
Munich Personal RePEc Archive

A Path Integral Approach to Interacting

Economic Systems with Multiple

Heterogeneous Agents

Gosselin, Pierre and Lotz, Aïleen and Wambst, Marc

Université Grenoble Alpes, Institut Fourier, UMR 5582 CNRS-UJF,

BP 74, 38402 St Martin d’Hères, France., Cerca Trova, BP 114,

38001 Grenoble Cedex 1, France., IRMA, UMR 7501 CNRS,

Université de Strasbourg, France.

31 May 2017

Online at https://mpra.ub.uni-muenchen.de/79488/

MPRA Paper No. 79488, posted 03 Jun 2017 08:24 UTC



A Path Integral Approach to Interacting Economic Systems with

Multiple Heterogeneous Agents

Pierre Gosselin∗ Aïleen Lotz† Marc Wambst‡

May 2016

Abstract

This paper presents an analytical treatment of economic systems with an arbitrary number of agents
that keeps track of the systems’ interactions and complexity. The formalism does not seek to aggregate
agents: it rather replaces the standard optimization approach by a probabilistic description of the agent’s
behavior. This is done in two distinct steps.

A first step considers an interaction system involving an arbitrary number of agents, where each
agent’s utility function is subject to unpredictable shocks. In such a setting, individual optimization
problems need not be resolved. Each agent is described by a time-dependent probability distribution
centered around its utility optimum.

The whole system of agents is thus defined by a composite probability depending on time, agents’
interactions, relations of strategic dominations, agents’ information sets and expectations. This setting
allows for heterogeneous agents with different utility functions, strategic domination relations, hetero-
geneity of information, etc.

This dynamic system is described by a path integral formalism in an abstract space — the space of
the agents’ actions — and is very similar to a statistical physics or quantum mechanics system. We show
that this description, applied to the space of agents’ actions, reduces to the usual optimization results in
simple cases. Compared to the standard optimization, such a description markedly eases the treatment
of a system with a small number of agents. It becomes however useless for a large number of agents.

In a second step therefore, we show that, for a large number of agents, the previous description is
equivalent to a more compact description in terms of field theory. This yields an analytical, although
approximate, treatment of the system. This field theory does not model an aggregation of microeconomic
systems in the usual sense, but rather describes an environment of a large number of interacting agents.
From this description, various phases or equilibria may be retrieved, as well as the individual agents’
behaviors, along with their interaction with the environment. This environment does not necessarily
have a unique or stable equilibrium and allows to reconstruct aggregate quantities without reducing the
system to mere relations between aggregates.

For illustrative purposes, this paper studies several economic models with a large number of agents,
some presenting various phases. These are models of consumer/producer agents facing binding con-
straints, business cycle models, and psycho-economic models of interacting and possibly strategic agents.
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1 Introduction

In many instances, representative agent models have proven unrealistic, lacking both collective and emerging
effects resulting from the agents’ interactions. To remedy these pitfalls, various paths have been explored:
complex systems, networks, agent based systems or econophysics (for a review of these topics see [1][2] and
references therein).

However agent based models and networks rely on microeconomic relations that may be too simplistic or
lack microeconomic justifications. In these type of settings, agents are typically defined by, and follow, various
set of rules. They allow for equilibrium and dynamics to emerge that would otherwise remain unaccessible
to the representative agent setup. However these approaches are highly numerical and model-dependent.
Econophysics, for its part, rely heavily on statistical facts as well as empirical, aggregate rules to derive some
macroeconomic laws, that ultimately should pose similar problems than ad hoc macroeconomics. Indeed ad
hoc macroeconomic models are prone to the Lucas critique, that led to the introduction of micro-foundations
in macroeconomic theory.

A gap remains between microeconomic foundations and multi agent systems. This paper develops a setup
that models micro, individual interactions along with statistic uncertainty and recovers macroeconomic,
aggregate relationships using physics-like methods to replicate interaction systems involving multiple agents.

This paper presents an analytical treatment of a broad class of economic systems with an arbitrary
number of agents, while keeping tracks of the system’s interactions and complexity at the individual level.
In this respect, our approach is similar to the Agent-Based one, in that it does not seek to aggregate all
agents, and considers the interaction system in itself. However, we depart from the Agent Based Model in
that we do not aggregate the agents in several different types and aim at considering the system as a whole
set of large number of interacting agents. This point of view is close to the Econophysics approach, in which
agents are often considered as a statistical system. Nevertheless, our objective is to translate, at the level
of these statistical systems, the main characteristics of a system of optimizing agents. The goal of this work
is to introduce, at the (possibly approximate) statistical level, the agents’ forward looking behaviors, the
individual constraints, the heterogeneity of agents or information, the strategic dominations relations.

In that, our approach is at the crossroads of statistical and economics models. From the statistical models
we keep the idea of dealing with a large number of degrees of freedom of a system without aggregating
quantities. From standard economic models, we keep the relevant concepts developed in the past decades to
describe the behaviors of rational, or partly rational agents. A natural question arising in that context is the
relevance of these concepts at the scale of the statistical system, i.e. the macro level. It is actually known
that some microscopic feature may fade away at large scales, whereas some others may become predominant
at the macroeconomic or macroscopic scale. The relevance or irrelevance - in the physical sense - of some
micro interactions when moving from a micro to a macro scale could indirectly shed some lights on the
aggregation problem in economics.

Our work is an attempt and a first step toward an answer to this matter. Although preliminary, it
demonstrates that translating standard economic models into statistical ones requires introducing some
statistical field models that partly differ from those used usually for physical systems. The models introduced
keep track of individual behaviors. Behaviors in turn influence the description in terms of fields, as well as
the results, at the macro scale.

The advantage of statistical field theories are threefold. First, they allow, at least approximatively,
to deal analytically with systems with large degrees of freedom, without reducing it first to an aggregate.
Second, they provide a transcription of micro relations into macro ones. Last but not least, they display
features that would otherwise be hidden in an aggregate context. Actually, they allow switching from micro
description to macro ones, and vice-versa, and to interpret one scale at the light of the other. Moreover, and
relevantly for economic systems, these model may exhibit phase transition. Depending on the parameters
of the model, the system may experience structural changes in behaviors, at the individual and collective
scale. In that, they allow to approach the question of multiple equilibria.

The statistical approach of economic systems presented here is a two-step process. First, the usual model
of optimizing agent is replaced by a probabilistic point of view. We consider an interacting system, involving
an arbitrary number of agents, in which each agent is still represented by an intertemporal utility function,
or any quantity to optimize depending on an arbitrary number of variables. However we assume that
each agent’s utility function is subject to unpredictable shocks. In such a setting, individual optimization
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problems need not be resolved. Each agent is described by a time-dependent probability distribution centered
around its utility optimum. Unpredictable shocks deviate each agent from its optimal action, depending on
the shocks’ variances. When these variances are null, we recover the standard optimization result. It
furthermore takes into account the statistic nature of a system of several agents by including uncertainty
on the agents’ behavior. It nonetheless preserves the analytical treatment by slightly modifying the agents’
standard optimization problem.

Note that this form of modelling is close to the usual optimization of an agent when some unpredictable
schocks are introduced. In the limit of no uncertainty, standard optimization equations can, in some cases,
be recovered. However, the uncertainty introduce is not the one usually considered in economic models, but
rather an internal uncertainty about the agent’s behavior, goals, or some unobservable shocks. As such it is
inherent to the model, and should not be considered as a random and external perturbation.

The system composed by the set of all agents is consequently defined by a composite probability depending
on time, agents’ interactions, relations of strategic dominations, agents’ information sets and expectations.
This setting allows for heterogeneous agents with different utility functions, strategic domination relations,
heterogeneity of information, etc.

This dynamic system is described by a stochastic process whose characteristics - mean, variance, etc.-
determine the sytem’s transition probabilities and mean values. For example, the process mean value at
time t describes the mean state of each agent at time t. Besides, we can define transition probabilities that
describe the evolution of the system from t to t+1.

This setup is actually a path integral formalism in an abstract space — the space of the agents’ actions —
and is very similar to the statistical physics or quantum mechanics techniques. We show that this description,
applied to the space of all agents’ actions, reduces to the usual optimization results in simple cases, inasmuch
as the unpredictable shocks’ variances are null. This description is furthermore a good approximation
of standard descriptions and allows to solve otherwise intractable problems. Compared to the standard
optimization, such a description markedly eases the treatment of a system with a small number of agents.
As a consequence, this approach is in itself consistent and useful, and provides an alternative to the standard
modelling in the case of a small number of interacting agents. It allows to recover an average dynamics,
which is close, or in some cases even identical to, the standard approach, and study the dynamics of the set
of agents, as well as it’s fluctuations if we introduce some external shocks. Our main examples will be the
models developed in [3][4][5][6] describing systems of interacting agents, or structures in interactions,where
some of them have information and strategic advantage. We show through this examples the possibilities of
our approach in term of resolution.

However, this formalism becomes useless for a large number of agents. It can nonetheless be modified
into another one, based on statistical fields, that will be more efficient in that case. Nevertheless, this first
step was necessary since the statistical fieds model is grounded on our preliminary probabilistic description.
Actually, this one, by it’s form in terms of path integrals for a small number of interacting agents, can be
transformed in a straightforward way in a description for large systems. As a consequence, the first step is
also a preparatory one, needed for our initial goal, a model of large number of interacting agents.

The second step to reach this goal, therefore, consists in replacing the agents’ path integrals description
by a model of field theory that replicates the properties of the system when N , the number of agents, is
large. Actually, in that case, we can show that the previous description is equivalent to a more compact
description in terms of field theory. It allows an analytical, although approximate, treatment of the system.
This transformation adapts some methods previously developped in statistical field theory to our context
[7].

Hence, a double transformation, with respect to the usual optimization models has been performed. The
usual optimization system is first described by a statistical system of n agents. It can then itself be replaced
by a specific field theory with a large number of degrees of freedom. This field theory does not represent an
aggregation of microeconomic systems in the usual sense, but rather describes an environment of an infinity
of agents, from which various phases or equilibria may be retrieved, as well as the behavior of the agents,
and the way they are influenced by, or interact with, their environment.

This double transformation allows first, for a small number of agents, to solve a system without recurring
to aggregation, and second, for a large number of agents, to aggregate them so as to shape an environment
whose characteristics will in turn induce, and impact, agents’ interactions. This environment, or “medium”,
allows to reconstruct some aggregate quantities without reducing the system to mere relations between
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aggregates. Indeed, the fundamental environment from which these quantities are drawn can witness fluc-
tuations that may invalidate relations previously established. The environment is not macroscopic in itself,
but rather describes a multitude of agents in interaction. It does not necessarily have a unique or stable
equilibrium. Relations between macroeconomic quantities ultimately depend on the state or “phase” of this
environment (“medium”), and can vary with the state of the environment. This phenomenon is the so-called
“phase transition” in field theory: The configuration of the ground state represents an equilibrium for the
whole set of agents, and shapes the characteristics of interactions and individual dynamics. Various forms
for this ground state, depending on the parameters of the system, may change drastically the description at
individual level.

For illustrative purposes, this paper presents several economic models of consumer/producer agents facing
binding constraints in competitive markets, generalized to a large number of agents and presenting various
phases or equilibria.

The first section presents a probabilistic formalism for a system with N economic agents, heterogenous
in goals and information. Agents are described by intertemporal utility functions, or any intertemporal
quantities. However instead of optimizing these utilities, agents choose a path for their action that is randomly
distributed around the usual optimal path. More precisely, the weight describing the agent behavior is an
exponential of the intertemporal utility, which concentrates the probability around the optimal path. This
feature models some internal uncertainty, as well as non measurable shocks. Gathering all agents yields
a probabilistic description of the system in terms of effective utilities. The latters are utility functions
internalizing the forward looking behavior, the interactions and the information pattern of each agent. We
also show that if we reduce the internal uncertainty to 0 one recovers for most cases including the case
of quadratic utilities, in principle if not in practice, the solution usual optimization problem. We end the
section by solving explicitly a basic two agents example to illustrate the main points of the method.

The second section develops a class of models applying the method presented previously. This class of
model has already been used previously by the authors to model single individual agents as an aggregate
of several sub-structures, some having strategical advantages on others. This class of model is quite general
and allows to describe systems with small number of heterogenous agents in interactions. We then provide
some applications to check that our method allows a simpler resolution than the usual optimization, but also
to recover, in good approximation, the results of the last one as the average path of the system.

Section three further details the effective utility of the whole system of agents, as composed of individual
utilities plus possibly some additional contributions. This section stresses the fact that this global effective
utility differs from a collection of individual ones. The agents as whole, are not independent from each other.

Section four turns to the probabilistic aspect of our models. We compute the transition functions of the
stochastic process associated with a system of N economic agents. These transition functions have the form
of euclidean path integrals. We show that, in first approximation, for agents with quadratic utilities, the
transition functions are those of a set of interacting harmonic oscillators. Some non quadratic interactions
may be added as perturbation expansions. Once diagonalized, the directions corresponding to the harmonic
frequencies correspond to mixed, or fundamental structures, that represent independent agents.

Section five introduces constraints relevant for individual agents, such as budget constraints. We show
that these individual constraints translate in the path integrals defining the system, into adding some non
local contributions. Some of them may be approximated by inertial terms, i.e. "kinetic energy" contributions.
Moreover, if constraints depend on other agents behaviors, these additional contributions consist of non local
interaction terms.

Section six provides some elements about the Laplace transform of Green functions. It also establishes
that general non local interactions must be considered, even when there are no constraints in the model.
These considerations will prove useful in the next sections.

Section seven modifies our formalism to systems with a large number of agents. It shows that, in that
case, the transition functions is computed as correlation functions of a field theory whose action is directly
defined by individual agents’ effective utilities. The section provides a back and forth interpretation between
micro quantitities - individual behavior - and macro computations, i.e. collective behavior defined by the
fields. It shows how some features of field theory, such as non trivial vacuum and/or phase transition, are
relevant to our context. We also introduce non local individual interactions such as constraints at the field
level. We show how they modify the Green functions of the system, and thus the individual agents’ transition
functions.
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Section eight applies our formalism to several standard economic models with a large number of interact-
ing agents. The optimizing consumers/producers model and a simple business cycle model are studied. In
the first case, interactions appear through the budget constraint, an din the second case, through the interest
rate determined by capital productivity. For consumers/producers, we compute the correlation functions of
the field version of the system and interpret it at the individual level. We recover the usual consumption
smoothing, but we can also track the effect of the interaction between agents that increase the fluctuations
of an individual behavior. In the business cycle model, we show that a non trivial vacuum may appear: for
some values of the parameters, the equilibrium may be shifted in a non continuous manner. The system
enters another phase, with different individual behaviors.]

Building on previous results, Section nine details the mechanisms of non trivial vacuua for the field
theoretic version of models presented in section two. Stabilization effects between structures may appear
in field theoretic formulation through a stabilization potential. This stabilization allows to describe the
system as sets of integrated structures. Unstable patterns that would otherwise be short lived may use
others to stabilize and form larger and more stable structures. The vacuum configuration corresponding to
these integrated structures is different from the initials’ and new features may be present in the resulting
system. The section also developps the notion of effective actions. When several types of agents are present,
the actions of some of them may be integrated out, to be absorbed in the effective action describing the
remaining agents. "Hidden" agents are thus included as external conditions shaping the environment and
inducing possibly some phase transition.

Section ten sketches a method to compute macro quantities from micro ones in the context of the field
formalism. Introducing a macro time scale may allow, in some cases, to recover approximate macroeconomics
relations between aggregate quantities.

2 Method

2.1 Principle

In this paper, the usual optimization problem of each agent dynamics within the system is replaced by a
probabilistic description of the whole system. Several conditions must be satisfied to keep track of the system
of agents’ main features. First, at least in some basic cases, the optimization equations in average should be
recovered. Moreover, this probabilistic description needs to take into account the individual characteristic
of the agents. In a context of economic modelling, it means to include each agent constraint, interactions
with other, and last by not least, ability to anticipate other’s agents’ actions.

This probabilistic description involves a probability density for the state of the system at each period t.
In a system composed of N agents, each defined by a vector of action Xi (t), we will define a probability
density P ((Xi (t))i=1..N ) for the set of actions (Xi (t))i=1..N which describes the state of the system at
t. Importantly, for a large number of agents at least, working with a probability distribution is easier than
solving some, often untractable, optimization equations. This probability distribution may often be designed
to be gaussian and centered around the optimal solution of the utility problem. In that case, if the variance
of this distribution is proportional to an exogenous parameter, one may expect, at least for some particular
cases, that when this parameter goes to 0, then the probability distribution will be peaked around the
optimal, or "classical solution". Then, such a probabilistic description can be seen as a generalization of the
usual optimization problem where some internal uncertainty in agents behavior, uncertainty of each of them
with respect to the others, as in an imperfect information problem, but also to themselves. We justify this
"blured" behavior by the inherent complexity of all agents, their goals and behavior being modified at ech
period by some internal, unobservable and individual shocks, the classical case beeing retrieved when this
uncertainty is neglected.
To develop this point, consider first the intertemporal utility of an agent i:

U
(i)
t =

∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)

where u
(i)
t+n is the instantaneous utility at time t + n. In the optimization setup, the agent i optimizes on

the control variables Xi (t+ n). The variables (Xj (t+ n− 1))j 6=i represent the actions of other agents.
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Remark at this point that the term utility used here is convenient for any quantity optimized. It can
encompass a production function, for example in oligopoly models, and/or production and utility functions,
in consumer/producer models. Moreover, this type of model may describe the interaction of several sub-
structures within an individual agent. See for example models of heterogeneous interacting agents L,GL,
GLW, or models of motion decision and control in neurosciences.

Now we will explain how to switch toward a probabilistic representations that satisfies our requirements.
We start with a simple example and then generalize the procedure. Assume first that agent i has no
information about the others, so that their actions are perceived as random shocks by agent i. We then

postulate that rather optimizing U
(i)
t on Xi (t), agent i will choose an action Xi (t) and a plan (that is

recalculated period after period) Xi+n (t), n > 0, for it’s future actions that follow a conditional probabilistic
law proportional to:

exp
(
U
(i)
t

)
= exp


∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)



This is a probabilistic law for Xi (t) and the plan Xi+n (t), n > 0. It is conditional to the action variables
Xj (t+ n− 1) of the other agents, that are perceived as exogenous by agent i.

Remark that, for a usual convex utility with a maximum, the closest the choices of the Xi+n (t) to U
(i)
t

optimum, the higher the probability associated to Xi+n (t). Thus, this choice of utility is coherent with a
probability peaked around the optimization optimum. This choice of utility is therefore coherent with a
probability peaked around the optimization optimum.
To better understand the principle of the probabilistic description, we will start with the simplest case, in

which one agent has no information about the others. In that case, the variables Xj (t+ n) will be considered
as random noises. Thus, agent i will integrate out other agents actions as random noises. The probability
for Xi (t) and Xi+n (t), n > 0 will then be

∫
exp

(
U
(i)
t

)
exp

(
−
X2
j (s)

σ2j

)
∏

j 6=i

∏

s>t

dXj (s)

exp
(
−X2

j (s)

σ2j

)
being the subjective weight attributed to the Xj (s) by i. In general if there is no information

at all, we can assume the σ2j → ∞, exp
(
−X2

j (s)

σ2j

)
→ δ (Xj (s)) where δ (Xj (s)) is the dirac delta function

so that other agents may be considered either as inert or, in lack of any further information, as random
perturbations. Their future actions are set to 0 by agent i, or, which is equivalent, discarded from the agent
planification.

When there are no constraint and no inertia in u
(i)
t - or, alternatively - when u

(i)
t solely depends on Xi (t)

and other agents’ previous actions (Xj (t− 1))j 6=i, the periods are independent. Consequently, exp
(
U
(i)
t

)
is

a product of term of the kind exp
(
βnu

(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

))
that are also independent. As

a consequence, the probability associated to the action Xi (t) is:

∫ 

∫
exp

(
U
(i)
t

)
exp

(
−
X2
j (s)

σ2j

)
∏

j 6=i

∏

s>t

dXj (s)


∏

s>t

dXj (s) ∝ exp
(
u
(i)
t

(
Xi (t) , (Xj (t− 1))j 6=i

))

Each agent is described by its instantaneous utility: the lack of information induces a short sighted behavior.

Each term exp
(
u
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

))
is the probability for a random term whose integral

on Xj+n (s) is set to 1. In absence of any period overlap, i.e. without any constraint, the behavior of agent

i is described by a random distribution peaked around the optimum of u
(i)
t

(
Xi (t) , (Xj (t− 1))j 6=i

)
which

models exactly the optimal behavior of an agent influenced by individual random shocks.
Having understood the principle of the probabilistic scheme with this simple example, we can now com-

plexify the information pattern, to account for the agents’ heterogeneity. The knowledge that some agents
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may have about others’ utilities affects the statistical weight describing the agent’s behavior. Actually, if
agent i has some information about agent j utility, it would be able to forecast it’s influence on agent j
through Xi (t) and in turn the delayed reactions Xj (t+ n) of agent j.

Let us more precisely consider, as before, the conditional probability for Xi (t) and Xi+n (t), n > 0,
depending on the (Xj (s− 1))j 6=i . For s > t we conveniently define this probability to be proportional to

exp
(
U
(i)
t

)
:

P
(
Xi (t) , Xi (t+ n) | (Xj (s))j 6=i,s>t

)
∝ exp

(
U
(i)
t

)

= exp


∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)



to find the (statistical) behavior of agent i, given agents’ future actions. We then integrate this expression
on the (Xj (s))j 6=i,s>t and Xi (t+ n), n > 1 to find:

P
(
Xi (t) | Xi (t− 1) , (Xj (t− 1))j 6=i,s>t

)
(1)

which is the statistical weight describing agent i action at time t, as a function of past actions of the system.
Once this quantity will be found for all agents, the system will be fully described. However, one can’t procced

in this way to find P
(
Xi (t) | Xi (t− 1) , (Xj (t− 1))j 6=i,s>t

)
. We will rather show that the system of all the

P
(
Xi (t) | Xi (t− 1) , (Xj (t− 1))j 6=i,s>t

)
have to be found jointly, as a system of equations. Actually, in

the previous equations, the probabilities

P
(
Xi (t) , Xi (t+ n) | (Xj (s))j 6=i,s>t

)

are conditional to the actions of other agents (Xj (t+ n− 1))j 6=i, as in the simple case of no information.
But now, these variables are themselves forecasted by agent i as depending on Xi (t). One then needs to take

into account this interconnexion to find P
(
Xi (t) , Xi (t+ n) | (Xj (s))j 6=i,s>t

)
. It leads us to define (agent

i’s expectation of) the conditional probability of other agents actions given Xi (t):

Pi

(
{Xj (t+ 1)}j 6=i , ..., {Xj (t+N)}j 6=i , ... | Xi (t)

)
(2)

= Ei
∏

k

P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=i,j=i

)

where Ei denotes agent i’s expectation.

It means that agent i, forecasts the probabilities P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=i , Xi (t+ k)

)
for

other agents, including it’s dependence in Xi (t+ k) and take into account in it’s computations of it’s future
path. Now, we assume that agent i attributes the weight (2) to the path {Xj (t+ 1)}j 6=i , ..., {Xj (t+N)}j 6=i , ....
Then rather than defining a conditional expectation P

(
Xi (t) , Xi (t+ n) | (Xj (s))j 6=i,s>t

)
we will define a

joint probability:

exp
(
U
(i)
t

)
Ei
∏

k

P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=i

)

which describes the probability attributed by agent i to the joint path:

Xi (t) , ..., Xi (t+ n) , ... {Xj (t+ 1)}j 6=i , ..., {Xj (t+ n)}j 6=i

Then, once this weight is attributed, it takes ito account the interelations between the paths Xi (t+ n)
and {Xj (t+ n)}j 6=i. One can now integrate on the {Xj (t+ n)}j 6=i to find the probability for a path
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Xi (t) , ..., Xi (t+ n):

P
(
Xi (t) , Xi (t+ n) , Xi (t− 1) , {Xj (t− 1)}j 6=i

)

=

∫
exp

(
U
(i)
t

)
Ei
∏

k

P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=i

)
d {Xj (t+ k)}j 6=i

=

∫
exp


∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)



×Ei
∏

k

P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=i

)
d {Xj (t+ k)}j 6=i

As before, we need to express the behavior of agent i at t given past actions:

P
(
Xi (t) | Xi (t− 1) , (Xj (t− 1))j 6=i,s>t

)

That describes the probability for Xi (t) as a function of Xi (t− 1) and {Xj (t− 1)}j 6=i. To do so, we can
now integrate

P
(
Xi (t) , Xi (t+ n) , Xi (t) , {Xj (t− 1)}j 6=i

)

over Xi (t+ n) and this will yield P
(
Xi (t) | Xi (t− 1) , (Xj (t− 1))j 6=i,s>t

)
.

P
(
Xi (t) | Xi (t− 1) , {Xj (t− 1)}j 6=i

)
(3)

=

∫
exp

(
U
(i)
t

)
Ei
∏

k

P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=i

)
d {Xj (t+ k + 1)}j 6=i d {Xi (t+ k)}

=

∫
exp


∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)



×Ei
∏

k

P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=iXi (t− 1)

)
d {Xj (t+ k)}j 6=i d {Xi (t+ k)}

and the set of these equations with i = 1, ...k where k is the number of agents, defines the set of statistical

weights P
(
Xi (t) | Xi (t− 1) , {Xj (t− 1)}j 6=i

)
.

As such, the system of equations (3) depends on agents expectations and this ones have to be defined to
solve (3). To do so, we first define the effective utility for agent i at time t, written Ueff (Xi (t)) as:

P
(
Xi (t) | Xi (t− 1) , {Xj (t− 1)}j 6=i

)
=
exp (Ueff (Xi (t)))

N (4)

where the normalization factor N is defined as:

N =

∫
exp (Ueff (Xi (t))) dXi (t)

The interpretation of Ueff (Xi (t)) is straightforward given our procedure. We express the statistical weight
describing the behavior of agent i at time t as a the exponential of an utility function that has included all
expectations of this agent about the future. In a classical interpretation, the first order condition applied to
Ueff (Xi (t)), that would express Xi (t) as a function of the Xj (t− 1), j 6= i and Xi (t− 1) corresponds to
the solution of the dynamics equation for agent i. Given our approach, this is of course not the case, but we
show in Appendix 1, that for quadratic utilities, Ueff (Xi (t)) encompasses this classical result and allows to
recover the optimization solution in the limit of no internal uncertainty.
Remark that, we could define the effective utility by including directly the normalization term N . More-

over, our definition does not define uniquely Ueff (Xi (t)) sinces it allows to include any constant term.
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However, it allows to work with Ueff (Xi (t)) without being careful with the normalization of this function,
and to add the needed factor only when it is necessary, i.e. when computing some expectations.

The previous definition (4) will allow to rewrite the conditional probabilities in (3) as:

P ((t+ 1) , ..., Xj (t+N) , ... | Xi (t− 1))

= Ei

(
∏

k

P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=i

)
| Xi (t− 1)

)

≡ Ei exp


∑

k

∑

j 6=i
Ueff (Xj (t+ k))




where

Ei exp


∑

k

∑

j 6=i
Ueff (Xj (t+ k))


 =

∏

j 6=i
Ei exp

(
∑

k

Ueff (Xj (t+ k))

)

is the expectation of given agent i own set of information. Then equation (3) becomes:

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

)∏

s>t

Ei exp


∑

s>t

Ueff (Xj (s))


 dXj (s) (5)

Equation (5) is a system making interdependent the statistical behavior of each agent. In order to solve (5)

and find the effective utility Ueff (Xi (t)) one needs to compute the expectations Ei exp
(∑

s>t Ueff (Xj (s))
)

and to do so, we have to introduce some assumptions about the expectations formulation. Basically, we
generalize what was said before and will consider two cases, that will be sufficient for most cases (some
alternative hypothesis could be developped as well). We will distinguish the agents by their relation with
respect to the information they have about the others. An agent i has an information domination (or
strategic domination) over j, if it knows the parameters, or some parameters of the agent j utility and if
j has no information about i′s set of parameters. This allows i to forecast agent j’s actions and take into
account how it can influence j as explained above in (3). On it’s side, agent j perceives agent i’s actions as
random noises. Moreover, we say that two agents i and j have no information domination on each other, if
they have both information (or both no information) on the other one’s utility.

It is convenient for the sequel to define the rank of an agent with respect to the others in the following
way: When an agent i has an information domination over an agent j one says that rk (j) < rk (i) (or
j < i when there is no ambiguity). We also set rk (i) = rk (j) (or i ⊀ j or j ⊀ i) there is no information
domination relation between i and j.

If i has no information about j, an arbitrary weight exp
(
−X2

j (s)

σ2j

)
is assignated to j. As explained above, it

results in simply discarding the variable Xj (t+ k) in the problem in consideration. We will use this point be-
low. If i has an information domination over j, rk (j) < rk (i) then we define Ei exp (

∑
k Ueff (Xj (t+ k))) =

exp

(
∑

k

U
ti
eff (Xj(t+k))

σ2
j

)

N with N =
∫
exp

(∑
k

U
ti
eff

(Xj(t+k))

σ2j

)
dXi (t). The function U

ti
eff (Xj (t+ k)) is the i-th

truncated effective utility of j, the effective utility Ueff (Xj (t+ k)) in which all the variables Xk (t+ k) with
rk (k) > rk (i) and some (depending on the precise form of the model) of the Xk (t+ k) with rk (k) = rk (i)
are set to 0. It reflects the fact that in that case, agent i has no information about agents k with rk (k) > rk (i)
and for some agents k with rk (k) = rk (i), and as a consequence, no information on the way k impacts j.
The parameter σ2j is a measure of the uncertainty about agent j future actions. For σ

2
j → 0, one recovers the

full certainty about the agent that behaves as the usual optimizer. For σ increasing, this behavior becomes
only an average behavior. For σ2j →∞, agent’s action is random. This normalization factor introduces the
measure of uncertainty about agents behavior, i.e. the measure of external shocks. We also assume that
each agent faces an uncertainty about it’s own future action. This is modeled by the fact that in (3), we

replace exp
(
U
(i)
t

)
by exp

(
U
(1)
t

σ2i

)
where σ2i measures the degree of uncertainty of i about itself, as way did

9



for other agents. In fact, as we will se, in most case, the factor σ2i can be rescaled to 1, but it’s presence, at
least in the beginning, allows to interpret the results more clearly.

The expression of the conditional probabilities appearing in (3), in terms of the Ueff (Xj (t+ k)) allows
to write the conditional probablities as intertemporal sums. To find recursively each agent effective utility
Ueff (Xi (t)), we introduce the system of all agents effective utility in the previous formula.

Given our assumptions (5) rewrites:

exp (Ueff (Xi (t))) (6)

= P
(
Xi (t) | Xi (t− 1) , {Xj (t− 1)}j 6=i

)

=

∫
exp

(
U
(i)
t

σ2i

)
Ei
∏

k

P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=i

)
d {Xj (t+ k + 1)}j 6=i

or, replacing the expectations Ei:

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

σ2i

)
(7)

× exp


∑

k

∑

j 6=i

U tieff (Xj (t+ k))

σ2j


 d {Xj (t+ k)}j 6=i d {Xi (t+ k)}

with:
U
(i)
t =

∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)

The system (6) defines the Ueff (Xi (t)) that determine ultimately the probabilities (1) describing the system.
We show in appendix 1 that, for quadratic utilities, when Nj → 0 and then N1 → 0, one recover the

optimization equations of the standard utility maximizing agent. In other words, the agent behavior, is
peaked on the usual optimal path. For non quadratic utilities, one would recover the same results but with
condition to replace the effective utilities Ueff (Xj (t+ k)) in the right hand side of (6) by their by quadratic
approximation around the saddle point solution. More precisely, if we were rather defining the effective
utilities as satisfying:

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

σ2i

)
(8)

× exp


∑

k

∑

j 6=i

Û tieff (Xj (t+ k))

σ2j


 d {Xj (t+ k)}j 6=i d {Xi (t+ k)}

where
U
(i)
t =

∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)

is the intertemporal utility of agent j and

Û tieff (Xj (t) , (Xk (t− 1))) = −
1

2
(Xj (t)−Xj [(Xk (t− 1))])tAjj (Xj (t)−Xj [(Xk (t− 1))])

is the quadratic approximation of U tieff (Xj (t) , (Xk (t− 1))) around Xj [(Xk (t− 1))], with Xj [(Xk (t− 1))]
the optimal solution in Xj of U

ti
eff (Xj (t) , (Xk (t− 1))) for a given (Xk (t− 1)) which satisfies:

0 =

(
∂

∂Xj (t)
U tieff (Xj (t) , (Xk (t− 1)))

)

Xj(t)=Xj [(Xk(t−1))]
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Then, Appendix 1shows that in that case, the integrals in (8) are peaked around the classical optimization
solution when σ2j → 0 and then σ2i → 0.
We do not choose this representation (8), and rather stay with (6), since we present a different formalism

from the standard one, and the form (6) seems both more natural and more convenient. It is sufficient for
our purpose to know that we can recover the standard approach as a particular case for the case of quadratic
utilities, and as a quadratic approximation for general cases.

Note also that for utilities of homogenous form, and of the same degre in the Xi (s), one can rescale

X ′
i (s) =

X′
i(s)

(σ2i )
1
α

, X ′
j (s) =

X′
j(s)

(σ2i )
1
α

where α is the degree of the homogenous utility. In this case this is

equivalent to set σ2i = 1 and to redefine σ
2
j to be equal to

σ2j
σ2i
. If we assume that all the σ2j are equal to σ

2,

thus we will replace σ2 by σ2

σ2i
. The integrals in (6) include some irrelevant constant factor that are powers of

σ2i that will be absorbed in the normalization of the statistical weight exp (Ueff (Xi (t))). As a consequence,
after integrations (6) reduces to:

exp (Ueff (Xi (t))) = exp
(
U
(i)
t

)
× exp


∑

k

∑

j 6=i

Ueff (Xj (t+ k))

σ2


 d {Xj (t+ k)}j 6=i d {Xi (t+ k)}

which is a more convenient representation. In that context, retrieving the usual optimization description
corresponds still to let σ2j → 0 (These optimization equations are in fact for the variables X ′

i (s), but due to

the homogenous form of the utilities, the factors in powers of
(
σ2i
) 1
α cancel and one retrieves the equations

for the Xi (s)).
The system (6) is solved given our assumptions on the agents information sets and the form of the ex-

pectations Ei. Given our assumptions on the expectations Ei, the computation of exp (Ueff (Xi (t))) will
involve only the structures on which i has an advantage of information or those that are in a relation of
non domination with i. Actually, as said before, the structures about which structure i has no informa-
tion, are considered as random shocks and not included in agent i computation, that is, if rk (i) < rk (j)

Ei exp
(∑

s>t Ueff (Xj (s))
)
= 1. In other words, agent i integrates only in his behavior all substruc-

tures possible paths. His choice, for a given set of Xj (s),Xi (s), j < i, s > t is exp
(
U
(i)
t

)
weighted by

exp
(∑

s>t U
ti
eff (Xj (s))

)
.

The resolution for the Ueff (Xi (t)) consists then first, by ranking the agents by their strategic advantages.
The Ueff (Xi (t)) are found recursively for each set of agents with the same rank. Second, the effective utility
just found are reintroduced in the system of equation defining the effective utility of higher rank.
Among a set for a given rank (we use the rescaling σ2i = 1 described above) (6) rewrites:

exp (Ueff (Xi (t))) (9)

=

∫
exp

(
U
(i)
t

) ∏

rk(j)<rk(i)

∏

s>t

exp


∑

s>t

U tieff (Xj (s))

Nj


 dXj (s)

×


 ∏

rk(j)=rk(i)

∏

s>t

Ei exp


∑

s>t

Ueff (Xj (s))


 dXj (s)




The Ueff (Xj (s)) with rk (j) < rk (i) are given by hypothesis, and so are the U tieff (Xj (s)) which are
obtained from the Ueff (Xj (s)) by truncation. We are thus left with a set of functional equations between
the Ueff (Xi (t)) of the same rank.

The resolution depends on the model, and on the formation of expectations for rk (j) = rk (i). Several
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hypothesis are possible in this case. For example:

Ei exp


∑

s>t

Ueff (Xj (s))


 = 1

Ei exp


∑

s>t

Ueff (Xj (s))


 = exp


∑

s>t

Ueff (Xj (s))

σ2j




Ei exp


∑

s>t

Ueff (Xj (s))


 = exp


∑

s>t

Ueff (Xi (s))Xi(s)→Xi(s)

σ2j




In the first case, structures of the same rank share no information at all. In the second case, they fully share
their information. In the third and last case agents are identical: take agent i utility and replace Xi (s) by
Xi (s) (assuming thus that j is identical to i).

We keep the first and simplest case Ei exp
(∑

s>t
Ueff (Xj(s))

σ2j

)
= 1 when rk (j) = rk (i). It implies that

in the truncation procedure the Xj (s) with rk (j) = rk (i) are set to 0 in the U tieff (Xk (s)).
Once the Ueff (Xi (t)) are found, the whole system is described by the overall weight:

P ((Xi (t)) | (Xi (t− 1))) ∝
1

N ′ exp

(
∑

i

Ueff (Xi (t) , (Xi (t− 1)))
)

(10)

where N ′ is a global normalization factor and the parenthesis (Xi (t)) denotes the set of vectors Xi (t)
concatenated with the supscript i running on the all set of agents.
This probability P ((Xi (t)) | (Xi (t− 1))) yields the probability distribution for the system to be in the

state (Xi (t)) and this will be used to describe the dynamic of the interacting set of agents.
We have seen that in the limit of no uncertainty N → 0, one recovers, at least for the quadratic approx-

imation, the usual optimization dynamics. In addition to the fact that the classical case can be seen as a
particular case of our model, one compare the advanges of the two approaches. Usually, one write the first
order condition for each Xi (t), then postulates a form for the equilibrium dynamics, and solve the equation.
Difficulties come from the fact that, even if there is no optimization on the Xi (t+ n), n > 0, those variables
enters the dynamic equations, as a consequence of agents anticipations and possible information domination
of some agents, and have to be replaced by the dynamic form of the solution. There is thus a circularity
that implies difficulties to identify, analyticaly, the corefficients of this equilibrium dynamics.

Working with statistical weights avoids computing the solution for each agents. The probabilistic weights’
exponential form ensures that actions are taken so that the action Xi (t) and the planned action Xi (t+ n),
for n > 0, will be chosen in probability, close to their expected optimum. The process is performed each
period again, with no commitment to previous expectations. In the end, this results in modeling the all
system by the overall weight (10) and a dynamic centered around the classical optimum. The total effective
utility includes the partial resolution of the agents expectations and strategic interaction with others.

Several use of the weight (10) can be made. First, it can be seen as the exponential of an effective utility
for the system, and as such, it can be used, to find the average path of the system. Actually, the probability
P ((Xi (t)) | (Xi (t− 1))) concentrates on its saddle point value which is given by the set of equations:

∇Xi(t)Ueff (Xi (t) , (Xi (t− 1))) = 0

where again, i runs over the set of agents. This is a usual Euler Lagrange type of equation, and as said before
for quadratic utilities it leads to the usual linear dynamic solution. The computation of the eigenvalues of
the dynamical system being in principle straightforward.
Some external shocks may also be directly included in this set up. Rather than considering

∑
i Ueff (Xi (t) , (Xi (t− 1)))

as a full effective utility of the system, one can includes some perturbation terms:

∑

i

Ueff (Xi (t) , (Xi (t− 1))) +Xi (t)Likεk (t)
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where εk (t) are some random external perturbations, and Lik the response to this shocks for agent i. The
dynamic equation thus becomes:

∇Xi(t)Ueff (Xi (t) , (Xi (t− 1))) + Likεk (t) = 0

and in the case of linearized dynamics, the response to εk (t) is simply:

(Xi (t+m)) = (Xi (t)) +D
m
eff (εi (t))

where Deff is the matrix describing the linear solution (Xi (t+ 1)) = Deff (Xi (t)) and the parenthesis
(εi (t)) denotes the vector of concatenated shocks.
There is moreover a second way to use the previous probabilistic description. Rather than focusing on the

mean path approximation, one may consider the system as a random process and look at the probabilities
of transition:

P ((Xi (t+ k)) | (Xi (t)))

that describe the random path of the whole system. Up the usual normalization factor, it is given by
successive integrals:

P ((Xi (t+ k)) | (Xi (t))) =

∫
exp

(
k∑

l=1

∑

i

Ueff (Xi (t+ l) , (Xi (t+ l − 1)))
)

k∏

l=1

dXi (t+ l)

In the continuous limit, we replace the lag variables (Xi (t+ l − 1)) by ((Xi (t+ l − 1))− (Xi (t+ l))) +

(Xi (t+ l)) and identify the difference ((Xi (t+ l − 1))− (Xi (t+ l))) with minus the derivative
d
dt
(Xi (t+ l)) =(

Ẋi (t+ l)
)
. We then obtain P

((
X0
i (t+ k)

)
|
(
X0
i (t)

))
in terms of the variables (Xi (t+ l)),

(
Ẋi (t+ l)

)

P
((
X0
i (t+ k)

)
|
(
X0
i (t)

))
=

∫ Xi(t+k)=(X0
i )

Xi(t)=(X0
i )

exp

(∫ ∑

i

Ueff

(
(Xi (t)) ,

(
Ẋi (t)

)))
D (Xi (t)) (11)

for two given values of the initial and final state of the system
(
X0
i (t+ k)

)
and

(
X0
i (t)

)
. The integrand

D (Xi (t)) denotes the sum over all paths from
(
X0
i (t+ k)

)
to
(
X0
i (t)

)
and the probability is expressed as

a path integral between those two points. We will come back to this approach in the third section. This
formalism, familiar in theoretical physics appear in a wide range of models, ranging from Quantum Mechanics
to statistical physics, and allows to go beyond, the "classical", or in our context, the average dynamics. The
system may then be considered as a fully stochastic process, whose transition functions are given by (11).
Such integrals are usually difficult to compute, except in the quadratic case. They can however yield many
information on the probabilitic nature of the system, notably through several techniques such as perturbation
theory, or Feynman graph expansion. Besides, path integrals have already been used in finance, to study
the dynamics of stock market prices for example [?].

2.2 Basic example. Comparison with intertemporal optimization

Before developping some more general models, we start with a basic example and consider a system with
two agents, with time t utility:

uy (yt) = −
(
1

2
y2t − ytxt−1

)

ux (xt) = −
(
1

2
x2t +

1

2
y2t−1 − αxtyt−1

)

Note that this is the model developped in [4] where we considered a two agents interaction model:

U
(1)
t (a1 (t)) = −1

2
(a1 (t)− a0)2 − a1 (t) a2 (t− 1)

U
(2)
t (a2 (t)) = −γ

2
(a1 (t− 1))2 + αa1 (t− 1) a2 (t)−

1

2
(a2 (t))

2
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where we set γ = 0, a0 = 0, to focus on the method of resolution. For comments and interpretations of the
model, see [4]. The agents intertemporal utilities are:

Uy (yt) =
∑

n

βnuy (yt+n)

Ux (xt) =
∑

n

βnux (xt+n)

xt has a strategic advantage on yt which traduces here as a strategic - information - advantage. Agent x
knows the utility of agent y and it’s impact on y (coefficient −1) , as well as the impact of y on him (coefficient
−α). Agent y has no knowledge of agent x utility. It only knows the impact of x on itself, and this impact
is perceived as the action of a random shock. This kind of model of interaction will be generalized in the
next section. Let us remark that this type of model can also represent a dynamic version of the Stackelberg
duopoly model. Actually, in a Stackelberg duopoly, the payoff are quadratics:

π1 = Pq1 − c1q1
π2 = Pq2 − c2q2

Where the price is P and c1, c2 the costs, q1 and q2 are the quantities produced. Using the inverse demand
function:

P = A− q1 − q2
One is lead to:

π1 = (A− q1 − q2 − c1) q1
π2 = (A− q1 − q2 − c2)

In a dynamic version, agents would optimize the following functions. Given that in the Stackelberg setup,
agent 2 has a strategic advantage and anticipates future actions of the first agent, the time t rewards become:

π1 (t) = (A− q1 (t− 1)− q2 (t)− c1) q1 (t− 1)
π2 (t) = (A− q1 (t− 1)− q2 (t)− c2) q2 (t)

The lag in q1 (t− 1) transcripts the fact that agent 1 having a strategic advantage, it fixes first its quantity
to match the demand at time t. Up to some constant and normalization, the functions πi (t) have the form
of the model considered in this paragraph, except for the term q2 (t) q1 (t− 1) in π1 (t) that would need slight
modification of our basic model (inducing some time translation in the computations of the effective utility
for the first agent), but this is not our purpose here and this will be discussed in the next section.
Back to the resolution of our example, in the optimization set up, this model is solved with standard

methods for optimization with rational expectations (here perfect information). Solving first for yt

yt = xt−1

leads to an effective utility for xt:
1

2
x2t +

1

2
x2t−2 − αxtxt−2

and an intertemporal utility for xt:

Ux (xt) =
∑

βt
(
1

2
x2t
(
1 + β2

)
− αxtxt−2 − αβ2xtxt+2

)

leads to the optimization equation:

xt
(
1 + β2

)
− αxt−2 − αβ2xt+2 = 0 (12)

Postulating a solution of the type:
xt = dxt−1
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leads to the characteristic equation: (
1 + β2

)
d2 − α− αβ2d4

whose solution is:

d = ±
√

1

2αβ2

(
1 + β2 −

√(
1 + β2

)2 − 4α2β2
)

(13)

On the other side, we apply the formalization scheme developped in the previous paragraph, and then
compare the results with the dynamic solution (13). We then need to compute the effective utilities for both
agents x and y. We start with y and consider it’s intertemporal utility:

Uy (yt) =
∑

n

βnuy (yt+n)

Given that yt has no information about x, it will behave according to the statitical weight defined by:

exp (Ueff,y (yt)) =

∫
exp

(
∑

n

βnuy (yt+n)

)
exp

(
−x

2
t

σ2

)∏

n>0

dxt+ndyt+n+1

=

∫
exp


∑

n>0

βn
(
1

2
y2t+n − yt+nxt+n−1

)
 exp

(
−x

2
t+n−1
σ2

)∏

n>0

dxt+n−1dyt+n

The integrals ∫
exp

(
βn
(
1

2
y2t+n − yt+nxt+n−1

))
exp

(
−x

2
t+n−1
σ2

)∏

n>0

dxt+n−1dyt+n

give a constant result, set to 1 after normalization, so that:

∫
exp


∑

n>0

βn
(
1

2
y2t+n − yt+nxt+n−1

)
 exp

(
−x

2
t+n−1
σ2

)∏

n>0

dxt+n−1dyt+n = exp

((
1

2
y2t − ytxt−1

))

which translates in terms of effective utility:

(Ueff,y (yt)) =
1

2
y2t − ytxt−1 = u (yt)

The result previously stated is retrieved: the effective utility of an agent with no information is the initial
time t utility.

Now we can compute the effective utility for agent x. Starting with it’s intertemporal utility:

Ux (xt) =
∑

n>0

βnux (xt+n)

=
∑

n>0

βn
(
1

2
x2t+n +

1

2
y2t+n−1 − αxt+nyt+n−1

)

=

n∑

n>0

(
1

2
x̂2t+n +

1

2
βŷ2t+n−1 − α

√
βx̂tŷt−1

)

where we changed the variables:

x̂t+n =
(√

β
)n

xt+n

ŷt+n =
(√

β
)n

yt+n

we apply (9) and we are seeking for (Ueff,x (xt)) defined by:

exp (Ueff,x (x̂t)) =

∫
exp (Ux (x̂t)) exp




∑

n>0

Ueff,y (ŷt+n)

σ2




∏

n>0

dŷt+n−1dx̂t+n (14)
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where Ueff,y (ŷt+n) has to be normalized. We set:

exp (Ueff,y (yt)) =
exp

(
1
2y
2
t − ytxt−1

)

N
and impose: ∫

exp (Ueff,y (yt)) dyt = 1

which leads ultimately to find:

exp (Ueff,y (yt)) =
1√
2π
exp

(
1

2
y2t − ytxt−1 +

1

2
x2t−1

)

The factor 1√
2π
is a constant factor and can be discarded from the computations and (14) becomes:

exp (Ueff,x (x̂t)) =

∫
exp (Ux (x̂t)) exp




∑

n>0

Ueff,y (ŷt+n)

σ2




∏

n>0

dŷt+n−1dx̂t+n (15)

=

∫
exp


∑

n>0

(
1

2
x̂2t+n +

1

2
βŷ2t+n−1 − α

√
βx̂t+nŷt+n−1

)


× exp




n∑

n>0

( 1
2 ŷ
2
t+n −

√
βŷt+nx̂t+n−1
σ2

+
βx̂2t+n−1
2σ2

)
∏

n>0

dŷt+n−1dx̂t+n

or, when the variables at time t and those at time t+ n are separated:

exp (Ueff,x (x̂t)) = exp

(
1

2

(
1 +

β

σ2

)
x̂2t +

1

2

(
1

σ2
+ β

)
ŷ2t +

1

2
βŷ2t−1 − α

√
βx̂tŷt−1 −

√
β

σ2
ŷtx̂t−1

)

×
∫
exp

(
∑

n>0

(
1

2

((
1 +

β

σ2

)
x̂2t+n +

(
1

σ2
+ β

)
ŷ2t+n

)
− α

√
βx̂t+nŷt+n−1 −

√
β

σ2
ŷt+nx̂t+n−1

))

×
∏

n>0

dŷt+ndx̂t+ndŷt

Now, define:

Yt =

(
x̂t
ŷt

)

and the effective utility for x̂t is written as:

exp (Ueff,x (x̂t)) = exp

(
1

2
Y tt

( (
1 + β

σ2

)
0

0
(
1
σ2
+ β

)
)
Yt −

√
βY tt

(
0 α
1
σ2

0

)
Yt−1

)
(16)

×
∫
exp

(
∑

n>0

(
1

2
Y tt+n

( (
1 + β

σ2

)
0

0
(
1
σ2
+ β

)
)
Yt+n −

√
βY tt+n

(
0 α
1
σ2

0

)
Yt+n−1

))

×
∏

n>0

dŷt+ndx̂t+ndŷt

To compute the integrals we use a result about gaussian integrals for a path of variables

{
Yt+n =

(
x̂t+n
ŷt+n

)}

n>0

.

This result states that the gaussian integrals
∏

n>0

dŷt+ndx̂t+n are known to be equal to the (exponential of
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the) saddle point value of the integrand in the second exponential of (16), with initial condition (x̂t, ŷt) and
final value (0, 0) at t =∞. More precisely,

∫
exp

(
∑

n>0

(
1

2
Y tt+n

( (
1 + β

σ2

)
0

0
(
1
σ2
+ β

)
)
Yt+n −

√
βY tt+n

(
0 α
1
σ2

0

)
Yt+n−1

))

×
∏

n>0

dŷt+ndx̂t+ndŷt

= exp (Saddle point of (S))

with:

S =
1

2
Y tt+n

( (
1 + β

σ2

)
0

0
(
1
σ2
+ β

)
)
Yt+n −

√
βY tt+n

(
0 α
1
σ2

0

)
Yt+n−1

where the saddle point solution satisfies the initial condition given just above.
To compute this saddle point value, define three matrices A, B and C with A symetric, and C antisymetric

that allow to rewrite the integrand in the exponential as.

A =

(
0 α+ 1

σ2

α+ 1
σ2

0

)
and C =

(
0 α− 1

σ2

−α+ 1
σ2

0

)

so that:

A+ C = 2

(
0 α
1
σ2

0

)
and A− C = 2

(
0 1

σ2

α 0

)

The matrix B is defined by:

(B −A) =
( (

1 + β
σ2

)
0

0
(
1
σ2
+ β

)
)

so that the quantity in the second exponential of the right hand side (16) is written as:

S =
1

2

∑

n>0

(
Y tt+n (B −A)Yt+n −

√
βY tt+n (A+ C)Yt+n−1

)

The saddle point equation is then:

2 (B −A)Yt+n −
√
βA (Yt+n−1 + Yt+n+1)−

√
βC ((Yt+n−1 − Yt+n+1)) (17)

We look for a solution of this equation under the form:

Yt+n = DYt+n+1 (18)

and the matrix D satisfies

−
√
β (A− C)D2 + 2 (B −A)D −

√
β (A+ C) = 0 (19)

One can check that the solution D of (19) has the form:

D =

(
0 a

b 0

)

and (19) leads to two equations for a and b:

a

(
1

σ2
β + 1

)
− α

√
β − 1

σ2
ab
√
β = 0

b

(
β +

1

σ2

)
− 1

σ2

√
β − abα

√
β = 0

17



whose solutions are:

a =
1

2α
√
β (σ2 + β)

(
1 + σ2β + σ2α2β + β2 −

√(
σ2β + β2 − 2αβ − σ2α2β + 1

) (
σ2β + β2 + 2αβ − σ2α2β + 1

))

(20)

b =
1

a
√
β

(
aβ + σ2a− σ2α

√
β
)

=
(
σ2 + β

) σ2β + β2 −
√(

σ2β + β2 − 2αβ − σ2α2β + 1
) (
σ2β + β2 + 2αβ − σ2α2β + 1

)
− σ2α2β + 1

√
β

(
σ2β + β2 −

√(
σ2β + β2 − 2αβ − σ2α2β + 1

) (
σ2β + β2 + 2αβ − σ2α2β + 1

)
+ σ2α2β + 1

)

Having foundD, we replace these expressions in the saddle point solution (18). The effective utility Ueff,x (x̂t)
can then be obtained by:

exp (Ueff,x (x̂t)) =

∫
exp

(
1

2

(
∑

n>0

(
Y tt+n (B −A)Yt+n −

√
βY tt+n (A+ C)Yt+n−1

)))
dŷt

where Yt+n satisfies (18). The whole integrand

S =
1

2

∑

n>0

(
Y tt+n (B −A)Yt+n −

√
βY tt+n (A+ C)Yt+n−1

)
(21)

can then be simplified via the dynamic equation (19). This dynamic equation (19) rewrites:

(A− C)D2 + 2 (B −A)D + (A+ C) = 0

or, since D is invertible:
(A+ C)D−1 = − (A− C)D − 2 (B −A)

the sum (21) simplifies as:

1

2

∑

n>0

(
Y tt+n (B −A)Yt+n −

√
βY tt+n (A+ C)Yt+n−1

)

= −
√
β

2
Y tt+1 (A+ C)Yt

+
∑

n>1

1

2
Y tt+n (B −A)Yt+n −

∑

n>1

√
β

2
Y tt+nAYt+n−1 −

∑

n>1

√
β

2
Y tt+nCYt+n−1

= −
√
β

4
Y tt+1 (A+ C)Yt

+
∑

n>1

1

2
Y tt+n

(
(B −A)Yt+n −

√
β

2
A (Yt+n−1 + Yt+n+1)−

√
β

2
C (Yt+n−1 − Yt+n+1)

)

= Y tt+1 (A+ C)Yt

= −
√
β

4
Y tt (A− C)Yt+1 = −

√
β

4
Y tt (A− C)DYt

The second term vanishes, as a consequence of the dynamic equation (17). Then:

∑

n>0

(
1

2
Y tt+n (B −A)Yt+n −

√
βY tt+n (A+ C)Yt+n−1

)

= −
√
β

2
Y tt (A− C)DYt
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and (15) rewrites:

exp (Ueff,x (x̂t)) =

∫
exp

((
1

2
Y tt (B −A)Yt −

√
β

2
Y tt (A+ C)Yt−1 −

√
β

4
Y tt (A− C)DYt

))
dŷt

=

∫
exp

(
−1
2

(
Y tt

(
(B −A)− 1

2
(A− C)D

)
Yt

)
−
√
β

2
Y tt (A+ C)Yt−1

)
dŷt

We can use again the dynamic equation for D:
(
2 (B −A)−

√
β (A− C)D

)
= (A+ C)D−1

and the previous relation becomes:

exp (Ueff,x (x̂t)) =

∫
exp

(
1

4

(
Y tt (A+ C)D

−1Yt
)
− 1
2
Y tt (A+ C)Yt−1

)
dŷt

=

∫
exp

(
1

4

(
(Yt −DYt−1)t (A+ C)D−1 (Yt −DYt−1)

))
dŷt

The integration on ŷt then leads to the following compact expression for Ueff (xt):

Ueff (xt) = (xt − (DYt−1)x)
(
(A+ C)D−1)

xx
−
(
(A+ C)D−1)

xy

(
(A+ C)D−1)

yy

(
(A+ C)D−1)

yx
(xt − (DYt−1)x)

= (xt − ayt−1)Nxx (xt − ayt−1)

where the subscript x means the coordinate of a vector (or a matrix) in the x direction. The matrix Nxx
is defined by:

Nxx =
(
(A+ C)D−1)

xx
−
(
(A+ C)D−1)

xy

(
(A+ C)D−1)

yy

(
(A+ C)D−1)

yx

=
α

a

As a consequence, the full system is finally described by the probability weight:

exp (−Ueff (xt)− Ueff (yt))

= exp

(
− (xt − ayt−1)

α

a
(xt − ayt−1)−

(
1

2
y2t − ytxt−1

))

whose minimum is given by the dynamic equation:

xt = ayt−1
yt = xt−1

thats is:
xt = axt−2

At this point we have obtained the following result. All computations performed, the mean path followed
by agent x is similar to the classical case, but with a different coefficient and this has to be compared with
the usual resolution we obtained previously:

xt = dxt−1

and the coefficients a and d2 were given by (13) and (20).
We perform the comparison through a power series expansion in β which allows to compare the effect

of forward looking behavior in both models. Actually, as said previously, we know that both approach are
identical for β = 0. This is checked directly here. Actually, at the fourth order:

d2 = α+ β2α
(
α2 − 1

)
+ β4

(
2α2 − 1

)
α
(
α2 − 1

)
+O

(
β5
)

a = α+ β2α
(
α2 − 1

)
+ σ2α2

(
α2 − 1

)2
β3 + α

(
α2 − 1

) (
2α2 + σ4

(
α2 − 1

)2 − 1
)
β4 +O

(
β5
)
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For σ2 = 0, d2 and a coincide at all orders, and the usual result is recovered as announced in the previous
paragraph. It corresponds to a system with no internal uncertainty and the usual optimization problem is
recovered. For σ2 = 1, which corresponds include an uncertainty in agent’s behavior one finds:

a = α+ β2α
(
α2 − 1

)
+ o

(
β3
)
= d

To the second order, both approaches coincide. The case σ2 = 1 is equivalent to the case in which the
dominant agent x has full information about y. His knowledge about y’s fluctuation are of same amplitude
as his own, i.e. he knows the most that can be known about y.

At the third and fourth order, for σ2 > 0, the results diverge, and a > d2, this is the consequence of
the inherent uncertainty of our model. Whatever the external signals, an internal randomness has been
introduced in each agent behavior. This induces in turn fluctuations that destabilizes slightly the system
compared to the usual analysis. Only when σ2 = 0, For β → 0, the two solutions coincide, as explained in
the first section. The reason is straigntforward. For β = 0, in both formalization, agents only care about
period t, and whatever their way to produce future forecasts, perfect, ordefined by statistical weight, it will
be irrelevant.

For σ2 large, the previous series expansion for a breaks down and we have to come back to:

a =
1

αβ (σ2 + β)

(
1

2
σ2β +

1

2
β2 − 1

2

√(
σ2β + β2 − 2αβ − σ2α2β + 1

) (
σ2β + β2 + 2αβ − σ2α2β + 1

)
+
1

2
σ2α2β +

1

2

)

=
1

α

(
1

2
− 1
2

√
(1− α2)2 + 1

2
α2
)
for

(
1− α2

)
> 0 and

1

α

(
1

2
+
1

2

√
(1− α2)2 + 1

2
α2
)
for

(
1− α2

)
< 0

= α

which is the result expected under no information. This is coherent: agent x information is of low relevance
when σ2 is large. This coincides also with the result for β = 0, since in that case agents dicard next periods
and the consequences of their own actions.

Varying the parameter σ2 therefore allows to interpolate between the full and no information schemes
or, equivalently in this context, between a dynamic Stackelberg and a dynamic Cournot game.

This example suggests two conclusions. First, our scheme allows to switch continuously between a model
with no internal uncertainty (the usual optimization problem) to another model including internal uncertainty
about agents behavior. In other words, it allows to consider the quality of information at disposal for the
agents as a parameter and interpolate between full and no information cases.

Our second conclusion concerns the resolution method. From the exposition above, the standard opti-
mization method seems to yield a mire straightforward answer for the dynamics in the case of no internal
uncertainty. From this standpoint, our formalism, eventhough more general, seems tedious in the σ2 → 0
case. However, its advantages become clear when the number of agents increases. Whereas solving the
optimization equation (12) becomes harder when the number of agents increases, the dynamic equation (19)
will keep the same form. This first order matricial equation will be easier to solve for some particular values
of σ2, such as σ2 = 1, thus providing a tool to describe analyticaly the behavior of the agents in a whole
range of systems. The dynamics thus obtained would differ from an optimization problem, but will remain
centered around the classical solution, and can be seen as an approximation of this one. Let us also note
that, however approximate, this "probability-based" solution is no less valid nor realsitic than the standard
description of the agent behavior.

