1wg12 + p1g10 − wg20.

Proof Substitution of Y, p2, and v into (11) leads to ΠD(p1, w) = p21g11 − w2g22 + p1wg12 +

p1g10 − wg20 and ∂ΠD

∂p1
= 0 yields p∗1 given in (12). Substitution of this p∗1 into ∂ΠD

∂w = 0 leads to

−2wg22 − g12
2g11

(g10 + wg12)− g20 = 0 yielding w∗ in (12)�

Part REE3 of Lemma 2 with c = w provides the coefficients of Y, p2, and v as functions of p1

and w : a0 = 1, a1 = 1
2−ρβ , aw = 1−ρβ

β(2−ρβ) , b1 = β
2−ρβ , bw = 1−ρβ

2−ρβ , d1 = 2
2−ρβ , and dw = ρ

2−ρβ . Substi-

tution of these coefficients into the expressions for gij yields g10 = 1, g11 = β
2−ρβ

(

2
2−ρβ − 1

2−ρβ

)

−
2

2−ρβ = β−2(2−ρβ)
(2−ρβ)2

, g12 = ρ
2−ρβ − β

2−ρβ

(

1−ρβ
β(2−ρβ) +

ρ
2−ρβ

)

+ 1−ρβ
2−ρβ

1
2−ρβ = ρ(2−ρβ−β)

(2−ρβ)2
, g20 = 0, and

g22 =
1−ρβ
2−ρβ

(

1−ρβ
β(2−ρβ) +

ρ
2−ρβ

)

= 1−ρβ
β(2−ρβ)2

.

Note that the coefficients in front of p21 and w2 are negative and ΠD(p1, w) is indeed concave.

Then the substitution of gij into (12) yields w∗ and p∗1. Namely, the numerator of the fraction for

w∗ is g12 and the denominator is 4g22g11 + g212 = 4(1−ρβ)[β−2(2−ρβ)]+ρ2β(2−ρβ−β)2

β(2−ρβ)4
leading to w∗ =

ρβ(2−ρβ)2(2−ρβ−β)
4(1−ρβ)[2(2−ρβ)−β]−ρ2β(2−ρβ−β)2

, where the denominator can be written as 8(2−ρβ)(1−ρβ)−4β(1−

ρβ)−ρ2β(2−ρβ)2+2(2−ρβ)ρ2β2−ρ2β3 = 2(2−ρβ)(4−4ρβ+ρ2β2)−β(4−4ρβ+ρ2β2)−ρ2β(2−ρβ)2,

which equals (2−ρβ)2[4−β(1+ρ)2]. Substitution of this expression yields w∗ = ρβ(2−ρβ−β)
4−β(1+ρ)2

, which

increases in ρ since ∂w∗

∂ρ can be written as
β[(1−ρβ)2+(3−β−2ρβ)(1−β)+4−4ρβ+2ρ2β−2β]

[4−β(1+ρ)2]2
, where the de-

nominator and the first two terms in the square bracket in the numerator are strictly positive, and

infρ
(

4− 4ρβ + 2ρ2β − 2β
)

= 4(1 − β) ≥ 0 since this sum decreases in ρ. Monotonicity of w∗ in ρ

implies w∗ ∈ [0, β/2) for ρ ∈ [0, 1). Plugging in w∗ into the formula for p∗1 in (12) leads after simpli-

fications to p∗1 = 1
2

(

−1− w∗ ρ(2−ρβ−β)
(2−ρβ)2

)

(2−ρβ)2

β−2(2−ρβ) = 2(1−ρβ)
4−β(1+ρ)2

with
∂p∗1
∂ρ = −2β(1−ρ)[2−β(1+ρ)]

[4−β(1+ρ)2]2
< 0.

Then m∗
r = 1− w∗

p∗1
= 2−ρβ(4−ρβ−β)

2(1−ρβ) with ∂m∗

r

∂ρ = −β[1−β+(1−ρβ)2]
2(1−ρβ)2

< 0.

Substitution of p∗1 and w∗ into the expression for Y, p2, and v yield their equilibrium values:

Y ∗ = 1− a1p
∗
1− aww

∗ = 1− (1−ρβ)(2+2ρ−ρ2β−ρβ)
(2−ρβ)[4−β(1+ρ)2]

= 1− (1−ρβ)(1+ρ)
4−β(1+ρ)2

= 3−ρβ−β−ρ
4−β(1+ρ)2

, which is decreasing

in ρ since ∂Y ∗

∂ρ = 3β−ρ2β2−2ρβ2−β2−4−ρ2β+6ρβ
[4−β(1+ρ)2]2

, where the numerator increases in β (its derivative in
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β decreases in β and is positive at β = 1) and equals −2(1 − ρ)2 < 0 at β = 1. Given Y ∗, we

have p∗2 = β(1 − Y ∗) = β(1−ρβ)(1+ρ)
4−β(1+ρ)2

, which increases in ρ since ∂Y ∗

∂ρ < 0. v∗ = d∗1p
∗
1 − dww

∗ =

2
2−ρβ

2(1−ρβ)
4−β(1+ρ)2

− ρ
2−ρβ

ρβ(2−ρβ−β)
4−β(1+ρ)2

= 2−ρβ(1+ρ)
4−β(1+ρ)2

with ∂v∗

∂ρ = β[β(1+ρ)2−4ρ]
[4−β(1+ρ)2]2

, which is positive for β =

1 : ∂v∗

∂ρ

∣

∣

β=1
= (1−ρ)2

[4−(1+ρ)2]
> 0. For β ∈ (0, 1), there exists a maximum of v∗ in ρ since ∂v∗

∂ρ = 0 ⇔

β = 4ρ/(1 + ρ)2 or ρ0 = 2(1 −
√
1− β)/β − 1 (the larger root of the quadratic equation in ρ is

greater than 1). This unique ρ0 corresponds to a maximum of v∗ since ∂v∗

∂ρ

∣

∣

ρ=0
= β2

(4−β)2
> 0 and

∂v∗

∂ρ

∣

∣

ρ→1
= 4β(β−1)

16(1−β)2
< 0.

Substitution of w∗, Y ∗, p∗1, p
∗
2, and v∗ into the formulas for profits leads after simplifications to

Πm∗,Πr∗, and ΠD∗ : Πm∗ = w∗Y ∗ = ρβ(2−ρβ−β)(3−ρβ−β−ρ)
[4−β(1+ρ)2]2

; ΠD∗ = p∗1(1 − v∗) + p∗2(Y
∗ − 1 + v∗),

where 1 − v∗ = 2−ρβ−β
4−β(1+ρ)2

and Y ∗ − (1 − v∗) = 1−ρ
4−β(1+ρ)2

. After substitution, it becomes ΠD∗ =

2(1−ρβ)(2−ρβ−β)
[4−β(1+ρ)2]2

+ β(1−ρ2)(1−ρβ)
[4−β(1+ρ)2]2

= 1−ρβ
4−β(1+ρ)2

with ∂ΠD∗

∂ρ = β{ρ(2−ρβ)+β−2}
[4−β(1+ρ)2]2

< 0 since the bracket {·}

in the numerator increases in β and {·} |β=1 = ρ(2− ρ)− 1 < 0 because the supremum of ρ(2− ρ)

equals 1 at ρ → 1. The retailer profit is Πr∗ = ΠD∗ − Πm∗ = 1−ρβ
4−β(1+ρ)2

− ρβ(2−ρβ−β)(3−ρβ−β−ρ)
[4−β(1+ρ)2]2

=

4−β{1+ρ[6(2−ρβ−β)−ρ+β2(1+ρ2)]}
[4−β(1+ρ)2]2

.

We can show now that there exists only equilibrium REE3. First, we show that FOC for p∗1

and w∗ always lead to an interior solution for REE3, i.e., when the manufacturer sets p∗1 and

w∗ under REE3, the retailer does not deviate to other equilibria. Indeed, the left inequality in

the condition of REE3 existence c
β < p1 < 1

2(2 − ρβ + ρc) in Lemma 2 with c = w∗ becomes

ρ(2 − ρβ − β) < 2(1 − ρβ) ⇔ ρβ(1 − ρ) < 2(1 − ρ), which always holds. The right inequality is

equivalent to 4(1− ρβ) < (2− ρβ)[4− β(1+ ρ)2] + ρ2β(2− ρβ− β) ⇔ 2− ρβ < 4− β(1+ ρ)2 + ρ2β

or 2− ρβ − β > 0,which also always holds.

The manufacturer has no incentives to set p∗1 and w∗ leading to REE1 or REE2 because REE3-

profit ΠD3∗ always exceeds the profits of other equilibria. Indeed, REE1-profit ΠD1∗ is ΠD1∗ =

maxp1,w[w(1− p1) + (p1 − w)(1− p1)] = maxp1 p1(1− p1) =
1
4 attained at p∗1 =

1
2 for any w ≥ β/2

since p1 ≤ c/β must hold for REE1. REE2-profit ΠD2∗ is ΠD2∗ = maxp1,w[w(β − w)/(2β) +

(β − w)2/(4β)] = β/4 attained at w∗ = 0 for any p1 ≥ 1
2(2 − ρβ), which is the condition of

REE2 existence. The infimum of REE3 profit ΠD3∗ = 1−ρβ
4−β(1+ρ)2

is at ρ → 1 since ∂ΠD3∗

∂ρ =

ρ(2−ρβ)−(2−β)
[4−β(1+ρ)2]2

, where the numerator is maximal at β = 1 and equals ρ(2− ρ)− 1, which is negative

for any ρ ∈ [0, 1). Therefore, the infimum of REE3 profit is ΠD3∗|ρ→1 = 1−β
2(2−β)−2β = 1

4 , i.e.,

ΠD3∗ > ΠD1∗ ≥ ΠD2∗ for any ρ ∈ [0, 1) and β ∈ (0, 1].
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Finally, using the formula for profit of CSC ΠC∗ in Table 1, the profit-performance of RPM is

ηΠ = ΠD∗/ΠC∗ = 1−ρβ
4−β(1+ρ)2

4[2(2−ρβ)−β]
(2−ρβ)2

, which can be written as ηΠ = 1 + ρ2β[β2+(2−ρβ)(2−ρβ−2β)]
(2−ρβ)2[4−β(1+ρ)2]

.

Inequality pD∗
1 ≥ pC∗

1 is equivalent to (2− ρβ)2(4− β − 2ρβ − ρ2β) ≤ 4(1− ρβ)(4− β − 2ρβ),

which holds as equality at ρ = 0. Considering ρ > 0, this inequality simplifies to (2 − ρβ)[ρβ −

2(1 − β)] − β2 ≤ 0. Denote x , [·], implying that ρβ = x + 2(1 − β). Then the last inequality is

(2β−x)x−β2 ≤ 0, where the first term (2β−x)x attains maximum in x, which equals β2 at x = β,

i.e., at β = ρβ − 2(1− β) ⇔ ρ = (2− β)/β, which holds at ρβ → 1.

Inequality Y D∗ ≤ Y C∗ is equivalent to [3(2−ρβ)−2β][4−β(1+ρ)2] ≥ [4−(1+ρ)(β+1)]2[2(2−

ρβ)− β], which holds as equality at ρ = 0. Considering ρ > 0, it simplifies to (2− ρβ)[3β(1 + ρ)−

4] − β2(1 + ρ) ≤ 0. The LHS is increasing in β since ∂LHS
∂β = (1 + ρ)[3(2 − ρβ) − 2β − 3ρβ] + 4ρ

decreases in β and its minimum is ∂LHS
∂β

∣

∣

β=1
= 2[2 + 3ρ(1 − ρ)] > 0, i.e., the LHS is maximal at

β = 1. The maximum of LHS in β is LHS|β=1 = 3[ρ(2 − ρ) − 1] ≤ 0 because maxρ ρ(2 − ρ) = 1

at ρ = 1, i.e., another case when Y ∗CI ≥ Y ∗CC holds as equality is ρβ → 1. Since p∗2 = β(1− Y ∗),

inequality Y D∗ ≤ Y C∗ implies pD∗
2 ≥ pC∗

2 .

Inequality vD∗ ≤ vC∗ also holds as equality at ρ = 0. Considering ρ > 0, it simplifies to

ρ2β(2− ρβ − β) ≥ 0, which holds as an equality only at ρβ → 1.

Inequality ηΠ ≥ 1 follows from simple observations that the fraction in the formula for ηΠ is

zero only if ρ = 0 or the square bracket in the numerator is zero since the denominator is positive

for any ρ ∈ [0, 1) and β ∈ [0, 1]. The square bracket in the numerator has a unique minimum in ρ.

This minimum equals 0 at 2− ρβ = β ⇔ ρ = (2−β)/β ≥ 1, which, for ρ ∈ [0, 1) and β ∈ [0, 1], can

hold only as equality in the limit when ρβ → 1. In this case, the L’Hospital’s rule yields ηΠ → 1.

A.4 Proof of Lemma 3 (total surplus)

By the definition of vmin, the total customer surplus in the first period is Σ1 =
∫ 1
vmin(v − p1)dv =

(

v2

2 − p1v
)∣

∣

∣

1

vmin
= 1

2 − p1 − (vmin)
2

2 + p1v
min =

1−(vmin)
2

2 − p1(1− vmin) = (1− vmin)
[

1+vmin

2 − p1

]

;

and Σ2 =
∫ βvmin

p2
(ṽ − p2)

dṽ
β = 1

β

(

ṽ2

2 − p2ṽ
)∣

∣

∣

βvmin

p2
= 1

β

(

βvmin − p2
)

(

βvmin+p2
2 − p2

)

=
(βvmin−p2)

2

2β .

