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Generalized Constant Market Shares Analysis: 

Composition and Partition Approach 

 

Abstract 

Even though Constant Market Shares (CMS) analysis is already 

established as an analytical tool to analyze one or more country 

export performances, it still has several fundamental problems 

within the method of analysis. In this research, we try to provide 

a solution of those weaknesses by constructing a Generalized 

CMS equation. By this model we can construct a more precise and 

flexible CMS, which is able to capture all possible variation of 

observation points connecting two primary distant points of 

analysis. 

JEL: F14, F15. 

Keywords: Generalized Constant Market Shares (G-CMS), Composition, 

Partition.  

 

 

The Constant Market Shares (CMS) is a tool to analyze factors, which 

determines changes in export value of a country between two distinct years of 

observation, initial year and observed year, denoted as 𝑉𝑇 −𝑉0  expression. 

Tyszynki (1951) was the first researcher who introduced this method. Later on, 

the CMS has expanded as a more potent analytical tool. The researchers who 

contribute to the development of CMS are Baldwin (1958), Leamer and Stern 

(1970), Richardson (1971), Fageberg and Sollie (1987), Milana (1988), Widodo 

(2010), Guo et al (2011), Feng et al (2014), and Dyadkova and Momchilov 

(2014). 
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Despite the model that is already expanded, there are several problems, which 

exist in the model. The first problem is the previous research of constant market 

shares analysis does not contain theoretical and/or technical design to construct 

sub-period analysis within CMS. This condition could led unclear formulation 

of sub-period within CMS analysis. Besides, CMS has not yet a proper design 

to capture the behavioral data for any level period of data. 

Therefore, we try to provide a generalized model of CMS analysis in order to 

answer those weaknesses. This general term provides a theoretical foundation 

of sub-period construction within primary objectives of CMS analysis. In this 

research we will use the “primary objectives” to represent the value of export 

changes between 𝑉0  and 𝑉𝑇 . Besides, the generalized term also provides a 

structure or equation, which is able to capture the data behavior in higher level 

of frequency. Technically, in this generalized form, we can capture CMS 

analysis for any level of period. 

I. Literature Review 

Early formulation of CMS analysis, by Tyszynki (1951), defines that changes 

in value of export of a country is determined by general rise of world export and 

a residual term effect. He defines this effect as a changes of a country 

competitiveness compared to the world competitiveness in the export. 

The development of CMS analysis by later researchers is divided into two 

main groups. The first group of researchers focus on expanding the model by 

decomposing the residual term—stated by Tyszynki beforehand—in order to 

get more detailed effects that determine the changes in value of export. 

Researchers belong to this group are Baldwin (1958), Leamer and Stern (1970), 

Fageberg and Sollie (1987), and Widodo (2010). 

The other group of researchers focus on expanding the analysis by using a 

technical development. This group developed a new methods on the analysis. 

Researchers among this group basically improved the methods to answer 
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several criticisms by Richardson (1971) to CMS method based on Leamer-Stern 

model. He states that there are two main technical weaknesses on that model1, 

which are: 1) differences in order of calculation between commodity effect and 

market effect would differ the result at individual commodity and market effect; 

and 2) Index number problem which is caused by different year used to index 

the model. 

Several researchers among the second group are Richardson (1971), 

Fageberg and Sollie (1987), Milana (1988), Guo et al (2011), Feng et al (2014), 

and Dyadkova and Momchilov (2014). Fageberg and Sollie (1987), in this case, 

applied a new method to calculate the Leamer-Stern CMS model by using 

Laspeyers indices and the result found new effects as compositions of residual 

term. By using this methods, they introduced sub-period analysis, which 

captured the value of analysis at some points of observation within the primary 

observation. This methods used as a solution of the second point of 

Richardson’s critique. 

Milana (1988), on the other hand, also attempted to answer the second point 

of Richardson’s critique. However, Milana (1988) utilized the different ways to 

construct the solution compared to Fageberg-Sollie method. Instead of using 

fixed weighted calculation such as Laspeyers, he used Dweirt’s superlative class 

indices, Törnqvist index as a price-weighted method. His methods worked 

under quadratic function of CMS model2. 

At this point forward, the development of CMS analysis are using two 

different ways of calculation as a basis equation. They are either using 

Fageberg-Sollie weighted method or Milana weighted method. 

                                                             

1 There are four critical weakness stated by Richardson (1971) in total, the other two are:  

(1) The various components in basic identity will vary with the level of commodity 

      aggregation. 

(2) The same problem will also happen in market consolidation. 
2 This model is also mentioned by Richardson (1971) in his paper as a basis proof of Leamer-

Stern model weakness in index number problem.  
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II. Construction of Generalized Model 

In this research we used three steps in order to construct generalized equation 

of CMS. The first step is called a breakdown process of fundamental concept of 

CMS, which is analyzing the value of 𝑉𝑇 − 𝑉0. This process aims to identify the 

nature of the components of CMS structure. The second step is construction of 

topological space structure of CMS by using those fundamental components. 

Thus, the last step is applying composition and partition concept on its structure 

to construct generalized model of CMS analysis. 

A. The Nature of Constant Market Shares Analysis 

CMS is used to analyze the changes of value of export between two distant 

points, namely 𝑉0 and 𝑉𝑡 . Technically, we analyze the value of 𝑉 in time 𝑡𝑇  

compared to condition on 𝑡0 as initial time. By using CMS we can determine 

the most determinant factors of those changes. Thus, in this research, we calls 𝑉𝑡 as the main objective, 𝑉𝑡 −𝑉0 as primary observation, and all possible period 

variation between 𝑉𝑡 and 𝑉0—if it exists—as sub-period. Besides, we also knew 

that 

Definition 1. Value of export at a given time period is a summation of all 

recorded export quantities times each price within that time 

period. 

Therefore—by definition 1—abstractly, we can separate them into two 

different sets, which are: 1) set of value of export, denoted as 𝐕 , for 𝑣𝑛 =∑ 𝑝𝑖𝑁𝑖=1 . 𝑞𝑖; 𝑣𝑛 ∈ 𝐕; and 2) set of time, denoted as 𝐓, given 𝑡 ∈ 𝐓. Thus, by 

crossing product of those two sets we will get 

(1) 𝐕𝐓 ⊂ 𝐕× 𝐓 

where, 𝑉𝑇 ∈ 𝐕𝐓 . However, this particular relationship, is only reflected into 

singleton cross product between 𝑣𝑛 and 𝑡 in order to construct 𝑉𝑇. That process 

is described on proposition hereunder: 
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Proposition 1.A. 𝑣𝑛 ∈ 𝐕 mapping into 𝑉𝑇 ∈ 𝐕𝐓 by ordered of time 𝑂(𝑡): 𝑣𝑛 →𝑉𝑇, expressed by following map, 

(2) 𝑣𝑛       𝑂(𝑡)     →      𝑉𝑇 

Proof. 

As we mentioned before, 𝑣𝑛 is a summand of multiplication of all export’s 

prices and quantities that recorded during one period of time (definition 1). 

𝑣𝑛 =∑𝑝𝑖 . 𝑞𝑖𝑁
𝑖=1  

𝑣𝑛—on Eq. 33—technically are computed externally by each recorded export’s 

prices and quantities at the certain period. Hence we need to label the value of 𝑣𝑛 into each recorded period, then we need to map 𝑣𝑛 into those period by the 

ordered of time. Therefore, every singleton set of 𝐕 will be paired into each 

period of 𝐓. 

(4) 𝐕𝐓 = {(𝑣𝑎 , 𝑡0), (𝑣𝑏, 𝑡0+𝑘),… , (𝑣𝑛, 𝑡𝑇)} 
Besides, we are also able to conclude, there are bijection between 𝐕𝐓 and 𝐓, 

by using pairing condition below, 

(5) 𝑉0⟷ 𝑡0, 𝑉𝑇 ⟷ 𝑡𝑇 

where, 𝑡0 is initial time, 𝑡𝑇  is a point 𝑇 in time, and 𝑉0, 𝑉𝑇 ∈ 𝐕𝐓; 𝑡0 , 𝑡𝑇 ∈ 𝐓. 

Another approach to proof Proposition 1.A is by using philosophical 

approach by following Reichenbach’s definition on van Frassen (2013: 42) 

Definition 2. “(The object) 𝑋 has (the property) 𝐹 at time 𝑡” is true if and only 

if “A (case of) being 𝐹 of 𝑋 occurred at time 𝑡” is true. 

Hence 𝑣𝑛 is a summand of (𝑝𝑖 . 𝑞𝑖), then the premises become, 

                                                             

3 Henceforth equation will be shorten by using an “Eq.” notation. 

(3) 
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Proposition 1.B. “𝑣𝑛 becoming 𝑉𝑇 is true if and only if (𝑝𝑖 . 𝑞𝑖) as components 

of 𝑣𝑛 is recorded at period 𝑡𝑇  is true”. 

The statement above implies that 𝑉𝑇 is a summand of, 

𝑉𝑇 = [∑(𝑝𝑖 . 𝑞𝑖)𝑁
𝑖=1 ]𝑇 

If and only if Eq. 6 is true then Proposition 1.B is true. The “true” value of 

Eq. 6 is proven by the data that are constructed by 𝑉𝑇. The data of (𝑝𝑖 . 𝑞𝑖)𝑇 

should consists only the recorded data at 𝑡𝑇  period. Hence Proposition 1.B is 

true then Proposition 1.A is also true. 

After we conceived the core of 𝐕𝐓, we begin to analyze more important part 

within CMS analysis, that is set of time, 𝐓. Defined by expression above, that 

the existence of 𝑉𝑇 are depend on the existence of 𝑡, hence we must construct 

properties that bounded to 𝐓 . This process undergone to create time 

“infrastructure” on behalf of further analysis. 

In order to understand set of time, we need to understand the construction of 

time as a basis or the core of the set’s build system. The concept of time that use 

in this research is referred to individual system of time itself, separated from the 

concept of space-time. This emphasis will become an important foundation for 

the further analysis. 

Property 1. Let 𝐓 is a set of time, which are 𝑡 ∈ 𝐓. 

Property 1.1. ∀𝑡 𝑡𝐴 ≠ 𝑡𝐵 , 𝑡𝐴 , 𝑡𝐵 ∈ 𝐓. 

Time is a mass noun that is describes as an indefinite continued progress of 

existence and events in the past, present, and future regarded as a whole4. On 

                                                             

4 Time definition from Oxford dictionaries, released by Oxford University Press, 2011. 

(6) 
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the other hand, we can define the time as experience events in time as occurring 

in succession (Oaklander, 2004). 

Philosophically, there are two fundamental properties bounded into time as a 

mathematical object5, there are: 1) The product of a Continuous process; and 2) 

Elements are non-contemporaneous to each other. In order to represent them 

into time structure we implant them onto Peano’s series. Thus, we map that 

series onto time series by unit of time mapping. 

Property 2. ∀𝑡 are constructed by mapping 𝜏: 𝑃 → 𝐓, 𝜏 is unit of time and 𝑃 is 

Peano Postulate’s natural number construction, implies 𝐓 bijective 

with ℕ. 

Property 2 above describes how to construct the value for each element of 𝐓. 

The constructive method based on “continuing process” and “non-

contemporaneous” attributes—which we described before on property 1. The 

foundation of the construction is also related to Aristotle’s question about the 

entity of time and Leibniz’s critique on Aristotle’s perception of beginning of 

time (van Frassen, 2013: p. 24, 32). As summarize, we construct the following 

Kant perspective of topological structure of time: 

We represent the time-sequence by a line progressing to infinity, in 

which the manifold constitutes a series of one dimension only; and we 

reason from the properties of this line to all the properties of time… 

 (citied on van Frassen, 2013: p. 115) 

One-dimensional object—line of time or timeline—that phrased above can be 

constructed by number theory construction. In this research we constructed 

                                                             

5 The concept is constructed since Aristotle and Aquinas points of view of time structure, 

which are defined each element of time is a product of precession and succession (citied on 

van Frassen, 2013: p. 10-11, 20, 22-23). Barrow and Newton are also added that time 

structure is an independent product of internal flows of process (citied on van Frassen, 2013: 

p. 30-31) 
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them by natural number system, instead of real number system that used by 

Leibniz or Kant. Arguments we used are based on: 

Lemma 1. 𝐓 is a countable set.  