3 Application: Several interacting agents defined by a graph

3.1 Static model of several interacting agents.

Having presented the general formalism and described a representative example, we can now apply the
above formalism to a general class of models that fit well with our approach. These type of models describe
interactions between n heterogenous agents, some agents dominating informationally and strategically others.
They are described by a graph ordering the agents by the relations of strategic domination among them (see
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[5]). They are equivalent to some dynamic games models, and are close to monopoly or oligopoly models.
These models can also be used to describe dynamic patterns of decision for agents composed of several
sub-structures (see [3][4][5][6]).

We will first present the static version of this class of model to introduce the agents’ utility functions
along with the domination graph that commands the resolution. We will then develop the dynamic version
that will be used. Each agent’s effective utilities are computed, to derive the whole system’s effective utility.
We then consider several examples.

3.2 Strategic relations between agents

The agents’ strategic relations define the model setup. An oriented graph Γ whose vertices are labelled by
the agents involved describe these relations. When Agent i has a strategic advantage over Agent j, we draw
an oriented edge from i to j and write i → j. If there exists an oriented path from i to j, we write the
relation i� j, and state that Agent i dominates directly or indirectly Agent j or, equivalently, that Agent
j is subordinated to Agent i. If there is no oriented path from i to j, we write j 6� i, where it is always
understood that i 6= j. In the following, we merely consider connected graphs without loops.

3.3 Matricial formalism

Agents’ utilities are described by the following matricial formalism. Agents’ actions are encompassed in
a vector of actions, or control variables. The number of possible actions determine the size of the vector.
Utilities being quadratic, matrices may be associated with them.

Let Xi ∈ Rni be Agent i’s vector of control variables, and X̃(i)
j ∈ Rni the vector of goals associated with the

variables Xj , as expected by agent i. We normalize X̃
(i)
j to 0, so that Agent i wishes to achieve Xi = 0 and

Xj = X̃
(i)
j . Agent i

′s utility is given by:

Ui = −1
2
tXiA

(i)
ii Xi −

1

2

∑

j�i

t
(
Xj − X̃(i)

j

)
A
(i)
jj

(
Xj − X̃(i)

j

)
(22)

−
∑

j�i

tXiA
(i)
ij

(
Xj − X̃(i)

j

)
−
∑

j 6�i

t
(
Xi − X̃(j)

i

)
A
(i)
ij Xj

In the absence of any interaction, Agent i′s utility is given by the term

−1
2
tXiA

(i)
ii Xi

The variables Xi are normalized so that A
(i)
ii is a fi × ni diagonal matrix whose coefficients are 1 or 0.

If Agent i′s subordinate agents’ actions Xj depart from X̃
(i)
j , Agent i

′s will experience a loss of utility of
the form : ∑

j�i

t
(
Xj − X̃(i)

j

)
A
(i)
jj

(
Xj − X̃(i)

j

)

The fj × nj matrix A(i)jj of parameters is of course symmetric.
The impact of Agent j′s action on Agent i’s utility is

∑

j�i

tXiA
(i)
ij Xj −

∑

j 6�i

t
(
Xi − X̃(j)

i

)
A
(i)
ij Xj

where j � i can be seen as the impact of Agent j′s action on Agent i. In our model, Agent j does not
know the agents to whom he is subordinated, and processes their signals as external ones. The second term
models the strain imposed on Agent i by Agent j to achieve its own objectives for Xi.
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Remark 1 Since the linear term in Xj disappears during the resolution,

∑

j 6�i

tXiA
(i)
ij Xj

is equivalent to ∑

j 6�i

t
(
Xi − X̃(j)

i

)
A
(i)
ij Xj

Notation 2 By convention, for the ni × nj parameters matrices A(i)ij , we will write tA
(i)
ij = A

(i)
ji .

3.4 Dynamic version

This section describes the general model for dynamics interacting structures. We adapt the the procedure
of the previous paragraph by transforming the matricial static utilities in a dynamic context, and assuming
each agent optimizes a forward-looking intertemporal utility function, given it’s own information set.
The intertemporal utility is of the form :

Vi(t) =
∑

m≥0
βmi EiUi (t+m)

where βi is Agent i
′s discount factor, and Ei his conditional expectation at time t. Agents compute their

expectations according to the following information pattern. Ui (t+m) is period t + m utility and is a

dynamic version of the static form (22), where the previous remark allows to set X̃
(j)
i = 0.

Ui (t+m) = −1
2
Xt
i (t+m)A

(i)
ii Xi (t+m) (23)

−1
2

∑

j�i

(
Xt
j (t+m− 1)− X̃(i)

j

)
A
(i)
jj

(
Xj (t+m− 1)− X̃(i)

j

)

−
∑

j�i

Xt
i (t+m)A

(i)
ij

(
Xj (t+m− 1)− X̃(i)

j

)

−
∑

j 6�i

Xt
i (t+m)A

(i)
ij Xj (t+m− 1)

Which is, up to some constant irrelevant term, a straightforward generalization of the static model utility
function. Actually, in a dynamic context, we consider that agent i perceives external and other agents’
signals with a one period delay.
Concatenating Xi(t + k) and the vectors Xj(t + k) for all j � i in one normalized column vector, we

rewrite the utilities:

Yi (t+ k) =

(
β
k
2

(
Xj (t+ k)− X̄(i)

j

)
j≤i

)

where, by convention X̄
(i)
i = 0, X̄

(i)
j = X̃

(i)
j , j < i. We work now with the system of variables Yi (t). For all

i > j, i = j, one has the following map

ι : Xj (t+ k) ↪→ Yi (t+ k)

defined by: ι
(
β
k
2Xj (t+ k)

)
=
(
0, ..., β

k
2

(
Xj (t)j>i − X̄

(i)
j

)
, 0, ...0

)
. Similarly, we define the injection

ι′ : Yj (t+ k) ↪→ Yi (t+ k), given by ι
′ (Yj (t+ k)) =

(
β
k
2

(
Xj (t+ k)k>j − X̄

(i)
j

)
, 0, ...0

)
.

When there is no ambiguity, we will still write Xi(t+ k) and Xj(t+ k) for the images of these vectors by
these injections. In other words Xi(t + k) = (Yi (t+ k))i and Xj(t + k) = (Yi (t+ k))j are the i-th et j-th
components of Yi (t+ k) respectively.
With these conventions, the utilities rewrite:
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U
(i)
t =

∑

k>0

βk


 Xi (t+ k)A

(i)
ii Xi (t+ k) +

∑
j<i

((
Xj (t+ k − 1)− X̄(i)

j

)
A
(i)
jj

(
Xj (t+ k − 1)− X̄(i)

j

))

+2Xi (t+ k)A
(i)
ij

(
Xj (t+ k − 1)− X̄(i)

j

)
+
∑

j>i 2Xi (t+ k)A
(i)
ij (Xj (t+ k − 1))




=
∑

k>0

Yi (t+ k)

(
A
(i)
ii 0
0 0

)
Yi (t+ k) + Yi (t+ k − 1)

(
0 0

0 βA
(i)
{jj}

)
Yi (t+ k − 1)

+Yi (t+ k)

(
0 β

1
2A

(i)
ij

β
1
2A

(i)
ji 0

)
Yi (t+ k − 1)

+
∑

j>i

2Xi (t+ k)A
(i)
ij (Xj (t+ k − 1))

We will also add possibility for an inertia term:

−Xi (t) ε
(i)
ii Xi (t− 1)

to obtain:

U
(i)
t =

∑

k>0

Yi (t+ k)

(
A
(i)
ii 0
0 0

)
Yi (t+ k) + Yi (t+ k − 1)

(
0 0

0 βA
(i)
{jj}

)
Yi (t+ k − 1)

+Yi (t+ k)

(
−β 1

2 ε
(i)
ii β

1
2A

(i)
ij

β
1
2A

(i)
ji 0

)
Yi (t+ k − 1)

+
∑

j>i

2Xi (t+ k)A
(i)
ij (Xj (t+ k − 1))

3.5 Pattern of information

The full resolution of the model relies on agents’ expectations, that is agents’ information sets or parameters
knowledge. The pattern of information over the domination graph we propose describes how agents perform
their forecasts. Each agent knows the domination relations of the subtree he strategically dominates, but
ignores the reactivity of the subtree’s agents to external, non dominated agents. In other words, Agent i

knows the values of the A
(k)
k` for i � k and i � `. The remaining coefficients A

(k)
k` are forecasted to 0 for

this agent. Remark that, under our assumptions, agents do not attribute a probability to the coefficients
they forecast, but rather a fixed value.
We moreover assume that, at each period t, Agent i knows the signals Xj(t− 1) for i� j and Xj(t− 1) for
j 6� i by which he is affected. From these hypotheses, we can infer some results about the agents’ forecasts.
First, Agent i forecasts to 0 all the actions of agents he does not dominate. That is, for j 6� i and m ≥ 0
one has:

EiXj (t+m) = 0

This condition will allow to simplify some computations when computing the effective action of agent "i".
The action variables Xj (t+m) for j 6� i will be discarded.
We conclude this paragraph by remarking that In the case of oligopoly interpretation, the pattern of

information chosen ulimately determines which kind of game is played, Stackelberg, Cournot...

3.6 Effective utility

As explained in the previous section, each agent j behaves at time t with a so called effective utility
Ueff (Xj (t)) ≡ Ueff (Xj) whose form is found recursively. As shown before, for the less informed agents -
those for which Xi (t) = Yi (t) - the non normalized effective utility reduces to time t utility:

Ueff (Xi (t)) =
∑

t

Yi (t)A
(i)
ii Yi (t)−

√
βYi (t− 1) ε(i)ii Yi (t− 1) +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))
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The previous section has shown that (Ueff (Xi (t))), the effective utility that determines the probability of
behavior of agents who dominate others informationially is given by (9):

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

) ∏

rk(j)<rk(i)

∏

s>t

exp


∑

s>t

Ueff (Xj (s))

σ2j


 dXj (s) (24)

Appendix 2 proves that, after coming back to the variable Xi (t), the non-normalized effective utilities
solving (24) have the form:

Ueff (Xj (s)) = Y ej (s)

(
Nii 0
0 0

)
Y ej (s)− 2Y ej (s)

(
Mii Mij

0 0

)
Y ej (s− 1)

+
∑

i>k>j

2βs−tXj (s)A
(j)
jk (Xk (s− 1))

with:

Y
(e)
j (t+ k) =

(
β
k
2

(
Xk (t+ k)− X̄(j)e

k

)
k≤j

)
(25)

where X̄
(j)e
k is the effective goal of j for k. Appendix 2 provides a formula for the effective goal given the

parameters of the model, and proves that Ueff (Xi (t)) is given by:

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t− 1)− X̄(i)e

i

)
(26)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

Xi (t)A
(i)
ij (Xj (t− 1))

The matrices Mii, Mij , Nii, also computed in Appendix 2, are:

Nii = ((A− C) (D − 2) + 2B)Sii (27)

− ((A− C) (D − 2) + 2B)Sij
(
((A− C) (D − 2) + 2B)Sjj

)−1 (
((A− C) (D − 2) + 2B)Sji

)

Mii = (Nii)

((
((A− C) (D − 2) + 2B)S

)−1
(A+ C)

)

ii

Mij = (Nii)

((
((A− C) (D − 2) + 2B)S

)−1
(A+ C)

)

ij

where S stands for the symetrized matrix, and with:

A =
√
β




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j








B =




A
(i)
ii +B11 −

√
βε
(i)
ii

{√
β
(
A
(i)
ij +A

(j)
ij

)
, B12

}

{√
β
(
A
(i)
ji +A

(j)
ji

)
, Bt12

}




βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

√
β





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2

, A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j












C =
√
β




0 A
(i)
ij −A

(j)
ij

−
(
A
(i)
ji −A

(j)
ji

)




−
(
ε
(j)

{kj}k6j

)

eff

2 ,

(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j ,−A

(j)
{jk}i>k>j







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and

B11 = βA
(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
ji

B12 =

{
βA

(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
jk , β

(
A
(j)
ij

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))}

B22 =





βA
(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk ,

β
( (

ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)t (
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
,

β

(
A
(j)
kj

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))S





It is shown in Appendix 3 that the matrix D satisfies the dynamic equation:

(A− C)D2 + 2 (B −A)D + (A+ C) = 0 (28)

The notation {} used here is convenient to describe concatenated blocks of matrices such as for example



βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

√
β





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2

, A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j








to refer to matrices βA

(i)
jj , B22,... that are concatenated in

a larger one, say M . The matrix M is built by concatenating the matrices βA
(i)
jj , B22, that are pasted

given their indices. The dimension of M will thus be implicitely determined by its constituing matrices. For

example βA
(i)
jj has elements along the coordinates (j, j). When several matrices have elements at the same

place in M , these elements are simply added.
Alternatively one can also represent the effective utility as:

Ueff (Xi (t)) =
1

2
Ẋi (t)MiiẊi (t)−

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)
Mij

(
Xj (t− 1)−

(
Ŷ
(1)
i

)
j

)

+
1

2

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)
N̂ii

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)

with:

N̂ii = Nii +
1

2
Mii

Ẋi (t) refers to the discrete derivative, that is Ẋi (t) = Xi (t)−Xi (t− 1).
Remark that (26) is not in a normalized form. The normalization can be achieved by imposing that:

∫
exp (−Ueff (Xi (t))) dXi (t) = 1

and this implies:

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
(29)

−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t− 1)− X̄(i)e

i

)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

Xi (t)A
(i)
ij (Xj (t− 1))

−1
2


Mii√

β

(
Xi (t− 1)− X̄(i)e

i

)
+
∑

j<i

Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

A
(i)
ij (Xj (t− 1))



t

× (Nii)−1 ×


Mii√

β

(
Xi (t)− X̄(i)e

i

)
+
∑

j<i

Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

A
(i)
ij (Xj (t− 1))




− ln det (Nii)
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However the terms depending on contributions for j > i may be discarded due to our pattern of information,
in which Xj (t) with j > i is considered as a random noise by agent i. We are then left with:

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
(30)

−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t− 1)− X̄(i)e

i

)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

Xi (t)A
(i)
ij (Xj (t− 1))

−1
2


Mii√

β

(
Xi (t− 1)− X̄(i)e

i

)
+
∑

j<i

Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)


t

× (Nii)−1 ×


Mii√

β

(
Xi (t)− X̄(i)e

i

)
+
∑

j<i

Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)

− ln det (Nii)

and this more precise form is used when needed to compute conditional expectations.
More about this point and the derivation of the normalization is given in Appendix 2. But let us now

consider an application of (30). The important point is that the effective utility remains quadratic, after
integrating both anticipations and interactions between agents.

The probability associated to that utility is then:

∝ exp (Ueff (Yi (t)))

Remark that the effective utilities for Xi (t) depend on, and implicitely include the discount factor that
was previously absorbed in the definition of, Yi (t). Considering again (9) and using (4) means that (recall
the notation Xi(t+ k) = (Yi (t+ k))i and Xj(t+ k) = (Yi (t+ k))j):

P
(
{Xj (t+ 1)}j 6=i , ..., {Xj (t+N)}j 6=i , ... | Xi (t)

)

= Ei
∏

k

P
(
{Xj (t+ k + 1)}j 6=i | {Xj (t+ k)}j 6=i

)
d {Xj (t+ k)}j 6=i

= exp


∑

j<i


∑

k>0

Yj (t)

(
Nii 0
0 0

)
Yj (t)− 2Yj (t)

(
Mii Mij

0 0

)
Yj (t− 1)

+
∑

i>k>j

2 (Yj (t))j A
(j)
jk (Yk (t− 1))k





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then rewriting this expression in terms of the initial variables Xi, Xj and including the normalization:

P
(
{Xj (t+ 1)}j 6=i , ..., {Xj (t+N)}j 6=i , ... | Xi (t)

)

=
1

2

(
Xj (t)− X̄(j)e

j

)(
Njj −Mjj (Njj)

−1
Mjj

)(
Xj (t)− X̄(j)e

j

)

−1
2

∑

i>k>j

(
Xj (t)− X̄(k)e

j

)
Nkk

(
Xj (t)− X̄(k)e

j

)

−1
2

∑

i>k>j

(
Xk (t)− X̄(k)e

k

)t
MkkNkkMkj

(
Xj (t)− X̄(k)e

j

)

−1
2

∑

i>k>j

(
Xj (t)− X̄(k)e

j

)t
MjkNkkMkk

(
Xk (t)− X̄(k)e

k

)

−
(
Xj (t)− X̄(j)e

j

)Mjj√
β

(
Xj (t− 1)− X̄(j)e

j

)

−
∑

k<j

(
Xj (t)− X̄(j)e

j

)Mjk√
β

(
Xk (t− 1)− X̄(j)e

k

)

that is, the probability of future values Xj (t+ k), j 6 i presents a discount behavior. The uncertainty for
future values is increased by the relative absence of concern for future periods.

3.7 Effective action for the system

Having found the non normalized form for agent i effective utility in (26):

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t− 1)− X̄(i)e

i

)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

Xi (t)A
(i)
ij (Xj (t− 1))

we form the effective utility for the set of all agents by summing over i:

∑

i

Ueff (Xi (t))

At this point some precisions have to be added. In the previous expression, one could sum over the normalized
utilities defined by:

∫
exp (−Ueff (Xi (t))) dXi (t) = 1 (31)

Normalizing the effective utilities was legitimate when computing Ueff (Xi (t)). Actually to perform its
"random" optimization process each agent was attributing a probability to each other agent’s action, so
that the normalization was needed. But now, all computations done, Ueff (Xi (t)) describes the utility of a
"blind" agent, since all anticipations are included in the form of Ueff (Xi (t)). These agents participate to a
system composed of N interconnected parts, and for this global system the different periods are connected.
This is similar, at the individual level, to our procedure attributing a single weight corresponding to the
intertemporal utility.

One can check that imposing (31) would correspond, on average, to let all agents optimize Ueff (Xi (t))
independently. In other words, the normalization condition amounts to consider independent agents. How-
ever, once the effective utilities have been computed, the agents’ forward-lookingness, computational skills
and rationality have been fully taken into account and are included within the form of the effective utility.
From this point onward, agents cannot be considered as independent anymore, but must rather be considered
as integral and "blind" parts of a global system, whose elements are interconnected through the different
periods.
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In probability terms, it means that each agent utility at each period can’t be normalized independently
from the others, but only the probability defined by the all path. As such, only a joint probability has to be
defined, and the normalization is performed over all agents and the all set of periods. As a consequence, at
the utility level, we will consider the intertemporal effective utility for the system as

∑

t

∑

i

Ueff (Xi (t))

where, in the previous expression, we use the non normalized individual utilities. The global probability
weight considered, will be, up to a global normalization:

exp

(
∑

t

∑

i

Ueff (Xi (t))

)

it describes he system as a whole, whose weight relates all parts of it and all periods as related. Of course,
summing over all agents except i and all periods after t would lead us to retrieve Ueff (Xi (t)) (plus past
contribution that would disappear in a normalization) as needed.

Remark also that this effective utility can be modified by adding also interaction terms between the
agents, that were not taken into account in the derivation of effective utility for any of them. It represents a
system where each agent has adapted his behavior given it’s information, but this one about the all system
is incomplete, even for the most informed agents.

By summing over i the expressions in (26) and reordering the sums over agents, one obtains the following
expression for the global weight a time t:

Ueff ((Xi (t)))

=
∑

i

(
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t− 1)− X̄(i)e

i

)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

Xi (t)A
(i)
ij (Xj (t− 1))




Define the X̄e
i as the stationnary solution of the saddle point equation. They satisfy the following system

(
1

2
Nii −

Mii√
β

)(
X̄e
i − X̄(i)e

i

)
+
∑

j>i

(
A
(i)
ij X̄

e
j −

Mij√
β

(
X̄e
j − X̄(j)e

j

))
+
∑

j<i

(
A
(j)
ij X̄

e
j −

Mij√
β

(
X̄e
j − X̄(i)e

j

))
= 0

that can be rewritten as:

(
1

2
Nii −

Mii√
β

)
X̄e
i +

∑

j 6=i

(
A
(i)
ij −

Mij√
β

)
X̄e
j = −


∑

j>i

Mij√
β
X̄
(j)e
j +

∑

j<i

Mij√
β
X̄
(i)e
j




It can be solved as:

X̄e
i = −

(
G−1

)
ik


∑

j>k

Mkj√
β
X̄
(j)e
j +

∑

j<k

Mkj√
β
X̄
(k)e
j




with G the concatenated matrix defined by:

Gij =

(
1

2
Nii −

Mii√
β

)
δij + (1− δij)

(
A
(i)
ij −

Mij√
β

)

Then define X (t), the concatenation of the Xi (t) and X̄
e the concatenation of the X̄e

i . Then, the total

28



effective action rewrites:

Ueff (X (t)) =
1

2

(
X (t)− X̄e

)
N
(
X (t)− X̄e

)
(32)

−
(
X (t)− X̄e

)M +O√
β

(
X (t− 1)− X̄e

)
+ Ueff

(
X̄e
)

=
1

2

(
X (t)− X̄e

)
N
(
X (t)− X̄e

)
−
(
X (t)− X̄e

)M +O√
β

(
X (t− 1)− X̄e

)

+


1
2
X̄eNX̄e − X̄eM +O√

β
X̄e −

∑

j<i

X̄e
i

Mij√
β

(
X̄e
j − X̄(i)e

j

)



with:

N = (Nii)

M = (Mii)

Oij = A
(j)
ij −M

(i)
ij if j < i

Oij = A
(i)
ij −M

(j)
ij if j > i

The second term coming from the general property of a quadratic form plus linear term:

q (X) = XAX +XBX0

for X0 a constant vector. If X̄ is the saddle point of q (X), one can rewrite:

q (X) =
(
X − X̄

)
A
(
X − X̄

)
+ q

(
X̄
)

The quadratic term Ueff
(
X̄e
)
is constant and irrelevant when considering the dynamic over a given time

span T . Its contibution to the effective utility is a constant TUeff
(
X̄e
)
that can be discarded. However,

later we will look at a statistical set of processes with a variable time span T . In that case this term will play
a role when comparing and averagit over these processes. Note ultimately that TUeff

(
X̄e
)
can be negative,

which will be the most interesting case for us. It corresponds to a lowered effective utility, with respect to 0
as a benchmark case, consequence of internal tension between the different elements composing the system.
Having found the general form for the effective utility, we now describe several examples including different

patterns of strategic dominations.

3.8 Example: N non strategic agents

Consider the simplest example/case where N agents have no information nor strategic advantage. In this
"N non strategic agents case", which is actually equivalent to a Cournot oligopoly, the utility of each agent
is:

U
(i)
t = −

∑

t

βt
(
Xi (t)A

(i)
ii Xi (t)

)
+
∑

j 6=i
2Xi (t)A

(i)
ij (Xj (t− 1))

where the individual goals of any agent has been set to 0 for the sake of simplicity. The agents being non
strategic, other agents’ actions are perceived as mere external perturbations. In that situation, Xj (s) for
s > t is seen as a variable independent from Xi (t). As such the integrals over these variables does not affect
the part of the utility depending on Xi (t) and, as explained in the first section:

Ueff (Xi (t)) = −Xi (t)A
(i)
ii Xi (t) +

∑

j 6=i
2Xi (t)A

(i)
ij (Xj (t− 1))

So that the global weight is:

exp

(
∑

t

∑

i

Ueff (Xi (t))

)
= exp


∑

t

∑

i


−Xi (t)A

(i)
ii Xi (t) +

∑

j 6=i
2Xi (t)A

(i)
ij (Xj (t− 1))






29



As a consequence the probability for the system path is centered around the minimum of:

∑

t

∑

i


−Xi (t)A

(i)
ii Xi (t) +

∑

j 6=i
2Xi (t)A

(i)
ij (Xj (t− 1))




and this minimum satisfies:
A
(i)
ii Xi (t) =

∑

j 6=i
A
(i)
ij (Xj (t− 1))

for all t. This dynamic equation is the usual optimization of individual utilities. Our method thus reproduces
the classical optimization problem, including, through the probability distribution, a modelling of random
perturbations on the system. The reason is the following: the absence of any information about the others
leads the agents to behave independently from the others. Arguably, under no information, agents tend to
behave independently, inducing their actions to be randomly distributed around the individual optimums.

3.9 Example: N+1 agents. Domination of one on the others

This case is a generalization of the basic example of section one. It could be interpreted as a Stackelberg
oligopoly with one dominant agent. For the first, least strategic, type of agent, the procedure is the same as
in the previous example, and its effective utility will be its time t utility:

Ueff (Xj (t)) = −X1 (t)A
(j)
jj X1 (t) + 2Xj (t)A

(j)
jk (Xk (t− 1)) + 2Xj (t)A

(j)
j1 (X1 (t− 1))

we assume that A
(j)
jj = A

(1)
jj = 1, A

(j)
kj = α for all j and k, including j = 1 or k = 1.

For the strategic agent, on the other hand, the effective action (26):

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t− 1)− X̄(i)e

i

)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

Xi (t)A
(i)
ij (Xj (t− 1))

is computed using the formula (27) given in the previous paragraph. The matricesMii,Mij , Nii are computed
in Appendix 2 and listed above in (27).

We show in Appendix 5 that we obtain (we record the results for N > 1 and the case N = 1 is presented
in the same Appendix):

N11 =
(
1 + βα2

)
+ βα2N

NV +W

N − 1
−β2 (α (NV +W ) + (N − 1))2

×




(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

)
N2

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

−
N

(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))




M11 = − (N11)
α
√
ββN (1 + 2β − βW ) (α(NV+W )+(N−1))

(1+βα2)+βα2N NV+W
N−1

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

Mij = − (N11) (1, .., 1)
√
β (N − 1)β (1 + 2β − βW ) (α(NV+W )+(N−1))

(1+βα2)+βα2N NV+W
N−1

((1 + 2β)−W )
(
(1 + 2β)−W +N

(
(V (N − 1) +W + β (N − 2))− (α(NV+W )+β(N−1))2

(1+βα2)+α2N NV+W
N−1

))
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with:

W =
1

2β

(
1 + 2β −

√
4β2 + 1

)

and V satisfies:

Nβ
(N − 1)2 +Nα2 (1 + β)

N − 1 V 2

+
2β
(
(N − 1)2 +Nα2 (1 + β)

)
+
(
(2 + β)N (N − 1)α2β + (N − 3)N2β + (4N − 2)β +N − 1

)

N − 1 V

+

(
(N − 1)β + (1 + β)α2β

)
W 2 + β (N − 1)

(
N + 2α2 + α2β − 2

)
W + (N − 1)

(
(N − 1)α2β + 1

)

N − 1
The full action for the system of agents is thus:

Ueff (Xj (t)) + Ueff (Xi (t)) =
∑

j<1

(
−Xj (t)A

(j)
jj Xj (t) + 2Xj (t)A

(j)
jk (Xk (t− 1)) + 2Xj (t)A

(j)
j1 (X1 (t− 1))

)

+
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t− 1)− X̄(i)e

i

)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)

The average dynamics is the saddle path of the previous global effective utility and is thus given by the
dynamic evolution:

(
Xi (t)− X̄(i)e

i

Xj (t)

)
=M1

(
Xi (t− 1)− X̄(i)e

i

Xj (t− 1)− X̄(i)e
j

)
+M2

(
Xi (t− 1)
Xj (t− 1)

)

with:

M1 =

(
(N11)

−1
M11 (N11)

−1
M1j

0 0

)

M2 =

(
0 0

α (1, .., 1)
t
(1)− 1

)

where we denote by (1) the matrix filled with 1 in every row. We are mainly interested in the dynamical

pattern of the system and we will thus set X̄
(i)e
i = X̄

(i)e
j = 0, so that the equilibrium is forXi (t) = Xi (t) = 0.

The dynamical pattern is then determined by M and it’s eigenvalues, and Appendix 5 shows that:

M =

(
(N11)

−1
M11 (N11)

−1
M1j

α (1)− 1

)

=

( −α√βNm − (1, .., 1) (N − 1)m
α (1, .., 1)

t
(1)− 1

)

with:

m =
(2β −W + 1) (α(NV+W )+β(N−1))

α2N NV+W
N−1 +(1+βα2)

((1 + 2β)−W )
(
(1 + 2β)−W +N

(
(V (N − 1) +W + β (N − 2))− (α(NV+W )+β(N−1))2

(1+βα2)+α2N NV+W
N−1

))

The eigenvalues of M are:

−1, 1
2
(a+ 1)± 1

2

√
a2 − 2 (N − 1) a+ 4N (N − 1)√

β
a
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with:

a = −
α
√
βN (2β −W + 1) (α(NV+W )+β(N−1))

α2N NV+W
N−1 +(1+βα2)

((1 + 2β)−W )
(
(1 + 2β)−W +N

(
(V (N − 1) +W + β (N − 2))− (α(NV+W )+β(N−1))2

(1+βα2)+α2N NV+W
N−1

))

THE full study of the dynamical pattern as a function of the parameters being beyond the scope of this
paper, we will merely draw the main characteristics of the results. First, the fact that eigenvalues are
propotional to α means that interactions between dominated agents create instability in the system. Second,
when β is relatively small, W ' 1 − β and (2β −W + 1) ' 3β. This implies that a grows with β, at least
for relatively low values of this parameter. Interactions may thus become unstable when agents grow more
forwardlooking and attempt to drive the system toward their optimum. Finally, the larger is N , the more
unstable the system is, as shown by the term proportional to N (N − 1) in the square root, and the fact
that a can be proved to be of constant magnitude when N increases. Moreover, for large N , the eigenvalues
become imaginary, so that the system presents an oscillatory pattern. The interpretation is that a large
number of dominated agents produces fluctuations further amplified by mutual interactions. Under such a
setting, no single dominating agent may stabilize the system.

3.10 Example: the three structure model.

This case considers GLW model involving three agents ranked by their relations of strategic advantage.
Each agent optimizes, given it’s own information set, a forward-looking intertemporal utility function of

the form:

(Vit) =
∑

m≥0
βmi EiUi(t+m)

The forecasts by Agent i of future quantities is computed given its information set.
The utilities take the following dynamic form:

UB (t) = −1
2
(n (t) + 1− w (t− 1))2 − αn (t) sn (t− 1) (33)

UU (t) = −1
2
ρ
(
1− w (t− 1)− f̃

)2
− 1
2
γ (w (t− 1)− w̃)2 − 1

2
s2n (t)−

1

2
s2f (t)−

1

2
s2w (t)

UC (t) = −1
2
(w (t)− w0)2 −

1

2
δn2 (t− 1)− vn (t− 1)w (t)− κsf (t− 1)

(
1− w (t)− f̃

)
− ηsw (t− 1)

(
w (t)− t̃

)

under the constraint: w + f = 1.
Note that in each of the above utilities the agent own action variables appear with a time index t, as

expected for utility at time t, whereas other agents’ action variables appear with a time index t− 1
Utilities are quadratic and normalized so that the terms containing the square control variables have

coefficients of − 1
2 or 0.

The reasons for these choices, as well as the interpretation of the variables is detailled in reference GLW.
We give a short acount now.

The utility of the body The body, being an automaton, has no specific goals, and its utility function
UB merely describes its reaction to other agents’ actions

1 . Without any interaction with the unconscious U,
the body would, in first approximation, react linearly to the conscious C action, "feeding" :

−1
2
(n (t) + 1− w (t− 1))2

1 In this setting, endowing the body with specific goals would have allowed it to manipulate the conscious, which was not
our purpose here.
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The unconscious influences the body by perturbating its signal

−αnsn

Whereas in the absence of the unconscious, the body’s optimum would be reached for

n = −f = 0

This result being suboptimal for Agent U, he will tilt the equilibrium toward its own goal f̃ .

Recall that the task performed by the conscious w is not physically demanding, and has no impact on
the body’s response n. Indeed, we do not model physical efforts per se, but rather seek to understand how
the unconscious can manipulate an existing equilibrium between the body and the conscious, i.e. the use of
body signals by the unconscious to reach its own goals. By convention α is positive, so that a positive strain
will respond to a positive feeding.

The utility of the conscious In the absence of both the unconscious and the body, the conscious’ utility
would be :

−1
2
(w − w0)2

so that in the absence of any constraint set on w, Agent C would optimally choose w = w0 > 0.

Body needs affect Agent C through

−1
2
δn2 − νnw

so that the higher is the need, the more painful is the task.

In the absence of Agent U, Agent C sets w = 0 by adjusting the feeding to the anticipated need. The
need is in itself painful since:

−1
2
δn2

so we set
δ > 0

The above assumption is a direct consequence of dismissing any cost to the feeding f . Here we depart from
standard models where costs, or constraints, are imposed to an agent’s tasks.Without Agent U, Agent B and
f could be discarded from Agent C ’s equilibrium. Once Agent U is included in the system, it indirectly
manipulates Agent C through Agent B by assigning a strategic role to f . However we impose a binding
constraint on the feeding by considering f and w as complementary activities within a given time span, and
set f+w = 1, as previously mentioned. The unconscious imposes its goals f̃ and w̃ on the conscious through
perturbation terms:

−κsf (f − f̃)− ηsw (w − w̃)
driving Agent C ’s actions away from 0 and towards f̃ and w̃.

Some additional technical conditions on UC will prove convenient. We will ensure that UC is negative
definite and has an optimum by setting :

δ − ν2 > 0
Furthermore, excessive working combined with unsatisfied needs should induce a loss in Agent C utility.
This is implemented by imposing:

ν > 0 for n > 0 and w > 0
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Furthermore, excessive working combined with unsatisfied needs should induce a loss in Agent C utility.
This is implemented by imposing:

ν > 0 for n > 0 and w > 0

The utility of the unconscious Agents, conscious or unconscious, build their interpretation of a situation
- and thus its utility function - through an own, specific, grid of lecture. See ([4]) for further details.
Agent U and Agent C will therefore have two completely different interpretations of a single situation. And
while Agent C will consider f and w as optimal, Agent U will consider other levels of the conscious’ activity,
f̃ , w̃ as optimal.
Agent U ’s goals with respect to Agent C ’s activity are:

−1
2
ρ(f − f̃)2 − 1

2
γ(w − w̃)2

To insure that UU can have an optimum, we further impose ρ and γ to be positive.

Since the three agents are sub-structures of one single individual, a strain inflicted by one agent ends up
being painful for all. The costs incurred are :

−1
2

(
s2n + s

2
f + s

2
w

)

The information setup follows the order of domination among agents. For the sake of clarity we do not
present here the information set up. It will be fully described in the resolution of the general model. Agent
B, the less informed of all agents, is only aware of the strains he’s affected by. Agent C is aware of it’s own
influence on Agent B, and of the strains Agent U puts on him. Agent U , the most informed of all agents,
knows the utilities function of both Agent C and Agent B.
The instantaneous utility Ui(t +m) at time t +m reproduces the model described in previous papers. We
assume that each action taken at time t by any agent will only be perceived by the other agents at time
t+ 1.

3.10.1 Resolution

Following our general procedure in this case presents the same pattern as in the previous example. We
compute first the effective utility for the least informed agent, namely B, then for agent C and ultimately
for agent U. Then all these effective utilities are gathered to form the effective utility of the all system. All
computations are performed in Appendix 6, and they result in the following..The effective utility for the
system is:

Ueff =

(
s (t)−

(
s(3)
)
eff

)
Nii

(
s (t)−

(
s(3)
)
eff

)
−
(
s (t)−

(
s(3)
)
eff

)
Mij

(
w (t− 1)−

(
w(3)

)
eff

n (t− 1)−
(
n(3)

)
eff

)

+(1− c)w2 (t) + 2νw (t)n (t− 1) + κsf (t− 1)
(
1− w (t)− f̃

)
+ ηsw (t− 1)

(
w (t)− t̃

)

+(n (t))
2 − 2n (t)w (t− 1) + 2αn (t)

(
1 0 0

)
s (t− 1)

Appendix 6 displays the computations leading to coefficients matrices Nii,Mij and c and constants
(
s(3)
)
eff
,(

w(3)
)
eff

. The average dynamics for such system has the standard form

X (t)MX (t− 1) (34)

and the matrix M has three nul eigenvalues, and the two others satisfy:

λ = ±
√
σ2ν (d+ βν2 − bdν2)×

√
Num

Den
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with:

Num = dαβωσ4 +
(
d2α+ fωdα2β + dαβ + fd+ ωα3β2

)
σ2

+
(
dα3β − dα3β2 − d2α3β − fdα2β + α3β2 + fα2β

)

Den = d
((
bdν2 − βν2 − d

)
σ2 − r2 (β − bd)

)

×
(
dαβωσ4 +

(
d2α+ fωdα2β + dαβ + fd+ ωα3β2

)
σ2

+
(
fd2α2 − dα3β2 + dα3β − fdα2β + α3β2 + fα2β

))

where σ2 is the degree of uncertainty in agents behavior defined before when designing the effective utilities.
The interpretation is similar to [5][6] : Agent B reacts to Agent C’s feeding in a 1 to 1 ratio, and Agent

C’s will react to Agent B’s need with a ratio ν, so that both agents’ actions will be multiplied by over a
two-period horizon. Agent U’s action paying only over a two to three-periods horizon, it is irrelevant when
β = 0, and prevents Agent U from taking it. The myopic behavior among agents leads to an oscillatory
dynamics. Each agent, reacting sequentially, adjusts its action to undo other agents’ previous actions. This
describes cyclical and apparently inconsistent or irrational behaviors in the dual agent. These oscillations
may diverge or fade away with time, depending on the value of ν. When β is different from 0 but relatively
small, the system is still oscillatory. When β increases, the time concern will have an ambiguous effect on
its stability. Agent U would tend to stabilize the system through the indirect chanel, but the sensitivity of
agent C, may impair this possibility and the stability of the system depends on the relative strength of the
parameters.

However, as explained previously, our method providing an interpolation between full certainty and full
uncertainty, one can study how the parameter σ2 influences the results. To do so, we compare the results for
the classical dynamics for various degree of uncertainty σ2 in agents behaviors. We look at three examples,
mild uncertainty σ2 = 1, full uncertainty, σ2 →∞, no uncertainty σ2 → 0, which converges to the classical
case. The most interesting case for us will be σ2 = 1, the two others one being bechmarks cases. The
parameters and eigenvalues of the model for these cases are listed in Appendix 6, we only keep here the main
results.

For σ2 → 0, one finds for the system’s eigenvalues, to the second order in β:

λ = ±
√
−ν
d
= ±

√
−ν
(
1− β2

2

(
δ − ν2

))
+O

(
β3
)

and we recover the classical results as needed. This confirms the fact that in the case of no uncertainty, one
recover usual optimization results. For the interpretation of this result, see ([6]).

For σ2 →∞, one obtains:
λ = ±

√
−ν

and the interpretation is straightforward: this results is the same as for σ2 = 0, β = 0. When the agents are
facing a full uncertainty concerning the future behaviors, it behaves with a myopic reaction: reacting only
to past signals, and not anticipating about the future.

As said before, the case for σ2 = 1 is the most interesting for us, since in general it corresponds to what we
aim at modeling: agents anticipating other agents, but taking into account for uncertain intrinsic behaviors.
The computations to the second order in β, simplify to yield the following values for the parameters:

λ = ±
√
−ν − 1

2
β2
√
−ν
(
ωr2 + δ − ν2

)
+O

(
β3
)

In that case, with respect to the benchmark case σ2 → 0, the amplitude of the oscillations increase. The
agents forecasts others, and take into account their behavior in their action. But the increased internal
uncertainties increase in turn the internal fluctuations between the agents. The more uncertain the future
actions, the more agents react to the information at their diposal.
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4 General form for the effective action

Previous sections show that each agent is described by an effective utility Ueff (Xi (t) , Xj (t− 1)) and a
probability exp (Ueff (Xi (t) , Xj (t− 1))). We have seen that Ueff (Xi (t) , Xj (t− 1)) can be computed
explicitly for a quadratic utility and is then itself quadratic. If agent’s utility U

(i)
t is not quadratic, the

successive integrals defining Ueff (Xi (t) , Xj (t− 1)) do not simplify, but we propose an approximate formula
for the effective utility that we will justify from the model point of view.

Relaxing the condition of quadratic utility, we set the following intertemporal utility:

U
(i)
t = −

∑

k

βk




V (i)i (Xi (t+ k)) +

∑

j<i

(
V
(i)
j (Xj ((t+ k)− 1))

)
+ 2Xi ((t+ k))A

(i)
ij (Xj ((t+ k)− 1))






+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

Where V
(i)
i (Xi (t)) and V

(i)
j (Xj (t− 1)) are agents i and j arbitrary utilities. We have kept quadratic

interaction terms (or linear response) between agents. We assume that each agent respond linearly to the
external perturbations.

It is useful to rewrite U
(i)
t with the variables Yi (t) introduced in the previous section, adding the possibility

of an inertia term ε
(i)
ii :

U
(i)
t =

∑

k>0

Yi (t+ k)

(
A
(i)
ii 0
0 0

)
Yi (t+ k) + Yi (t+ k − 1)

(
−ε(i)ii 0

0 βA
(i)
{jj}

)
Yi (t+ k − 1) (35)

+Yi (t+ k)

(
0 β

1
2A

(i)
ij

β
1
2A

(i)
ji 0

)
Yi (t+ k − 1)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1)) +

∑

k>0

βkV
(i)
i

(
Xi (t+ k)

β
k
2

)
+
∑

j<i

(
V
(i)
j

(
Yj ((t+ k)− 1)

β
k−1
2

))

Using the procedure given in the first section, we find recursively the effective utility Ueff (Xi (t)). It is
computed trough the integrals in (9):

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

) ∏

rk(j)<rk(i)

∏

s>t

exp


∑

s>t

Ueff (Xj (s))

σ2


 dXj (s)

and depends on the effective utility Ueff (Xj (s)) where rk (j) < rk (i). We prove in appendix 6.b that
Ueff (Xj (s)) has the form:

Ueff (Xi (t)) = Yj (t)

(
Nii 0
0 0

)
Yj (t)− 2Yj (t)

(
Mii Mij

0 0

)
Yj (t− 1) + V (j)eff (Yj (t)) (36)

+
∑

k>j

2Xj (t)A
(j)
jk (Xk (t− 1))

where V
(j)
eff (Xj (t)) is some function ofXj (t) that depends on the potentials V

(i)
i (Xi (t)) and V

(i)
j (Xj (t− 1)).

This is very similar to the quadratic case, where an additional potential has been added. The proof is similar
to the one given in Appendix 2.

Gathering the terms in the exponentials, the whole system is modelled by the probability weight:

exp


∑

j

∑

s

Ueff (Xj (s))


 (37)

= exp


∑

j

∑

s


 Yj (t)

(
Nii 0
0 0

)
Yj (t)− 2Yj (t)

(
Mii Mij

0 0

)
Yj (t− 1) + V (j)eff (Yj (t))

+
∑

k>j 2Xj (t)A
(j)
jk (Xk (t− 1))





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as needed to show the recursive form of (36). The fact that the effective action is very similar to the one
obtained for the quadratic case, allows to find directly the effective action fo the system as a whole (without
normalization). It is obtained by adding to the quadratic action the corrections due to the effective potentials:

Ueff (Xj (t)) =
1

2

(
X (t)− X̄e

)
N
(
X (t)− X̄e

)
−
(
X (t)− X̄e

)M +O√
β

(
X (t− 1)− X̄e

)
+Veff (X (t)) (38)

where:
Veff (X (t)) =

∑

j

V
(j)
eff (Xj (t))

The inclusion of an intertemporal constraint will be modeled in ad hoc way by adding a term

∑

j

∫
Xj (s)Xi (t) dsdt

in the effective utility, for a final result:

Ueff (Xi (t)) =
∑

j6i

−1
2
Ẋi (t)MijẊj (t)− V (i)eff (Xi (t)) +

∑

j

∫
Xj (s)Xi (t) dsdt

4.1 Extensions: measure of uncertainty and optimal control

Our formalism allows to recover, in the limit of no "internal uncertainty" for the agents, the usual opti-
mization dynamics of system. But our formalism may encompass other kinds of models : actually, models
including an exogenous dynamics for a state variable which is accessible only through an indicator variable
would fit our set up provided that we extend our basic model of interaction between agents. This extension
will include a particular type of uncertainty of information for every agent about other structures which is
an intermediate possiblity between full/no information.

4.1.1 Exogenous dynamics, indicator variables and Kalman filters

Consider a dynamic system for an arbitrary variable Xj (t) (the "state of the world"):

Xj (t) = AXj (t− 1) +BXi (t− 1) + εj (t) (39)

with gaussian shocks εj (t) of variance covariance matrix Σ. The vector Xi (t) is the control variable for an
agent "i" that influences Xj (t) and is in turn influenced by Xj (t). This type of model appears for example
in neuroscience motor control theory. Agent i has an - instantenous - objective function

Xi (t)A
(i)
ii Xi (t) +Xj (t− 1)A(j)ii Xj (t− 1)

similar to the one studied in Appendix 4. However the difference here is that agent i does not measure
directly Xj (t− 1) at time t, but only an indicator function Zj (t− 1) related to Xj (t) through:

Zj (t) = HXj (t) + ωj (t)

where ωj (t) is gaussian of variance covariance matrix Ω.
This model fits in our context providing few modifications. First, the state of the world Xj (t) can be

considered as describing a single non strategic agent - or equivalently as an aggregate of such agents - and
as such have no forward looking plan with respect to "i". The statistic weight associated with (39) is:

exp
(
− (Xj (t)−AXj (t− 1)−BXi (t− 1))tΣ−1 (Xj (t)−AXj (t− 1)−BXi (t− 1))

)
(40)

Actualy, (Xj (t)−AXj (t)−BXi (t)) is gaussian with variance covariance matrix Σ. The probability asso-
ciated to Xj (t) is thus proportionnal to (40).
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This set up is thus encompassed in the two agents model developed in Appendix 4. Since the weight (40)
represents a probability at time t , the method used to derive (26) can be applied here, and the contributions
depending only on t− 1 in (40) can be discarded. As a consequence, (40) is equivalent to:

exp
(
− (Xj (t))

t
Σ−1Xj (t) + 2 (Xj (t))

t (
Σ−1A

)S
Xj (t− 1) + 2 (Xj (t))

t (
Σ−1B

)S
Xi (t− 1)

)
(41)

where
(
Σ−1A

)S
and

(
Σ−1B

)S
are the symetrization of Σ−1A and Σ−1B.

Since agent j is not strategic, its effective utility (41) can be rewritten as:

(Xj (t))
t
A
(j)
jj Xj (t) + 2 (Xj (t))

t
ε
(j)
jj Xj (t− 1) + 2 (Xj (t))

t
A
(j)
ji Xi (t− 1)

with:

ε
(j)
jj =

(
Σ−1A

)S

A
(j)
ji =

(
Σ−1B

)S

The effective action for agent i can thus be directly taken from Appendix 4, except that Xj (t− 1) being
unknown, it will be replaced by Xj (t− 1 | t− 1), agent i forecast of Xj (t− 1) given all its information at
the beginning of period t, i.e. Zj (t− 1) and Xi (t− 1).

Ueff (Xi (t)) = −
(
(Xi (t))i

MS
ii√
β
Xi (t− 1)

)
−
(
(Xi (t))

MS
ij√
β
Xj (t− 1 | t− 1)

)
+
1

2
(Xi (t))

t
(Nii)Xi (t)

(42)
with:

Nii =
√
βA

(j)
ij

((
G (Vl)

t
)((

VlA
(j)
ji

)t)−1(((
V (1)m , 0

)
A
(j)
ji

)t)
, G
((
0, V

(1)
l

))t
)
+ 1

−
√
βA

(j)
ij


Θ+∆

({
−ε(j)jj
2

})−1((
VlA

(j)
ij

)t)(
G (Vl)

t
)−1



−1

×
√
β

{
−ε(j)jj
2

}((
G (Vl)

t
)((

VlA
(j)
ji

)t)−1(((
V (1)m , 0

)
A
(j)
ji

)t)
, G
((
0, V

(1)
l

))t
)

Mii = − (Nii) ΓΘ−1
(
∆
(
G (Vl)

t
)((

VlA
(j)
ij

)t)−1
{
−ε(j)jj
2

}
(
Θt
)−1

+ 1

)
Γt

Mij = − (Nii) ΓΘ−1
(
∆
(
G (Vl)

t
)((

VlA
(j)
ij

)t)−1
{
−ε(j)jj
2

}
+Θt

)

where the matrices E, F , G are defined as a function of H:

E =



√
βA

(j)
ij






√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
G+

√
βA

(j)
ji

)

−B12G




(43)

F =
√
βA

(j)
ij



√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

(44)

×



{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j






−B12H
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G = H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

A
(j)
ji (45)

and H satisfies a quadratic equation. Defining:

H ′ = H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

+
√
β
(
A
(j)
jj

)−1
eff

the relation defining H ′ and then H is:








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
+
√
β

(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)−1)

×








−
(
ε
(j)
{jk}j>k

)
eff

2
, A

(j)
{jk}i>k>j








−1

= β
(
A
(j)
jj

)−1
eff

−
√
β
(√

βA
(j)
ji A

(j)
ij + (H

′)
−1
)−1

(46)

The matrix Vl is defined such that dim (Vl) = dim
(
A
(i)
ji

)
= m × (m+ k) (m and k are given by the

problem), and Vl is the concatenation in column of a nul m × k matrix and m ×m identity. The matrix(
V
(1)
m , 0

)
is the concatenation in column of V

(1)
m which is m × k matrix with the m ×m nul matrix. The

matrix V
(1)
m is the concatenation in line of a k×k identity and a (m− k)×k nul matrix if m > k. Otherwise

it is the concatenation in column of a m×m identity and a m× (k −m) nul matrix if m < k.
We also define:

(
G (Vl)

t
)

= X−1
(
VlA

(j)
ij

)t
, G = X−1

(
A
(j)
ij

)t

Γ =
√
βA

(j)
ij , Θ =

√
β

{
−ε(j)jj
2

}

∆ =
{
βA

(i)
jj +

(
A
(j)
jj

)
+B22

}

B22 = β
((
ε
(j)
jj

))t (
A
(j)
jj

)−1 (
ε
(j)
jj

)

where the matrix X solves:
((√

βX−1 + β
(
A
(j)
jj

)−1
eff

)
A
(j)
ji A

(j)
ij + 1

)

×



({

−ε(j)jj
2

})−1(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
+
√
βX

)({−ε(j)jj
2

})−1
− β

(
A
(j)
jj

)−1
eff




= −
(
β
(
A
(j)
jj

)−1
eff

+
√
βX−1

)

The solution is unique, since it is imposed to have a series expansion in β that fits with the β = 0 case.
With matrices Nii M

S
ii and M

S
ij at hand, we find the usual reaction function for agent i by assuming

full certainty about agent i′s behavior. Under the assumption of the variance of its effective action being
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nul, agent’s i action is given by it’s quadratic action minimum, and its response to agent j is given by the
optimization of (42)

Xi (t) =

(
(Nii)

−1
MS
ii√

β
Xi (t− 1)

)
+

(
(Nii)

−1
MS
ij√

β
Xj (t− 1 | t− 1)

)
(47)

= ΞXi (t− 1) + ΥXj (t− 1 | t− 1)

supplemented by:
Xj (t) = AXj (t− 1) +BXi (t− 1) + εj (t) (48)

Zj (t) = HXj (t) + ωj (t) (49)

with ωj (t) an unknown error of (known) variance matrix Ω.
These three equations, respectively for the state variable Xj (t), the indicator variable Zj (t) and the

reaction function Xi (t) for agent i, describe the system in interaction.
We also assume, as is usually done in this type of model, that expectations for Xj (t) are updated through

a linear projection ([9] 13.12.13):

Xj (t | t) = Xj (t | t− 1) +K (Zj (t)− Zj (t | t− 1)) (50)

with:

K = E
(
(Xj (t)−Xj (t | t− 1)) (Zj (t)− Zj (t | t− 1))t

)
×
{
E
(
(Zj (t)− Zj (t | t− 1)) (Zj (t)− Zj (t | t− 1))t

)}−1

= Pt|t−1H
(
HtPt|t−1H +Ω

)−1

and Pt|t−1 is defined as:

Pt|t−1 = E
(
(Xj (t)−Xj (t | t− 1)) (Xj (t)−Xj (t | t− 1))t

)

and where (49) has been used.
Given (49), equation (50) is also equivalent to:

Xj (t | t) = Xj (t | t− 1) +KH (Xj (t)−Xj (t | t− 1)) +Kωj (t) (51)

To solve the dynamics of system, we proceed by finding the Kalman matrix K and the form of the expecta-
tions:

To find Pt|t−1 and K, we follow [9] and first define an other squared expectation denoted Pt|t, given by:

Pt|t = E
(
(Xj (t)−Xj (t | t)) (Xj (t)−Xj (t | t))t

)

Using eq. 4.5.31 and 13.12.16 in [9]

Pt|t = E
(
(Xj (t)−Xj (t | t)) (Xj (t)−Xj (t | t))t

)

= E
(
(Xj (t)−Xj (t | t− 1)) (Xj (t)−Xj (t | t− 1))t

)

−E
(
(Xj (t)−Xj (t | t− 1)) (Zj (t)− Zj (t | t− 1))t

)

×
(
E
(
(Zj (t)− Zj (t | t− 1)) (Zj (t)− Zj (t | t− 1))t

))−1

×E
(
(Zj (t)− Zj (t | t− 1)) (Xj (t)−Xj (t | t− 1))t

)

or, using (49):

Pt|t = Pt|t−1 − Pt|t−1H
(
HtPt|t−1H +Ω

)−1
HtPt|t−1 (52)
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To find the terms Pt|t and Pt|t−1, we first use (48)

Xj (t+ 1) = AXj (t) +BXi (t) + εj (t+ 1)

and introduce the dynamic equation (47), which leads to:

Xj (t+ 1) = AXj (t) +B (ΞXi (t− 1) + ΥXj (t− 1 | t− 1)) + εj (t+ 1)
and then, one obtains an expression for Pt+1|t as a function of Pt|t and an expression for Pt+1|t as a function
of Pt|t:

Pt+1|t = E
(
(Xj (t+ 1)−Xj (t+ 1 | t)) (Xj (t+ 1)−Xj (t+ 1 | t))t

)

= AE
(
(Xj (t)−Xj (t | t)) (Xj (t)−Xj (t | t))t

)
At +Σ

= APt|tA
t +Σ

which leads, using (52), to the dynamic equation for Pt+1|t:

Pt+1|t = A
(
Pt|t−1 − Pt|t−1H

(
HtPt|t−1H +Ω

)−1
HtPt|t−1

)
At +Σ

Given our system we look for a stationary solution that is Pt+1|t = P which satisfies:

P = A
(
Pt|t−1 − Pt|t−1H

(
HtPt|t−1H +Ω

)−1
HtPt|t−1

)
At +Σ

The Kalman Matrix is then given by:

K = PH
(
HtPH +Ω

)−1

Having found K, the system reduces to:

Xi (t) = ΞXi (t− 1) + ΥXj (t− 1 | t− 1)
Xj (t) = AXj (t− 1) +BXi (t− 1) + εj (t)
Zj (t) = HXj (t) + ωj (t)

Xj (t | t) = Xj (t | t− 1) +K (Zj (t)− Zj (t | t− 1))
= Xj (t | t− 1) +KH (Xj (t)−Xj (t | t− 1)) +Kωj (t)
= (1−KH)Xj (t | t− 1) +KHXj (t) +Kωj (t)

The variable Xj (t | t− 1) is found by taking the expectation by agent i at time t− 1 of equation (48):
Xj (t | t− 1) = AXj (t− 1 | t− 1) +BXi (t− 1)

We are thus left with a system with three dynamic variables:

Xi (t) = ΞXi (t− 1) + ΥXj (t− 1 | t− 1)
Xj (t) = AXj (t− 1) +BXi (t− 1) + εj (t)

Xj (t | t) = (1−KH)AXj (t− 1 | t− 1) + (1−KH)BXi (t− 1) +KHXj (t) +Kωj (t)

= (1−KH)AXj (t− 1 | t− 1) +KHAXj (t− 1) +BXi (t− 1) +Kωj (t) +KHεj (t)
of matricial form:



Xi (t)
Xj (t)
Xj (t | t)


 =



Ξ 0 Υ
B A 0
B KHA (1−KH)A






Xi (t− 1)
Xj (t− 1)

Xj (t− 1 | t− 1)


+




0
εj (t)

Kωj (t) +KHεj (t)




whose solution for dynamic starting at t = 0 is:



Xi (t)
Xj (t)
Xj (t | t)


 =

t∑

s=0



Ξ 0 Υ
B A 0
B KHA (1−KH)A



t−s


0
εj (s)

Kωj (s) +KHεj (s)



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4.1.2 Uncertainty in observations and agents interactions

We have used our formalism to model the interaction between an uncertain exogenous medium and an
optimizing agent. The reverse point of view is straightforward to develop, in order to introduce some
uncertainty of measurement in our formalism.

For the general form of effective utility (53) in the quadratic case, introducing uncertainty in the infor-
mation agent i receives from other agents j amounts to replacing past actions Xj (t− 1) by Xj (t− 1 | t− 1).
We thus obtain

Ueff (Xi (t)) = Yj (t)

(
Nii 0
0 0

)
Yj (t)− 2Yj (t)

(
Mii Mij

0 0

)
Yj

(
t− 1 | (t− 1)i

)
(53)

+
∑

k>i

2Xj (t)A
(j)
jk Xk

(
t− 1 | (t− 1)i

)

where Yj

(
t− 1 | (t− 1)i

)
denotes agent i forecast of Yj (t− 1) at t−1. The statistical weight exp (Ueff (Xi (t)))

associated to agent Xi (t) implies that the reaction function of agent i is given by:

Xi (t) = (Nii)
−1
MiiXi (t− 1) +

∑

j<i

(Nii)
−1
MijXj

(
t− 1 | (t− 1)i

)
+
∑

k>i

A
(j)
jk Xk

(
t− 1 | (t− 1)i

)
+ εi (t)

(54)

with εi (t) of variance (Nii)
−1
.

The forecasts Xj

(
t− 1 | (t− 1)i

)
and Xk

(
t− 1 | (t− 1)i

)
are obtained as in the previous paragraph

through indicator variables and Kalman matrices. We also assume indicator variables for Xj (t− 1) and
Xk (t− 1):

Zj (t) = HjXj (t) + ωj (t) (55)

Zk (t) = HkXk (t) + ωk (t)

where ωj (t) and ωk (t) have variances Ωj and Ωk respectively. For the sake of simplicity we will assume
all agents have common indicator variables. However some specialized indicators to some of agents could be
introduced. To be consistent with our previous assumptions, we assume that agent i has no information
about Xk (t) apart from Zk (t), and that:

Xk

(
t− 1 | (t− 1)i

)
= Zk (t) = HkXk (t) + ωk (t) (56)

a random variable of variance:
HΩ̂kH

t + (Nkk)
−1

Up to some details, the forecasting procedure is thus the same. Agent i faces an exogenous dynamic given
agents j, j < i and k is perceived as a random shock. For i the dynamic of the "state of world" is then:

X
(i)
j (t) = (Njj)

−1
MjjXj (t− 1)+

∑

l<j

(Njj)
−1
MjlXl

(
t− 1 | (t− 1)j

)
+
∑

i>l>j

A
(j)
jl Xl

(
t− 1 | (t− 1)j

)
+εj (t)

(57)
Given our initial (first section) assumptions, the actions of agents l > i, being unknown to i, are discarded.

The vector X
(i)
j (t) is the dynamic for j anticipted by i which is different from Xj (t), given the terms for

l > i that have been discarded)). Then:

X
(i)
j

(
t | (t− 1)i

)
= (Njj)

−1
MjjXj

(
t− 1 | (t− 1)i

)
+
∑

l<i

(Njj)
−1
MjlX

(i)
l

(
t− 1 | (t− 1)j

)

+
∑

i>l>j

A
(j)
jl X (i)l

(
t− 1 | (t− 1)j

)
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Note that agent i having more information than agent j we have used that Xl

(
t− 1 | (t− 1)j | (t− 1)i

)
=

Xl

(
t− 1 | (t− 1)j

)
in the previous expression.