Hence, Σ = Σ1 +Σ2 = (1− vmin)
[

1+vmin

2 − p1

]

+
(βvmin−p2)

2

2β .
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A.5 Proof of Lemma 4 (CIE)

CIE1 : Information about Y does not change the candidate equilibrium compared to incomplete

info case in Lemma 2 because α̂ = 0 and v̂ = p1, i.e., customer behavior does not depend on Y when

Y ≤ 1−vmin. The existence condition, however, is different because it involves the derivative of the

two-period profit (4). Under complete info, this profit is Π = −cY + p1

(

1− p1−ρβ(1−Y )
1−ρβ

)

+ β(1−

Y )
(

Y − 1 + p1−ρβ(1−Y )
1−ρβ

)

= 1
1−ρβ {−cY (1− ρβ) + p1(1− p1 − ρβY ) + β(1− Y )(Y − 1 + p1)} or

Π =
1

1− ρβ

{

(1− p1)(p1 − β) + Y [β(2− p1)− c− ρβ(p1 − c)]− βY 2
}

. (13)

Since Π is concave in Y, the candidate CIE exists iff there is a local maximum of Π at Y = 1− v̂,

i.e., (13) is not increasing in Y for any Y > 1 − v̂ : ∂Π
∂Y |Y=1−v̂+0 ≤ 0, which, using Y = 1 − p1 is

equivalent to β(2− p1)− c− ρβ(p1 − c) ≤ 2β(1− p1) ⇔ p1β(1− ρ) ≤ c(1− ρβ) ⇔ p1 ≤ c(1−ρβ)
β(1−ρ) .

CIE2 : This equilibrium is similar to REE2 given by Lemma 2 because it also exists only if

vmin = 1 leading to the same form of profit and, therefore, the candidate CIE with Ŷ = 1
2(1− c/β).

The condition of existence is also determined as a p1-boundary between CIE2 (vmin = 1) and CIE3

(vmin < 1). We derive this condition in the proof of CIE3 below.

CIE3 : The difference from REE3 is that profit (4) becomes Π = −cY + p1[1− vmin(Y )]+β(1−

Y )[Y − 1 + vmin(Y )], where vmin(Y ) = p1−ρβ(1−Y )
1−ρβ (not a constant in Y ). Therefore, FOC leads

to a different candidate equilibrium: −c− p1
∂vmin

∂Y − β(Y − 1 + vmin) + β(1− Y )
(

1 + ∂vmin

∂Y

)

= 0,

where ∂vmin

∂Y = ρβ
1−ρβ and Y − 1 + vmin = (Y−1)(1−ρβ)+p1−ρβ(1−Y )

1−ρβ = p1+Y−1
1−ρβ result in −c(1 − ρβ) −

p1ρβ − β(p1 + Y − 1) + β(1 − Y ) = 0 ⇔ 2βY = −p1β(1 + ρ) − c(1 − ρβ) + 2β, which yields

Ŷ = 1− 1
2

[

p1(1 + ρ) + c
(

1
β − ρ

)]

. Substitution of Ŷ leads to p̂2 =
1
2 [p1β(1 + ρ) + c (1− ρβ)] and

v̂ = 1
1−ρβ

{

p1 − ρβ
2

[

p1(1 + ρ) + c
(

1
β − ρ

)]}

= p1
2−ρβ−ρ2β
2(1−ρβ) − cρ/2.

Similarly to Lemma 2, the conditions of CIE3 existence are Ŷ > 1 − v̂ and v̂ < 1. The first

is equivalent to ∂Π
∂Y |Y=1−v̂+0 > 0 and becomes 1

2

[

p1(1 + ρ) + c
(

1
β − ρ

)]

< p1
2−ρβ−ρ2β
2(1−ρβ) − cρ/2 ⇔

p1(1 + ρ)(1− ρβ) + c
β (1− ρβ) < p1(2− ρβ − ρ2β) ⇔ p1(1− ρ) > c

β (1− ρβ) ⇔ p1 >
c(1−ρβ)
β(1−ρ) , which

is the p1-boundary between CIE3 and CIE1.

Condition v̂ < 1 leads to p1-boundary between CIE3 (v̂ < 1) and CIE2 (v̂ = 1). By Lemma

1, vmin = 1 iff p1−ρβ(1−Y )
1−ρβ ≥ 1 since ᾱ = 1 in both CIE3 and CIE2. Then the Y -boundary

between CIE3 and CIE2 follows from p1−ρβ(1−Y )
1−ρβ = 1 yielding Y B = 1−p1

ρβ . Since vmin increases in Y,

inequality p1−ρβ(1−Ŷ 2)
1−ρβ ≥ 1 is equivalent to Ŷ 2 ≥ Y B ⇔ 1

2(1−c/β) ≥ 1−p1
ρβ ⇔ p1 ≥ 1− ρ

2(β−c) , PL,
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where PL equals the p1-boundary between REE2 and REE3 in Lemma 2.

Unlike Lemma 2, condition v̂ < 1, or p1−ρβ(1−Ŷ 3)
1−ρβ < 1, or Ŷ 3 < Y B leads to a different p1-

bound: p1(2− ρβ− ρ2β)− cρ(1− ρβ) < 2(1− ρβ) ⇔ p1 <
(1−ρβ)(2+cρ)
2−ρβ−ρ2β

= PU . It can be shown that

PU ≥ PL. Indeed, PU ≥ PL ⇔ (2− 2ρβ)(2 + cρ) ≥ (2− ρβ)2 + ρc(2− ρβ − ρ2β)− ρ2β(2− ρβ) ⇔

ρ2β(2 − ρβ) ≥ ρ2β2 + ρ2βc(1 − ρ), i.e., PU = PL when ρ = 0, β = 0, and ρβ → 1. Otherwise, the

last inequality is equivalent to 2− ρβ ≥ β + c(1− ρ), which holds for any c ≤ 1.

When PL ≤ p1 < PU , both outcomes vmin < 1 and vmin = 1 are possible depending on the

seller’s choice of inventory (Ŷ 3 or Ŷ 2). Therefore, the p1-boundary between CIE3 and CIE2 in this

p1-range is determined by comparing the seller’s profit. Since in this range Ŷ 3 < Y B ≤ Ŷ 2 (by

construction), the maximum profit in the correspondent CIE is determined by FOC, i.e., by Ŷ 2

or Ŷ 3 (no boundary maximum). Therefore, the p1-boundary between CIE3 and CIE2 follows from

the indifference condition, i.e., P̃2 =
{

p̃1 : P
L ≤ p̃1 < PU and Π̂(Ŷ 3)|p1=p̃1 = (β−c)2

4β

}

. Combining

P̃2 with the cases when p1 /∈ [PL, PU ), we have P2 , max{PL,min{PU , P̃2}}. We do not provide a

closed form for P̃2 since it involves cumbersome expressions and is irrelevant for further analysis.

A.6 Proof of Proposition 2 (complete info)

For CSC (c = 0), a profit-maximizing p∗1 under CIE3 follows from Lemma 4. In this case, profit

Π̂ is Π̂ = p1

(

1− p1
2−ρβ−ρ2β
2(1−ρβ)

)

+ 1
2p1β(1 + ρ)

[

p1
2−ρβ−ρ2β
2(1−ρβ) − 1

2p1(1 + ρ)
]

. FOC in p1 is ∂Π̂
∂p1

= 1 −

p1
2−ρβ−ρ2β

1−ρβ + p1β(1 + ρ)
[

2−ρβ−ρ2β
2(1−ρβ) − 1

2(1 + ρ)
]

= 0, which, after collecting the terms with p1 is

p1
[

2(2− ρβ − ρ2β)− (β + ρβ)(2− ρβ − ρ2β) + (1− ρβ)β(1 + ρ)2
]

= 2(1− ρβ), where the bracket

[·] in LHS is [·] = 4− 2ρβ − ρ2β − β yielding the same p∗1 =
2(1−ρβ)

4−β(1+ρ)2
as for DSC under incomplete

info given in Table 1. Substitution of this p∗1 into formulas in Lemma 4 for Ŷ , p̂2, v̂, and Π̂ leads to

the same equilibrium expressions as Y ∗, p∗2, v
∗, and Π∗ for DSC in Table 1.

For DSC, similarly to the proof of Proposition 1, part CIE3 of Lemma 4 with c = w provides the

coefficients of Y = a0 − a1p1 − aww, p2 = b1p1 + bww, and v = d1p1 − dww : a0 = 1, a1 =
1+ρ
2 , aw =

1
2 (1/β − ρ) , b1 =

1
2β (1 + ρ) , bw = 1

2 (1− ρβ) , d1 =
2−ρβ−ρ2β
2(1−ρβ) , and dw = ρ

2 . The coefficients g11 and

−g22 in front of p21 and w2 respectively in the expression for profit ΠD(p1, w), given by Lemma 7,

are negative and ΠD(p1, w) is concave quadratic. Indeed, g11 = −d1 + b1(d1 − a1) = −2−ρβ−ρ2β
2(1−ρβ) +

1
2β (1 + ρ)

(

2−ρβ−ρ2β
2(1−ρβ) − 1+ρ

2

)

= β(1−ρ2)−2(2−ρβ−ρ2β)
4(1−ρβ) leading to g11 = −4−β(1+ρ)2

4(1−ρβ) < 0 and −g22 =

−bw(aw + dw) = −1
2 (1− ρβ)

[

1
2 (1/β − ρ) + ρ

2

]

= −1−ρβ
4β < 0. Then the unique profit-maximizing
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w∗ is w∗ = − g12g10+2g20g11
4g11g22+g212

, where g10 = 1+b1(a0−1) = 1; g12 = dw−b1(aw+dw)+bw(d1−a1) =
ρ
2−

1
2β (1 + ρ)

[

1
2 (1/β − ρ) + ρ

2

]

+ 1
4

[

2− ρβ − ρ2β − (1 + ρ) (1− ρβ)
]

= 1
2

{

ρ− 1
2(1 + ρ) + 1

2 (1− ρ)
}

=

0, and g20 = bw(a0 − 1) = 0 yielding w∗ = 0 and p∗1 = −g10+w∗g12
2g11

= 2(1−ρβ)
4−β(1+ρ)2

> 0. Then

m∗
r = 1− w∗/p∗1 = 1 implying the main result of the Proposition.

LHS of the condition of CIE3 existence c(1−ρβ)
β(1−ρ) < p1 < P2 holds for p1 = p∗1 since c = w∗ = 0 for

both CSC and DSC, and RHS follows from the result of Proposition 1 for DSC (p∗1 < 1− ρ
2(β− c)).

A.7 Proof of Lemma 5 (RESE, inventory-independent demand)

The proof uses the same arguments as the proof of Lemma 2, which are applied to symmetric

retailers with profit (9).

RESE1 (only first-period sales) yields the same candidate RESE as for n = 1 (Lemma 2) in

terms of v̂ = p1, the total inventory Ŷ = 1 − v̂, implying ŷi = 1
n(1 − v̂), and total retailer profit

Π̂r = (p1− c)(1−p1), which follows from retailers’ symmetry and Lemma 6. The candidate RESE1

exists iff two-period profit (9) is not increasing in yi for any yi > 1
n (1− v̂) : ∂Πi

∂yi
|yi= 1−v̂

n
+0 ≤ 0, which,

using v̂ = p1, becomes −c− β
[

yi − 1
n(1− p1)

]

+ β(1− Y )|
yi=

1−p1
n

+0
≤ 0 ⇔ βp1 ≤ c ⇔ p1 ≤ c/β.

RESE2 (only second-period sales) exists iff ᾱ = 1 and vmin = 1, which simplifies profit (9)

to Πi = −cyi + β(1 − Y )yi. FOC is ∂Πi

∂yi
= −c + β(1 − Y ) − βyi = 0. By symmetry, yi = Y

n ,

which leads to β − c = β(1 + 1
n)Y or Ŷ = n

n+1(1 − c/β). Substitution of this Ŷ and ŷi = Ŷ
n

into the expressions for p2 and Πr = nΠi yields p̂2 = β
[

1− n
n+1(1− c/β)

]

= 1
n+1(β + cn) and

Π̂r = (p̂2 − c)Ŷ = β−c
n+1

n(1−c/β)
n+1 = n(β−c)2

β(n+1)2
. The condition of existence vmin = 1 holds only if ᾱ = 1

and, by Lemma 1, if p1−ρp̄2
1−ρβ ≥ 1. By customer rationality, p̄2 = p̂2 = 1

n+1(β + cn) leading to

p1 − ρ
n+1(β + cn) ≥ 1− ρβ ⇔ p1(n+ 1) ≥ n+ 1− nρ(β − c) ⇔ p1 ≥ 1− n

n+1ρ(β − c) = P2.

RESE3 exists iff ᾱ = 1, vmin < 1 (there are sales in both periods) and any retailer i has no

incentive to deviate to sales only in the first period, i.e., ∂Πi

∂yi

∣

∣

∣

yi= 1−vmin

n
+0

> 0. Then profit (9) is

Πi = −cyi + p1
n (1 − vmin) + β(1 − Y )

[

yi − 1
n(1− vmin)

]

with FOC ∂Πi

∂yi
= 0 = −c + β(1 − Y ) −

β
[

yi − 1
n(1− vmin)

]

⇔ β − c + β
n(1 − vmin) = β(yi + Y ), which, divided by β, using symmetry

(yi = Y
n ) and customer rationality (substitute p̄2 = β(1 − Y ) into vmin), is Y n+1

n = 1 − c/β +

1
n
1−ρβ−p1+ρβ(1−Y )

1−ρβ ⇔ Y
(

n+1
n + ρβ

n(1−ρβ)

)

= 1− c/β + 1
n

1−p1
1−ρβ . Multiplication by n(1− ρβ) leads to

Y [(n+ 1)(1− ρβ) + ρβ] = (1−c/β)n(1−ρβ)+1−p1 ⇔ Ŷ = 1+n(1−ρβ)−p1−cn(1−ρβ)/β
1+n(1−ρβ) . Substitution

of 1−Ŷ = p1+cn(1−ρβ)/β
1+n(1−ρβ) into p̂2 = β(1−Ŷ ) and v̂∗ = p1−ρp̂2

1−ρβ results in the corresponding expressions.
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Condition v̂ < 1 is p1 + n(p1 − ρc) < 1 + n(1− ρβ) or p1(n+ 1) < 1 + n[1− ρ(β − c)] yielding

p1 < P2 — the boundary with RESE2. Condition v̂ ≥ p1 is p1 + n(p1 − ρc) ≥ p1 + np1(1− ρβ) or

ρc ≤ p1ρβ, which holds for ρ = 0. For ρ > 0, it becomes p1 ≥ c
β .