Lemma 1 describes every element of time as a value, which each of them are 

“continuous process” product. The “continuous process” product refers to 

Kant’s fragment definition of time above6. In order to construct 𝐓 properties we 

need to understand how the element of time are valued and build from two basic 

properties: 1) continuous; and 2) non-contemporaneous. Therefore, we need 

Peano postulate as a basis of natural number construction as a construction 

mapping for the value of each element of time. 

According to Peano on Webber (1966: p. 58) natural number system is 

consists of a set of ℕ undefined elements, and an undefined mapping within 

elements, 𝑝: 𝑥 → 𝑥′ , such that 𝑥, 𝑥′ ∈ ℕ  and 𝑥  is constructed if following 

postulates hold: 

A1. There exists an element in ℕ, to be denoted by 1. 

A2. 𝑥′ ≠ 1, for all 𝑥 ∈ ℕ. 

A3. If 𝑥′ = 𝑦′, then 𝑥 = 𝑦, for all 𝑥, 𝑦 ∈ ℕ. 

A4. If 𝐺 ⊆ ℕ such that 

a. 1 ∈ 𝐺, and 

b. 𝑛 ∈ 𝐺 ⇒ 𝑛′ ∈ 𝐺, for all 𝑛 ∈ 𝐺, 

                                                             

6  In this section we will not discuss about Kant’s perception of time as an unreal object and 
merely as subjective constitution of mind. We are also not debate either time and space are 

real or ideal. We limited our research with a concept that time is individual body of structure 

with value and direction (Reichenbach, 1971). Moreover, in our research context, construction 

of time is related how to construct generalized analysis of CMS. Within CMS construction 

value of export merely a discrete product for each period of time (definition 10 and following 

existence identity of 𝐓 and 𝐕). Therefore, in our construction limited into how we valued and 

understand the properties of them). 
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Both hold, then 𝐺 = ℕ 

The first postulate on A.1 axiom determines that the least possible element of 

natural number is denoted by “1”, which is supported by axiom A.2. Axiom A.2 

make a clear statement that “1” as an element of ℕ is not a successor for any 

other element of ℕ.  

The third postulate declares that, if two elements of ℕ  have equivalence 

relation for their successor, then both of them are equal. Lighstone (1965: p. 35-

36) described third postulated by the inversed logic version. The third postulate 

stated by following sentence, 

(A.3)’ If 𝑥′ ≠ 𝑦′, then 𝑥 ≠ 𝑦, for all 𝑥, 𝑦 ∈ ℕ. 

Axiom (A.3)’ basically has the same meaning with axiom A3, but Axiom (A.3)’ 

are using the inverse premise of axiom A3.  

Peano postulates become the basis concept of mathematical induction. Term 

of successor on natural number denoted by binary symbol “+𝑁 ”, which is 

implies that the system is built on ℕ. This property implies, 

Theorem 1. 𝑚 ≠ 𝑚 +𝑁  1, for 𝑚 ∈ ℕ. 

Proof. 𝑚 +𝑁  1 and 𝑚 are two distinct elements of ℕ, then simply said 𝑚 ≠𝑚 +𝑁  1 by axiom (A.3)’. 

By theorem above, then we can construct ℕ by using Peano postulates and 

mathematical induction, +𝑁 . We will also have a constant value “0” which 

satisfies converse theorem 1 conditions. 

Theorem 2. 𝑚 = 𝑚 +𝑁  𝑘 iff 𝑘 does not have properties, which is represented 

by a constant “0”. 

Theorem 2 justifies the existences of an element of ℕ, that does not change 

other element’s value. Let, 𝑃  is natural number series constructed by Peano 

postulates, then we get, 
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(7) 𝑃 = 0, 1, (1+𝑁1), [1+𝑁(1+𝑁1)], 1+𝑁[1+𝑁(1+𝑁1)],… 

By property 2 we know that every 𝑡  elements on 𝐓  are constructed by 

mapping Peano series into elements of time. Let, there is mapping 𝜏: 𝑃 → 𝐓 

with, 𝜏(𝑝) = 𝑝. (𝑇) such that 𝑝 ∈ 𝑃 and (𝑇) is unit of time, then we will get, 

(8) 𝐓 = {0, 1. 𝑇, (1+𝑁1). 𝑇, [1+𝑁(1+𝑁1)]. 𝑇, (1+𝑁[1+𝑁(1+𝑁1)]). 𝑇, … } 
On the other hand, if we construct 𝐓 into each element value, we will get, 

(9) 𝐓 = {0, 1(𝑇), 2(𝑇), 3(𝑇),4(𝑇),… } 
Property 3. 𝐓 is a finite set. 

Proposition 2. 𝐓 is a well-ordered set, such that exists min𝐓 and max𝐓. 

However, in this research we assumed 𝐓 is a finite set. By this property, we 

can declare that there is exists one greatest element on 𝐓, say 𝜑(𝑇) that is 

greater value than any 𝑡. By those properties we are able to say that 𝐓 is a well-

ordered set too. Besides, we already knew that structure of 𝐓 represented by 

summation of “1” property for each 𝑡 element. 

Proposition 3. 𝑡𝑚  have 𝑘-more “𝑇” properties than 𝑡𝑛  iff there is exist 𝑚 =𝑛 + 𝑘 (Theorem 2) for 𝑘 is not a constant “0”, implies 𝑡𝑚 > 𝑡𝑛 

and 𝑡𝑛 < 𝑡𝑚. 

By proposition 3 we are able to declare that 𝐓 is strictly totally ordered set, such 

that exist chain 𝒞 connecting all of element 𝑡. 
Proof. 𝑡0 = 0𝑡1 = 1(𝑇),𝑡2 = (1 + 1). 𝑇 = 2(𝑇),𝑡𝑛 = (1 + 1 +⋯+ 1). 𝑇 = 𝑛. (𝑇), 

 𝑛-times 
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The 𝑡-series above provide us that 𝑡2, which is technically 𝑡0+2, has 2 more (𝑇) properties than 𝑡0. Therefore we can rewrite those condition into 𝑡2 >𝑇 𝑡0 

or more general as 𝑡2 > 𝑡0 . Otherwise, 𝑡0 <𝑇 𝑡2  or more general as 𝑡0 < 𝑡2. 

Hence 𝐓 is totally ordered set and a finite set, then 𝐓 is also well-ordered if and 

only if they have minimum and maximum element. Proposition 2 is proven by 

following sentences: 

Proof. 

Hence 𝑡 is mapping product from ℕ, then 0-point become least element of 𝐓 

and by Axiom A3 on Peano postulates, we can state there is no distinct element 

of 𝐓 that value as “0”. Under those circumstances we also able to state that 0-

point is minimum of 𝐓. 

On the other hand, under property 3, we have an upper bound to restrict 𝐓 

from infinite value. Let 𝑈 is value for 𝑡, where time is finished. Then, to reach 𝑈 value we need summation of “1” to a certain amount, let say it is 𝜑. 𝑈 = (1 + 1 +⋯+ 1) 
 

 

Therefore, 𝑈-value will reach at 𝜑(𝑇) point on 𝐓, so we says 𝜑(𝑇) is greatest 

element of 𝐓 . Assume, there is 𝜌(𝑇) , if 𝜌 = 𝜑 , technically 𝜌(𝑇)  is 𝜑(𝑇) , 
otherwise 𝜌(𝑇) ≠ 𝜑(𝑇), which is implies there will not be any element 𝑡(𝑇) 
such that 𝑡 = 𝜑. Hence 𝐓 is a finite set, then 𝜑(𝑇) is maximum element of 𝐓. 

Property 4. 𝑶𝒏 is an order of element 𝑡, such that 𝑂𝑇  is a representative value 

for 𝑇-order 𝑡 within 𝑻, 𝑂𝑇 ∈ 𝑶𝒏, implies 𝑂𝑇 ∈ ℕ. 

Property 4.1. 0𝑇 point for “0” valued on 𝑡 represented by 0𝑇 which is called 

point of origin. 

By 𝐓 construction under proposition 2 we know that 𝐓 is a well-ordered set 

and 𝑡(𝑇) point are exclusive to each other, 𝑟(𝑇) ≠ 𝑠(𝑇) such that 𝑟(𝑇) < 𝑠(𝑇) 

𝜑-times 
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for 𝑠 = 𝑟 + 𝑘  and 𝑘 ≠ 0 ; 𝑟(𝑇), 𝑠(𝑇) ∈ 𝐓 . Relation within 𝐓  for all 𝑡  are 

reflected by “<” and “>”, then there will exist 𝒪 as ordered of elements within 𝐓.  𝑶𝒏, which is constructed by property 4, is an ordered elements for all 𝑡 with 0𝑇 represent min𝐓, which is the first element of 𝐓. In this research we calls that 

point as “Beginning of Time” and denoted by 𝐵𝑇 . In term of order theory there 

are successor and predecessor within an order 𝒪 (Jech, 2002: p. 18, 20). Thus,  

Proposition 4. 𝑠𝑇  is successor of 𝑟𝑇  iff 𝑠 > 𝑟  such that 𝑠, 𝑟 ∈ 𝒪  and 𝑟𝑇  is 

predecessor of 𝑠𝑇 . 

Proposition 4.1. 𝑠𝑇  is immediate successor7 of 𝑟𝑇  iff 𝑠 > 𝑟 such that 𝑠, 𝑟 ∈ 𝒪 

and 𝑠 = 𝑟 + 1. 

By those two propositions above we understand that given any point 𝑟𝑇, every 

point which is ordered beyond 𝑟𝑇 are successor of 𝑟𝑇 and a point ordered after 𝑟𝑇  is immediate successor of 𝑟𝑇 . Hence 𝐓  already have 𝐵𝑇  and 𝐸𝑇  as a 

representation of minimum and maximum element respectively, then we will 

have, (𝐵 + 1)𝑇  as 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 of 𝐵𝑇[(𝐵 + 1) + 1]𝑇  as 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 of (𝐵 + 1)𝑇 ,{[(𝐵 + 1) + 1] + 1}𝑇  as 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 of [(𝐵 + 1) + 1]𝑇 ,⋮  

⋮[(𝐸 − 1) − 1]𝑇  as 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 of {[(𝐸 − 1) − 1] − 1}𝑇 ,(𝐸 − 1)𝑇  as 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 of [(𝐸 − 1) − 1]𝑇 ,𝐸𝑇  as 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 of (𝐸 − 1)𝑇  

                                                             

7 Immediate successor term is also called successor ordinal (Jech, 2002: p. 20). In our case if 𝑠𝑇  is not a successor ordinal of 𝑟𝑇 , then 𝑠𝑇  is called limit ordinal, which is satisfying 𝑠𝑇 =sup{𝑟𝑇 : 𝑟𝑇 < 𝑠𝑇} condition. 
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Hence 𝐵𝑇  is equal to 0𝑇, then 𝑶𝒏 is constructed by following series, 

(10) 𝑶𝒏 = {0𝑇 , (0 + 1)𝑇 , [(0 + 1) + 1]𝑇 , … , [(𝐸 − 1) − 1]𝑇 , (𝐸 − 1)𝑇 , 𝐸𝑇} 
Therefore, we also could rearrange them into, 

(11) 𝑶𝒏 = {0𝑇 , 1𝑇 , 2𝑇 , … , (𝐸 − 2)𝑇 , (𝐸 − 1)𝑇 , 𝐸𝑇} 
where, 𝑂𝑇  series from equation above are following Peano constructive in 

property 1, implies 𝑂 ∈ ℕ. 