As before, the actualization of forecast is given by (we remove temporarily the upperscript (i) in the
forecast):

Xj (t | t) = Xj (t | t− 1) +K (Zj (t)− Zj (t | t− 1)) (58)

with:

K = E
(
(Xj (t)−Xj (t | t− 1)) (Zj (t)− Zj (t | t− 1))t

)

×
{
E
(
(Zj (t)− Zj (t | t− 1)) (Zj (t)− Zj (t | t− 1))t

)}−1

= Pt|t−1Hj

(
Ht
jPt|t−1Hj +Ω

)−1

and Pt|t−1 is defined as:

Pt|t−1 = E
(
(Xj (t)−Xj (t | t− 1)) (Xj (t)−Xj (t | t− 1))t

)

and where (55) has been used. Given (55), equation (58) is also equivalent to:

Xj (t | t) = Xj (t | t− 1) +KHj (Xj (t)−Xj (t | t− 1)) +Kωj (t) (59)

Following the same procedure as in the previous paragraph, one finds the Kalman matrix K, by defining Pt|t
which is given by:

Pt|t = E
(
(Xj (t)−Xj (t | t)) (Xj (t)−Xj (t | t))t

)

that satisfies
Pt|t = Pt|t−1 − Pt|t−1Hj

(
Ht
jPt|t−1Hj +Ω

)−1
Ht
jPt|t−1 (60)

Now, we use the dynamics equations (57) and (54) to find Pt|t and Pt|t−1. Starting with (57)

X
(i)
j (t) = (Njj)

−1
MjjXj (t− 1) +

∑

l<j

(Njj)
−1
MjlX

(i)
l

(
t− 1 | (t− 1)j

)
(61)

+
∑

i>l>j

A
(j)
jl X

(i)
l

(
t− 1 | (t− 1)j

)
+ εj (t)

and then, since

∑

l<j

(Njj)
−1
MjlX

(i)
l

(
t− 1 | (t− 1)j

)
+
∑

i>l>j

A
(j)
jl X

(i)
l

(
t− 1 | (t− 1)j

)

is known to agent i at time t− 1 (agent i has more information than agent j), then



∑

l<j

(Njj)
−1
MjlX

(i)
l

(
t− 1 | (t− 1)j

)
+
∑

i>l>j

A
(j)
jl X

(i)
l

(
t− 1 | (t− 1)j

)

 | (t− 1)i




=
∑

l<j

(Njj)
−1
MjlX

(i)
l

(
t− 1 | (t− 1)j

)
+
∑

i>l>j

A
(j)
jl X

(i)
l

(
t− 1 | (t− 1)j

)

one thus obtain an expression for Pt+1|t as a function of Pt|t:

Pt+1|t = E

((
X
(i)
j (t+ 1)−X(i)

j (t+ 1 | t)
)(

X
(i)
j (t+ 1)−X(i)

j (t+ 1 | t)
)t)

=
(
(Njj)

−1
Mjj

)
E

((
X
(i)
j (t)−X(i)

j (t | t)
)(

X
(i)
j (t)−X(i)

j (t | t)
)t)(

(Njj)
−1
Mjj

)t
+ (Njj)

−1

=
(
(Njj)

−1
Mjj

)
P tt|t

(
(Njj)

−1
Mjj

)
+ (Njj)

−1
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Leads, using (60), to the dynamic equation for Pt+1|t . We reintroduce now an index j to recall that the
probabitity Pt+1|t is computed for Xj and an index i to stand for the fact that the expectations are computed
by agent i:

P
i,j

t+1|t =
(
(Njj)

−1
Mjj

)(
P
i,j

t|t−1 − P
i,j

t|t−1Hj

(
Ht
jP

i,j

t|t−1Hj +Ω
)−1

Ht
jP

i,j

t|t−1

)(
(Njj)

−1
Mjj

)t
+ (Njj)

−1

Given our system, we look for a stationary solution, Pt+1|t = P , which satisfies:

P i,j =
(
(Njj)

−1
Mjj

)(
P i,j − P i,jHj

(
Ht
jP

i,jHj +Ω
)−1

Ht
jP

i,j
)(
(Njj)

−1
Mjj

)t
+ (Njj)

−1

The Kalman Matrix is given by:

Ki,j = P i,jHj

(
Ht
jP

i,jHj +Ω
)−1

which produces the forecast

X
(i)
j

(
t | (t)i

)
= X

(i)
j

(
t | (t− 1)i

)
+Ki,j

(
Zj (t)− Zj

(
t | (t− 1)i

))

= X
(i)
j

(
t | (t− 1)i

)
+Ki,jHj

(
Xj (t)−X(i)

j

(
t | (t− 1)i

))
+Ki,jHjωj (t)

which, using (61) and (56), is equal to:

X
(i)
j

(
t | (t)i

)
= X

(i)
j

(
t | (t− 1)i

)
+Ki,j

(
Zj (t)− Zj

(
t | (t− 1)i

))

= X
(i)
j

(
t | (t− 1)i

)
+Ki,jHj (Njj)

−1
Mjj

(
X
(i)
j (t− 1)−X(i)

j

(
t− 1 | (t− 1)i

))

+Ki,jHj (ωj (t) + εi (t))

= (Njj)
−1
MjjX

(i)
j

(
t− 1 | (t− 1)i

)
+
∑

l<j

(Njj)
−1
MjlX

(i)
l

(
t− 1 | (t− 1)j

)

+
∑

i>l>j

A
(j)
jl X

(i)
l

(
t− 1 | (t− 1)j

)

+Ki,jHj (Njj)
−1
Mjj

(
X
(i)
j (t− 1)−X(i)

j

(
t− 1 | (t− 1)i

))

+Ki,jHj (ωj (t) + εi (t))

= Ki,jHj (Njj)
−1
MjjX

(i)
j (t− 1) +

(
1−Ki,jHj

)
(Njj)

−1
MjjX

(i)
j

(
t− 1 | (t− 1)i

)

+
∑

l<j

(Njj)
−1
MjlX

(i)
l

(
t− 1 | (t− 1)j

)
+
∑

i>l>j

A
(j)
jl (HlXl (t− 1) + ωl (t− 1))

+Ki,jHj (ωj (t) + εi (t))

and, supplemented by the three equations:

Xi (t) = (Nii)
−1
MiiXi (t− 1) +

∑

j<i

(Nii)
−1
MijX

(i)
j

(
t− 1 | (t− 1)i

)
(62)

+
∑

k>i

A
(j)
jk Xk

(
t− 1 | (t− 1)i

)
+ εi (t)

= (Nii)
−1
MiiXi (t− 1) +

∑

j<i

(Nii)
−1
MijX

(i)
j

(
t− 1 | (t− 1)i

)

+
∑

k>i

A
(j)
jk (HkXk (t− 1) + ωk (t− 1)) + εi (t)
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X
(i)
j (t) = (Njj)

−1
MjjX

(i)
j (t− 1) +

∑

l<j

(Njj)
−1
MjlX

(i)
l

(
t− 1 | (t− 1)j

)

+
∑

i>l>j

A
(j)
jl X

(i)
l

(
t− 1 | (t− 1)j

)
+ εj (t)

= (Njj)
−1
MjjX

(i)
j (t− 1) +

∑

l<j

(Njj)
−1
MjlX

(i)
l

(
t− 1 | (t− 1)j

)

+
∑

i>l>j

A
(j)
jl (HlXl (t− 1) + ωl (t− 1)) + εj (t)

X
(i)
l6j

(
t | (t)j

)
= X

(i)
l6j

(
t | (t− 1)j

)
+Kj,l

(
Zl (t)− Zl

(
t | (t− 1)l

))

= Kj,lHl (Nll)
−1
MllX

(i)
l (t− 1) +

(
1−Kj,lHl

)
(Nll)

−1
MllX

(i)
l

(
t− 1 | (t− 1)j

)

+
∑

p<l

(Nll)
−1
MlpX

(i)
l

(
t− 1 | (t− 1)j

)

+
∑

j>p>l

A
(j)
lp (HpXp (t− 1) + ωp (t− 1)) +Kj,lHl (ωl (t) + εj (t))

leads to the dynamic system:




Xi (t)

X
(i)
{j} (t)

X
(i)
{j}

(
t | (t)i

)

X
(i)
{l6j}

(
t | (t)j

)




=




(Nii)
−1
Mii 0 (Nii)

−1
Mij 0

A
(j)
ji Hi

{
(Njj)

−1
Mjj ,{

A
(j)
{jl}Hl

}
l>j

}
0

{(
N{jj}

)−1
M{jl}l<j

}

A
(j)
ji Hi

{
Ki,jHj (Njj)

−1
Mjj ,{

A
(j)
{jl}Hl

}
l>j

} { (
1−Ki,jHj

)
(Njj)

−1
Mjj ,(

N{jj}
)−1

M{jl}l<i

} {(
N{jj}

)−1
M{jl}l<j

}

0

{
Kj,lHl (Nll)

−1
Mll,{

A
(j)
lp Hp

}
j>p>l

}
0

{ {
(Nll)

−1
Mlp

}
p<l

,
(
1−Kj,lHl

)
(Nll)

−1
Mll

}




×




Xi (t− 1)
X
(i)
{j} (t− 1)

X
(i)
{j}

(
t− 1 | (t− 1)i

)

X
(i)
{l6j}

(
t− 1 | (t− 1)j

)



+




∑
k>iA

(j)
jk (HkXk (t− 1) + ωk (t− 1))∑
i>l>j A

(j)
jl ωl (t− 1) + εj (t)∑

i>l>j A
(j)
jl ωl (t− 1) +Ki,jHj (ωj (t) + εi (t))∑

j>p>lA
(j)
lp ωp (t− 1) +Kj,lHl (ωl (t) + εj (t))




5 Transition functions (Green functions)

5.1 General form for the transition function

As explained previously, the mean path dynamics, i.e. the mean time evolution of the interacting agents, is
obtained as the saddle path solution of the effective action of the interacting system. This saddle path is
relatively easy to compute since all anticipations and forwardlookingness have been absorbed in the effective
action. However we have also seen that (11) the path integral of the effective action allows to model the
stochastic nature of the interacting system. It provides more precise results about the agents actions’
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fluctuations and their transition probability between two states, thus allowing to represent the stochastic
paths associated to the system. Moreover, Because this approach will also prove important when we shift
to the field representation for a large number of agents, this section will detail the form of the transition
functions, and their interpretation.

To do so, let us start with the system as a whole. As in (11) we define:

X (t) = (Xi (t))

the concatenated vector of all theXi (t) with i running on the set of all agents. Moreover, Ueff

(
(Xi (t)) ,

(
Ẋi (t)

))

is the total effective action found in the first section (see (32)):

expUeff (X (t)) = exp

{
−
(
1

2

(
X (t)− X̄e

)
N
(
X (t)− X̄e

)
−
(
X (t)− X̄e

)
M
(
X (t− 1)− X̄e

))}

where we redefined O+M√
β
as M . The quantity:

P
((
X0 (t+ k)

)
|
(
X0 (t)

))
=

∫ Xi(t+k)=(X0
i (t+k))

Xi(t)=(X0
i )

exp

(∫
Ueff

(
X (t) , Ẋ (t)

))
D (X (t)) (63)

is the transition probability from a state
(
X0
)
of the global system at time t, to a state

(
X0
)
at time t+ k.

To understand better this quantity, it is useful to use a continuous time representation. To do so, we
first rewrite the quadratic effective utility in a convenient manner. In the formula (32):

Ueff (X (t)) = −
(
1

2

(
X (t)− X̄e

)
N
(
X (t)− X̄e

)
−
(
X (t)− X̄e

) M√
β

(
X (t− 1)− X̄e

))

Decompose M = MS +MA where MS and MA are symetric and antisymetric respectively. Then, since
Ueff (X (t)) will be summed over t, rewrite the first contribution to

∑
t Ueff (X (t)):

∑

t

1

2

(
X (t)− X̄e

)
N
(
X (t)− X̄e

)

as:

∑

t

1

2

(
X (t)− X̄e

)
N
(
X (t)− X̄e

)

=
∑

t

(
1

4

(
X (t)− X̄e

)
N
(
X (t)− X̄e

)
+
1

4

(
X (t+ 1)− X̄e

)
N
(
X (t+ 1)− X̄e

))

=
∑

t

(
X (t) +X (t+ 1)

2
− X̄e

)
N

(
X (t) +X (t+ 1)

2
− X̄e

)
+
1

4
(X (t+ 1)−X (t))N (X (t+ 1)−X (t))

On the other hand, the second contribution in Ueff (X (t)) can be transformed by expressing the symetric
part of

(
X (t)− X̄e

)
M√
β

(
X (t− 1)− X̄e

)
as:

(
X (t)− X̄e

)MS

√
β

(
X (t− 1)− X̄e

)

=

(
X (t) +X (t+ 1)

2
− X̄e

)
MS

√
β

(
X (t) +X (t+ 1)

2
− X̄e

)
− 1
4
(X (t+ 1)−X (t))M

S

√
β
(X (t+ 1)−X (t))

Ultimately, the remaining term in Ueff

(
X (t) , Ẋ (t)

)

(
X (t)− X̄e

)MA

√
β

(
X (t− 1)− X̄e

)
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can be rewritten:

(
X (t)− X̄e

)MA

√
β

(
X (t− 1)− X̄e

)

=
1

2

(
X (t)− X̄e

)MA

√
β

(
X (t− 1)− X̄e

)
+
1

2

(
X (t)− X̄e

)MA

√
β

(
X (t− 1)− X̄e

)

=
1

2

(
X (t)− X̄e +

(
X (t− 1)− X̄e

))MA

√
β

(
X (t− 1)− X̄e

)
+
1

2

(
X (t)− X̄e

)MA

√
β

(
X (t− 1)− X̄e +

(
X (t)− X̄e

))

=

(
X (t) +X (t− 1)

2
− X̄e

)
MA

√
β

(
X (t− 1)− X̄e

)
+
(
X (t)− X̄e

)MA

√
β

(
X (t) +X (t− 1)

2
− X̄e

)

since MA is antisymetric. And thus,

(
X (t)− X̄e

)MA

√
β

(
X (t− 1)− X̄e

)

= (X (t)−X (t− 1))M
A

√
β

(
X (t) +X (t− 1)

2
− X̄e

)

Gathering these terms allow to write ultimately:

∑

t

Ueff (X (t)) =

(
X (t) +X (t+ 1)

2
− X̄e

)(
N − MS

√
β

)(
X (t) +X (t+ 1)

2
− X̄e

)

+
1

4
(X (t+ 1)−X (t))

(
N +

MS

√
β

)
(X (t+ 1)−X (t))

− (X (t)−X (t− 1))M
A

√
β

(
X (t) +X (t− 1)

2
− X̄e

)

We can then switch to a continuous time formulation of the effective action by using the mid point approxi-

mation between X (t) and X (t+ 1), that is replacing X(t)+X(t+1)
2 with X (t) (and t is a continuous variable)

and introducing
Ẋ (t) = X (t)−X (t− 1)

so that
∑

t Ueff (X (t)) becomes:

∫ [(
X (t)− X̄e

)(
N − MS

√
β

)(
X (t)− X̄e

)
+
1

4
Ẋ (t)

(
N +

MS

√
β

)
Ẋ (t) +

(
X (t)− X̄e

)MA

√
β
Ẋ (t)

]
dt

If we add a potential Veff (X (t)) with:

Veff (X (t)) =
∑

j

V
(j)
eff (Xj (t))

then (we include the factor
(√
β
)−1

in the definition of MS and MA):

Ueff (X (t)) =

∫ (
1

4
Ẋ (t)

(
N +MS

)
Ẋ (t) +

(
X (t)− X̄e

) (
N −MS

) (
X (t)− X̄e

)
(64)

+
(
X (t)− X̄e

)
MAẊ (t) + Veff (X (t))

)
dt

and the path integral defining the transition probability between two states is:

P
(
X1, t+ s | X0, t

)
(65)

=

∫
exp

(∫ X(t+s)=X1

X(t)=X0

∑

i

(
1

4
Ẋ (t)

(
N +MS

)
Ẋ (t) +

(
X (t)− X̄e

) (
N −MS

) (
X (t)− X̄e

)

+
(
X (t)− X̄e

)
MAẊ (t) + Veff (X (t))

))
D (X (t))
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External perturbations - shocks - may be added by the mean of a linear term X (t) J (t) often refered to
as "the source terme". It describes the linear response of the system to a general and arbitrary external
perturbation. The form of the transition function, or Green function, in (65) allows to compute, analyticaly
for a quadratic effective action, or as a series expansion (see below) when Veff (X (t)) is introduced, the
stochastic pattern of a system deviating from it’s static equilibrium X̄e.

5.2 Transition function for the quadratic case

Putting aside the perturbations V (Xi (t)) + X (t) J (t), but keeping the quadratic potential term which is
relevant for usual dynamic systems, the Green function associated to
∫ t

0

dtU
quad
eff (X (t)) =

1

4
Ẋ (t)

(
N +MS

)
Ẋ (t)+

(
X (t)− X̄e

) (
N −MS

) (
X (t)− X̄e

)
+Ẋ (t)MA

(
X (t)− X̄e

)

(66)
is obtained in a way similar to the discrete case arising in the individual agent problem (basic example of the
first section or Appendix 2 ). Since the effective utility (66) is quadratic, the computation of (65) reduces to
a saddle point computation. We thus need to compute (66) for a classical solution Xc of the Euler Lagrange
equation :

1

2

(
N +MS

)
Ẍ (t) +

((
M (A)

)t
−M (A)

)
Ẋ (t)− 2

(
N −MS

) (
X (t)−

(
X̃
))
= 0 (67)

That will be inserted in the action:

−
(
1

4
Ẋ (t)

(
N +MS

)
Ẋ (t) +

(
X (t)− X̄e

) (
N −MS

) (
X (t)− X̄e

)
+ Ẋ (t)MA

(
X (t)− X̄e

))

with initial conditions:
X (t) = X0 and X (t+ s) = X1

and the exponential of the result, after a suitable normalization, will be P
(
X1, t+ s | X0, t

)
.

∫ t

0

dtU
quad
eff (Xc (t))

= −
∫ t

0

(
1

4
Ẋ (t)

(
N +MS

)
Ẋ (t) +

(
X (t)− X̄e

) (
N −MS

) (
X (t)− X̄e

)
+ Ẋ (t)MA

(
X (t)− X̄e

))
dt

= −
[
1

4
Ẋc (t)

(
N +MS

)
Xc (t)

]t

0

+

∫ t

0

(
1

4
Xc (t)

(
N +MS

)
Ẍc (t)−

(
Xc (t)− X̄e

)
MAẊc (t)−

(
Xc (t)− X̄e

) (
N −MS

) (
Xc (t)− X̄e

))
dt

Given, the equation of motion for Xc (t), the second term becomes

∫ t

0

(
1

4
Xc (t)

(
N +MS

)
Ẍc (t)−

(
Xc (t)− X̄e

)
MAẊc (t)−

(
Xc (t)− X̄e

) (
N −MS

) (
Xc (t)− X̄e

))
dt

=

∫ t

0

(
1

2

(
Xc (t)− X̄e

) (
−
((
MA

)t −MA
)
Ẋc (t) + 2

(
N −MS

) (
Xc (t)−

(
X̃
)))

−
(
Xc (t)− X̄e

)
MAẊc (t)−

(
Xc (t)− X̄e

) (
N −MS

) (
Xc (t)− X̄e

))
dt

= −1
2

∫ t

0

(
Xc (t)− X̄e

) (((
MA

)t
+MA

)
Ẋc (t)

)
dt

= 0

since M (A) is antisymetric, and we are led to:
∫ t

0

dtU
quad
eff (Xc (t)) = −1

4

[(
Xc (t)− X̄e

) (
N +MS

)
Ẋc (t)

]t
0
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To find this last expression one needs to compute Xc (t). We rewrite (67) as:

Ẍ (t) +AẊ (t) +B
(
Xc (t)− X̄e

)
= 0

with:

A =

(
1

2

(
N +MS

))−1 ((
MA

)t −MA
)
= −4

((
N +MS

))−1
MA (68)

B = −
(
1

2

(
N +MS

))−1 (
N −MS

)

and set
(
Xc (t)− X̄e

)
= exp

(
−At

2

)
X ′ (t) so that X ′ (t) satisfies:

(
A

2

)2
X ′ (t) + Ẍ ′ (t)− A2

2
X ′ (t) +BX ′ (t) = 0

Ẍ ′ (t) +

(
B − A2

4

)
X ′ (t) = 0

Diagonalizing A2

4 −B allows to find
√

A2

4 −B and

(
Xc (s)− X̄e

)
= exp

(
−As
2

)(
exp

(√
A2

4
−Bs

)
α+ exp

(
−
√
A2

4
−Bs

)
β

)

Now we can use the initial conditions:

Xc (0) = x

Xc (t) = y

to find the coefficients α and β:

x−
(
X̃
)

= α+ β

y −
(
X̃
)

= exp

(
−At
2

)(
exp

(√
A2

4
−Bt

)
α+ exp

(
−
√
A2

4
−Bt

)
β

)

and ultimately, the classical solution is:

(
Xc (s)− X̄e

)
= exp

(
−As
2

)


sinh

(√
A2

4 −B (t− s)
)

sinh

(√
A2

4 −Bt
)

(
x−

(
X̃
))
+ exp

(
At

2

) sinh
(√

A2

4 −Bs
)

sinh

(√
A2

4 −Bt
)
(
y −

(
X̃
))


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Therefore the statistical weight we are looking for is:

∫ t

0

dtU
quad
eff (Xc (t))

= −1
4

[(
Xc (t)−

(
X̃
)) (

N +MS
)
Ẋc (t)

]t
0

= −1
4

(
y −

(
X̃
)) (

N +MS
)


−A

2

(
y −

(
X̃
))
− exp

(
−At

2

) √
A2

4 −B

sinh

(√
A2

4 −Bt
)
(
x−

(
X̃
))

+cosh

(√
A2

4 −Bt
) √

A2

4 −B

sinh

(√
A2

4 −Bt
)
(
y −

(
X̃
))



+
1

4

(
x−

(
X̃
)) (

N +MS
)


−A

2

(
x−

(
X̃
))
− cosh

(√
A2

4 −Bt
) √

A2

4 −B

sinh

(√
A2

4 −Bt
)
(
x−

(
X̃
))

+exp
(
At
2

) √
A2

4 −B

sinh

(√
A2

4 −Bt
)
(
y −

(
X̃
))



which can be written:
∫ t

0

dtU
quad
eff (Xc (t)) (69)

= −

(
y −

(
X̃
))

2



(
N +MS

)

cosh

(√
A2

4
−Bt

) √
A2

4 −B

sinh

(√
A2

4 −Bt
)







(
y −

(
X̃
))

2

−

(
x−

(
X̃
))

2



(
N +MS

)

cosh

(√
A2

4
−Bt

) √
A2

4 −B

sinh

(√
A2

4 −Bt
)







(
x−

(
X̃
))

2

+

(
y −

(
X̃
))

2






(
N +MS

)
exp

(
−At
2

) √
A2

4 −B

sinh

(√
A2

4 −Bt
)


+



(
N +MS

)
exp

(
At

2

) √
A2

4 −B

sinh

(√
A2

4 −Bt
)




t


×

(
x−

(
X̃
))

2

The normalization can be now introduced, as usually done for propagation of quadratic potential:

P (y, t+ s | x, t) = 1√
det
(
M
π

) exp
(∫ t

0

dtU
quad
eff (Xc (t))

)

Where M is the matrix defined by:

∫ t

0

dtU
quad
eff (Xc (t)) =


 x−

(
X̃
)

y −
(
X̃
)


t

M


 x−

(
X̃
)

y −
(
X̃
)



This is a direct expression of the propagation kernel for a time span of t. We will give below an example of
computation for the transition function P (y, t+ s | x, t) in the two agents model previously studied. However
before doing so, and to ease the interpretation, it will be useful to separate this expression in two types of
contribution.
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5.3 Interpretation: harmonic oscillations around the equilibrium

In the previous expressions for
∫ t
0
dtU

quad
eff (Xc (t)), a change of variable:

(
Xc (s)− X̃

)′
= U

√
(N +MS)

2

(
Xc (s)− X̃

)
(70)

where U diagonalizes
√

A2

4 −B, i.e.
√

A2

4 −B = UΛU−1 leads to replace the relevant quantities in
∫ t
0
dtU

quad
eff (Xc (t)) by:

(
N +MS

)

2
→ 1

A → −2
(√

(N +MS)

2

)−1
MA

(√
(N +MS)

2

)−1

B → −
(√

(N +MS)

2

)−1 (
N −MS

)
(√

(N +MS)

2

)−1

√
A2

4
−B → Λ

exp

(
−At
2

)
→ U−1 exp

(
−At
2

)
U

so that the effective quadratic action becomes:

∫ t

0

dtU
quad
eff (Xc (t)) = −1

2

(
y′ − X̃ ′

)[ Λ

tanh (Λt)

](
y′ − X̃ ′

)
(71)

−1
2

(
x′ − X̃ ′

)[ Λ

tanh (Λt)

](
x′ − X̃ ′

)
+

[(
y′ − X̃ ′

)( Λ

sinh (Λt)

)(
x′ − X̃ ′

)]

+
1

2

[(
y′ − X̃ ′

)((
exp

(
−At
2

)
− 1
)

Λ

sinh (Λt)
+

Λ

sinh (Λt)

(
exp

(
−At
2

)
− 1
))(

x′ − X̃ ′
)]

The last term in the right hand side represents the interaction between structures induced by the interaction
term A. It can be neglected if MA, which measures the asymetry between the various agents, is relatively
small with respect to the other parameters of the system. If we do so, the three first terms on the right
hand side describe a sum of harmonic oscillators whose frequencies are given by the eigenvalues of Λ. These
oscillator are not the initial structures, but rather some mixed structures involving all the initial agents.
They represent some independent and stable patterns arising from the interactions of the system.

This formulation of the effective utility allows in turn to model the system in terms of deep - i.e.
fundamental - independent structures whose internal frquencies are given by the Λi (t). The combination of
their fluctuations, plus some interaction leads to the apparent behavior, as an interaction between cycles of
different time scales.
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5.4 Example of transition function

We will illustrate the computation of the transition functions using the basic example from the first section.
The exponential of the effective utility for the two agents’ system is then:

exp

(
−
∑

t

(Ueff (xt) + Ueff (yt))

)

= exp

(
−
∑

t

(xt − ayt−1)
α

2a
(xt − ayt−1)−

∑

t

(
1

2
y2t − ytxt−1

))

= exp

(
−
∑

t

( α
2a
x2t − αxtyt−1

)
−
∑

t

(
1

2
y2t − ytxt−1

))

= exp

(
−
∑

t

(
α

2a
x2t +

1

2
y2t − αxtyt−1 − ytxt−1

))

where a was defined in (20):

a =
1

2αβ (N + β)

(
1 +Nβ +Nα2β + β2 −

√(
Nβ + β2 − 2αβ −Nα2β + 1

) (
Nβ + β2 + 2αβ −Nα2β + 1

))

The effective utility has the form of (32) with:

X (t) =

(
xt
yt

)
, N =

(
1 0
0 αa

)
, M =

(
0 α

1 0

)

MS =

(
0 1+α

2
1+α
2 0

)
, MA =

(
0 α−1

2
−α−1

2 0

)
(72)

The diagonalized transition function (71)

∫ t

0

dtU
quad
eff (Xc (t)) = −1

2

(
y′ − X̃ ′

)[ Λ

tanh (Λt)

](
y′ − X̃ ′

)

−1
2

(
x′ − X̃ ′

)[ Λ

tanh (Λt)

](
x′ − X̃ ′

)
+

[(
y′ − X̃ ′

)( Λ

sinh (Λt)

)(
x′ − X̃ ′

)]

+
1

2

[(
y′ − X̃ ′

)((
exp

(
−At
2

)
− 1
)

Λ

sinh (Λt)
+

Λ

sinh (Λt)

(
exp

(
−At
2

)
− 1
))(

x′ − X̃ ′
)]

can now be computed. The matrices A and B are given by (68) and (72) :

A = −4
((
N +MS

))−1
MA = −4

(
1 1+α

2
1+α
2 αa

)−1(
0 α−1

2
−α−1

2 0

)

=

(
−4 (α+1)(α−1)

−2α+4aα−α2−1 − 8aα(α−1)
−2α+4aα−α2−1

8(α−1)
−2α+4aα−α2−1

4(α+1)(α−1)
−2α+4aα−α2−1

)

B = −
(
1

2

(
N +MS

))−1 (
N −MS

)
= −2

(
1 1+α

2
1+α
2 αa

)−1(
1 − 1+α

2
− 1+α

2 αa

)

=




2(2α+4aα+α2+1)
2α−4aα+α2+1 − 8aα(α+1)

2α−4aα+α2+1

− 8(α+1)
2α−4aα+α2+1

2(2α+4aα+α2+1)
2α−4aα+α2+1




A2

4
−B =

(
2 6α+4aα−α2−1
−2α+4aα−α2−1 −8aα α+1

−2α+4aα−α2−1
−8 α+1

−2α+4aα−α2−1 2 6α+4aα−α2−1
−2α+4aα−α2−1

)
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The change of variables (70) is:

(
Xc (s)− X̃

)′
= U

√
(N +MS)

2

(
Xc (s)− X̃

)

with:

U =

(
1 1

− 1
aα

√
aα 1

aα

√
aα

)

√
(N +MS)

2
=

1√
2




1
2

√
− 1
2X + 1

2aα+
1
2
X+aα−1

X
− 1
2 (α+ 1)

√
− 1
2X+

1
2aα+

1
2

X

1
2

√
1
2X + 1

2aα+
1
2
X−aα+1

X
1
2 (α+ 1)

√
1
2X+

1
2aα+

1
2

X




for X =
√
a2α2 − 2aα+ α2 + 2α+ 2

and the diagonal matrix Λ is defined by:

√
A2

4
−B = UΛU−1 with Λ =




√
2
1+α2−(6α+4aα+4α

√
aα+4

√
aα)

1+2α−4aα+α2 0

0
√
2 1+α

2+4α
√
aα+4

√
aα−(6α+4aα)

1+2α−4aα+α2




For α > 1 close to 1 the interaction term

1

2

[(
y′ − X̃ ′

)((
exp

(
−At
2

)
− 1
)

Λ

sinh (Λt)
+

Λ

sinh (Λt)

(
exp

(
−At
2

)
− 1
))(

x′ − X̃ ′
)]

between the two oscillators is negligible, since A is close to 0 so that
(
exp

(
−At

2

)
− 1
)
<< 1 for any finite

span of time. considering α close to 1 is reasonable since it describes mutual interactions between the two
agents that are of the same order of magnitude.

We can check that for relatively large degree of uncertainty N and for α close to 1, a is of order α, and

the two eigenvalues 2 1+α
2+4α

√
aα+4

√
aα−(6α+4aα)

1+2α−4aα+α2 and 2
1+α2−(6α+4aα+4α

√
aα+4

√
aα)

1+2α−4aα+α2 are positive with:

√

2
1 + α2 − (6α+ 4aα+ 4α√aα+ 4√aα)

1 + 2α− 4aα+ α2 >

√

2
1 + α2 + 4α

√
aα+ 4

√
aα− (6α+ 4aα)

1 + 2α− 4aα+ α2

In our range of parameters the smallest one is close to 0, and the other one is of order 1.
As explained previously, computing the transition function between two states reduces to evaluating the

exponential along a "classical" path:

P (y, t+ s | x, t) = 1√
det
(
M
π

) exp
(∫ t

0

dtU
quad
eff (Xc (t))

)

and, given our assumptions,
∫ t
0
dtU

quad
eff (Xc (t)) reduces approximatively to

∫ t

0

dtU
quad
eff (Xc (t)) = −1

2

(
y′ − X̃ ′

)
1

[
Λ1

tanh (Λ1t)

](
y′ − X̃ ′

)
1

−1
2

(
x′ − X̃ ′

)
1

[
Λ1

tanh (Λ1t)

](
x′ − X̃ ′

)
1
+

[(
y′ − X̃ ′

)
1

(
Λ1

tanh (Λ1t)

)(
x′ − X̃ ′

)
1

]

where Λ1 is the eigenvalue:

Λ1 =

√

2
1 + α2 − (6α+ 4aα+ 4α√aα+ 4√aα)

1 + 2α− 4aα+ α2
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The subscript 1 assigned to the vectors represents their coordinate along the eigenvector corresponding to

Λ1. This eigenvector describes a mixed structure of xt and yt.The transition function for
(
y′ − X̃ ′

)
1
= 0

and
(
x′ − X̃ ′

)
1
= x is proportionnal to

exp

(
−1
2
x

(
Λ1

tanh (Λ1t)

)
x

)

A short time approximation looks like a Brownian path with transition function exp
(
−x2

2t

)
which describes

a diffusion process without interaction. However this approximation is not correct for longer time scales,
and the diffusion allows for transitions between far states.

5.5 Non quadratic contributions, perturbation expansion

Up to now we have described the classical - or mean value - dynamics of the whole system of interacting
structures, as well as its associated random diffusion process in the case of quadratic utilities through the
transition function P (x, y, t) . For non quadratic corrections, the interaction potential V (Xi (t))+X (t) J (t)

can be introduced as a perturbation. It allows to describe Gfullλ (x, y), the Green function for the whole
system, as a perturbative series in V (Xi (t)) +X (t)J (t).
External shocks can aso be introduced through X (t)J (t). Both term are now included in Veff (X (t)).

The computation of the Green function P
(
X1, t+ s | X0, t

)
is computed by decomposing

P
(
X1, t+ s | X0, t

)
(73)

=

∫
exp

∫ X(t+s)=X1

X(t)=X0

(
1

4
Ẋ (t)MSẊ (t) +

(
X (t)− X̄e

) (
N −MS

) (
X (t)− X̄e

)

+Ẋ (t)MA
(
X (t)− X̄e

)
+ Veff (X (t))

)
D (X (t))

≡
∫
exp

(∫ X(t+s)=X1

X(t)=X0

(
U
quad
eff (X (t)) + Veff (X (t))

))
D (X (t))

and expanding exp
(∫X(t+s)=X1

X(t)=X0 (Veff (X (t)))
)
in series. One then finds P

(
X1, t+ s | X0, t

)
as a sum:

P
(
X1, t+ s | X0, t

)
(74)

=

∫ (∑

n

1

n!
exp

(∫ X(t+s)=X1

X(t)=X0

U
quad
eff (X (u)) du

)(∫ t+s

t

Veff (X (u)) du

)n)
D (X (t))

=

∫ 
∑

n

1

n!

∫

t<ui<t+s

∏

ui,i=1...n

dui

∫
exp

(∫ X(t+s)=X1

X(t)=X0

U
quad
eff (X (u)) du

)
∏

ui,i=1...n

Veff (X (ui))


D (X (t))

=
∑

n

1

n!

∫

t<ui<t+s

∏

ui,i=1...n

dui



∫
exp

(∫ X(t+s)=X1

X(t)=X0

U
quad
eff (X (u)) du

)
∏

ui,i=1...n

Veff (X (ui))D (X (t))




This expression can be simplified by using the convolution properties of:

exp

(∫ X(t+s)=X1

X(t)=X0

U
quad
eff (X (u)) du

)
D (X (t)) ≡ P0

(
X1, t+ s | X0, t

)

which are, in terms of integrals over X (t):

P0
(
X1, t+ s | X0, t

)
=

∫
P0

(
X1, t+ s | X ′

, t+ u
)
P0
(
X ′, t+ u | X0, t

)
dX ′
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and more generally, for arbitrary ui, i = 1...n, with ui < uj for i < j and t < uj < t+ s:

P0
(
X1, t+ s | X0, t

)

=

∫ {
P0
(
X1, t+ s | Xn, un

)
(

∏

i=1...n−1
P0 (Xi+1, ui+1 | Xi, ui)

)
P0
(
X1, u1 | X0, t

)
}

∏

i=1...n

dXi

As a consequence (74) becomes:



∫
exp

(∫ X(t+s)=X1

X(t)=X0

U
quad
eff (X (u)) du

)
∏

ui,i=1...n

Veff (X (ui))D (X (t))




=

∫ ∏

i=1...n

dXi

{
P0
(
X1, t+ s | Xn, un

)
Veff (X (un))

×
(

∏

i=1...n−1
P0 (Xi+1, ui+1 | Xi, ui)Veff (X (ui))

)
P0
(
X1, u1 | X0, t

)
}

and the propagator we are looking for becomes a series of convolutions:

P
(
X1, t+ s | X0, t

)
(75)

=

∫ (∑

n

1

n!
exp

(∫ X(t+s)=X1

X(t)=X0

U
quad
eff (X (u)) du

)(∫ t+s

t

Veff (X (u)) du

)n)
D (X (t))

=

∫ 
∑

n

1

n!

∫

t<ui<t+s

∏

ui,i=1...n

dui

∫
exp

(∫ X(t+s)=X1

X(t)=X0

U
quad
eff (X (u)) du

)
∏

ui,i=1...n

Veff (X (ui))


D (X (t))

=
∑

n

1

n!

∫

t<ui<t+s

∏

ui,i=1...n

dui

∫ ∏

i=1...n

dXi

{
P0
(
X1, t+ s | Xn, un

)
Veff (Xn)

×
(

∏

i=1...n−1
P0 (Xi+1, ui+1 | Xi, ui)Veff (Xi)

)
P0
(
X1, t+ u1 | X0, t

)
}

This series can be understood a series of Feynman graph without loops.
For each n, draw n + 1 lines connecting t, u1, u2..., t + s. Label each point ui with Veff (X (ui)). This

graph represents the propagation of the system between t and t+ s. During the intervall of time ui, ui+1, it
propagates "freely" from Xi to Xi+1, i.e. with probability P0 (Xi+1, t+ ui+1 | Xi, t+ ui). Then, at ui+1, a
perturbation occurs, of magnitude Veff (X (ui+1)), and the system propagates again freely between ui and
ui+1. The total contribution to P

(
X1, t+ s | X0, t

)
coming from this graph is then:

P0
(
X1, t+ s | Xn, un

)
Veff (Xn)

(
∏

i=1...n−1
P0 (Xi+1, ui+1 | Xi, ui)Veff (Xi)

)
P0
(
X1, t+ u1 | X0, t

)

The overall transition function is an infinite sum over all possibilities of perturbations at ui, where the
ui are the times at which the perturbation occurs, and Xi, the points where they occurs.

Let us remark that the previous series can also be obtained through a Laplace transform by defining:

Gλ (x, y) =

∫
dt exp (−λt)P (x, y, t) (76)

In that case, the convolutions in time - the integrals over the ui - are replaced, after Laplace transform, by
products of terms. Defining the free propagator:

G0λ (x, y) =

∫
dt exp (−λt)P0 (x, y, t)
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the laplace transform of

∑

n

1

n!

∫

t<ui<t+s

∏

ui,i=1...n

dui

∫ ∏

i=1...n

dXi

{
P0
(
X1, t+ s | Xn, un

)
Veff (Xn)

×
(

∏

i=1...n−1
P0 (Xi+1, ui+1 | Xi, ui)Veff (Xi)

)
P0
(
X1, t+ u1 | X0, t

)
}

in (75) becomes:

=
∑

n

1

n!

∫ ∏

i=1...n

dXiG
0
λ

(
X1, Xn

)
Veff (Xn)×

(
∏

i=1...n−1
G0λ (Xi+1, Xi)Veff (Xi)

)
G0λ
(
Xi+1, X

0
)

(77)

which is easier to compute. The graphical interpretation is similar to the one developped for (75), Except
that the time variable has disappeared. We rather sum over perturbations regardless their time of occurence.
The nth term occuring in (77) correspond as before to n + 1 segments of "free" propagation, purturbed n
times by external influences or shocks. ultimately, all these perturbation terms can be formally added, before
retrieving the time representation P (x, y, t) by inverse Laplace transform.

The green function Gλ (x, y) not only eases computations : besides its meaning it will prove usefull, for
a large number N of agents, to compute the transition function for finitely lived agents whose probability of
transition between x and y is a process of random duration t, with Poisson distribution of mean 1

λ
. It then

describes the mean transition probability for a process with average lifespan of 1
λ
and λ is a characteristic

scale for the system with a large number of agents. We will come back to this point later.

6 Introduction of constraints

Up to this point, no constraint has been included in the behavior of the agents. For usual models in
Game theory, such as simple oligopolistic models, or independent interacting structure models, this is not
a problem. It may however represent a limitation for producers/consumers models, or systems including
global constraints in the interactions between independent agents. We will now consider the introduction of
constraints, in an exact way for simple cases, or as first approximation in the general case.

To start with an example, we will consider the introduction af a budget constraint for an economic agent
optimising a quadratic utility. We will then extend the result to N agents with quadratic utilities and bound
by linear arbitrary constraints. We will finally suggest an approach to the general case of arbitrary utility.

6.1 Example: Single agent budget constraint

Consider the example of an agent, endowed with a quadratic utility, whose action vector Xi (t) reduces to
its consumption. Successive periods are linked through a current account intertemporal constraint of the
following form:

Cs = Bs + Ys −Bs+1 (78)

where Ys is an exogenous random variable, such as the revenue in the standards optimal control models.
For the sake of simplicity, we will discard any discount rate here. The inclusion of a discount rate will be
considered later in the context of a large number of agents described by a field theoretic formalism.

Since the successive periods are interconnected through the constraint, when replacing Cs by the state
variable Bs, the probability weight studied previously becomes:

exp

(
U (Cs) +

∑

i>0

U (Cs+i)

)
= exp

(
U (Bs + Ys −Bs+1) +

∑

i>0

U (Bs+i + Ys+i −Bs+i+1)
)

This measures the probability for a choice Cs and Cs+i, i = 1...T with T the time horizon, or alternatively
the probability for the state variable B, to follow a path {Bs+i}i>0 starting from Bs. The time horizon
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T represents the expectation at time s of the interaction process remaining duration. It should depend
decreasingly on s, but will later be supposed a random following a poisson process. As a consequence, the
mean expected duration will be a constant written T , whatever s. Integrating over the {Bs+i}i>2 yields a
probability of transition between Bs and Bs+1 written 〈Bs+1| |Bs〉. The latter is the probability to reach
Bs+1 given Bs and is equal to

〈Bs+1| |Bs〉 =
∫ T∏

i=2

dBs+i exp

(
U (Bs + Ys −Bs+1) +

∑

i>0

U (Bs+i + Ys+i −Bs+i+1)
)

Computing 〈Bs+1| |Bs〉 rather than the transition function for Cs does not change the approach developped
previously. It merely has to be applied to the state variable Bs rather than to the control variable Cs.
However, due to the overlapping nature of state variables, the probability transition 〈Bs+1| |Bs〉 now measures
a probability involving two successive periods. The whole point will be to rebuild the probability for the
path {Cs}i>0 from the data 〈Bs+1| |Bs〉.
To do so, consider a usual quadratic utility function, or at least its second order approximation, of

the form, U (Cs) = −α
(
Cs − C̄

)2
, with objective C̄. Then rescale −α

(
Cs − C̄

)2 → −C2s for the sake of
simplicity. The constant C̄ can be reintroduced at the end of the computation. The transition probability
between two consecutive state variables thus becomes:

〈Bs+1| |Bs〉 =

∫ T∏

i=2

dBs+i exp

(
U (Cs) +

∑

i>0

U (Cs+i)

)
Cs

=

∫ T∏

i=2

dBs+i exp

(
−
(
Cs − C̄

)2 −
∑

i>0

(
Cs+i − C̄

)2
)

=

∫ T∏

i=2

dBs+i exp

(
−
(
Bs + Ys −Bs+1 − C̄

)2 −
∑

i>0

(
Bs+i + Ys+i −Bs+i+1 − C̄

)2
)

= exp


−

(
Bs + Ys −Bs+1 − C̄

)2 − 1

T

(
Bs+1 +

∑

i>0

(
Ys+i − C̄

)
)2
 (79)

with Bs → 0, s → T to impose the transversality condition. The number of periods, T , is itself unknown,
but as said before T is the expected mean process duration.

If Ys+i is centered on Ȳ with variance σ,
∑

i>0 Ys+i centered on Ȳ with variance Tσ, integration over
Ys+i yields

∫ ∏
dYs+i exp


− 1

T

(
Bs+1 +

∑

i>0

(
Ys+i − C̄

)
)2
− 1

σ

T∑

i=1

(
Ys+i − Ȳ

)2



=

∫ ∏
dY ′s+i exp


− 1

T

(
Bs+1 +

T∑

i=1

(
Y ′s+i −

(
C̄ − Ȳ

))
)2
− 1

σ

T∑

i=1

(
Y ′s+i

)2



with Y ′s+i = Ys+i − Ȳ . The exponential rewrites:

exp


− 1

T

(
Bs+1 +

T∑

i=1

(
Y ′s+i −

(
C̄ − Ȳ

))
)2
− 1

σ

T∑

i=1

(
Y ′s+i

)2



= exp

(
− 1
T

(
Bs+1 − T

(
C̄ − Ȳ

))2 − 2

T

(
Bs+1 − T

(
C̄ − Ȳ

)) T∑

i=1

Y ′s+i −
(
1

σ
+
1

T

) T∑

i=1

(
Y ′s+i

)2
)
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and the integration over the Y ′s+i leads to a weight:

exp

(
− 1
T

(
Bs+1 − T

(
C̄ − Ȳ

))2 − 2

T

(
Bs+1 − T

(
C̄ − Ȳ

)) T∑

i=1

Y ′s+i −
(
1

σ
+
1

T

) T∑

i=1

(
Y ′s+i

)2
)

= exp

(
− 1
T

(
Bs+1 − T

(
C̄ − Ȳ

))2
+

σ

T (σ + T )

(
Bs+1 − T

(
C̄ − Ȳ

))2
)

= exp

(
− 1

T + σ

(
Bs+1 − T

(
C̄ − Ȳ

))2
)

We can now write Bs+1 as a function of the past variables:

Bs+1 =
∑

i60

Ys+i −
∑

i60

Cs+i (80)

Along with the expression Bs + Ys −Bs+1 − C̄ = Cs − C̄ to write the global weight (79) as:

exp


−

(
Cs − C̄

)2 − 1

T + σ


∑

i60

Ys+i −
∑

i60

Cs+i − T
(
C̄ − Ȳ

)


2



' exp


−

(
Cs − C̄

)2 − 1

T


∑

i60

Ys+i −
∑

i60

Cs+i − T
(
C̄ − Ȳ

)


2



for a time scale large enough, so that T >> σ. The statistical weight thus becomes:

exp


−

(
T + 1

T

)
Cs −

T

T + 1
C̄ − 1

T + 1


∑

i60

Ys+i −
∑

i<0

Cs+i − T
(
C̄ − Ȳ

)




2



= exp


−

(
T + 1

T

)
Cs −

1

T + 1


∑

i60

Ys+i −
∑

i<0

Cs+i + T Ȳ





2



= exp


−

(
T + 1

T

)
Cs − Ȳ −

1

T + 1


∑

i60

(
Ys+i − Ȳ

)
−
∑

i<0

(
Cs+i − Ȳ

)




2



For T >> 1, this reduces to:

' exp


−


Cs − Ȳ −

1

T


∑

i60

(
Ys+i − Ȳ

)
−
∑

i<0

(
Cs+i − Ȳ

)




2



and defining Ĉs = Cs − Ȳ , we are left with:

exp


−


Ĉs −

1

T


∑

i60

Ŷs+i −
∑

i<0

Ĉs+i





2

 ∝ exp


−

(
Ĉs

)2
+
2Ĉs
T


∑

i60

Ŷs+i −
∑

i<0

Ĉs+i






The global weight, over all periods is then:

exp


−

∑

s

(
Ĉs

)2
− 1

T

∑

s1,s2

Ĉs1Ĉs2 +
2

T

∑

s1>s2

Ĉs1 Ŷs2


 (81)
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As a consequence, the introduction of a constraint is equivalent to the introduction of non local interaction
terms. The non local terms may, in some cases, be approximated by some terms in the derivatives of Cs.
Actually, remark that the quadratic terms

1

T

∑

s1,s2

Cs1Cs2

can be approximated by a sum of local terms through a taylor expansion of Cs2 . Indeed, writing the n -
arbitrary - lag contribution:

1

T

∑

s1

Cs1Cs1−n =
1

T

∑

s1

Cs1
(
Cs1−n − Cs1−(n−1) + Cs1−(n−1) − ...+ Cs1

)
(82)

introduces derivatives of Cs1 . For example, the term for n = 0, i.e. 1
T

∑
s1
Cs1Cs1 shifts the quadratic

potential, and the term for n = 1

1

T

∑

s1

Cs1Cs1−1 =
1

4T

∑

s1

(Cs1 + Cs1−1)
2 − (Cs1 − Cs1−1)2

becomes in the continuous approximation

1

T

∫
(Cs)

2
ds− 1

4T

∫ (
d

ds
Cs

)2
ds

Similarly, (82) can be written in the continuous approximation as a linear combination of terms;

1

T

∫
Cs

(
n∑

p=1

ap
dp

dsp
Cs

)

with integer coefficients ap. Integrating by parts and neglecting the border terms we are led to a sum:

− 1
T

∫



n∑

p=1
p even

(−1)p ap
(
d
p
2

ds
p
2

Cs

)2

 (83)

These terms do not, in general, have to be expanded very far. Actually, when several agents interact through

short term interactions, some inertia naturally appears. When an inertia term −α
∫ (

d
ds
Cs
)2
ds is added in

the utility − (Cs)2, the characteristic time of interaction is of order 1√
α
, and the agent is behaving in first

approximation as an oscillator described by an effective utility:

− (Cs)2 − α
∫ (

d

ds
Cs

)2
ds

and in that case, in first approximation:

Cs ≈ Ct cos

(
s− t√
α

)

so that ∫
dtdsCsCt ≈ C2t cos

(
s− t√
α

)
=

∫
dtC2t

as a consequence, the interaction term 1
T

∑
s1
Cs1Cs1−1 reduces to a correction to the quadratic term. We

will see later how to deal with the whole contribution 1
T+σ

∑
s1,s2

Cs1Cs2 when considering a large number
of interacting agents in the context of a field formulation. However, if one is interested in only one agent
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behavior, one can, in first approximation, keep only the one lag correction term to account for an action
including the constraint:

exp

(
−
∑

s

(
Cs −

σ

T + σ
C̄

)2
− 1

T + σ

∑

s

CsCs−1 +
2

T + σ

∑

s1,s2

Cs1 (Es1Ys2)

)

or, which is equivalent, using (83):

exp

(
−
∑

s

(
Cs −

σ

T + σ
C̄

)2
− 1

T + σ

∑

s

(
d

ds
Cs

)2
+

2

T + σ

∑

s1,s2

Cs1 (Es1Ys2)

)
(84)

6.2 Case of N>>1 agents

Until now, computations in this section were performed under the assumption that the constraint included
some exogenous variable Ys. For a system of N agents however, constraints are more likely imposed on
agents by the entire set of interacting agents. For example, in the previous paragraph, the variable Ys in the
constraint (78) represented the agent’s revenue. In the context of N interacting agents, this variable depends
on others activity, or in our simple model, on their consumption. Actually, in a system of consumer/producer,
the others’ consumption generates the flow of revenue Ys. In other word, agent i revenue Y is depends on
other agents’ consumptions Cjs - or possibly C

j
s−1 if we assume a lag between agents actions and their effect.

More generally, for a system with a large number of agents, the revenue Y is , may depend on endogenous
variables that can still be considered as exogenous in agent i′s perspective. Thus our benchmark hypothesis
in this section will be that agents are too numerous to be manipulated by a single agent. Therefore the
procedure developped in the previous section to introduce a constraint for a single agent remains valid and
can be generalized directly. Again, we will impose a constraint for each agent and encode it in Ys or Ȳ .
First Ys will be considered as exogenous by the individual agent and thus (84) will apply. Then (84) will be
modified to take into account the fact that Ys depends endogenously on other agents. Assume for example

that Y is =
∑
αijC

(j)
s−1. The term

2
T

∑
s1,s2

Cs1
(
Eis1Y

i
s2

)
can then be replaced in (81): Es1Ys2 →

∑
αijC

(j)
s2−1

if s2 < s1. We will need to find E
i
s1
C
(j)
s2−1 for s2 > s1 If we assume that agents’ forecasts C

(j)
s2−1 have a

gaussian random error and the number of agents N is large, the sum of errors in
∑
αijC

(j)
s2−1 cancels out.

Note that here we rule out a collective mistake that could otherwise be reintroduced. As a consequence one

can replace 2
T

∑
s1,s2

Cs1
(
Eis1Y

i
s2

)
→∑

s1,s2
αijCs1C

(j)
s2−1.

Thus the interaction terms for an agent i in (81) becomes:

2

T

∑

s1,s2

C(i)s1 (Es1Ys2)→
∑

j

∫ ∫
αijC

(i)
s C

(j)
t dsdt (85)

To sum up, the introduction of several agents translates the constraints as some non local interactions
between agents, and each agent constraint is shaped by the environment others created. Similarly, the
quadratic term becomes:

− 1
T

(
∑

s1,s2

(Es1Ys2)

)2
→ − 1

T

∑

j1,j2

∫ ∫
αij1α

i
j2
C(j1)s C

(j2)
t dsdt

This cannot be integrated out, but yields a contribution to the system’s statistical weight:

2

T

∑

i,j

∫ ∫
αijC

(i)
s C

(j)
t dsdt− 1

T

∑

i,j1,j2

∫ ∫
αij1α

i
j2
C(j1)s C

(j2)
t dsdt

=
1

T

∑

i,j

∫ ∫ (
2αij −

∑

k

αki α
k
i

)
C(i)s C

(j)
t dsdt
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and consequently, for the system as a whole, including the constraint leads considering the term in the
effective utility:

1

T

∑

i,j

∫ ∫ (
2αij −

∑

k

αki α
k
i

)
C(i)s C

(j)
t dsdt ≡

∑

i,j

∫
V
(
C(i)s , C

(j)
t

)
dsdt (86)

Writing the constraints in term of a potential terms V
(
C
(i)
s , C

(j)
t

)
allow taking into account, when necessary,

some non linear constraints modelled by the form of the potential V
(
C
(i)
s , C

(j)
t

)
. Gathering these results

leads the global statistical weight for the set of agents as a continuous time version of (81):

exp
(
Ueff

)
= exp


−

∑

i

∫ (
Cis
)2
ds− 1

T

∑

i

∫ ∫
CisC

i
tdsdt−

1

T

∑

i

∫ ∫
CisC

j
t dsdt−

1

T

∑

i,j

∫ ∫
V
(
C(i)s , C

(j)
t

)
dsdt




(87)
Keeping only the first contributions of inertia terms 1

T

∫ ∫
CisC

i
tdsdt as in the previous paragraph would lead

to:

exp
(
Ueff

)
= exp


−

∑

i

∫ (
1 +

α

T

) (
Cis
)2
ds− β

T

∫ ∫ (
d

ds
Cis

)2
ds− 1

T

∑

i

∫ ∫
CisC

j
t dsdt−

1

T

∑

i,j

∫ ∫
V
(
C(i)s , C

(j)
t

)
dsdt

(88)
where α and β are constants depending on the expansion of

∑
i

∫ ∫
CisC

j
t and the parameters of the system.

6.3 Quadratic effective utility with constraints, general case for large N

We can now apply these methods to the more general model of interacting agents with quadratic utilities
presented above. Recall the form for the effective action without constraint (26)

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t)− X̄(i)e

i

)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

It is found recursively by starting from the less informed agents. Including a linear constraint can be done
in the following way. Assume as before a constraint of the form:

Xi (t) = Bi (t) + Zi (t)−Bi (t+ 1) (89)

where Zi (t) is other agents’ exogenous influence. Due to the large number of agents involved in the inter-
action process, we suppose each agent may at best influence those surrounding agents on which it has a
strategic advantage. We can therefore assume that their weight in the whole set of agents is negligible. As
a consequence, the term Zi (t) being the other agents’ influence, and beyond the control of any agent, it
must be considered exogenous.. Once this is specified, we can then introduce in the effective utility a term

Xi (t)Mi

(
E
(i)
t

∑
s Zi (s)

)
with E

(i)
t Zi (s) = Zi (s) for s 6 t and E

(i)
t Zi (s) = constant for s > t , where Mi

is found recursively, which yields:

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t)− X̄(i)e

i

)
(90)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+
∑

j6i

Xi (t)K
(i)
ij

(
E
(i)
t

∑

s

Zj (s)

)
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and apply the methods presented in Appendix 2 to find Ueff (Xi (t)) given the Ueff (Xj (t)), j < i .
Note however that we have included agent i constraint by replacing Xi (t) = Bi (t) + Zi (t) − Bi (t+ 1),
and imposed the transversality condition Bi (t) → 0, t → T ). For detailed computations and results, see
Appendix 4.

The matrices are given by:

Nii =
(
P t ((A− C)D)P + 2 (B −A)

)
ii

(91)

−
(
P t ((A− C)D)P + 2 (B −A)

)−1
ij

((
P t ((A− C)D)P + 2 (B −A)

)
jj

)((
P t ((A− C)D)P + 2 (B −A)

)
ji

)

+
(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)

Mii = (Nii)
((
P t ((A− C)D)P + 2 (B −A)

)−1
(A+ C)

)
ii

+
(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)

Mij = (Nii)
((
P t ((A− C)D)P + 2 (B −A)

)−1
(A+ C)

)
ij

Mi =
(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)

K
(i)
ij =

(
Nii +Mii Mij

)




A
(i)
ii +B11 −

√
βε
(i)
ii

{
B12, 2

√
β
(
A
(i)
ij

)S}

{
Bt12, 2

√
β
(
A
(j)
ji

)S}




(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22,

(
2
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

)S








−1

×




B
(3)
12

2 (Njj)
−1
K
(i)
ij

(∑
j6iE

(i)
t

∑
s Zj (s)

)
{(

A
(j)
jj

)
eff

, B”22,
B
(3)
22

2 ,
√
β

(
ε
(j)

{kj}k6j

2

)

eff

}
(Njj)

−1
K
(i)
ij

(∑
j6iE

(i)
t

∑
s Zj (s)

)




where D is the solution of (28) and:

P =

(
Pi 0
0 1j

)
, P̃ =

(
0 0
0 1j

)

Pi =

(
(1−D)

D (1−DT )

)

1j = identity matrix for the block j < i

The effective utility thus obtained includes the constraint
∑

j6iXi (t)K
(i)
ij

(
E
(i)
t

∑
s Zj (s)

)
that mixes the

agent action with some external dynamic variable, that may include the contribution of the whole set of
agents perceived as an externality, as in (85). Note that, compared to (81), a quadratic but non local in time
termXi (t)Xi (s) arises in the effective utility. The reason is that we have considered the same approximation
as in the example of the consumer with a budget constraint (the first example of the previous paragraph)
and kept only in these quadratic interactions the most relevant terms, Xi (t)Xi (t− 1). Appendix 7 shows
however that the full analog of (81) as well as an exact effective utility with constraint could be retrieved,
for a total result of:

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
N
(0)
ii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)M (0)
ii√
β

(
Xi (t)− X̄(i)e

i

)
(92)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)M (0)
ij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+
∑

j6i

Xi (t)K
(i)
ij

(
E
(i)
t

∑

s

Zj (s)

)
+
∑

j6i

∑

s<t

Xj (s) ε
(i,n)
ij Xi (t)
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that includes the quadratic terms
∑

j6i

∑
s<tXj (s) ε

(i,n)
ij Xi (t) that were, in (90), reduced to the "one lag"

approximation.

6.4 Non quadratic utilities with constraints

Now consider some constraints introduced in the context of non quadratic utilities. To do so, we start with
a simple constraint:

Cs = Bs + Ys −Bs+1
At time t, agent i statistical weight is a generalization of the quadratic case:

∫ ∏

i>1

exp

(
U (Bs + Ys −Bs+1) +

∑

i>0

U (Bs+i + Ys+i −Bs+i+1)
)
dBs+i

Performing the following change of variables,

Bs+i → Bs+i −
∑

j>i

Ys+j

Bs+i + Ys+i −Bs+i+1 → Bs+i −Bs+i+1

the successive integrals become:

∫ ∏

i>1

exp


U (Bs + Ys −Bs+1) + U


Bs+1 −Bs+i+2 +

∑

i>1

Ys+i


+

∑

i>1

U (Bs+i −Bs+i+1)


 dBs+i

and the result can be written:

exp


U (Bs + Ys −Bs+1) + Ǔ


Bs+1 +

∑

i>1

Ys+i






where the function Ǔ (Bs+1) results from the convolutions integrals:

exp


Ǔ


Bs+1 +

∑

i>1

Ys+i




 =

∫
exp


U


Bs+1 −Bs+i+2 +

∑

i>1

Ys+i


+

∑

i>1

U (Bs+i −Bs+i+1)


∏

i>1

dBs+i

As in the previous examples, the transition probability is obtained by integrating the variables Ys+i

∫ ∏
dYs+i exp


U (Bs + Ys −Bs+1) + Ǔ


Bs+1 +

∑

i>1

Ys+i






This can be obtained by replacing

∫ ∏
dYs+i exp


Ǔ


Bs+1 +

∑

i>1

Ys+i


− 1

T

∑

i>0

(
Ys+i − Ȳ

)2



≈ exp
(
Ǔ
(
Bs+1 + Ȳ

))

and using the constraint to write:

Bs+1 +
∑

i>1

Ys+i =
∑

i60

Ys+i −
∑

i60

Cs+i + Ȳ

It results in:

63



∫ ∏
dYs+i exp


U (Bs + Ys −Bs+1) + Ǔ


Bs+1 +

∑

i>1

Ys+i






∝ exp


U (Bs + Ys −Bs+1) + Ǔ


∑

i60

Ys+i −
∑

i60

Cs+i + Ȳ






∝ exp


− (Cs)2 −

2

T
Cs

(
∑

i<0

Cs+i

)
+
2

T
Cs


∑

i60

Ys+i + Ȳ






To the second order approximation for Ǔ , this has the form,

∝ exp


U (Bs + Ys −Bs+1)− γ


∑

i60

Ys+i −
∑

i60

Cs+i + Ȳ



2



where γ is the coefficient of the second order expansion of Ǔ (C) in C. In that case, we recover a result
similar to the first example of the present section. The system statistical weight over all periods is then (see
(81)):

exp

(
−
∑

s

U (Cs)−
γ

T

∑

s1,s2

Cs1Cs2 +
2γ

T

∑

s1,s2

Cs1 (Es1Ys2)

)

with Es1Ys2 = Ys2 if s2 6 s1 and Es1Ys2 = Ȳ if s1 6 s2. Again, the approximation for the constrained term
can be used if needed:

exp


−

∑

i

∫ ((
mi +

1

2

)(
d

ds
C(i)s

)2
+ U

(
C(i)s

))
ds−

∑

i,j

∫
V
(
C(i)s , C

(j)
t

)
dsdt




To conclude, let us briefly remark that Appendix 8 presents an alternative method to find an effective utility
for the general case of arbitrary utility with constraint.