Condition ∂Πi

∂yi

∣

∣

∣

yi= 1−v̂
n

+0
> 0 is −2β 1−v̂

n + β 1−v̂
n + β

(

1− n−1
n Ŷ

)

> c. Multiplication by n
β leads

to n (1− c/β)− (n−1)Ŷ > 1− v̂, and, after the substitutions of Ŷ and 1− v̂ = 1−p1+n[1−p1−ρ(β−c)]
1+n(1−ρβ) ,

the last inequality, multiplied by 1+n(1−ρβ) > 0, becomes n(1−c/β)+n2(1−c/β)(1−ρβ)− (n−

1)(1−p1)−n(n−1)(1−c/β)(1−ρβ) > 1−p1+n[1−p1−ρ(β−c)] or n(1−c/β)+n(1−c/β)(1−ρβ) >

2n(1− p1)− nρβ(1− c/β), which, after simplifications, yields p1 >
c
β . This inequality implies that

v̂ = p1 only if ρ = 0. Treating n as a continuous variable, ∂Ŷ
∂n = (1−ρβ)(p1β−c)

β[1+n(1−ρβ)]2
> 0 since p1 >

c
β .

A.8 Proof of Proposition 3 (RPM with inventory-independent demand)

Similarly to the proof of Proposition 1, part RESE3 of Lemma 5 provides the coefficients of

Y = a0−a1p1−aww, p2 = b1p1+bww, and v = d1p1−dww, which, for γ = 0, are still linear functions

of p1 and w : a0 = 1, a1 = 1
1+n(1−ρβ) , aw = n(1−ρβ)

β[1+n(1−ρβ)] , b1 = βa1, bw = βaw, d1 = n+1
1+n(1−ρβ) , and

dw = nρ
1+n(1−ρβ) . The coefficients g11 and −g22 in front of p21 and w2 respectively in the expression

for profit ΠD(p1, w), given by Lemma 7, are negative and ΠD(p1, w) is concave quadratic. Indeed,

g11 = −d1 + b1(d1 − a1) = − n+1
1+n(1−ρβ) +

β
1+n(1−ρβ)

n
1+n(1−ρβ) =

βn−(n+1)[1+n(1−ρβ)]

[1+n(1−ρβ)]2
< 0 and −g22 =

−bw(aw + dw) = − n(1−ρβ)
1+n(1−ρβ)

[

n(1−ρβ)
β[1+n(1−ρβ)] +

nρ
1+n(1−ρβ)

]

= − n2(1−ρβ)

β[1+n(1−ρβ)]2
< 0. Then the unique

profit-maximizing w∗ is w∗ = − g12g10+2g20g11
4g11g22+g212

, where g10 = 1+b1(a0−1) = 1; g12 = dw−b1(aw+dw)+

bw(d1 − a1) =
nρ

1+n(1−ρβ) −
β

1+n(1−ρβ)

[

n(1−ρβ)
β[1+n(1−ρβ)] +

nρ
1+n(1−ρβ)

]

+ n2(1−ρβ)

[1+n(1−ρβ)]2
= n[n(1−ρβ)(1+ρ)+ρ−1]

[1+n(1−ρβ)]2

and g20 = bw(a0−1) = 0 yielding 4g11g22+g212 =
4n2(1−ρβ){βn−(n+1)[1+n(1−ρβ)]}+n2β[n(1−ρβ)(1+ρ)+ρ−1]2

β[1+n(1−ρβ)]4
,

which numerator is 4n3β(1−ρβ)−4n2(1−ρβ)(n+1)[1+n(1−ρβ)]+n2β {[1 + n(1− ρβ)] (1 + ρ)− 2}2 .

The second term can be written as n2β
{

[1 + n(1− ρβ)]2 (1 + ρ)2 − 4n(1− ρβ)(1 + ρ)− 4ρ
}

or

n2β
{

[1 + n(1− ρβ)]2 (1 + ρ)2 − 4n(1− ρβ)ρ− 4ρ
}

− 4n3β(1− ρβ). Then the numerator becomes

−4n2(1−ρβ)(n+1)[1+n(1−ρβ)]+n2β
{

[1 + n(1− ρβ)]2 (1 + ρ)2 − 4ρ [1 + n(1− ρβ)]
}

. This ex-

pression can be rearranged as [1 + n(1− ρβ)]
[

−4n3(1− ρβ)− 4n2
]

+ n2β [1 + n(1− ρβ)]2 (1 + ρ)2

or as [1 + n(1− ρβ)]2 n2
[

β(1 + ρ)2 − 4
]

. Then w∗ = −n[n(1−ρβ)(1+ρ)+ρ−1]

[1+n(1−ρβ)]2
β[1+n(1−ρβ)]2

n2[β(1+ρ)2−4]
or w∗ =

β{n−1+ρ[1+n(1−ρβ−β)]}
n[4−β(1+ρ)2]

. Another form is w∗ = β[1+ρ(1−ρβ−β)]
4−β(1+ρ)2

− β(1−ρ)
n[4−β(1+ρ)2]

, i.e., w∗ increases in n

with the maximum w∗|n→∞ = β{1+ρ(1−ρβ−β)}
4−β(1+ρ)2

∈
[

β
4−β ,

β
2

)

for ρ ∈ [0, 1). The last formula for w∗ im-

plies that ∂w∗

∂ρ is monotonic in n. Therefore, ∂w∗

∂ρ > 0 for any n since, by Proposition 1, ∂w∗

∂ρ |n=1 > 0
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and ∂w∗

∂ρ |n→∞ =
β[(1−ρβ)2+3(1−β)+β(ρ2+2ρβ+β−4ρ)]

[4−β(1+ρ)2]2
> 0 because ρ2 +2ρβ + β − 4ρ decreases in ρ and

infρ
(

ρ2 + 2ρβ + β − 4ρ
)

= 0 at ρ → 1.

By Lemma 7, p∗1 =
g10+w∗g12

−2g11
=

{

1 + β{n−1+ρ[1+n(1−ρβ−β)]}
n[4−β(1+ρ)2]

n[n(1−ρβ)(1+ρ)+ρ−1]

[1+n(1−ρβ)]2

}

−[1+n(1−ρβ)]2

2{βn−(n+1)[1+n(1−ρβ)]} ,

which can be written as − [4−β(1+ρ)2][1+n(1−ρβ)]2+β{n−1+ρ[1+n(1−ρβ−β)]}[n(1−ρβ)(1+ρ)+ρ−1]

2[4−β(1+ρ)2]{βn−(n+1)[1+n(1−ρβ)]}
, where the

second term in the numerator equals β {n(1− ρβ) + 1 + nρ(1− ρβ) + ρ− 2} [n(1−ρβ)+1+nρ(1−

ρβ)+ρ−2] = β {[n(1− ρβ) + 1] (1 + ρ)− 2}2 = [n(1− ρβ) + 1]2 β(1+ρ)2−4β [n(1− ρβ) + 1] (1+

ρ) + 4β. Then p∗1 = 2−[n(1−ρβ)+1]2+β[n(1−ρβ)+1](1+ρ)−β
[4−β(1+ρ)2]{βn−(n+1)[1+n(1−ρβ)]}

, where the second term in the numerator is

nβ(1−ρβ)(1+ρ)+ρβ = nβ(1−ρβ)+ρβ[n(1−ρβ)+1] yielding p∗1 = 2nβ(1−ρβ)−[n(1−ρβ)+1][n(1−ρβ)+1−ρβ]
[4−β(1+ρ)2]{βn−(n+1)[1+n(1−ρβ)]}

=

2(1−ρβ){nβ−(n+1)[n(1−ρβ)+1]}
[4−β(1+ρ)2]{βn−(n+1)[1+n(1−ρβ)]}

= 2(1−ρβ)
4−β(1+ρ)2

, which coincides with p∗1 for n = 1 given in Table 1.

Given p∗1 and w∗, Y ∗ = 1−a1p
∗
1−aww

∗ = 1− 2(1−ρβ)+(1−ρβ){n−1+ρ[1+n(1−ρβ−β)]}
[1+n(1−ρβ)][4−β(1+ρ)2]

, where the nu-

merator of the fraction is (1−ρβ) {1 + n(1− ρβ) + ρ [1 + n(1− ρβ)]} = (1−ρβ)(1+ρ) [1 + n(1− ρβ)]

yielding Y ∗ = 1 − (1−ρβ)(1+ρ)
4−β(1+ρ)2

= 3−ρβ−β−ρ
4−β(1+ρ)2

, which coincides with Y ∗ for n = 1 given in Table 1.

Given these p∗1, w
∗, and Y ∗, the equilibrium values of p∗2 = β(1 − Y ∗) (by 5), v∗ =

p∗1−ρp∗2
1−ρβ (by

Lemma 1 with ᾱ = 1), and ΠD∗ = Πm∗ +Πr∗ = p∗1(1− v∗) + p∗2(Y
∗ − 1 + v∗) (by Eqs. (2) and (3)

with D = 1− v∗ < Y ∗) also do not depend on n and equal the correspondent values in Table 1.

However, since w∗ depends on n, Πm∗ and Πr∗ also depend on n. After substitutions of equi-

librium values into (2) and (3) and simplifications, Πm∗ = β{n−1+ρ[1+n(1−ρβ−β)]}(3−ρβ−β−ρ)

n[4−β(1+ρ)2]2
and

Πr∗ =
4n−β{4n−3−β(n−1)+ρ[4(2n+1)−ρβ(5n+1)−6nβ−ρ+nβ2(1+ρ)2]}

n[4−β(1+ρ)2]2
, which, for n = 1, coincide with the

corresponding values in Table 1.

As to the type of RESE, recall that the actual manufacturer profit, after applying the fixed

fee, is ΠD∗, which equals the one in the case of n = 1 (Proposition 1). Therefore, as is shown

in the proof of Proposition 1, the manufacturer has no incentives to deviate from RESE3 because

RESE3-profit ΠD3∗ always exceeds the profits of other equilibria.

The retailers also have no incentives to deviate from RESE3. Indeed, LHS of the condition

of RESE3 existence w∗

β < p∗1 < 1 − n
n+1ρ(β − w∗) = P2 is β{n−1+ρ[1+n(1−ρβ−β)]}

n[4−β(1+ρ)2]
< 2β(1−ρβ)

4−β(1+ρ)2

or n − 1 + ρ [1 + n(1− ρβ − β)] < 2n(1 − ρβ) ⇔ n [1 + ρ(1− ρβ)− ρβ − 2(1− ρβ)] < 1 − ρ

⇔ n(1 − ρβ)(ρ − 1) < 1 − ρ, which always holds. The right inequality is 2(1−ρβ)
4−β(1+ρ)2

< 1 − nρβ
n+1 +

nρ
n+1

β{n−1+ρ[1+n(1−ρβ−β)]}
n[4−β(1+ρ)2]

⇔
[

4− β(1 + ρ)2
]

(n+ 1− nρβ) + ρβ {n− 1 + ρ [1 + n(1− ρβ − β)]} >

2 (n+ 1) (1−ρβ), where LHS is
[

4− β(1 + ρ)2
]

[1 + n(1− ρβ)]+ρβ {n− 1 + ρ [1 + n(1− ρβ)]− nρβ} =

[1 + n(1− ρβ)] (4− β − 2ρβ)+ρβ [n(1− ρβ)− 1] and RHS is 2n(1−ρβ)+2−2ρβ = 2 [1 + n(1− ρβ)]−
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2ρβ. Then condition p∗1 < P2 is [1 + n(1− ρβ)] (2− β − ρβ) > 0, which always holds.

A.9 Profit function for inventory-dependent demand (γ = 1)

Recall that the first-period total sales are Q = 1 − vmin and retailer i sales are qi = di(yi,y−i),

which, for γ = 1, is yi QY . The second-period sales of retailer i equal its second-period inventory

yi
(

1− Q
Y

)

. Then the general expression for retailer i profit, using (6) and (10), takes the form

Πi = −cyi + p1
yi

Y
(1− vmin) + max {s, β (1− Y )}

{

yi − yi

Y
(1− vmin)

}

. (14)

Although this expression is continuous in all parameters and inventory yi, it is generally not

globally differentiable. Next, we consider all possible subintervals for yi. Each subinterval results

in a differentiable expression for the profit function and a qualitatively distinct market outcome.

A.9.1 No sales in the second period

Formula (6) for profit becomes Πi = (p1 − c)yi, which yields a unique profit-maximizing inventory

yi =
(

1− vmin − Y −i
)+

, where Y −i =
∑

j 6=i y
j , and the maximum Πi = (p1 − c)

(

1− vmin − Y −i
)+

,

leading to the result similar to Lemma (6) for n = 1:

Lemma 8. For given model inputs and customer expectations, retailer rationality implies that the

effective domain of the inventory decision is yi ≥ (1− vmin − Y −i)+ and (p1 − c)(1− vmin − Y −i)+

is the lower bound for the optimal profit.

This lemma and the rationality of customer expectations immediately imply the following result.

Lemma 9. In any rational expectations equilibrium, (1) p2 < βp1 if there are sales in the second

period; (2) Y ≥ 1 − p1, which holds as an equality only if there are no sales in the second period;

(3) ρβY < 1 − p1 if there are sales in both periods and p2 > s; ρβY ≥ 1 − p1 and p2 ≥ c if there

are sales only in the second period; and (4) vmin = p1 iff ᾱ = 0 or ρ = 0.

Proof From Lemma 1, we have vmin = p1 iff
p1−ᾱρp̄2
1−ᾱρβ ≤ p1, which is equivalent to ᾱρβp1 ≤ ᾱρp̄2.

Within feasible parameter values, the later holds iff either ᾱ = 0, ρ = 0, or βp1 ≤ p̄2. By Lemma (8),

Y ≥ 1−vmin. Thus, either of ρ = 0, ᾱ = 0 or βp1 ≤ p̄2 implies that Y ≥ 1−p1. Moreover, Y = 1−p1

means there are no sales in the second period, whereas Y > 1− p1 means that these sales occur at

price p2 < βp1 according to the market clearing condition (10).
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Part 1: We conclude that p̄2 ≥ βp1 would never be rational and, in any rational expectations

equilibrium, we must have p2 < βp1.

Part 2: By the above reasoning, ᾱ = 0 implies vmin = p1 and Y ≥ 1−p1. However, Y > 1−p1

in combination with vmin = p1 means that there are second-period sales and ᾱ = 0 is not rational.