Property 5. 𝑇 as unit of time for ∀𝑡 are consistent. 𝑇 as unit of time for any element reflected time unit for each value of time. By 

general agreement there are several unit of time that exist, 

Property 5.1. There is exist 𝑇𝑘 that is a collection of 𝑘-number of 𝑇𝑙 such that 𝑘 < 𝑙 and 𝑘 ≠ 𝑙, given 𝑘, 𝑙 = {0,1,2, … , Ω}. 
Property 5.1 describes the existences of “level” for unit of time, given 0th-level 

is a base unit of time. 𝑇𝑘 is denoted for 𝑘𝑡ℎ-level of magnitude for the unit of 

time and 𝑇𝑙 is denoted for 𝑙𝑡ℎ-level of magnitude. Unit with a lower magnitude 

on those level is a collection or union of several values of unit of time with 

higher magnitude. Suppose 𝑘𝑡ℎ < 𝑙𝑡ℎ in level of magnitude, then exists satisfied 

condition: 

Corollary 1. k. 𝑇𝑘 = k. 𝑓𝑘→𝑙  𝑇𝑙 
Corollary 2. 𝑙. 𝑇𝑙 = 𝑎. 𝑇𝑘  𝑎𝑛𝑑 𝑏. 𝑇𝑙; 𝑙 ≡ 𝑏mod 𝑓𝑙→𝑘 , such that 𝑙 = 𝑏 + 𝑎. 𝑓𝑙→𝑘 

where, 𝑓𝑘→𝑙  is constant value to convert 𝑇𝑘  unit into 𝑇𝑙  unit and 𝑓𝑙→𝑘  is 

constant value to convert 𝑇𝑙 unit into 𝑇𝑘 unit. Level system above is reflected 

the measurement system that called as time-measurement system. Moreover, 

that system are divided into two classes: calendar system and clock system. 
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𝑇𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = {  
  𝑌, for "year" time unit𝑀, for "month" time unit 𝑊, for "week" time unit𝐷, for "day" time unit  

and 𝑇𝑐𝑙𝑜𝑐𝑘  as a set of unit of time on “clock” system, 

𝑇𝑐𝑙𝑜𝑐𝑘 =
{   
   𝐷, for "day" time unit𝐻, for "hour" time unit𝑀𝑠, for "minutes" time unit 𝑆, for "second" time unit𝑎𝑛𝑑 𝑠𝑜𝑜𝑛

 

If we defines unit of time as international standard, then it is referred as 

“second”, 𝑆. However, in this research we use term of “base unit of time” to 

create order 𝑶𝒏 instead of using second, 𝑆. We define “base unit of time” as a 

unit of time that is used as basis measurement of time within 𝐓. Therefore, we 

use year basis (𝑌) because we defines year as one earth revolution to the sun 

period. Besides, “year” is the least subset that is not repeated in counting series. 

We write relationship of all those unit of time into, 

Definition 3. Calendar system is measured into several level of magnitude, such 

that: 𝐓 is a union of “year” magnitude, such that year is a base unit of 

time. 

𝐓 =⋃𝐘𝒊𝒊=𝟎  

and a “year” unit is also a collection of “day”, 

𝐓 =⋃⋃(𝐃𝒋)𝒊𝒋=𝟎𝒊=𝟎  
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Hence ⋃ (D𝑗)𝑚𝑗=0 = 𝐖𝑒𝑒𝑘 and ⋃ (D𝑗)𝑚𝑗=0 = 𝐌𝑜𝑛𝑡ℎ, then 

𝐓 =⋃⋃(𝐖𝒋)𝒊𝒋=𝟎𝒊=𝟎  and 𝐓 =⋃⋃(𝐌𝒋)𝒊𝒋=𝟎𝒊=𝟎  

On the other hand, clock system is measured “day” as a basis unit of time that 

measures a moon’s rotation to the earth. On this system, there are a lot of level 

of magnitude, such as 

𝐃 =⋃𝐇𝒊𝒊=𝟎  

where, 𝐇 is “hour” magnitude unit. Hence “hour” is also collection of “minute” 

and “minute” is a collection of “second” unit, then 

𝐃 =⋃⋃(𝐌𝐬𝒋)𝒊𝒋=𝟎𝒊=𝟎  and 𝐌𝐬 =⋃𝐒𝐄𝒌𝒌=𝟎  𝑡ℎ𝑒𝑛 𝐃 =⋃⋃(𝐒𝐄𝒌)𝒊𝒌=𝟎𝒊=𝟎  

where, 𝐌𝐬𝒋 is “minute” level unit and 𝐒𝐄𝒌 is “second” level unit. Hence there 

are also a lot of lower level of magnitudes, then we can generalize them into 

following expression, 

𝐃 =⋃⋃…𝒋=𝟎 ⋃([{𝒁𝝎}…]𝒋)𝒊𝝎=𝟎𝒊=𝟎  

where, 𝒁 is the smallest possible subse t of time and 𝑍𝜔  is smallest 

possible unit of time. 

Property 5.1. Given 𝑠𝑇  represent 𝑠 point on “year” unit of time, then 𝑠𝑇  can be 

write as “𝑠𝑌” or “𝑠”. 

Property 5.2. Given 𝑟𝑇 represent 𝑟 point on subset unit of time of “year”, then 𝑟𝑇 can be write as “𝑠:… : 𝑟𝑇” or can be simplified as “𝑠: 𝑟𝑇” for 𝑠 ∈ 𝐘. 

(12) 

(13) 

(14) 
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Property 5.1 and 5.2 provide guidelines for writing notation for every point in 𝐓. By property 5.1, if there is 𝑠𝑇  is denoted for 𝑠-th order in “year” unit of time, 

says 𝑠(𝑌), then we can write 𝑠𝑇  order as “𝑠𝑌” point or just “𝑠” as simplified 

form. The simplified form in “s” point can be used because “year” unit of time 

is the “base unit of time” and to represent base unit we can use the magnitude 

of point to denote every point in 𝐓.  

Furthermore, if there is 𝑟𝑇 point denoted 𝑟-th order in “𝑍-subset” unit of time, 

then we can write 𝑟 order as “𝑠:… : 𝑟𝑇” point or “𝑠: 𝑟𝑇” point. We use this 

method because we know that every subset unit of time are repeated after one 

“year” period. Let, 𝑍-subset is “month” unit of time, then we can write 𝑟𝑇 as 

“𝑠: 𝑟𝑇”, which is represented point of 𝑟-month within year-𝑠. 
Property 6. (Optional Property: Horizontal Chain Connection)  

Let 𝒞⊤ is vertical chain that is connecting 𝑻 by Hasse diagram, then there is 

exist 𝒞⊣ which is constructed by rotate 𝒞⊤ to 900 clock-wisely. 

Property 6.1. Let, 𝑘𝑇 and 𝑝𝑇 is a distinct point within 𝑻, then 𝑝𝑇 is located on 

the right side of 𝑘𝑇 iff 𝑝 > 𝑘. 

 

 

 

Property 7. (Gregorian Calendars synchronization process) 

There are several model that construct calendar system. However, Calendar 

system that is used in this research refers to Gregorian system. The system is 

chosen because Gregorian Calendars is used as International Calendar system 

and used globally as standard time-measurement system. In order to apply 

Figure 1. Original Timeline connected by 𝒞⊣.  𝐵𝑇 ≪ 𝑘𝑇 < 𝑝𝑇 ≪ 𝐸𝑇 

𝐵𝑇  𝑘𝑇  𝑝𝑇  𝐸𝑇  
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Gregorian system into our timeline we construct them, which can be viewed on 

Appendix 1. 

Afterwards we can apply or synchronize primary observation on CMS into 

timeline above. Suppose, 𝐓𝐏𝐎 is a set, which consists of {𝑡0, 𝑡𝑇} and 𝑡0 , 𝑡𝑇 are 

represented two distinct points in time 𝑇, then we can determine that 𝐓𝐏𝐎 ⊂ 𝐓. 

Moreover, imagine given a point 𝑛𝑇  in timeline are 𝑡0, and (𝑛 + 𝜏)𝑇  as a 𝑡𝑇  

then we also can define that, 

Proposition 5. Length of time |𝑡0, 𝑡𝑇 | is 𝜏 unit of time, with 𝜏 > 0. 

Proof. 

Length between two points of time is measured by differences between those 

two point’s magnitudes in timeline, reflected by expression 

(15) [(𝑛 + 𝜏) − 𝑛]𝑇 = 𝜏 
Magnitude of each point at timeline reflected by Gregorian-order of element (by 

Property 7.1 to 7.3.2). By those construction, then we get a part of timeline that 

consist of 𝐓𝐏𝐎, 

 

 

 

 

Proposition 6. There is exist at least one element 𝑡 with value 𝑡 ≥ 𝑡0 and 𝑡 ≤𝑡𝑇 . 

Proof. 

Given 𝑡0  and 𝑡𝑇  are totally ordered within 𝐓𝐏𝐎  (hence 𝐓𝐏𝐎 ⊂ 𝐓  and 𝐓  is 

well-ordered set, then 𝐓𝐏𝐎 is also well-ordered too), we can construct inverse 

transitivity properties of totally ordered set by following logical expression, 

 

Figure 2. 𝐓𝐏𝐎-construction Connecting 𝑡0 and 𝑡𝑇  Points.  
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(16) 𝑡𝑇 ≥ 𝑡0 → ∀𝑡 ∃𝑤 [𝑤:𝑤 ∈ 𝑡, 𝑤 ≥ 𝑡0 ∧ 𝑤 ≤ 𝑡𝑇] 
B. Construction of Topological Spaces Structure of CMS 

By using all of characteristic of both components of CMS analysis, then we 

are able to process the generalization form for them. The very first step in the 

process is to construct the topological structure of CMS itself. In this research 

we are using two different approaches in order to construct the topological 

structure.  

The first approach construct CMS as one-dimensional structure and the 

second one construct them into two-dimensional topological space. By using 

those two structures, we can approach generalized constant market share with 

two method, they are: 1) Path-connectedness on 𝐓𝐏𝐎; or, 2) cartesian product 

of partition of 𝐓𝐏𝐎. 

Composition of Path-connectedness on 𝐓𝐏𝐎—the first approach we view CMS 

equation as one-dimensional space, which is implied that all of events that are 

coincide together (contemporaneous event) at period 𝑡 are lies in the same point 

at space. Therefore, the one-dimensional space structure are constructed 

coincide with time construction. Implies, in order to construct topological 

structure of CMS we need to define our time construction as a topological object 

and then translate those definitions into CMS construction. 

Definition 4. Reichenbach’s Causal Theory of Time Order 

Given two events, 𝐸1 and 𝐸2, both of them are coincide if and only 

if 𝑡(𝐸1) = 𝑡(𝐸2). 
The first step is to define our time construction as a topological spaces 

construction. In order to do that, we need to specify topological structure of 𝐓. 

This procedure made us recall property 1.1 on time construction and create 

several arrangement. Recall, 

Property 1.1. ∀𝑡 𝑡𝐴 ≠ 𝑡𝐵 , 𝑡𝐴 , 𝑡𝐵 ∈ 𝐓 
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where, each value of 𝑡 ∈ 𝐓 constructed by mapping 𝜏: 𝑃 → 𝐓 and give us, 𝐓 = {0, 1(𝑇), 2(𝑇), 3(𝑇), 4(𝑇),… } 
Thus, imagine that following proposition, 

Proposition 7. 𝐓 is a topological space and it is closed. 