7 Fundamental structures and non local interactions: toward large
N systems

The system studied until now had a relatively small number of interacting agents. To later adapt the
formalism to a system with a large number of agents, two points have to be developped. First we will justify
the need for non local (in time) interactions between an arbitrary number of agents, even without constraints.
Second, it is usefull to come back to the Laplace transform of the Green function, and give a more accurate
account of its necessity.

7.1 Fundamental structures and non local interactions

We have found the transition functions for quadratic effective utilities. The potential term acting as an
interaction term was developped perturbatively and provided an expansion for the transition functions for
any interaction potential. In the following, we will show how some simplification may arise and reduce the
system to sums of independent subsystems, called the fundamental structures.

To do so, rewrite the action (64):

Ueff (X (t)) =

∫ (
1

4
Ẋ (t)

(
N +MS

)
Ẋ (t) +

(
X (t)− X̄e

) (
N −MS

) (
X (t)− X̄e

)
+ Ẋ (t)MA

(
X (t)− X̄e

)

+Veff (X (t))) dt
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and rescale the variables:
√
N +MSX (t) → X (t) (93)

(√
N +MS

)−1
M (A)

(√
N +MS

)−1
→ M (A)

(√
N +MS

)−1 (
N −MS

) (√
N +MS

)−1
→

(
N −MS

)

where
√
N +MS is a square root obtained through the Jordan form of N+MS obtained through the Jordan

form. The matrix
√
N +MS is symmetric. Consequently, the effective utility rewrites:

−1
2
Ẋ (t) Ẋ (t)− Ẋ (t)M (A)

(
X (t)−

(
X̃
))
−
(
X (t)−

(
X̃
)) (

N −MS
) (
X (t)−

(
X̃
))

= −1
2

(
Ẋ (t) +M (A)

(
X (t)−

(
X̃
)))(

Ẋ (t) +M (A)
(
X (t)−

(
X̃
)))

−
(
X (t)−

(
X̃
))(

N −MS −
(
M (A)

)t (
M (A)

))(
X (t)−

(
X̃
))

The fact thatM (A) and
(
N −MS

)
can be simultaneously diagonalized by blocks - for example if

(
N −MS

)

is proportional to the identity as will be assumed here - leads to a sum of independent subsystems.

→ −1
2

( .

X̂ (t) +
(
M

(A)
k

)(
X̂ (t)−

(
X̃
)))( .

X̂ (t) +
(
M

(A)
k

)(
X̂ (t)−

(
X̃
)))

−
(
X̂ (t)−

(
X̃
))((

N −MS
)
k
−
(
M

(A)
k

)t (
M

(A)
k

))(
X̂ (t)−

(
X̃
))

=
∑

k

−1
2

( .

X̂k (t) +M
(A)
k

(
X̂k (t)−

(
X̃
)))( .

X̂k (t) +M
(A)
k

(
X̂k (t)−

(
X̃
)))

−
(
X̂k (t)−

(
X̃
))((

N −MS
)
k
−
(
M

(A)
k

)t (
M

(A)
k

))(
X̂k (t)−

(
X̃
))

where
(
M

(A)
k

)
and

(
N −MS

)
k
are block diagonal matrices, whose blocks are written respectivelyM

(A)
k and

(
N −MS

)
k
. Change the coordinates according to the eigenblocks of Λ. Each X̂k (t) defines an independent

structure, or equivalently the whole set of
{
X̂k (t)

}
are of different type or species. These species correspond

to mixed structures, combinations of several agents or substructures. In a psycho-economic perspective, they
account for both conscious-unconscious structures. Note that it is a vague reminder of the Lacan/Mobius
strip. We will call these mixed structures, the fundamental structures. Remark that if each block is itself

diagonalized so that
(
N −MS

)
k
−
(
M

(A)
k

)t (
M

(A)
k

)
→ Λef then, by a change of basis

−1
2

(
Ẋef (t)− M̃efXef (t)

)(
Ẋef (t)− M̃efXef (t)

)
+
1

2

(
Xef (t)−

(
Ŷ (1)

)
ef

)
Λef

(
Xef (t)−

(
Ŷ (1)

)
ef

)

(94)
represents a sum of n independent structures, each having its own fundamental frequencies given by Λef .
This translates the independence of these structures in terms independent oscillations.

Remark also that, in a more comprehensive setting, the appearance of M̃ef reminds of the evolution of a

system on a curved manifold. The connexion of this space is tracked in M̃ef and takes into account internal
tension inside an independent structure. This tension induces a non trivial, i.e. curved, trajectory. The
apparent coherence of motion reflects the independence and internal coherence of each of these structure.
Inversely, a break down in coherence, i.e. continuity of the motion may come from a singularity in the metric.

Once the fundamental blocks or structure are isolated, they evolve independently. This is the mark of the
stationnarity or stability of the system. The only interactions are local and internal to each block, tracked
by the curved classical trajectory.

For psychological agents/structures however, the local in time interaction may not be relevant. Actually,
for this type of models we are rather interested in "structures to structures" interactions, independent
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from any causality. By this, we mean a type of interaction involving the global form of each structures.
Mathematically, it translates into a non local interaction involving the whole dynamic path of each interacting
structure: i.e. the interaction cannot be reduced to time to time action/reaction schemes.

Besides, we saw that for models including a binding constraint between agents, these constraints where
not local, but involved all periods as a whole. In large scale models, each agent participate to others’
environment. As such, in this case also, interactions are seen, not as time to time action-reaction scheme,
but rather as global.

Large scale or global interaction between structures must therefore be introduced in our formalism. They
may take several forms, and describe inter and intra species inter-relations. These interactions will be added
through constraints representing long term, and not local in time, interaction.

Thus, whatever the kind of system consider, be it a large N economic system, or a large population of
structures with long-term interactions, non-local in time interactions have to be added to the system. We
have shown above that these interactions have the form:

∑

n

∫
Vn (X1 (s1) ...Xn (sn)) ds1...dsn

where the variables Xi (si) define the control variables of a fundamental structure "i" and Vn stands for any
potential of interaction (including the case of a linear constraint). We will see later how the formalism can
be modified to account for these terms when the number of agents is large.

7.1.1 Green function as a kernel of operator

Alternatively, the Green function can be described through an operator formalism that will prove useful for
a larger N . Using the generic effective action (64):

Ueff (X (t)) =

∫ (
1

4
Ẋ (t)

(
N +MS

)
Ẋ (t) +

(
X (t)− X̄e

) (
N −MS

) (
X (t)− X̄e

)
+ Ẋ (t)MA

(
X (t)− X̄e

)

+Veff (X (t))) dt

and rewriting it to include MA in the kinetic term.

Ueff (X (t)) =

∫ (
1

4

(
Ẋ (t) + 2

(
N +MS

)−1 (
MA

) (
X (t)− X̄e

)) (
N +MS

) (
Ẋ (t) + 2

(
N +MS

)−1
MA

(
X (t)− X̄e

))

−
(
X (t)− X̄e

) (
N −MS −

(
MA

)t (
N +MS

)−1
MA

) (
X (t)− X̄e

)
+ Veff (X (t))

)
dt

The transition function associated to this functional is known satisfy (see [10]) :

∂

∂t
P (x, y, s) = ∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))

−
(
x− X̄e

) (
N −MS −

(
MA

)t (
N +MS

)−1
MA

) (
x− X̄e

)

A Laplace transform of the above equation replaces the derivative in times by a multiplication by α, and
G (x, y, α), the Laplace transform of P (x, y, s) satifies:

δ (x− y) =

(
−∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))
+
(
x− X̄e

) (
N −MS −

(
MA

)t (
N +MS

)−1
MA

) (
x− X̄e

)
+ α(95)

×G (x, y, α)

Namely, the propagator Gλ (x, y) (76) satisfies (95). It is thus the kernel of a differential operator, and as
such satisfies:

G−1 (x, y, α) =

(
−∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))
(96)

+
(
x− X̄e

) (
N −MS −

(
MA

)t (
N +MS

)−1
MA

) (
x− X̄e

)
+ α

)
δ (x− y)
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As an example, if we were to specialize to the fundamental structure k that appeared in the previous
paragraph and whose effective action (94) after change of variable was

−1
2

(
Ẋef (t)− M̃efXef (t)

)(
Ẋef (t)− M̃efXef (t)

)
+
1

2

(
Xef (t)−

(
Ŷ (1)

)
ef

)
Λef

(
Xef (t)−

(
Ŷ (1)

)
ef

)

one would obtain the green function as the inverse of a differential operator for each fundamental structure.
More precisely:

G−1 = −1
2
(∇k)

(
∇k − M̃ef

(
X̂k −

(
X̃
)
k

))
+
1

2

(
X̂k −

(
X̃
)
k

)
Λef

(
X̂k −

(
X̃
)
k

)

Ultimately, and more generally, the analogy between non quadratic utility and the dynamic on a curved
variety mentionned above leads us to consider the possibility of Green function in a more general form:

G−1 =
1

2
(∇i)mia (x)

(
∇jmja (x)− M̃ ′x

)
+
1

2

(
x−

(
Ŷ (1)

))
N̂
(
x−

(
Ŷ (1)

))
(97)

where mia (x) is the vielbein associated to the metric M
−1
ij = miamja. This possibility would stem from non

quadratic utility contributions included in the coeficients mia (x). The idea remains the same however: the
internal tension inside each structure induces a kind of "curved" trajectory.

The utility of representing the green function as the inverse of a diferential operator will appear in the
next section, but the idea is the following: for a large number of agents, a different point of view is necessary.
Rather than describing an assembly of N agents, it is more usefull to consider a medium constituted by
the assembly of agents, in which we can study the actions and interactions of an agent with others. The
Green function previously described participates to this description. The second order differential operator
associated to G−1 will model the basic displacement operator, i.e. the diffusion process, associated to an
agent in the surrounding.

8 Half Phenomenological model for interactions between large

number agents

We now use the results of the previous sections to transform the formalism in a collective representation, in
terms of fields, that will allow modelling systems with large number of agents.

8.1 Transition toward field theoretic formulation. Laplace transform

The results of the previous section can be summed up as follows. We described a set of several individual
economic agents by a stochastic process defined in a space whose dimension depends of the number of degrees
of freedom, that is number of state variables, of the system. For the sake of the exposition, we will choose a
simplified version of the model developped previously, in its continuous time version. Each agent’s behavior
can be represented during a time span of s by a probability weight for each possible path of actions. For a
path x (t) of actions - such as consumption, production, signals - for t ∈ [0, s] , the weight is:

exp

(
−
∫ x(s)=y

x(0)=x

(
ẋ2

2
(t) +K (x (t)) dt

))

where K (x (t)) is a "potential term" whose form depends explicitely on the agent’s utility function, or any
other intertemporal function the agent optimizes.

The term ẋ2

2 (t) represents an inertia term that may be induced by the externalities, the agents’s envi-
ronment, or some constraint function in first approximation. We may associate to this probability weight
the probability of transition between states x and y, that is the sum of these probabilities for all possible
paths:

P (x, y, s) =

∫
Dx (t) exp

(
−
∫ x(s)=y

x(0)=x

(
ẋ2

2
(t) +K (x (t)) dt

))
(98)
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It represents the probability for an agent to reach y starting from x during the time span s. It is the
probability of social mobility - moving from point x to y - for an agent in the social space. Written under
this form, the probability transition (98) is given by a path integral: The weight in the exponential includes
a random, brownian motion, plus a potential K describing the individual goals as well as social/economical
influences. It can be seen as an intertemporal utility whose optimization would yield the usual brownian
noise plus some external determinants.

Now we can consider interactions between N agents in two ways. The first one is local. Interactions
between agents are direct: an agent’s action implies a reaction at the next period, and the weight associated
to the system has the form:

exp


−

∫ x(s)=y

x(0)=x


∑

i

ẋ2i
2
(t) +

∑

i

K (xi (t)) dt+
∑

i,j

αi,jxi (t) ẋj (t)






The quadratic interaction term xi (t) ẋj (t) between agents could be generalized by a potential V (x1 (t) , ẋ1 (t) , ..., xi (t) , ẋi (t) ,
This type of interaction describes strong interactions as well as possibly strategic domination relations be-
tween agents.

This inclusion of local interactions can be set in a more compact form. By concatenating the agents’
actions in one vector X (t) whose dimension is the sum of the dimension of the xi (t). The total weight for
X (t) has the form:

exp

(
−
∫ x(s)=y

x(0)=x

(
1

2
Ẋ (t)MẊ (t) +K (X (t))

)
dt

)
(99)

where the matrix M encompasses the terms with derivatives (inertial or interaction terms). In other words,
the whole system can be described by a single path integral in a space of configuration which is the sum of
the individual configuration space, reflecting the strong interaction between agents.

The second kind of interactions is non local in time and may arise in two cases. The first one arises from
constraints agents impose on others. In standard economic models, the consumption function is subject
to the budget constraint, itself determined by a flow of income. This flow of income depends in turn on
the overall agents’ behavior. This implies interactions between the system’s various agents. Besides, when
forward looking behavior and usual intertemporal optimization are accounted for, the resulting interaction
becomes non local. The action’s effective utility then becomes:

exp


−

∫ x(s)=y

x(0)=x


∑

i

ẋ2i
2
(t) +

∑

i

K (xi (t)) dt+

∫ ∑

i,j

V (xi (t) , xj (s)) dsdt






and the potential term V (xi (t) , xj (s)) reflects the interaction through the constraint and the potential term
V (xi (t) , xj (s)) reflects the interaction through the constraint.

The second case where non local interaction may arise in our context comes back to (99). The effec-
tive utility may, in some cases, be diagonalized in some fundamental structures, and written as a sum of
independent terms:

1

2
Ẋ (t)MẊ (t) +K (X (t)) =

∑

k

(
1

2
Ẋk (t)MkẊk (t) +Kk (Xk (t))

)

Since the probability weight of the system is a product of each structure weight, these structures have
independent dynamics. However, one may want to include some previously neglected interactions. Since each
structure has a long term persistence, one may assume that the whole set of agents shapes the environment
of each agent, considered individually. This type of interaction may be modelled by constraints, or more
generally non local interactions.

Including these types of interactions yield the following effective utility:

−
∑

k

(
1

2
Ẋk (t)MẊk (t) +K (Xk (t))

)
+

N∑

l=1

∑

k1,...,kl

V (Xk1 (s1) , ..., Xkl (sl))
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and the path integral:

exp


−

∑

k

∫ s

0

(
1

2
Ẋk (t)MkẊk (t) +Kk (Xk (t))

)
dsk +

∑

l

∫

0<si<s

∑

k1,...,kl

V (Xk1 (s1) , ..., Xkl (sl))


(100)

×DX1 (s1) ...DXn (sn)

where the potential terms include all possible non local interactions between the several fundamental
structures. This type of model includes the several cases mentionned just above. The local interactions are
included in a system from which some fundamental structures emerge. Then the non local interactions and
constraints arise as non local interactions between these fundamental structures.
Our aim would now be to deal with such models, but for a large number of agents. However, since

the number of variables Xk (t) increases with N , (100) becomes untractable when N becomes large. As a
consequence our formalism needs to be simplified or modified to deal with a large number of agents.
We can do so by first supposing that the agents involved in (100) are not so entirely heterogenous that

they would have different effective utilities. We rather expect agents to belong to broad classes or types.
Inside each class, differences arise from the internal uncertainty present from the beginning, from interaction
terms among a class, or with the other classes. It is these internal uncertainty and interactions that will
provide statistical differences results among the various types of agents.
Second, since (100) describes an interaction process with a duration - or agents’ lifespan s -we might

assume that this duration, for a large number of agents, may vary among interacting agents, or group of
agents.
To model this, we use the single agent transition function P (x, y, s) and compute its Laplace transform:

GK (x, y, α) =

∫
exp (−αs)

∫
Dx (t) exp

(
−
∫ x(s)=y

x(0)=x

(
ẋ2

2
(t) +K (x (t)) dt

))
ds

This expression models the transition function between x and y for an agent whose lifespan is a Poisson
process of average 1

α
. It fits well for a large number of agents whose interaction duration varies among the

population. The Poisson law has the advantage, among others, to describe a memory-free process. So that,
at each period, the same law will model the probability for the remaining time of interaction. Describing
the system in terms of GK (x, y, α) is a step toward the modelling of large N systems. It models a mean
transition function for a set of agents with random lifespan duration (or more generally, the duration of the
interaction process), where agents are themselves unaware of the length of this duration.

The green function GK (x, y, α) is the one worked out in the previous section for an arbitrary effective

utility, along with a kinetic term ẋ2

2 (t) induced by interactions, inertia, and or constraints. We quoted
previously that GK (x, y, α) can be seen as the inverse of an operator. Actually, it is the laplace transform
of P (x, y, s), with P (x, y, s) solving the usual laplacian equation:

∂

∂s
P (x, y, s) =

(
1

2
∇2 −K (x)

)
P (x, y, s)

As a consequence its Laplace transform GK (x, y, α) satisfies:

(
−1
2
∇2 + α+K (x)

)
GK (x, y, α) = δ (x− y) (101)

Considering the description in term of Laplace transforms, the path integral to consider for the whole set of
agents becomes:

∫
exp (−αs) ds

∫
exp

(
−
∑

k

∫ s

0

(
1

2
Ẋk (t)MkẊk (t) +Kk (Xk (t))

)
dsk (102)

+
∑

l

∫

0<si<s

∑

k1,...,kl

V (Xk1 (s1) , ..., Xkl (sl))


×DX1 (s1) ...DXn (sn)
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Or, if we consider different average lifespan for the various agents:

∫ ∏

i

exp
(
−αis(i)

)
dsi

∫
exp

(
−
∑

k

∫ s

0

(
1

2
Ẋk (t)MkẊk (t) +Kk (Xk (t))

)
dsk (103)

+
∑

l

∫

0<si<s

∑

k1,...,kl

V (Xk1 (s1) , ..., Xkl (sl))


×DX1 (s1) ...DXn (sn)

Up to the Laplace transform, (103) is the description we adopted in the previous sections. The third
adaptation we have to perform on the model starts with formula (103). Indeed, the sum of potentials∑

l

∫
0<si<s(i)

∑
k1,...,kl

V (Xk1 (s1) , ..., Xkl (sl)) accounts for interactions between several types of agents,
some of whom may involve numerous structures. Our description being statistical, it should average over
interactions involving a variable number of agents of various types, which would allow to describe both the
interactions of a large number of agents in average, and the evolution of a small number of structures in the
whole set of agents’ environment. This can be performed by resorting to the following device: rather than
considering (103) directly with a large number of agents (that is a sum for k = 1, ..., N with N large), where
among the sum, the agents are divided into few classes of identical agents, one will sum over systems with
variable number of agents from 1 to N →∞. Consider a single type of identical agents. We will generalize
the procedure to different types later. The so called Grand Partition Function for a set of N interacting
individual paths associated to the partition function (103):

∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

)
(104)

−
A∑

k=2

∑

i1,...ik

∫ xi(s)=y

xi(0)=x

Vk (xi1 (t1) ...xik (tk)) dt1...dtk




Up to the sum over N , this is the - Laplace transformed - transition function for a system of N identical
agents interacting through the potentials Vk (x1 (t) ...xk (t)). We assume arbitrary interaction processes
through the potentials Vk (x1 (t) ...xk (t)), with A standing for the maximal number of agents in interaction.
Recall that the Nth term in (104) computes the transition probability between {xi}i=1...N and {yi}i=1...N
for a system with N agents during a time interval s.

As said before, the sum over N implies the possibility of interaction processes involving a variable number
of agents. The N ! reflects the fact that agents are identical in that context.
Some difficulties arising from the computation of (104) can be avoided by considering the potential

K (x (t)) as a source term. To do so, we follow the presentation of [7]. and adapt this one to our context.
Starting with the simplest case of no interaction, i.e. Vk (x1 (t) ...xk (t)) = 0, the function of interest to us is:

∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))
(105)

Each of these integrals being independent from each others, the results for (105) is:

∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))
=
∑

N

1

N !

N∏

i=1

GK (xi, yi, α)

(106)

which is a mixed sum over N of transition functions for N agents. Each product 1
N !

N∏

i=1

GK (xi, yi, α) com-

putes, as needed, the transition probability from {xi}i=1...N to {yi}i=1...N for N ordered agents during a
process of mean duration 1

α
. Thus the sum can be seen as a generating series for these probabilities with

N agents. However, between identical agents, order is irrelevant, so that the probability of transition of the
system from {xi}i=1...N to {yi}i=1...N is the sum over the permutations with N elements of the terms on
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(106) rhs. Since these terms are equal, the "true" probability of transition is
N∏

i=1

GK (xi, yi, α). The whole

problem at stake is to recover the case with interaction (104) from the "free" case (105). The benchmark case
interaction contribution (105) can be recovered using the following method. Using the functional derivative
with respect to K we write:

δ

δK (xi1)

∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))

=
∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))

×
{
−
∑

i

∫ xi1 (s)=yi1

xi1 (0)=xi1

dtδ (xi1 (t)− xi1)
}

where δ (xi1 (t)− xi1) is the delta of Dirac function. By extension, this generalizes for any function V (xi1),
to:

∫
dxi1V (xi1)

δ

δK (xi1)

∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))

=
∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))

×
{
−
∑

i

∫ xi1 (s)=yi1

xi1 (0)=xi1

dtV (xi1 (t))

}

and for any function of several variables, to:

∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))
(107)

×
∑

k>2

∑

i1,...ik

∫ xi(s)=y

xi(0)=x

Vk (xi1 (tk) ...xik (tk)) dt1...dtk

=
∑

k>2

∑

i1,...ik

{
(−1)k

∫
dxi1 ...dxikVk (xi1 ...xik)

δ

δK (xi1)
...

δ

δK (xik)

}

×
∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))

To find (104) from (105), the next step is to exponentiate (107) as:

∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t)

× exp


−

∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

)
−

A∑

k=2

∑

i1,...ik

∫ xi(s)=y

xi(0)=x

Vk (xi1 (t1) ...xik (tk)) dt1...dtk




= exp

(
−
∫
dxi1 ...dxikVk (xi1 ...xik)

δ

δK (xi1)
...

δ

δK (xik)

)

×
∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))
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In other words, using (106) one finds the partition function for the system of agents in interaction:

∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t)

× exp


−

∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

)
−

A∑

k=2

∑

i1,...ik

∫ xi(s)=y

xi(0)=x

Vk (xi1 (t1) ...xik (tk)) dt1...dtk




= exp

(
−
∫
dxi1 ...dxikVk (xi1 ...xik)

δ

δK (xi1)
...

δ

δK (xik)

)
×
∑

N

1

N !

N∏

i=1

GK (xi, yi, α)

This would allow to compute the transition functions, or average quantities for interactions processes in-
volving all agents. However, there exists a more compact and general way to compute the same results
and, eventually, to obtain more results about the nature of the interacting system. This implies a switch
in representation from the N agents’ system to the collective surrounding description of these N agents.
We can actually infer from (101) that the determinant of operator GK whose kernel is GK (x, y, α) can be
expressed as an infinite dimensional integral different from the ones studied up to now:

(det (GK))
−1
=

∫
exp

(
−Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x)

)
DΨDΨ† (108)

where the integrals over Ψ(x) and Ψ† (x) are performed over the space of complex-valued functions of one
variable x. The function Ψ† (x) is the complex conjugate of Ψ† (x).

The formula (101) is simply the generalization in infinite dimension of the gaussian integral formula

(det (M))
−1
=

∫
exp

(
−X (M)X†)DXDX†

where (101) is used.
Introducing a source term J (x)Ψ† (x) + J† (x)Ψ (x), we claim that:

∫
exp

(
−Ψ(x)

(
− 1
2∇

2 + α+K (x)
)
Ψ† (x) + J (x)Ψ† (x) + J† (x)Ψ (x)

)
DΨDΨ†∫

exp
(
−Ψ(x)

(
− 1
2∇

2 + α+K (x)
)
Ψ† (x)

)
DΨDΨ†

(109)

= exp

(
J (x)

(
−1
2
∇2 + α+K (x)

)−1
J† (x)

)

= exp
(
J (x)GK (x, y, α)J

† (x)
)

This comes directly when changing the variable Ψ(x)→ Ψ(x) + J (x) in the numerator of (109).
The terms in (105) can thus be recovered from (109). Actually, the transition function for N agents

(109):
N∏

i=1

GK (xi, yi, α) (110)

providing that 1
N ! in (106) accounted for a chosen order among agents, and that we multiplied N ! to restore

the indentity between the agents, can directly be written as:

N∏

i=1

GK (xi, yi, α) =

[(
δ

δJ (xi1)

δ

δJ† (yi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (yiN )

)
exp

(
J (x)GK (x, y, α) J

† (x)
)]

J=J†=0

Consequently, we now have an infinite dimensionnal integral representation for the transition functions for
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N agents:

N∏

i=1

GK (xi, yi, α)

=

[(
δ

δJ (xi1)

δ

δJ† (xi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (xiN )

)]

J=J†=0

.

∫
exp

(
−Ψ(x)

(
− 1
2∇

2 + α+K (x)
)
Ψ† (x) + J (x)Ψ† (x) + J† (x)Ψ (x)

)
DΨDΨ†∫

exp
(
−Ψ(x)

(
− 1
2∇

2 + α+K (x)
)
Ψ† (x)

)
DΨDΨ†

=
1∫

exp
(
−Ψ(x)

(
− 1
2∇

2 + α+K (x)
)
Ψ† (x)

)
DΨDΨ†

×
[(

δ

δJ (xi1)

δ

δJ† (xi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (xiN )

)]

J=J†=0

.

∫
exp

(
−Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x) + J (x)Ψ† (x) + J† (x)Ψ (x)

)
DΨDΨ†

The normalization factor

1∫
exp

(
−Ψ(x)

(
− 1
2∇

2 + α+K (x)
)
Ψ† (x)

)
DΨDΨ†

is usually implied and will thus be - whenever possible - omitted in the formula. The transition functions
are computed by taking the derivatives with respect to J (x) and J† (x) of

∫
exp

(
−Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x) + J (x)Ψ† (x) + J† (x)Ψ (x)

)
DΨDΨ†

However, the source term is also usually implied and only reintroduced ultimately, at the end of the compu-
tations. As a consequence,

∫
exp

(
−Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x)

)
DΨDΨ† (111)

will describe the same system of identical non interacting structures. We will use this representation occa-
sionally.

On the other hand we have seen how to introduce interactions between agents. It amounts to make an
operator act, namely

exp

(
−
∫
dxi1 ...dxikVk (xi1 ...xik)

δ

δK (xi1)
...

δ

δK (xik)

)

on the transition functions. In other words, the quantity

exp

(
−
∫
dxi1 ...dxikVk (xi1 ...xik)

δ

δK (xi1)
...

δ

δK (xik)

)

×
∫
exp

(
−Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x) + J (x)Ψ† (x) + J† (x)Ψ (x)

)
DΨDΨ†

allows to compute, by differentiation with respect to the source terms J (x) and J† (x), the transition
functions for a system of N interacting particles. The action of the functional differential operator can be
written:

exp

(
−
∫
dxi1 ...dxikVk (xi1 ...xik)

δ

δK (xi1)
...

δ

δK (xik)

)

×
∫
exp

(
−Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x)

)
DΨDΨ†

=

∫
exp

(
−Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x)−Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ† (xi1) ...Ψ† (xik)

)
DΨDΨ†
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The above formula can be directly extended by considering all types of interaction process involving k
identical agents where k > 2. We can sum up the previous development by asserting that the quantity

∫
exp

(
−Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x) (112)

−
∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik) + J (x)Ψ
† (x) + J† (x)Ψ (x)


DΨDΨ†

computes, by successive derivatives with respect to J (x) and J† (x), the transition functions of a system
of infinite number of identical agents, with effective utility Xi (t)

(
− 1
2∇

2 +K (x)
)
Xi (t), and arbitrary, non

local in time, interactions Vk (Xi1 (t1) ...Xik (tk)) involving k agents, with k arbitrary. The constant α is
the characteristic scale of the interaction process, and 1

α
the mean duration of the interaction process, or

alternately the mean lifespan of the agents. The transition functions are given by:

GK ({xi} , {yi} , α) (113)

=

[(
δ

δJ (xi1)

δ

δJ† (yi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (yiN )

)∫
exp

(
−Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x)

−
∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik) + J (x)Ψ
† (x) + J† (x)Ψ (x)


DΨDΨ†



J=J†=0

and GK ({xi} , {yi} , α) is the probability of transition for N agents from a state {xi} to a state {yi}.
Remark that this formulation realizes what was announced before. The switch in formulation induces that
the transition of the agents, i.e. their dynamical and stochastic properties, takes place in a surrounding.
Instead of computing directly the dynamic of the system, we derive this behavior from the global properties
of a substratum, the global action for the field Ψ(x). By global action we denote the functional, or action:

S (Ψ) =

∫
dx


Ψ(x)

(
−1
2
∇2 + α+K (x)

)
Ψ† (x) +

A∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik)




The infinite dimensional integral (113), the so-called "path integral", can be written as a shortcut when the
source terms are omitted: ∫

exp (−S (Ψ))DΨ

This point of view is usual both in quantum and in statistical field theory. The latter, that is the closest
to our approach, deals with system with large degrees of freedom. To reach an analog degree of formalism, we
built the notion of effective utility, starting from interacting and strategic agents. This notion has then been
used to find the action functional for a field describing a large number of structures. The individual features
of the effective utilities render the action functionals more specific than their analog physics. Moreover, the
physics and the symetry laws generally at stakes in statistical physics ultimately constrains the form of the
global action. These constraint are not present here, and we will see that the form of the problems involved
by the systems of socio/ eco interacting agents lead to very different forms of global actions than the one
studied in physics. These symmetries are absent here. Besides, systems of socio/economic interacting agents
lead to very different forms of global actions than those studied in physics. However, some basic ideas and
principles remain valid and will conduct the use of this formalim.
The first application of this formalism asserts that in the expression

S (Ψ) =

∫
1

2

(
Ψ† (x)

(
∇2 + α+K (x)

)
Ψ(x)

)
dx+

∫ A∑

k=2

V (x1, ..., xk)Ψ (x1)Ψ
† (x1) ...Ψ(xk)Ψ

† (xk) dx1...dxk

(114)
the contibutions of the potential V (x1, ..., xk) to the computation of the two points Green functions can be
obtained as a series of Feynman Graphs. This one represents also the "sum over all histories" and will yield
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the statistic "fate" of a single path through the various interaction processes These graphs actually compute
how the path of single agent is perturbed by interaction processes with one, two... and more agents. Each
of these interaction processes will contribute in probability to the transition of the agent from one state to
another. That is, the series of graphs models the environment impact on the trajectory of a structure.

More generally, n points correlation functions give the probability of transition between 2 sets of states
for n agents: given a certain process with n agents and initial values, it yields the probability value for the
outcome.

The second application of the formalism of statistical physics is the possibility of non trivial vaccua and
phase transition. The system (114) can be studied independently from the system of agents it represents.
The functional S (Ψ) may present some non trivial minima, and these minima modify the properties of
the correlation functions of the system. The field Ψ for which S (Ψ) reaches it’s minimal value describes
the phase of the system. Given the parameters of the model, the phase may change and confer different
properties to the system. The properties of individual behavior will then depend on the phase of the system
as a whole.

Both possibilities will be studied in the next sections, but before doing so, we will conclude this section
by generalizing our results to the models developped in the previous sections.

Remark that the first term in (114) 12
∫ (
Ψ† (x)

(
∇2 + α+K (x)

)
Ψ(x)

)
can be identified with 1

2

∫
Ψ† (x)

(
G−1K (x, y)

)
Ψ(x).

Besides, GK (x, y) is the Green function for the effective utility of a single agent, or a single subset of several
interacting structures, or some fundamental structure.

As a consequence of the previous discussion, the formalism may be generalized for curved space of
configurations that appeared in the previous section, and which represents the most general form of quadratic
effective utility. Actually, consider a single interacting system with effective action (64), in which we now
include the term derived in (32) and previously discarded:

Ueff (X (t)) =

∫ (
1

4
Ẋ (t)

(
N +MS

)
Ẋ (t) +

(
X (t)− X̄e

) (
N −MS

) (
X (t)− X̄e

)

+
(
X (t)− X̄e

)
MAẊ (t) + Veff (X (t)) + Ueff

(
X̄e
))
dt

The associated Green function G (x, y, α) is the inverse of a differential operator given by (96):

G−1 (x, y, α) =

(
−∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))

+
(
x− X̄e

) (
N −MS −

(
MA

)t (
N +MS

)−1
MA

) (
x− X̄e

)
+ Ueff

(
X̄e
)
+ α

)
δ (x− y)

and then G (x, y, α) satisfies:

δ (x− y) =

(
−∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))

+
(
x− X̄e

) (
N −MS −

(
MA

)t (
N +MS

)−1
MA

) (
x− X̄e

)
+ Ueff

(
X̄e
)
+ α

)

×G (x, y, α)

Gathering the potential terms

(
x− X̄e

) (
N −MS −

(
MA

)t (
N +MS

)−1
MA

) (
x− X̄e

)
+ Ueff

(
X̄e
)
+ α+ Veff (x)→ m2 + V (x)

allows to write the effective utility and associated inverse Green function as:

G−1 (x, y) = −∇
(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))
+ V (x) (115)

with:
m2 = α+ Ueff

(
X̄e
)

(116)

note that m2 can be positive or negative, depending on Ueff
(
X̄e
)
- α is always positive, but we keep this

notation by analogy with the mass term in field theory.
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Formula (115) leads to the field formulation of large number of interactions:

S (Ψ) =

∫
1

2

(
Ψ† (x)

(
−∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))
+m2 + V (x)

)
Ψ(x)

)
dx

+

∫ ∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik) dx1...dxk (117)

If we change the coordinates
(
x− X̄e

)
→
√
M (S) +N

(
x− X̄e

)
to normalize M (S) +N to 1, we have:

S (Ψ) =

∫
1

2

(
Ψ† (x)

(
−∇2 +∇M (A)

(
x− X̄e

)
+m2 + V (x)

)
Ψ(x)

)
dx (118)

+

∫ ∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik) dx1...dxk

That describes a set of fundamental structures over the whole relevant time span, as well as their potential
temporal realizations.

The first contribution describes the dynamic of a set of identical structure whose fundamental state - or
classical solution - is bended by its own internal interactions and constraints as explained in the previous
sections. The second term represents the possibly non local interactions between agents. Each interaction
type creates a surrounding constraining the individual structures.

8.2 Introduction of several type of agents

The previous paragraph has introduced a field theoretic description of a large number of interacting identical
agents, or structures. To differentiate between fundamental structures, one introduce the different species,
either by diagonalizing the initial system and replicating it, and then adding non local interactions, either
directly by introducing some original bricks and their interactions. Each of these types corresponds to a
field living in a space whose dimension is given by the dimension of each block Xk (t). We denote them

Ψ(k)
(
X̂k

)
. The coordinate X̂k describes the space, or variety, of characteristic variables of the fundamental

structure k.
The treatment of these several species is straightforward given the previous paragraph. Without inter-

action, each fundamental structure is described by a quadratic action similar to the ones described in the
previous paragraph (see (115)). Recall that:

∫
exp (−S (Ψ))DΨ

computes the probability weight for a system. Gathering the various systems of identical fundamental
structures, the path integral to consider reduces to the product of the weights of each system of fundamental
structures. The non interacting blocks Path. Integrals is then:

∫ ∏

k

DΨ
(
X̂k

)
×

× exp
(
∑

k

∫
dX̂k

((
−1
2
Ψ(k)†

(
X̂k

)[
(∇k)

(
M

(S)
k +Nk

)−1 (
∇k −M (A)

k

(
X̂k −

(
X̃
)
k

))
+ V

(
X̂k

)]
Ψ(k)

(
X̂k

))))

where V
(
X̂k

)
includes 1

2

(
X̂k −

(
X̃
)
k

)(
Nk −M (S)

k

)(
X̂k −

(
X̃
)
k

)
.

The inclusion of the interaction potential between fundamental structures follows the same previous steps
and leads to the decomposition for the full action of the system with an infinite number of agents divided in
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M type, or species, of structures:

S
({
Ψ(k)

}
k=1...M

)

=
∑

k

∫
dX̂k

((
−1
2
Ψ(k)†

(
X̂k

) [
(∇k)

(
Nk −M (S)

k

)(
∇k −M (A)

k

(
X̂k −

(
X̃
)
k

))
+m2

k + V
(
X̂k

)]
Ψ(k)

(
X̂k

)))

+
∑

k

∑

n

Vn

({
X̂
(i)
k

}
16i6n

) ∏

16i6n

Ψ(k)†
(
X̂
(i)
k

)
Ψ(k)

(
X̂
(i)
k

)

︸ ︷︷ ︸
intra species interaction

(119)

+
∑

m

∑

k1...km

∑

n1...nm

V(k1,n1)...(km,nm)

({
X̂
(inj )
kj

}

16inj6nj

)
m∏

j=1

∏

16inj6nj

Ψ(kj)†
(
X̂
(inj )
kj

)
Ψ(kj)

(
X̂
(inj )
kj

)

︸ ︷︷ ︸
inter species interaction

The variables X̂
(i)
k are copies of the coordinates on the fundamental structure k. The intra type/species in-

teraction terms describes then the interactions between several structures of the same kind. The inter-species

interaction term rather involves coordinates X̂
(inj )
kj

on different manifolds, and describes then interactions
between different types of agents. The potential V(k1,n1)...(km,nm) involves n1 copies of structures k1,..., nm
copies of structures km.

8.3 Computation of Green functions. Graphs

We start with the system composed an infinite number of agents of one type, whose action is described by
(117). Without interaction, we have seen that the Green function for 2n independent variables through (113)

G0K ({xi}1...n , {yi}1...n , α) (120)

=

[(
δ

δJ (xi1)

δ

δJ† (yi1)

)
...

(
δ

δJ (xin)

δ

δJ† (yin)

)

∫
exp

(
−Ψ(x)

(
−∇2 +∇M (A)

(
x− X̄e

)
+m2 + V (x)

)
Ψ† (x) + J (x)Ψ† (x) + J† (x)Ψ (x)

)
DΨDΨ†

]

J=J†=0

The upperscript 0 has been added on G0K ({xi}1...n , {yi}1...n , α) to denote the Green function without
interaction potential between the different agents. Equation (120) can also be rewritten as :

G0K ({xi}1...n , {yi}1...n , α) =

∫
Ψ(xi1)Ψ

† (yi1) ...Ψ(xin)Ψ
† (yin) (121)

exp
(
−Ψ(x)

(
−∇2 +∇M (A)

(
x− X̄e

)
+m2 + V (x)

)
Ψ† (x)

)
DΨDΨ†

And the left hand side of (121) can be rewritten as a product when there is no interaction potential (see
(110)), so that:

∑

σ∈σn

n∏

j=1

G0K
(
xij , yσ(ij), α

)
=

∫
Ψ(xi1)Ψ

† (yi1) ...Ψ(xin)Ψ
† (yin) (122)

exp
(
−Ψ(x)

(
−∇2 +∇M (A)

(
x− X̄e

)
+m2 + V (x)

)
Ψ† (x)

)
DΨDΨ†

This is known as the Wick theorem (see [11]) and is the basis to compute perturbatively the 2n points Green
function when a potential is added to the action.
Now, consider the full 2n points Green function including an interaction potential as in (113), but with

the general action (117):
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GK ({xi} , {yi} , α)

=

[(
δ

δJ (xi1)

δ

δJ† (yi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (yiN )

)

×
∫
exp

(
−Ψ(x)

(
−∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))
+m2 + V (x)

)
Ψ† (x)

−
∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik) + J (x)Ψ
† (x) + J† (x)Ψ (x)


DΨDΨ†



J=J†=0

Exactly in the same way as for the case without interaction, the 2n points Green function can also be
written:

GK ({xi} , {yi} , α) =

∫
Ψ(xi1)Ψ

† (yi1) ...Ψ(xin)Ψ
† (yin) (123)

× exp
(
−Ψ(x)

(
−∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))
+m2 + V (x)

)
Ψ† (x)

−
∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik)


DΨDΨ†

and given the Wick theorem, this can be computed in the following way as a function of the Green function
without interaction G0K

(
xi, yσ(i), α

)
.

Actually, expanding the exponential term containing the potential Vk (xi1 ...xik):

exp


−

∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik)




=

∫ ∞∑

l=0

∏

kj>2
16j6l

{
Vkj

(
x
(kj)
i1

...x
(kj)
ikj

) [
Ψ
(
x
(kj)
i1

)
...Ψ

(
x
(kj)
ikj

)
Ψ†
(
x
(kj)
i1

)
...Ψ†

(
x
(kj)
ikj

)]
dx

(kj)
i1

...dx
(kj)
ikj

}

And using the Wick theorem, contributions like:

∫
Ψ(xi1)Ψ

† (yi1) ...Ψ(xin)Ψ
† (yin) exp

(
−Ψ(x)

(
−∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))
+m2 + V (x)

)
Ψ† (x)

)
(124)

×
∫ ∏

16j6l

{
Vkj

(
x
(kj)
i1

...x
(kj)
ikj

) [
Ψ
(
x
(kj)
i1

)
...Ψ

(
x
(kj)
ikj

)
Ψ†
(
x
(kj)
i1

)
...Ψ†

(
x
(kj)
ikj

)]
dx

(kj)
i1

...dx
(kj)
ikj

}
DΨDΨ†

for a given sequence {kj > 2}, j = 1, ..., l, are equal to:
n∑

n1=0

∑

σ∈σn,σ′∈σn

∑

σ̂∈σ2N

∑

{x1,...,x2n}= ∪
16j6l

σ̂

{
x
(kj)
i1

...x
(kj)
ikj

}
G0K

(
xiσ(n1+1) , yiσ′(n1+1)

, α
)
...G0K

(
xiσ(n) , yiσ′(n) , α

)
(125)

×G0K
(
xiσ(1) , x1, α

)
G0K

(
yiσ′(1) , x2, α

)
...G0K

(
xiσ(n1) , x2n1−1, α

)
G0K

(
yiσ′(n1)

, x2n1 , α
)

N∏

p=n1+1

G0K (x2p−1, x2p, α)
∏

kj>2
16j6l

{
Vkj

(
x
(kj)
i1

...x
(kj)
ikj

)
dx

(kj)
i1

...dx
(kj)
ikj

}

where N =
∑l

j=1 kj and with the convention that the contributions are nul for 2n1 > N . The Green
function is obtained by summing over l from 0 to ∞ and over the sequence {kj > 2}, j = 1, ..., l . Remark
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that the sums have to be performed only on sequences corresponding to connected graph, as explained just
now above.

Actually, these integrals have convenient graph representations. Draw the 2n external points labelled

by xi1 , then for j = 1 to l draw l vertices with k1,...kl legs and labelled by Vkj

(
x
(kj)
i1

...x
(kj)
ikj

)
. Then draw

2n lines joining the external vertices to the legs of any internal one. Then link all remaining internal legs
together in all possible ways labelling them by the points they are joining, such a way that the resulting
graph is connected Finally link all remaining internal legs together in all possible ways, and label them by
the points they are joining, in such a way that the resulting graph is connected. This gives a series of graphs,
each providing a contribution to GK . The contribution of any graph is computed in the following way:

For each internal or external line, associate a factorG0K

(
xin , x

(kj2n−1)
p2n−1

, α
)
orG0K

(
x

(
kmi2j−1

)

ri2j−1
, x

(
kmi2j

)

ri2j
, α

)

where the variables in the function G0K represents the points the line is connecting. Then multiply by the

factors Vkj

(
x
(kj)
i1

...x
(kj)
ikj

)
associated to the internal points. Then integrate the results over all internal points.

The fact that only contributions corresponding to connected graph is explained for example in [11] but can
quickly be understood as follows. Recall that the path integrals for n-points correlation functions like (124)
have to be normalized by dividing by the "zero point" correlation functions:

∫
exp

(
−Ψ(x)

(
−∇

(
M (S) +N

)−1 (
∇+

(
MA

) (
x− X̄e

))
+m2 + V (x)

)
Ψ† (x)

)
(126)

×
∫ ∏

16j6l

{
Vkj

(
x
(kj)
i1

...x
(kj)
ikj

) [
Ψ
(
x
(kj)
i1

)
...Ψ

(
x
(kj)
ikj

)
Ψ†
(
x
(kj)
i1

)
...Ψ†

(
x
(kj)
ikj

)]
dx

(kj)
i1

...dx
(kj)
ikj

}
DΨDΨ†

and the contributions to (126) given by (125) are precisely given by (any) product of graph made of cycles
(due to the fact that there are no external points). These contributions cancel precisely the non connected
graphs in (125), that is those containing themselves cycles.

The method of graphs computations can be useful to find corrections to the individual propagators G0K .
However, given the particular form of our model, it will often be more useful to use some other aspects of
the collective field representation, as will be explained later.

This formula can be generalized for interactions beween various types of structures. Starting from (119),
a computation similar to the previous ones yields the following contributions to the transition functions
GK

(
({xi} , {yi})n1 , ..., ({xi} , {yi})nA , α

)
for 2n1 points of type 1,...., 2nA points of type A:

A∏

B=1




nB∑

(n1)B=0

∑

σ∈σnB ,σ′∈σnB

∑

σ̂∈σ2NB

∑

{x1,...,x2n}=σ̂
(

∪
16j6l

{
x
(kj)
i1

...x
(kj)
ikj

})
G
0,B
K

(
xiσ(n1+1) , yiσ′(n1+1)

, α
)
× (127)

×...×G0,BK
(
xi

σ(nB)
, yi

σ′(nB)
, α
)

× G0K
(
xiσ(1) , x1, α

)
G0K

(
yiσ′(1) , x2, α

)
...G0K

(
xiσ(n1) , x2n1−1, α

)
G0K

(
yiσ′(n1)

, x2n1 , α
) NB∏

p=n1+1

G0K (x2p−1, x2p, α)

]

×
l∏

p=1

{
V{(k1,n1)...(km,nm)}p

({
x
(inj )
kj

}

16inj6nj

)
d

{
x
(inj )
kj

}

16inj6nj

}

withNB =
∑l

j=1 (nB)p where (nB)p is the number of copies of the species kB appearing in {(k1, n1) ... (km, nm)}p
. The Green function is obtained by summing over l from 0 to∞ and over the sequences {(k1, n1) ... (km, nm)}p,
p = 1, ..., l.
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8.4 Non trivial vacuum, phase transition (one type of agent)

8.4.1 Principle: Vacuum value and Green function

The previous perturbative computation relies on a development around the Green functions of a system of
non interacting agents. However, this expansion may not be valid in (113). The effective action arising
in the exponential of (123) may have a non trivial minimum Ψ0 (x) in some cases. Changing the coor-

dinates
(
x− X̄e

)
→
√
M (S) +N

(
x− X̄e

)
for the sake of simplicity, the Green functions are then better

approximated by expanding:

S (Ψ) =

∫
1

2

(
Ψ† (x)

(
−∇2 +∇M (A)

(
x− X̄e

)
+m2 + V (x)

)
Ψ(x)

)
dx

+

∫ ∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik) dx1...dxk

to the second order around Ψ0 (x). The Green function is then recovered by computing the integral of the
second group of terms over Ψ(x), plus higher order contributions. The possibilities of non trivial minima
Ψ0 (x), depending on the parameters of the model, is related to the phenomenon of phase transition (for
a short account see Pesh). Given the particular form of action functional S (Ψ) involved in this context,
its minima are quite different from the one obtained in usual models in field theory. Hower, the principle
remains the same. Assume a non zero minimum Ψ0 (x) for

−Ψ(x)
(
−∇2 +∇M (A)

(
x− X̄e

)
+m2 + V (x)

)
Ψ† (x)

−
∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik)

i.e.

0 =

[
δ

δΨ(x)

(
−Ψ(x)

(
−∇2 +∇M (A)

(
x− X̄e

)
+m2 + V (x)

)
Ψ† (x)

−
∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik)





Ψ(x)=Ψ0(x)

Then, expanding

S (Ψ (x)) = −Ψ(x)
(
−∇2 +∇M (A)

(
x− X̄e

)
+m2 + V (x)

)
Ψ† (x)

−
∑

k>2

∑

i1,...ik

Ψ(xi1) ...Ψ(xik)Vk (xi1 ...xik)Ψ
† (xi1) ...Ψ

† (xik)

with:
Ψ(x) = Ψ0 (x) + δΨ(x)

yields:

S (Ψ0 (x) + δΨ(x)) = S (Ψ0 (x))− δΨ(x)
(
−∇2 +∇M (A)

(
x− X̄e

)
+m2 + V (x)

)
δΨ† (x) (128)

−
A∑

k=2

∑

i1,...ik

∑

ij

δΨ
(
xij
)
Ψ0 (xi1) ...Ψ̂0

(
xij
)
...Ψ0 (xik)Vk (xi1 ...xik)

×Ψ†0 (xi1) ...Ψ̂†0
(
xij
)
...Ψ†0 (xik) δΨ

† (xij
)

+higher order terms in δΨ
(
xij
)

where the hat over Ψ
(
xij
)
and its conjugate Ψ†

(
xij
)
means that these terms are omitted. In other words,

the potential term in the individual action has been shifted from K (x) to

K (x)−
A∑

k=2

∑

i1,...ik

∑

ij

Ψ0 (xi1) ...Ψ̂0
(
xij
)
...Ψ0 (xik)Vk (xi1 ...xik)Ψ

†
0 (xi1) ...Ψ̂

†
0

(
xij
)
...Ψ†0 (xik)
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yielding a change in the individual Green function and in turn, in the individual effective utility. The
influence of a large number of interactions induces a non trivial collective minimum: it shifts the individual
behavior. Actually, the new individual action term:

−δΨ(x)


−1

2
∇2 + α+K (x)−

A∑

k=2

∑

i1,...ik

∑

ij

Ψ0 (xi1) ...Ψ̂0
(
xij
)
...Ψ0 (xik)Vk (xi1 ...xik) (129)

× Ψ†0 (xi1) ...Ψ̂†0
(
xij
)
...Ψ†0 (xik)

)
δΨ† (x) dxi1 ...d̂xij ...dxik

modifyies the inverse of the Green function by some "constant", independent from δΨ(x), inducing a damped
or extended dynamic. In other words the individual fluctuations can be frozen or magnified, justifying the
use of the term phase transition. We will see below that the presence of a non trivial minimum may also
shifts the equilibrium values for individual agents.
Remark that the higher order terms in (128) model the effective several agents interactions in the new

phase at stake after expansion around Ψ0 (x). These results fit with the change of representation implied by
the use of field theory. The study of the set of agents as a continuum substratum leads to modifications of
individual transitions as a result of the fluctuations from this medium.

8.4.2 Shift in equilibrium values

The second consequence of a phase transition is the shift in equilibrium value. The expansion around a non
trivial vacuum leads to a quadratic term (129) that impacts the agent’s effective utility. Actually, considering
the reciprocal link between individual dynamics and collective fluctuations, we can assert that the form of
the effective action impacts the effective utility. Facing a phase transition, the correction term in the effective
action (129) would lead to an individual effective utility of the form:

ẋ2i
2
(t) +K (x (t)) + V̂ (x (t))

with:

V̂ (x (t)) = −
A∑

k=2

∑

i1,...ik

∑

ij

∫
Ψ0 (xi1) ...Ψ̂0

(
xij
)
...Ψ0 (xik)Vk (xi1 ...x (t) ...xik)Ψ

†
0 (xi1) ...Ψ̂

†
0

(
xij
)
...Ψ†0 (xik)

×dxi1 ...d̂xij ...dxik
This effective utility has a new saddle point x with respect to the individual case, which satisfies:

δ

δx

(
K (x) + V̂ (x (t))

)
= 0

As a consequence, the possibility of phase transition, i.e. the existence of non trivial minimum Ψ0 for
S (Ψ (x)) depending on the parameters, induces a shift in each agent’s individual equilibrium. The collective
system impacts directly the individual ones and prescribes A DIFFERENT effective potential THAN the
one describing initially the system at the micro level.

8.5 Several possibilities of Interactions

Having described the formalism of collective fields and its possible use, we now detail two examples of
interactions between fundamental structures.

8.5.1 Reciprocal interactions between identical agents

By reciprocal interaction we mean the introduction of a symetric potential of any form:

V (xi1 , xi2 , ..., xin)
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between agents of the same species. It models the mutual influence of these agents when none of them have
a strategic advantage over the others. The graph expansion for the Green functions with this potential is
given by (125) with a single type of agent, i.e.GK ({xi} , {yi} , α):

GK ({xi} , {yi} , α) (130)

=

∫ ∑

p1,...,p2n∈{i1,...in}
l1,...l2n∈{i1,...in}

∫
G0K

(
xi1 , x

(l1)
p1

, α
)
G0K

(
yi1 , x

(l2)
p2

, α
)
...G0K

(
xin , x

(l2m−1)
p2n−1

, α
)
G0K

(
yin , x

(l2m)
p2n

, α
)

×V
(
x
(1)
i1
, x
(1)
i2
, ..., x

(1)
in

)
...V

(
x
(m)
i1

, x
(m)
i2

, ..., x
(m)
in

) ∏

(i,j),(r,s)

∪(x(i)r ,x(j)s )∪
{
x(lk)
pk

}

k=1,...2m

=
{
x
(1)
i1
,x
(1)
i2
,...,x

(1)
in
,...,x

(m)
i1

,x
(m)
i2

,...,x
(m)
in

}

G0K

(
x(i)r , x(j)s , α

)

×dx(1)i1 dx
(1)
i2
...dx

(1)
in
, ...dx

(m)
i1

dx
(m)
i2

...dx
(m)
in

The various individual propagators G0K

(
xi1 , x

(l1)
p1

, α
)
... can be obtained through Laplace transform of the

general formula (69). However for later purpose it will be more useful to use a different way.
We consider G0K for an individual effective utility of quadratic form. As shown in the previous section,

if we neglect the curvature effects for individual fundamental structures, and if we consider a system of
coordinates where the potential is diagonalized (see (94)), the propagator INVERSE for block k (i.e. i1 or
i2) is: (

G0K
)−1

= −∇2k +m2
k +

(
(xi)k − Y̌eff

)
(Λi)k

(
(xi)k − Y̌eff

)

m2
k can be positive or negative depending on the parameters of each fundamental system (see (116)). The

kernel of this operator can be computed through its egenvalues and eigenfunctions. Actually we can cast the
previous differential operator in the form:

−∇2k +m2
i +

(
(xi)k −

(
Y̌eff

)
k

)
(Λi)k

(
(xi)k −

(
Y̌eff

)
k

)

=
∑

n

ψn (x)

(
m2
i +

(
n+

1

2

)
(Λi)k

)
ψ∗n (y)

Such an operator has a kernel (i.e. the Green function) such that:

−∇2k +m2
i +

(
(xi)k −

(
Y̌eff

)
k

)
(Λi)k

(
(xi)k −

(
Y̌eff

)
k

)
f ((xi)k) =

∫
G ((xi)k , (yi)k) f ((yi)k) d (yi)k

for any function f ((xi)k). For such operator, the Kernel can be written in terms of its eigenfunctions:

∑

n

ψn (x)

(
m2
i +

(
n+

1

2

)
(Λi)k

)
ψ∗n (y) (131)

where ψn is the nth Hermite polynomials, times a gaussian term with shifted variable (xi)k −
(
Y̌eff

)
k
.

ψn (x) =

(√
a

π

) 1
4
√

1

2nn!
Hn

(
a
1
4x
)
exp

(
−
√
a

2
x2
)

where the Hn

(
a
1
4x
)
are the Hermite polynomials. Some details are given in Appendix 9. The Green function

can thus be found directly and is given by:

G (x, y) =
∑

n

ϕn (x)ϕ
†
m (x)

(n+ 1)
√
a+ α
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Applying this results to our problem yields G (x, y):

(
G0K
)
(x, y) = 〈x| 1

−∇2k +m2
i +

(
(xi)k −

(
Y̌eff

)
k

)
(Λi)k

(
(xi)k −

(
Y̌eff

)
k

) |y〉 (132)

=
∑

n

ψn (x)
1

m2
i +

(
n+ 1

2

)
(Λi)k

ψ∗n (y)

This form of Green function is usefull to deal with (125). Actually, the infinite sum here can be truncated
if we assume in first approximation that only a finite number of "harmonic" n participate to the dynamic
of the system. This kind of truncature, or cut off, will also be used below. We can insert formula (132) in
(125). Defining:

∫ ∏

kj>2
16j6l

Vkj

(
x1+

∑j−1
m=1 kj

, ..., x
kj+

∑j−1
m=1 kj

)

×ψq1
(
xiσ(1)

)
ψ∗q1 (x1)ψq2

(
yiσ′(1)

)
ψ∗q2 (x2)

×...ψq2n1−1
(
xiσ(n1)

)
ψ∗q2n1−1 (x2n1−1)ψq2n1

(
yiσ′(n1)

)
ψ∗q2n1 (x2n1) dx1...dx2n1

×
N∏

p=n1+1

ψqp (x2p−1)ψ
∗
qp
(x2p) dx2p−1dx2p

= V̂{kj>2,16j6l}

(
xiσ(1) , yiσ′(1) ..., xiσ(n1) , yiσ′(n1)

, q1, ..., qN

)

one uses the permutation symetry of the Vkj to write (125) as:

n∑

n1=0

∑

σ∈σn,σ′∈σn

∑

σ̂∈σ2N
G0K

(
xiσ(n1+1) , yiσ′(n1+1)

, α
)
...G0K

(
xiσ(n) , yiσ′(n) , α

)

×V̂{kj>2,16j6l}
(
xiσ(1) , yiσ′(1) ..., xiσ(n1) , yiσ′(n1)

, q2n1+1, ..., qN

)
×

N∏

p=1

1

m2
i +

(
qp +

1
2

)
(Λi)k

with kj =
∑l

j=1 kj . Then summing over l and the kj yields:

GK ({xi} , {yi} , α) =
∞∑

l=0

∑

kj>2
16j6l

n∑

n1=0

∑

σ∈σn,σ′∈σn

∑

σ̂∈σ2N
G0K

(
xiσ(n1+1) , yiσ′(n1+1)

, α
)
...G0K

(
xiσ(n) , yiσ′(n) , α

)

×
∞∑

qp1=1,...,qpN=1

V̂{kj>2,16j6l}

(
xiσ(1) , yiσ′(1) ..., xiσ(n1) , yiσ′(n1)

, q1, ..., qN

)

×
N=

∑l
j=1 kj∏

p=1

1

m2
i +

(
qp +

1
2

)
(Λi)k

8.5.2 Non reciprocal interactions

We want to model an interaction potential where one type of agent imposes a stress on another one to drive
it towards, or push it away, from a certain equilibrium position.

It is useful for agents with strategic advantage models, such as those presented in the second section. We
assume two types of agents, the first one imposing a strain on the second one. We choose:

V (xi1 , xi2) = V
(
xi2 − x̂(i1)i2

)
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where x̂
(i1)
i2

is the objective function set for i2 by i1. We will later consider an example with

V (xi1 , xi2) = δ
(
xi2 − x̂(i1)i2

)2

The formula for the Green function (127) simplifies, since the first agent is not involved in the potential, and
the Green functions reduces to a product of Green functions for both agents:

GK
(
({xi} , {yi})n1 , ..., ({xi} , {yi})n2 α

)
= G

(0)
K

(
({xi} , {yi})n1 , α

)
GK

(
({xi} , {yi})n2 , α

)

The function G
(0)
K

(
({xi} , {yi})n1 , α

)
is the free Green function with 2n1 points for the first type of agents,

since there is no potential for this type of agent. while GK
(
({xi} , {yi})n2 , α

)
is the Green function with

2n2 points for the second agent. The function GK
(
({xi} , {yi})n2 , α

)
includes a sum of contributions given

by (125) for a potential depending on one variable only.

n∑

n1=0

∑

σ∈σn,σ′∈σn

∑

σ̂∈σ2N

∑

{x1,...,x2n}=σ̂
(

∪
16j6l

{
x
(kj)
i1

})
G0K

(
xiσ(n1+1) , yiσ′(n1+1)

, α
)
...G0K

(
xiσ(n) , yiσ′(n) , α

)

×G0K
(
xiσ(1) , x1, α

)
G0K

(
yiσ′(1) , x2, α

)
...G0K

(
xiσ(n1) , x2n1−1, α

)
G0K

(
yiσ′(n1)

, x2n1 , α
)

N∏

p=n1+1

G0K (x2p−1, x2p, α)
∏

kj>2
16j6l

{
Vkj

(
x
(kj)
i1

− x̂(i1)i2

)
dx

(kj)
i1

}

N =
∑l

j=1 kj . However, since the potential depends only on one variable, these contribution can be re-

summed to produce a free Green function shifted by the potential V
(
xi2 − x̂(i1)i2

)
.

(GK)
−1
= −∇2k +m2

k +
(
(xi)k − Y̌eff

)
(Λi)k

(
(xi)k − Y̌eff

)
+ V

(
xi2 − x̂(i1)i2

)

Thus the system describes a free effective utility for the first agent, and a potential, effective utility for the

second agent, that is shifted by a term driving it towards or away x̂
(i1)
i2
, given the sign of V

(
xi2 − x̂(i1)i2

)
.

8.6 Introduction of constraints

When agents face constraints, like the budget constraint for example, some additive terms have to be added
to (119). Recall that, for a set of interacting individual agents, a linear constraint binding the agents implies
to include, in the effective utility, a term of the form (87):

− 1

T + σ

∑

i

∫ s

0

Cisds

∫ s

0

Citdt−
1

T + σ

∑

i

∫ s

0

∫ T

0

CisC
j
t dsdt (133)

where Agent i is defined by an action Cis, and T and σ are some parameters of the model. As explained when
(87) was introduced, σ measures the uncertainty about the future, and T is proportional to the characteristic
time scale of the interaction process. As explained before, we assume that each agent estimates at each
moment the remaining duration of the interaction process by a Poisson process of mean T . We also assume
that among the set of interacting agents, the statistical mean of the estimated duration reaches the true
value s. That is, we suppose unbiased estimations. We will inspect less restrictive assumptions at the end
of this paragraph, and show that this does not modify the result.