If ᾱ = 1, by part 1 and condition (10), we have β(1 − Y ) ≤ max{s, β(1 − Y )} = p2 < βp1.

Thus, Y > 1− p1 in any rational expectations equilibrium with ᾱ = 1.

Part 3: Because in any rational expectations equilibrium, p̄2 = p2 and ᾱ = 1 if there are sales

in the second period, Lemma 1 implies that, if there are sales in both periods, vmin < 1, which,

using (10), is equivalent to p1 − ρβ(1− Y ) < 1− ρβ or ρβY < 1− p1. If there are sales only in the

second period, p1−ρβ(1−Y ) ≥ 1−ρβ or ρβY ≥ 1−p1; p2 ≥ c because, in this case, Πi = (p2−c)yi,

and retailers are profit-maximizing.

Part 4: As p̄2 ≥ βp1 would never be rational, vmin = p1 can occur in a rational expectations

equilibrium iff ᾱ = 0 or ρ = 0�

A.9.2 Second-period sales with p2 > s

If vmin > 1−Y (or yi > 1−vmin−Y −i), there are sales in the second period. If 0 < yi < 1−s/β−Y −i,

then p2 > s and the profit is Πi = −cyi + p1
yi

Y

(

1− vmin
)

+ β (1− Y ) yi
(

1− 1−vmin

Y

)

= yi
[

β (1− Y )− c+ (p1 − β (1− Y ))
1− vmin

Y

]

(15)

= yi
[

β (1− Y )− c+ β
(

1− vmin
)

+
(p1 − β)(1− vmin)

Y

]

(16)

with ∂Πi

∂yi
= yi

[

β
(

−1 + 1−vmin

Y

)

− (p1−β(1−Y ))(1−vmin)
Y 2

]

+ β (1− Y )− c+ [p1−β(1−Y )](1−vmin)
Y

= β (1− Y )− c+ β(1− vmin)− βyi + (p1 − β)(1− vmin)(Y − yi)/Y 2, (17)

which, using equations Y = yi + Y −i and (16), can be rewritten as

∂Πi

∂yi
= β

(

1− Y −i
)

− c+ β
(

1− vmin
)

− 2βyi + (p1 − β)(1− vmin)
Y −i

Y 2
. (18)

The second derivative is

∂2Πi

∂ (yi)2
= −2

[

β + (p1 − β)(1− vmin)
Y −i

Y 3

]

. (19)
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A.9.3 Second-period sales with p2 = s

This case is possible only under oligopoly, i.e., Y −i > 0 (for a monopolistic retailer, any p2 ≤ c is

not rational) and only for vmin < 1 (there are first-period sales, otherwise profit is negative). If

there are sales in the second period and yi ≥
(

1− s/β − Y −i
)+

(or Y ≥ 1 − s/β), then p2 = s

and (14) becomes Πi = −cyi + p1y
i
(

1− vmin
)

/Y + syi
[

1− (1− vmin)/Y
]

= −(c− s)yi + yi (p1 − s)
(

1− vmin
)

/Y (20)

with the derivative

∂Πi

∂yi
= −(c− s) +

Y − yi

Y 2
(p1 − s)

(

1− vmin
)

= −(c− s) + Y −i (p1 − s)
(

1− vmin
)

/Y 2, (21)

which is monotonically strictly decreasing in yi when vmin < 1.

A.9.4 Properties of the profit function

The following lemma provides the properties of retailer i profit Πi, using the continuity of Πi in yi.

The best response in the retailer game depends on Y −i = Y −yi – total inventory less the inventory

of retailer i. If Y −i < 1− s/β, retailer i can influence p2. Namely, p2 > s if yi < 1− s/β − Y −i (no

salvaging) or p2 = s if yi ≥ 1 − s/β − Y −i (salvaging). If Y −i ≥ 1 − s/β, salvaging is forced on

retailer i, i.e., p2 = s regardless of yi.

Lemma 10. The profit function Πi is such that

(1) If 1− s/β − Y −i > 0, then

(1.1) ∂Πi

∂yi

∣

∣

∣

yi=1−s/β−Y −i−0
< ∂Πi

∂yi

∣

∣

∣

yi=1−s/β−Y −i+0
;

(1.2) Πi(1− s/β − Y −i) ≤ 0 iff

(p1 − s)
(

1− vmin
)

(1− s/β)(c− s)
≤ 1; (22)

(1.3) Πi is pseudoconcave in yi and strictly concave if p1 ≥ βvmin on the interval (1 − vmin −

Y −i)+ ≤ yi ≤ 1− s/β − Y −i;

(1.4) Πi is strictly concave on the interval leading to p2 = s, i.e. yi ≥ 1− s/β − Y −i; and

(1.5) Πi is pseudoconcave on the interval yi ≥ (1− vmin − Y −i)+ if either

∂Πi

∂yi

∣

∣

∣

∣

yi=1−s/β−Y −i+0

≤ 0 or
∂Πi

∂yi

∣

∣

∣

∣

yi=1−s/β−Y −i−0

≥ 0.

(2) If 1− s/β − Y −i ≤ 0, Πi is strictly concave on its entire domain yi ≥ 0.
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Possibility of asymmetric equilibria When there are no sales in the second period, profit-

maximizing inventory yi =
(

1− vmin − Y −i
)+

is determined up to a redistribution of inventory

among the retailers. In this case, the model allows for a continuum of combinations of profit-

maximizing yi, satisfying
∑n

i=1 y
i = Y = 1− vmin.

When there are second period sales (yi >
(

1− vmin − Y −i
)+

), parts 1.3 and 1.4 of Lemma 10

imply that in both cases p2 > s and p2 = s, profit-maximizing yi results from ∂Πi

∂yi
= 0.

When p2 > s, using (17) for ∂Πi

∂yi
, for any yi and yj (j 6= i) satisfying ∂Πi

∂yi
= ∂Πj

∂yj
= 0 we have

∂Πi

∂yi
− ∂Πj

∂yj
= 0 = (yj − yi)

[

β + (p1 − β)(1− vmin)/Y 2
]

, yielding yj = yi because the bracket [·] is

always positive. Indeed, [·] > 0 ⇔ p1(1− vmin) + β[Y 2 − (1− vmin)] > 0. As vmin ≥ p1, by part 2 of

Lemma 9, Y 2 > (1−p1)(1−vmin). Then p1(1−vmin)+β[Y 2−(1−vmin)] > (1−vmin)[p1−βp1] ≥ 0.

When there are sales in both periods (vmin < 1) and p2 = s, the first equation in (21) implies

that any yi and yj (j 6= i), satisfying ∂Πi

∂yi
= ∂Πj

∂yj
= 0, are such that ∂Πi

∂yi
− ∂Πj

∂yj
= 0 = (yj − yi)(p1 −

s)(1− vmin)/Y 2, i.e., yj = yi because (p1 − s)(1− vmin)/Y 2 > 0.

A.10 Proof of Proposition 4 (RESE1-3, inventory-dependent demand, γ = 1)

The proposition exhaustively covers all market outcomes without salvaging: only first-period sales

(RESE1), only second-period sales (RESE2), and two-period sales (RESE3). Logically, these out-

comes are mutually exclusive but it is not obvious a priori that they cannot exist under the same

model inputs. In the course of the proof we establish that these outcomes do not overlap in the

sense of their necessary and sufficient conditions. RESE definition (§4.1) rely on the notion of a

symmetric equilibrium for given customer expectations. The structure of such an equilibrium is

one of the major sources of necessary and sufficient conditions. Another source is the rationality

of customer expectations. We first classify the outcomes by the presence of second-period sales.

First-period sales: RESE1 By Lemma 8, the absence of second-period sales and retailer ratio-

nality imply that the best response in a symmetric equilibrium occurs with Y = 1−vmin. Customer

rationality demands that ᾱ = 0 and vmin = p1 implying that the candidate RESE is described by

v̂ = p1, Ŷ = 1 − v̂, and, therefore, α̂ = 0 and total retailer profit is Π̂r = (p1 − c)(1 − p1). This

implies that n−1
n Ŷ = n−1

n (1−p1) < 1−p1 < 1− s
β and condition of part 1 of Lemma 10 is satisfied.

Since, by part 1.3 of Lemma 10, Πi is pseudoconcave on the interval (1− vmin − Y −i)+ ≤ yi <
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1− s/β − Y −i, the candidate RESE exists iff

(i) there is a local maximum of Πi at yi = 1− v̂ − n−1
n Ŷ = Ŷ /n and

(ii) the profit Πi at this maximum is greater than at a potential local maximum on the interval

yi > 1− s
β − n−1

n Ŷ .

Condition (i) is equivalent to ∂Πi

∂yi

∣

∣

∣

yi=1−v̂−n−1
n

Ŷ+0
≤ 0. As yi = 1

n(1 − p1), the last inequality,

using (17), becomes βv̂− c+p1−βv̂+ 1
n(1−p1)

[

− (p1−βv̂) 1
1−v̂

]

≤ 0, which, after the substitution

for v̂ = p1 and multiplication by n, takes the form np1 − p1(1 − β) ≤ nc or p1 ≤ nc
β+n−1 = P1. We

showed that this condition is necessary.

Condition (ii) is satisfied if Πi is nonincreasing for yi > 1− s/β − n−1
n Ŷ . Because Πi is concave

on this interval by part 1.4 of Lemma 10, it is nonincreasing if ∂Πi

∂yi

∣

∣

∣

yi=1−s/β−n−1
n

Ŷ+0
≤ 0. The

latter, using (21), can be written as

−c+ s+
n− 1

n

1− p1
(1− s/β)2

(p1 − s)(1− p1) ≤ 0 or
n− 1

n

(p1 − s)(1− p1)
2

(c− s)(1− s/β)2
≤ 1. (23)

As p1 > s/β, we have (1−p1)2

(1−s/β)2
< 1, and (23) is implied by (n − 1)(p1 − s) ≤ n(c − s). The latter

holds because, by (already proved as necessary) condition p1 ≤ P1, n(c− s) ≥ (n− 1+β)p1−ns =

(n− 1)(p1 − s)+ βp1 − s > (n− 1)(p1 − s). Therefore, condition p1 ≤ P1 is necessary and sufficient

for the existence of RESE1.

There are second-period sales: RESE2 or 3 When there are second-period sales, a symmetric

equilibrium Y = Ŷ > 1−vmin, by Lemma 10, is an internal maximum of the profit function for each

retailer. Using (18) for ∂Πi

∂yi
with yi = Y/n and Y −i = n−1

n Y , FOC ∂Πi

∂yi
= 0 is 0 = β

(

1− n−1
n Y

)

−

c+β(1−vmin)−2β Y
n +(p1−β)(1−vmin)n−1

n
Y
Y 2 = −β n+1

n Y −c+β(2−vmin)+(p1−β)(1−vmin)n−1
n

1
Y .

Multiplication of the last expression by − n
β(n+1)Y yields

Y 2 − Y
n

n+ 1

(

2− vmin − c

β

)

− n− 1

n+ 1

(

p1
β

− 1

)

(1− vmin) = 0. (24)

Equation (24) along with the relation between vmin and Y from Lemma 1 and inequality Y >

1 − p1 (from part 2 of Lemma 9) provide the necessary conditions for any equilibria with sales in

the second period and p2 = β(1− Y ) > s.

Consider vmin as a function of Y . For rational expectations ᾱ = 1 and p̄2 = p2 = β(1 − Y ),

denote the mapping from Y to vmin resulting from Lemma 1 as function

vmin
1 (Y ) , max

{

p1, min

{

p1 − ρβ(1− Y )

1− ρβ
, 1

}}

. (25)
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(a) p1 > β (b) p1 < β

Figure 2: Possible appearance of vmin
2 (Y ) and the relevant range of vmin

When ρ > 0, this function is increasing and piecewise linear with two breakpoints. It is straight-

forward to check that the first break-point occurs exactly at Y = 1 − p1 whereas the second at

Y = 1−p1
ρβ . When ρ = 0, vmin

1 ≡ p1.

Equation (24) yields another mapping from Y to vmin:

vmin
2 (Y ) , 1−

Y 2 − Y n
n+1 (1− c/β)

Y n
n+1 + n−1

n+1 (p1/β − 1)
. (26)

When p1 6= β and n > 1, this function is a hyperbola with a vertical asymptote Y = n−1
n (1− p1/β)

and an asymptote with a negative slope −n+1
n . When Y = 0 or Y = n

n+1 (1− c/β), vmin
2 (Y ) = 1.

Implicit differentiation of (24) yields 2Y − n
n+1

(

2− vmin
2 − c

β

)

+Y n
n+1

∂vmin
2
∂Y + n−1

n+1

(

p1
β − 1

)

∂vmin
2
∂Y = 0

resulting in (n− 1)(p1 − β)
∂vmin

2
∂Y

∣

∣

∣

Y=0
= n(β − c).

When p1 > β and n > 1, the vertical asymptote is to the left of Y = 0 implying that points

(0, 1) and
(

n
n+1 [1− c/β] , 1

)

in the (Y, vmin)-plane belong to the same branch of the hyperbola,

see Figure 2 (a), where a solid curve is vmin
2 (Y ) and dotted lines represent its asymptotes. In

this case,
∂vmin

2
∂Y

∣

∣

∣

Y=0
> 0 and it must be true that

∂vmin
2
∂Y < 0 for all Y ≥ n

n+1 (1− c/β). Relevant

equilibrium candidates can only be on the downward-sloping segment of vmin
2 (Y ) to the right of

Y = n
n+1 (1− c/β) and in the range p1 ≤ vmin ≤ 1, depicted in dashed lines.

When p1 < β and n > 1, the vertical asymptote is to the right of Y = 0 implying that points
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(0, 1) and
(

n
n+1

[

1− c
β

]

, 1
)

belong to different branches of the hyperbola, see Figure 2 (b). We

have
∂vmin

2
∂Y < 0 for all Y , and the entire left branch is irrelevant because the vertical asymptote is

to the left of Y = 1− p1. Indeed,
n−1
n

(

1− p1
β

)

< 1− p1 is equivalent to np1 − (n− 1)p1β < 1 which

always holds for p1 < β. All possible equilibrium candidates are again on the downward-sloping

segment of vmin
2 (Y ) to the right of Y = n

n+1

(

1− c
β

)

and in the range p1 ≤ vmin ≤ 1.