Proof. 𝐓 = [𝑂𝑇 , 𝐸𝑇] is closed hence complement of 𝐓∞, 

(17) 𝐓∞ − 𝐓 = [𝐸𝑇 ,∞[ 
is open. This condition is satisfying De Morgan’s Law (Munkres, 2000: 94), 

given 𝑋 topological sets, then subset 𝐴1 of 𝑋 is closed if and only if, 

𝑋 −⋃𝐴𝑖𝑛
𝑖=1 =⋂(𝑋 − 𝐴𝑖)𝑛

𝑖=1  

Proposition 7.1. Any element of 𝐓 is separate to each other. 

Proof. 

Proposition 7.1 already proven by property 1.1 and explained further by 

property 5.1 on construction of time. 

Proposition 7.2. 𝐓 is a connected space. 

Proof. 𝐓 is a totally ordered set, by property 2 and constructed by property 2 and the 

form designed by proposition 4 and 4.1. By those properties, then 𝐓 is only have 

subsets of 𝐓 and ∅ element. 

Given by proposition 7.1 and 7.2, we can imagine topological structure of 𝐓 

as a closed-connected space. Moreover, by chain properties, we are also able 

to define them as one-dimensional space, restricted by chain “line” named as 

timeline. 

(18) 
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Proposition 7.3. 𝐓𝐏𝐎 is also a closed-connected space. 

Proof. 

In order to proof proposition 7.2 we must consider 𝐓𝐏𝐎 as one of connected 

component of 𝐓. Connected component of a space is a maximal subset of that 

space (Viro et al, 2008: 69). Hence 𝐓𝐏𝐎 ⊂ 𝐓  and supported by following 

definition, 

Definition 5. Connected components are closed. (Viro et al, 2008: 69, 

Definition 12.K) 

then, 𝐓𝐏𝐎 is closed.   

Under all available proposition, we are cleared that 𝐓𝐏𝐎 is a closed-connected 

space within timeline and it complies with what illustrated by Figure 2 above. 

Hence this properties, we can address CMS analysis into, 

Proposition 8. |𝑡𝑇 − 𝑡0|  is a length of path-connectedness of 𝐓𝐏𝐎  space by 

segment 𝐼 = [𝑡𝑇 , 𝑡0]. 
Recall, 𝐓𝐏𝐎 = {𝑡𝑇 , 𝑡0} and 𝑡𝑇  and 𝑡0 is lie in the same component due to both 

of them are element of 𝐓𝐏𝐎, which is connected. This statement supported by 

following definition, 

Definition 6. Two points lie in the same components iff they are belong to the 

same connected space. (Viro et al, 2008: 69, Definition 12.I) 

At this point, we also can connect both of them by a continuous connected-line, 

given one of them as a starting point and the other is a end point. 

Definition 7. Given points 𝑥 and 𝑦 of the space 𝑋, a path in 𝑋 from 𝑥 to 𝑦 is a 

continuous map 𝑓: [𝑎, 𝑏] → 𝑋 of some closed interval in the real 

line, such that 𝑓(𝑎) = 𝑥 and 𝑓(𝑏) = 𝑦. A space of 𝑋 is said to be 

path-connected if every pair of points of 𝑋 can be joined by a 

path in 𝑋. (Munkres, 2000: 155) 
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By this definition we conclude that 𝐓𝐏𝐎 is connected by a path with segment 𝐼 = [𝑡𝑇 , 𝑡0], as 𝑡0 is starting point and 𝑡𝑇  is end point. Henceforth we denote 

this path of 𝐓𝐏𝐎 as a “path𝐻(𝑡0, 𝑡𝑇)”. Moreover, we also can draw a conclusion 

that 𝐓 is also path-connected. This statement is satisfied by property 6 and 

property 7 on construction time above. Furthermore, the length of the path is 

the interval between 𝑡𝑇  and 𝑡0, given by definition, 

Definition 8. (Intermediate Value Theorem) 

A continuous function 𝑓: [𝑎, 𝑏] → ℝ 

Takes every value between 𝑓(𝑎) and 𝑓(𝑏). (Viro et al, 2008: 73, 

Definition 13`1) 

and 

Definition 9. Let 𝑋 is be a connected space, 𝑓: 𝑋 → ℝ a continuous funtion. 

Then 𝑓(𝑋)  is an interval of ℝ . (Viro et al, 2008: 73, 

Generalization of definition 13.A) 

Both of those properties above defined that we can draw that a path is 

connecting all intervals between two points. However, instead of ℝ we use ℕ 

system. This system still hold since, both of them are also well-ordered sets. In 

order to measure the length of the path we follow a definition hereunder, 

Definition 10. The interval on ℝ reflected by |𝑏 − 𝑎|. (Simmons, 1963: p. 143-

144) 

The differences between definition 10 and our research is lies on number 

system that we used. Interval on ℕ system is only captured counting numbers. 

 

 

 

Figure 3. path𝐻(𝑡0, 𝑡𝑇) connecting 𝑡0 and 𝑡𝑇  points.  
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Suppose we have |𝑡𝑇 − 𝑡0| = 𝜏, then 𝜏 ≠ 0 iff 𝑇 = 0 + 1 (proposition 5). 

This condition is reflected on proposition 3, where ∀𝑡 ∈ 𝐓 are constructed by 

Peano continuous mapping 𝑡 → 𝑡′ by “1” property from his predecessor 

Proposition 9. Sub-path within path𝐻(𝑡0, 𝑡𝑇) denoted by path𝐻𝙹(𝑡𝛼 , 𝑡𝛽), with 𝙹 = 1,… , 𝜔 and 𝛼,𝛽, … are value of point between 𝑡0 and 𝑡𝑇 . 𝜔 indicate as a last sub-path that connecting point 𝜑𝑇  to 𝑡𝑇 , 

given 0 ≤ 𝜑 ≤ 𝑇 and 𝜑 ∈ ℕ. 

Sub-path by definition are one or more paths which are connecting the same 

points as path𝐻(𝑡0, 𝑡𝑇). Viro et al (2008: p. 76) defined this relation as “Path is 

a product of sub-paths” and demonstrated them into following example. Let 𝑢 ∶𝐼 ↦ 𝑋 and 𝑣 ∶ 𝐼 ↦ 𝑋 are two paths given 𝑢(1) = 𝑣(0), then 

(19) 𝑢𝑣: 𝐼 ↦ 𝑋: 𝑡 ↦ {𝑢(2𝑡)         𝑖𝑓 𝑡 ∈ [0,1/2]𝑣(2𝑡 − 1) 𝑖𝑓 𝑡 ∈ [1/2,1] 
Hence 𝑢 end point is equal to 𝑣 initial point, then 𝑢𝑣 is also close-connected 

path. Symmetrically, this logical expression concludes that close-connected 

path are able to construct by one or more paths connected in-between. The 

length of path 𝑢𝑣 is calculated by, 

(20) 𝑢𝑣[1] − 𝑢𝑣[0] = [𝑢(1) − 𝑢(0)] + [𝑣(1) − 𝑣(0)] 
If we apply expression 19 and 20 into proposition 9, then we also can 

calculated the length for each sub-path between path𝐻(𝑡0, 𝑡𝑇) as follow, 

Proposition 10. Suppose 𝑙𝑡 𝐓𝐏𝐎 is length of |𝑡𝑇 − 𝑡0|, then length for each sub-

period path𝐻𝙹(𝑡𝛼 , 𝑡𝛽), constructed by composition of 𝑙𝑡 𝐓𝐏𝐎. 
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Proposition 10 is hold, because length of |𝑡𝑇 − 𝑡0| is positive integers in order 

to defined the path is a forward path8. That condition is given by definition 𝑡0 ≠𝑡𝑇 . Beside, there are two main objectives of existences of proposition 10: 1) 

Aim to identify point of observation between 𝑡0 and 𝑡𝑇 ; and 2) calculate each 

length of sub-paths between them. Suppose 𝑙𝑡 𝐓𝐏𝐎 valued as 𝜏𝑃𝑂  (or can be 

abbreviated into 𝜏) by proposition 5, then we have 𝜏𝑃𝑂 = 𝜏𝑎 + 𝜏𝑏 +⋯+ 𝜏𝑘   for 𝜏𝑎 , 𝜏𝑏 , … , 𝜏𝜔 ∈ ℕ 

𝜏𝑃𝑂 =∑𝜏J

𝜔
J=1

 for 𝜏𝑎 , 𝜏𝑏 , … , 𝜏𝜔 ∈ ℕ 

where, J is the component index of composing configuration and 𝜔 is total 

component to compose 𝜏𝑃𝑂 . Moreover, 𝜏J is also represents the length of sub-

paths from each component index, J. Hence every 𝜏 is denoted the length for 

each path, then we also can arrange them into, 

(22) path𝐻(𝑡0, 𝑡𝑇) = path𝐻1(𝑡0, 𝑡𝛼) + path𝐻2(𝑡𝛼 , 𝑡𝛽) + ⋯+ path𝐻𝜔(𝑡𝜑 , 𝑡𝑇) |𝑡𝑇 − 𝑡0| = |𝑡𝛼 − 𝑡0| + |𝑡𝛽 − 𝑡𝛼| + ⋯+ |𝑡𝑇 − 𝑡𝜑| 
We also can generalize them by plug Eq. 22 into Eq. 21 as follow, 

path𝐻(𝑡0, 𝑡𝑇) =∑path𝐻𝐽[𝑡𝑎J ,  𝑡(𝑎J+𝜏J)]𝜔
𝐽=1  

where,  each 𝑡𝑎J  is represents initial point for each sub-paths. Hence all sub-

paths path𝐻𝐽 [∙,∙] construct a continuous path𝐻(𝑡0, 𝑡𝑇), then every initial point 𝑡𝑎J  will have the same value for each end-point 𝑡(𝑎J+𝜏J)  from the previous 

component index. Specific to the 𝑡𝑎1  and 𝑡𝑎𝜔  points, both of them will have the 

same 𝑡 value with 𝑡0 and 𝑡𝑇  respectively. Furthermore, Eq. 21 can be satisfied 

                                                             

8 The positive integer values for the length is reflected a forward continuous function that is 

constructed every (next) elements of time construction. Moreover, this condition is also 

created by forward continuous function, which is used to construct the Peano series. 

(23) 

(21) 
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by more than one composing formation if and only if the value of 𝜏J  as a 

component the same.  

Proposition 11. Suppose 𝚵S denote 𝒔-th sub-period’s variance of configuration, 

then there will be S = 2[𝑙𝑡𝐓𝐏𝐎−𝟏] variances of sub-period. 

Proof. 

Given a condition of Eq. 21, we have, 𝜏𝑃𝑂 = 𝜏𝑎 + 𝜏𝑏 +⋯+ 𝜏𝜔   for 𝜏𝑎 , 𝜏𝑏 , … , 𝜏𝜔 ∈ ℕ 

The solution for 𝜏𝑃𝑂  created by the addendum of components 𝜏𝜔 , such that 𝜔 

components composed those structure is valued between 1 ≤ 𝜔 ≤ 𝜏𝑃𝑂 . 

Therefore for each 𝜔  composition to construct 𝜏𝑃𝑂  the composing 

configuration is construct as follows, 

Table 1. The Composing Configuration of 𝜏𝑃𝑂 . 