If we moreover neglect σ, the fluctuation term with respect to the duration of the interaction process,
we are left with the following expression for (87):

−1
s

∑

i

∫ s

0

Cisds

∫ s

0

Citdt−
1

s

∑

i

∫ s

0

∫ s

0

CisC
j
t dsdt
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and (87) can be generalized for any type of vector of action Xi (s) or constraint:

−1
s

∑

i

(∫ s

0

(
Xi
1 (s)

)
ds

)2
− 1
s

∑

i

∫ s

0

∫ s

0

a1,2X
i
1 (s)X

j
2 (t) dsdt (134)

and ai,j describes the interdependence of two different species through the constraint.
The second term in (134) has already been described in the field theoretic formulation. It amounts to

include a potential:

−a1,2
∫ ∫ (

Ψ(1)†
(
X̂1

)
X̂1Ψ

(1)
(
X̂1

))(
Ψ(2)†

(
X̂2

)
X̂2Ψ

(2)
(
X̂2

))
dX̂1dX̂2

in the global action. The first term requires some additional computations. We compute the Green function
of the individual agents with effective utility including a term:

−
∑

i

(∫
Xi
1 (s) ds

)2

We start with:
∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

)
− 1
s

(∫ s

0

ds1C
(i)
s1

)∫ s

0

Cisds

)

and neglecting the potential K (xi (t)) that can be reintroduced as a perturbation term, one thus has to
compute:

Ḡ (x, y) =

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) dt

)
− 1
s

(∫ s

0

ds1C
(i)
s1

)∫ s

0

Cisds

)
(135)

which is the Green function for an agent under constraint. It can also be written:

Ḡ (x, y) = P (0, s, xi, yi)

〈
exp

(
− 1
T

(∫ s

0

X (u) du

)(∫ T

0

X (u) du

))〉
(136a)

=
exp

(
− (x−y)2

σ2s

)

√
s

〈
exp

(
− 1
T

(∫ s

0

X (u) du

)(∫ T

0

X (u) du

))〉

Where X (u) a brownian motion starting at xi at time 0 and reaching yi at time s and
〈
exp

(
−1
s

(∫ s

0

X (u) du

)(∫ s

0

X (u) du

))〉

is the expectation value of exp
(
1
s

(∫ s
0
X (u) du

)2)
given the process X (u).

The appearance of the factor P (0, s, xi, yi) in (136a) comes from the fact that in (135) the measure is
not normalized, and (135) is computed for the measure of a free Brownian motion. Thus the global weight
for the path starting at xi at time 0 and reaching yi at time s is not equal to 1 but to P (0, s, xi, yi). We
compute Ḡ (x, y) in Appendix 10, and show that, when σ < α, s being of order 1

α
, and individual fluctuations

measured by σ√
α
are negligeable with respect to the mean path x+y

2 over the all duration of interaction, one

has in first approximation:

Ḡ (α, x, y) = L



〈
exp

(
−1
s

(∫ s

0

X (u) du

)(∫ s

0

X (u) du

))〉 exp
(
− (x−y)2

σ2s

)

√
s


 (137)

=

exp

(
−
√
2
(
α+

(
x+y
2

)2) ∣∣x−y
σ

∣∣
)

√
2
(
α+

(
x+y
2

)2)
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These assumptions are quite always satisfied since α = 1
T
, with T the mean duration of all interaction

processes. We furthermore expect the sum of fluctuations on this period, i.e. the sum of the fluctuations on
the global time span, to be lower than one, or equivalently, the fluctuation per unit of time σ to be lower
than 1

T
. By a similar reasonning, we assume that the fluctuations over the all time span, measured by σ√

α

or equivalently by σ
√
s, are lower than the mean value of the path, i.e. x+y

2 . The formula (137) has an
interpretation in term of individual agents fluctuations. Actually, in (137) Ḡ (α, x, y) satifies:

Ḡ (α, x, y) =

∫
exp

(
−
(
α+

(
x+ y

2

)2)
s

)
exp

(
− (x−y)2

σ2s

)

√
s

ds

This is easy to see: Ḡ (α, x, y) is the Laplace transform of the usual brownian transition function
exp

(
− (x−y)2

σ2s

)

√
s

with α shifted to
(
α+

(
x+y
2

)2)
. By a change of variable:

s′ =

(
α+

(
x+y
2

)2)

α
s

we have:

Ḡ (α, x, y) =

∫
exp (−αs)

exp


−

(x−y)2

 α(
α+( x+y2 )

2
)σ2



s′




√(
α+( x+y2 )

2
)

α

√
s

ds (138)

Up to the factor

√(
α+( x+y2 )

2
)

α
, which is constant with respect to s, this is the Laplace transform of a gaussian

path with variance:

(σ′)
2
=

α(
α+

(
x+y
2

)2)σ
2

Recall that there is usually no inertia in the standard models of utility optimization under constraint.
This amounts to setting σ2 → ∞ in our formalism, to model no other interconnexion between periods

than the constraint. Recall however that (137) was derived under the assumption that σ2 <<
(
x+y
2

)2
. As a

consequence, the introduction of the constraint leads us to describe the individual agent following a brownian
path with (σ′)2 << 1. Considered at the scale of the overall processes - i.e. compared to the unit of time

which is much lower than s - this variance (σ′)2 is of order 1, and the agent is described by a brownian path
with variance of order 1. The introduction of the contraint has thus transformed the individual dynamics
into an apparent brownian noise. This replicates the usual result in classical consumption smoothing theory
(see [12] for example).

The field theoretic counterpart of the Green function Ḡ (α, x, y) is obtained by finding a differential
operator whose inverse is Ḡ (α, x, y) or equivalently, a differential equation satisfied by Ḡ (α, x, y). Appendix
10 shows that Ḡ (α, x, y) satisfies:

δ (x− y) =
σ2

2




(
∇2 − 2α+

(
x+y
2

)2

σ2

)
− (x+ y)

2

2
(
α+

(
x+y
2

)2)







3

2
(
α+

(
x+y
2

)2) +
3
∣∣x−y
σ

∣∣
√
2
(
α+

(
x+y
2

)2)
+

∣∣∣∣
x− y
σ

∣∣∣∣
2







−
1 +

∣∣x−y
σ

∣∣
√
2
(
α+

(
x+y
2

)2)

2
(
α+

(
x+y
2

)2)



(
2 (x+ y)

H (x− y)−H (y − x)
σ

)√√√√2
(
α+

(
x+ y

2

)2)
− 1





 Ḡ (α, x, y)
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and the term in brackets is the operator whose kernel is Ḡ (α, x, y). The Appendix 10 also shows that, given
our assumptions, this reduces in the limit of small fluctuations, to:

δ (x− y) =
(
σ2

2
∇2 − 2

(
α+

(
x+ y

2

)2))
Ḡ (α, x, y)

Reintroducing the potential K (x), the field theoretic formulation of the problem for a single type of agent
with effective action (133) reduces to describing the set of individual agents by the effective action:

∫
exp

(
−Ψ(x)

[(
Ḡ (α, x, y)

)−1
+K (x)

]
Ψ† (x)

)
DΨDΨ† (139)

which discards temporarilly interactions among agents. Of course, when we remove the constraint, Ḡ (α, x, y)

reduces to G (α, x, y), and (G (α, x, y))
−1
= − 1

2∇
2+α+K (x), as in the previous cases. In developped terms,

the exponential in (139) becomes:

Ψ† (x)




(
−σ2∇

2

2
+
α+

(
x+y
2

)2

σ2

)
+

σ2 (x+ y)
2

2
(
α+

(
x+y
2

)2)







3

2
(
α+

(
x+y
2

)2) +
3
∣∣x−y
σ

∣∣
√
2
(
α+

(
x+y
2

)2)
+

∣∣∣∣
x− y
σ

∣∣∣∣
2







+σ2
1 +

∣∣x−y
σ

∣∣
√
2
(
α+

(
x+y
2

)2)

2
(
α+

(
x+y
2

)2) ×

×



(
2 (x+ y)

H (x− y)−H (y − x)
σ

)√√√√2
(
α+

(
x+ y

2

)2)
− 1


+K (x)


Ψ(y)

In the case of σ << 1 considered here, in which individual fluctuations are relatively small, it remains:

Ψ† (x)

[
−σ

2

2
∇2 + 2

(
α+

(
x+ y

2

)2)]
Ψ(y) (140)

This form of propagator has a direct interpretation in terms of constraint. The first term ensures that the
mean of x + y is centered on its expectation value, which is nul here by normalization. The second term
ensures that x and y are equal in means. Both contributions thus describe a smoothing behavior, which
is characteristic of long-run binding constraints. The path for X (s), apart from a white noise contribution
ε (s), is constant in time:

X (s) = X (s− 1) + ε (s)
We also recover the results of (83) and its subsequent formulae. For x − y << 1, we recover the series
expansion in gradient:

Ψ† (x)

[(
∇2 − α

σ2

)
δ (x− y)−

(
x+y
2

)2

σ2
− 2

∣∣∣∣
x− y
σ

∣∣∣∣
2
]
Ψ(y)

' Ψ† (x)

[(
∇2 − α

σ2

)
− x2

σ2
+∇2

]
δ (x− y)Ψ (x)

87



Then, introducing the constrained propagator (140) in (119) yields:

S
({
Ψ(k)

}
k=1...M

)

=
1

2

∑

k

∫
dX̂

(1)
k dX̂

(2)
k Ψ(k)†

(
X̂
(2)
k

) [[(
∇
X̂
(1)
k

)(
∇
X̂
(1)
k

−M (1)
k

(
X̂
(1)
k −

(
X̃
)
k

))
+m2

k + V
(
X̂
(1)
k

)]
δ
(
X̂
(1)
k − X̂(2)

k

)

+

α+

(
X̂
(1)
k
+X̂

(2)
k

2

)2

σ2
+ 2

∣∣∣∣∣
X̂
(1)
k − X̂(2)

k

σ

∣∣∣∣∣

2

︸ ︷︷ ︸
constraint, individual level



Ψ(k)†

(
X̂
(2)
k

)
+
∑

k

∑

n

Vn

({
X̂
(i)
k

}
16i6n

) ∏

16i6n

Ψ(k)†
(
X̂
(i)
k

)
Ψ(k)

(
X̂
(i)
k

)

︸ ︷︷ ︸
intra species interaction

+
∑

m

∑

k1...km

∑

n1...nm

Vn1...nm

({
X̂
(inj )
kj

}

16inj6nj

)
m∏

j=1

∏

16inj6nj

Ψ(kj)†
(
X̂
(inj )
kj

)
Ψ(kj)

(
X̂
(inj )
kj

)

︸ ︷︷ ︸
inter species interaction

+
∑

k1,k2

ak1,k2

∫ ∫ (
Ψ(k1)†

(
X̂k1

)
X̂k1Ψ

(k1)
(
X̂k1

))(
Ψ(k2)†

(
X̂k2

)
X̂k2Ψ

(k2)
(
X̂k2

))
dX̂k1dX̂k2

︸ ︷︷ ︸
constraint, collective level

Appendix 11 shows how to generalize this result in presence of a discount rate and we show that in that
case, in the approximation r

α
>> 1, which means that the time span of interaction is long enough for the

discount rate to be effective:

S
({
Ψ(k)

}
k=1...M

)
(141)

=
1

2

∑

k

∫
dX̂

(1)
k dX̂

(2)
k Ψ(k)†

(
X̂
(2)
k

) [[(
∇
X̂
(1)
k

)(
∇
X̂
(1)
k

−M (1)
k

(
X̂
(1)
k −

(
X̃
)
k

))
+m2

k + V
(
X̂
(1)
k

)]
δ
(
X̂
(1)
k − X̂(2)

k

)

+2

(
X̂
(1)
k

)2
+
(
X̂
(2)
k

)2

r2
− 4

√
2αX̂

(1)
k X̂

(2)
k

rσ

(
H
(
X̂
(1)
k − X̂(2)

k

)
−H

(
X̂
(2)
k − X̂(1)

k

))

︸ ︷︷ ︸
constraint, individual level


Ψ

(k)†
(
X̂
(2)
k

)

+
∑

k

∑

n

Vn

({
X̂
(i)
k

}
16i6n

) ∏

16i6n

Ψ(k)†
(
X̂
(i)
k

)
Ψ(k)

(
X̂
(i)
k

)

︸ ︷︷ ︸
intra species interaction

+
∑

m

∑

k1...km

∑

n1...nm

Vn1...nm

({
X̂
(inj )
kj

}

16inj6nj

)
m∏

j=1

∏

16inj6nj

Ψ(kj)†
(
X̂
(inj )
kj

)
Ψ(kj)

(
X̂
(inj )
kj

)

︸ ︷︷ ︸
inter species interaction

+

∑
k1,k2

ak1,k2
∫ ∫ (

Ψ(k1)†
(
X̂
(1)
k1

)(
exp

(
−
(
r + 1

2N̄r
)
G
(
X̂
(1)
k1
, X̂

(2)
k1

))
X̂
(1)
k1
+X̂

(2)
k1

2

)
Ψ(k1)

(
X̂
(2)
k1

))
dX̂

(1)
k1
dX̂

(2)
k1

×
∫ ∫ (

Ψ(k2)†
(
X̂
(1)
k2

)(
exp

((
r + 1

2N̄r
)
G
(
X̂
(1)
k2
, X̂

(2)
k2

))
X̂
(1)
k2
+X̂

(2)
k2

2

)
Ψ(k2)

(
X̂
(2)
k2

))
dX̂

(1)
k2
dX̂

(2)
k2

︸ ︷︷ ︸
constraint, collective level

We conclude this paragraph by inspecting other assumptions about the expected time horizon T . Assume
that agents have some hint about the true duration s, and, as a consequence the Poisson distribution is
no more accurate. These informations translate into the fact that T depends on the time at which it is
evaluated. For example T (v) = s − f (v) where f is a slow varying and increasing function. Under this
hypothesis, the quadratic term due to the constraints becomes:

exp

(∫ s

0

(
1

s− f (v)X (v)
∫ v

0

X (u) du

)
dv

)
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and since f (v) varies slowly, one can approximate f (v) by its mean over [0, s] in the integral:

∫ s

0

(
1

s− f (v)X (v)
∫ v

0

X (u) du

)
dv

'
∫ s

0

(
1

s− f̄ (s)X (v)
∫ v

0

X (u) du

)
dv =

1

1− f̄(s)
s

1

s

∫ s

0

(
X (v)

∫ v

0

X (u) du

)
dv

The term 1
s

∫ s
0

(
X (v)

∫ v
0
X (u) du

)
dv is the one we dealt with before and f̄(s)

s
can be considered as a pertur-

bation. Since f̄(s)
s
varies slowly, it can be approximated by α f̄

(
1
α

)
where 1

α
is the mean duration process.

We are thus left with:

Ḡ (α, x, y) = L



〈
exp

(
1

1− αf̄
(
1
α

) 1
s

(∫ s

0

X (u) du

)(∫ s

0

X (u) du

))〉 exp
(
− (x−y)2

σ2s

)

√
s




' L


exp

(
1

1− αf̄
(
1
α

)s
(
x+ y

2

)2) exp
(
− (x−y)2

σ2s

)

√
s




= : exp




((
x+y
2

)2)

1− αf̄
(
1
α

) ∂

∂α


 :

exp
(
−
√
2α
∣∣x−y
σ

∣∣)
√
2α

=

exp

(
−
√
2

(
α+

( x+y2 )
2

(1−αf̄( 1α ))

) ∣∣x−y
σ

∣∣
)

√
2

(
α+

( x+y2 )
2

(1−αf̄( 1α ))

)

where the notation : exp

((
( x+y2 )

2
)

1−αf̄( 1α )
∂
∂α

)
: denotes the ordered product, i.e. all the derivative are set on the

right after expansion. As a consequence, the introduction of a varying time horizon shifts the mean path
(
x+y
2

)
to

(
x+y

2
√
1−αf̄( 1α )

)
but all the previous results are kept, when this shift is included.

9 Examples

9.1 Consumers/Producers with current account constraint

9.1.1 Case 1: One type of agents

We consider N identical agents that are consumers/producers. Each of them is producing one good that

is consumed by other agents in constant proportion.The production/revenue Y
(i)
s is proportionnal to other

agents consumption (plus some exogenous constant flow):

Ys =
∑

j

f
(
C(j)s

)
+ Ȳ (142)

with Nf = 1. Each agent is facing the C.A. balance constraint:

C(i)s = B(i)s + Y (i)s −B(i)s+1
which rewrites, given (142):

Cs = Bs +
∑

j

(
f
(
C(j)s

)
+ Ȳ

)
−Bs+1
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We have seen that, with such a constraint, we obtained the following weight (88):

exp
(
Ueff

)
= exp


−

∑

i

∑

s

(
C(i)s

)2
− 1

T

∑

i

∑

s1,s2

C(i)s1 C
(i)
s2
+
2

T
f
∑

i,j

∑

s1>s2

C(i)s1 C
(j)
s2




Here, the consumption variable was shifted by substracting it’s optimum, i.e. as before −C2s stands for
−α

(
Cs − Ȳ

)2
and Ys for Ys + Ȳ . When we consider a large number of identical agents, we can follow the

procedure given above (see (85), (86), (87),(88)). The main point is that Ys is endogeneized. The effective
action in the continuum approximation is:

exp
(
Ueff

)
= exp


−

∑

i

(∫ (
C(i)s

)2
ds+

1

T

∫
C(i)s1 C

(i)
s2
ds1ds2

)
+
f

T

∑

i,j

∫ ∫
C(i)s C(j)s2 ds1ds2




whose field theoretic formulation is defined by:

S (Ψ) = −
∫
Ψ† (x)

[(
−∇2 + α

σ2
+ x2

)
δ (x− y) +

(
x+y
2

)2

σ2
+ 2

∣∣∣∣
x− y
σ

∣∣∣∣
2
]
Ψ(y) dxdy

−f
∫
Ψ(x)Ψ† (x) (xy)Ψ (y)Ψ† (y) dxdy

Remark that since the variable x stands for C − Ȳ → x, x is not constrained to x > 0.

∫
dxΨ(x)

(
−∇2 + x2 + ε2

)
Ψ† (x) +

∫
dxdyΨ† (x)

[(
x+y
2

)2

σ2
+ 2

∣∣∣∣
x− y
σ

∣∣∣∣
2
]
Ψ(y)

−f
∫
Ψ(x)Ψ† (x) (xy)Ψ (y)Ψ† (y) dxdy

if no inertia:

'
∫
dxΨ(x)

(
x2 + ε2

)
Ψ† (x) +

∫
dxdyΨ† (x)

[(
x+y
2

)2

σ2
+ 2

∣∣∣∣
x− y
σ

∣∣∣∣
2
]
Ψ(y)

−f
∫
Ψ(x)Ψ† (x) (xy)Ψ (y)Ψ† (y) dxdy

We show in Appendix 12 that the minimum of S (Ψ) is reached for Ψ(x) = 0 and that there is no other
minimum, even local, so that no phase transition appears. The reason of this vacuum at Ψ(x) = 0 is the
direct consequence of the constraint represented by the term:

− 1
T
f

[∫
Ψ† (x)xΨ(x)

] [∫
Ψ† (y) yΨ(y)

]

in the effective action S (Ψ) . The minus sign is crucial for preventing any phase transition. Thus the
constraints smoothe interactions between agents, which prevents from switching from a symmetric nul equi-
librium to an asymmetric one favouring some agents.

As a consequence one can directly consider the graph expansion around Ψ = 0. Here (125) yields for the
two points correlation functions:

GK (x, y, α) = G0K (x, y, α) (143)

+
∑

l>0

(−f)lG0K (x, y1, α) y1G0K (y1, y2, α) y2...y2lG0K (y2l, y, α)

where G0K (x, y, α) is the Green function of the operator:

(
−σ2∇

2

2
+ α+ x2

)
δ (x− y) +

(
x+ y

2

)2
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as explained before, the term
(
x+y
2

)2
induces a smearing in the behavior of the agents, due to the constraint.

The contributions in (143) can be resummed so that:

G−1K (x, y, α) =
(
G0K
)−1

(x, y, α) + f2xG0K (x, y, α) y

and thus GK (x, y, α) is the Green function of the operator:

(
−σ2∇

2

2
+ α+ x2

)
δ (x− y) +

(
x+ y

2

)2
+ f2xG0K (x, y, α) y

Now, given that

xG0K (x, y, α) y = G0K (x, y, α)

((
x+ y

2

)2
−
(
x− y
2

)2)

and that the term
(
x−y
2

)2
can be neglected under our basic assumption of low fluctuations, the inclusion of

the interaction with other structures modifies the smearing potential
(
x+y
2

)2
by:

(
x+ y

2

)2 (
1 + f2G0K (x, y, α)

)

Inserting this result in (138), leads to model the apparent behavior of the agent as a brownian path, whose
variance is modified from:

(σ′)
2
=

α(
α+

(
x+y
2

)2)σ
2

to
(σ′)

2
=

α

(α+ (1 + f2G0K (x, y, α)))
σ2

In other words, the variance of the movement is reduced by the presence of other agents. The interaction
reinforces the effect of the constraint and imposes smaller variations for the individual agents.

9.1.2 Case 2. Several types of agents

If we consider several types of agents denoted by greek indices {α...}, we can define C(i),αs as the consumption
of agent i belonging to type α. The constraint becomes:

C(i),αs = B(i),αs +
∑

i,β

(
fαβ

(
C(j),βs

)
+ Ȳ

)
−B(i),αs+1

the coefficients fαβ define the fraction of consumption of an agent β spent in the good produced by agents
of type α. They satisfy: ∑

α

Nαfαβ = 1

where Nα is the number of agents of type α, so that
∑

αNα = N with N the total number of agents.
As in the previous paragraph, the effective utility for the system becomes:

exp
(
Ueff

)
= exp


−

∑

i

(∫ ((
Cis
)2
ds
)
+
1

T

(∫
C(i)s ds

)2)
+
1

T

∑

i,α

∫ ∫
C(i),αs


∑

j,β

fαβC
(j),β
t


 dsdt




Which leads to the field equivalent description:

S ((Ψα)) =
∑

α

(∫
dxαΨ

† (xα)
(
−∇2α + x2α + ε2

)
Ψα (xα) +

∫
dxαdyαΨ

† (xα)

[(
xα+yα
2

)2

σ2
+ 2

∣∣∣∣
xα − yα

σ

∣∣∣∣
2
]
Ψα (yα)

)

− 1
T

∑

α,β

fαβ

[∫
Ψ†α (xα)xαΨα (xα)

] [∫
Ψ†β (xβ)xβΨβ (xβ)

]
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Appendix 12 shows that the minimum of S ((Ψα)) is reached for Ψα (x) = 0 and that there is no other
minimum, even local. Again this is the direct consequence of the constraint that induces the terms:

− 1
T

∑

α,β

fαβ

[∫
Ψ†α (xα)xαΨα (xα)

] [∫
Ψ†β (xβ)xβΨβ (xβ)

]

in the effective action. Here again, the constraints smoothe the interactions between agents, and prevents
from switching from a symmetric nul equilibrium to an asymmetric one favouring somes groups of agents.
The two points Green functions can be computed similarly to the previous case. In term of graphs, the

term fαβ
[∫
Ψ†α (xα)xαΨα (xα)

] [∫
Ψ†β (xβ)xβΨβ (xβ)

]
implies that vertices α with two legs are connected

to vertices β, α 6= β with two legs through a line labelled fαβ . The factors fαα can be absorbed by
xα →

√
fααxα. Keeping only connected graphs, one finds:

GK

(
x(α), y(α), α

)
= G0K

(
x(α), y(α), α

)
(144)

+
∑

l>0

(−1)l f (α)l G0K

(
x(α), y

(α)
1 , α

)
y
(α)
1 G0K

(
y
(α)
1 , y

(α)
2 , α

)
y
(α)
2 ...y

(α)
l G0K

(
y
(α)
l , y(α), α

)

where f
(α)
l includes the modifications to G0K (x, y, α) due to the interactions with all other type of agents:

f
(α)
l =

E( l2 )∑

k=0

(fαα)
k

∑

β1,...,βl−k

fαβ1 ...fαβl−k ×
∫
G
0(α,l−k)
K

∏

β

G
0(β,]β(β1,...,βl−k))
K

where ]β
(
β1, ..., βl−k

)
is the number of times β appears in the set

(
β1, ..., βl−k

)
and with

G
0(β,p)
K =

∫
y
(β)
1 G0K

(
y
(β)
1 , y

(β)
2 , α

)
y
(β)
2 G0K

(
y
(β)
3 , y

(β)
4 , α

)
...y

(β)
p−1G

0
K

(
y
(β)
p−1, y

(β)
1 , α

)
dy
(β)
1 ...dy(β)p

For fαα = 1, and thus fαβ = 0 for α 6= β, so that one recovers the one type of agent case:

G−1K

(
x(α), y(α), α

)
=
(
G0K
)−1 (

x(α), y(α), α
)
+ x(α)

(
x(α), y(α), α

)
y(α)

For fαα = 0

f
(α)
l =

∑

β1,...,βl

fαβ1 ...fαβl ×
∫ ∏

β

G
0(β,]β(β1,...,βl))
K

=

∫ 
∑

β

fαβx
(β)G0K

(
x(β), y(β), α

)


∗l

where ∗ denotes the convolution product, and (144) becomes:

GK

(
x(α), y(α), α

)
= G0K

(
x(α), y(α), α

)

+
∑

l>0

(−1)l

∑

β

fαβG
0
K

(
x(β), y(β), α

)


l

×G0K
(
x(α), y

(α)
1 , α

)
y
(α)
1 G0K

(
y
(α)
1 , y

(α)
2 , α

)
y
(α)
2 ...y

(α)
l G0K

(
y
(α)
l , y(α), α

)

That can be resummed as:
G−1K

(
x(α), y(α), α

)
= Ḡ−1

(
xα, y(α), α

)
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9.2 A simple business cycle model

In this section we use again the single type of agent model, but we indentify the saving variable Bs with the
stock of capital involved in the production function, as is usually done standard business cycle models. As
a consequence, the budget constraint becomes:

Ci (s) = rKi (s)− K̇i (s) + Yi (s)

We also endogeneize Yi (s) and consider this variable as a function of the capital: Yi (s) = Fi (Ki (s)). The
budget constraint can thus be written as:

Ci (s) = rKi (s)− K̇i (s) + Fi (Ki (s))

Now, introduce the interest rate r given by the mean productivity of the set of agents:

r =
1

N

∑

i

F ′i (Ki)

As before, the effective utility for agent i with constraint writes:

Ueff (Ci) =

∫
C2i (t) dt+

∫

t>s

exp

(
−
∫ t

s

r (v) dv

)
Ci (s)Ci (t) dsdt−2

∫

t>s

Ci (t) exp

(
−
∫ t

s

r (v) dv

)
Yi (s) dsdt

This is computed in Appendix 12., and the result in first approximation in r is:

Ueff (Ci) =

∫
C2i (t) dt− 2

∫
Fi (Ki (t))Ki (t) dt+ 2

∫
r (t)K2

i (t) dt+ 4

∫

t>s

r (s)Ki (s)Fi (Ki (t)) dsdt

At this point, it is more convenient to switch to a representation in the Ki (t) variable. Replace
∫
C2i (t) dt

by:

∫
C2i (t) dt =

∫ (
rKi (t)− K̇i (t) + Fi (Ki (t))

)2
dt

=

∫
K̇2
i (t) dt+

∫
(rKi (t) + Fi (Ki (t)))

2
dt

−2
∫
K̇i (t) (rKi (t) + Fi (Ki (t))) dt

and write the last term as a border contribution (with Fi = G′i):

∫
K̇i (t) (rKi (t) + Fi (Ki (t))) dt =

[
1

2
rK2

i (t) +Gi (Ki (t))

]T

0

Since we rule out accumulation of capital at 0 and T , we discard border terms, and this term can be neglected.
As a consequence:

∫
C2i (t) dt =

∫ (
rKi (t)− K̇i (t) + Fi (Ki (t))

)2
dt

=

∫
K̇2
i (t) dt+

∫
(rKi (t) + Fi (Ki (t)))

2
dt

and Ueff for agent i becomes at the first order in r:

Ueff =

∫
K̇2
i (t) dt+

∫ (
F 2i (Ki (t))− 2Fi (Ki (t))Ki (t)

)
dt

+2

∫
r (t)

(
K2
i (t) +Ki (t)Fi (Ki (t))

)
dt+ 4

∫

t>s

r (s)Ki (s)Fi (Ki (t)) dsdt
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Summing over all agents, the global action for the system is:

∑

i

Ueff =
∑

i

∫
K̇2
i (t) dt+

∫ (
F 2i (Ki (t))− 2Fi (Ki (t))Ki (t)

)
dt

+2

∫
r (t)

(
K2
i (t) +Ki (t)Fi (Ki (t))

)
dt+ 4

∫

t>s

r (s)Ki (s)Fi (Ki (t)) dsdt

=
∑

i

∫
K̇2
i (t) dt+

∫ (
F 2i (Ki (t))− 2Fi (Ki (t))Ki (t)

)
dt

+
2

N

∑

i,j

∫
F ′j (Kj (t))

(
K2
i (t) +Ki (t)Fi (Ki (t))

)
dt+

4

N

∑

i,j

∫

t>s

F ′j (Kj (s))Ki (s)Fi (Ki (t)) dsdt

And since agents are identical, we can assume that in first approximation the two last terms are:

(
K2
i (t) +Ki (t)Fi (Ki (t))

)
'

(
K2
j (t) +Kj (t)Fj (Kj (t))

)

Ki (s) ' Kj (s)

the error in this approximation being of order lower than r. In that approximation:

2

N

∑

i,j

∫
F ′j (Kj (t))

(
K2
i (t) +Ki (t)Fi (Ki (t))

)
dt = 2

∑

j

∫
F ′j (Kj (t))

(
K2
j (t) +Kj (t)Fj (Kj (t))

)
dt

and this individual potential term is of order r, through F ′j (Kj (t)). As a consequence, it can be neglected
with respect to ∫ (

F 2i (Ki (t))− 2Fi (Ki (t))Ki (t)
)
dt

We then end up with:

∑

i

Ueff =
∑

i

∫
K̇2
i (t) dt+

∫ (
F 2i (Ki (t))− 2Fi (Ki (t))Ki (t)

)
dt

+
4

N

∑

i,j

∫

t>s

F ′j (Kj (s))Ki (s)Fi (Ki (t)) dsdt

Assuming agents are identical, so that Fi ≡ F , such an effective utility for the system has for Field theoretic
equivalent:

S (Ψ) = Ψ† (x)
[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
Ψ(x) +

4

N

∫ (
Ψ† (x)F ′ (x)xΨ(x) dx

) ∫
Ψ† (y)F (y)Ψ (y) dy

Depending on the sign of
(
F 2 (x)− 2F (x)x

)
, the action S (Ψ) may present some non trivial saddle point.

To inspect this possibility, write the saddle point equation δ
δΨS (Ψ) = 0 as:

0 =
[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
Ψ(x) (145)

+
4

N
F ′ (x)x

(∫
Ψ† (y)F (y)Ψ (y) dy

)
Ψ(x) +

4

N

(∫
Ψ† (y)F ′ (y) yΨ(y) dy

)
F (x)Ψ (x)

Now, let:
Ψ(x) =

√
ηΨ1 (x)

with ‖Ψ1 (x)‖ = 1, so that (145) can be written in function of Ψ1 (x):

0 =
[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
Ψ1 (x)

+η
4

N

(
F ′ (x)x

∫
Ψ†1 (y)F (y)Ψ1 (y) dy + F (x)

(∫
Ψ†1 (y)F

′ (y) yΨ1 (y) dy

))
Ψ1 (x)
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If
(
F 2 (x)− 2F (x)x

)
< 0, then, a solution for η 6= 0 may exist. Actually, for such a solution we can compute

(145):

S (Ψ) = Ψ† (x)
[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
Ψ(x) +

4

N

∫ (
Ψ† (x)F ′ (x)xΨ(x) dx

) ∫
Ψ† (y)F (y)Ψ (y) dy

= −
∫
η2
4

N
Ψ†1 (x)

(
F ′ (x)x

∫
Ψ†1 (y)F (y)Ψ1 (y) dy + F (x)

(∫
Ψ†1 (y)F

′ (y) yΨ1 (y) dy

))
Ψ1 (x)

+
4

N

∫ (
Ψ† (x)F ′ (x)xΨ(x) dx

) ∫
Ψ† (y)F (y)Ψ (y) dy

= −4η
2

N

∫
Ψ†1 (x)

(
F ′ (x)x

∫
Ψ†1 (y)F (y)Ψ1 (y) dy + F (x)

(∫
Ψ†1 (y)F

′ (y) yΨ1 (y) dy

))
Ψ1 (x)

< 0

Which is below S (0). The solution of (145) may thus present a non trivial minimum, as asserted before.
To prove this point, we have to show that among the set of possible solutions of (145), the action S (Ψ) is
bounded from below. Moreover, the second order variation of S (Ψ) around the solution with the lowest value
of S (Ψ) has to be positive. We write this second order variation δ2S (Ψ). A straightforward computation
yields:

1

2
δ2S (Ψ) = ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
ϕ (x) +

4η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫
Ψ†1 (y)F (y)Ψ1 (y) dy

+
4η

N

∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)∫

ϕ† (y)F (y)ϕ (y) dy

+
8η

N
Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)
Re

(∫
ϕ† (y)F (y)Ψ1 (y) dy

)
(146)

and we require that δ2S (Ψ) > 0 at the saddle point. The question of stability may be adressed if a more
precise form for F (x) is given, and this will be done below. However, rewriting δ2S (Ψ) in a more compact
form will be useful in each case. This rewriting is done in Appendix 12.

To better understand the possibility of a non trivial vacuum, we will assume some particular forms for
F (x). The first case we will consider will be:

F (x) = c (x− f (x))

with 1 < c 6 2, to allow for the possibility of a phase transition, and f (x) slowly increasing with f (0) = 0.
It models a production function with some economies of scale, up to a certain level of capital x to finally
reach a constant return to scale when x is large. In that case:

S (Ψ) =

∫
Ψ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
Ψ(x) dx+

4

N

∫ (
Ψ† (x)F ′ (x)xΨ(x) dx

) ∫
Ψ† (y)F (y)Ψ (y) dy

'
∫
Ψ† (x)

[
−∇2 + c (x− f (x)) ((c− 2)x− cf (x))

]
Ψ(x) dx

+
4c2

N

(∫
Ψ† (x)xΨ(x) dx

)(∫
Ψ† (x) (x− f (x))Ψ (x) dx

)

where we used that f ′ (x) ' 0.
We assume that the integrals are all performed on the range x > 0, since the variable it represents, the

capital stock, is positive. Moreover, we also assume that the parameters are such that our model has a non
trivial solution to the saddle point equation. We choose c = 2 to have a simple example. In that case:

S (Ψ) =

∫
Ψ† (x)

[(
−∇2 − 4f (x) (x− f (x))

)]
Ψ(x) dx+

16

N

(∫
Ψ† (x)xΨ(x) dx

)(∫
Ψ† (x) (x− f (x))Ψ (x) dx

)

(147)
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We show in Appendix 12 that a minimum exists for a non trivial value of the field, namely: Ψ(x) = aΨ1 (x)

Ψ1 (x) = αAi


 3

√
16Aa2

N
− 4f (x) + 16Ba

2

N


x−

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16a2B

N

)






where Ai (x) is the Airy function, α is a normalization constant such that ‖Ψ1 (x)‖ = 1, a is a factor satisfying
an equation determined by the saddle point equation, and where the constants A and B are defined as:

∫

R+

Ψ†1 (x)xΨ1 (x) dx = A

∫

R+

Ψ†1 (x) (x− f (x))Ψ1 (x) dx = B

The second case we consider is:
F (x) = x+ cx2 (148)

with 0 < c < 1. The definition (148) models increasing return to scale. In that case:

S (Ψ) = η2
∫
Ψ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
Ψ(x) dx+

4η4

N

∫ (
Ψ† (x)F ′ (x)xΨ(x) dx

) ∫
Ψ† (y)F (y)Ψ (y) dy

= η2
∫
Ψ† (x)

[
−∇2 +

(
x+ cx2

) (
cx2 − x

)]
Ψ(x) dx

+
4η4

N

(∫
Ψ† (x) (1 + 2cx)xΨ(x) dx

)(∫
Ψ† (x)

(
x+ cx2

)
Ψ(x) dx

)

' η2
∫
Ψ† (x)

[
−∇2 +

(
c2x4 − x2

)]
Ψ(x) dx+

4η4

N

(∫
Ψ† (x)

(
x+ 2cx2

)
Ψ(x) dx

)(∫
Ψ† (x)

(
x+ cx2

)
Ψ(x) dx

)

where Ψ(x) is normalized to 1 and η is a parameter for the norm. The saddle point equation is:
[
−∇2 + c2x4 +

(
4cη2

N
(A+ 2B)− 1

)
x2 +

4xη2

N
(A+B)

]
Ψ(x) = 0

with:

A =

(∫

R+

Ψ† (x)
(
x+ 2cx2

)
Ψ(x) dx

)

B =

(∫

R+

Ψ† (x)
(
x+ cx2

)
Ψ(x) dx

)

We show in Appendix 12 that the action S (Ψ) is bounded from below and that it has a minimum obtained
as a first order correction in c ot the function :

Ψ0 (x) = η exp


−

√
4c
N
η2 (A+ 2B)− 1

2

(
x+

2

N

η2 (A+B)
4c
N
η2 (A+ 2B)− 1

)2



This modified eigenvector Ψ′0 (x) is expressed as a series of c:

|Ψ′0 (y)〉 = |Ψ′0 (y)〉 − c
∞∑

l=1

〈Ψl (x)|x4 |Ψ0 (y)〉
2l

|Ψl (y)〉

+c2
∞∑

l=1

∞∑

m=1

〈Ψl (x)|x4 |Ψm (y)〉 〈Ψm (x)|x4 |Ψ0 (y)〉
4lm

|Ψl (y)〉

−c2
∞∑

l=1

〈Ψ0 (x)|x4 |Ψ0 (y)〉 〈Ψl (x)|x4 |Ψ0 (y)〉
4l2

|Ψl (y)〉

−c
2

2

∞∑

l=1

〈Ψ0 (x)|x4 |Ψl (y)〉 〈Ψl (x)|x4 |Ψ0 (y)〉
4l2

|Ψ0 (y)〉
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To conclude, let us stress that we could also introduce interactions between different agents via technology.
We neglect the interest rate and the interaction related to it, and supposeKi (s) is enhanced by a technological
factor depending on the accumulated capital, with:

Fi (Ki (t)) =

√√√√√G


 1

N

∑

j

∫ t

0

Kj (s) ds


F (0)i (Ki (t))

If we expand G
(
1
N

∑
j

∫ t
0
Kj (s) ds

)
in series:

G


 1

N

∑

j

∫ t

0

Kj (s) ds


 =

∑

n

gn


 1

N

∑

j

∫ t

0

Kj (s) ds



n

then, given that to our order of approximation:
∫ ((

K̇i (t)
)2
+ (Fi (Ki (t)))

2

)
dt+ 2

∫

t>s

Fi (Ki (s))Fi (Ki (t)) dt

can be replaced with:
∫ ((

K̇i (t)
)2
+ (Fi (Ki (t)))

2

)
dt+ 2

∫

t>s

F 2i (Ki (t))

σ2
dt

As a consequence, the technological factor becomes

G


 1

N

∑

j

∫ t

0

Kj (s) ds


 F 2i (Ki (t))

σ2

=
∑

n

gn


 1

N

∑

j

∫ t

0

Kj (s) ds



n

=
∑

n

gn
∑

i

∫
dt


 1

N

∑

j

∫ t

0

Kj (s) ds



n

F 2i (Ki (t))

σ2

=

(
1

N

)n ∫

 ∑

j1,..jn

∫ t

0

...

∫ t

0

Kj1 (s1)Kj2 (s2) ...Kjn (sn) ds1...dsn


 F 2i (Ki (t))

σ2
dt

=
∑

n

gn
1

σ2 (n+ 1)

(
1

N

)n ∫
...

∫ ∑

j1,..jn+1

Kj1 (s1)Kj2 (s2) ...Kjn (sn)F
2
jn+1

(
Kjn+1

(
sjn+1

))
ds1...dsndsn+1

whose field theoretic equivalent is:

∑

n

gn
1

σ2 (n+ 1)

(
1

N

)n(∫
Ψ† (x)xΨ(x) dx

)n(∫
Ψ† (x)x2Ψ(x) dx

)

=
1

σ2

(∫
Ψ† (x)x2Ψ(x) dx

)
Ĝ

(∫
Ψ† (x)xΨ(x) dx

)

for Ĝ′ = G. The effective field action is thus:

−Ψ† (x)
[(
−∇2 +

(
2 +

α

σ2

)
x2Ĝ

(∫
Ψ† (x)xΨ(x) dx

))
δ (x− y)

]
Ψ(y)

The quartic term

−
(
2 +

α

σ2

)∫
Ψ† (x)

[
x2Ĝδ (x− y)

]
Ψ(y)

(∫
Ψ† (x)xΨ(x) dx

)

models an interaction term resulting from the tchnological factor, as announced. We will not pursue this
trail here.
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10 Interactions between Fundamental Structures and Phase Tran-
sitions. Non trivial Vaccua and integrations of structures

10.1 Interaction between similar Fundamental Structures

In the two previous examples, no phase transition appeared. The constraint implied a single vacuum for any
parameter of the system.

In our context, multiple vacua may arise only if the fields considered are defined on a space of at least
two dimensions without constraint, that is when agents’ actions are multicomponent. Actually, in that case,
we saw that the effective global utility functions (see (115), (116) (97)) have the form:

Ueff (X) = −1
2
Ẋ (t)

(
M (S) +N

)
Ẋ (t)− Ẋ (t)M (A)

(
X (t)−

(
X̃
))

(149)

−
(
X (t)−

(
X̃
))(

N −M (S)
)(

X (t)−
(
X̃
))
+ Veff (X (t))

Recall that in the second section, we noticed that a constant term has to be added to this effective
utility. It was discarded when looking at the dynamics of a single system. However, now that we consider a
large number of such systems, this constant has to reintroduced. Actually, recall that our model considers
interacting copies of the same system, each system interacting over a variable time span s, previously denoted
T . For such systems, we sum over the possible time spans through a Laplace transform. In that context,
adding a term sUeff

(
X̄e
)
in Ueff (X) leads to shift α by Ueff

(
X̄e
)
after Laplace transform.

Recall (95) that the Laplace transformed Green function becomes, without the potential Veff :

G−1 (x, x1) =

(
−1
2
∇
((

M (S) +N
)−1

∇+M (A)
(
x−

(
X̃
)))

+
(
x−

(
X̃
))(

N −M (S) +M (A)
(
M (S) +N

)−1
M (A)

)(
x−

(
X̃
))
+ α

)
δ (x− x1)

Then, adding the Ueff
(
X̄e
)
term and letting y =

(
x−

(
X̃
))

leads to the field action:

S (Ψ) =
1

2

∫
Ψ† (y)

(
−1
2
∇
(
M (S) +N

)−1
∇+ yM (A)∇+m2 (150)

+y

(
N −M (S) +M (A)

(
M (S) +N

)−1
M (A)

)
y + V (y)

)
Ψ(y) dy

+

∫ A∑

k=2

V (x1, ..., xk)Ψ (x1)Ψ
† (x1) ...Ψ(xk)Ψ

† (xk) dx1...dxk

where V (x1, ..., xk) is any interaction potential between the various agents, and where we set:

m2 =
(
α+ Ueff

(
X̄e
))

As said in the second section, Ueff
(
X̄e
)
can be negative. It is a direct consequence of costly, in utility

terms, tensions between the components of the considered structure. Then, depending on the parameters of
the system, m2 can be positive or negative. We nevertheless keep the notation m2 by reference to the usual
mass term in field theory.

The possibility of a non trivial minimum for S arises from two possible mechanisms. To describe this two
possibilities we first assume V (y) = 0, in order to focus on the effect of the interaction term V (x1, ..., xk).
The first part in S (Ψ):

∫
1

2

(
Ψ† (y)

(
−1
2
∇
(
M (S) +N

)−1
∇+ yM (A)∇+ y

(
N −M (S) +M (A)

(
M (S) +N

)−1
M (A)

)
y +m2

)
Ψ(y)

)
dy
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will be expressed in a diagonal form. Consider the concatenated vector (x, p)
t
with p ≡ ∇ the "momentum"

we can rewrite: (
−1
2
∇
(
M (S) +N

)−1
∇+ yM (A)∇+ y

(
N −M (S) +M (A)M (S)M (A)

)
y +m2

)

= (p, x)
t

((
M (S) +N −M (A)

−
(
M (A)

)t
N −M (S) +M (A)

(
M (S) +N

)−1
M (A)

))(
p

x

)
+m2

Now, given that we can decompose the matrix
(

M (S) +N −M (A)

−
(
M (A)

)t (
N −M (S) +M (A)

(
M (S) +N

)−1
M (A)

)
)

as: (
M (S) +N −M (A)

−
(
M (A)

)t (
N −M (S) +M (A)

(
M (S) +N

)−1
M (A)

)
)

=

(
1 0

−
(
M (A)

)t (
M (S) +N

)−1
1

)

×
(
M (S) +N 0

0
(
N −M (S) +M (A)

(
M (S) +N

)−1
M (A)

)
−
(
M (A)

)t (
M (S) +N

)−1
M (A)

)

×
(
1 −

(
M (S) +N

)−1 (
M (A)

)

0 1

)

=

(
1 0

−
(
M (A)

)t (
M (S) +N

)−1
1

)(
M (S) +N 0

0 N −M (S) + 2M (A)
(
M (S) +N

)−1
M (A)

)

×
(
1 −

(
M (S) +N

)−1 (
M (A)

)

0 1

)

we define the change of variable
(
x′

p′

)
=

(
1 −

(
M (S) +N

)−1 (
M (A)

)

0 1

)(
x

p

)

which satisfies [x′, p′] = [x′, p′] = −1. We can thus rewrite the differential operator K as:

K =

(
−1
2
∇
(
M (S) +N

)−1
∇+ yM (A)∇+ y

(
N −M (S) +M (A)

(
M (S) +N

)−1
M (A)

)
y +m2

)

= (x′, p′)
t

(
M (S) +N 0

0 N −M (S) + 2M (A)
(
M (S) +N

)−1
M (A)

)(
x′

p′

)
+m2

which describes a set of coupled oscillators. A second change of variables allows to diagonalize M (S) +N =
ODOt and to obtain K in a standard form. We let:

(
x1
p1

)
=

(
O
√
DOt 0

0 O
(√

D
)−1

Ot

)(
x′

p′

)

=

( √
M (S) +N 0

0
(√

M (S) +N
)−1

)(
1 −

(
M (S) +N

)−1 (
M (A)

)

0 1

)(
x

p

)

This change of variable preserves the commutation relations between x and p and leads to the following
expression for K :

K = (x1, p1)
t

(
1 0

0
√
M (S) +N

(
N −M (S) + 2M (A)

(
M (S) +N

)−1
M (A)

)√
M (S) +N

)(
x1
p1

)
+m2

(151)
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Thus, K may present some states with Ψ(y) 6= 0 and S (Ψ) < 0 in three cases. First, if M (S) +N has some
negative eigenvalues, second if

N −M (S) + 2M (A)
(
M (S) +N

)−1
M (A)

presents some negative eigenvalues, or ultimately, if the term m2, which represents the internal tension
between components of a fundamental structures is negative and large enough to lower the minimum of
S (Ψ) to some negative value.
The two first possibilities are similar, and differ from the third one. We will focus on this last possibility.

Actually, the two first possiblities represent an unstable system that will quickly break out, and thus no
stability can be achieved. The third possibility rather describes a milder instability with a certain persistance
in the dynamic system.
However, this latter kind of instability may be turned into a stable minimum, through a mechanism of

interaction between similar structures.
Consider for example, that we add to K an interaction potential modelling the simplest form of long

term interactions between two fundamental structures:

V (y1, y2) = U (y1)U (y2)

where U (y) > 0 and such that the minimum for U is reached at y = 0. We assume that m2 < 0 and that K
has a finite number of negative eigenvalues, which means that the first eigenvalues of the harmonic oscillator
are lowered to a negative value by m2.
We also assume that the matrix elements of U (y1) between the eigenfunctions of K are positives. This

is often the case for standard examples, if we choose U (y1) = (y1)
t
C (y1) with C definite and positive.

Actually, up to the perturbation term yM (A)∇, K is of harmonic oscillator type. For such operators, the
matrices elements of (y1)

t
C (y1) are positive.

Given the sign of U (y1), it models an attractive force between two types of similar structures (note in
passing the analogy with neural activity, where neurons, firing together, tend to bind together). The saddle
point equation including this potential is then:

0 = KΨ(y) + 2U (y)Ψ (y)

∫ (
Ψ(y2)U (y2)Ψ

† (y2)
)
dy2

We show in Appendix 13 that for a potential of large enough magnitude and peaked around the minimum
of K, the saddle point presents a non trivial solution which is a minimum: Ψ(x) =

√
ηΨ1 (x) where Ψ1 (x)

has norm 1 and satisfies:

Ψ1 (y) =
〈Ψ1|K |Ψ1〉
〈Ψ1|U |Ψ1〉

K−1U (y1)Ψ1 (y)

The vector |Ψ1〉 is a combination of the eigenvectors of K with negative eigenvalues, so that 〈Ψ1|K |Ψ1〉 < 0.
Moreover the norm of Ψ(x) is:

η = −1
2

〈Ψ1|K |Ψ1〉
(〈Ψ1|U |Ψ1〉)2

> 0

Appendix 13 shows also that the same results hold if internal tensions are modelled by a more general
potential V (y) than a simple shift m2 < 0. It is sufficient that the potential V (y) has a negative minimum
of large enough magnitude.

10.1.1 Example, the three agent model

In Appendix 6, we show that the effective action for the three agents model is given by:

Ueff (X (t)) =
(
X (t)− X̄

) (
N −MS

) (
X (t)− X̄

)
(152)

+
1

2
(X (t)−X (t− 1))

(
N +MS

)
(X (t)−X (t− 1))−

(
X (t)− X̄

)
MA

(
X (t− 1)− X̄

)

+
(
X̄ − X̄e

) (
N − (M −M ′)

S
) (
X̄ − X̄e

)
−
(
X̄ − X̄(2)

2

)
M ′X̄
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where the matrices and vectors involved are defined in section 1 and Appendix 6. The vector X̄ is computed

in Appendix 6, and represents the equilibrium value reached by the three agents’ system. The vectors X̄
(2)
2

and X̄e represent the goals, i.e. the desired values for X̄, for agents 2 and 1 respectively. Due to these
competing objectives, the equilibrium X̄ is a combination of these two vectors. Appendix 6 shows that:

X̄ = X̄e +
(
N −MS

)−1
((
N +MS

)
X̄e − 1

2
(M ′)

t
X̄
(2)
2

)
(153)

The term in bracket in (152):

Ueff
(
X̄
)
=
{(
X̄ − X̄e

) (
N +MS − (M −M ′)

S
) (
X̄ − X̄e

)
−
(
X̄ − X̄(2)

2

)
M ′X̄

}

represents the loss in utility due to the competing goals between the different elements of the structure. Even
if, globally, it is optimal to stabilize around X̄, each sub-component experiences a loss from the difference
between X̄ and it’s own goal. As a consequence, at least for some values of the parameter, this term is
negative. Actually, assume that, due to its strategic advantage and the magnitude of the stress it can impose
to its subcomponents, the third agent is able to drive X̄ close to X̄e. Then:

Ueff
(
X̄
)
' −

(
X̄ − X̄(2)

2

)
M ′X̄ (154)

and given the definition of M ′, this last term measures the loss experienced by the second agent when X̄,

i.e. the equilibrium value of X (t) is away from X̄
(2)
2 , thus Ueff

(
X̄
)
< 0. Then, the term (154) induces an

instability in the system by lowering the lowest eigenvalue of the Green function. To get more insight about
this phenomenon, we computed the matrices involved in Ueff (X (t)) for β → 0:

Ueff (X (t)) =
(
X (t)− X̄

) (
I −MS

) (
X (t)− X̄

)
(155)

+
1

2
(X (t)−X (t− 1))

(
I +MS

)
(X (t)−X (t− 1))−

(
X (t)− X̄

)
MA

(
X (t− 1)− X̄

)

+
(
(1−M)−1X1

)t (
M tM − 2M

) (
(1−M)−1X1

)

Appendix 6 shows that the operator appearing in (151), except the mass term:

K̃ = (x1, p1)
t

(
1 0

0
√
M (S)

(
N −M (S) + 2M (A)

(
M (S) +N

)−1
M (A)

)√
M (S)

)(
x1
p1

)

has positive eigenvalues for a range of parameters of relatively small magnitude, so that the stability is
preserved. We also show that, as previously said, competing objectives between the components of the
system imply the possibility of a constant term

(
(1−M)−1X1

)t (
M tM − 2M

) (
(1−M)−1X1

)

of negative sign. The stability may also be impaired by any internal negative potential in the direction of
the lowest eigenvalue of K̃. As one could expect, this direction corresponds to a state of maximal strain
imposed by agent 3 to agent 2. These states may be more easily turned into an unstable one than others by
some perturbation.

However, as explained in the previous paragraph, any positive interaction potential between different
structures, and pointing in the direction of instability may restore the stability to produce some composed
states. Thus, this is the relative instability of such states that makes possible, in an indirect manner, the
aggregation into integrated structures with more degreees of freedom.

10.2 Interaction between different types Fundamental Structures

The whole procedure can be generalized when different types of structures interact. Having chosen a system
of coordinates such that the field action ultimately takes the form:
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S (Ψ) =

∫
1

2

(
Ψ†k (y)

(
−1
2
(∇i)2 − yM (A)

k ∇i + yDky + V (yk)

)
Ψk (y)

)
dy (156)

+

∫ A∑

k=2

V (x1, ..., xk)Ψi1 (x1)Ψ
†
i1
(x1) ...Ψik (xk)Ψ

†
ik
(xk) dx1...dxk

In (156), operators of the form

Ki =

(
−1
2
(∇i)2 − yM (A)

k ∇i + yDky + V (yk)

)

appear. If some of them have negative eigenvalues due to a negative minimum of V (yk), and if the interaction
potentials V (x1, ..., xk) are positive, then the saddle point equations:

0 =

(
−1
2
(∇i)2 − yM (A)

l ∇i + yDly + Vl (y)

)
Ψl (y)

+

(
∂

∂Ψ†l (y)

∫ A∑

k=2

V (x1, ..., xk)Ψi1 (x1)Ψ
†
i1
(x1) ...Ψik (xk)Ψ

†
ik
(xk) dx1...dxk

)
Ψl (y)

may have non trivial minima. This possibility is studied in Appendix 13. We show that for a potential
V (x1, ..., xk) oriented towards the lowest eigenstates of the operators Ki, the whole system has a non trivial
minimum with S (Ψ) < 0. This minimum is a composed state made of the lowest eigenstates of the Ki along
their directions of instability. The goal of the rest of the section is to detail this statement, in particular the
form of the composed state and it’s interpretation in terms of integrated structure.

To do so, we need to precise some notations. In the sequel we will write Ψ
(0)
i (xi) for the lowest eigenstates

of the operators Ki and Ψ
(ni)
i (xi) for the other eigenstates of the Ki. We can write a composed states in the

following way: Assume that the potential connects p1 copies of structure 1, p2 copies of structure 2 and so on

until pr copies of structure r. Thus, we can write the potential V
(
(x1)p1 , ..., (xk)pr

)
with p1 + ...+ pr = k

where (xi)pi represents pi independent copies of xi. In other words, (xi)pi is a coordinate system for Fi× ...
×Fi with Fi the manifold of states for structure i. Given these notations, a composed state for the various
structures writes as a sum of eigenstates:

∑

(n1)p1
,(n2)p2

,...,(nr)pr

a(n1)p1 ,(n2)p2 ,...,(nr)pr

[
Ψ
(n1)
1 (x1)

]
p1
...
[
Ψ
(nl)
l (xl)

]
pl
...
[
Ψ(nr)r (xr)

]
pr

where
[
Ψ
(ni)
i (xi)

]
pi
is a product of pi copies of eigenstates for structure i:

[
Ψ
(ni)
i (xi)

]
pi
= Ψ

(ni)1
i ((xi)1)Ψ

(ni)2
i ((xi)2) ...Ψ

(ni)pi
i

(
(xi)pi

)

We will also denote, as a shortcut for identical copies of the lowest eigenstate:
[
Ψ
(0)
i (x1)

]
pi
= Ψ

(0)
i ((xi)1)Ψ

(0)
i ((xi)2) ...Ψ

(0)
i

(
(xi)pi

)

Moreover, for practical purposes, the potential V
(
(x1)p1 , ..., (xr)pr

)
can be written in an operator formalism

as a kernel, whose form in the eigenstate basis is:

V
(
(x1)p1 , ..., (xr)pr , (y1)p1 , ..., (yr)pr

)
(157)

=
∑

(n1)p1
,(n2)p2

,...,(nr)pr

V(n1)p1 ,(n2)p2 ,...,(nr)pr

[
Ψ
(n1)
1 (x1)

]
p1

[
Ψ
(n1)†
1 (y1)

]
p1
...
[
Ψ
(nl)
l (xl)

]
pl

[
Ψ
(nl)†
l (yl)

]
pl

×...
[
Ψ(nr)r (xr)

]
pr

[
Ψ(nr)†r (yr)

]
pr
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where the coefficients V(n1)p1 ,(n2)p2 ,...,(nr)pr
are defined by:

V(n1)p1 ,(n2)p2 ,...,(nr)pr
=

∫ [
Ψ
(n1)†
1 (x1)

]
p1
...
[
Ψ
(nl)†
l (xl)

]
pl
...
[
Ψ
(nl)†
l (xl)

]
pl
V
(
(x1)p1 , ..., (xr)pr

)
(158)

×
[
Ψ
(n1)
1 (x1)

]
p1
...
[
Ψ
(nl)
l (xl)

]
pl
...
[
Ψ(nr)r (xr)

]
pr

[
Ψ
(nl)†
l (xl)

]
pl

Our hypothesis is that the potential localizes around the ground states of each structure. This translates in:

V(n1)p1 ,(n2)p2 ,...,(nr)pr
<< V(0)p1 ,(0)p2 ,...,(0)pr

if some (ni)pi 6= (0)pi (159)

where (0)pi denote multi-indices with all their components set to zero. Actually, this condition means that
in 157, the terms proportional to the tensor products of ground states:

[
Ψ
(0)
1 (x1)

]
p1

[
Ψ
(0)†
1 (y1)

]
p1
...
[
Ψ
(0)
l (xl)

]
pl

[
Ψ
(0)†
l (yl)

]
pl
× ...

[
Ψ(0)r (xr)

]
pr

[
Ψ(0)†r (yr)

]
pr

dominate, as required. As a consequence of the assumption 157, the matrix elements of 158 rewrite:

V
(
(x1)p1 , ..., (xr)pr , (y1)p1 , ..., (yr)pr

)

= V0

[
Ψ
(0)
1 (x1)

]
p1

[
Ψ
(0)†
1 (y1)

]
p1
...
[
Ψ
(0)
l (xl)

]
pl

[
Ψ
(0)†
l (yl)

]
pl
...
[
Ψ(0)r (xr)

]
pr

[
Ψ(0)†r (yr)

]
pr∑

(n1)p1
,(n2)p2

,...,(nr)pr ,

not all (ni)pi
are nul

V(n1)p1 ,(n2)p2 ,...,(nr)pr

[
Ψ
(n1)
1 (x1)

]
p1

[
Ψ
(n1)†
1 (y1)

]
p1
...
[
Ψ
(nl)
l (xl)

]
pl

[
Ψ
(nl)†
l (yl)

]
pl

×...
[
Ψ(nr)r (xr)

]
pr

[
Ψ(nr)†r (yr)

]
pr

with: V0 ≡ V(0)p1 ,(0)p2 ,...,(0)pr
>> V(n1)p1 ,(n2)p2 ,...,(nr)pr

In first approximation, keeping only the dominant contributions of the potential, the action (156) rewrites:

S (Ψ) =

∫
1

2

(
Ψ†i (yi)KiΨi (yi)

)
dyi (160)

+

A∑

k=2

∫
V (x1, ..., xk)Ψi1 (x1)Ψ

†
i1
(x1) ...Ψik (xk)Ψ

†
ik
(xk) dx1...dxk

=

∫
1

2

(
Ψ†i (yi)KiΨi (yi)

)
dyi

+

∫ A∑

k=2

V
(
(x1)p1 , ..., (xr)pr , (y1)p1 , ..., (yr)pr

)
[Ψ1 (x1)]p1

[
Ψ†1 (y1)

]
p1
...