When p1 = β or n = 1, the relevant part of vmin
2 (Y ) is decreasing linear: vmin

2 (Y ) = 2− c
β− n+1

n Y,

which also satisfies vmin
2

(

n
n+1

[

1− c
β

])

= 1. Thus, regardless of n and the relation between p1 and

β, the geometric structure of potential equilibrium candidates is essentially the same.

RESE2: There are no sales in the first period at a RESE iff v̂ = 1. The geometric struc-

ture described above implies that such an equilibrium can be realized only if vmin
1 (Y ) inter-

sects with vmin
2 (Y ) at a point corresponding to Ŷ = n

n+1

(

1− c
β

)

, i.e., vmin
1 (Ŷ ) = 1 or p1 −

ρβ
[

1− n
n+1

(

1− c
β

)]

≥ 1 − ρβ, which is equivalent to p1 ≥ P2 = 1 − n
n+1ρ (β − c). This nec-

essary condition is also sufficient for RESE2. Indeed, given that vmin
1 (Ŷ ) = 1, the equilibrium

values are in the form of RESE2, p̂2 = β
[

1− n
n+1

(

1− c
β

)]

= nc+β
n+1 > c > s and yi = Ŷ /n in-

deed delivers the best response of retailer i because Ŷ = n
n+1 (1− c/β) < 1 − c/β < 1 − s/β and

∂Πi

∂yi

∣

∣

∣

yi=1−s/β−n−1
n

Ŷ+0
= −c+ s < 0 implying, by part 1.5 of Lemma 10, that Πi is pseudoconcave.

The description of RESE2 is completed by substituting p̂2, Ŷ and v̂ into (16): Π̂i = Ŷ
n

[

β+nc
n+1 − c

]

=

1
n+1

(

1− c
β

) [

β+nc
n+1 − c

]

= (β−c)
(n+1)β

β+nc−nc−c
n+1 = (β−c)2

(n+1)2β
.

The p1-ranges in RESE1 and 2 do not overlap because the minimal lower bound for p1 in

RESE2, which corresponds to n → ∞, exceeds the maximal upper bound in RESE1 (at n = 1):

1− ρ(β − c) > c/β ⇔ β(1− ρβ) > c(1− ρβ).

RESE3: In this case, Ŷ > 1 − v̂ (there are second-period sales) and p1 ≤ v̂ < 1 (there

are first-period sales) with v̂ = p1 only if ρ = 0. Translating this into the geometric structure

described above, necessary conditions for RESE3 are vmin
1

(

n
n+1

(

1− c
β

))

< 1 and vmin
2 (1−p1) > p1.

The first condition is equivalent to the negation of p1 ≥ P2, i.e., the strict upper limit of p1-

range for RESE3. The second condition ensures that vmin
2 (Y ) intersects vmin

1 (Y ) for Y > 1 − p1

and is equivalent to 1 − (1−p1)2−(1−p1)
n

n+1
(1−c/β)

(1−p1)
n

n+1
+n−1

n+1
(p1/β−1)

> p1, and, since (1 − p1)
n

n+1 + n−1
n+1 (p1/β − 1) =

1−p1
n+1 + (n−1)p1(1−β)

(n+1)β > 0, to (1− p1)
[

(1− p1)
n

n+1 + n−1
n+1 (p1/β − 1)− (1− p1) +

n
n+1 (1− c/β)

]

> 0.

Collecting like terms inside [·] yields (n− 1+ β)p1 > nc which is the negation of the necessary and

sufficient condition p1 ≤ P1 of RESE1, i.e., the strict lower limit of p1-range for RESE3.
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Given that necessary condition P1 < p1 < P2 holds and there are sales in both periods, the

candidate point for the equilibrium, by Lemma 1, satisfies

v̂ =
p1 − ρβ(1− Ŷ )

1− ρβ
(27)

and v̂ ∈ [p1, 1). Substitution for vmin = v̂ into (24) results in the following equation for Ŷ :

Y 2 − Y
n

n+ 1

(

2− p1 − ρβ(1− Y )

1− ρβ
− c

β

)

− n− 1

n+ 1

(

p1
β

− 1

)(

1− p1 − ρβ(1− Y )

1− ρβ

)

= 0,

which, after collecting the terms with Y, becomes

Y 2

(

1 +
n

n+ 1

ρβ

1− ρβ

)

− n− 1

n+ 1

(

p1
β

− 1

)(

1− p1 − ρβ

1− ρβ

)

(28)

−Y

[

n

n+ 1

(

2− p1 − ρβ

1− ρβ
− c

β

)

− n− 1

n+ 1

(

p1
β

− 1

)

ρβ

1− ρβ

]

= 0.

The coefficient in front of Y 2 is 1 + n
n+1

ρβ
1−ρβ = n+1−ρβ

(n+1)(1−ρβ) , and the coefficient in front of Y

is − 1
(n+1)(1−ρβ) {n [2− 2ρβ − p1 + ρβ − (1− ρβ)c/β]− (n− 1) (p1/β − 1) ρβ} , where the first term

in the bracket {·} is n[2−ρβ−p1−(1−ρβ)c/β] = n(1−ρβ)(1−c/β)+n(1−p1). Then multiplication

of (28) by β(n+1)(1−ρβ)
β(n+1−ρβ) results in

Y 2 − (β − c)n(1− ρβ) + β(1− p1)n− (p1 − β)ρβ(n− 1)

β(n+ 1− ρβ)
Y − (p1 − β)(1− p1)(n− 1)

β(n+ 1− ρβ)
= 0. (29)

By geometric structure under condition P2 < p1 < P1, the larger root of this equation does belong

to the region Y > 1− p1 and the smaller root is irrelevant.

The conditions for RESE3 will become necessary and sufficient if (29), (27), and P1 < p1 < P2

are complemented with the conditions guaranteeing that the larger root Ŷ of (29) is such that

Ŷ < 1− s
β (implying p̂2 > s and included as a condition of the proposition) and either

(a) the profit Πi of retailer i deviating from this RESE so that p2 = s (the total inventory is

greater than 1− s
β ) has no maximum for Y > 1− s

β , or

(b) if Π̌i = maxyi Π
i exists for Y > 1− s

β , then inequality Π̌i ≤ Π̂i holds.

Since, by part 1.4 of Lemma 10, Πi is concave for yi ≥ 1 − s/β − n−1
n Ŷ (or, equivalently,

Y ≥ 1− s/β), Πi is nonincreasing for yi ≥ 1− s/β − n−1
n Ŷ iff ∂Πi

∂yi

∣

∣

∣

yi=1−s/β−n−1
n

Ŷ+0
≤ 0. Thus, the

latter condition is equivalent to (a). Using (21) with vmin = v̂, Y −i = n−1
n Ŷ , and Y = 1− s/β, this

condition is −c+ s+ n−1
n

Ŷ
(1−s/β)2

(p1 − s) (1− v̂) ≤ 0, yielding condition (a) of the proposition.

If ∂Πi

∂yi

∣

∣

∣

yi=1−s/β−Y −i+0
> 0, then, since ∂Πi

∂yi
becomes negative for sufficiently large Y by (21),

Π̌i = maxyi Π
i exists for Y > 1−s/β. Then RESE exists if Π̂i ≥ Π̌i (condition (b)). To provide the
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(a) RESE3 (b) RESE2 (c) RESE1

Figure 3: Changes in equilibrium structure from RESE3 to RESE2 and RESE1

expression for Π̌i, denote the maximized deviator’s inventory decision by y̌i , argmaxΠi > 1
n Ŷ .

As a result of this deviation, the total inventory is Y̌ = y̌i + n−1
n Ŷ . When the number of bar-

gain hunters B is large, then, using (21) with vmin = v̂, we obtain FOC in Y̌ : ∂Πi

∂yi

∣

∣

∣

yi=y̌i
=

0 = −(c − s) + n−1
n

Ŷ
Ỹ 2

(p1 − s) (1− v̂) , which yields Y̌ =

√

n−1
n

Ŷ (p1−s)(1−v̂)
c−s . In general, Y̌ =

min

{

v̂ − s
β +B,

√

n−1
n

Ŷ (p1−s)(1−v̂)
c−s

}

, where v̂ − s
β + B is the total number of the second-period

customers. Substitution of Y = Y̌ and yi = Y̌ − n−1
n Ŷ into equation for profit (20) yields

Π̌i =
(

Y̌ − n−1
n Ŷ

)

[

−(c− s) + (p1 − s)(1− v̂)/Y̌
]

. When Y̌ is determined by FOC, Π̌i is Π̌i =
{

√

n−1
n

Ŷ (p1−s)(1−v̂)
c−s − n−1

n Ŷ
}

×
{

−(c−s)+ (p1−s)(1−v̂)
√

n−1
n

Ŷ (p1−s)(1−v̂)
c−s

}

, which, after factoring out n−1
n Ŷ from

the first curly bracket and c−s from the second one, becomes Π̌i = n−1
n Ŷ (c− s)

{√

n
(n−1)

(p1−s)(1−v̂)

(c−s)Ŷ
− 1

}2

or Π̌i =

{

√

(p1 − s)(1− v̂)−
√

n−1
n Ŷ (c− s)

}2

. Expression for Π̂r follows from (6) and Lemma 1.

We complete the proof by a simple observation that equilibrium characteristics are continuous

on the boundaries between RESE1 and 3 as well as RESE2 and 3. Figure 3 (a) depicts a typical

configuration of vmin
1 (Y ) and vmin

2 (Y ) when RESE3 exists, whereas subplots (b) and (c) depict this

configuration at the points of change to RESE2 and 1, respectively.

RESE3 continuously changes into RESE2 as the intersection point of vmin
1 (Y ) and vmin

2 (Y )

representing RESE3 moves toward the point
(

n
n+1

[

1− c
β

]

, 1
)

on vmin
2 (Y ) representing RESE2. The

latter point is to the left of all possible candidates for RESE3 located on vmin
2 (Y ) implying that, in

RESE3, Ŷ ≥ n
n+1

[

1− c
β

]

. Similarly, RESE3 continuously changes into RESE1 as the intersection
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point of vmin
1 (Y ) and vmin

2 (Y ) moves toward vmin
1 (Y )’s break-point (1−p1, p1) (representing RESE1).

The continuity of Π̂r follows from the continuity of the expression for Πi, given by (14), in all the

parameters and continuity of v̂ and Ŷ (using yi = 1
n Ŷ ).

A.11 Proof of Corollary 1 (RESE3, ρ = 0, second-period sales at loss)

For β = 1 and ρ = 0, p1-range in RESE3 is c < p1 < 1. Thus, RESE1 and 2 cannot be realized.

By the proof of Proposition 4, Ŷ 3 ≤ 1 − c/β is equivalent to v̂ ≥ vmin
2 (1− c/β) because vmin

2 (Y ),

given by (26), is decreasing in the relevant range of Y . Using β = 1 and Y = 1− c in (26), we get

vmin
2 (1 − c) = 1 − (1−c)2−(1−c)2 n

n+1

(1−c) n
n+1

+n−1
n+1

(p1−1)
= 1 − (1−c)2

n(p1−c)+1−p1
. Thus, under conditions of the corollary,

p̂2 ≥ c iff v̂ = p1 ≥ 1− (1−c)2

n(p1−c)+1−p1
. Rearranging this inequality we obtain (1−c)2

n(p1−c)+1−p1
≥ 1− p1,

and solving for n we get n ≤ 1
p1−c

(

(1−c)2

1−p1
− (1− p1)

)

= 2−c−p1
1−p1

= 2 + p1−c
1−p1

.

A.12 Proof of Proposition 5 (RPM with inventory-dependent demand)

Since the values in Table 1 correspond to REE3 with two-period sales, formula for w∗ may follow

from equation (29) for Ŷ in RESE3 by plugging in Ŷ = Y ∗ and p1 = p∗1 from Table 1, i.e.,

(

3− ρβ − β − ρ

4− β(1 + ρ)2

)2

−a1
3− ρβ − β − ρ

4− β(1 + ρ)2
−a0 = 0 ⇔ a1 =

3− ρβ − β − ρ

4− β(1 + ρ)2
−a0

4− β(1 + ρ)2

3− ρβ − β − ρ
, (30)

where a1 =
(β−w)n(1−ρβ)+β(1−p∗1)n−(p∗1−β)ρβ(n−1)

β(n+1−ρβ)

∣

∣

∣

p∗1=
2(1−ρβ)

4−β(1+ρ)2

and a0 =
(p∗1−β)(1−p∗1)(n−1)

β(n+1−ρβ)

∣

∣

∣

p∗1=
2(1−ρβ)

4−β(1+ρ)2

.

The expressions for 1−p∗1 and p∗1−β are 1−p∗1 =
2−β−ρ2β
4−β(1+ρ)2

and p∗1−β = 2(1−ρβ)−β[4−β(1+ρ)2]
4−β(1+ρ)2

. Then

the numerators of a1 and a0 are βn(1−ρβ)−wn(1−ρβ)+
(2−β−ρ2β)βn−ρβ(n−1){2(1−ρβ)−β[4−β(1+ρ)2]}

4−β(1+ρ)2

= β(n− ρβ)− wn(1− ρβ) +
(2−β−ρ2β)βn−ρβ(n−1)2(1−ρβ)

4−β(1+ρ)2
, and

(n−1){2(1−ρβ)−β[4−β(1+ρ)2]}(2−β−ρ2β)
[4−β(1+ρ)2]2

.