 𝜔=1 𝜔=2 𝜔=3 … 𝜔=𝜏𝑃𝑂 − 1 𝜔=𝜏𝑃𝑂  𝐒 = 1 𝜏𝑃𝑂  0 0 … 0 0 𝐒 = 2 𝜏𝑃𝑂 − 1 1 0 … 0 0 𝐒 = 3 𝜏𝑃𝑂 − 2 1 1 … 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 𝐒 = 𝑐𝑠 − 1 1 1 1 … 2 0 𝐒 = 𝑐𝑠 1 1 1 … 1 1 

where, 𝑐𝑠 is the total variance of composing configuration. Furthermore, hence 

each 𝜏𝜔  value represents sub-path’s length, which is connecting two sub-period 

observation, then their value for each 𝜏 are independent for each others. This 

condition implies such following condition is hold, 𝚵1: 𝜏𝑃𝑂 = 𝜏1,1 + 𝜏1,2 + 𝜏1,3 
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𝚵2: 𝜏𝑃𝑂 = 𝜏2,1 + 𝜏2,2 + 𝜏2,3 
(24) 𝚵3: 𝜏𝑃𝑂 = 𝜏3,1 + 𝜏3,2 + 𝜏3,3 

where,𝜏1-components of 𝚵1  has similar component’s value to the 𝜏2  and𝜏3  -

components of 𝚵2. For example, if we have condition 𝜏1 , 𝜏2, 𝜏3 satisfying, 𝚵1: 𝜏𝑃𝑂 = 𝑎 + 𝑏 + 𝑐 𝚵2: 𝜏𝑃𝑂 = 𝑏 + 𝑎 + 𝑐 𝚵3: 𝜏𝑃𝑂 = 𝑐 + 𝑎 + 𝑏 

then, all those 3 composing configuration will be treated as separated 

configuration. By this condition, we are able to calculate total variance of 

configuration, 𝑐𝑠, by using following equation, 

𝑐𝑠 =∑(𝜏𝑃𝑂 − 1𝑛 − 1 )𝜏𝑃𝑂
𝑛=1 =∑(𝜏𝑃𝑂 − 1𝑛 )𝜏𝑃𝑂

𝑛=0 = 2𝜏𝑃𝑂−1 

The last step in this process is to apply this construction into CMS analysis. 

In order to complete this step, we combine definition from Definition 1 onto 

Definition 4 to specify that event that occurs on each timeline—in our cases—

is export quantities recording event. Under that condition, then 

Proposition 12.A. There is exists Recorded events of export quantities at any 

point of 𝑠𝑇 ∈ 𝒪𝑇 denoted as 𝑉𝑇 and has a 𝑣𝑇 value (Eq. 3). 

By condition on Proposition 12.A then we will have the sub-period analysis 

between primary observations can be constructed by using Composing 

Configuration as follows, 

𝑉𝑇 − 𝑉0 =∑(𝑣𝑛, 𝑡)𝑎J+𝜏J − (𝑣𝑛, 𝑡)𝑎J

𝜔
𝐽=1  

𝑉𝑇 − 𝑉0 =∑𝑉𝑎J+𝜏J −𝑉𝑎J

𝜔
𝐽=1  

(25) 
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where, 𝑡𝑛J  is time configuration, which is constructed by path𝐻𝐽[𝑡𝑎J ,  𝑡(𝑎J+𝜏J)] 
under J composing configuration on Table 1. 𝑣𝑛 is the recorded value of export 

quantities at 1 𝑇𝑘-unit level of time. Each recorded value is calculated by a 

recording process at 1 𝑇𝑘-unit level of time during some 𝑇𝑙-unit 

Proposition 12.B. Assume we have 𝑠𝑇  lies on 𝑇𝑘-unit level of time then 𝑣𝑇 

value is calculated by a recording events, constructed by a path𝐻(𝑉𝑎 , 𝑉𝑏)  connecting 𝑎𝑇𝑙 :𝑇𝑘  to 𝑏𝑇𝑙 :𝑇𝑘  point given by 

conditions: 

1) 𝑎𝑇𝑙 :𝑇𝑘 = 0 ∙ 𝑓𝑘→𝑙 point of 𝑠𝑇  as initial point; and 

2) 𝑏𝑇𝑙 :𝑇𝑘 = 1 ∙ 𝑓𝑘→𝑙  point of 𝑠𝑇  as end-point. 

For 𝑙 = 𝑘 + 1 level of unit of time. 

Assume we have value 𝑣𝑛 for each 𝑇𝑘-unit calculated during 𝑇𝑘+1 unit of time, 

then we can illustrate that process as follows,  

 

 

 

 

 

 

 

 

 

 

Example for proposition above. Given a 𝑣𝑛 value at 𝑡2016 (year 2016) period 

called 𝑉2016 calculates during a recording event between initial recording point 

 

Figure 4. Recording Value (𝑣𝑛) Process for Any 𝑘 from 𝑘 + 1 Level of Time. 

(26) 
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at 𝑡𝑀1 :2016  (January, 2016) for any 𝑣  goods until the end-point at 𝑡𝑀12:2016 

(December 2016). Thus, those recorded 𝑣 goods multiplied the export price, 𝑝𝑡 
to create the export value 𝑉2016. If we apply this construction into any 𝑡𝑌 points, 

then we will get a series of discrete value of 𝑉𝑌. 

Therefore, under those construction building of 𝑉𝑇, 𝑉0  (primary observations) 

sub-period observations, we are able to generalized CMS construction for them 

into more commonly used Eq. 26 by using equation from Eq. 22 as structure. 

Those will has construction as follows, 

(27) 𝚵S𝐕: 𝑉𝑇 − 𝑉0 = (𝑉𝛼 −𝑉0) + (𝑉𝛽 − 𝑉𝛼) +⋯+ (𝑉𝑇 − 𝑉𝜑) 
for 𝑡0, 𝑡𝛼 , 𝑡𝛽 , … , 𝑡𝜑 , 𝑡𝑇 ∈ 𝑶𝑻  and order-condition 𝑡0 ≤ 𝑡𝛼 ≤ 𝑡𝛽 ≤ ⋯ ≤ 𝑡𝜑 ≤ 𝑡𝑇  

are satisfied. 𝚵S𝐕  is variances of constant market shares analysis, which are 

constructed between 𝑉0 and 𝑉𝑇. 

Partition of 𝑻𝑷𝑶 (Hausdorff Construction of 𝐕𝐓-space Approach)—the second 

approach in this research are based on two-dimensional space analysis of 𝐕𝐓-

space. 𝐕𝐓 -space is used in order to capture one-to-one correspondence 

relationship between 𝐕 and 𝐓. The relationship which is then reflected in the 

pairing condition on Eq. 5. In order to accomplish this process, we need to 

construct 𝐕 and 𝐓 into 𝐕𝐓 -space. Particularly this process will provide more 

detailed proof for Proposition 1.A and Eq. 4. 

The first step are focused on 𝐓 construction. Hence, 𝐓 is a totally ordered set 

and 𝐓𝐏𝐎 is a proper subset of 𝐓, then 𝐓𝐏𝐎 is totally ordered too. Elements of 𝐓𝐏𝐎 are two distinct points, implies 𝑡0 ≠ 𝑡𝑇. Unless we have closed interval, ]𝑡0, 𝑡𝑇[ = 𝛿, with 𝛿 = 0, then we can define9, 

                                                             

9 If we have closed interval ]𝑡0, 𝑡𝑇[ = 0, then we will have 𝐒𝐏𝐎 ≡ 𝐓𝐏𝐎. 

 Proof: ]𝑡0, 𝑡𝑇[ = 0 → [𝑡0, 𝑡𝑇] = 1, for 𝑡0, 𝑡𝑇 ∈ ℕ 

That condition give us properties for 𝑛𝑇-point that valued more or equal than 𝑡0 is equal to 𝑡𝑇, 

in the same way, we will also have 𝑛𝑇-point that valued less or equal than 𝑡𝑇 is identical to 𝑡0. 

Therefore, we can conclude 𝐒𝐏𝐎 = {𝑡0, 𝑡𝑇} by using axiom of extensionality (Axiom 2). 
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Proposition 13. There exists subset 𝐒𝐏𝐎, within 𝐓𝐏𝐎 that also totally ordered, 

and consists of all 𝑡 between 𝑡0 and 𝑡𝑇 . 

By property 6, we can declare that inf 𝐒𝐏𝐎 = 𝑡0+1  and sup 𝐒𝐏𝐎 = 𝑡𝑇−1, with 

length |𝑡𝑟 , 𝑡𝑠| equal to 1 unit of time. Therefore, hence 𝐒𝐏𝐎 ⊂ 𝐓𝐏𝐎 then we will 

get, 𝐒𝐏𝐎 ∪ 𝐓𝐏𝐎 = {𝑡0, 𝐒𝐏𝐎, 𝑡𝑇} 
(28) 𝐒𝐏𝐎 ∪ 𝐓𝐏𝐎 = {𝑡0, 𝑡0+1, 𝑡0+2, … , 𝑡𝑇−1, 𝑡𝑇} 

Now, set 𝐓𝑨 = 𝐒𝐏𝐎 ∪ 𝐓𝐏𝐎, become a union of whole integer number between 𝑡0 and 𝑡𝑇  with interval sequential order [𝑡𝑖 , 𝑡𝑖+1] = 1 unit of time, 𝑡𝑖 , 𝑡𝑖+1 ∈ 𝐓𝑨. 

Furthermore, we can partition them into κ-blocks subset. We arrange blocks 

with only one elements each, to make them into singleton sets, then we get 

single time-frame10, 

(29) κ1 = {𝑡0}; κ2 = {𝑡1};  … ; κ𝑇−1 = {𝑡𝑇−1};  κ𝑇 = {𝑡𝑇} 
The next step of that procedure into the value of export set. Let, 𝐕 is a set of 

each value of export that recorded on period series on Eq. 29. Suppose we have 𝐕 = {𝑉𝑎 , 𝑉𝑏 , … , 𝑉𝑚, 𝑉𝑛} which is related to each period on Eq. 29, then we are 

able to partition them into ν-blocks, 

(30) ν1 = {𝑉𝑎};  ν2 = {𝑉𝑏};  … ; ν𝑚 = {𝑉𝑚}; ν𝑛 = {𝑉𝑛} 
Henceforth, we are able to construct relationship between value of export and 

time set into cartesian product. The procedures are referred to relationship in 

Eq. 4, 

                                                             

10 A little proof for partitioning procedure. 

1. κ1 = {𝑡0}; κ2 = {𝑡1}; … ;  κ𝑇−1 = {𝑡𝑇−1};  κ𝑇 = {𝑡𝑇} are non-empty sets, with each of κ  

    have |κ| = 1. 

2. Union for all of κ, ⋃ κ𝑛𝑇𝑛=0 = {𝑡0, 𝑡0+1, 𝑡0+2, … , 𝑡𝑇−1, 𝑡𝑇}, which is equal to all elements of  

    𝐓𝑨. 

3. Intersection for κ1 ∩ κ2 = {𝑡0} ∩ {𝑡1} = ∅. 
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(31) 

κ1 × ν1 = {(𝑡0, 𝑉𝑎)}κ2 × ν2 = {(𝑡1, 𝑉𝑏)}⋮κ𝑇−1 × ν𝑚 = {(𝑡𝑇−1, 𝑉𝑚)}κ𝑇 × ν𝑛 = {(𝑡𝑇 , 𝑉𝑛)}  

Condition 31 implies, 

Proposition 14. Each pairs of κ × 𝜈 is an element for 𝐕𝐓 for each period 𝑡  
Proof 

Let us plug every cross product in Eq. 31 into Eq 4a. This process are applied 

of Eq. 1, which is implied that 𝐕𝐓 = ⋃(κ × 𝜈), then we will get, 

  𝐕𝐓 = {κ1 × ν1, κ2 × ν2 , … , κ𝑇−1 × ν𝑚 , κ𝑇 × ν𝑛} 𝐕𝐓 = {(𝑡0, 𝑉𝑎), (𝑡1, 𝑉𝑏),… , (𝑡𝑇−1, 𝑉𝑚), (𝑡𝑇 , 𝑉𝑛)} 
(32) 𝐕𝐓 = {𝑉0, 𝑉1, … , 𝑉𝑇−1, 𝑉𝑇} 
where, each 2-tuplets element of 𝐕𝐓 is a Cartesius coordinate point of 𝐕𝐓-space. 

Those pairing conditions declare that each 𝑉𝑛 ∈ 𝐕 is solely owned by each 𝑡𝑛 ∈𝐓 (Proposition 1.A).  