× [Ψ1 (xr)]p1
[
Ψ†1 (yr)

]
pr
d (x1)p1 ...d (xr)pr d (y1)p1 ...d (yr)pr

=

∫
1

2

(
Ψ†i (yi)KiΨi (yi)

)
dyi

+

A∑

k=2

∫
V0

[
Ψ
(0)
1 (x1)

]
p1

[
Ψ
(0)†
1 (y1)

]
p1
...
[
Ψ
(0)
l (xl)

]
pl

[
Ψ
(0)†
l (yl)

]
pl
...
[
Ψ(0)r (xr)

]
pr

[
Ψ(0)†r (yr)

]
pr

[Ψ1 (x1)]p1

[
Ψ†1 (y1)

]
p1
...× [Ψ1 (xr)]pr

[
Ψ†1 (yr)

]
pr
d (x1)p1 ...d (xr)pr d (y1)p1 ...d (yr)pr

103



Appendix 13 shows that under some conditions on V0, a non trivial saddle point exists and satisfies:

0 = KlΨl (xl) (161)

+pl

{∫ A∑

k=2

V0

[
Ψ
(0)
1 (x1)

]
p1

[
Ψ
(0)†
1 (y1)

]
p1
...
[
Ψ
(0)
l (xl)

]
pl

[
Ψ
(0)†
l (yl)

]
pl
...
[
Ψ(0)r (xr)

]
pr

[
Ψ(0)†r (yr)

]
pr

× [Ψ1 (x1)]p1
[
Ψ†1 (y1)

]
p1
...× [Ψl (xl)]pl−1

[
Ψ†l (yl)

]
pl−1

× ...

× [Ψr (xr)]pr
[
Ψ†r (yr)

]
pr
d (x1)p1 ...d (xl)pl−1 ..d (xr)pr d (y1)p1 ...d (yl)pl−1 ...d (yr)pr

}
Ψl (xl)

Considering again the correspondance between the micro and the collective interpretation of the system,
we can wonder, at the individual level of effective utilities, what would correspond to interaction potential

V
(
(x1)p1 , ..., (xr)pr , (y1)p1 , ..., (yr)pr

)
. As explained above, the lowest eigenstates for the operators Kl are

gaussian functions. The fact that these eigenstates are oriented towards some unstable patterns means that
they can be written, up to a normalization factor, as:

Ψ1 (xi) = exp

(
−λ(0)i

((
1−Π(0)i

)
.xi

)2)

where λ
(0)
i is the lowest eigenvalue of

Ki − V (yi) =
(
−1
2
(∇i)2 − yM (A)

i ∇i + yDiy

)

that was assumed to be positive. We define Π
(0)
i to be the orthogonal projection on the eigenstate direction

corresponding to λ
(0)
i . As a consequence, (160) involves an interaction depending on the

(
1−Π(0)i

)
xi, or,

if we allow for the more general form, a potential:

V̂
((
1−Π(0)1

)
.x1, ...

(
1−Π(0)i

)
.xi, ...

(
1−Π(0)r

)
.xr

)

At the individual structure level, it may seem that one should describe the system by gathering the effective
utilities as in (149) for all i plus some interaction terms:

V̂
((
1−Π(0)1

)
.X1 (t) , ...

(
1−Π(0)i

)
.Xi (t) , ...

(
1−Π(0)r

)
.Xr (t)

)

The situation is however a bit different. Actually, the interactions defined by V̂ on the field level correspond
to non local interactions like:

∫
V̂
((
1−Π(0)1

)
.X1 (t1) , ...

(
1−Π(0)i

)
.Xi (ti) , ...

(
1−Π(0)r

)
.Xr (tr)

)
dt1...dtr

for a global functional:

∑

i

Ueff (Xi) +

∫
V̂
((
1−Π(0)1

)
.X1 (t1) , ...

(
1−Π(0)i

)
.Xi (ti) , ...

(
1−Π(0)r

)
.Xr (tr)

)
dt1...dtr (162)

=
∑

i

(
−1
2
Ẋi (t)M

(S)Ẋi (t)− Ẋi (t)M
(A)
(
Xi (t)−

(
X̃i

))
−
(
Xi (t)−

(
X̃i

))
N
(
Xi (t)−

(
X̃i

))
+ Veff (Xi (t))

)
dti

+

∫
V̂
((
1−Π(0)1

)
.X1 (t1) , ...

(
1−Π(0)i

)
.Xi (ti) , ...

(
1−Π(0)r

)
.Xr (tr)

)
dt1...dtr

The utility in (162) is the effective utility for one single integrated structure, whose form differs however
from the initial model. The non local character of the interactions describes a "non causal" dynamics for the
whole set of interacting structures: in the field formulation, the set of structures acts as a global environment
for the others. The existence of a non trivial minimum at the field theoretic level, i.e. the fundamental state,
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translates at the individual level in the emergence of an integrated structure. Its behavior breaks the causal
dynamics of the initial structures as individual systems. Recall that the integrated structure emerging from
the non trivial vacuum has to be understood as some "average" or typical structure, and that the system
of agents is in fact an assembly of such integrated structures. They interact together, through non local
effective potentials. At the individual level, this leads to a non local auto interaction for the representative
structure of the assembly, the non locality modeling the action of the environment created by the set of
structures on the representative one.

Coming back to the system of large number of interacting structures described by (160):

S (Ψ) =

∫
1

2

(
Ψ†i (yi)KiΨi (yi)

)
dyi

+

A∑

k=2

∫
V0

[
Ψ
(0)
1 (x1)

]
p1

[
Ψ
(0)†
1 (y1)

]
p1
...
[
Ψ
(0)
l (xl)

]
pl

[
Ψ
(0)†
l (yl)

]
pl

...
[
Ψ(0)r (xr)

]
pr

[
Ψ(0)†r (yr)

]
pr

[Ψ1 (x1)]p1

[
Ψ†1 (y1)

]
p1
...× [Ψ1 (xr)]pr

[
Ψ†1 (yr)

]
pr
d (x1)p1 ...d (xr)pr d (y1)p1 ...d (yr)pr

we can describe the fluctuations around the minimum by decomposing:

Ψi (x1) = Ψ̂i (xi) + δΨi (xi)

where Ψ̂i (x1) satisfies (161). Let
(
Ψ̂i (x1)

)
be the vector with components Ψ̂i (x1). The second order

variation for S (Ψ) is then:

S (Ψ) = S
((
Ψ̂i (x1)

))
+

∫ ∑

i

δΨ†i (xi)KiδΨi (xi)

+
∑

l

pl (pl − 1) δΨ†l (xl)
{∫ A∑

k=2

V0

[
Ψ
(0)
1 (x1)

]
p1

[
Ψ
(0)†
1 (y1)

]
p1
...
[
Ψ
(0)
l (xl)

]
pl

[
Ψ
(0)†
l (yl)

]
pl
...
[
Ψ(0)r (xr)

]
pr

[
Ψ(0)†r

×
[
Ψ̂1 (x1)

]
p1

[
Ψ̂†1 (y1)

]
p1
...×

[
Ψ̂l (xl)

]
pl−1

[
Ψ̂†l (yl)

]
pl−1

×

...×
[
Ψ̂r (xr)

]
pr

[
Ψ̂†r (yr)

]
pr
d (x1)p1 ...d (xl)pl−1 ..d (xr)pr d (y1)p1 ...d (yl)pl−1 ...d (yr)pr

}
δΨl (xl)

+
∑

l,n

plpnδΨ
†
n (xn)

{∫ A∑

k=2

V0

[
Ψ
(0)
1 (x1)

]
p1

[
Ψ
(0)†
1 (y1)

]
p1
...
[
Ψ
(0)
l (xl)

]
pl

[
Ψ
(0)†
l (yl)

]
pl

...
[
Ψ(0)r (xr)

]
pr

[
Ψ(0)†r (yr)

]
pr

×
[
Ψ̂1 (x1)

]
p1

[
Ψ̂†1 (y1)

]
p1
...×

[
Ψ̂l (xl)

]
pl−1

[
Ψ̂†l (yl)

]
pl
× ...

[
Ψ̂n (xn)

]
pn

[
Ψ̂†n (yl)

]
pn−1

×
[
Ψ̂r (xr)

]
pr

[
Ψ̂†r (yr)

]
pr
d (x1)p1 ...d (xl)pl−1 ..d (xr)pr d (y1)p1 ...d (yn)pn−1 ...d (yr)pr

}
δΨl (xl)

At the individual level this represents the linearized version of (162):

∑

i

Ueff (Xi) +
∑

l,m

∫
V̂ij (Xl (tl) , Xm (tm)) dtldtm

where the coefficients matrices V̂ij are the second derivatives of V̂
((
1−Π(0)1

)
.x1, ...

(
1−Π(0)i

)
.xi, ...

(
1−Π(0)r

)
.xr

)
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computed at the saddle point:

V̂ll = pl (pl − 1)
{∫ A∑

k=2

V0

([
Ψ
(0)
1 (x1)

]
p1

[
Ψ
(0)†
1 (y1)

]
p1
...
[
Ψ
(0)
l (xl)

]
pl

[
Ψ
(0)†
l (yl)

]
pl
...
[
Ψ(0)r (xr)

]
pr

[
Ψ(0)†r (yr)

]
pr

×
[
Ψ̂1 (x1)

]
p1

[
Ψ̂†1 (y1)

]
p1
...×

[
Ψ̂l (xl)

]
pl−1

, Xl,
[
Ψ̂†l (yl)

]
pl−1

, Xl × ...

×
[
Ψ̂r (xr)

]
pr

[
Ψ̂†r (yr)

]
pr

)
d (x1)p1 ...d (xl)pl−1 ..d (xr)pr d (y1)p1 ...d (yl)pl−1 ...d (yr)pr

}

and

V̂ln = plpn

{∫ A∑

k=2

V0

([
Ψ
(0)
1 (x1)

]
p1

[
Ψ
(0)†
1 (y1)

]
p1
...
[
Ψ
(0)
l (xl)

]
pl

[
Ψ
(0)†
l (yl)

]
pl
...
[
Ψ(0)r (xr)

]
pr

[
Ψ(0)†r (yr)

]
pr

[
Ψ̂1 (x1)

]
p1

[
Ψ̂†1 (y1)

]
p1
...×

[
Ψ̂l (xl)

]
pl−1

, Xl,
[
Ψ̂†l (yl)

]
pl
× ...

[
Ψ̂n (xn)

]
pn

[
Ψ̂†n (yl)

]
pn−1

, Xn,

×
[
Ψ̂r (xr)

]
pr

[
Ψ̂†r (yr)

]
pr

)
d (x1)p1 ...d (xl)pl−1 ..d (xr)pr d (y1)p1 ...d (yl)pl−1 ...d (yr)pr

}

This set of non linear relations mixes the various types of structure and, consequently, the different coordi-
nates x1...xk. The saddle point solution has the general form:

Ψl (xl) =
∑

p1,...,pk

∫
Θp1,...,pkl (xl, (x1)

p1 , ..., (xk)
pk) d (x1)

p1 d (xk)
pk

where (xi)
pi is pi copies of the i th structure coordinate space. In other words, the saddle point solution is

represented by extended field configurations mixing all structures coordinates. The combination of internal
tensions/curvatures and interactions between fundamental structures has thus turned the ground state into
an integrated object whose coordinate space mixes those of the previously independent structures.
As an example, use again (156) with two different types of agents’ interaction:

S (Ψ) =
∑

k=1,2

∫
1

2

(
Ψ†k (y)

(
−1
2
(∇i)2 − yM (A)

k ∇i + yDky + Vk (y)

)
Ψk (y)

)
dy

+

∫
(y1)

t
C (y1) (y2)

t
C (y2)Ψ1 (x1)Ψ

†
1 (x1) ...Ψ2 (xk)Ψ

†
2 (xk) dx1dx2

The saddle point equation is then:

0 =

(
−1
2
(∇i)2 − yM (A)

l ∇i + yDly + Vl (y)

)
Ψl (y)

+

(
(yl)

t
C (yl) (yl)

t

∫
(y2)

t
C (y2)Ψ2 (xk)Ψ

†
2 (xk)

)
Ψl (y)

10.3 Extension: Several type agents, effective field action

10.3.1 Principle

When several species of agents appear, the possibility to integrate first one type of agent behavior appears. It
amounts to consider a system with one type of agent less, but with a modified action which takes into account
the interactions with the suppressed agent as a global modification of the system. This representation fits
well for systems with "hidden" agents, or if, for some purposes, we are interested in the behavior of one (or
several) particular types of agents. By integrating out the remaining types of agents, one can focus on the
dynamic of a certain class, given an integrated landscape.
The general principle is the following Consider, that in the computation of the path integral

∫
exp

(
−S

({
Ψ(k)

}
k=1...M

))
D
{
Ψ(k)

}
k=1...M

(163)
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where we take the most general:

S
({
Ψ(k)

}
k=1...M

)
(164)

=
∑

k

∫
dX̂k

((
−1
2
Ψ(k)†

(
X̂k

) [
(∇k)

(
∇k −M (1)

k

(
X̂k −

(
X̃
)
k

))
+m2

k + V
(
X̂k

)]
Ψ(k)

(
X̂k

)))

+
∑

k

∑

n

Vn

({
X̂
(i)
k

}
16i6n

) ∏

16i6n

Ψ(k)†
(
X̂
(i)
k

)
Ψ(k)

(
X̂
(i)
k

)

︸ ︷︷ ︸
intra species interaction

+
∑

m

∑

k1...km

∑

n1...nm

Vn1...nm

({
X̂
(inj )
kj

}

16inj6nj

)
m∏

j=1

∏

16inj6nj

Ψ(kj)†
(
X̂
(inj )
kj

)
Ψ(kj)

(
X̂
(inj )
kj

)

︸ ︷︷ ︸
inter species interaction

Partition M as M =M1 +M2 the integration with over
{
Ψ(k)

}
k=M2+1...M

in (163) can be performed using

the methods given in the previous paragraphs (by graphs, saddle point approximation, or both). Though it
is usually impossible to get an exact result (we will give below examples for which it is), in principle, the
integrals over

{
Ψ(k)

}
k=M2+1...M

, will leave us with:

∫
exp

(
−S

({
Ψ(k)

}
k=1...M2

))
D
{
Ψ(k)

}
k=1...M2

(165)

where

Seff

({
Ψ(k)

}
k=1...M1

)

=
∑

k

∫
dX̂k

((
−1
2
Ψ(k)†

(
X̂k

) [
(∇k)

(
∇k −M (1)

k

(
X̂k −

(
X̃
)
k

))
+m2

k + V
eff
(
X̂k

)]
Ψ(k)

(
X̂k

)))

+
∑

k

∑

n

V effn

({
X̂
(i)
k

}
16i6n

) ∏

16i6n

Ψ(k)†
(
X̂
(i)
k

)
Ψ(k)

(
X̂
(i)
k

)

+
∑

m

∑

k1...km

∑

n1...nm

V effn1...nm

({
X̂
(inj )
kj

}

16inj6nj

)
m∏

j=1

∏

16inj6nj

Ψ(kj)†
(
X̂
(inj )
kj

)
Ψ(kj)

(
X̂
(inj )
kj

)

Note that the individual potential V eff
(
X̂k

)
is also affected. It follows directly from the fact that in the

integration process, interaction terms involving only "integrated structures" plus one "non integrated one"
leaves us with one individual potential. This reflects the fact mentionned previously, that is one ends with a
modified individual behavior. As well, the interaction process between remaining structures is itself modified
by it’s surrounding.

10.3.2 Example: two types of agents

To be more precise, consider now a simple two agents model, for which the space of configuration is one
dimensional: The propagator for block (fundamental structure) k (here renamed i1 or i2) is:

−∇2k +m2
k +

(
(xi)k − Y̌eff

)
(Λi)k

(
(xi)k − Y̌eff

)

m2
k = αk − ln (2Dk) +

1

2
Tr

(
M (1)

(√
M (2)

)− 3
2

)

with Dk, dimension of the state space for block k. m
2
k can be positive or negative depending on Dk and

M (1) (M (2) definite positive by assumption). Moreover, we consider as before a non reciprocal interaction
term:

V (xi1 , xi2) = δ
(
xi2 − x̂(i1)i2

)2
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i.e. a strain on the agent type 2 is imposed by agents of type 1.
As a consequence the action of the two agents system is:

S (Ψi2 (xi2) , ) = Ψi1 (xi1)
(
−∇2 +m2

i1
+
(
xi1 −

(
Y̌eff

)
i1

)
Λi1

(
xi1 −

(
Y̌eff

)
i1

))
Ψ†i1 (xi1)

Ψi2 (xi2)
(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

))
Ψ†i2 (xi2)

+δ

∫
dxi2Ψi2 (xi2)Ψ

†
i2
(xi2)

(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

We start by integrating the behavior of the second agent: To do so one an consider that it’s action is:

Ψi2 (xi2)
(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

))
Ψ†i2 (xi2)

+δ

∫
dxi2Ψi2 (xi2)Ψ

†
i2
(xi2)

(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

= Ψi2 (xi2)
(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)

+δ
(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)Ψ

†
i2
(xi2)

)

Up to some normalization (that we will reintroduced later), the integral for the exponential of this term is
straightforward:

exp
(
−Ψi2 (xi2)

(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)
(166)

+δ
(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)Ψ

†
i2
(xi2)

))
×DΨi2 (xi2)Ψ†i2 (xi2)

=

(
det

((
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)
+ δ

(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

)))−1

= exp

(
−Tr

(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)
+ δ

(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

))

This term can thus be reintroduced in the action for the remaining field Ψi1 (xi1), and thus the integration
over the second strucure field leads to an effective action for Ψi1 (xi1):

Sef. (Ψi1 (xi1))

= S (Ψi1 (xi1))

+Tr ln

(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)
+ δ

(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

)

Recall now that we saw before that the spectrum for the operator:

−∇2 +m2
i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)
(167)

(where the eigenvalues of the diagonal matrix Λi2 are positive) is given by

(
n+

1

2

)
(Λi2) +m

2
i2

(168)

and it’s trace: ∑

n

(
n+

1

2

)
(Λi2) +m

2
i2

(here we use the notation
(
n+ 1

2

)
(Λi2) for the product between a vector ofm half integers

(
n1 +

1
2 , ..., nm +

1
2

)

and the, say, m eigenvalues of Λi2).
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Actually, from (131), since the kernel of this operator is:

G (x, y) =
∑

n

ψn (x)

(
m2
i +

(
n+

1

2

)
(Λi)k

)
ψ∗n (y)

Then:

Tr
(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

))
=

∫
G (x, x) dx

=
∑

n

(
m2
i +

(
n+

1

2

)
(Λi)k

)

due to the orthonormality of the eigenfunctions ψn (x).
As a consequence, for an operator:
(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)
+ δ

(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

)

which also quadratic in potential, the spectrum is similar and can be found by writing:
(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)
+ δ

(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

)
(169)

= −∇2 +m2
i2

+


xi2 −

Λi2
(
Y̌eff

)
i2
+ x̂

(i1)
i2

δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

Λi2 + δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)




×
((
Λi2 + δ

∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

))
xi2 −

Λi2
(
Y̌eff

)
i2
+ x̂

(i1)
i2

δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

Λi2 + δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)




+
δΛi2

∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

Λi2 + δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

((
Y̌eff

)
i2
− x̂(i1)i2

)2

This is again an operator with quadratic potential, with an additional positive constant and a shift of
variables. It’s spectrum is then similar to (168) to yield:

Tr

(
ln

((
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)
+ δ

(
xi2 − x̂(i1)i2

)2 ∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

)))

=
∑

n

ln

((
n+

1

2

)(
Λi2 + δ

∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

)
+m2

i2
+

δΛi2
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

Λi2 + δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

((
Y̌eff

)
i2
− x̂(i1)i2

)2
)

for n integers. As a consequence:

Sef. (Ψi1 (xi1)) = S (Ψi1 (xi1))

+
∑

n

ln

((
n+

1

2

)(
Λi2 + δ

∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

)
+m2

i2

+
δΛi2

∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

Λi2 + δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

((
Y̌eff

)
i2
− x̂(i1)i2

)2
)

= S (Ψi1 (xi1))

+
∑

n

ln

(((
n+

1

2

)
Λi2 +m

2
i2

)

×


1 +

(
n+ 1

2

)
δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1) +

δΛi2
∫
dxi1Ψi1(xi1)Ψ

†
i1
(xi1)

Λi2+δ
∫
dxi1Ψi1(xi1)Ψ

†
i1
(xi1)

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
Λi2 +m

2
i2






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We can come back to the problem of normalization mentionned before. Remember that we showed before
that for normalization reasons, (166) has to be divided by it’s value for a nul interaction potential, i.e.

One can normalize this sum by substracting it’s value for a nul interaction, i.e.

exp
(
−Ψi2 (xi2)

(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

))
Ψ†i2 (xi2)

)

×DΨi2 (xi2)Ψ†i2 (xi2)
= exp

(
−Tr

(
−∇2 +m2

i2
+
(
xi2 −

(
Y̌eff

)
i2

)
Λi2

(
xi2 −

(
Y̌eff

)
i2

)))

whose value is: ∑

n

ln

((
n+

1

2

)
(Λi2) +m

2
i2

)

bu virtue of (166). This value has thus to be substracted to Sef. (Ψi1 (xi1)), and as a consequence, one has:

Sef. (Ψi1 (xi1))

= S (Ψi1 (xi1))

+
∑

n

ln


1 +

(
n+ 1

2

)
δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1) +

δΛi2
∫
dxi1Ψi1(xi1)Ψ

†
i1
(xi1)

Λi2+δ
∫
dxi1Ψi1(xi1)Ψ

†
i1
(xi1)

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
Λi2 +m

2
i2




However, this sum does not converge in n. This is a standard phenomenom when dealing with infinite
degrees of freedom. Several methods exist to rule out this problem, and usually in physical problems,
methods of renormalization are used. Nethertheless, for the problem of interest here one can use a more
simple solution. Actually, for our system in teraction, we do not need to assume that all frequencies of
oscillations (see effective utility as harmonic oscillator), participate to the dynamic, or at least one can
assume that these high frequencies are quickly damped. As a consequence, one assumes that the sum will be
regularized in a reasonable way if we introduce a cut off in the sum. It amounts to assume that oscillations
of field Ψi2 have bounded frequencies. We assume n 6 N . Moreover, for later purpose we normalize the

field, by introducing
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1) = η and rescale

Ψi1 (xi1)→
√
ηΨi1 (xi1)

with now Ψi1 (xi1) of norm 1.
Ultimately, the effective action for agents of type 1 is thus:

Sef. (Ψi1 (xi1)) = ηS (Ψi1 (xi1)) +
∑

n6N

ln


1 +

(
n+ 1

2

)
δη +

δΛi2η

Λi2+δη

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
Λi2 +m

2
i2


 (170)

10.3.3 Possibility of phase transition

One is interested in the possibility of phase transition, which requires to study the possibility of a minimum
for Sef. (Ψi1 (xi1)) with η > 0. This possibility depends on the parameters involved in Sef. (Ψi1 (xi1)). A
detailled study is performed in Appendix 14, and the results are the following:

For δ > 0, then, if

1

2
(Λi2)−m2

i1
< 0

1

2
(Λi1)−m2

i1
+ δ

∑

n6N

(
n+ 1

2

)
+
((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
(Λi2) +m

2
i2

< 0
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and if there is an η0 such that

1

2
(Λi1)−m2

i1
+
∑

n6N

(
n+ 1

2

)
δ +

(Λi2)
2
δ

(Λi2+δη0)
2

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
(Λi2 + δη0) +m

2
i2
+

δΛi2η0
Λi2+δη0

((
Y̌eff

)
i2
− x̂(i1)i2

)2 > 0

(the possibility exists depending on the parameters since, the function in the sum is increasing starting from
η0 = 0.), then there exists η1 6= 0 such that

Ψ
(0)
i1
(xi1) =

√
η1

(√
a

π

) 1
4

exp

(
−
√
a

2
x2i1

)

is a minimum for the action Sef.. As a consequence a non trivial vaccum exists, a results whose implications
have been explained earlier.

For δ < 0 the conditions are simpler. If:

1

2
(Λi2)−m2

i1
> 0

1

2
(Λi1)−m2

i1
+ δ

∑

n6N

(
n+ 1

2

)
+
((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
Λi2 +m

2
i2

< 0

then there is η 6= 0, such that √ηΨ(0)i1 (xi1) is the minimum of Sef. (Ψi1 (xi1)).
For all other cases the minimum for Sef. (Ψi1 (xi1)) is reached for η = 0 and no phase transition occurs.
If we rather integrate over Ψi1 (xi1) we obtain the effective action for xi2 :

Sef. (Ψi2 (xi2)) = S (Ψi2 (xi2)) + Tr ln



−∇2 +m2

i1
+
(
xi1 −

(
Y̌eff

)
i1

)
Λi1

(
xi1 −

(
Y̌eff

)
i1

)

+δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)




= S (Ψi2 (xi2)) +
∑

n

∫
dxi1ψn

(
xi1 −

(
Y̌eff

)
i1

)
ψ∗n
((
xi1 −

(
Y̌eff

)
i1

))

× ln
((

n+
1

2

)
Λi1 +m

2
i1
+ δ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

)

= S (Ψi2 (xi2)) +
∑

n

ln



−∇2 +m2

i1
+
(
xi1 −

(
Y̌eff

)
i1

)
Λi1

(
xi1 −

(
Y̌eff

)
i1

)

+δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)




As before, we normalize by substracting

∑

n

ln

((
n+

1

2

)
Λi1 +m

2
i1

)

leading to:

Sef. (Ψi2 (xi2)) = S (Ψi2 (xi2)) +
∑

n

ln


1 + δ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)(

n+ 1
2

)
Λi1 +m

2
i1




Again, one has to regularize by allowing only a finite number of Fourier components, n ≤ N .

Sef. (Ψi2 (xi2)) = S (Ψi2 (xi2)) +
∑

n≤N
ln


1 + δ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)(

n+ 1
2

)
Λi1 +m

2
i1



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Normalize
Ψi2 (xi2)→

√
ηΨi2 (xi2)

As a consequence:

Sef. (Ψi2 (xi2)) = ηS (Ψi2 (xi2)) +
∑

n≤N
ln


1 + ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)(

n+ 1
2

)
Λi1 +m

2
i1




We show in appendix 14 that for such a system, the expectation value for 〈Ψi2 (xi2)〉 is nul, and thus no
phase transition occurs.

At the lowest order in perturbation theory,

Sef. (Ψi2 (xi2)) = S (Ψi2 (xi2)) +


∑

n≤N

δ(
n+ 1

2

)
Λi1 +m

2
i1



∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

that is the frequencies of oscillations for the second species is shifted

Λi2 → Λi2 +


∑

n≤N

δ(
n+ 1

2

)
Λi1 +m

2
i1




depending on the sign of δ, fasten ou dampened. The center of oscillation is also shifted as a combination

of
(
Y̌eff

)
i1
and x̂

(i1)
i2
.

10.3.4 Consequence of phase transition

The effective action

Sef. (Ψi1 (xi1)) = S (Ψi1 (xi1)) (171)

+
∑

n6N

ln


1 +

(
n+ 1

2

)
δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1) +

δΛi2
∫
dxi1Ψi1(xi1)Ψ

†
i1
(xi1)

Λi2+δ
∫
dxi1Ψi1(xi1)Ψ

†
i1
(xi1)

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
Λi2 +m

2
i2




where we reintroduced
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1) = η has now two phases. One can compute the second order

approximation of (171) for of each of these phases. In the case of a trivial background expectation Ψi1 (xi1),
the second order expansion of Sef. (Ψi1 (xi1)) is:

Sef. (Ψi1 (xi1)) = S (Ψi1 (xi1)) +
∑

n6N

(
n+ 1

2 +
((
Y̌eff

)
i2
− x̂(i1)i2

)2)
δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

(
n+ 1

2

)
Λi2 +m

2
i2
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whereas in the phase where the minimum for a field Ψ0i1 (xi1), shifting Ψi1 (xi1)→ Ψi1 (xi1) + Ψ
0
i1
(xi1) one

is lead to:

Sef. (Ψi1 (xi1)) = Sef.
(
Ψ0i1 (xi1)

)
+ S (Ψi1 (xi1))

+
∑

n6N

(
δ
(
n+ 1

2

)
+ δ

Λ2i2

(Λi2+η2δ)
2

((
Y̌eff

)
i2
− x̂(i1)i2

)2)

(
m2
i2
+ Λi2

(
n+ 1

2

))


δ(η2)(n+ 1

2 )+δΛi2
η2

δ(η2)+Λi2

(
(Y̌eff)

i2
−x̂(i1)i2

)2

m2
i2
+Λi2(n+

1
2 )

+ 1




∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

+
∑

n6N

(∫
dxi1

((
Ψ0i1 (xi1)

)
(Ψi1 (xi1))

†
+ (Ψi1 (xi1))

(
Ψ0i1 (xi1)

)†)
)2

×




(
δ
(
n+ 1

2

)
+ δΛi2

((
Y̌eff

)
i2
− x̂(i1)i2

)2 Λi2

(Λi2+η2δ)
2

)2

2




η2δ

(
n+ 1

2

)
+ η2δΛi2

(
(Y̌eff)

i2
−x̂(i1)i2

)2

δη2+Λi2


+

(
m2
i2
+ Λi2

(
n+ 1

2

))


2

+ δ2

Λ2i2

(Λi2+η2δ)
3

((
Y̌eff

)
i2
− x̂(i1)i2

)2


η2δ

(
n+ 1

2

)
+ η2δΛi2

(
(Y̌eff)

i2
−x̂(i1)i2

)2

δη2+Λi2


+m2

i2
+ Λi2

(
n+ 1

2

)




The interpretation is the following. The effective action for the first type of agent is shifted by a constant
quadratic term of the type:

λ

∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1) + µ

(∫
dxi1

((
Ψ0i1 (xi1)

)
(Ψi1 (xi1))

†
+ (Ψi1 (xi1))

(
Ψ0i1 (xi1)

)†)
)2

We have seen in the previous paragraph that it amounts, coming back to the individual behaviors, to modify
the utility of an individual agent by a constant term, that is the equilibrium value is unchanged by the
introduction of the surrounding. However the introduction of this constant quadratic term has the effect to
dampen the oscillatio around he equilibrium. In fact the shift in the action is equivalent to a shift in m2

i1
,

or which is equivalent a shift in α, the parameters which measures the inverse of interaction time for agents
of type 1. It means that integrating the behavior of the second type of agents is equivalent to reduce the
duration for the interaction process of agents of type 1. Agents of type 1 spend time to control agents of
type 2, which corresponds to a loss of time/energy. As a consequence agents of type 2 act as stabilizers.

On the other side, if we consider effective action for agents 2,

Sef. (Ψi2 (xi2)) = S (Ψi2 (xi2)) +
∑

n

ln


1 + δ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)(

n+ 1
2

)
Λi1 +m

2
i1




Given there is no phase transition (i.e. the minimum is for Ψi2 (xi2) = 0) the action, at the second order is
then:

Sef. (Ψi2 (xi2)) = S (Ψi2 (xi2)) + δ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)(

n+ 1
2

)
Λi1 +m

2
i1

Here, the situation is different with respect to agents of type 1. Coming back to the individual utilities
corresponding to this colllective field, the first order correction due to agent 1 is to shift the utility by a term
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δ
(
xi2 − x̂(i1)i2

)2
, the attractive (for δ > 0) or repulsive (for δ < 0) potential. By a computation analog to

(169) the shift in the equilibrium value is:

(
Y̌eff

)
i2
→
Λi2

(
Y̌eff

)
i2
+ x̂

(i1)
i2

δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

Λi2 + δ
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1)

Recall that
∫
dxi1Ψi1 (xi1)Ψ

†
i1
(xi1) = η and that η satisfies:

1

2
(Λi1)−m2

i1
+
∑

n6N

(
n+ 1

2

)
δ +

(Λi2)
2
δ

(Λi2+δη)
2

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
(Λi2 + δη) +m

2
i2
+

δΛi2η

Λi2+δη

((
Y̌eff

)
i2
− x̂(i1)i2

)2 = 0

In continuous approximation this equation rewrites:

1

2
(Λi1)−m2

i1
+

δ

(Λi2 + δη)
N

+

(
(Λi2)

2
δ

(Λi2 + δη)
3

((
Y̌eff

)
i2
− x̂(i1)i2

)2
− δ

(Λi2 + δη)
2

(
m2
i2
+

δΛi2η

Λi2 + δη

((
Y̌eff

)
i2
− x̂(i1)i2

)2)
)

× ln




(
N + 1

2

)
(Λi2 + δη) +m

2
i2
+

δΛi2η

Λi2+δη

((
Y̌eff

)
i2
− x̂(i1)i2

)2

1
2 (Λi2 + δη) +m

2
i2
+

δΛi2η

Λi2+δη

((
Y̌eff

)
i2
− x̂(i1)i2

)2




= 0

11 Introducing macro time scale and aggregated quantities

We come back to the general field theoretic action (119)

S
({
Ψ(k)

}
k=1...M

)
(172)

=
∑

k

∫
dX̂k

((
−1
2
Ψ(k)†

(
X̂k

) [
(∇k)

(
∇k −M (1)

k

(
X̂k −

(
X̃
)
k

))
+m2

k + V
(
X̂k

)]
Ψ(k)

(
X̂k

)))

+
∑

k

∑

n

Vn

({
X̂
(i)
k

}
16i6n

) ∏

16i6n

Ψ(k)†
(
X̂
(i)
k

)
Ψ(k)

(
X̂
(i)
k

)

︸ ︷︷ ︸
intra species interaction

+
∑

m

∑

k1...km

∑

n1...nm

Vn1...nm

({
X̂
(inj )
kj

}

16inj6nj

)
m∏

j=1

∏

16inj6nj

Ψ(kj)†
(
X̂
(inj )
kj

)
Ψ(kj)

(
X̂
(inj )
kj

)

︸ ︷︷ ︸
inter species interaction

and we aim at computing the expectation value of the agregated quantity

Nk∑

i=1

X̂
(ik)
k for every species k, where

(ik) labels the agents among class k. To do so, recall the transformation that switches from the N agents
effective statistical weights (103) to the effective action (172). The statistical weight (103) without border
conditions on the paths:

∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp


−

∑

i

∫ si

0

(
ẋ2i
2
(t) +K (xi (t)) dt

)
−

A∑

k=2

∑

i1,...ik

∫ si

0

Vk (xi1 (t1) ...xik (tk)) dt1...dtk




(173)
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allows to compute the expectation
∫ s
0

∑
i xi (t) dt by adding a linear potential Jxi (t) to K (xi (t)) and by

taking the derivative at J = 0 of (173).

〈∫ s

0

∑

i

xi (t) dt

〉

=

(
∂

∂J

(
∑

N

1

N !

N∏

i=1

∫
exp (−αsi)

∫
Dxi (t) exp

(
−∑i

∫ si
0

(
ẋ2i
2 (t) + (K (xi (t)) + Jxi (t)) dt

)

−∑A
k=2

∑
i1,...ik

∫ si
0
Vk (xi1 (t1) ...xik (tk)) dt1...dtk

)))

J=0

Then, switching to the field representation (172) means that we replicate the change of potential in the field

action and replace V
(
X̂k

)
by V

(
X̂k

)
+ JX̂k. The laplace transform of

〈∫ s
0

∑
i xi (t) dt

〉
is thus given by:

∫
exp (−αs)

〈∫ s

0

∑

i

xi (t) dt

〉
ds

=

(
∂

∂J

(∫
exp

(
−S

({
Ψ(k)

(
X̂k

)}
k=1...M

)
+
∑

k

Jk

∫
Ψ(k)†

(
X̂k

)
X̂kΨ

(k)
(
X̂k

)
dX̂k

)
D
{
Ψ(k)

(
X̂k

)}
k=1...M

))

J=0

And if one is interested in the quantity
〈∫ s
0

∑
i xi (t) dt

〉
, this can be recovered by the inverse laplace transform

of the previous quantity:
〈∫ s

0

∑

i

xi (t) dt

〉

= L−1
((

∂

∂J

∫
exp

(
−S

({
Ψ(k)

(
X̂k

)}
k=1...M

)

+
∑

k

Jk

∫
Ψ(k)†

(
X̂k

)
X̂kΨ

(k)
(
X̂k

)
dX̂k

))
D
{
Ψ(k)

(
X̂k

)}
k=1...M

)

J=0

One cannot derive the quantity
〈∫ s
0

∑
i xi (t) dt

〉
with respect to s to get:

〈
∑

i

xi (s)

〉
= L−1

(
α
∂

∂J

(∫
exp

(
−S

({
Ψ(k)

(
X̂k

)}
k=1...M

)
+
∑

k

Jk

∫
Ψ(k)†

(
X̂k

)
X̂kΨ

(k)
(
X̂k

)
dX̂k

)

×D
{
Ψ(k)

(
X̂k

)}
k=1...M

))

J=0

actually, in
〈∫ s
0

∑
i xi (t) dt

〉
the bracket term, the expectation over the path depends itself on s through the

weight appearing in (173).
However, reminding that T = 1

α
can be seen as the mean time for the process of interaction between the

agents of the system, one can interpret
∫
exp (−αs)

〈∫ s
0

∑
i xi (t) dt

〉
ds as the mean quantity X̄ =

∑
i xi (t)

aggregated over a period T . This a static view, actually, nothing in the interaction process makes a difference
between two different time span, T and T ′ except the fact that a different length of the process will yield a
different result.

To make the connection with a dynamic evolution in the macro quantities and to consider X̄ (T ), there
are three different ways, that are not exclusive. The first one is to assume that the all parameters in (172)
depend exogenously on T , this represents the evolution of interactions, technology, or any quantity external
to the system.The second way is to consider the individual equilibrium values of each individual agent as

given as an external condition which is
(
X̃
)
k
= 1

NT

(
X̄ (T − 1)

)
k
(rewritten also

(
X̄ (T − 1)

)
k
for the sake

of simplicity). The third way, which is the more usual nd more direct, comes from the constraints, where
exogenous parameters where included in the budget constraint, such as the time t mean endowment Ȳ and
to replace it by 1

NT

(
X̄ (T − 1)

)
k
→
(
X̄ (T − 1)

)
k
. The contibutions of this terms, that are like Ȳ X̂k are

linear terms and can by themselves be integrated in
(
X̃
)
k
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The first way to introduce the macro time dependence is exogenous, the two others are endogenous.
Combining the two last posibilities in one and including the two remaining ways to reintroduce some macro
time dependence leads to consider the effective action:

S
({
Ψ(k)

}
k=1...M

)
(174)

=
∑

k

∫
dX̂k

((
−1
2
Ψ(k)†

(
X̂k

) [
(∇k)

(
∇k −M (1)

k

(
X̂k −

(
X̄ (T − 1)

)
k

))
+m2

k (T ) + V
(
X̂k, T

)]
Ψ(k)

(
X̂k

)))

+
∑

k

∑

n

Vn

({
X̂
(i)
k

}
16i6n

, T

) ∏

16i6n

Ψ(k)†
(
X̂
(i)
k

)
Ψ(k)

(
X̂
(i)
k

)

+
∑

m

∑

k1...km

∑

n1...nm

Vn1...nm

({
X̂
(inj )
kj

}

16inj6nj

, T

)
m∏

j=1

∏

16inj6nj

Ψ(kj)†
(
X̂
(inj )
kj

)
Ψ(kj)

(
X̂
(inj )
kj

)

+
∑

k

Jk

∫
Ψ(k)†

(
X̂k

)
X̂kΨ

(k)
(
X̂k

)
dX̂k

where now some exogenous dependencies in T have been introduced in the interaction parameters, through
the interaction potentials) and in m2

k (T ). To make contact with more usual models of statistical physics,
his is usually these exogenous variation that are responsible for phase transition of a system. As explained
above the macro quantity

(
X̄ (T − 1)

)
k
satisfies a recursive equation:

(
X̄ (T )

)
k
=

(
∂

∂Jk

(∫
exp

(
−S

({
Ψ(k)

(
X̂k

)}
k=1...M

)
+
∑

k

Jk

∫
Ψ(k)†

(
X̂k

)
X̂kΨ

(k)
(
X̂k

)
dX̂k

)
(175)

×D
{
Ψ(k)

(
X̂k

)}
k=1...M

))

Jk=0

11.1 From micro to macro relations

One can wonder if some micro relations between some quantities are stable when switching to the macro
scale. Assume some aggregated quantity during the time of interaction process:

Z̄ =

∫ s

0

∑

i

h (xi (t)) dt

Then similarly to (175):

(
Z̄
)
k
=

(
∂

∂Jk

(∫
exp

(
−S

({
Ψ(k)

(
X̂k

)}
k=1...M

)
+
∑

k

Jk

∫
Ψ(k)†

(
X̂k

)
h
(
X̂k

)
Ψ(k)

(
X̂k

)
dX̂k

)
(176)

×D
{
Ψ(k)

(
X̂k

)}
k=1...M

))

Jk=0

A consequence of (176) is that if h
(
X̂k

)
is linear, h

(
X̂k

)
= γX̂k, then this relation remains valid after

agregation
(
Z̄
)
k
= h

(
X̄k

)
. However for a more general relation one has rather, afer computing the derivative

in (176):

(
Z̄
)
k
=

(∫ (∫
Ψ(k)†

(
X̂k

)
h
(
X̂k

)
Ψ(k)

(
X̂k

)
dX̂k

)
exp

(
−S

({
Ψ(k)

(
X̂k

)}
k=1...M

))
D
{
Ψ(k)

(
X̂k

)}
k=1...M

)

Using the definition of the interaction Green function

G (x, y) =

(∫
Ψ(k)† (x)Ψ(k) (y) exp

(
−S

({
Ψ(k)

(
X̂k

)}
k=1...M

))
D
{
Ψ(k)

(
X̂k

)}
k=1...M

)
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leads to: (
Z̄
)
k
=

∫
h (x)G (x, x) dx

and specializing to h (x) = x:
(
X̄
)
k
=

∫
xG (x, x) dx

and the relation (
Z̄
)
k
= h

((
X̄
)
k

)

is not valid. Only when translation invariance is present in the model, that is G (x, y) = G (y − x) and thus
G (x, x) = G (0, 0), then some simple macro relations can be found (normalizing G (0, 0) to 1):

(
Z̄
)
k
=

∫
h (x) dx

(
X̄
)
k
=

∫
xdx

Assume the lower bound is 0 in both integrals. In the expression for
(
Z̄
)
k
let change the variable u = x2

2 to
get:

(
Z̄
)
k
=

∫ √
2(X̄)

k

h (x) dx

However, in the models at stake in this work, involving effective utility of harmonic oscillators plus interaction
terms, the translation invariance is not preserved, and no simple macro relation can be found.

11.2 Effect of phase transition on aggregated quantities

Starting with:

(
X̄ (T )

)
k
=

(
∂

∂Jk

(∫
exp

(
−S

({
Ψ(k)

(
X̂k

)}
k=1...M

)
+
∑

k

Jk

∫
Ψ(k)†

(
X̂k

)
X̂kΨ

(k)
(
X̂k

)
dX̂k

)
D
{
Ψ(k)

(
X̂k

)}
k=1...M

))

(177)

Assume a non zero vacuum expectation value for the Ψ(k)
(
X̂k

)
, denoted Ψ

(k)
0

(
X̂k

)
and expand, as before:

S
({
Ψ(k)

(
X̂k

)}
k=1...M

)
+
∑

k

Jk

∫
Ψ(k)†

(
X̂k

)
X̂kΨ

(k)
(
X̂k

)
dX̂k (178)

= S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)
+
∑

k

Jk

∫
Ψ
(k)†
0

(
X̂k

)
X̂kΨ

(k)
0

(
X̂k

)
dX̂k

+
∑

k1,k2

∫ (
δΨ(k2)

)† (
X̂k2

) δ2S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δΨ
(k1)
0

(
X̂k1

)
δ
(
Ψ
(k2)
0

)† (
X̂k2

)δΨ(k1)
(
X̂k1

)
dX̂k1dX̂k2

+
∑

k

Jk

∫
δΨ(k)†

(
X̂k

)
X̂kδΨ

(k)
(
X̂k

)
dX̂k

+higher order terms in δΨ(k)
(
X̂k

)

where
{
Ψ
(k)
0

(
X̂k

)}
k=1...M

depends implicitely on the Jk through the first order condition defining them:

δS
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δ
(
Ψ
(k)
0

)† (
X̂k

) + JkX̂kΨ
(k)
0

(
X̂k

)
= 0 (179)
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The first order condition (179) allows to compute the J dependency of the two first terms in the right hand
side of (178):

∂

∂Jk

(
S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)
+
∑

k

Jk

∫
Ψ
(k)†
0

(
X̂k

)
X̂kΨ

(k)
0

(
X̂k

)
dX̂k

)

=



δS
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δ
(
Ψ
(k)
0

)† (
X̂k

) + JkX̂kΨ
(k)
0

(
X̂k

)


∂Ψ

(k)
0

(
X̂k

)

∂Jk

+

∫
Ψ
(k)†
0

(
X̂k

)
X̂kΨ

(k)
0

(
X̂k

)
dX̂k

=

∫
Ψ
(k)†
0

(
X̂k

)
X̂kΨ

(k)
0

(
X̂k

)
dX̂k

and (175) becomes at the second order approximation:

(
X̄ (T )

)
k

(180)

=

∫
Ψ
(k)†
0

(
X̂k

)
X̂kΨ

(k)
0

(
X̂k

)
dX̂k

+

〈∫
δΨ(k)†

(
X̂k

)
X̂kδΨ

(k)
(
X̂k

)
dX̂k

〉
{
Ψ
(k)
0 (X̂k)

}

k=1...M

+

〈∫ (
δΨ(k2)

)† (
X̂k2

)



∂

∂Jk




δ2S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δΨ
(k1)
0

(
X̂k1

)
δ
(
Ψ
(k2)
0

)† (
X̂k2

)







Jk=0

δΨ(k1)
(
X̂k1

)
dX̂k1dX̂k2

〉

{
Ψ
(k)
0 (X̂k)

}

k=1...M

where we define for any field dependent quantity A
({
δΨ(k)

(
X̂k

)}
k=1...M

)
:

〈
A
({
δΨ(k)

(
X̂k

)}
k=1...M

)〉
{
Ψ
(k)
0 (X̂k)

}

k=1...M

=

∫
A
({
δΨ(k)

(
X̂k

)}
k=1...M

)

× exp


−

∑

k1,k2

∫ (
δΨ(k2)

)† (
X̂k2

) δ2S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δΨ
(k1)
0

(
X̂k1

)
δ
(
Ψ
(k2)
0

)† (
X̂k2

)δΨ(k1)
(
X̂k1

)
dX̂k1dX̂k2


D

{
Ψ(k)

(
X̂k

)}
k=1...M

The quantity 


∂

∂Jk




δ2S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δΨ
(k1)
0

(
X̂k1

)
δ
(
Ψ
(k2)
0

)† (
X̂k2

)







Jk=0

(181)

is found by using again the first order condition (179):

δS
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δ
(
Ψ
(k)
0

)† (
X̂k

) + JkX̂kΨ
(k)
0

(
X̂k

)
= 0 (182)

and differentiating by Jk then letting Jk = 0:

δ2S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δ
(
Ψ
(k)
0

)† (
X̂k

)
δ
(
Ψ
(k)
0

)(
X̂k

)



∂Ψ

(k)
0

(
X̂k

)

∂Jk



Jk=0

+ X̂kΨ
(k)
0

(
X̂k

)
= 0
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which yields:



∂Ψ

(k)
0

(
X̂k

)

∂Jk



Jk=0

= −




δ2S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δ
(
Ψ
(k)
0

)† (
X̂k

)
δ
(
Ψ
(k)
0

)(
X̂k

)




−1

X̂kΨ
(k)
0

(
X̂k

)
(183)

(181) can then be computed as:




∂

∂Jk




δ2S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δΨ
(k1)
0

(
X̂k1

)
δ
(
Ψ
(k2)
0

)† (
X̂k2

)







Jk=0

=




δ3S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δΨ
(k0)
0

(
X̂k0

)
δΨ

(k1)
0

(
X̂k1

)
δ
(
Ψ
(k2)
0

)† (
X̂k2

)






∂Ψ

(k0)
0

(
X̂k0

)

∂Jk



Jk=0

= −




δ3S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δΨ
(k0)
0

(
X̂k0

)
δΨ

(k1)
0

(
X̂k1

)
δ
(
Ψ
(k2)
0

)† (
X̂k2

)







δ2S
({
Ψ
(k)
0

(
X̂k

)}
k=1...M

)

δ
(
Ψ
(k0)
0

)† (
X̂k0

)
δ
(
Ψ
(k0)
0

)(
X̂k0

)




−1

X̂k0Ψ
(k0)
0

(
X̂k0

)

where (183) has been used.

The first term in (180) is the macro quantity
(
X̄ (T )

)
k
evaluated in the phase defined by the state Ψ

(k0)
0 .

In other words, the aggregated value
(
X̄ (T )

)
k
depends on the phase of the environment. The two other

contributions represent additive contributions due to the fluctuations of the environment, that themselves
depend on the phase of the system.

12 Conclusion

This work has investigated the dynamical patterns of a system with N heterogenous economic agents. For
a small number of agents, relaxing the optimizing behavior for a probabilist description centered around the
optimal path allows to deal with some otherwise untractable systems. The classical optimization solution can
be retrieved, in some cases, as the average dynamics of our formalism. Moreover, this probabilitic treatment
can conveniently describe the fluctuation patterns of agents’ behaviors. The transition functions of the
system are computed by path integrals. They describe the system as a random process, whose fluctuations
are deviations from the classical path. For large N , collective behaviors are better studied by switching
to a field formalism, as usually done in statistical physics. Techniques of perturbation expansion, non
trivial vacuua and phase transitions yield some insights about the relevant quantities of the system. Some
aggregate or effective structures absent in the initial micro description, may appear, and become relevant at
the collective level. A phenomenon of emergence is thus possible.

Moreover, our formalism allows to interpret the influence of the dynamics of the system as a whole at the
individual level. This approach presents some circular features. On the one hand, while resulting from the
individual relations, the macro scale cannot be reduced to a sum of individual systems. On the other hand,
individual behaviors are shaped by the environment.

Our work ends with a short inspection of the aggregation issue in our context. We show that some
agregated quantities can be retrieved from the field formalism. We introduce a macro time scale that should
allow to derive an approximate dynamics for the macro quantities, based on the field formalism. This
extension is left for future researches.
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Appendix 1

We show that, as claimed in the first section, that our probabilistic definition of the agents behavior encom-
passes the usual optimization behavior in the limit of no uncertainty. For σ2j → 0 and then σ2i → 0, we aim
at showing that (7)

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

σ2i

)

× exp


∑

k

∑

j 6=i

Û tieff (Xj (t+ k))

σ2j


 d {Xj (t+ k)}j 6=i d {Xi (t+ k)}

is peaked around the classical optimization solution, where:

U
(i)
t =

∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)

is the intertemporal utility of agent j and

Û tieff (Xj (t) , (Xk (t− 1))) = −
1

2
(Xj (t)−Xj [(Xk (t− 1))])tAjj (Xj (t)−Xj [(Xk (t− 1))])

with Xj [(Xk (t− 1))] is the solution for Xj of

0 =

(
∂

∂Xj (t)
U tieff (Xj (t) , (Xk (t− 1)))

)

Xj(t)=Xj [(Xk(t−1))]

for a given (Xk (t− 1)). The function U tieff (Xj (t) , (Xi (t− 1))) has been defined in the first section as the
i-th truncated effective utility for agent j.

To do so, recall first that in the classical set up, agent i optimizes:

U
(i)
t = Ei

∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)

knowing the impact of Xi (t) on (Xj (t+ n− 1)). Then, agent i optimizes U (i)t , taking into account that
the agents j about which agent i has the knowledge of their behavior, act by optimizing a certain utility

function U
(j)
eff (Xj (t) , (Xi (t− 1))). Thus, the (Xj (t+ n− 1))j 6=i are not independent variables, but depends

on Xi (t− 1) through agent j first order condition:
∂

∂Xj (t)
U
(j)
eff (Xj (t) , (Xi (t− 1))) = 0 (184)

The classical solution of optimization problem for agent i:

∂

∂Xi (t)
U
(i)
t =

∂

∂Xi (t)
Ei
∑

n>0

βnu
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)
= 0

becomes, using (184):

0 =
∂

∂Xi (t)
u
(i)
t

(
Xi (t) , (Xj (t− 1))j 6=i

)
(185)

+Ei
∑

n>2

∑

j

∂Xj (t+ n− 1)
∂Xi (t)

βn
∂

∂Xj (t+ n− 1)
u
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)

and the Xj (t+ n− 1) satisfy:

0 = Ei
∂

∂Xj (t)
U
(j)
eff (Xj (t) , (Xi (t− 1))) (186)

=
∂

∂Xj (t)
U tieff (Xj (t) , (Xi (t− 1)))
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One can find
(

∂Xj(t)
∂Xk(t−1)

)
from this relation by differentiation:

0 =
∑

k

(
∂Xj (t)

∂Xk (t− 1)

)
∂

∂Xk (t− 1)
∂

∂Xj (t)

(
U
(j)
eff (Xj (t) , (Xi (t− 1)))

)

+
∂

∂Xj (t)

∂

∂Xj (t)

(
U
(j)
eff (Xj (t) , (Xi (t− 1)))

)

which yields:

(
∂Xj (t)

∂Xk (t− 1)

)
= −

∑

k

(
∂2

∂Xk (t− 1) ∂Xj (t)

(
U
(j)
eff (Xj (t) , (Xi (t− 1)))

))−1

× ∂2

∂Xj (t) ∂Xj (t)

(
U
(j)
eff (Xj (t) , (Xi (t− 1)))

)

and
∂Xj(t+n)
∂Xi(t)

is found recursively:

∂Xj (t+ n)

∂Xi (t)
=
∑

l 6=i

∂Xj (t+ n)

∂Xl (t+ n− 1)
∂Xl (t+ n− 1)

∂Xi (t)

the sum is for l 6= i since the Xi (t), Xi (t
′) are independent variables on which agent i optimizes.

Now, we show that we recover these optimization equations when the uncertainty in our description goes
to 0. In the weight:

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

σ2i

)
exp (187)

× exp


∑

k

∑

j 6=i

Û tieff (Xj (t+ k))

σ2j


 d {Xj (t+ k)}j 6=i d {Xi (t+ k)}

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

σ2i

)
× exp


∑

k

∑

j 6=i

Û tieff (Xj (t+ k))

σ2j


 d {Xj (t+ k)}j 6=i d {Xi (t+ k)}

Given that Û tieff (Xj (t+ k)) are positive, for σ
2
j → 0, the path localizes around the maximum of Û tieff ,

solution of:
Û tieff (Xj (t+ k)) = 0

so that Xj (t+ k) is set to Xj [(Xk (t+ k − 1))] which is solution of the saddle point equation for U tieff .