Substitution into (30) multiplied by β(n+1−ρβ)
n(1−ρβ) leads to w∗ = β(n−ρβ)

n(1−ρβ) +
(2−β−ρ2β)βn−ρβ(n−1)2(1−ρβ)

n(1−ρβ)[4−β(1+ρ)2]
−

(3−ρβ−β−ρ)β(n+1−ρβ)
n(1−ρβ)[4−β(1+ρ)2]

+
(n−1){2(1−ρβ)−β[4−β(1+ρ)2]}(2−β−ρ2β)

n(1−ρβ)(3−ρβ−β−ρ)[4−β(1+ρ)2]
= b1+b2−b3+b4

n(1−ρβ)(3−ρβ−β−ρ)[4−β(1+ρ)2]
, where

b1 = β(n − ρβ) (3− ρβ − β − ρ)
[

4− β(1 + ρ)2
]

, b3 = (3− ρβ − β − ρ)2 β(n + 1 − ρβ), b2 =

(3− ρβ − β − ρ)
[(

2− β − ρ2β
)

βn− 2ρβ(n− 1)(1− ρβ)
]

, and b4 is the numerator of the last frac-

tion in w∗. Rewrite bi as b1 = β(n− ρβ)[(1− ρβ) + (2− β − ρ)]
[

2(1− ρβ) + 2− β − βρ2
]

= β(1−

ρβ)(n−ρβ)[2(1−ρβ)+2(2−β−ρ)+(2−β−βρ2)]+(2−β−ρ)(2−β−βρ2)β(n−ρβ), b2 = −2ρβ(n−

1)(1−ρβ) (3− ρβ − β − ρ)+[(1−ρβ)+2−β−ρ]
(

2− β − βρ2
)

βn, b3 = (1−ρβ)β (3− ρβ − β − ρ)2+

nβ (1− ρβ + 2− β − ρ)2 , and b4 =
(

2− β − ρ2β
)

(n − 1)
{

2(1− ρβ)(1− β)− β(2− β − βρ2)
}

.

The sum of the terms in all bi without multiplier 1− ρβ is
(

2− β − βρ2
)

(2− β − ρ)β(2n− ρβ)−
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nβ (2− β − ρ)2 − β(n − 1)(2 − β − βρ2)2 = −βn [ρ(1− ρβ)]2 − ρβ2
(

2− β − βρ2
)

(2− β − ρ) +

β(2 − β − βρ2)2 = −βn [ρ(1− ρβ)]2 + β
(

2− β − βρ2
)

(2 − β)(1 − ρβ). Then w∗ becomes w∗ =

{·}
n[4−β(1+ρ)2](3−ρβ−β−ρ)

, where {·} = β(n− ρβ)[2(1− ρβ) + 2(2− β − ρ) + (2− β − βρ2)] −2ρβ(n−

1) (3− ρβ − β − ρ) +
(

2− β − βρ2
)

βn − β (3− ρβ − β − ρ)2 −nβ [1− ρβ + 2(2− β − ρ)] +2(1 −

β)(n − 1)
(

2− β − ρ2β
)

+β
(

2− β − βρ2
)

(2 − β) − βnρ2(1 − ρβ). The sum of the terms with the

multiplier βn is 2(1− ρβ) + 2(2− β − ρ) + (2− β − βρ2)− 2ρ (3− ρβ − β − ρ) +
(

2− β − βρ2
)

− 1

+ρβ − 2(2− β − ρ) −2(2− β − ρ2β)− ρ2(1− ρβ) = (1 + ρβ)(1 + ρ2)− 2ρ(3− ρβ). The sum of the

terms without the multiplier βn is 4(n− 1)− β(1 + ρ2)(2n− ρβ2) + 2ρ2β3 − 6ρβ2 − ρ2β + 6ρβ(2−

ρβ) + β. Then w∗ =
4(n−1)−β(1+ρ2)(2n−ρβ2)+2ρ2β3−6ρβ2−ρ2β+6ρβ(2−ρβ)+β+βn[(1+ρβ)(1+ρ2)−2ρ(3−ρβ)]

n[4−β(1+ρ)2](3−ρβ−β−ρ)
=

4(n−1)+β{1+ρβ2(1+ρ)2−6ρβ−ρ2+6ρ(2−ρβ)−n[(1−ρβ)(1+ρ2)+2ρ(3−ρβ)]}
n[4−β(1+ρ)2](3−ρβ−β−ρ)

leading to the most compact formula:

w∗ =
4(n−1)+β{1+ρ[β2(1+ρ)2−ρ+6(2−ρβ−β)]−n[(1−ρβ)(1+ρ)2+4ρ]}

n[4−β(1+ρ)2](3−ρβ−β−ρ)
. Using intermediate expressions, w∗

can be written as w∗ = 1
n[4−β(1+ρ)2]

(

ρβ(2− ρβ − β) + (n−1)(1−ρβ)(4−β−2ρβ−ρ2β)
3−ρβ−β−ρ

)

, which is the ex-

pression in the proposition statement. It is easy to observe from this expression that, for n = 1,

the bracket (3− ρβ − β − ρ) cancels out and w∗ coincides with the corresponding formula in Table

1, i.e., w∗|n=1 =
ρβ(2−ρβ−β)
4−β(1+ρ)2

.

Another expression for w∗ follows from collecting terms with n in the numerator, which leads

to the two-term formula where, in the first term, the bracket n
[

4− β (1 + ρ)2
]

cancels out, i.e.,

w∗ =
1− ρβ

3− ρβ − β − ρ
− g(ρ, β)

n
, (31)

and g(ρ, β) =
(2−ρβ)2(1−ρβ)−β{1+ρ[4−ρ(1+β−2β2)−6β+β2]}

[4−β(1+ρ)2](3−ρβ−β−ρ)
. Function g(ρ, β) > 0 for any β ∈ [0, 1] and

ρ ∈ [0, 1) since the denominator is positive and it can be shown that the numerator is also positive.

Indeed, the derivative of the numerator w.r.t. ρ is β
[

−3ρ2β2 + (2− 4β2 + 12β)ρ− 12 + 6β − β2
]

,

where [·] is concave quadratic in ρ with the discriminant that simplifies to 4(1+ 12β− 4β2 − 6β3 +

β4) > 0, i.e., this derivative is positive only between the roots. It can be shown that the smaller root,
(

1− 2β2 + 6β −
√

1 + 12β − 4β2 − 6β3 + β4
)

/(3β2), takes its minimum equal to one at β = 1, i.e.,

the range between the roots is irrelevant, and the derivative of the numerator w.r.t. ρ is negative

for any ρ ∈ [0, 1). Therefore, the numerator of g(ρ, β) is always positive if it is nonnegative at ρ = 1,

which is 4(1−β3+3β2− 3β). The sum β3− 3β2+3β is maximal at the double root β1,2 = 1 of the

FOC 3β2−6β+3 = 0 because β = 1 is, obviously, an inflection point, and this term increases from 0

to 1 when β ∈ [0, 1]. Hence, g(ρ, β) > 0 for any ρ ∈ [0, 1) and β ∈ [0, 1]. Then, by (31), w∗ increases
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in n, and w∗|n→∞ = 1−ρβ
3−ρβ−β−ρ , which does not decrease in ρ since ∂w∗|n→∞

∂ρ = (1−β)2

(3−ρβ−β−ρ)2
and,

therefore, for β < 1, w∗|n→∞ ∈
[

1
3−β ,

1
2

)

when ρ ∈ [0, 1), and w∗|n→∞ ≡ 1
2 for β = 1. Combination

of this result with monotonicity of w∗ in n and w∗|n=1 = ρβ(2−ρβ−β)
4−β(1+ρ)2

∈ [0, 12) (by the proof of

Proposition 1) implies that w∗ ∈ [0, 12 ] for any n ≥ 1. w∗ increases in ρ except for w∗|n→∞ at β = 1

when it is constant because, by (31), ∂w∗

∂ρ is monotonic in n, ∂w
∗

∂ρ |n=1 > 0 (by Proposition 1) and,

by above, ∂w∗|n→∞

∂ρ = (1−β)2

(3−ρβ−β−ρ)2
≥ 0.

Inequality w∗|γ=1 > w∗|γ=0, by (30) and Proposition 3, simplifies to f(ρ,β)(n−1)

n[4−β(1+ρ)2](3−ρβ−β−ρ)
>

0, which, for n ≥ 2 is equivalent to f(ρ, β) > 0 (denominator is positive), where f(ρ, β) =

6ρβ2 − 2ρ2β3 − ρβ3 − 4β − ρ3β3 − 8ρβ + 5ρ2β2 + β2 + 4, which decreases in ρ since ∂f
∂ρ =

−β
[

β2(1− ρ)2 + 2(1− ρβ)2 + 6(1− ρβ)(1− β)
]

< 0. Therefore, f(ρ, β) > 0 for any ρ ∈ [0, 1) if

f(1, β) ≥ 0, where f(1, β) = 4+12β2−4β3−12β decreases in β, i.e., minβ∈[0,1] f(1, β) = f(1, 1) = 0.

The condition of RESE3 existence P1 < p∗1 holds for any n ≥ 1 since P1 decreases in n and

P1|n=1 < p∗1 by Proposition 1. Condition p∗1 < P2 holds because it holds for n = 1 (by Proposition 1)

and, as we show below, because P2 is monotonic in n and p∗1 < P2 holds for n → ∞. First, we

show that p∗1 < P2|n→∞, which, using (31) for c = w∗|n→∞ is 2(1−ρβ)
4−β(1+ρ)2

< (1− ρβ)
(

1 + ρ
3−ρβ−β−ρ

)

⇔ 2(3 − ρβ − β) − 2ρ < (3 − ρβ − β)
[

4− β(1 + ρ)2
]

⇔ [3− β(1 + ρ)]
[

β(1 + ρ)2 − 2
]

< 2ρ. The

LHS is concave quadratic in β and its maximum follows from FOC: ∂LHS
∂β = 0 ⇔ 2β(1+ρ)3 = 3(1+

ρ)2+2(1+ρ) leading to βmax = 5+3ρ
2(1+ρ)2

. Since βmax ∈ (1, 52 ] when ρ ∈ [0, 1), condition p∗1 < P2|n→∞

holds for any β ∈ [0, 1] if it holds for β = 1, which is (2 − ρ) [ρ(2 + ρ)− 1] < 2ρ ⇔ ρ(3 − ρ2) < 2.

Since supρLHS = 2 when ρ → 1, condition p∗1 < P2|n→∞ holds for any ρ ∈ [0, 1) and β ∈ [0, 1].

In order to show the monotonicity of P2 in n, we treat n as continuous and consider ∂P2
∂n =

− ρβ
(n+1)2

+ ρw∗

(n+1)2
+ nρ

n+1
∂w∗

∂n = − ρ
(n+1)2

[

β − w∗ − n(n+ 1)∂w
∗

∂n

]

, where, by (31), ∂w∗

∂n = g(ρ,β)
n2 . Then

∂P2
∂n = − ρ

(n+1)2

[

β − 1−ρβ
3−ρβ−β−ρ + g(ρ,β)

n − (n+ 1)g(ρ,β)n

]

= − ρ
(n+1)2

[

β − 1−ρβ
3−ρβ−β−ρ − g(ρ, β)

]

, i.e.,

the sign of ∂P2
∂n does not depend on n. Therefore, p∗1 < P2 holds for any n ≥ 1.

Note that under condition P1 < p1 < P2, RESE3 exists for any ρ ∈ [0, 1) if condition (a) holds at

ρ = 0 since w∗ is minimal at ρ = 0, and LHS of condition (a) is maximal. The latter is true because,

by Proposition 1, p∗1 and Y ∗ are decreasing in ρ, whereas 1 − v∗ attains minimum for ρ ∈ (0, 1)

and v∗|ρ=0 > v∗|ρ=1. By (30), w∗|ρ=0 = n−1
n(3−β) . Then condition (a) is n−1

n

(

2
4−β − s

)2−β
4−β

3−β
4−β ≤

(

n−1
n(3−β)−s

)

(1− s/β)2 . For s = 0 this condition does not depend on n : (4− β)3−2(2−β)(3−β)2 ≥ 0

and holds for any β ∈ [0, 1] because it holds at the boundaries of the range [0, 1] and the roots of
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the derivative of LHS 4
3 ± 1

3

√
34 are not in this range.

A.13 RPM for salvage value s > 0

The result below shows that when s > 0 and the number of bargain hunters is B > 0, in the

p1-range of RESE3, there may exist one more form of RESE with sales in both periods and p̂2 = s.

Proposition 6 (Two-period sales, p̂2 = s). RESE with α̂ = 1, p̂2 = s, v̂ = p1−ρs
1−ρβ , Ŷ =

min
{

1− s
β +B, n−1

n
(p1−s)(1−v̂)

c−s

}

, and Π̂r = (p1 − s)(1 − v̂) − (c − s)Ŷ exists iff one of the fol-

lowing holds:

(a) salvaging is forced on retailers, i.e., n−1
n Ŷ ≥ 1− s

β ;

(b) condition (a) does not hold, and
(

β
(

1− s
β

)2
+ (p1 − β) (1− v̂)

)

n−1
n

Ŷ
c+βv̂−2s ≥

(

1− s
β

)2
;

(c) conditions (a) and (b) do not hold, and

(c.1) if 1− s
β +B < n−1

n
(p1−s)(1−v̂)

c−s , then n− 1 ≥ c−s
p1−c ;

(c.2) Ŷ > 1− s
β , and there are no real roots of the equation

2Y 3 −
(

2− v̂ − c/β +
n− 1

n
Ŷ
)

Y 2 + (1− p1/β) (1− v̂)
n− 1

n
Ŷ = 0 (32)

in the interval (1−v̂, 1− s
β ), or there is only one real root of (32) Ỹ ∈

(

1−v̂, 1− s
β

)

and 1
nΠ̂

r ≥ Π̃i(Ỹ ),

where Π̃i(Ỹ ) is the maximum profit of a firm deviating from this RESE in such a way that p2 > s.