The next process is constructing every element of 𝐕𝐓 into constant market 

shares equation. In order to construct them we use combination approach as an 

analytical tool. Suppose we have 𝐕𝐓 consists of all elements on Eq. 32, then we 

will have, 

Proposition 15. Let 𝒩 is cardinality of 𝐕𝐓 and 𝓅 is point observation in group 

of observation G, such that G is consists of 𝓀-tuplets of 𝓅, 

then   

G𝓀 = (𝓅1, … , 𝓅𝓀)  for 2 ≤ 𝓀 ≤ 𝒩 

G𝓀  groups of observations are constructed by following binomial expression, 
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G𝓀 = (𝒩 − 2𝓀 ) 
where, 𝒩 − 2 condition at Eq. 33 are presented hence the combinations are 

only applied into combinations of 𝐒𝐏𝐎. 𝑉0 and 𝑉𝑇 are already “chosen” in order 

to create 𝐓𝐏𝐎 . Therefore, we have GPO = (𝑉0, 𝑉𝑇)  as primary group of 

observations in constant market shares analysis. 

G𝓀  at Eq. 33 provide us a group of observation within 𝐓𝐏𝐎. However, G𝓀  for 𝒩 ≥ 𝓀 ≥ 2, can provide more than one G𝓀 .  

Proposition 16. Let 𝚵𝐆 is all possible G𝓀  which can be constructed within 𝐓𝐀, 

then 

𝚵𝐆 = ∑ (𝒩 − 2𝓀 )𝒩−2
𝓀=0 = 2𝒩−2 

Implies, 

Proposition 17. The value of 𝚵𝐆 is equal to 𝚵𝐒. 
Proof 

Assume 𝚵𝐆 = 𝚵𝐒 is true, then implies 2𝒩−2 = 2(𝜏𝑃𝑂−𝟏) 𝒩 − 2 = 𝜏𝑃𝑂 − 1 

Recall, 𝒩 = |𝐓𝐀| and 𝐓𝐀 = 𝐒𝐏𝐎 ∪ 𝐓𝐏𝐎, then we will have  |𝐓𝐀| = |𝐒𝐏𝐎 ∪ 𝐓𝐏𝐎| 
By using De Morgan’s Law at Eq. 18, then |𝐓𝐀| = |𝐒𝐏𝐎| + |𝐓𝐏𝐎| − |𝐒𝐏𝐎 ∩ 𝐓𝐏𝐎| 𝒩 = (𝜏𝑃𝑂 − 1) + 2 − 0  𝒩 = (𝜏𝑃𝑂 + 1) 

(33) 

(34) 

(35a) 
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Plug Eq. 35b into Eq. 35a, (𝜏𝑃𝑂 + 1) − 2 = 𝜏𝑃𝑂 − 1 𝜏𝑃𝑂 − 1 = 𝜏𝑃𝑂 − 1 

Equal sign on Eq. 35c proves that statement on Proposition 17 is true. 

Furthermore, we are able to construct group of observation, which are used 

into constant market shares analysis. Hence Eq. 35c is proven 𝚵𝐆 = 𝚵𝐒, then we 

are able to conclude that, 

(36) 𝚵𝐆𝑽: 𝑉𝑇 − 𝑉0 = (𝑉𝛼 −𝑉0) + (𝑉𝛽 − 𝑉𝛼) +⋯+ (𝑉𝑇 − 𝑉𝜑) 
where 𝑉0, 𝑉𝛼 , 𝑉𝛽 , … ,𝑉𝜑 , 𝑉𝑇 are specifically member of G𝓀 . 

We can illustrate those processes of generalization into 𝐕𝐓-space on Figure 5. 

Assume, we have 4 blocks, κ = {𝑡0}, {𝑡1}, {𝑡𝑇−1}, {𝑡𝑇}  and ν ={𝑉𝑎}, {𝑉𝑏}, {𝑉𝑚}, {𝑉𝑛}, then we will have, 𝐕𝐓 = {(𝑡0, 𝑉𝑎), (𝑡1, 𝑉𝑏), (𝑡𝑇−1, 𝑉𝑚), (𝑡𝑇 , 𝑉𝑇)} 
which are represented as coordinates points on cartesian diagram at Figure 5. 

Furthermore, we assume 𝑉𝑎 < 𝑉𝑏 < 𝑉𝑚 < 𝑉𝑛. 

 

 

 

 

 

 

Figure 5, we generate four coordinates in the diagram, namely by order 𝑉0, 𝑉1, 𝑉𝑇−1, and 𝑉𝑇 points. Graphical approach of selecting G𝓀  observation points 

by this point forward are required graphical representation of mapping 𝐕 × 𝐓 as 

(35b) 

(35c) 

Figure 5. Cartesian Products of κ × ν. 
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pictured at Figure 6. As we explain before that Figure 6 are pictured all of 

component 𝐕𝐓 . Hence 𝐕𝐓 ⊂ 𝐕 × 𝐓 , then Figure 6 will give us a complete 

cartesian product between 𝐕 and 𝐓. 𝐕× 𝐓 = (t𝟎,V𝒂), (t0,V𝑏), (t0,V𝑚), (t0,V𝑛), (t1,V𝑎), (t𝟏,V𝒃), (t1,V𝑚), (t1,V𝑛), (t𝑇−1,V𝑎), (t𝑇−1,V𝑏), (t𝑻−𝟏,V𝒎), (t𝑇−1,V𝑛), 
(37) (t𝑇 ,V𝑎), (t𝑇 ,V𝑏), (t𝑇 ,V𝑚), (t𝑻,V𝒏) 

A complete 𝐕 × 𝐓, which is formed at Eq. 37, technically consists of three 

main parts or subsets, 𝐕 × 𝐓 ≡ 𝐕𝐓𝐧𝐮𝐥𝐥 ∪ 𝐕𝐓 ∪ 𝐕𝐓𝐫𝐞𝐜𝐨𝐫𝐝 𝐕𝐓𝐧𝐮𝐥𝐥 is a subset of 𝐕 × 𝐓 which is consist of component 𝑉𝑧 = ∅, for (𝑉𝑧, 𝑡𝑡). 
 

 

 

 

 

 

Those elements are denoted by white-rounded-by-black-ring dots. 𝐕𝐓  is a 

subset that consists of constant market shares point of observations, denoted by 

red dots. 𝐕𝐓𝐫𝐞𝐜𝐨𝐫𝐝 is a subset that consists of points of observations, which are 

valued by record the data 𝑉𝑇  from 𝑡𝑇  to any points 𝑡𝑇+𝑘 . The last subset 

denoted by black dots in Figure 6. 

Proposition 18. Suppose 𝑉𝑛′ ,𝑇+𝑘 = (𝑉𝑛′ , 𝑡𝑇+𝑘) is 𝑉𝑛  that is valued at period 𝑡𝑇+𝑘 , given  𝑉𝑇 = (𝑉𝑛, 𝑡𝑇), then 𝑉𝑛′,𝑇+𝑘  is recorded 𝑉𝑇 if and 

only if 𝑉𝑛 = 𝑉𝑛′ . Therefore, 𝑉𝑛′ ,𝑇+𝑘 ∈ 𝐕𝐓𝐫𝐞𝐜𝐨𝐫𝐝. 

Figure 6. Complete 𝐕 × 𝐓 Discrete Space. 
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Proof 

Hence 𝑉𝑛 is computed exogenously by Eq. 3 and labeled by Eq. 6, then 𝑉𝑇 

will have the same value 𝑉𝑛  for 𝑉𝑛′ ,𝑇+𝑘  given value 𝑉𝑛′  is recorded at any 

period 𝑡𝑇+𝑘 . In our selecting process, basically, we apply combinations on ∀𝑉𝑇 ∈ 𝐕𝐓, in order to construct selected point of observations by Eq. 33, 

G𝓀 = (𝒩 − 2𝓀 ) 
However, in order to construct CMS analysis, this process are incomplete. By 

definition 1, CMS is focused on analysis between two point of observation that 

chosen under Eq. 33. The CMS analysis technically measures the value 

differences between 𝑉𝑇. Therefore, we cannot directly measure11 the difference 

term between 𝑉𝑇 hence the properties bounded to 𝐕𝐓-space. 

In order to measure those differences then we need 𝑉𝑛′ ,𝑇+𝑘 ∈ 𝐕𝐓𝐫𝐞𝐜𝐨𝐫𝐝  for ∀𝑉𝑇 ∈ 𝐕𝐓 on the process. In our cases, the condition can be shown by Figure 7, 

which are points of observation used are concentrated on period 𝑡𝑇 . Those 

points lie on the shaded area at Figure 7, VT = (𝑉𝑛, 𝑡𝑇) ; VT−1,𝑡𝑇 = (𝑉𝑚, 𝑡𝑇); V1,𝑡𝑇 = (𝑉𝑏 , 𝑡𝑇); and V0,𝑡𝑇 = (𝑉𝑎 , 𝑡𝑇). 
Hence those three elements 𝑉𝑚′,𝑇 , 𝑉𝑏′,𝑇 , and 𝑉𝑎′,𝑇  are record the value of 𝑉𝑇−1, 𝑉1, and 𝑉𝑎 respectively, then we can write them into their recorded points. 

Therefore, by those four elements of 𝐕𝐓 we can construct G𝓀  with 𝓀 = 2, 3, 4. 

                                                             

11 Direct measure of the differences between element of 𝐕𝐓 is able to be done by treat 𝐕𝐓-space 

as a metric discrete space (𝐕𝐓, 𝑑), implies the distance, 𝑑 between those points are measured 

by, 𝑑𝐻(𝑉𝑇 , 𝑉𝑇+𝑘) = max{𝑑(𝑉𝑇 , 𝑉𝑇+𝑘) ∶  𝑉𝑇 , 𝑉𝑇+𝑘 ∈ 𝐕𝐓} 
 However, those value are not represented constant market share equation, which we are 

looking for. Therefore we need to measure them by indirect measurement between element 

of 𝐕𝐓. 
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III. Empirical Implementation 

In this research we will apply our general construction of CMS analysis into 

empirical calculation of Indonesia export performance to Japan’s market for 

2009-2014 period analysis. We used Fagerberg-Sollie “one market and several 

commodities” CMS model to capture effects that are determined those export 

performances. We also used one digit SITC Rev. 3 Indonesia to Japan’s export 

reported by UN COMTRADE database12. Graphic information is shown by 

Figure 7 below, 

[ Insert Figure 7 Here ] 

By those information, we are able to define 𝐓𝑷𝑶 = {𝑉2009 , 𝑉2014} as primary 

observation and 𝐒𝑷𝑶 = {𝑉2010 , 𝑉2011 , 𝑉2012 , 𝑉2013} as subset observation. Under 

this circumstances13, then we construct path𝐻(2014𝑌 , 2009𝑌) and their sub-

paths path𝐻𝐽(𝑇𝑌 , 𝑇𝑌) , which is connecting subset observations to “travel” 

between 2014Y and 2009Y points. 𝑙𝑒𝑛𝑔𝑡ℎ path𝐻(2014𝑌 , 2009𝑌) = (2014 − 2009) 𝑦𝑒𝑎𝑟 
 = 5 𝑦𝑒𝑎𝑟 

Hence length of path𝐻  is 5, then there will be 2[𝑙𝑡 path𝐻−1] = 24  which is 

equal to 16 variance of path𝐻𝐽  between 2014𝑌  and 2009𝑌  points and also 5 

groups G𝓀 . Let 𝚵S is variance of path𝐻𝐽 , then we will have, 

𝚵S: path𝐻(2014𝑌 , 2009𝑌) = ∑path𝐻𝐽[𝑡𝑎J ,  𝑡(𝑎J+𝜏J)]𝜔
𝐽=1;  

where, each 𝚵S is constructed in Table 3 hereunder, 

                                                             

12 List of product classification for 1-digit SITC Rev. 3 provided at Table 2 
13 By proposition 8, if there are points, which are related by 𝑛𝑇 ≠ 𝑚𝑇, 𝑛𝑇, 𝑚𝑇 ∈ Ôn 

then exist one Hasse-path, path𝐻(𝑚𝑇, 𝑛𝑇), connecting those two points on timeline. 
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[ Insert Table 3 Here ]  

Afterwards, we apply all of variance path to sub-period analysis of constant 

market shares. Recall, 

𝚵S𝐕: 𝑉2014 − 𝑉2009 =∑𝑉𝑎J+𝜏J − 𝑉𝑎J

𝜔
𝐽=1  

where 𝚵S𝑉 is applied path system into element 𝑉 within 𝐓𝑨. 