0 =

(
∂

∂Xj (t+ k)
U tieff (Xj (t+ k) , (Xk (t+ k − 1)))

)

Xj(t)=Xj [(Xk(t−1))]

That is the value of Xj (t) that are solutions of:

∂

∂Xj (s)
U tieff (Xj (s) , (Xi (s− 1))) = 0 for s > t

Solving for the Xj (s), j 6= i allows to express recursively all the Xj (s), j 6= i as functions of Xi (t), Xi (s),
s > t and Xj (t− 1), j 6= i, then, the integrations reduce to a sequence of integrals on the Xi (s), s > t.
Ultimately, for σ2i → 0, the path localizes around the solutions of:

0 =
∂

∂Xi (t+ k)
U
(i)
t for k > 0
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where the Xj (s), j 6= i for s > t have been replaced as functions of Xi (t), Xi (s), s > t and Xj (t− 1), j 6= i,
which yields for k > 0:

0 =
∂

∂Xi (t+ k)
u
(i)
t

(
Xi (t+ k) , (Xj (t− 1))j 6=i

)

+
∑

n>k+2

∑

j

∂Xj (t+ n− 1)
∂Xi (t+ k)

βn
∂

∂Xj (t+ n− 1)
u
(i)
t+n

(
Xi (t+ n) , (Xj (t+ n− 1))j 6=i

)

This is the sequence of optimization equations, as planned by agent i at time t with Xj (t+ k) satifying

0 =
∂

∂Xj (t+ k)
U tieff (Xj (t+ k) , (Xk (t+ k − 1))) for k > 0

as needed. As a consequence, the result is proved.
Note that for quadratic utilities:

(
∂Xj (t)

∂Xk (t− 1)

)
= (Ajj)

−1
Ajk

and

Ueff (Xj (t) , (Xi (t− 1))) = −1
2

(
Xj (t) + (Ajj)

−1
Ajk (Xk (t− 1))

)t
Ajj

(
Xj (t) + (Ajj)

−1
Ajk (Xk (t− 1))

)

= Ûeff (Xj (t) , (Xi (t− 1)))

and the result rewrites as:

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

N1

)

× exp


∑

k

∑

j 6=i

U tieff (Xj (t+ k))

Nj


 d {Xj (t+ k)}j 6=i d {Xi (t+ k)}

which peaks on the optimization solution for σ2j → 0 and then σ2i → 0, as claimed in section 1.
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Appendix 2

As recorded in the text, we rewrite the utilities in terms of the variables Yi (t)

U
(i)
t =

∑

t

βt


∑

j<i

(
Xi (t)A

(i)
ii Xi (t) +

((
Xj (t− 1)− X̄(i)

j

)
A
(i)
jj

(
Xj (t− 1)− X̄(i)

j

))

+2Xi (t)A
(i)
ij (Xj (t− 1))− X̄(i)

j

)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))




=
∑

t

Yi (t)

(
A
(i)
ii 0
0 0

)
Yi (t) + Yi (t− 1)

(
0 0

0 βA
(i)
{jj}

)
Yi (t− 1)

+Yi (t)

(
0 β

1
2A

(i)
ij

β
1
2A

(i)
ji 0

)
Yi (t− 1) +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

expected utilty at t.We will also add possibility for an inertia term:

−Xi (t) ε
(i)
ii Xi (t− 1)

Each agent j behaves at time t with a so called effective utility Ueff (Xj (t)) ≡ Ueff (Xj) whose recursive
form for the non normalized Ueff (Xj) is assumed to be:

Ueff (Yj (s)) = Y
(e)
j (s)

( (
A
(j)
jj

)
eff

0

0 0

)
Y
(e)
j (s)− 2Y (e)j (s)

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

0 0

)
Y
(e)
j (s− 1)

+
∑

i>k>j

2Xj (t)A
(j)
jk (Xk (t− 1))

where Y
(e)
j has been defined in (25):

Y
(e)
j (t+ k) =

(
β
k
2

(
Xk (t+ k)− X̄(j)e

k

)
k≤j

)

The normalization of exp (Ueff (Yj (t))) is obtained by letting (we omit temporarily the upperscript (e)):

C

∫
exp (Ueff (Yj (t))) (d (Yj (t))) = 1

writing:

Ueff (Yj (t)) =


Y (e)j (t) +

(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)





t (
A
(j)
jj

)
eff

×


Y (e)j (t) +

(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)






−


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)



t

×
(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)



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yields the normalization factor (introducing again the upperscript (e)):

1

N = exp


 ∑

i>k>j

A
(j)
jk Xk (t− 1) +

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Y
(e)
j (t− 1)



t

×
(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1) +

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Y
(e)
j (t− 1)




and the normalizes effective utility becomes:

U
(n)
eff (Yj (t)) =


Y (e)j (t) +

(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)





t (
A
(j)
jj

)
eff

×


Y (e)j (t) +

(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)






Given the definition of Y
(e)
j (s) one can concatenate all the vectors Y

(e)
j (s) for i < j to form a vector(

Y
(e)
j (s)

)
j<i

and given the definition of Yi (s) one can write:

(
Y
(e)
j (s)

)
j<i

= (Yi (s))j<i + β
s−t
(
X̄
(i)
j − X̄(j)e

j

)
j<i

where the subscript j < i means that we only concatenate the component vectors of Yi (s) for j < i. This is
Yi (s) without its component along i. Concatenate this vector with (Yi (s))i, that is adding the component
along i one obtains a composed vector:

Ŷi (s) =

(
(Yi (s))i ,

(
Y
(e)
j (s)

)
j<i

)

We will also need to define:

Ỹi (s) =

(
(Yi (s))i , (Yi (s))j<i + β

s−t
(
X̄
(i)
j

)
j<i

)

The normalization factor has to be added to the global weight (i.e. the normalized effective utility) to be
taken into account for agent i is then (in the sequel, the sum over j < i is always understood):

Ueff (Yi (t)) =
∑

t>0

βt


∑

j<i

(
Xi (t)A

(i)
ii Xi (t)−Xi (t) ε

(i)
ii Xi (t− 1) +Xj (t− 1)A(i)jj Xj (t− 1)

+2Xi (t)A
(i)
ij (Xj (t− 1))

)
+ U

(n)
eff (Yj)




+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

=
∑

t>0

Yi (t)

(
A
(i)
ii 0

0 βA
(i)
jj

)
Yi (t) + β

1
2Yi (t)

(
−ε(i)ii 2A

(i)
ij

0 0

)
Yi (t− 1)

+
∑

t>0

Y
(e)
j (t)

(
0 0

0
(
A
(j)
jj

)
eff

)
Y
(e)
j (t) + β

1
2Y

(e)
j (t)



0 0

0

{(
ε
(j)
{kj}k6j

)
eff

}

Y

(e)
j (t− 1)

+β
1
2
i Ỹi (t)

(
0 0

2A
(j)
ji

{
2A

(j)
{kj}i>k>j

}
)
Ỹi (t− 1) +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+Ỹi (t)

(
B11 B′12
(B′12)

t
B′22

)
Ỹi (t) + Y

(e)
j (t)

(
0 0
0 B”22

)
Y
(e)
j (t) + Ỹi (t)


 0 B

(3)
12(

B
(3)
12

)t
B
(3)
22


Y

(e)
j (t)
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where, by convention Y
(e)
j (t) has been extended with a nul component in the coordinate i, that is: Y

(e)
j (t)→(

0

Y
(e)
j (t)

)
. Then, Ueff (Yi (t)) can be written:

Ueff (Yi (t)) =
∑

t>0

Yi (t)

(
A
(i)
ii 0

0 βA
(i)
jj

)
Yi (t) +

∑

t>0

Y
(e)
j (t)

(
0 0

0
(
A
(j)
jj

)
eff

+B”22

)
Y
(e)
j (t) (188)

+β
1
2
i Ỹi (t)

(
B11 B′12
(B′12)

t
B′22

)
Ỹi (t) + Ỹi (t)


 0 B

(3)
12(

B
(3)
12

)t
B
(3)
22


Y

(e)
j (t)

+β
1
2Yi (t)

(
−ε(i)ii 2A

(i)
ij

0 0

)
Yi (t− 1) + β

1
2
i Ỹi (t)

(
0 0

2A
(j)
ji

{
2A

(j)
{kj}i>k>j

}
)
Ỹi (t− 1)

+β
1
2Y

(e)
j (t)



0 0

0

{(
ε
(j)
{kj}k6j

)
eff

}

Y

(e)
j (t− 1) +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

We aim at writing Ueff (Yi (t)) under the form:

Ueff (Yi (t)) =
∑

t>0

Y
(e)
i (t)




A
(i)
ii +B11 B12

Bt12

{(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22

}

Y

(e)
i (t) (189)

+2β
1
2Y

(e)
i (t)



−ε(i)ii A

(i)
ij

A
(j)
ji

{(
ε
(j)
{kj}k6j

)
eff

, A
(j)
{kj}i>k>j

}

Y

(e)
i (t− 1)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

where:

B11 = βA
(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
ji (190)

B12 =

{
βA

(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
jk , β

(
A
(j)
ij

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))}

B22 =





βA
(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk ,

β
( (

ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)t (
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)

β

(
A
(j)
kj

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))S





B′12 = βA
(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
jk (191)

B′22 = βA
(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk

B”22 = β
( (

ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)t (
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)

B
(3)
12 = β

(
A
(j)
ij

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))

B
(3)
22 = β

(
A
(j)
kj

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))S
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with MS = 1
2 (M +M t) for any matrix M , and where we have defined:

Y
(e)
i (s) = β

s−t
2

(
Xj (s)−

(
X̄
(i)e
j

))
j6i

For a vector
(
X̄
(i)e
j

)
to be determined. Given the form of (189), is the equilibrium value of (188) when

Xj (t− 1) = 0 for j > i. Thus, X̄
(i)e
j is found as the solution of the first order condition ∂

∂Yi(t)
Ueff (Yi (t)) = 0

when Xj (t− 1) = 0 for j > i. This equation yields:

(
A
(i)
ii 0

0 βA
(i)
jj

)(
X̄
(i)e
j − X̄(i)

j

)
+

(
0 0

0
(
A
(j)
jj

)
eff

+B”22

)(
X̄
(i)e
j −

(
0(

X̄
(j)e
j

)
))

+β
1
2
i

(
B11 B′12
(B′12)

t
B′22

)
X̄
(i)e
j +

1

2


 0 B

(3)
12(

B
(3)
12

)t
B
(3)
22



S

X̄
(i)e
j

+
1

2


 0 B

(3)
12(

B
(3)
12

)t
B
(3)
22



S (

X̄
(i)e
j −

(
0(

X̄
(j)e
j

)
))

+β
1
2

(
−ε(i)ii 2A

(i)
ij

0 0

)S (
X̄
(i)e
j − X̄(i)

j

)
+ β

1
2
i

(
0 0

2A
(j)
ji

{
2A

(j)
{kj}i>k>j

}
)S

X̄
(i)e
j

+β
1
2



0 0

0

{(
ε
(j)
{kj}k6j

)
eff

}


S (

X̄
(i)e
j −

(
0(

X̄
(j)e
j

)
))

= 0

The constant terms in this equation are

(
A
(i)
ii 0

0 βA
(i)
jj

)
X̄
(i)
j +

(
0 0

0
(
A
(j)
jj

)
eff

+B”22

)(
0(

X̄
(j)e
j

)
)

+
1

2


 0 B

(3)
12(

B
(3)
12

)t
B
(3)
22



S (

0(
X̄
(j)e
j

)
)

+β
1
2

(
−ε(i)ii 2A

(i)
ij

0 0

)S
X̄
(i)
j + β

1
2



0 0

0

{(
ε
(j)
{kj}k6j

)
eff

}


S (

0(
X̄
(j)e
j

)
)

and the equation for X̄
(i)e
j becomes:






A
(i)
ii +B11 B12

Bt12

{(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22

}



+ β
1
2




−2ε(i)ii A
(i)
ij +A

(j)
ij

A
(j)
ji +A

(i)
ji 2

({(
ε
(j)
{kj}k6j

)
eff

, A
(j)
{kj}i>k>j

})S






(
X̄
(i)e
j

)

=

((
A
(i)
ii 0

0 βA
(i)
jj

)
+ β

1
2

(
−ε(i)ii A

(i)
ij

A
(i)
ji 0

))(
X̄
(i)
j

)

+



(
0 0

0
(
A
(j)
jj

)
eff

+B”22

)
+
1

2


 0 B

(3)
12(

B
(3)
12

)t
B
(3)
22


+ β 1

2



0 0

0

({(
ε
(j)
{kj}k6j

)
eff

})S




(

0(
X̄
(j)e
j

)
)
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with solution:

X̄
(i)e
j =




A
(i)
ii +B11 −

√
βε
(i)
ii

{
B12, 2

√
β
(
A
(i)
ij

)S}

{
Bt12, 2

√
β
(
A
(j)
ji

)S}




(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22,

(
2
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

)S








−1

(192)

×








A
(i)
ii −

√
β
ε
(i)
ii

2

{
B
(3)
12

2 ,
√
βA

(i)
ij

}

(
B
(3)
12

)t

2 βA
(i)
jj +

B
(3)
22

2



(
X̄
(i)
j

)

+




0
B
(3)
12

2(
B
(3)
12

)t

2

{(
A
(j)
jj

)
eff

, B”22,
B
(3)
22

2 ,
√
β

(
ε
(j)

{kj}k6j

2

)

eff

}


(

0(
X̄
(j)e
j

)
)


Including the terms Xi (t)A
(i)
ii Xi (t), Xi (t)A

(i)
ij (Xj (t− 1)) and Ueff (Yj) at t. Using Yj (t− 1) ↪→

Yi (t− 1), by extension of notation
(
Ŷj

)
eff

↪→
(
0, ...,

(
Ŷj

)
eff

, ...0

)
in the sum

∑

t>0

βt


∑

j<i

(
Xi (t)A

(i)
ii Xi (t)−Xi (t) ε

(i)
ii Xi (t− 1) +Xj (t− 1)A(i)jj Xj (t− 1) + 2Xi (t)A

(i)
ij (Xj (t− 1))

)
+ Ueff (Yj)




+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

=
∑

t>0

Yi (t)




A
(i)
ii +B11 B12

Bt12

{(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22

}

Yi (t) (193)

+β
1
2Yi (t)



−ε(i)ii 2A

(i)
ij

2A
(j)
ji

{
−
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

}

Yi (t− 1)

−
∑

t>0

2Yi (t− 1) .
(
Ŷj

)
eff

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+
∑

t>0


 ∑

i>k>j

A
(j)
jk Xk (t)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{kj}k<j

)
eff

)
Yj (t− 1)



t

×
(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{kj}k<j

)
eff

)
Yj (t− 1)




The second lower part of Yi (t) includes all substructures of Xi (t). Then A
(i)
{jj} (written latter as A

(i)
jj for

the sake of implicity) is a Block matrix including all interaction between j and k for j and k < i.

(
A
(i)
{jj} +

(
A
(j)
jj

)
eff

,
(
A
(j)
{kk}k<j

)
eff

)
matrix obtained by letting A

(i)
{jj} +

(
A
(j)
jj

)
eff

in place (j, j) and
(
A
(j)
{kk}k<j

)
eff

in place (k, k). The bracket denotes this operation for the all collection of j substrctrs. Same

operation for

{((
A
(j)
{jk}k<j , A

(j)
{kj}k<j

)
eff

, A
(j)
{kj}i>k>j

)}
.
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Define also

A
(i)
ji =

(
A
(i)
ij

)t

ε
(j)
{jk}j>k =

(
ε
(j)
{kj}j>k

)t

and rewrite:



−ε(i)ii 2A

(i)
ij

2A
(j)
ji

{
−
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

}

 =




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j








+




0 A
(i)
ij −A

(j)
ij

−
(
A
(i)
ji −A

(j)
ji

)




−
(
ε
(j)

{kj}k6j

)

eff

2 ,

(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j ,−A

(j)
{jk}i>k>j








The two first terms in (193) can thus be rewritten as:

Yi (t)




A
(i)
ii +B11 B12

Bt12

{(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22

}

Yi (t)

+
√
βYi (t)



−ε(i)ii 2A

(i)
ij

2A
(j)
ji

{
−
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

}

Yi (t− 1)

= Yi (t)




A
(i)
ii +B11 B12

Bt12

{(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22

}

Yi (t)

−
√
β

2
(Yi (t)− Yi (t− 1))




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j






 (Yi (t)− Yi (t− 1))

+

√
β

2
Yi (t)




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j






Yi (t)

+

√
β

2
Yi (t− 1)




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j






Yi (t− 1)

+
√
β (Yi (t)− Yi (t− 1))




0 A
(i)
ij −A

(j)
ij

−
(
A
(i)
ji −A

(j)
ji

)




−
(
ε
(j)

{kj}k6j

)

eff

2 ,

(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j ,−A

(j)
{jk}i>k>j






Yi (t)

As a consequence, discarding the terms quadratic or linear in Yi (t− 1) since they are absorbed in the
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normalization at time t, the sum in (193) starting from t+ 1 is then:

∑

s>t

Yi (s)




A
(i)
ii +B11 −

√
βε
(i)
ii

{√
β
(
A
(i)
ij +A

(j)
ij

)
, B12

}

{√
β
(
A
(i)
ji +A

(j)
ji

)
, Bt12

}




βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

√
β





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2

, A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j











Yi (s)

−
√
β

2
(Yi (s)− Yi (s− 1))




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j






 (Yi (s)− Yi (s− 1))

+
∑

s>t

√
β (Yi (s)− Yi (s− 1))




0 A
(i)
ij −A

(j)
ij

−
(
A
(i)
ji −A

(j)
ji

)




−
(
ε
(j)

{kj}k6j

)

eff

2 ,

(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j ,−A

(j)
{jk}i>k>j






Yi (s− 1)

−2
√
βYi (s) .

(
Ŷi +

(
Ŷj

)
eff

)

+

√
β

2
Yi (t)




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j






Yi (t)

=
∑

s>t

−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) + Yi (s)BYi (s) + (Yi (s)− Yi (s− 1))CYi (s− 1)

+
1

2
Yi (t)AYi (t)

∼
∑

s>t

−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) +

(
Yi (s)− Ŷ (1)i

)
B
(
Yi (s)− Ŷ (1)i

)

+(Yi (s)− Yi (s− 1))CYi (s− 1) + Yi (t)BYi (t)

+
1

2
Yi (t)AYi (t) (194)

A =
√
β




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j






 (195)

B =




A
(i)
ii +B11 −

√
βε
(i)
ii

{√
β
(
A
(i)
ij +A

(j)
ij

)
, B12

}

{√
β
(
A
(i)
ji +A

(j)
ji

)
, Bt12

}




βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

√
β





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2

, A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j












C =
√
β




0 A
(i)
ij −A

(j)
ij

−
(
A
(i)
ji −A

(j)
ji

)




(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

−A(j){kj}i>k>j , A
(j)
{jk}i>k>j








The sum includes the potential at time t but not the inertial term.
The effective action for Yi (t) is computed in the following way: it is know ([?]) that for a quadratic

weight as the one obtained in (194), the integral over future variables Yi (s) localizes around the classical
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solution of motion starting at Yi (t) and such that Yi (s)→ 0 for s→∞. That is, to compute the integrals
of (194) on Yi (s) it is enough to minimize (194) on the Yi (s), s > t with Yi (t) as initial condition and to
compute (194) for this solution.
The equation for the classical solution of (194):

∼
∑

s>t

−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) + Yi (s)BYi (s) + (Yi (s)− Yi (s− 1))CYi (s− 1)(196)

+Yi (t)BYi (t) +
1

2
Yi (t)AYi (t)

is of the usual Euler Lagrange type:

(
Yi (s)− Ŷ (1)i

)
A (Yi (s+ 1)− 2Yi (s) + Yi (s− 1))+2Yi (s)BYi (s)−

(
Yi (s)− Ŷ (1)i

)
C (Yi (s+ 1)− Yi (s− 1)) = 0

(197)
and it’s solution is of the kind:

Yi (s) = Dt−sYi (t) (198)

We show in Appendix 1.b. that the matrix D satifies:

(A− C)D2 + 2 (B −A)D + (A+ C) = 0 (199)

We also give a recursive equation for D in this appendix.

We now compute each term of the action

∑

s>t

−1
2
(Yi (s+ 1)− Yi (s))A (Yi (s+ 1)− Yi (s)) + Yi (s)BYi (s) + Yi (s+ 1)CYi (s) (200)

along this classical solution to find our effective utility. We to first rewrite the first term in (200) as a discrete
version of the integration by part:

∑

s>t

−1
2
(Yi (s+ 1)− Yi (s))A (Yi (s+ 1)− Yi (s))

=
∑

s>t

−1
2
(Yi (s+ 1)− Yi (s))A (Yi (s+ 1)− Yi (s))

=
1

2
Yi (t)A (Yi (t+ 1)− Yi (t)) +

1

2

∑

s>t

Yi (s)A (Yi (s+ 1)− 2Yi (s) + Yi (s− 1))

We gather all these contributions with the second term in the classical action (200) and use (197) as well
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as (198) to find:.

∑

s>t

−1
2
(Yi (s+ 1)− Yi (s))A (Yi (s+ 1)− Yi (s)) + Yi (s)BYi (s) + Yi (s+ 1)CYi (s) +

1

2
Yi (t)AYi (t)

=
∑

s>t

1

2
Yi (s)A (Yi (s+ 1)− 2Yi (s) + Yi (s− 1)) + Yi (s)BYi (s) + Yi (s+ 1)CYi (s)

+
1

2
Yi (t)A (Yi (t+ 1)− Yi (t)) +

1

2
Yi (t)AYi (t)

=
∑

s>t

1

2
Yi (s)A (Yi (s+ 1)− 2Yi (s) + Yi (s− 1)) + Yi (s)BYi (s)−

1

2
Yi (s+ 1)CYi (s)

+
1

2
Yi (t)A (Yi (t+ 1)− Yi (t)) +

1

2
Yi (t+ 1)CYi (t) +

1

2
Yi (t)AYi (t)

∼ 1

2
Yi (t)A (Yi (t+ 1)− Yi (t)) +

1

2
Yi (t+ 1)CYi (t) +

1

2
Yi (t)AYi (t)

=
1

2
Yi (t)A (Yi (t+ 1)− Yi (t)) +

1

2
(Yi (t+ 1)− Yi (t))CYi (t) +

1

2
Yi (t)AYi (t)

=
1

2
Yi (t) ((A− C) (D − 1))Yi (t) +

1

2
Yi (t)AYi (t) (201)

To find the effective utility for agent i, that is Ueff (Yi (t)), we also include the time t contribution that was
first discarded in our computation and consider the intermediate effective utility:

U inteff (Yi (t)) =
1

2
Yi (t) ((A− C) (D − 1))Yi (t) +

1

2
Yi (t)AYi (t)

+Yi (t)


 A

(i)
ii 0

0 βA
(i)
jj +

(
A
(j)
jj

)
eff


Yi (t) +

√
βYi (t)



−ε(i)ii 2A

(i)
ij

2A
(j)
ji

{
−
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

}

Yi (t− 1)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

This is still not Ueff (Xi (t)) since it depends on the Xj (t) that should also be integrated out.
Before doing so, we can simplify U inteff (Yi (t)), by neglecting the contributions depending on t − 1 only

(we will use the notation ∼ each time we neglect such terms):

U inteff (Yi (t)) =
1

2
Yi (t) ((A− C) (D − 1))Yi (t) +

1

2
Yi (t)AYi (t) (202)

+Yi (t)


 A

(i)
ii 0

0 βA
(i)
jj +

(
A
(j)
jj

)
eff


Yi (t) +

√
βYi (t)



−ε(i)ii 2A

(i)
ij

2A
(j)
ji

{
−
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

}

Yi (t− 1)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

=
1

2
Yi (t) ((A− C) (D − 1) + 2B)Yi (t)−

1

2
Yi (t)AYi (t) + Yi (t) (A+ C)Yi (t− 1) +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))
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Since C is antisymetric, this is also equal to:

U inteff (Yi (t)) =
1

2
Yi (t) ((A− C) (D − 1) + 2B)Yi (t)−

1

2
Yi (t) (A− C)Yi (t) + Yi (t) (A+ C)Yi (t− 1) (203)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

=
1

2
Yi (t) ((A− C) (D − 2) + 2B)Yi (t) + Yi (t) (A+ C)Yi (t− 1)− Yi (t) Ŷi +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

=
1

2
Yi (t) ((A− C) (D − 1) + 2B)Yi (t)−

1

2
(Yi (t)− Yi (t− 1))A (Yi (t)− Yi (t− 1)) + Yi (t)CYi (t− 1)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

and then:

U inteff (Yi (t)) ∼ 1

2
Yi (t) ((A− C) (D − 2) + 2B)Yi (t) + Yi (t)AYi (t− 1) + Yi (t)CYi (t− 1) +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

∼ 1

2

(
Yi (t) + ((A− C) (D − 2) + 2B)−1 ((A+ C) (Yi (t− 1)))

)

× ((A− C) (D − 2) + 2B)
(
Yi (t) + ((A− C) (D − 2) + 2B)−1 ((A+ C) (Yi (t− 1)))

)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

Now, the Integration on Xj (t) for j < i yields:

Ueff (Xi (t)) =
1

2

(
Yi (t) + ((A− C) (D − 2) + 2B)−1 ((A+ C) (Yi (t− 1)))

)
i

(204)

× (Nii)
(
Yi (t) + ((A− C) (D − 2) + 2B)−1 ((A+ C) (Yi (t− 1)))

)
i

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

∼ −1
2
((Yi (t))iMii (Yi (t− 1))i + T )−

1

2

(
(Yi (t))Mij (Yi (t− 1))j + T

)

+
1

2
(Yi (t))i (Nii) (Yi (t))i +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

where the matrices used in the previous expression are given by:

Nii = ((A− C) (D − 2) + 2B)ii − ((A− C) (D − 2) + 2B)ij
(
((A− C) (D − 2) + 2B)jj

)−1 (
((A− C) (D − 2) + 2B)ji

)

Mii = (Nii)
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ii

Mij = (Nii)
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ij

and where the "T" means the transpose of the expression in the same parenthesis.
It can also be written in a form reminding the continuous time description:

Ueff (Xi (t)) = −1
2
Ẋi (t) M̂iiẊi (t)−

(
Xi (t)−

(
Ŷ
(1)
i

)
t

)
Mij

(
1√
β
Xj (t− 1)−

(
Ŷ
(1)
i

)
j

)
(205)

+
1

2

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)(
N̂ii

)(
Xi (t)−

(
Ŷ
(1)
i

)
i

)
+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))
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where we defined:
Ẋi (t) = (Xi (t)−Xi (t− 1))

and where the matrices used in the previous expression are given by:

Nii = ((A− C) (D − 2) + 2B)ii − ((A− C) (D − 2) + 2B)ij
(
((A− C) (D − 2) + 2B)jj

)−1 (
((A− C) (D − 2) + 2B)ji

)

M̂ii =
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ii
(Nii)

(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ii

Mij = (Nii)
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ij

N̂ii = Nii +Mii

Adding up all effctv weight for all structres leads to consider the term
∑

i

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

= 2
∑

i,j

Xi (t) ÂijXj (t− 1)

with Âij = A
(i)
ij if j < i, 0 otherwise.

By the same trick as before it leads in the continuum to the result:

∑

i,j

Xi (t)

(
Âij +

(
Âji

)t)
Xj (t− 1)

+
∑

i,j

Xi (t)

(
Âij −

(
Âji

)t)
Xj (t− 1)

= −1
2
(Xi (t)−Xi (t− 1))

(
Âij +

(
Âji

)t)
(Xj (t)−Xj (t− 1))

+
1

2
Xi (t)

(
Âij +

(
Âji

)t)
Xj (t) +

1

2
Xi (t− 1)

(
Âij +

(
Âji

)t)
Xj (t− 1)

−1
2

∑

i,j

Xi (t)

(
Âij −

(
Âji

)t)
(Xj (t)−Xj (t− 1))

Later in the sum on t, 1
2Xi (t)

(
Âij +

(
Âji

)t)
Xj (t) +

1
2Xi (t− 1)

(
Âij +

(
Âji

)t)
Xj (t− 1) will re-

placed by Xi (t)

(
Âij +

(
Âji

)t)
Xj (t) for an overall weight:

−1
2

∑

i,j

Ẋi (t)

(
Âij +

(
Âji

)t)
Ẋj (t)

+
∑

i,j

Xi (t)

(
Âij +

(
Âji

)t)
Xj (t)−

1

2

∑

i,j

Xi (t)

(
Âij −

(
Âji

)t)
Ẋj (t)

= −1
2

∑

i,j

Ẋi (t) Â
(s)
ij Ẋj (t) +

∑

i,j

Xi (t) Â
(s)
ij Xj (t)−

1

2

∑

i,j

Xi (t) Â
(a)
ij Ẋj (t)

The total effective action is then:

−1
2
Ẋi (t) M̂iiẊi (t)−

(
Xi (t)− Ŷ (1)i

)
Mij

(
Xj (t− 1)−

(
Ŷ
(1)
i

)
j

)
+
1

2

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)(
N̂ii

)(
Xi (t)−

(
Ŷ
(1)
i

)
i

)

−1
2

∑

i,j

Ẋi (t) Â
(s)
ij Ẋj (t) +

∑

i,j

Xi (t) Â
(s)
ij Xj (t)−

1

2

∑

i,j

Xi (t) Â
(a)
ij Ẋj (t)
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We want to rewrite the quadratic terms in a form that will be useful when looking at the continuous
approximatio. Introduce:

X (t) = (Xi (t)) and
(
Ŷ (1)

)
=
((
Ŷ (1)

)
i

)

and rewrite the various terms in the previous form:

−
(
Xi (t)− Ŷ (1)i

)
Mij

(
Xj (t− 1)−

(
Ŷ
(1)
i

)
j

)

∼ −Xi (t)Mij

(
Xj (t− 1)−

(
Ŷ
(1)
i

)
j

)

∼ − (Xi (t)−Xi (t− 1))Mij

(
Xj (t− 1)−

(
Ŷ
(1)
i

)
j

)

= − (Xi (t)−Xi (t− 1))Mij (Xj (t− 1))
+ (Xi (t)−Xi (t− 1))Mij

(
Ŷ
(1)
i

)
j

The second term is a derivative that will cancel when integrating on t. We are then led to:

∼ −1
2
Ẋ (t)MẊ (t) +

1

2

(
X (t)−

(
Ŷ (1)

))(
N̂
)(

X (t)−
(
Ŷ (1)

))
+X (t) Â(s)X (t)− Ẋ (t) M̃X (t)

where:

M̂ =
(
M̂ii + Â

(s)
ij

)
, N̂ =

(
N̂ii

)
, M̃ =

(
M̃ij −

1

2
Â
(s)
ij

)

Since the symetric part of M̃ cancels when integrating over t, M̃ can be considered as antisymetric, and M
and A symetric. We can write:

−1
2
Ẋ (t) M̂Ẋ (t) +

1

2

(
X (t)−

(
Ŷ (1)

))(
N̂
)(

X (t)−
(
Ŷ (1)

))
+X (t) Â(s)X (t)− Ẋ (t) M̃X (t)

= −1
2

(
Ẋ (t)− M̃ ′X (t)

)
M̂
(
Ẋ (t)− M̃ ′X (t)

)
+
1

2

(
X (t)−

(
Ŷ (1)

))(
N̂
)(

X (t)−
(
Ŷ (1)

))
+X (t)

(
N̂ ′
)
X (t)

where:

N̂ ′ = Â(s) + M̃M̂−1M̃

M̃ ′ = M̂−1M̃
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Appendix 3

The quadratric action has to a classical solution whose Equation is:

A (Yi (s+ 1)− 2Yi (s) + Yi (s− 1)) + 2B
(
Yi (s)− Ŷ (1)i

)
− C (Yi (s+ 1)− Yi (s− 1)) = 0

The solution of this second order difference equation with initial condition Yi (t) is:

(
Yi (s)− Ŷ (1)i

)
= Dt−s

(
Yi (t)− Ŷ (1)i

)
(206)

where the matrix D satisfies:

A
(
D2 − 2D + 1

)
+ 2BD − C

(
D2 − 1

)
= 0 (207)

(A− C) (D − 1)2 + 2 (B − C) (D − 1) + 2B = 0

(A− C)D2 + 2 (B −A)D + (A+ C) = 0 (208)

Writing B = A+ δ one obtains:
(A− C)D2 + 2δD + (A+ C) = 0 (209)

The unicity of D is granted by the problem at hand. We look for a solution whose β expansion is obtained
recursively, and whose first term is identical to the one obtained for β = 0 in the initial problem. To do so,
we can find, at least, a recursive solution to this equation. Rescaling A→ A√

β
, C → C√

β
, D can be obtained

as a series expansion in
√
β,
∑(√

β
)n
Dn. Equation (209) becomes:

√
β (A− C)

(
1−

∞∑

n=1

(√
β
)n

Dn

)2
− 2

(
δ +

√
β (A− C)

)(
1−

∞∑

n=1

(√
β
)n

Dn

)
+ 2

(
δ +

√
βA
)

= 0

(
√
β (A− C) +

∞∑

n=2

(√
β
)n
(
(A− C)

(
n∑

k=1

DkDn−1−k

)
+ 2δDn

))
− 2

(
δI +

√
β (A− C)

)
+ 2

(
δ +

√
βA
)

= 0

(
√
β (A− C) +

∞∑

n=2

(√
β
)n
(
(A− C)

(
n∑

k=1

DkDn−1−k

)
+ 2δDn

)
+ 2
√
βδD1

)
+ 2
√
βC = 0

(A+ C) +

∞∑

n=1

(√
β
)n
(
(A− C)

(
n∑

k=1

DkDn−k

)
+ 2δDn+1

)
+ 2δD1 = 0

As a consequence, the first term is

D1 = −δ−1
A+ C

2

and

Dn+1 = −δ−1
(A− C)

2

(
n∑

k=1

DkDn−k

)
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Appendix 4

To solve the class of models presented in the text, the equation (209) can be cast into the block form:

0 =
√
β




−ε(i)ii
2 A

(j)
ij

A
(i)
ji

{
−
(
ε
(j)

{jk}j>k

)

eff

2 , A
(j)
{jk}i>k>j

}

D2 +




A
(i)
ii +B11 B12

Bt12

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}

D

+
√
β




−ε(i)ii
2 A

(i)
ij

A
(j)
ji

{
−
(
ε
(j)

{jk}k6j

)

eff

2 , A
(j)
{jk}i>k>j

}



with:

D =

(
E F

G H

)

is the block decomposition of D imposed by the matrices ε
(i)
ii , A

(j)
ij ...

In most systems, the "per se" inertia ε
(i)
ii is nul. If moreover A

(i)
ji = 0, that is agent i is sensitive to his

substructures goals, but not directly to their actions, one can find E and F as functions of the other matrix
blocks. Actually, given that in that case (209) writes as:

0 =
√
β



0 A

(j)
ij

0

{
−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{kj}i>k>j

}

D2 +




A
(i)
ii +B11 B12

Bt12

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}

D

+
√
β




0 0

A
(j)
ji

{
−
(
ε
(j)

{jk}k6j

)

eff

2 , A
(j)
{jk}i>k>j

}



one can divide the equation (209) in two blocks:

0 =
√
β




A
(j)
ij{

−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{kj}i>k>j

}

 (GE +HG) (210)

+




A
(i)
ii +B11 B12

Bt12

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}


(
E

G

)
+
√
β

(
0

A
(j)
ji

)

and:

0 =
√
β




A
(j)
ij{

−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{kj}i>k>j

}


(
GF +H2

)
(211)

+




A
(i)
ii +B11 B12

Bt12

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}


(
F

H

)
+
√
β




0{
−
(
ε
(j)

{jk}k6j

)

eff

2 , A
(j)
{jk}i>k>j

}



The first one (210) allows to find E. Actually, the two equations of (210) yield:

(GE +HG) = −



√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1(
Bt12E +

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
G+

√
βA

(j)
ji

)

(212)
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and

0 =
(
A
(i)
ii +B11

)
E +B12G−

√
βA

(j)
ij



√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×
(
Bt12E +

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
G+

√
βA

(j)
ji

)

so that:

E =



(
A
(i)
ii +B11

)
−
√
βA

(j)
ij



√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

Bt12




−1

(213)

×



√
βA

(j)
ij






√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
G+

√
βA

(j)
ji

)

−B12G




normalize A
(i)
ii = 1, and use that

(
A
(j)
jj

)
eff

can be considered as symetric.

B12 = βA
(j)
ij

(
A
(j)
jj

)−1
eff








−
(
ε
(j)
{jk}j>k

)
eff

2
, A

(j)
{jk}i>k>j








B11 = βA
(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
ji

B22 =





βA
(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk ,

β

({
−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{jk}i>k>j

})(
A
(j)
jj

)−1
eff

({
−
(
ε
(j)

{jk}j>k

)

eff

2 , A
(j)
{jk}i>k>j

})

β
2

(
A
(j)
kj

(
A
(j)
jj

)−1
eff

({
−
(
ε
(j)

{jk}j>k

)

eff

2 , A
(j)
{jk}i>k>j

}
+

{
−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{jk}i>k>j

}))





{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
=





βA
(i)
jj +

(
A
(j)
jj

)
eff

, βA
(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk ,

β

({
−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{jk}i>k>j

})(
A
(j)
jj

)−1
eff

({
−
(
ε
(j)

{jk}j>k

)

eff

2 , A
(j)
{jk}i>k>j

})
,

β
2

(
A
(j)
kj

(
A
(j)
jj

)−1
eff

({
−
(
ε
(j)

{jk}j>k

)

eff

2 , A
(j)
{jk}i>k>j

}
+

{
−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{jk}i>k>j

}))







(
A
(i)
ii +B11

)
−A(j)ij








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

Bt12




−1

=

(
1− βA(j)ij

(
A
(j)
jj

)−1
eff

A
(j)
ji +B11

)−1
= 1

Thus, the expressions for E simplify as:

E =
√
βA

(j)
ij






√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
G+

√
βA

(j)
ji

)

−B12G

(214)
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Similarly, the second block (211) leads to:

0 =
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




(
GF +H2

)
+B21F +

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H (215)

+
√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





yielding
(
GF +H2

)
:

(
GF +H2

)
= −



√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

(216)

×


Bt12F +

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








and after coming back to (211), the expression for F :

F =
√
βA

(j)
ij



√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

(217)

×



{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j






−B12H

The resolution of the problem is thus reduced to a system of two remaining equations:

(√
βA

(j)
ij G+

(
A
(i)
ii +B11

))
E +

(
B12 +

√
βA

(j)
ij H

)
G = 0 (218)

(√
βA

(j)
ij G+

(
A
(i)
ii +B11

))
F +

(
B12 +

√
βA

(j)
ij H

)
H = 0 (219)

where E and F are given in (213) and (44).
Multiply the second equation (219) by H−1G and compare with (218) one obtains:

FH−1G = E

This can used to write that: (
GF +H2

)
H−1G = (GE +HG)

and, using (212) (216), one is led to:


Bt12F +

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j






H−1G

=

(
Bt12E +

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
G+

√
βA

(j)
ji

)
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and using again that FH−1G = E:



√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j






H−1G =

√
βA

(j)
ji

One can thus express G as a function of H:

G = H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

A
(j)
ji (220)

The all problem then reduces to find H. To do so, one uses (215):

0 =
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




(
GF +H2

)
+B21F +

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H (221)

+
√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





which is, after expanding the terms involved in this equation:



√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

A
(j)
ji +B21


(222)

×


A(j)ij








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×



{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j






−B12H




+
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




H2

+

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





This equation completes the resolution by yielding H. However it is simpler to solve if we cast it into an
other form through a change of variable. Actually, using (220) and (44), equation (215) can be organized in
the following way. Regroup the terms proportional to F and let:

H ′ = H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

+
√
β
(
A
(j)
jj

)−1
eff
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then:

√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




(G+B21)F

=



√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

A
(j)
ji

+ β








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j







(
A
(j)
jj

)−1
eff

A
(j)
ji


F

=
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j






H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

+
√
β
(
A
(j)
jj

)−1
eff


A

(j)
ji F

=
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




H ′A(j)ji F

=
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




H ′A(j)ji A

(j)
ij








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}(
H ′ −

(
A
(j)
jj

)−1
eff

)
+
√
β

)

− β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j





(
A
(j)
jj

)−1
eff








−
(
ε
(j)
{jk}j>k

)
eff

2
, A

(j)
{jk}i>k>j







(
H ′ −

(
A
(j)
jj

)−1
eff

)



×





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





The remaining terms

√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




H2+

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H+

√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





can also be factored:
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√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




H2 +

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H (223)

+
√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





=





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j







√
βH

(
H ′ −

(
A
(j)
jj

)−1
eff

)
+








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×
({

βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

}(
H ′ −

(
A
(j)
jj

)−1
eff

)
+
√
β

))

×





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





And (223) becomes:

0 =
√
β H ′A(j)ji A

(j)
ij








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×
(({

βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

}(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)
+
√
β

)

− β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j





(
A
(j)
jj

)−1
eff








−
(
ε
(j)
{jk}j>k

)
eff

2
, A

(j)
{jk}i>k>j







(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)



+
√
βH

(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)
+








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×
({

βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

}(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)
+
√
β

)

or equivalently:

0 =
(√

βH ′A(j)ji A
(j)
ij + 1

)







−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×
({

βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

}(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)
+
√
β

)

−
√
ββH ′A(j)ji A

(j)
ij

(
A
(j)
jj

)−1
eff








−
(
ε
(j)
{jk}j>k

)
eff

2
, A

(j)
{jk}i>k>j







(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)

+
√
β

(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)







−
(
ε
(j)
{jk}j>k

)
eff

2
, A

(j)
{jk}i>k>j







(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)
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factor by

({
−
(
ε
(j)

{jk}j>k

)

eff

2 , A
(j)
{jk}i>k>j

})(
H ′ −√β

(
A
(j)
jj

)−1
eff

)
on the right, multiply by (H ′)−1 and fac-

tor by
(√

βA
(j)
ji A

(j)
ij + (H

′)−1
)
on the left yields:

0 =
(√

βA
(j)
ji A

(j)
ij + (H

′)
−1
)

×








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×
({

βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
+
√
β

(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)−1)







−
(
ε
(j)
{jk}j>k

)
eff

2
, A

(j)
{jk}i>k>j








−1

−β
(√

βA
(j)
ji A

(j)
ij + (H

′)
−1
)(

A
(j)
jj

)−1
eff

+
√
β

or, which is equivalent:








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
+
√
β

(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)−1)

×








−
(
ε
(j)
{jk}j>k

)
eff

2
, A

(j)
{jk}i>k>j








−1

= β
(
A
(j)
jj

)−1
eff

−
√
β
(√

βA
(j)
ji A

(j)
ij + (H

′)
−1
)−1

(224)

For later purpose, note that the transpose of this equation shows that (H ′)t is solution for the same equation.
Given the unicity of solution when β → 0, (H ′)t = H ′, thus H ′ is symetric.

This equation, once solved, allows to find E, F , G by (232), (44) and (220), and then the dynamical
matrix D from which we derive the effective action, as explained in appendix 1. The dynamical matrix D is
then:

D =
1√
β

(
E F

G F

)

We now include the coefficient 1√
β
in the definition of E, F , G, H.

Having found D, we recover the matrices needed to compute the effective action, by finding an expression
for 1

2 ((A− C)D + 2B)
S
. However, since,

((A− C) (D − 2) + 2B)
= ((A− C)D + 2 (B −A)) + 2C

and C is antisymetric,

((A− C) (D − 2) + 2B)S = ((A− C)D + 2 (B −A))S

Which can be rewritten:

1

2
((A− C)D + 2B)S =

((
0 Γ
0 Θ

)(
E F

G H

)
+

(
∆1 B12
B21 ∆2

))S

=

(
ΓG+∆1 ΓH +B12
ΘG+B21 ΘH +∆2

)S
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with:

Γ =
√
βA

(j)
ij

Θ =
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j





∆1 = A
(i)
ii +B11

∆2 =

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}

and A
(i)
ii normalized to 1. By construction, ∆1 and ∆2 are symetric matrices. Given (232), (44), (45) (222)

and (224) it yields:

ΓG+∆1 =
√
βA

(j)
ij H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

A
(j)
ji +∆1 (225)

= A
(j)
ij

(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)
A
(j)
ji +∆1

ΓH = A
(j)
ij

(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)




−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





ΘG =





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

A
(j)
ji

=





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j





(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)
A
(j)
ji

Since H ′ is symetric, as explained before, and since
(
A
(j)
jj

)−1
eff

is symetric by construction, then ΓG + 1 is

symetric and moreover ΓH = (ΘG)
t
. Moreover,

ΘH =





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j





(
H ′ −

√
β
(
A
(j)
jj

)−1
eff

)




−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





is also symetric. As a consequence:

1

2
((A− C)D + 2B)S = 1

2
((A− C)D + 2B) =

(
ΓG+∆1 ΓH +B12
ΘG+B21 ΘH +∆2

)

and:

(
((A− C) (D − 2) + 2B)S

)−1
(A+ C)

=

(
Υ1 − (ΓG+∆1)−1 (ΓH +B12)×Υ2

− (ΘH +∆2)
−1
(ΘG+B21)×Υ1 Υ2

)
×
(
0 0
Φ Ψ

)

=

(
− (ΓG+∆1)−1 (ΓH +B12)Υ2Φ − (ΓG+∆1)−1 (ΓH +B12)Υ2Ψ

Υ2Φ Υ2Ψ

)
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where:

Υ1 =
(
(ΓG+∆1)− (ΓH +B12) (ΘH +∆2)

−1
(ΘG+B21)

)−1

Υ2 =
(
ΘH +∆2 − (ΘG+B21) (ΓG+∆1)−1 (ΓH +B12)

)−1

The matrices intervening in the effective action (204)

Nii = ((A− C) (D − 2) + 2B)ii − ((A− C) (D − 2) + 2B)ij
(
((A− C) (D − 2) + 2B)jj

)−1 (
((A− C) (D − 2) + 2B)ji

)

= ΓG+∆1 − (ΓH +B12) (ΘH +∆2)
−1
(ΘG+B21)

Mii = (Nii)

((
((A− C) (D − 2) + 2B)S

)−1
(A+ C)

)

ii

= − (Nii) (ΓG+∆1)−1 (ΓH +B12)
(
ΘH +∆2 − (ΘG+B21) (ΓG+∆1)−1 (ΓH +B12)

)−1
Γt

Mij = (Nii)
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ij

= − (Nii) (ΓG+∆1)−1 (ΓH +B12)
(
ΘH +∆2 − (ΘG+B21) (ΓG+∆1)−1 (ΓH +B12)

)−1
Θt

Where the various matrices are given by (225).

When A
(j)
ij is (m+ k)×m (that is, A

(j)
ij has more rows than columns), one can go further in the resolution

and obtain more tractable relation than (222). The reason is that in that case, the dominating agent has a
number of action variables greater or equal to the number of substructures. This over determination creates
some symetries (possibilities of switching the way of action to get equivalent results).

These symetries reflect in the following way: Consider k matrices Vl l = 1...k where dim (Vl) = dim
(
A
(i)
ji

)

which is m× (m+ k). Each Vl is filled with 1 in m places and 0 elsewhere, such that rank (Vl) = m.
Coming back to (218) and (219), we multiply the first equation (218) by (Vl)

t
on the right allows for

expressing H as a function of G.

(√
βA

(j)
ij G+

(
A
(i)
ii +B11

))
E (Vl)

t
+
(
B12 +

√
βA

(j)
ij H

)
G (Vl)

t
= 0 (226)

(√
βA

(j)
ij G+

(
A
(i)
ii +B11

))
F +

(
B12 +

√
βA

(j)
ij H

)
H = 0 (227)

Then multiply the first equation by
(
G (Vl)

t
)−1

and (219) byH−1. Then, since
(√

βA
(j)
ij G+

(
A
(i)
ii +B11

))

is a square matrix one obtains:

E (Vl)
t
(
G (Vl)

t
)−1

= FH−1

Given (43) and (44) it is equivalent to:

(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
−B12

)
+
√
β
(
VlA

(j)
ij

)t (
G (Vl)

t
)−1 )

=



({

βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
−B12

)
+
√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j




H−1




that is:

(
VlA

(j)
ij

)t (
G (Vl)

t
)−1

=





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j




H−1
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That expresses H as a function of G:

H =
(
G (Vl)

t
)((

VlA
(j)
ij

)t)−1




−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





With E, F , H expressed as functions of G, the all problem consists now in finding G. However, given (220):

G = H








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

A
(j)
ji

one obtains:

G =
(
G (Vl)

t
)((

VlA
(j)
ij

)t)−1
A
(j)
ji

≡ X−1
(
A
(j)
ij

)t

with X =
(
VlA

(j)
ij

)t (
G (Vl)

t
)−1

. Then, the all system reduces to find
(
G (Vl)

t
)
, or equivalently X

which appears to be a more convenient variable. With that choice of variables, H rewrites:

H = X−1





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





However, the independence of H in l yields k − 1 constraint equations, that ultimately reduce the free
parameters to

(
G (Vl)

t
)
. Actually when l 6= m:

H =
(
G (Vl)

t
)((

VlA
(j)
ij

)t)−1




−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





=
(
G (Vm)

t
)((

VmA
(j)
ij

)t)−1




−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





that is: (
G (Vm)

t
)
=
(
G (Vl)

t
)((

VlA
(j)
ij

)t)−1((
VmA

(j)
ij

)t)

If Vm is partitionned in two matrices:

Vm =
(
V (1)m , V (2)m

)

and V
(1)
m is transverse to Vl (by transverse we mean that the 1 of the submatrix V

(1)
m are not in the same

columns as the 1 of Vl), the constraint allows to express rank
(
V
(1)
m

)
parameters of Vl in function of

(
G (Vl)

t
)

that remain the parameters to determine:

(
G
(
V (1)m , 0

)t)
=
(
G (Vl)

t
)((

VlA
(j)
ij

)t)−1(((
V (1)m , 0

)
A
(j)
ij

)t)

This allows to find G as a function of
(
G (Vl)

t
)
.
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Actually, (
G
(
V (1)m , 0

)t)
=
(
G (Vl)

t
)((

VlA
(j)
ij

)t)−1(((
V (1)m , 0

)
A
(j)
ij

)t)

or:

G
(
V (1)m

)t
= G (Vl)

t

((
VlA

(j)
ij

)t)−1 ((
V (1)m

)
A
(j)
ij

)t

allows to compute G
(
A
(i)
ii

)−1√
βA

(j)
ij in the following way:

Partition G and
(
A
(i)
ii

)−1√
βA

(j)
ij along V

(1)
m and Vl:

G =

(
G
((
V (1)m , 0

))t
, G
((
0, V

(1)
l

))t)

=

(
G
(
V (1)m

)t
,
(
G (Vl)

t
))

√
βA

(j)
ij =

(
V
(1)
m

Vl

)√
βA

(j)
ij

where V
(1)
l is defined by Vl =

(
0, V

(1)
l

)
.

As a consequence:

(√
βA

(j)
ij G+

(
A
(i)
ii +B11

))
=

(√
βA

(j)
ij X

−1
(
A
(j)
ij

)t
+
(
A
(i)
ii +B11

))

and the equation (218) becomes:

(√
βA

(j)
ij X

−1
(
A
(j)
ij

)t
+
(
A
(i)
ii +B11

))
E (Vl)

t
+
(
B12 +

√
βA

(j)
ij H

)
G (Vl)

t
= 0

which is equivalent to:

(√
βA

(j)
ij X

−1
(
A
(j)
ij

)t
+
(
A
(i)
ii +B11

))
E (Vl)

t
(
G (Vl)

t
)−1

(228)

= −
(
B12 +

√
βA

(j)
ij H

)

= −


B12 +

√
βA

(j)
ij X

−1





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








= −
(
βA

(j)
ij

(
A
(j)
jj

)−1
eff

+
√
βA

(j)
ij X

−1
)




−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





Use the expression for B11 multiply by Vl and simplify by
(
VlA

(j)
ij

)
:

(√
βX−1

(
A
(j)
ij

)t
+
(
VlA

(j)
ij

)−1
Vl

(
1 + βA

(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
ji

))
E (Vl)

t
(
G (Vl)

t
)−1

(229)

= −
(
β
(
A
(j)
jj

)−1
eff

+
√
βX−1

)




−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j




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given that:

E (Vl)
t
(
G (Vl)

t
)−1

=


A(j)ij








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×
(({

βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
G (Vl)

t
+
√
βA

(j)
ji (Vl)

t

)
−B12G (Vl)t

)(
G (Vl)

t
)−1

=


A(j)ij








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×
(({

βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
+
√
βX

)

−
(
βA

(j)
ij

(
A
(j)
jj

)−1
eff

)




−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





= A
(j)
ij











−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
+
√
βX

)

×








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

− β
(
A
(j)
jj

)−1
eff




×





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





Equation (229) becomes:

−
(
β
(
A
(j)
jj

)−1
eff

+
√
βX−1

)

=

(√
βX−1

(
A
(j)
ij

)t
A
(j)
ij +

(
1 + β

(
A
(j)
jj

)−1
eff

A
(j)
ji A

(j)
ij

))

×











−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
+
√
βX

)

×








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

− β
(
A
(j)
jj

)−1
eff



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that is:

−
(
β
(
A
(j)
jj

)−1
eff

+
√
βX−1

)
(230)

=

((√
βX−1 + β

(
A
(j)
jj

)−1
eff

)
A
(j)
ji A

(j)
ij + 1

)

×











−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
+
√
βX

)



×








−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j








−1

− β
(
A
(j)
jj

)−1
eff




This quadratic equation for X, when solved for X, allows to find the all matrix D. Actually, collecting our
previous results:
(
G (Vl)

t
)

= X−1
(
VlA

(j)
ij

)t

G = X−1
(
A
(j)
ij

)t

H = X−1





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





E =



√
βA

(j)
ij











−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
G+

√
βA

(j)
ji

)

−B12G




F =
√
βA

(j)
ij








−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1

×



{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j






−B12H

Note for the sequel that since the equation for X can be rewriten in a symetric form. Actually, set

Y =
√
βX−1 + β

(
A
(j)
jj

)−1
eff

the equation (230) is turned to:

(
Y A

(j)
ji A

(j)
ij + 1

)




({
−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{kj}i>k>j

})−1(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
+
√
β
(
Y√
β
−√β

)−1)

({
−
(
ε
(j)

{jk}k6j

)

eff

2 , A
(j)
{jk}i>k>j

})−1
− β

(
A
(j)
jj

)−1
eff



= −Y

or, simplifying by Y :

(
A
(j)
ji A

(j)
ij + Y

−1
)




({
−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{kj}i>k>j

})−1(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
+
√
β
(
Y√
β
−√β

)−1)

({
−
(
ε
(j)

{jk}k6j

)

eff

2 , A
(j)
{jk}i>k>j

})−1
− β

(
A
(j)
jj

)−1
eff



= −1
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which means that the two matrics in the left hand side are each other inverse (up to a minus sign). One
thus also have:




({
−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{kj}i>k>j

})−1(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
+
√
β
(
Y√
β
−√β

)−1)

({
−
(
ε
(j)

{jk}k6j

)

eff

2 , A
(j)
{jk}i>k>j

})−1
− β

(
A
(j)
jj

)−1
eff




(
A
(j)
ji A

(j)
ij + Y

−1
)
= −1

whose transpose is (we recall here that B22 is symetric by construction, as well as A
(i)
jj by assumption of

the model, and
(
A
(j)
jj

)
eff

by construction):

(
A
(j)
ji A

(j)
ij +

(
Y t
)−1)




({
−
(
ε
(j)

{kj}j>k

)

eff

2 , A
(j)
{kj}i>k>j

})−1(({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

})
+
√
β
(
Y t
√
β
−√β

)−1)

({
−
(
ε
(j)

{jk}k6j

)

eff

2 , A
(j)
{jk}i>k>j

})−1
− β

(
A
(j)
jj

)−1
eff



= −1

and then Y t is also solution of the problem, which in turn implies that Xt is also solution of (230).
However, since we look for the unique solution X corresponding to the perturbative solution in powers of β,

one deduce that X is symetric, Xt = X. Moreover, since X =
(
VlA

(j)
ij

)t (
G (Vl)

t
)−1

, one can also say that

X−1 =
(
G (Vl)

t
)((

VlA
(j)
ij

)t)−1
is symetric. This is useful below.

Having found D, we recover the matrices needed to compute the effective action, by finding an expression
for 1

2 ((A− C)D + 2B)
S
. However, since,

((A− C) (D − 2) + 2B)
= ((A− C)D + 2 (B −A)) + 2C

and C is antisymetric,

((A− C) (D − 2) + 2B)S = ((A− C)D + 2 (B −A))S

Which can be rewritten:

1

2
((A− C)D + 2B)S =

((
0 Γ
0 Θ

)(
E F

G H

)
+

(
1 0
0 ∆

))S

=

(
ΓG+ 1 ΓH
ΘG ΘH +∆

)S

with:

Γ =
√
βA

(j)
ij

Θ =
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




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and A
(i)
ii normalized to 1.

ΓG+ 1 =
√
βA

(j)
ij X

−1
(
A
(j)
ij

)t
+ 1

ΓH =
√
βA

(j)
ij X

−1





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





ΘG =
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




X−1

(
A
(j)
ij

)t

Since X−1 is symetric, as explained before, then ΓG+ 1 is symetric and moreover ΓH = (ΘG)
t
.

Moreover,

ΘH =
√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j




X−1





−
(
ε
(j)
{jk}k6j

)
eff

2
, A

(j)
{jk}i>k>j





As a consequence:

1

2
((A− C)D + 2B)S = 1

2
((A− C)D + 2B) =

(
ΓG+ 1 ΓH
ΘG ΘH +∆

)

and:

(
((A− C) (D − 2) + 2B)S

)−1
(A+ C)

=




(
(ΓG+ 1)− ΓH (ΘH +∆)

−1
ΘG
)−1 − (ΓG+ 1)−1 ΓH

×
(
ΘH +∆−ΘG (ΓG+ 1)−1 ΓH

)−1

− (ΘH +∆)
−1
ΘG

×
(
(ΓG+ 1)− ΓH (ΘH +∆)

−1
ΘG
)−1

(
ΘH +∆−ΘG (ΓG+ 1)−1 ΓH

)−1




×
(
0 0
Φ Ψ

)

=




− (ΓG+ 1)−1 ΓH
×
(
ΘH +∆−ΘG (ΓG+ 1)−1 ΓH

)−1
Φ

− (ΓG+ 1)−1 ΓH
×
(
ΘH +∆−ΘG (ΓG+ 1)−1 ΓH

)−1
Ψ

(
ΘH +∆−ΘG (ΓG+ 1)−1 ΓH

)−1
Φ

(
ΘH +∆−ΘG (ΓG+ 1)−1 ΓH

)−1
Ψ




The previous expression can be concatenated again.

H = GV t (V Γ)
−1
Θt

= X−1Θt

(
ΘH +∆−ΘG (ΓG+ 1)−1 ΓH

)

(√
βA

(j)
ij G+

(
A
(i)
ii +B11

))
E (Vl)

t
+
(
B12 +

√
βA

(j)
ij H

)
G (Vl)

t
= 0 (231)
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E =



√
βA

(j)
ij






√
β





−
(
ε
(j)
{kj}j>k

)
eff

2
, A

(j)
{kj}i>k>j








−1({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
G+

√
βA

(j)
ji

)

−B12G




(232)
(ΓG+∆1)

(
ΓΘ−1

(
∆2G+ Γ

t
)
−B12G

)
= − (B12 + ΓH)G

Vl (ΓG+∆1)
(
ΓΘ−1

(
∆2G+ Γ

t
)
−B12G

)
(Vl)

t
+ Vl (B12 + ΓH)G (Vl)

t
= 0

(VlΓ) (GΓ + 1 +B
′
21Γ)

(
Θ−1

(
∆2G+ Γ

t
)
−B′11G

)
(Vl)

t
+ Vl (B12 + ΓH)G (Vl)

t
= 0

(GΓ + 1 +B′21Γ)
(
Θ−1

(
∆2G (Vl)

t
+ (VlΓ)

t
)
−B′11G (Vl)t

)
+
(
(VlΓ)

−1
(VlΓB

′
11) +H

)
G (Vl)

t
= 0

(GΓ + 1 +B′21Γ)

(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B′11
)
+B′11 = −H

(ΓG+∆1)
−1
(ΓH +B12)

= − (ΓG+∆1)−1
(
(ΓG+∆1) Γ

(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B′11
))

= −Γ
(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B′11
)

= −
(
ΓΘ−1

(
∆2G+ Γ

t
)
−B12G

)

ΘH +∆2 − (ΘG+B21) (ΓG+∆1)−1 (ΓH +B12)

= −Θ
(
(GΓ + 1 +B′21Γ)

(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B′11
)
+B′11

)

+(ΘG+B21) Γ

(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B′11
)
+∆2

= −Θ
(
(GΓ + 1 +B′21Γ)

(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B′11
)
+B′11

)

+Θ(GΓ +B′21Γ)

(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B′11
)
+∆2

= −Θ
(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B′11 +B′11
)
+∆2

= − (VlΓ)t
(
G (Vl)

t
)−1

= −ΘtH−1

B21 = Θ
(
A
(j)
jj

)−1
eff

Γt

(ΓG+∆1) Γ
(
Θ−1

(
∆2G+ Γ

t
)
−B′12G

)
(Vl)

t
+ (B′12 + ΓH)G (Vl)

t
= 0

(ΓG+∆1) Γ

(
Θ−1

(
∆2 + Γ

t
(
G (Vl)

t
)−1)

−B′12
)
+ Γ (B′12 +H) = 0

ΘH +∆2 − (ΘG+B21) (ΓG+∆1)−1 (ΓH +B12)

ΘH +∆2 + (ΘG+B21) Γ

(
Θ−1

(
∆2 + Γ

t
(
G (Vl)

t
)−1)

−B′12
)
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−Θ
[
(GΓ +∆1)

(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B12
)
+ (VlΓ)

−1
(VlB12)

]

+(ΘG+B21) Γ

(
Θ−1

(
∆2 + Γ

t
(
G (Vl)

t
)−1)

−B12
)
+∆2

ΘH +∆2 − (ΘG+B21) (ΓG+∆1)−1 (ΓH +B12) = −H−1

(ΓG+∆1)
−1
(ΓH +B12)

(
ΘH +∆2 − (ΘG+B21) (ΓG+∆1)−1 (ΓH +B12)

)−1

= − (ΓG+∆1)−1 (ΓH +B12)H
(
Θt
)−1

=
(
ΓΘ−1

(
∆2G+ Γ

t
)
−B12G

)
H
(
Θt
)−1

= −Γ
(
Θ−1

(
∆2 + (VlΓ)

t
(
G (Vl)

t
)−1)

−B′11
)
H
(
Θt
)−1

= −Γ
(
Θ−1

(
∆2 +Θ

tH−1)−B′11
)
H
(
Θt
)−1

= −Γ
(
Θ−1

(
∆2H

(
Θt
)−1

+ 1
)
−B′11H

(
Θt
)−1)

And ultimately the matrices involved in (204) become:

Nii = ((A− C) (D − 2) + 2B)ii − ((A− C) (D − 2) + 2B)ij
(
((A− C) (D − 2) + 2B)jj

)−1 (
((A− C) (D − 2) + 2B)ji

)

= ΓG+∆1 − (ΓH +B12) (ΘH +∆2)
−1
(ΘG+B21)

Mii = (Nii)

((
((A− C) (D − 2) + 2B)S

)−1
(A+ C)

)

ii

= (Nii) Γ
(
Θ−1

(
∆2H

(
Θt
)−1

+ 1
)
−B′11H

(
Θt
)−1)

Γt

Mij = (Nii)
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ij

= (Nii) Γ
(
Θ−1

(
∆2H

(
Θt
)−1

+ 1
)
−B′11H

(
Θt
)−1)

Θt
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Appendix 5

For the strategic agent, the matrices defining the effective utility are given by 27, with, in this case:

A =
√
β

(
0 A

(1)
1j +A

(j)
1j

A
(1)
j1 +A

(j)
j1

{
A
(j)
kj , A

(j)
jk

}
)

B =




Id(1) + βA
(j)
1j

(
A
(j)
jj

)−1
A
(j)
j1

√
β
(
A
(1)
1j +A

(j)
1j

)
+

{
βA

(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
jk

}

√
β
(
A
(1)
j1 +A

(j)
j1

)
+

({
βA

(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
jk

})t




(
βA

(1)
jj +A

(j)
jj

)
,

√
β
{
A
(j)
kj , A

(j)
jk

}







C =
√
β

(
0 A

(1)
1j −A

(j)
1j

−
(
A
(1)
j1 −A

(j)
j1

) {
A
(j)
kj ,−A

(j)
jk

}
)

As described in the text, we need to find the expression for the matrix D, and the effective utility for the
dominant agent will be deduced from it’s expression. The matrix D satifies the equation:

√
β

(
0 A

(j)
1j

0
{
A
(j)
jk

}
)
D2+




1 + βA
(j)
ij A

(j)
ji βA

(j)
ij A

(j)
jk

(
βA

(j)
ij A

(j)
jk

)t




(
βA

(1)
jj +A

(j)
jj

)
,
√
β
{
A
(j)
kj , A

(j)
jk

}

βA
(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk






D+

√
β

(
0 0

A
(j)
j1

{
A
(j)
kj

}
)
= 0

(233)
To solve this equation, we partition this matrix as:

D =

(
E F

G H

)

and applying (213), (44) appendix 1.b allows to find all the parameters as a function of H:

E =

(√
βA

(j)
1j

((√
β
{
A
(j)
{kj}i>k>j

})−1({
βA

(1)
jj +A

(j)
jj , βA

(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk

}
G+

√
βA

(j)
j1

))
− βA(j)1j A

(j)
jk G

)

F =

(√
βA

(j)
1j

(√
β
{
A
(j)
{kj}1>k>j

})−1({
βA

(i)
jj +A

(j)
jj , βA

(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk

}
H +

√
β
{
A
(j)
{jk}1>k>j

})
− βA(j)1j A

(j)
jk H

)

G = H
({
A
(j)
{jk}i>k>j

})−1
A
(j)
ji

The problem reduces to find H and H satisfies (222), whose expression, given our assumptions about the

parameters A
(j)
jj = A

(1)
jj = 1 in this particular case:

0 =

(√
β
{
A
(j)
{kj}i>k>j

}
H
({
A
(j)
{jk}i>k>j

})−1
A
(j)
ji +B21

)
(234)

×
((

A
(j)
ij

({
A
(j)
{kj}i>k>j

})−1({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β
{
A
(j)
{jk}i>k>j

})
−B12H

))

+
√
β
{
A
(j)
{kj}i>k>j

}
H2

+

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β
{
A
(j)
{jk}i>k>j

}

Given our hypothesis concerning the agent’s interactions, we can use the following normalizations A
(j)
j1 = α,

A
(j)
{jk}i>k>j = (1)− δjk where we denote by (1) the matrix filled with 1 in every row. As a consequence, one

can find the inverse of
{
A
(j)
{kj}i>k>j

}
:

({
A
(j)
{kj}i>k>j

})−1
=

1

N − 1 (1− δjk)−
N − 2
N − 1δjk =

1

N − 1 (1)− (δjk)
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A
(j)
j1 A

(j)
1j = α2 (1), N number of agts. A

(j)
lj A

(j)
jk = ((N − 2) (1) + δjk). As a consequence we compute

some intermediate quantities involved in (234):

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
=
{
1 + β, βA

(j)
lj A

(j)
jk

}
= 1 + 2β + β (N − 2) (1)

({
A
(j)
{jk}i>k>j

})−1
=

1

N − 1 (1)− (δjk)

and

({
A
(j)
{jk}i>k>j

})−1
A
(j)
j1 =

(
1

N − 1 (1)− (δjk)
)
α (1, .., 1)

t

= α

(
N

N − 1 − 1
)
(1, .., 1)

t
=

α

N − 1 (1, .., 1)
t

βA
(j)
1j

({
A
(j)
{jk}i>k>j

})
= βα (1) ((1)− δjk) = βα (N − 1) (1)

We look for a solution for (234) of form:

H =
√
βV (1) +

√
βW

We first solve the case for N > 1 and consider N = 1 as a particular case.
Using first that all the matrices involved in (234) commute leads to:

0 =
(√

βH + β
{
A
(j)
{jk}i>k>j

})
A
(j)
ji A

(j)
ij

×
((({

A
(j)
{kj}i>k>j

})−1({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β
{
A
(j)
{jk}i>k>j

})
− β

{
A
(j)
{jk}i>k>j

}
H

))

+
√
β
{
A
(j)
{kj}i>k>j

}
H2

+

{
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β
{
A
(j)
{jk}i>k>j

}

And this expression can be factored ultimately as:

0 =

((√
βH

({
A
(j)
{kj}i>k>j

})−1
+ β

)
A
(j)
ji A

(j)
ij + 1

)({
βA

(i)
jj +

(
A
(j)
jj

)
eff

, B22

}
H +

√
β
{
A
(j)
{jk}i>k>j

})
(235)

+
√
β
{
A
(j)
{kj}i>k>j

}
H2 − β

(√
βH + β

{
A
(j)
{jk}i>k>j

})
A
(j)
ji A

(j)
ij

{
A
(j)
{jk}i>k>j

}
H

Replacing then for the various expressions involved in (235) yields:

0 =

((
β (V (1) +W )

(
1

N − 1 (1)− (δjk)
)
+ β

)
α2 (1) + 1

)

× (((1 + 2β + β ((N − 2) (1))) (V (1) +W ) + ((1)− δjk)))
+β ((1)− δjk) (V (1) +W )2 − β2 ((V (1) +W ) + ((1)− δjk))α2 (1) ((1)− δjk) (V (1) +W )

and this leads to a system of equations:
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0 =
(
(2β + 1)W − βW 2 − 1

)

0 = V 2α2
β2

N − 1 (N − 2)N4 +

(
V α2 β

N−1 (V (2β + 1) + βW (N − 2) + 1)− V α2β2 (V + 1)
−V α2β2

(
V − W

N−1

)
(N − 2)

)
N3

+

(
V 2β + α2β2 ((V −W ) (V + 1)− V (W − 1))

−α2β
(
V − W

N−1

)
(V (2β + 1) + βW (N − 2) + 1) + V α2β (β − βW ) (N − 2) + V α2βW (2β+1)−1

N−1

)
N2

+

(
α2β2 (W (V + 1) + (W − 1) (V −W ))− β

(
V 2 − 2VW

)

+α2 (β − βW ) (V (2β + 1) + βW (N − 2) + 1) + V β (N − 2)− α2β
(
V − W

N−1

)
(W (2β + 1)− 1)

)
N

+
(
V (2β + 1) + β

(
W 2 − 2VW

)
+ α2 (β − βW ) (W (2β + 1)− 1) + βW (N − 2) + α2β2W (W − 1) + 1

)

which reduces to:

W =
1

β

(
1 + 2β −

√
4β2 + 1

)

and:

0 = Nβ
(N − 1)2 +Nα2 (1 + β)

N − 1 V 2

+
2β
(
(N − 1)2 +Nα2 (1 + β)

)
+
(
(2 + β)N (N − 1)α2β + (N − 3)N2β + (4N − 2)β +N − 1

)

N − 1 V

+

(
(N − 1)β + (1 + β)α2β

)
W 2 + β (N − 1)

(
N + 2α2 + α2β − 2

)
W + (N − 1)

(
(N − 1)α2β + 1

)

N − 1
Once V , W , H are recovered, one can ultimately find the other matrices that determine the dynamics of the
system. For G, one has directly:

G = H
({
A
(j)
{jk}i>k>j

})−1
A
(j)
ji

α
√
β
NV +W

N − 1 (1, .., 1)
t

For E and F we use need the expressions for the matrices involved in the problem:

A
(j)
1j

({
A
(j)
{kj}i>k>j

})−1
= α (1, ..., 1)

(
1

N − 1 (1)− (δjk)
)

= α (1, ..., 1)

(
N

N − 1 − 1
)
=

α

N − 1 (1, ..., 1)

and
βA

(j)
1j

({
A
(j)
{jk}i>k>j

})
= βα (1) ((1)− δjk) = βα (N − 1) (1)

Then E and F are given by:

E =
√
βA

(j)
1j

((√
β
{
A
(j)
{kj}i>k>j

})−1({
βA

(1)
jj +A

(j)
jj , βA

(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk

}
G+

√
βA

(j)
j1

))
− βA(j)1j A

(j)
jk G

=
α

N − 1 (1, ..., 1)
((
(1 + 2β + β ((N − 2) (1)))α

√
β
V N

N − 1 (1, ..., 1)
t

)
+
√
βα (1, ..., 1)

t

)

−βα (1, ..., 1) ((1)− δjk)α
√
β
V N

N − 1 (1, ..., 1)
t

=
αN

N − 1

((
(1 + 2β + β ((N − 2)N))α

√
β
V N

N − 1

)
+
√
βα

)
− βα2

√
βV N2

= N
√
βα2

N − 1 +NV (1 + β)
(N − 1)2
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F =

(√
βA

(j)
1j

(√
β
{
A
(j)
{kj}1>k>j

})−1({
βA

(i)
jj +A

(j)
jj , βA

(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk

}
H +

√
β
{
A
(j)
{jk}1>k>j

})
− βA(j)1j A

(j)
jk H

)

=
α

N − 1 (1, ..., 1)
(
(1 + 2β + β ((N − 2) (1)))

√
βV (1) +

√
β ((1)− δjk)

)
− βα (1, ..., 1) ((1)− δjk)

√
βV (1)

= (1, ..., 1)

(
α

N − 1
(
(1 + 2β + β ((N − 2)N))

√
βV N +

√
β (N − 1)

)
− βα (N − 1)

√
βV N

)

= (1, ..., 1)
√
βα

N − 1 +NV (1 + β)
N − 1

The case N = 1 has to be considered separately, since for N = 1,
{
A
(j)
{kj}i>k>j

}
= 0. We can however

recover the solution by letting
{
A
(j)
{kj}i>k>j

}
= ε, and considering the limit ε → 0. We look for a solution:

H =
√
βW . (235) becomes:

((
βW (ε)

−1
+ β

)
α2 + 1

)
((1 + β)W + ε) + βεW 2 − β2 (W + ε)α2εW

or, when reorganized in W .