Unlike RESE1-3, RESE4 cannot exist for n = 1 because a monopolist would not have an

incentive to overinvest in this setting. This can be seen, e.g., from the expression for Ŷ . The larger

n, the easier retailers find themselves in RESE with p̂2 = s. Condition (a) means that p2 = s

regardless of supply yi because the total inventory of other retailers (n−1
n Ŷ ) is enough for the

salvaging outcome. Similar to RESE3, conditions (b) and (c) correspond to different attractiveness

of deviation from RESE4 by decreasing inventory. Condition (b) means that the deviator profit

monotonically increases in inventory, i.e., for the inputs that satisfy (b), RESE4 is stable with

respect to small parameter changes when p1 is sufficiently far from the boundary. Condition (c.1)

results from a possibility for a single retailer to deviate to the “no second-period sales” outcome

when the total inventory is restricted by a small number of bargain hunters. When this condition

holds, the deviator’s profit is not greater than the equilibrium one. The first part of condition

(c.2) – no real roots of (32) in the interval
(

1− v̂, 1− s
β

)

– means that the deviator’s profit has no
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local maxima with p2 > s, whereas inequality 1
nΠ̂

r ≥ Π̃i(Ỹ ) requires that when such a maximum

exists at yi = Ỹ − n−1
n Ŷ , it does not exceed the profit under RESE4. The inputs where RESE4

exists only by the second part of (c.2) are close to the boundary of RESE4 existence where this

equilibrium may be unstable with respect to parameter misestimation. Conditions (a)-(c) hold if

c− s is sufficiently small, i.e., the cost is largely compensated by salvaging any excess units, which

makes this outcome attractive for the retailers.

Proposition 6 implies a necessary condition v̂ < 1 (there are first-period sales). This condition

is equivalent to the upper bound p1 < 1 − ρ(β − s) , P4 signifying that a high MSRP precludes

salvaging outcome. Alternatively, this condition yields an upper bound on the customer’s discount

factor: ρ < (1− p1)/(β − s). As long as the product is durable enough for 1− p1 < β − s to hold,

highly strategic (with ρ near one) customers guarantee that the salvaging outcome is impossible.

Since P4 < P2 (the bound that separates RESE2 and 3), P4 separates RESE4 and 3.

The possibility of salvaging outcome raises the questions: What is the maximum DSC profit

ΠD4∗ under RESE4 when s > 0, and what is the manufacturer strategy if ΠD4∗ < ΠD3∗? The

proposition and discussion below answer these questions.

Proposition 7. When the second-period price is s = const such that 0 < s < β(1−ρβ)
2−ρβ−β , s̄ and the

number of customers with valuation s is B > 0, the wholesale price w∗ = s + (n−1)[1−ρβ−s(1−ρ)]2

4n(1−s/β+B)(1−ρβ) ,

which increases in n and decreases in ρ, and p∗1 =
1
2 [1− ρβ + s(1 + ρ)] lead to v∗ = 1−ρβ+s(1−ρ)

2(1−ρβ) , Y ∗ =

1− s/β+B, and the profit of DSC ΠD4∗ = [1−ρβ−s(1−ρ)]2

4(1−ρβ) + s(1− s/β+B), which is less than ΠD∗

for n = 1 provided in Table 1 iff sB < β(1−ρβ)(1+ρ)2

4[4−β(1+ρ)2]
− s(1+ρ)

2 + s2(4−β(1+ρ)2)
4β(1−ρβ) . For these equilibrium

values, condition (a) of RESE4 existence holds iff B ≥ 1−s/β
n−1 .

The salvage value in this proposition is bounded from above by s̄ to focus on interesting cases.

As shown in the proof, s̄ > β/2, i.e., for β = 1, s̄ exceeds the optimal manufacturer’s one-period

price, which is implausible for salvage value. This bound is equivalent to the requirement v∗ > p∗1

(or s < p∗1β) for any 0 < ρ < 1 assuring a non-trivial role of strategic customers in RESE4.

Unlike the studies with exogenously fixed retailer cost, the proposition considers a limited

number of bargain hunters because the manufacturer’s optimal profit is unbounded when B → ∞

and customer valuations exceed the manufacturer’s unit cost. This effect can be seen from the

expressions in Proposition 7 for ΠD4∗ and w∗, where w∗ → s when B → ∞, implying Y → ∞.
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Unlike previous cases (Propositions 1, 3, and 5), w∗ decreases in ρ because, for a fixed unit cost,

retailers reduce the inventory in ρ while the manufacturer keeps it at the maximum level.

The bound on the profit from sales to the bargain hunters sB shows that when this profit is

relatively high, the total DSC profit under RPM and salvage sales may exceed the two-period profit

of DSC with one retailer, which, by Proposition 1, is higher than the profit of CSC.

On the other hand, the lower bound on B, which is equivalent to condition (a) of RESE4

existence, shows that RESE4 may exist for a large number of retailers and small s and B . Then

the condition for sB, which does not depend on n, may hold implying that profit ΠD4∗ is less than

ΠD∗ given in Table 1. In this case, the manufacturer has at least two options to avoid RESE4. First,

the wholesale price can be set sufficiently higher than s, e.g., to satisfy condition (b) of RESE3

existence in Proposition 4. However, since such a wholesale price is suboptimal, DSC profit may

be less than the one of CSC. Another option follows from retailers’ indifference among equilibria

due to the fixed fee. Therefore, the manufacturer can “bribe” the retailers by a marginal decrease

of the fixed fee for ignoring the opportunity of salvage sales. Since this decrease can be arbitrary

small, the profit of DSC will still exceed the one of CSC.

A.14 Proof of Proposition 6 (RESE4)

We start by identifying candidate solutions for a symmetric equilibrium with given expectations.

When p2 = s, the equilibrium is possible only with sales in both periods, and rationality requires

that vmin < 1 and ᾱ = 1. We rule out uninteresting cases by considering s < βp1. If this condition

does not hold, it can be shown that, in a two-period RESE, the second-period price cannot exceed

s, vmin
0 = p1, and strategic customer behavior has no effect on any market outcome.

By parts 1.4 and 2 of Lemma 10, the profit function is strictly concave when yi ≥
(

1− s/β − Y −i
)+

and, by part 1.1, the optimum cannot occur at yi = 1 − s/β − Y −i. Then the candidate is found

either from FOC or it equals the total number of buyers, 1− s/β +B (1− vmin in the first period,

vmin − s/β + B in the second one), if this number is less than the local maximum. Using (21)

for ∂Πi

∂yi
and, by symmetry, Y −i = n−1

n Y , 0 = ∂Πi

∂yi
= −(c − s) + Y −i

Y 2 (p1 − s)
(

1− vmin
)

= −(c −

s)+ n−1
nY (p1 − s)

(

1− vmin
)

. The unique solution is Ŷ = n−1
n

(p1−s)(1−vmin)
c−s , where, by rationality of

expectations and Lemma 1, vmin = v̂ = p1−ρs
1−ρβ . In general, Ŷ = min

{

1− s/β +B, n−1
n

(p1−s)(1−v̂)
c−s

}

.

The total equilibrium profit is Π̂r = −cŶ +p1(1− v̂)+s
[

Ŷ − (1− v̂)
]

= −(c−s)Ŷ +(p1−s)(1− v̂),
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which is the expression for Π̂r in the proposition.

We now analyze when the candidate point is indeed a RESE with p̂2 = s, and start by checking

that it is within the ranges p1 ≤ v̂ < 1 and Ŷ ≥ 1 − s/β, which provide necessary conditions

for RESE existence. The second condition is the domain restriction of §A.9.3. It is equivalent to

p̂2 = s and follows from either of the conditions (a), (b), and (c) in the proposition statement.

Since the equilibrium cannot result in Ŷ = 1− s/β, by part 1.1 of Lemma 10, the second condition

is strengthened to Ŷ > 1 − s/β under which cases (a), (b), and (c) become exhaustive. Since

1 − s/β > 0, the resulting strict positivity of Ŷ implies that v̂ < 1. Similarly to RESE3, v̂ = p1

if ρ = 0, and it can be shown that v̂ > p1 if ρ > 0. Indeed, v̂ > p1 is equivalent to p1−ρs
1−ρβ > p1 ⇔

p1 − ρs > p1 − p1ρβ ⇔ −ρs > −p1ρβ ⇔ p1 > s/β, which always holds in this problem.

It remains to establish that the exact conditions ensuring that Ŷ /n is the global optimum of the

profit function are indeed provided by the exhaustive (under condition Ŷ > 1− s/β) cases (a)-(c).

Condition (a), i.e., n−1
n Ŷ ≥ 1 − s

β , means, by (5), that p2 = s independently of the inventory

decisions of individual retailers. By part 2 of Lemma 10, the profit function is globally strictly

concave in this case and Ŷ /n is indeed its unique global maximum.

In case (b) of the proposition, condition (a) does not hold, i.e., p2 = s may or may not hold

depending on the decisions of individual retailers. Nevertheless, the maximum of the profit is

unique and occurs when p2 = s as long as the profit function is strictly increasing in the interval

corresponding to p2 > s. This is ensured by ∂Πi

∂yi

∣

∣

∣

yi=1−s/β−Y −i−0
≥ 0, which, by part 1.5 of

Lemma 10, implies pseudoconcavity of the profit function. Using (18), the last condition is

∂Πi

∂yi

∣

∣

∣

∣

yi=1− s
β
−Y −i−0

= β
(

1− Y −i
)

−c+β
(

1− vmin
)

−2β

(

1− s

β
− Y −i

)

+
(p1 − β)(1− vmin)Y −i

(1− s/β)2
≥ 0,

which, after collecting the terms and substituting Y −i = n−1
n Ŷ and vmin = v̂, can be rewritten as

(

β + (p1−β)(1−v̂)
(1−s/β)2

)

n−1
n Ŷ ≥ c+ βv̂ − 2s, yielding condition (b).

In case (c) of the proposition, condition (b) does not hold, i.e. ∂Πi

∂yi

∣

∣

∣

yi=1−s/β−Y −i−0
< 0. Then,

there exists a local maximum of Πi without or with the sales in the second period and p2 > s. In

other words, there exists such an inventory decision ỹi of a deviating retailer that

ỹi , argmax

{

Πi(yi) | yi ∈
[

max

{

0, 1− v̂ − n− 1

n
Ŷ

}

, 1− s/β − n− 1

n
Ŷ

)}

or, denoting Ỹ , ỹi + n−1
n Ŷ , Ỹ ∈

[

max
{

1− v̂, n−1
n Ŷ

}

, 1− s/β
)

. Then the equilibrium with
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p̂2 = s exists only if

Π̃i , Πi(ỹi) ≤ Π̂i = Π̂r/n. (33)

Consider this condition at the left boundary of the range for yi. If ỹi = 0, then Π̃i = 0 and (33)

holds trivially. If ỹi = 1 − v̂ − n−1
n Ŷ , then Π̃i =

(

1− v̂ − n−1
n Ŷ

)

(p1 − c). Note that both Π̃i and

Π̂i decrease in Ŷ , which is intuitive for Π̃i because, for a smaller Ŷ , it takes less “effort” (in terms

of reduced individual inventory) for a deviator to achieve the outcome with the first-period sales

only. As a result, both ỹi and Π̃i are greater for smaller Ŷ . For Π̂i, a smaller Ŷ , ceteris paribus,

leads to a smaller second-period loss, i.e., when Ŷ is less than the total inventory obtained from

FOC for individual retailer profit, the total, and therefore, individual profits of symmetric retailers

are greater. This effect results from retailers market share competition and inventory-dependent

demand in the first period.

The case Ŷ = n−1
n

(p1−s)(1−v̂)
c−s leads to ỹi = (1− v̂)

[

1−
(

n−1
n

)2 p1−s
c−s

]

. Then, by §A.9.1, there are

no sales in the second period and Π̃i = (1− v̂)
[

1−
(

n−1
n

)2 p1−s
c−s

]

(p1− c). After substitutions for Π̃i

and Π̂i, and multiplication of both sides by n2

(1−v̂)(p1−c) , condition (33) becomes n2−(n− 1)2 p1−s
c−s ≤

p1−s
p1−c , which always holds. Indeed, let g(n) , n2 − (n− 1)2 p1−s

c−s . Then g′(n) = 2n− 2(n− 1)p1−s
c−s =

2
[

−np1−c
c−s + p1−s

c−s

]

and g′′(n) = −2p1−c
c−s < 0. Therefore, the unique maximum of g, defined by the

condition g′(n) = 0, is nmax = p1−s
p1−c and

gmax = g(nmax) =

(

p1 − s

p1 − c

)2

−
(

p1 − s

p1 − c
− 1

)2 p1 − s

c− s
=

p1 − s

p1 − c

[

p1 − s

p1 − c
− (c− s)2

p1 − c

1

c− s

]

=
p1 − s

p1 − c
.

If Ŷ = 1 − s
β + B (B is small), ỹi = 1 − v̂ − n−1

n

(

1− s
β +B

)

, which is greater than for

Ŷ = n−1
n

(p1−s)(1−v̂)
c−s , leading to a greater Π̃i =

[

1− v̂ − n−1
n

(

1− s
β +B

)]

(p1 − c). RESE4 profit

is Π̂i = 1
n

[

(p1 − s)(1− v̂)− (c− s)
(

1− s
β +B

)]

= 1
n

[

(p1 − c)(1− v̂)− (c− s)
(

v̂ − s
β +B

)]

.

Then, multiplied by n
p1−c , condition (33) is (1−v̂)n−(n−1) (1− s/β +B) ≤ (1−v̂)− c−s

p1−c (v̂ − s/β +B)

⇔ −(n− 1)(v̂ − s/β +B) ≤ − c−s
p1−c (v̂ − s/β +B) ⇔ n− 1 ≥ c−s

p1−c , which is condition (c.1).

Finally, the RESE with p̂2 = s may also exist if there exists an internal local maximum Πi(ỹi) ≤

Π̂i with ỹi = Ỹ − n−1
n Ŷ such that max

{

1− v̂, n−1
n Ŷ

}

< Ỹ < 1− s
β and ∂Πi

∂yi

∣

∣

∣

yi=ỹi
= 0. In this case,

formula (16) from §A.9.2 yields the expression for Π̃i in condition (c.2):

Π̃i =

(

Ỹ − n− 1

n
Ŷ

)[

β
(

1− Ỹ
)

− c+ β (1− v̂) +
(p1 − β)(1− v̂)

Ỹ

]

,
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where Ỹ is a zero of the profit function derivative (18), which, in this case, is

0 =
∂Πi

∂yi
= β

(

1− n− 1

n
Ŷ

)

− c+ β(1− v̂)− 2β

(

Y − n− 1

n
Ŷ

)

+ (p1 − β)(1− v̂)
n− 1

n

Ŷ

Y 2
.