In order to analyze this case, we use Fageberg and Sollie (1987) “several 

commodities, one market” model of CMS as follows, 

(40) ∆𝑉𝑘𝑙 = ∆𝑀𝑎𝑘𝑙 + ∆𝑀𝑏𝑘𝑙 + ∆𝑀𝑎𝑏𝑘𝑙  
where, ∆𝑉𝑘𝑙  is changes of 𝑘 -country value of export to 𝑙 -country, ∆𝑀𝑎𝑘𝑙  is 
denoted changes of market shares effect, ∆𝑀𝑏𝑘𝑙  is commodity composition 

effect, and ∆𝑀𝑎𝑏𝑘𝑙  is residual term, which is constructed by inner product of a 

vector of ∆𝑀𝑎𝑘𝑙  and ∆𝑀𝑏𝑘𝑙 , called as a commodity adaptation effect. Afterwards, 

by plug Eq. 40 into Eq. 39 we will get, 

𝚵S𝐕: 𝑉2014 − 𝑉2009 = ∆𝑉𝑃𝑂𝐴𝐾 =∑(∆𝑀𝛼𝐴𝐾 + ∆𝑀𝛽𝐴𝐾 + ∆𝑀𝛼𝛽𝐴𝐾)𝐽𝜔
𝐽=1  

The result for every variance of Eq. 41 shown in Table 4. The sixteen path 

connecting 𝑉2009  and 𝑉2014  give us all possible variance sub-period analysis 

within the primary objective. Each variance valued differently hence the point 

of observation within the sub-period analysis consists of different composition. 

However, as we found that every variance will give us the same value, -

0.005176 (or simply write as -0.52%) as the differences value between 𝑉2014 

and 𝑉2009. 
[ Insert Table 4 Here ] 

The same value on the rightmost column provides us a definitive proof that 

our generalized model is true. This condition is due to each difference value for 

(38) 

(39) 

(41) 
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each sub-path is the composition of the length of the path itself. Implies, the 

value of -0.52% is a summand of difference value for each sub-path on each 

variance.  

The value also provides us an information that Indonesian’s share in Japan is 

reduced 0.52 percent in 2014 compared to 2009 export value. Its declining 

condition caused by the declining of micro shares effect and commodity 

adaptation. On the other hand, commodity composition effect is improved by 

almost 0.2 percent.  

However, those conditions are calculated by directly measuring the changes 

of Indonesian’s share in Japan’s market. However, if we use different path in 

the analysis—as shown in Table 4—will provide more detailed information. As 

shown in 𝚵16, it gives us annually more detailed information about the changes 

in Indonesia market shares condition. 

Besides, we also found that path of primary observation, which is composed 

by sub-period observations within CMS, is also constructed by a summand for 

each effect during the period of analysis. We calls them as the sum of partial 

effect (SPE). Calculate as follows,  

𝑆𝑃𝐸𝛼 =∑(∆𝑆𝛼𝐴𝐾)𝐽𝜔
𝐽=1 ;  𝑆𝑃𝐸𝛽 =∑(∆𝑆𝛽𝐴𝐾)𝐽𝜔

𝐽=1 ;  𝑆𝑃𝐸𝛼𝛽 =∑(∆𝑆𝛼𝛽𝐴𝐾)𝐽𝜔
𝐽=1  

where,  ∆𝑆𝑃𝑂𝐴𝐾 = 𝑆𝑃𝐸𝛼 + 𝑆𝑃𝐸𝛽 + 𝑆𝑃𝐸𝛼𝛽. 

Each 𝑆𝑃𝐸 is composed by a summation of each partial effect of CMS. The 

values of its composition are captured in the fluctuation or movement for each 

effect during the primary observations. This term provides us a summation of 

each effect, which is composed the total value of each effect on the primary 

objective, 𝚵1. If we combine each value of the sum of partial effect then we will 

also get the value of -0.52%. 

(42) 
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The compositions of 𝑆𝑃𝐸 depend on the CMS model used for analysis. For 

example, if we use Widodo (2010) model, we will get six instead of three 

compositions of 𝑆𝑃𝐸 . Each part of 𝑆𝑃𝐸  describes the value for each effect 

during the sub-period analysis. Therefore, the fluctuation of value shows us the 

dynamics behavior for each effect in the CMS analysis.  

Table 4 provides us all possible variation of CMS analysis for 𝑉2014 and 𝑉2009. 

If we compare or synchronize them with several existing literature of Constant 

Market Shares analysis, we can summarize them in Table 5. 

Table 5. The Comparison between Several Existing Literature of CMS with All 

Variances on Generalized Model 

CMS Model Type of Variation 

Tyszynki (1951) 𝚵1 
Baldwina (1958) 𝚵3 
Leamer and Stern (1970) 𝚵1 
Richardson (1971) 𝚵1 
Fagerberg and Sollie (1987) Not-clearb 

Widodoc (2010) 𝚵3 
Dyadkova and Momchilov (2014) 𝚵16 

Note: a) We synchronized Baldwin (1958) method to determine the point of 

observations into our data shown by Figure 7. 

b) On their papers, they did not explain how to determine points of 

observations for theirs sub-period analysis. 

c) We synchronized Widodo (2010) method to determine the point of 

observations into our data shown by Figure 7. 

Based on the note under the Table 5, we synchronize Baldwin (1958) and 

Widodo (2010) methods in order to construct the sub-period analysis. Both of 

them using the fluctuations of the data as a criterion. If the point of the period 

reaches one of the peak or bottoms on fluctuations of export’s value, then those 



39 

 

points become the one of observation point on sub-period analysis. In our cases, 

based on Figure 7, the period is 𝑉2011 . Therefore, we will get 𝚵3  as our 

synchronized variations. 

As the conclusion, all of the information on Table 5 give us a conclusion of 

our generalized CMS position compared to the existing model and technical 

analysis of CMS. Each model technically is one of CMS variation in Table 4. 

IV. Concluding Remarks 

The generalization model is constructed by the use of three steps process. The 

first step is decomposed or breakdown the concept of CMS analysis itself. This 

process is aims to understand the essences of the CMS and it will give us set of 

time (𝐓) and set of value of export (𝐕) as their components. Each parts of 

components become the fundamental elements, which are composed the model. 

The second step has constructed the model of CMS into an abstract 

topological structure by using those two fundamental components. The 

topological structure is easier to us in the generalization process. However, in 

this research, we are using two different approaches to constructing the 

structure. The first one we construct them into one-dimensional space structure 

and the second one we used two-dimensional space as a board of construction. 

The last step is applying composition and partition concept into the 

topological structure in order to gain the generalized structure of CMS. The 

applying process uses different method hence those two structures has different 

properties. 

By the fundamental properties of time, which are constructed during the 

breakdown process of CMS, give us insight that the one-dimensional spaces of 

CMS is a closed-connected space. Under this circumstances, we can connect 

those two distinct points, 𝑉𝑇 and 𝑉0, by a path. We later measured the length of 

the path as a duration between 𝑡𝑇  and 𝑡0 and the changes of value of export 
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between that duration of time. Hence we know the value of duration, we find 

that the generalized sub-period analysis within 𝑉𝑇 and 𝑉0 can be constructed by 

the composition of that duration of time between 𝑡𝑇  and 𝑡0. 

On the other hand, the second approach is using two-dimensional spaces 

structure in order to give us a one-to-one correspondence relationship between 𝐕 and 𝐓. This relation create a discrete metric space (Hausdorff Space), 𝐕𝐓 , 

which isolated points are represented each element of constant market share 

given 𝑉𝑇 ∈ 𝐕𝐓.  

The last process, we find that we can directly measure the value between those 

singleton sets in order to get the value or the measurement of CMS. We need 

every element of those metric spaces in form of complete 𝐕× 𝐓 Cartesian 

product. Thus, by using elements, which are defined as recorded elements at a 

given period 𝑡 , we apply combination method to create a group, which is 

consists of 𝓀-tuplets points of observation. By those points within each group 

we are able to construct the generalized model of Constant Market Shares 

analysis. 

Therefore, both approaches lead us into generalized equation of CMS that is 

cover any points between the primary observations. Those condition enrich the 

analysis of export performances with more precise and flexible construction. 
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APPENDIX 1. Gregorian Calendars Synchronized System Construction 

In order to apply Gregorian system into our time construction, there are 

several properties that are essentially satisfied.  

Property 7.1. Ôn is synchronized order system to Gregorian Time System, 𝑂𝑇-

order will start from the beginning of 1 A.D. 

Year order on Gregorian system starts from a “1 A.D” year, where “A.D” 

stand for “Anno Domini”. Ôn  is notation for year-order with positive value 

order, which is grouped all possible after “1 A.D” year ahead. Hence “A.D” is 

referred to positive ordinal number, then we write notation point for “A.D” 

group as “𝑂𝑇  year”, such that 𝑂𝑇 ∈ Ôn. 

Technically, hence all possible period after “1 A.D”—including the “1 

A.D”—is ordered by positive value for 𝑂𝑇  position, then all period before those 

point are ordered by mapping properties. Those conditions are caused by “non-

negative” calendar system. Therefore, those group are mapping into “B.C” year, 

where there is no 0 A.D in Gregorian Calendars System, then 𝑂𝑇  start from 1𝑇-

order. 

Property 7.2 Ôn consists of Ô𝒏+ and Ô𝒏−. 

Property 7.2.1 Ô𝒏+ subset consists of ∀𝑡 such that 𝑡 with 𝑂𝑇 ≝ 𝑂𝑇+ ⇔ 𝑂 > 0. 

Property 7.2.2 Ô𝒏− subset consists of ∀𝑡 such that 𝑡 with 𝑂𝑇 ≝ 𝑂𝑇− ⇔ 𝑂 < 0. 

Let, И ⊂ ℕ>0, then there is exist И− , such that satisfying following condition: 

И ∩ И− = ∅, 
Therefore, exists mapping 𝜎: И → И− , such that 𝜎(𝑛) = 𝑛. 𝐵𝐶. 

Property 7.3 𝑂 ∈ И−  for 𝑂𝑇− ∈ Ô𝒏− and 𝑂 ∈ И for 𝑂𝑇+ ∈ Ô𝒏+. 
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Property 7.3 give us several properties to construct Gregorian time-system by 

following expression: 

Property 7.4. If there are 𝑘𝑇 and 𝑝𝑇 points at 𝐓, then, (𝑝 −𝐺  𝑘)𝑇 = (𝑝 −𝑁  𝑘)𝑇 , for 𝑝 > 𝑘 (𝑝 −𝐺  𝑘)𝑇 = 𝜎[(𝑘 −𝑁  𝑝) − 1]𝑇 , for 𝑝 < 𝑘 (𝑝 −𝐺  𝑘)𝑇 = 𝜎[1]𝑇 , for 𝑝 = 𝑘 𝜎(𝑝 −𝐺  𝑘)𝑇 = 𝜎(𝑝 +𝑁  𝑘)𝑇 𝜎[𝑝 −𝐺  𝜎(𝑘)]𝑇 = 𝜎(𝑝 −𝑁  𝑘)𝑇 , for 𝑝 > 𝑘 𝜎[𝑝 −𝐺  𝜎(𝑘)]𝑇 = [(𝑘 −𝑁  𝑝) − 1]𝑇 , for 𝑝 < 𝑘 

Based on property 7.4, we can construct time-measurement system based on 

Gregorian Calendar system. Hence this construction based on calendar system, 

then condition on property 7.4 will be held at "𝑦𝑒𝑎𝑟"-basis level unit of time. 

For example, suppose we have two points on this system—suppose 𝑘𝑇 and 𝑝𝑇 

from property 6.1—then we will have conditions such as provided in Figure 1. 

Assume, 𝑘𝑇 lies on Ô𝒏− section and 𝑝𝑇 is pointed at Ô𝒏+ section, 𝑘𝑇 point will 

defined as “𝑘 𝐵𝐶 year” and 𝑝𝑇 is defined as “𝑝 year”.  

 

 

 

 

 

 

 

 

 

Figure 8. Gregorian Timeline connected by 𝒞⊣.  

𝐵𝑇  𝐸𝑇  𝟏  𝟏 𝑩𝑪 

Ô𝒏− Ô𝒏+ 

𝑘𝑇− ≝ 𝑘 𝐵𝐶 𝑝𝑇+ ≝ 𝑝  
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APPENDIX II. Tables and Figures 

1. List of Figure 

Figure 7. Graph for Indonesia’s export to Japan, 2009-2014. 

 
2. List of Tables 

Table 2. List of Product Classification of 1-digit SITC Rev.3 

Digit Code Name of Classification 

0 Food and live animals 

1 Baverages and tobacco 

2 Crude materials, inedible, except fuels 

3 Mineral fuels, lubricants and related materials 

4 Animal and vegetable oils, fats and waxes 

5 Chemicals and related products, n.e.s. 

6 Manufactured goods classified chiefly by material 

7 Machinery and transport equipment 

8 Miscellaneous manufactured articles 

9 Commodities and transactions not classified elsewhere in the SITC 
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Table 3. List of  group G𝓀  and variance 𝚵S, connecting 𝑉2014 and 𝑉2009. 

Group Variance path𝐻𝐽  length of path𝐻𝐽  
G2 𝚵1 (2014, 2009) 5 

G3 

𝚵2 (2014, 2010); (2014, 2009) 4 + 1 𝚵3 (2014, 2011); (2011, 2009) 3 + 2 𝚵4 (2014, 2012); (2012, 2009) 2 + 3 𝚵5 (2014, 2013); (2013, 2009) 1 + 4 

G4 

𝚵6 (2014, 2011); (2011, 2010); (2010, 2009) 3 + 1 + 1 𝚵7 (2014, 2012); (2012, 2010); (2010, 2009) 2 + 2 + 1 𝚵8 (2014, 2012); (2012, 2011); (2011, 2009) 2 + 1 + 2 𝚵9 (2014, 2013); (2013, 2011); (2011, 2009) 1 + 2 + 2 𝚵10 (2014, 2013); (2013, 2012); (2012, 2009) 1 + 1 + 3 𝚵11 (2014, 2013); (2013, 2010); (2010, 2009) 1 + 3 + 1 

G5 

𝚵12 
(2014, 2012); (2012, 2011); (2011, 2010)
;(2010, 2009) 2 + 1 + 1 + 1 

𝚵13 
(2014, 2013); (2013, 2011); (2011, 2010)
;(2010, 2009) 1 + 2 + 1 + 1 

𝚵14 
(2014, 2013); (2013, 2012); (2012, 2010)
;(2010, 2009) 1 + 1 + 2 + 1 

𝚵15 
(2014, 2013); (2013, 2012); (2012, 2011)
;(2011, 2009) 1 + 1 + 1 + 2 

G6 𝚵16 (2014, 2013); (2013, 2012); (2012, 2011)
;(2011, 2010); (2010, 2009) 1 + 1 + 1 + 1 + 1 
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Table 4. Sub-Period Analysis of Constant Market Shares 

Variances of Sub-Period Analysis 
∆𝑆𝛼𝐴𝐾 

(Micro shares effect) 

∆𝑆𝛽𝐴𝐾 

(Commodity 

Composition) 

∆𝑆𝛼𝐴𝐾 
(Commodity 

Adaptation) 

𝐩𝐚𝐭𝐡𝑯J  [𝑉𝑌 , 𝑉𝑌+𝑘] 
1. 𝚵1: path𝐻 = [𝑉2014 − 𝑉2009] -0.00641 0.001997 -0.00076 -0.005176 

2. 𝚵2: path𝑆1 = [𝑉2014 −𝑉2010] path𝑆2 = [𝑉2010 − 𝑉2009] -0.00889 

0.00165 

0.00026 

0.00168 

-0.00004 

0.00017 

-0.008671 

0.003496 

The Sum of Partial Effect -0.007245 0.001939 0.000131 -0.005176 

3. 𝚵3: path𝑆1 = [𝑉2014 −𝑉2011] path𝑆2 = [𝑉2011 − 𝑉2009] -0.010204 

0.002344 

-0.00086 

0.00314 

0.000128 

0.000284 

-0.01094 

0.005764 

The Sum of Partial Effect -0.007860 0.002272 0.000412 -0.005176 

4. 𝚵4: path𝑆1 = [𝑉2014 −𝑉2012] path𝑆2 = [𝑉2012 − 𝑉2009] -0.004997 

-0.002197 

-0.00073 

0.00282 

0.00018 

-0.00025 

-0.00554 

0.00037 

The Sum of Partial Effect -0.007194 0.002090 -0.000071 -0.005176 

5. 𝚵5: path𝑆1 = [𝑉2014 −𝑉2013] path𝑆2 = [𝑉2013 − 𝑉2009] -0.00365 

-0.00322 

-0.00048 

0.00257 

0.000097 

-0.000498 

-0.00403 

-0.00114 

The Sum of Partial Effect -0.006865 0.002090 -0.000401 -0.005176 

6. 𝚵6: path𝑆1 = [𝑉2014 −𝑉2011] -0.01020 -0.00086 0.00013 -0.01094 
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path𝑆2 = [𝑉2011 − 𝑉2010] path𝑆3 = [𝑉2010 − 𝑉2009] 0.00036 

0.00165 

0.00154 

0.00168 

0.00036 

0.00017 

0.00227 

0.003496 

The Sum of Partial Effect -0.008197 0.002360 0.000661 -0.005176 

7. 𝚵7: path𝑆1 = [𝑉2014 −𝑉2012] path𝑆2 = [𝑉2012 − 𝑉2010] path𝑆3 = [𝑉2010 − 𝑉2009] 
-0.004997 

-0.00438 

0.00165 

-0.00073 

0.00117 

0.00168 

0.00018 

0.00008 

0.00017 

-0.00554 

-0.00313 

0.003496 

The Sum of Partial Effect -0.007734 0.002127 0.000431 -0.005176 

8. 𝚵8: path𝑆1 = [𝑉2014 −𝑉2012] path𝑆2 = [𝑉2012 − 𝑉2011] path𝑆3 = [𝑉2011 − 𝑉2009] 
-0.004997 

-0.00529 

0.00234 

-0.00073 

0.00011 

0.00314 

0.00018 

-0.00022 

0.00028 

-0.00554 

-0.005396 

0.00576 

The Sum of Partial Effect -0.007942 0.002521 0.000245 -0.005176 

9. 𝚵9: path𝑆1 = [𝑉2014 −𝑉2013] path𝑆2 = [𝑉2013 − 𝑉2011] path𝑆3 = [𝑉2011 − 𝑉2009] 
-0.00365 

-0.00656 

0.00234 

-0.00048 

-0.00016 

0.00314 

0.000097 

-0.00019 

0.00028 

-0.00403 

-0.006905 

0.00576 

The Sum of Partial Effect -0.007862 0.002496 0.000190 -0.005176 

10. 𝚵10: path𝑆1 = [𝑉2014 − 𝑉2013] path𝑆2 = [𝑉2013 − 𝑉2012] path𝑆3 = [𝑉2012 − 𝑉2009] 
-0.00365 

-0.00131 

-0.002197 

-0.00048 

-0.000204 

0.00282 

0.000097 

0.00001 

-0.00025 

-0.00403 

-0.00151 

0.00037 
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The Sum of Partial Effect -0.007158 0.002128 -0.000146 -0.005176 

11. 𝚵11: path𝑆1 = [𝑉2014 − 𝑉2013] path𝑆2 = [𝑉2013 − 𝑉2010] path𝑆3 = [𝑉2010 − 𝑉2009] 
-0.00365 

-0.00551 

0.00165 

-0.00048 

0.00091 

0.00168 

0.000097 

-0.00004 

0.00017 

-0.00403 

-0.00464 

0.003496 

The Sum of Partial Effect -0.007508 0.002102 0.000230 -0.005176 

12. 𝚵12: path𝑆1 = [𝑉2014 − 𝑉2012] path𝑆2 = [𝑉2012 − 𝑉2011] path𝑆3 = [𝑉2011 − 𝑉2010] path𝑆4 = [𝑉2010 − 𝑉2009] 
-0.004997 

-0.00529 

0.00036 

0.00165 

-0.00073 

0.00011 

0.00154 

0.00168 

0.00018 

-0.00022 

0.00036 

0.00017 

-0.00554 

-0.005396 

0.00227 

0.003496 

The Sum of Partial Effect -0.008278 0.002608 0.000494 -0.005176 

13. 𝚵13: path𝑆1 = [𝑉2014 − 𝑉2013] path𝑆2 = [𝑉2013 − 𝑉2011] path𝑆3 = [𝑉2011 − 𝑉2010] path𝑆4 = [𝑉2010 − 𝑉2009] 
-0.00365 

-0.00656 

0.00036 

0.00165 

-0.00048 

-0.00016 

0.00154 

0.00168 

0.000097 

-0.00019 

0.00036 

0.00017 

-0.00403 

-0.006905 

0.00227 

0.003496 

The Sum of Partial Effect -0.008198 0.002584 0.000439 -0.005176 

14. 𝚵14: path𝑆1 = [𝑉2014 − 𝑉2013] path𝑆2 = [𝑉2013 − 𝑉2012] path𝑆3 = [𝑉2012 − 𝑉2010] path𝑆4 = [𝑉2010 − 𝑉2009] 
-0.00365 

-0.00131 

-0.00438 

0.00165 

-0.00048 

-0.000204 

0.00117 

0.00168 

0.000097 

0.00001 

0.00008 

0.00017 

-0.00403 

-0.00151 

-0.00313 

0.003496 
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The Sum of Partial Effect -0.007697 0.002166 0.000356 -0.005176 

15. 𝚵15: path𝑆1 = [𝑉2014 − 𝑉2013] path𝑆2 = [𝑉2013 − 𝑉2012] path𝑆3 = [𝑉2012 − 𝑉2011] path𝑆4 = [𝑉2011 − 𝑉2009] 
-0.00365 

-0.00131 

-0.00529 

0.00234 

-0.00048 

-0.000204 

0.00011 

0.00314 

0.000097 

0.00001 

-0.00022 

0.00028 

-0.00403 

-0.00151 

-0.005396 

0.00576 

The Sum of Partial Effect -0.007905 0.002559 0.000171 -0.005176 

16. 𝚵16: path𝑆1 = [𝑉2014 − 𝑉2013] path𝑆2 = [𝑉2013 − 𝑉2012] path𝑆3 = [𝑉2012 − 𝑉2011] path𝑆4 = [𝑉2011 − 𝑉2010] path𝑆5 = [𝑉2010 − 𝑉2009] 
-0.00365 

-0.00131 

-0.00529 

0.00036 

0.00165 

-0.00048 

-0.000204 

0.00011 

0.00154 

0.00168 

0.000097 

0.00001 

-0.00022 

0.00036 

0.00017 

-0.00403 

-0.00151 

-0.005396 

0.00227 

0.003496 

The Sum of Partial Effect -0.008241 0.002646 0.000419 -0.005176 

 