After multiplication by −Y 2/β this equation becomes

2Y 3 + a2Y
2 + a0 = 0, (34)

which is equation (32) if one substitutes the coefficients a2 , c/β − (1 − v̂) −
(

1 + n−1
n Ŷ

)

=

−(1−v̂)−(1− c/β)−n−1
n Ŷ < 0, and a0 , (1−p1/β)(1−v̂)n−1

n Ŷ . Since, by part 1.3 of Lemma 10, the

profit function of the deviating retailer is pseudoconcave on (1− v̂− n−1
n Ŷ )+ ≤ yi ≤ 1−s/β− n−1

n Ŷ ,

Eq. (34) may have at most one root on this interval.

A cubic equation with real coefficients has at least one and up to three real roots. If the roots

are irrelevant, there is no internal maximum and a boundary maximum cannot exceed Π̂i as shown

above. If there is a relevant root, a comparison of Π̂i and Π̃i determines the existence of RESE.

A.15 Proof of Proposition 7 (RPM with RESE4)

When the second-period price is s = const > 0, the total number of regular buyers is 1 − s/β

(1−vmin in the first period and vmin−s/β in the second one). DSC profit is ΠD4 = p1
(

1− vmin
)

+

s
[

Y −
(

1− vmin
)]

, where, by Lemma 1, vmin = p1−ρs
1−ρβ if, for ρ > 0, s < p1β (i.e., p1−ρs

1−ρβ > p1) and

vmin = p1 otherwise (the values of p1 leading to vmin = 1 are obviously suboptimal here). Since

ΠD4 is unrestricted in Y, the manufacturer sets w∗ leading to a maximal Y = 1− s/β +B, which,

using the expression for Ŷ in Proposition 6, is 1− s/β +B = n−1
n

p1−s
w−s (1− v̂). This equation yields

w(p1, v̂) = s + (n−1)(p1−s)(1−v̂)
n(1−s/β+B) . Then ΠD4 = (p1 − s)

(

1− vmin
)

+ s (1− s/β +B) , and assuming

s < p1β, FOC ∂ΠD4

∂p1
= 0 = 1− 2p1−s(1+ρ)

1−ρβ yields p∗1 =
1
2 [1− ρβ + s(1 + ρ)] . Then condition s < p1β

becomes 2s < β [1− ρβ + s(1 + ρ)] ⇔ s < β(1−ρβ)
2−ρβ−β = s̄ (infρ s̄ = β

2 since ∂s̄
∂ρ = − β2(1−β)

(2−ρβ−β)2
≤ 0),

which holds by the assumption of the proposition. This p∗1 leads to v∗ = 1−ρβ+s(1−ρ)
2(1−ρβ) . Since

p∗1 − s = 1
2 [1− ρβ − s(1− ρ)] = (1− v∗)(1− ρβ), we have ΠD4∗ = [1−ρβ−s(1−ρ)]2

4(1−ρβ) + s(1− s/β +B)

and the expression for w∗ becomes w∗ = s+ (n−1)[1−ρβ−s(1−ρ)]2

4n(1−s/β+B)(1−ρβ) , which increases in n and decreases

in ρ because ∂w∗

∂ρ = − (n−1)[1−ρβ−s(1−ρ)][β(1−ρβ)−s(2−ρβ−β)]
4n(1−s/β+B)(1−ρβ)2

< 0 (since s < s̄). Inequality v∗ < 1 ⇔

1− ρβ + s(1− ρ) < 2(1− ρβ) ⇔ s(1− ρ) < 1− ρβ always holds.

Inequality ΠD4∗ < ΠD∗|n=1, by Proposition 1, is [1−ρβ−s(1−ρ)]2

4(1−ρβ) + s(1− s/β+B) < 1−ρβ
4−β(1+ρ)2

⇔
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sB < β(1−ρβ)(1+ρ)2

4[4−β(1+ρ)2]
− s(1+ρ)

2 + s2(4−β(1+ρ)2)
4β(1−ρβ) . Condition (a) in Proposition 6 becomes n−1

n (1− s/β +B) ≥

1− s/β ⇔ B ≥ 1
n−1(1− s/β).

A.16 Proofs of auxiliary statements

Proof of Lemma 10 (properties of the profit) Part 1.1 can be shown by direct substitution of

yi = 1−s/β−Y −i (which is strictly positive by the condition of part 1) into the expressions for ∂Πi

∂yi

defined by (18) and (21): ∂Πi

∂yi

∣

∣

∣

yi=1−s/β−Y −i−0
= β

(

1− Y −i
)

−c+β
(

1− vmin
)

−2β
(

1− s
β −Y −i

)

+

Y −i(p1−β)(1−vmin)
(1−s/β)2

= −c−βvmin+2s+Y −i
(

β + (p1−β)(1−vmin)
(1−s/β)2

)

, and ∂Πi

∂yi

∣

∣

∣

yi=1−s/β−Y −i+0
= −c+s+

Y −i (p1−s)(1−vmin)
(1−s/β)2

. These expressions imply that part 1.1 holds iff s−βvmin+Y −i
(

β + (p1−β)(1−vmin)
(1−s/β)2

)

<

Y −i (p1−s)(1−vmin)
(1−s/β)2

, which is equivalent to s−βvmin < Y −i

[

(β−s)(1−vmin)
(1−s/β)2

− β

]

= Y −i
[

β(1−vmin)
1−s/β − β

]

=

Y −i(s−βvmin)
1−s/β , which holds because s < βvmin and, by condition of part 1, Y −i < 1− s/β.

As Πi is continuous, i.e. Πi(1− s/β − Y −i − 0) = Πi(1− s/β − Y −i + 0), we can show part 1.2

using either (16) or (20). From (20), Πi(1− s/β−Y −i) =
(

1− s
β −Y −i

)

[

s− c+
(p1−s)(1−vmin)

1−s/β

]

=

(

1− s
β − Y −i

)

(c− s)

[

(p1−s)(1−vmin)
(1−s/β)(c−s) − 1

]

, which yields the result of part 1.2.

For part 1.3, rewrite (19) as ∂2Πi

∂(yi)2
= − 2

Y 3

[

βY 3 + (p1 − β)(1− vmin)Y −i
]

. As Y ≥ 0, RHS

of this equation is negative (Πi is strictly concave) iff βY 3 + (p1 − β)(1 − vmin)Y > 0. Equality

Y = 1 − vmin holds only at the left boundary of the domain of the profit function. For all other

points in the domain Y > 1− vmin ≥ 0 and we have βY 3 + (p1 − β)(1− vmin)Y > β(1− vmin)2Y +

(p1−β)(1−vmin)Y = [β(1−vmin)+p1−β](1−vmin)Y = [p1−βvmin](1−vmin)Y ≥ 0 if p1 ≥ βvmin

(a sufficient condition for strict concavity of Πi).

Suppose p1 < βvmin. Although Πi may be non-concave in this case, ∂2Πi

∂(yi)2
= −2β

[

1 + (p1β −

1)(1 − vmin)Y
−i

Y 3

]

is monotonically decreasing in yi. Therefore, if Πi has an inflection point, this

point is unique and corresponds to the total supply level Ỹ such that Ỹ 3 = (1− p1
β )(1− vmin)Y −i.

Consider an extension Π̃i of Πi in the form (16) to the domain yi ≥ (1−vmin−Y −i)+. In terms

of the total supply, this domain is equivalent to Y ≥ max{(1− vmin), Y −i}. We will prove that Π̃i

is pseudoconcave implying the claim of part 1.3 for the case of p1 < βvmin.

Equation (16), divided through by yi, implies that Π̃i = 0 iff yi = 0 or β (1− Y ) − c +

β
(

1− vmin
)

+ (p1−β)(1−vmin)
Y = 0. After multiplying by −Y/β, this equation becomes

Y 2 − (2− c/β − vmin)Y + (1− p1/β)(1− vmin) = 0. (35)
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Its properties are explored in the following lemma.

Lemma 11. For any feasible c, s, vmin, and p1 < β, the real roots Y1,2 of Eq. (35) exist and satisfy

the conditions: 0 ≤ Y1 ≤ 1− vmin < Y2 ≤ 2−
(

c/β + vmin
)

with Y1 = 1− vmin only if vmin = 1.

By Lemma 11, the roots Y1,2 of (35) always exist and 0 ≤ Y1 ≤ 1 − vmin < Y2, where Y1 <

1 − vmin unless vmin = 1. Using these roots, we can express Π̃i as the following function of Y :

Π̃i = − β
Y (Y − Y −i)(Y − Y1)(Y − Y2). Moreover, by (35), Y1Y2 = (1 − p1/β)(1 − vmin), and the

inflection point has the form Ỹ 3 = Y1Y2Y
−i, i.e., Ỹ is the geometric mean of Y1, Y2, and Y −i.

Because the second derivative is decreasing, Π̃i is strictly concave to the right of Ỹ − Y −i.

There are three possible locations of Y −i relative to Y1 < Y2. First, if Y
−i ≥ Y2, then 1−vmin <

Y −i, Ỹ < Y −i, and Π̃i is nonpositive and strictly concave for all yi ≥ (1 − vmin − Y −i)+. In this

case, the claim of part 1.3 holds.

Second, if Y −i ≤ Y1, then Y −i ≤ 1− vmin, Ỹ < Y2, Π̃
i is nonnegative for (1− vmin − Y −i)+ ≤

yi ≤ Y2 − Y −i and nonpositive for yi ≥ Y2 − Y −i. Because Π̃i is concave for yi ≥ Ỹ − Y −i and

changes its sign from positive to negative at Y2 − Y −i ≥ Ỹ − Y −i, it is also decreasing for all

yi ≥ Y2−Y −i. However, when 1− vmin < Ỹ , Π̃i is convex in the interval [1− vmin−Y −i, Ỹ −Y −i].

Third, if Y1 < Y −i < Y2, it is still true that Ỹ < Y2, Π̃
i is nonnegative for (1− vmin − Y −i)+ ≤

yi ≤ Y2 − Y −i, and nonpositive, decreasing and strictly concave for yi ≥ Y2 − Y −i. It is also true

that, when max{(1− vmin), Y −i} < Ỹ , Π̃i is convex in the interval [(1− vmin − Y −i)+, Ỹ − Y −i].

We combine the cases two and three by observing that in both of them Π̃i is nonnegative for

[(1− vmin − Y −i)+, Y2 − Y −i] and decreasing as well as concave for yi ≥ Y2 − Y −i. Thus, there is

no local minimum for yi ≥ Y2−Y −i. We complete the proof of part 1.3 using the following lemma.

Lemma 12. If Π̃i has an internal (local) minimum (yi)min, then Π̃i((yi)min) < 0.

Lemma 12 implies that Π̃i has no local minimum in the interval ((1− vmin − Y −i)+, Y2 − Y −i).

Thus, Π̃i has no internal minima in its entire domain, is strictly increasing when it is convex and,

therefore, is pseudoconcave.

Parts 1.4 and 2 follow directly from (21). Part 1.5 immediately follows from parts 1.3 and 1.4.

Indeed, condition ∂Πi

∂yi

∣

∣

∣

yi=1− s
β
−Y −i+0

≤ 0 implies that Πi is decreasing for yi ≥ 1 − s
β − Y −i (by

concavity on this interval). Combining this observation with pseudoconcavity for yi ≤ 1− s
β −Y −i,
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we obtain pseudoconcavity for the entire domain. Similarly, ∂Πi

∂yi

∣

∣

∣

yi=1− s
β
−Y −i−0

≥ 0 implies that Πi

is strictly increasing for yi ≤ 1− s
β −Y −i, again, leading to pseudoconcavity for the entire domain.

Proof of Lemma 11 (the roots of Πi(Y ) = 0) The discriminant of (35) is D = (2 − c/β −

vmin)2−4(1−p1/β)(1−vmin) ≥ (2− c/β−vmin)2−4(1− c/β)(1−vmin) = (vmin− c/β)2 ≥ 0, where

the first inequality is strict unless vmin = 1 because p1 > c, whereas the second inequality is strict

unless vmin = c/β. Therefore, D > 0, the real roots given by Y1,2 =
1
2(2− c/β− vmin±

√
D) always

exist, and Y1 < Y2. As p1 < β, we have 4 (1− p1/β) (1− vmin) ≥ 0 and Y1,2 ∈
(

0, 2− c/β − vmin
)

.

If vmin = 1, the roots are Y1 = 0, Y2 = 1− c/β, and the claim of the lemma holds.

If vmin < 1, then D >
(

vmin − c/β
)2
, and an upper bound on Y1 is Y1 < 1 − 1

2(c/β + vmin) −
1
2

∣

∣vmin − c/β
∣

∣ = 1 − max
{

c/β, vmin
}

≤ 1 − vmin, which, in turn, is a lower bound on Y2 : Y2 >

1− 1
2(c/β + vmin) + 1

2

∣

∣vmin − c/β
∣

∣ = 1−min
{

c/β, vmin
}

≥ 1− vmin.

Proof of Lemma 12 Function Π̃i, its first and second derivatives are given, respectively, by (15),

(17), and (19). If an internal local minimum yimin of Π̃i exists, it must satisfy the conditions

∂Π̃i

∂yi

∣

∣

∣

∣

∣

yi=yimin

= 0, and (36)

∂2Π̃i

∂ (yi)2

∣

∣

∣

∣

∣

yi=yimin

≥ 0. (37)

Using (36) and the expression for ∂Π̃i

∂yi
, we obtain β (1− Y )− c+ [p1 − β (1− Y )] 1−vmin

Y =

= −yiminβ

[

−1 +
1− vmin

Y
−
(

p1
β

− (1− Y )

)

1− vmin

Y 2

]

= yiminβ

[

1 +

(

p1
β

− 1

)

1− vmin

Y 2

]

. (38)

Since LHS of (38) multiplied by yi matches the expression for Π̃i, it follows that

Π̃i
∣

∣

∣

yi=yimin

=
(

yimin

)2
β

[

1 +

(

p1
β

− 1

)

1− vmin

Y 2

]

. (39)

Condition (37) and the expression for the second derivative of Π̃i imply that, at yi = yimin,
(

p1
β −

1
)

(1−vmin) ≤ − Y 3

Y −i . Combining this inequality with (39), we obtain Π̃i
∣

∣

∣

yi=yimin

≤
(

yimin

)2
β
[

1− Y
Y −i

]

<

0, which is strict because, here, we consider only yi > 0.
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