(
βε− α2β2ε+ α2 β

ε
(β + 1)

)
W 2 +

(
(β + 1)

(
βα2 + 1

)
+ α2β − α2β2ε2

)
W + ε

(
βα2 + 1

)
= 0

Looking for a solution W = εw, yields by a first order expansion in ε:

0 = ε
(
w
(
(β + 1)

(
βα2 + 1

)
+ α2β

)
+ α2β + w2α2β (β + 1) + 1

)

and the solution w = − 1
β+1 , which allows to recover the solution obtained by solving directly (233):

H = −
√
β

β + 1
ε→ 0

G = H
({
A
(j)
{jk}i>k>j

})−1
A
(j)
ji

= H (ε)
−1
α

= −
√
β

β + 1
ε (ε)

−1
α = −

√
β

β + 1
α

E =

(√
βA

(j)
1j

((√
β
{
A
(j)
{kj}i>k>j

})−1({
βA

(1)
jj +A

(j)
jj , βA

(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk

}
G+

√
βA

(j)
j1

))
− βA(j)1j A

(j)
jk G

)

=
(
α
(
(ε)

−1
(
(1 + β)G+

√
βα
))
− βαεG

)
→ 0

F =

(√
βA

(j)
1j

(√
β
{
A
(j)
{kj}1>k>j

})−1({
βA

(i)
jj +A

(j)
jj , βA

(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk

}
H +

√
β
{
A
(j)
{jk}1>k>j

})
− βA(j)1j A

(j)
jk H

)

=
(
α (ε)

−1
(
(1 + β)H +

√
βε
)
− βαεH

)
→ 0

Having found the matrices E, F , G and H so that the dynamic matrix D for the first agent is known, one
can find the effective action. We use the general formula (205) developped in the the previous section:

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t− 1)− X̄(i)e

i

)
(236)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))
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where we have introduced some objectives X̄
(i)e
i , X̄

(i)e
j for the first agent. In the text, these objectives are

set to 0, since we want to focus on the dynamical pattern of the system rather than on it’s equilibrium. The
matrices Mii, Mij , Nii are computed in Appendix 1, (27). They are:

Nii = ((A− C) (D − 2) + 2B)Sii − ((A− C) (D − 2) + 2B)
S
ij

(
((A− C) (D − 2) + 2B)Sjj

)−1 (
((A− C) (D − 2) + 2B)Sji

)

Mii = (Nii)

((
((A− C) (D − 2) + 2B)S

)−1
(A+ C)

)

ii

Mij = (Nii)

((
((A− C) (D − 2) + 2B)S

)−1
(A+ C)

)

ij

where the upperscript S denotes the symetrization of a matrix. We first need to compute the symetrized
matrix ((A− C)D + 2 (B −A))S . Since C is antisymetric,

((A− C) (D − 2) + 2B)S = ((A− C)D + 2 (B −A))S

As before, we start with the case N > 1, and we will consider the case N = 1 later. For N > 1, the relevant
matrices are:

(A− C) =
√
β

(
0 A

(j)
1j

0
{
A
(j)
jk

}
)
=
√
β

(
0 (1, ..., 1)α
0 (1)− 1

)
(237)

(A+ C) =
√
β

(
0 0

α (1, .., 1)
t
(1)− 1

)

D =

(
E F

G H

)
=
√
β

(
Nα2

N−1+NV (1+β)
(N−1)2 (1, ..., 1)αN−1+NV (1+β)

N−1
αNV+W

N−1 (1, .., 1)
t

V (1) +W

)

B −A =




1 + βA
(j)
ij A

(j)
ji βA

(j)
ij A

(j)
jk

(
βA

(j)
ij A

(j)
jk

)t




(
βA

(1)
jj +A

(j)
jj

)

βA
(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk








=

(
1 + βα2 β (N − 1) (1, ..., 1)

(β (N − 1) (1, ..., 1))t (1 + 2β) + β ((N − 2) (1))

)

And we find:

((A− C)D + 2 (B −A))

=

( (
1 + βα2

)
+ βα2N NV+W

N−1 β (1, ..., 1) (α (V N +W ) + (N − 1))
β (α (NV +W ) + (N − 1)) (1, .., 1)t β (V (N − 1) +W + (N − 2)) (1)− βW + (1 + 2β)

)

The inverse of this block matrix is given by:

((A− C)D + 2 (B −A))−1 =
(
X Y

Z T

)

with:
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X =

(
α2N

NV +W

N − 1 +
(
1 + βα2

)
− Nβ2 (α (V N +W ) + (N − 1))2 (2β − βW + 1)

((1 + 2β)− βW ) ((1 + 2β)− βW +Nβ (V (N − 1) +W + (N − 2)))

)−1

Y = − (1, .., 1)






(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

)
(1)

−βW + (1 + 2β)



−1

β
(α (NV +W ) + (N − 1))
(1 + βα2) + βα2N NV+W

N−1




Z = −



(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

)
(1)

−βW + (1 + 2β)



−1

β
(α (NV +W ) + (N − 1))
(1 + βα2) + βα2N NV+W

N−1
(1, .., 1)

t

T =



(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

βα2N NV+W
N−1 +(1+βα2)

)
(1)

−βW + (1 + 2β)



−1

These terms involve the following quantity:

T =

((
β (V (N − 1) +W + (N − 2))− β2 (α (NV +W ) + (N − 1))2

(1 + βα2) + βα2N NV+W
N−1

)
(1) + (1 + 2β)− βW

)−1

= −

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

)
(1)

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

−

(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

One can compute
(
((A− C)D + 2 (B −A))−1 (A+ C)

)
by using (237). Some blocks are involved in the

computation, that are:

− (1, ..., 1)
×β (α (V N +W ) + (N − 1)) (β (V (N − 1) +W + (N − 2)) (1)− βW + (1 + 2β))

−1
β (α (NV +W ) + (N − 1))

× (1, .., 1)t

= (1, ..., 1)

×Nβ
2 (α (V N +W ) + (N − 1))2 [β (V (N − 1) +W + (N − 2)) (1)− ((1 + 2β)− βW +Nβ (V (N − 1) +W + β (N −

((1 + 2β)− βW ) ((1 + 2β)− βW +Nβ (V (N − 1) +W + β (N − 2)))
× (1, .., 1)t

− (1, ..., 1) (βα (V N +W ) + (N − 1))
× (β (V (N − 1) +W + (N − 2)) (1)− βW + (1 + 2β))

−1
β (α (NV +W ) + (N − 1)) (1, .., 1)t

=
β2 (α (V N +W ) + (N − 1))2

((1 + 2β)− βW ) ((1 + 2β)− βW +Nβ (V (N − 1) +W + (N − 2)))
×
[
β (V (N − 1) +W + (N − 2))N2 − ((1 + 2β)− βW +Nβ (V (N − 1) +W + (N − 2)))N

]

= − Nβ2 (α (V N +W ) + (N − 1))2 (2β − βW + 1)

((1 + 2β)− βW ) ((1 + 2β)− βW +Nβ (V (N − 1) +W + (N − 2)))
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− (1, .., 1)t β (α (NV +W ) + (N − 1))
(
βα2N

NV +W

N − 1 +
(
1 + βα2

))−1
β (α (NV +W ) + (N − 1)) (1, .., 1)

= −β
2 (α (NV +W ) + (N − 1))2

(1 + βα2) + α2βN NV+W
N−1

(1)

And as a consequence, the blocks involved in
(
((A− C)D + 2 (B −A))−1 (A+ C)

)
are:

(
((A− C)D + 2 (B −A))−1 (A+ C)

)
11

=

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

)
N2

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

−

(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))
N

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

×
√
βα

β (α (NV +W ) + (N − 1))
(1 + βα2) + βα2N NV+W

N−1

= −
α
√
ββN (1 + 2β − βW ) (α(NV+W )+(N−1))

(1+βα2)+βα2N NV+W
N−1

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

(
((A− C)D + 2 (B −A))−1 (A+ C)

)
1j

= (1, .., 1)
(N − 1)

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

×
((

β (V (N − 1) +W + (N − 2))− β2 (α (NV +W ) + (N − 1))2

(1 + βα2) + βα2N NV+W
N−1

)
N

−
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α (NV +W ) + (N − 1))2

(1 + βα2) + βα2N NV+W
N−1

)))

×
√
ββ
(α (NV +W ) + (N − 1))
(1 + βα2) + βα2N NV+W

N−1

= − (1, .., 1)β
√
β

(N − 1) (1 + 2β − βW ) (α(NV+W )+(N−1))
(1+βα2)+βα2N NV+W

N−1

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

The matrices involved in (236) are then ultimately obtained as:
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N11 =
(
1 + βα2

)
+ βα2N

NV +W

N − 1
−β2 (α (NV +W ) + (N − 1))2

×




(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

)
N2

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

−
N

(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))




M11 = − (N11)
α
√
ββN (1 + 2β − βW ) (α(NV+W )+(N−1))

(1+βα2)+βα2N NV+W
N−1

((1 + 2β)− βW )
(
(1 + 2β)− βW +N

(
β (V (N − 1) +W + (N − 2))− β2 (α(NV+W )+(N−1))2

(1+βα2)+βα2N NV+W
N−1

))

M1j = − (N11) (1, .., 1)
√
β (N − 1)β (1 + 2β − βW ) (α(NV+W )+(N−1))

(1+βα2)+βα2N NV+W
N−1

((1 + 2β)−W )
(
(1 + 2β)−W +N

(
(V (N − 1) +W + β (N − 2))− (α(NV+W )+β(N−1))2

(1+βα2)+α2N NV+W
N−1

))

Having found the matrices N11, M11 and M1j , the full action for the system of agents is:

Ueff (Xj (t)) + Ueff (Xi (t)) =
∑

j<1

(
−Xj (t)A

(j)
jj Xj (t) + 2Xj (t)A

(j)
jk (Xk (t− 1)) + 2Xj (t)A

(j)
j1 (X1 (t− 1))

)

+
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t− 1)− X̄(i)e

i

)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)

Then, the mean dynamic, saddle point of the previous global effective utility, is given by the dynamic
evolution: (

Xi (t)− X̄(i)e
i

Xj (t)

)
=M1

(
Xi (t− 1)− X̄(i)e

i

Xj (t− 1)− X̄(i)e
j

)
+M2

(
Xi (t− 1)
Xj (t− 1)

)

with:

M1 =

(
(N11)

−1
M11 (N11)

−1
M1j

0 0

)

M2 =

(
0 0

α (1, .., 1)
t
(1)− 1

)

On one hand, the previous equation leads to an equilibrium defined by:

(
X̄i − X̄(i)e

i

X̄j

)
=M1

(
X̄i − X̄(i)e

i

X̄j − X̄(i)e
j

)
+M2

(
X̄i

X̄j

)

that is: (
X̄i

X̄j

)
= (1−M)−1

((
X̄
(i)e
i

0

)
−M1

(
X̄
(i)e
i

X̄
(i)e
j

))
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with:

M =M1 +M2 =

(
(N11)

−1
M11 (N11)

−1
M1j

α (1)− 1

)

On the other hand, the matrix M and it’s eigenvalues yield the dynamical pattern of the system.

M =

(
(N11)

−1
M11 (N11)

−1
M1j

α (1)− 1

)

=

(
−Nα

√
β

N−1Ω − (1, .., 1)Ω
α (1, .., 1)

t
(1)− 1

)

with:

Ω =
(N − 1) (2β −W + 1) (α(NV+W )+β(N−1))

α2N NV+W
N−1 +(1+βα2)

((1 + 2β)−W )
(
(1 + 2β)−W +N

(
(V (N − 1) +W + β (N − 2))− (α(NV+W )+β(N−1))2

(1+βα2)+α2N NV+W
N−1

))

whose eigenvalues are:

−1, 1
2
(a+ 1)± 1

2

√
a2 − 2 (N − 1) a+ 4Nb

with:

a = −
α
√
βN (2β −W + 1) (α(NV+W )+β(N−1))

α2N NV+W
N−1 +(1+βα2)

((1 + 2β)−W )
(
(1 + 2β)−W +N

(
(V (N − 1) +W + β (N − 2))− (α(NV+W )+β(N−1))2

(1+βα2)+α2N NV+W
N−1

))

b = −
αN (N − 1) (2β −W + 1) (α(NV+W )+β(N−1))

α2N NV+W
N−1 +(1+βα2)

((1 + 2β)−W )
(
(1 + 2β)−W +N

(
(V (N − 1) +W + β (N − 2))− (α(NV+W )+β(N−1))2

(1+βα2)+α2N NV+W
N−1

))

Having found the dynamical pattern for N > 1, we can focus on the case N = 1. For N = 1 the formula
reduce to:

(A− C) =
√
β

(
0 α

0 0

)

(A+ C) =
√
β

(
0 0
α 0

)

D =

(
1√
β
E 1√

β
F

1√
β
G 1√

β
H

)
=

(
0 0

− α
1+β 0

)

B −A =

(
1 + βα2 βα

βα 1 + β

)

leading directly to:

((A− C) (D − 2) + 2B)S = ((A− C)D + 2 (B −A))S

=

(
0 α

0 0

)(
0 0

− α
1+β 0

)
+

(
1 + βα2 βα

βα 1 + β

)

=

(
1 + α2β − α2

β+1 αβ

αβ 1 + β

)
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and we find:

(
((A− C) (D − 2) + 2B)S

)−1
(A+ C) =


 − βα2

β−α2+α2β+1 0

α2
β(α2β2+α2β−α2+β+1)
(αβ2+αβ)(β−α2+α2β+1) 0




As a consequence, the coefficient for the effective utilities are:

Nii = 1 + α2β − α2

β + 1
− α (αβ)2 β

(
α2β2 + α2β − α2 + β + 1

)
(
αβ2 + αβ

)
(β − α2 + α2β + 1)

Mii = (Nii)
βα2

β − α2 + α2β + 1
Mij = 0

The previous formula for the equilibrium and the dynamic matrix are still valid. The matrix M is:

M =

(
βα2

β−α2+α2β+1 0

α 0

)

with eigenvalues α2 β
β−α2+α2β+1 , 0.
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Appendix 6

Recal that the model described above starts with utilities of the kind:

−1
2
(Yi (t)− Yi (t− 1))A (Yi (t)− Yi (t− 1))−

1

2

(
Yi (t)− Ŷ (1)i

)
AD

(
Yi (t)− Ŷ (1)i

)
+Yi (t)C

(
Yi (t− 1)− Ŷ (1)i

)

(238)

where:

A =
√
β




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j








B =




A
(i)
ii +B11 −

√
βε
(i)
ii

{√
β
(
A
(i)
ij +A

(j)
ij

)
, B12

}

{√
β
(
A
(i)
ji +A

(j)
ji

)
, Bt12

}




βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

√
β





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2

, A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j












C =
√
β




0 A
(i)
ij −A

(j)
ij

−
(
A
(i)
ji −A

(j)
ji

)




(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

−A(j){kj}i>k>j , A
(j)
{jk}i>k>j








Start with the utilities of the three agents:

−1
2
(n (t) + 1− w (t− 1))2 − αn (t) sn (t− 1)

−1
2
ρ
(
1− w (t− 1)− f̃

)2
− 1
2
γ (w (t− 1)− w̃)2 − 1

2
s2n (t)−

1

2
s2f (t)−

1

2
s2w (t)

−1
2
(w (t)− w0)2 −

1

2
δn2 (t− 1)− νn (t− 1)w (t)− κsf (t− 1)

(
1− w (t)− f̃

)
− ηsw (t− 1)

(
w (t)− t̃

)

and put them in the following form corresponding to our general model:

(n (t) + 1)
2
+ 2αn (t) sn (t− 1)− 2n (t)w (t− 1)

= (n (t) + 1)
2
+ 2αn (t)

(
1 0 0

)
s (t− 1)− 2n (t)w (t− 1)

s (t) (Id) s (t) + ρ
(
1− w (t− 1)− f̃

)2
+ γ (w (t− 1)− w̃)2

= s (t) (Id) s (t) + (ρ+ γ)

(
w (t− 1)− ρ

(ρ+ γ)

(
1− f̃

)
− γ

(ρ+ γ)
w̃

)2

(w (t)− w0)2 + δn2 (t− 1) + 2νn (t− 1)w (t) + 2κsf (t− 1)
(
1− w (t)− f̃

)
+ 2ηsw (t− 1)

(
w (t)− t̃

)

= (w (t)− w0)2 + δn2 (t− 1) + 2νn (t− 1)w (t)− 2κsf (t− 1)
(
w (t)−

(
1− f̃

))
+ 2ηsw (t− 1)

(
w (t)− t̃

)
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Effective action for the first agent:

Starting with the less strategic agent utility

(n (t)) (1) (n (t))− 2n (t) (1)w (t− 1) + 2αn (t)
(
1 0 0

)
s (t− 1) + 2n (t)

we add some inertia in this agent’s behavior:

(n (t)) (1) (n (t))− ε1n (t)n (t− 1)− 2n (t) (1)w (t− 1) + 2αn (t)
(
1 0 0

)
s (t− 1) + 2n (t)

and the matrices defined in (238) are:

A = −ε1
√
β

B = 1− ε1
√
β

C = 0

The equation for the dynamic matrix (239)

(A− C)D2 + 2 (B −A)D + (A+ C) = 0
reduces to:

AD2 + 2 (B −A)D +AD = 0

with solution
D = 1−

√
−2A−1B

−ε1
√
β

2
D2 + 1− ε1

√
β = 0

D = 1−
√
2
(
1− ε1

√
β
)

ε1
√
β

Ŷ
(1)
i = − 1

1− ε1
√
β

in the limit ε1 → 0

((A− C) (D − 2) + 2B)

= ε1
√
β



√
2
(
1− ε1

√
β
)

ε1
√
β

+ 1


+ 2

(
1− ε1

√
β
)

→ 2

and the effective utility (which in this case is also the intermediate effective utility)
(
Yi (t)− Ŷ (1)i + ((A− C) (D − 2) + 2B)−1

(
(A+ C)

(
Yi (t− 1)− Ŷ (1)i

)))

× ((A− C) (D − 2) + 2B)
(
Yi (t)− Ŷ (1)i + ((A− C) (D − 2) + 2B)−1

(
(A+ C)

(
Yi (t− 1)− Ŷ (1)i

)))

is in this limit ε1 → 0:
(
n (t)−

(
n(1)

)
eff

)
2

(
n (t)−

(
n(1)

)
eff

)
− 2n (t) (1)w (t− 1) + 2αn (t)

(
1 0 0

)
s (t− 1)

with (
n(1)

)
eff

= 0

so that ultimately:

Ueff (n (t)) = 2 (n (t))
2 − 2n (t) (1)w (t− 1) + 2αn (t)

(
1 0 0

)
s (t− 1)

Using (192), the equilibrium value for this agent is just: X̄
(i)e
j = n̄

(1)e
1 = 0.
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Effective action for the second agent:

Here again, we can identify the utility for the second agent. The action for the first agent:

Ueff (n (t)) = 2 (n (t))
2 − 2n (t) (1)w (t− 1) + 2αn (t)

(
1 0 0

)
s (t− 1)

leads to consider the additional quadratic weight βw
2(t−1)
σ2

. Starting with the intertemporal utility for agent
2:

w (t)
2
+ δn2 (t− 1) + 2νn (t− 1)w (t)− 2κsf (t− 1)

(
w (t)−

(
1− f̃

))
+ 2ηsw (t− 1)

(
w (t)− t̃

)
− 2w (t)w0

the identification of the affective utility in (238) starts by setting:

A =
√
β

(
0 − 1

σ2
− ν

− 1
σ2
− ν 0

)

B =

(
1 + β

σ2

√
β
(
− 1
σ2
− ν
)

√
β
(
− 1
σ2
− ν
)

1
σ2
+ βδ

)

C =
√
β

(
0

(
−ν + 1

σ2

)
(
ν − 1

σ2

)
0

)

The equation for the dynamic matrix D

(A− C)D2 + 2 (B −A)D + (A+ C) = 0 (239)

since

A− C = 2
√
β

(
0 − 1

σ2

−ν 0

)

B −A =

(
1 + β

σ2
0

0 1
σ2
+ βδ

)

A+ C = 2
√
β

(
0 −ν
− 1
σ2

0

)

One looks for a solution D =

(
a b

c d

)
for (239):

√
β

(
0 − 1

σ2

−ν 0

)(
a b

c d

)2
+

(
1 + β

σ2
0

0 1
σ2
+ βδ

)(
a b

c d

)
+
√
β

(
0 −ν
− 1
σ2

0

)
= 0

and:

D =

(
0 b

c 0

)

√
β

(
0 − 1

σ2

−ν 0

)(
0 b

c 0

)2
+

(
1 + β

σ2
0

0 1
σ2
+ βδ

)(
0 b

c 0

)
+
√
β

(
0 −ν
− 1
σ2

0

)

b

(
1

σ2
β + 1

)
−
√
βν − 1

σ2
bc
√
β = 0

c

(
βδ +

1

σ2

)
− 1

σ2

√
β − bc

√
βν = 0

b =
1

σ2c
√
βν

(
c
(
1 + σ2βδ

)
−
√
β
)
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(
1 + σ2βδ

)√
βc2 −

(
δσ4β − σ4βν2 + δσ2β2 + σ2 + 2β

)
c+

(
β + σ2

)√
β = 0

c =

(
δσ2β

(
σ2 + β

)
−
(
σ2
)2
βν2 + σ2 + 2β

)
−
√(

δσ2β (σ2 + β)− (σ2)2 βν2 + σ2 + 2β
)2
− 4 (β + σ2) (1 + σ2βδ)β

2 (1 + σ2βδ)
√
β

b =
σ2 + σ2β

(
σ2ν2 + βδ + σ2δ

)
−
√(

δσ2β (σ2 + β)− (σ2)2 βν2 + σ2 + 2β
)2
− 4 (β + σ2) (1 + σ2βδ)β

2 (σ2 + β)σ2
√
βν

= 1− σ2
(
δ − ν2

)
β
√
β +O

(√
ββ2

)

since C is antisymetric:

1

2
((A− C) (D − 2) + 2B)S = (A− C)D + 2 (B −A)

1

2
((A− C) (D − 2) + 2B)S =

√
β

(
0 − 1

σ2

−ν 0

)(
0 b

c 0

)
+

(
1 + β

σ2
0

0 1
σ2
+ βδ

)

=

(
1
σ2
β − 1

σ2
c
√
β + 1 0

0 βδ + 1
σ2
− b√βν

)

From now on the upperscript S will be omitted.As a consequence, the intermediate effective utility (see
appendix 1) is:

(
Yi (t)− Ŷ (1)i + ((A− C) (D − 2) + 2B)−1

(
(A+ C)

(
Yi (t− 1)− Ŷ (1)i

)))

× ((A− C) (D − 2) + 2B)
(
Yi (t)− Ŷ (1)i + ((A− C) (D − 2) + 2B)−1

(
(A+ C)

(
Yi (t− 1)− Ŷ (1)i

)))

The relevant matrices are then:

(
((A− C) (D − 2) + 2B)S

)−1
(A+ C) =

(
2

(
1
σ2
β − 1

σ2
c
√
β + 1 0

0 βδ + 1
σ2
− b√βν

))−1
2
√
β

(
0 −ν
− 1
σ2

0

)

=

(
0 − σ2

√
βν

σ2+β−c√β
−

√
β

σ2βδ−σ2b√βν+1 0

)

The matrices needed to compute the effective action are then:

Nii = ((A− C) (D − 2) + 2B)ii − ((A− C) (D − 2) + 2B)ij
(
((A− C) (D − 2) + 2B)jj

)−1 (
((A− C) (D − 2) + 2B)ji

)

= 1 +
1

σ2
β − c

σ2

√
β

= 1 +
1

σ2
β

−

(
δσ2β

(
σ2 + β

)
−
(
σ2
)2
βν2 + σ2 + 2β

)
−
√(

δσ2β (σ2 + β)− (σ2)2 βν2 + σ2 + 2β
)2
− 4 (β + σ2) (1 + σ2βδ)β

2σ2 (1 + σ2βδ)

Mii = (Nii)
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ii

= 0

Mij = (Nii)
1√
β

(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ij
= −

(
1 +

1

σ2
β − c

√
β

)
σ2ν

σ2 + β − σ2c√β = −ν

N̂ii = Nii +Mii = Nii = 1 +
1

σ2
β − c

√
β
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To find the equilibrium values X̄
(2)e
j , we use (192) and our previous result that X̄

(1)e
1 = 0. Moreover,

given the utility of the second agent, it’s optimal goal would be w = 0.Then, X̄
(i)
j = 0. In that case (192)

becomes: X̄
(i)e
j = 0. As a consequence, the effective action:

Ueff (Xi (t)) = −1
2

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)
Mii

(
Xj (t− 1)−

(
Ŷ
(1)
i

)
j

)

−
(
Xi (t)−

(
Ŷ
(1)
i

)
j

)
Mij

(
1√
β

(
Xj (t− 1)−

(
Ŷ
(1)
i

)
j

))

+
1

2

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)
(Nii)

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)
+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

becomes for the second agent:

Ueff (w (t)) =

(
1 +

1

σ2
β − c

√
β

)
w2 (t)−2νw (t)n (t− 1)+κsf (t− 1)

(
1− w (t)− f̃

)
+ηsw (t− 1)

(
w (t)− t̃

)

which implies the inertia:
ε12 = ν

Effective Action for the third agent

Starting with the utility for the third agent at time t,

s (t) (Id) s (t) + (ρ+ γ)

(
w (t− 1)− ρ

(ρ+ γ)

(
1− f̃

)
− γ

(ρ+ γ)
w̃

)2
(240)

and including the additional normalization factor for agents 1 and 2 effective utility:

β

σ2

(
−w (t− 1) + α

(
1 0 0

)
s (t− 1)

)2
+

β

σ2
1(

1 + 1
σ2
β − c√β

) (νn (t− 1)− κsf (t− 1) + ηsw (t− 1))2

=
β

σ2

(
w2 (t− 1) + α2s2n (t− 1)− 2αw (t− 1) sn (t− 1) + ν2n2 (t− 1)

+κ2s2f (t− 1) + η2s2w (t− 1)− 2νκn (t− 1) sf (t− 1) + 2νηn (t− 1) sw (t− 1)− 2κηsf (t− 1) sw (t− 1)

)

and defining as before: η, κ, α→ × 1
β

A =

√
β

σ2




0 0 0 η 0
0 0 0 −κ 0
0 0 0 0 α

η −κ 0 0 −1− ε12
0 0 α −1− ε12 0




B =
1

σ2




σ2 + β η
2

d
−β κη

d
0

√
βη −β νη

d

−β κη
d

σ2 + β κ
2

d
0 −√βκ β νκ

d

0 0 σ2 + β α
2

d
−βα √

βα√
βη −√βκ −βα d+ β + σ2βω

√
β (−1− ν)

−β νη
d

β νκ
d

√
βα

√
β (−1− ν) 1 + β ν

2

d




C =

√
β

σ2




0 0 0 −η 0
0 0 0 κ 0
0 0 0 0 −α
η −κ 0 0 1− ε12
0 0 α −1 + ε12 0



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where we set

d = 1 +
1

σ2
β − c

σ2

√
β

ω = (ρ+ γ)

The equation for the dynamic matrix D is then:

(A− C)D2 + 2 (B −A)D + (A+ C) = 0 (241)

0 =
√
β




0 0 0 η 0
0 0 0 −κ 0
0 0 0 0 α

0 0 0 0 −1
0 0 0 −ε12 0



D2 +




σ2 + β η
2

d
−β κη

d
0 0 −β νη

d

−β κη
d

σ2 + β κ
2

d
0 0 β νκ

d

0 0 σ2 + β α
2

d
−βα 0

0 0 −βα d+ β + σ2βω 0

−β νη
d

β νκ
d

0 0 1 + β ν
2

d



D(242)

+
√
β




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
η −κ 0 0 −ε12
0 0 α −1 0




(
B11 − ΓΘ−1B21

)−1 (
ΓΘ−1 (B22G+Φ)−B12G

)





1 + β

σ2
η2 − β

σ2
κη 0

− β
σ2
κη 1 + β

σ2
κ2 0

0 0 1 + β
σ2
α2


−




η 0
−κ 0
0 α



(

0 −1
−ε12 0

)−1(
0 0 − β

σ2
α

β
σ2
νη − β

σ2
νκ 0

)

−1

×






η 0
−κ 0
0 α



(

0 −1
−ε12 0

)−1((
d+ β

σ2
0

0 1 + ν2 β
σ2

)
G+ β

(
η −κ 0
0 0 α

))
−




0 β
σ2
νη

0 − β
σ2
νκ

− β
σ2
α 0


G




Of the type: (
0 Γ
0 Θ

)
D2 +

(
B11 B12
B21 B22

)
D +

(
0 0
Φ Ψ

)
= 0

D =
D√
β

with:

Γ =




η 0
−κ 0
0 α




Θ =

(
0 −1

−ε12 0

)

∆ =

(
β (γ + ρ) +N22 0

0 1

)

Φ = β

(
η −κ 0
0 0 α

)

Ψ = β

(
0 −ε12
−1 0

)
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


η 0
−κ 0
0 α



(

0 −1
−ε12 0

)−1

D =

(
E F

G H

)

D2 =

(
E2 + FG EF + FH
GE +HG GF +H2

)

The equation for D:

(
0 Γ
0 Θ

)
D2 +

(
B11 B12
B21 B22

)
D +

(
0 0
Φ Ψ

)
= 0

can be decomposed in blocks:

(
Γ (GE +HG) Γ

(
GF +H2

)

Θ(GE +HG) Θ
(
GF +H2

)
)
+

(
B11E +B12G B11F +B12H
B21E +B22G B21F +B22H

)
+

(
0 0
Φ Ψ

)
= 0

leading to two systems: {
Γ (GE +HG) + (B11E +B12G) = 0

Θ (GE +HG) + (B21E +B22G) + Φ = 0

(GE +HG) = −Θ−1 ((B21E +B22G) + Φ)
ΓΘ−1 ((B21E +B22G) + Φ) = (B11E +B12G)

E =
(
B11 − ΓΘ−1B21

)−1 (
ΓΘ−1 (B22G+Φ)−B12G

)

and {
Γ
(
GF +H2

)
+ (B11F +B12H) = 0

Θ
(
GF +H2

)
+ (B21F +B22H) + Ψ = 0

F =
(
B11 − ΓΘ−1B21

)−1 (
ΓΘ−1 (B22H +Ψ)−B12H

)

The two remaining equations:

{
Γ (GE +HG) + (B11E +B12G) = 0

Θ (GE +HG) + (B21E +B22G) + Φ = 0

{
Γ
(
GF +H2

)
+ (B11F +B12H) = 0

Θ
(
GF +H2

)
+ (B21F +B22H) + Ψ = 0

(ΓG+B11)E + (ΓHG+B12G) = 0

(ΓG+B11)F +
(
ΓH2 +B12H

)
= 0

allow to find a relation between G and H. Let:

V =

(
0 1 0
0 0 1

)

multiply the first equation by V t.

Multiply the first equation by
(
G (V )

t
)−1

and the second one by H−1. It yields:

(ΓG+B11)E (V )
t
(
G (V )

t
)−1

= (ΓG+B11)FH
−1
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and then, since (ΓG+B11) is square:

E (V )
t
(
G (V )

t
)−1

= FH−1

Using the equation for E and F gives:

E (V )
t
(
G (V )

t
)−1

=
(
B11 − ΓΘ−1B21

)−1
(
ΓΘ−1

(
B22 +Φ(V )

t
(
G (V )

t
)−1 )

−B12
)

FH−1 =
(
B11 − ΓΘ−1B21

)−1 (
ΓΘ−1

(
B22 +ΨH

−1)−B12
)

ΓΘ−1
(
B22 +Φ(V )

t
(
G (V )

t
)−1 )

= ΓΘ−1
(
B22 +ΨH

−1)

multiply by (V )
t
on the left and simplify by (V )

t
ΓΘ−1:

Φ (V )
t
(
G (V )

t
)−1

= ΨH−1

Γt (V )
t
(
G (V )

t
)−1

= ΘtH−1

since (V Γ)
t
= (V Γ), it leads ultimately to:

H =
(
G (V )

t
)
(V Γ)

−1
Θt

This last equation allows to reduce the problem to find (GV t). Actually, we can take benefit from the
arbitraryness of the matrix V to make an other choice. Let

W =

(
1 0 0
0 0 1

)

one also have:
H =

(
G (W )

t
)
(WΓ)

−1
Θt

and the two identities for H yield:
(
G (V )

t
)
(V Γ)

−1
=
(
G (W )

t
)
(WΓ)

−1

Writing

G =

(
a b c

d e f

)

the previous equation leads directly to:

a = −η
κ
b

d = −η
κ
e

Thus, it remains to determine

GV t =

(
b c

e f

)

To do so, recall that:

E =
(
B11 − ΓΘ−1B21

)−1 (
ΓΘ−1 (B22G+Φ)−B12G

)

=




0 0 −η f+αβ
σ2ν

0 0 κ f+αβ
σ2ν

dαη −κβ+bd+σ2bβω
κ(α2β+σ2d−dα2β) dα κβ−bd−σ2bβω

α2β+σ2d−dα2β 0



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F =
(
B11 − ΓΘ−1B21

)−1 (
ΓΘ−1 (B22H +Ψ)−B12H

)

=




η f+αβ
σ2να

0

−κ f+αβ
σ2να

0

0 dαν κβ−bd−σ2bβω
κ(α2β+σ2d−dα2β)




H =
(
G (W )

t
)
(WΓ)

−1
Θt

=

(
0 b

κ
ν

− f
α

0

)

and insert these relations in (242), the equation for D to find:

D =
1√
β




0 0 −η f+αβ
σ2ν

η f+αβ
σ2να

0

0 0 κ f+αβ
σ2ν

−κ f+αβ
σ2να

0

dαη −κβ+bd+σ2bβω
κ(α2β+σ2d−dα2β) dα κβ−bd−σ2bβω

α2β+σ2d−dα2β 0 0 dαν κβ−bd−σ2bβω
κ(α2β+σ2d−dα2β)

− η
κ
b b 0 0 b

κ
ν

0 0 f − f
α

0




replace b by bκ and set r2 = κ2 + η2, then the equation for b and f are:

0 = bα3β2 − α3β2 + bd2fα2 − bdα3β2 + σ2bd2α+ bdα3β + bfα2β + σ2bdf − dfα2β
+σ2bdαβ + σ2bα3β2ω − σ2dαβ − bdfα2β + σ4bdαβω + σ2bdfα2βω

0 = −fβr2 − σ2df + bdfr2 − αβ2r2 − σ2fβν2 + bdαr2β − σ2dαβ + σ2bdfν2

with:

d = 1 +
1

σ2
β

− 1

σ2

(
δσ2β

(
σ2 + β

)
− σ4βν2 + σ2 + 2β

)
−
√(

δσ2β (σ2 + β)− (σ2)2 βν2 + σ2 + 2β
)2
− 4 (β + σ2) (1 + σ2βδ)β

2 (1 + σ2βδ)

And the relevant matrices for our problem become:

√
βσ2 ((A− C)D + 2 (B −A))

=




βη2+σ2d−bdη2
d

ηκ−β+bd
d

0 0 νη−β+bd
d

ηκ−β+bd
d

κ2β+σ2d−bdκ2
d

0 0 νκβ−bd
d

0 0 α2β+σ2d+dfα
d

− (f + αβ) 0

0 0 − (f + αβ) f+dα+αβ+σ2αβω
α

0

νη−β+bd
d

νκβ−bd
d

0 0 d+βν2−bdν2
d



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(
((A− C)D + 2 (B −A))S

)−1
(A+ C)

=




βη2+σ2d−bdη2
d

ηκ−β+bd
d

0 0 νη−β+bd
d

ηκ−β+bd
d

κ2β+σ2d−bdκ2
d

0 0 νκβ−bd
d

0 0 α2β+σ2d+dfα
d

− (f + αβ) 0

0 0 − (f + αβ) f+dα+αβ+σ2αβω
α

0

νη−β+bd
d

νκβ−bd
d

0 0 d+βν2−bdν2
d




−1


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
η −κ 0 0 −ν
0 0 α −1 0




=




0 0 ανη−β+bd
κ

νη β−bd
κ

0

0 0 ακν β−bd
κ

κν−β+bd
κ

0

ηdα f+αβ
χ

−κdα f+αβ
χ

0 0 −νdα f+αβ
χ

ηαα
2β+σ2d+dfα

χ
−καα2β+σ2d+dfα

χ
0 0 −ναα2β+σ2d+dfα

χ

0 0 ακ
2β+βη2+σ2d−bdκ2−bdη2

κ

κ2β+βη2+σ2d−bdκ2−bdη2
κ

0




with:

χ = α3β2 + d2fα2 − dα3β2 + σ2d2α+ dα3β + fα2β + σ2df + σ2dαβ + σ2α3β2ω − dfα2β +
(
σ2
)2
dαβω + σ2dfα2βω

κ = −κ2β − βη2 − σ2d+ bdκ2 + bdη2 − σ2βν2 + σ2bdν2

which leads to the expression for Nii, Mii, Mij :

σ2ii = ((A− C) (D − 2) + 2B)ii
− ((A− C) (D − 2) + 2B)ij

(
((A− C) (D − 2) + 2B)jj

)−1 (
((A− C) (D − 2) + 2B)ji

)

=




βη2+σ2d−bdη2
d

ηκ−β+bd
d

0

ηκ−β+bd
d

κ2β+σ2d−bdκ2
d

0

0 0 α2β+σ2d+dfα
d




−




0 νη−β+bd
d

0 νκβ−bd
d

− (f + αβ) 0



(

f+dα+αβ+σ2αβω
α

0

0 d+βν2−bdν2
d

)−1

×
(

0 0 − (f + αβ)
νη−β+bd

d
νκβ−bd

d
0

)

×




βη2+σ2d−bdη2
d

ηκ−β+bd
d

0 0 νη−β+bd
d

ηκ−β+bd
d

κ2β+σ2d−bdκ2
d

0 0 νκβ−bd
d

0 0 α2β+σ2d+dfα
d

− (f + αβ) 0

0 0 − (f + αβ) f+dα+αβ+σ2αβω
α

0

νη−β+bd
d

νκβ−bd
d

0 0 d+βν2−bdν2
d




=




−βη2−σ2d+bdη2−σ2βν2+σ2bdν2
−d−βν2+bdν2 κη β−bd

−d−βν2+bdν2 0

κη β−bd
−d−βν2+bdν2

−κ2β−σ2d+bdκ2−σ2βν2+σ2bdν2
−d−βν2+bdν2 0

0 0 χ
d(f+dα+αβ+σ2αβω)




Mii = Nii

(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ii
= Nii




0 0 ανη−β+bd
κ

0 0 ακν β−bd
κ

ηdα f+αβ
χ

−κdα f+αβ
χ

0




Mij = Nii

(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ij
= Nii




νη β−bd
κ

0

κν−β+bd
κ

0

0 −νdα f+αβ
χ



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and the effective utility for the third agent is:

Ueff (Xi (t)) =
1

2

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)
Nii

(
Xi (t)−

(
Ŷ
(1)
i

)
i

)
−
(
Xi (t)−

(
Ŷ
(1)
i

)
j

)
Mij

(
Xj (t− 1)−

(
Ŷ
(1)
i

)
j

)

Or, rexpressed in the variables s (t):

Ueff (s (t)) =

(
s (t)−

(
s(3)
)
eff

)
Nii

(
s (t)−

(
s(3)
)
eff

)
−
(
s (t)−

(
s(3)
)
eff

)
Mij

(
w (t− 1)−

(
w(3)

)
eff

n (t− 1)−
(
n(3)

)
eff

)

where the constants 


(
s(3)
)
eff(

w(3)
)
eff(

n(3)
)
eff


 = X̄(3)e

form a 5 dimensional vector. The vector X̄(3)e satisfy (192), which reduces to:

X̄(3)e =




A
(i)
ii +B11 −

√
βε
(i)
ii

{
B12, 2

√
β
(
A
(i)
ij

)S}

{
Bt12, 2

√
β
(
A
(j)
ji

)S}




(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22,

(
2
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

)S








−1

(243)

×








A
(i)
ii −

√
β
ε
(i)
ii

2

{
B
(3)
12

2 ,
√
βA

(i)
ij

}

(
B
(3)
12

)t

2 βA
(i)
jj +

B
(3)
22

2



(
X̄
(i)
j

)




given that
(
X̄
(j)e
j

)
= 0, as shown in the previous computations for the first two agents. Moreover (240)

shows that:

(
X̄
(i)
j

)
=

(
ρ

(ρ+ γ)

(
1− f̃

)
+

γ

(ρ+ γ)
w̃

)



0
0
0
1
0




and then (243) simplifies as:

X̄(3)e

(
ρ

(ρ+γ)

(
1− f̃

)
+ γ

(ρ+γ) w̃
)

=




A
(i)
ii +B11 −

√
βε
(i)
ii

{
B12,

√
β
(
A
(i)
ij +A

(j)
ij

)}

{
Bt12,

√
β
(
A
(j)
ji +A

(j)
ji

)}




(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22,

(
2
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

)S








−1

×




{
B
(3)
12

2 ,
√
βA

(i)
ij

}(
1
0

)

(
βA

(i)
jj +

B
(3)
22

2

)(
1
0

)




= B−1 ×




{
B
(3)
12

2 ,
√
βA

(i)
ij

}(
1
0

)

(
βA

(i)
jj +

B
(3)
22

2

)(
1
0

)



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Using again (240) yields A
(i)
ij = 0, A

(i)
jj =

(
ρ+ γ 0
0 0

)
, whereas (191) gives B

(3)
12 and B

(3)
22 :

B
(3)
12 = β

(
A
(j)
ij

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))

B
(3)
22 = β

(
A
(j)
kj

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))S

Given the effective action for the two first agents, one has:
(
ε
(j)
jj

)
eff

= 0

(
ε
(j)
{jk}k<j

)
eff

=

(
0 −√βν
0 0

)

(
A
(j)
jj

)
eff

=

(
1 + 1

σ2
β − c√β 0
0 1

)

A
(j)
ij =




√
βη 0

−√βκ 0
0

√
βα




A
(j)
kj =

(
0 −√βν

−√β 0

)

B
(3)
12 = β






√
βη 0

−√βκ 0
0

√
βα



(
1 + 1

σ2
β − c√β 0
0 1

)−1(
0 −√βν
0 0

)
 =



0 −σ2β2ν η

σ2+β−σ2c√β
0 σ2κβ2 ν

σ2+β−σ2c√β
0 0




B
(3)
22 = β

((
0 −√βν

−√β 0

)(
1 + 1

σ2
β − c√β 0
0 1

)−1(
0 −√βν
0 0

))
=

(
0 0

0 σ2β2 ν
σ2+β−σ2c√β

)

and then: 


{
B
(3)
12

2 ,
√
βA

(i)
ij

}(
1
0

)

(
βA

(i)
jj +

B
(3)
22

2

)(
1
0

)


 =




B
(3)
12

2

(
1
0

)

(
βA

(i)
jj +

B
(3)
22

2

)(
1
0

)


 = β (ρ+ γ)

so that:

X̄(3)e = β
(
ρ
(
1− f̃

)
+ γw̃

)
B−1




0
0
0
1
0




=




−√βη (d− βν) α2β+σ2d−dα2β
C

κ
√
β (d− βν) α2β+σ2d−dα2β

C

−σ2dαβν d−βν
C

α2((1−d)r2+σ2ν2−dα2r2)β2+d
(
(σ2)

2
ν2−σ2dα2+σ2α2+σ2r2

)
β+(σ2)

2
d2

C√
β
α2(1−d)r2β2+σ2d((1−d+ν)α2+r2)β+d2(σ2)2(1+ν)

C




with:

C = α2
(
ν2 − dν2 + κ2ω + η2ω + σ2ν2ω − dκ2ω − dη2ω

)
β3

+d
(
σ2ν2 − 2α2ν +

(
σ2
)2
ν2ω + σ2α2ω + σ2κ2ω + σ2η2ω + 2dα2ν − σ2dα2ω

)
β2

+d2
(
−2σ2ν + α2 +

(
σ2
)2
ω − dα2

)
β + σ2d3
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Global action for the system

Gathering the previous result, one can gather all effective utilities into the global system utility:

Ueff =

(
s (t)−

(
s(3)
)
eff

)
Nii

(
s (t)−

(
s(3)
)
eff

)
−
(
s (t)−

(
s(3)
)
eff

)
Mij

(
w (t− 1)−

(
w(3)

)
eff

n (t− 1)−
(
n(3)

)
eff

)

+(1− c)w2 (t) + 2νw (t)n (t− 1) + κsf (t− 1)
(
1− w (t)− f̃

)
+ ηsw (t− 1)

(
w (t)− t̃

)

+(n (t))
2 − 2n (t)w (t− 1) + 2αn (t)

(
1 0 0

)
s (t− 1)

We can first study the stabilty of the system by having a look on the clasical system associated to this
effective utility. Discarding the equilibrium value, the first order condition can expressed by:




N11 0 0
0 N22 0
0 0 1


X (t) =




M11 M12 M13

M21 M22 M23

M31 M32 0


X (t− 1)

where X (t) concatenates in column the vectors s (t), w (t) and n (t). The solution of the system is then:

X (t) =



(N11)

−1
M11 (N11)

−1
M12 (N11)

−1
M13

(N22)
−1
M21 (N22)

−1
M22 (N22)

−1
M23

M31 M32 0


X (t− 1) (244)

≡ MX (t− 1)

Recall that
Mij = (Nii)

(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ij

and as a consequence one obtains the various matrices involved in the dynamics:

(N11)
−1
M11 =

(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
11

=




0 0 αβνη+σ
2bηε12
%

0 0 −ακβν+σ2bκε12
%

1
β
η (αβ − bdα) −κ

β
(αβ − bdα) 0




(N11)
−1
(M12,M13) =

((
((A− C) (D − 2) + 2B)−1 (A+ C)

)
12
,
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
13

)

=



−βνη+σ2bηε12

%
0

κβν+σ2bκε12
%

0

0 − 1
β
ε12 (αβ − bdα)




with:

% = σ2bκ2 − κ2β − βν2 − βη2 − σ2 + σ2bη2 + σ2bε212 + bκ2βν2 + bβν2η2 + bκ2βε212 + bβη2ε212
+2bκ2βνε12 + 2bβνη

2ε12

and: (
(N22)

−1
M21 (N22)

−1
M22 (N22)

−1
M23

M31 M32 0

)
=

(
η
d

−κ
d

0 0 −ν
d

0 0 α −1 0

)

The determinant has three nul eigenvalues, and the two last ones satisfy:

λ = ±
√
σ2ν (d+ βν2 − bdν2)

×
√

χ− d2α2 (f + αβ)
d (−σ2d+ (bd− β) r2 − σ2βν2 + σ2bdν2)χ
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with r2 = η2+κ2. Then one can study these eigenvalues numerically as functions of the system parame-
ters. This will be the goal of next paragraph.

The effective utility allows also to study the stability of the all structure in interaction with a large set
of similar structures. We rewrite:

Ueff =
(
X (t)− X̄e

)



N11 0 0
0 N22 0
0 0 1


(X (t)− X̄e

)
−
(
X (t)− X̄e

)


0 M12 M13

0 0 0
0 0 0


(X (t− 1)− X̄e

)
(245)

−
(
X (t)− X̄(2)

2

)



M11 0 0
M21 M22 M23

M31 M32 0


X (t− 1)

where:

X̄e =
(
X̄(1)e, 0, 0

)t

and:

X̄
(2)
2 =

(
ρ

(ρ+ γ)

(
1− f̃

)
+

γ

(ρ+ γ)
w̃

)



0
0
0
1
0




Then, the saddle point equation for the equilibrium value X̄, derived from (245):

0 = 2




N11 0 0
0 N22 0
0 0 1


(X̄ − X̄e

)
− 2



0 M12 M13

0 0 0
0 0 0



S

(
X̄ − X̄e

)

−




M11 0 0
M21 M22 M23

M31 M32 0


 X̄ −




M11 0 0
M21 M22 M23

M31 M32 0



t (
X̄ − X̄(2)

2

)

or, which is equivalent:

2
(
N −MS

) (
X̄ − X̄e

)
=




M11 0 0
M21 M22 M23

M31 M32 0


 X̄e +




M11 0 0
M21 M22 M23

M31 M32 0



t (
X̄e − X̄(2)

2

)
(246)

≡ 2MSX̄e − (M ′)
t
X̄
(2)
2

whose solution is:

X̄ = X̄e +
(
N −MS

)−1
(
MSX̄e − 1

2
(M ′)

t
X̄
(2)
2

)
(247)

We can now express Ueff (X (t)) as:

Ueff
(
X̄
)
=

(
X̄ − X̄e

) (
N − (M −M ′)

S
) (
X̄ − X̄e

)
−
(
X̄ − X̄(2)

2

)
M ′X̄

=

(
MSX̄e − 1

2
(M ′)

t
X̄
(2)
2

)t (
N −MS

)−1 (
N − (M −M ′)

S
) (
N −MS

)−1
(
MSX̄e − 1

2
(M ′)

t
X̄
(2)
2

)

−
(
X̄ − X̄(2)

2

)
M ′X̄
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Ueff (X (t)) =
(
X (t)− X̄

)
N
(
X (t)− X̄

)
−
(
X (t)− X̄

)
NM

(
X (t− 1)− X̄

)

+Ueff
(
X̄
)

=
(
X (t)− X̄

)
N
(
X (t)− X̄

)
−
(
X (t)− X̄

)
M
(
X (t− 1)− X̄

)

+
(
X̄ − X̄e

) (
N − (M −M ′)

S
) (
X̄ − X̄e

)
−
(
X̄ − X̄(2)

2

)
M ′X̄

An other convenient form for Ueff (X (t)) in the sequel is obtained by writing it’s continuous time
approximation (149), plus its constant term:

Ueff (X (t)) =
(
X (t)− X̄

) (
N −MS

) (
X (t)− X̄

)
+
1

2
(X (t)−X (t− 1))

(
MS +N

)
(X (t)−X (t− 1))(248)

−
(
X (t)− X̄

)
MA

(
X (t− 1)− X̄

)

+
(
X̄ − X̄e

) (
N − (M −M ′)

S
) (
X̄ − X̄e

)
−
(
X̄ − X̄(2)

2

)
M ′X̄

One can also consider that some externalities produce an inertia term of the form: with ε > 0, that will seen
below as stabilizing the system, so that ultimately:

Ueff (X (t)) =
(
X (t)− X̄

) (
N −MS

) (
X (t)− X̄

)
(249)

+
1

2
(X (t)−X (t− 1))

(
N +MS

)
(X (t)−X (t− 1))−

(
X (t)− X̄

)
MA

(
X (t− 1)− X̄

)

+
(
X̄ − X̄e

) (
N − (M −M ′)

S
) (
X̄ − X̄e

)
−
(
X̄ − X̄(2)

2

)
M ′X̄

For the purpose of some applications, we record the particular results for β → 0. As explained before, in
that case, the effective utility simplifies to the initial utility:

(n (t) + 1)
2
+ 2αn (t) sn (t− 1)− 2n (t)w (t− 1)

= (n (t) + 1)
2
+ 2αn (t)

(
1 0 0

)
s (t− 1)− 2n (t)w (t− 1)

s (t) (Id) s (t) + ρ
(
1− w (t− 1)− f̃

)2
+ γ (w (t− 1)− w̃)2

= s (t) (Id) s (t) + (ρ+ γ)

(
w (t− 1)− ρ

(ρ+ γ)

(
1− f̃

)
− γ

(ρ+ γ)
w̃

)2

(w (t)− w0)2 + δn2 (t− 1) + 2νn (t− 1)w (t) + 2κsf (t− 1)
(
1− w (t)− f̃

)
+ 2ηsw (t− 1)

(
w (t)− t̃

)

= (w (t)− w0)2 + δn2 (t− 1) + 2νn (t− 1)w (t)− 2κsf (t− 1)
(
w (t)−

(
1− f̃

))
+ 2ηsw (t− 1)

(
w (t)− t̃

)

That can be gathered in a matricial expression:

Ueff (X (t)) = (X (t)−X1) I (X (t)−X1)− 2X (t)MX (t− 1)

with:

M =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
η −κ 0 0 −ν
0 0 α −1 0



=




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

r cos (θ) −r sin (θ) 0 0 −ν
0 0 α −1 0



and X1 =




0
0
0
w0
−1




The saddle point equation:
X̄ = (1−M)−1X1
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yields the "constant term":

Ueff
(
X̄
)
=

(
X̄ −X1

) (
X̄ −X1

)
− 2X̄MX̄

=
(
M (1−M)−1X1

)t (
M (1−M)−1X1

)
− 2

(
(1−M)−1X1

)t
M (1−M)−1X1

=
(
(1−M)−1X1

)t (
M tM − 2M

) (
(1−M)−1X1

)

and we can gather these results:

Ueff (X (t)) =
(
X (t)− X̄

)
I
(
X (t)− X̄

)
−2X (t)MX (t− 1)+

(
(1−M)−1X1

)t (
M tM − 2M

) (
(1−M)−1X1

)

that can be rewritten as in (249):

Ueff (X (t)) =
(
X (t)− X̄

) (
I −MS

) (
X (t)− X̄

)
+
1

2
(X (t)−X (t− 1))

(
ε2 +MS

)
(X (t)−X (t− 1))−

(
X (t)− X̄

)
M

+
(
(1−M)−1X1

)t (
M tM − 2M

) (
(1−M)−1X1

)

The matrices involved in the previous expression are:

(
M tM − 2M

)
=




0 0 0 r cos (θ) 0
0 0 0 −r sin (θ) 0
0 0 0 0 α

0 0 0 0 −1
0 0 0 −ν 0







0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

r cos (θ) −r sin (θ) 0 0 −ν
0 0 α −1 0




−2




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

r cos (θ) −r sin (θ) 0 0 −ν
0 0 α −1 0




=




r2 cos2 θ −r2 cos θ sin θ 0 0 −rν cos θ
−r2 cos θ sin θ r2 sin2 θ 0 0 rν sin θ

0 0 α2 −α 0
−2r cos θ 2r sin θ −α 1 2ν
−rν cos θ rν sin θ −2α 2 ν2




(1−M)−1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−r cos θ
ν−1 r sin θ

ν−1 α ν
ν−1 − 1

ν−1
ν
ν−1

r cos θ
ν−1 −r sin θ

ν−1 − α
ν−1

1
ν−1 − 1

ν−1




(1−M)−1X1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−r cos θ
ν−1 r sin θ

ν−1 α ν
ν−1 − 1

ν−1
ν
ν−1

r cos θ
ν−1 −r sin θ

ν−1 − α
ν−1

1
ν−1 − 1

ν−1







0
0
0
w0
−1



=




0
0
0

− 1
ν−1 (ν + w0)
1

ν−1 (w0 + 1)



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(
(1−M)−1X1

)t (
M tM − 2M

) (
(1−M)−1X1

)

=
(
0 0 0 − 1

ν−1 (ν + w0)
1

ν−1 (w0 + 1)
)

×




r2 cos2 θ −r2 cos θ sin θ 0 0 −rν cos θ
−r2 cos θ sin θ − 1

2r
2 (cos 2θ − 1) 0 0 rν sin θ

0 0 α2 −α 0
−2r cos θ 2r sin θ −α 1 2ν
−rν cos θ rν sin θ −2α 2 ν2







0
0
0

− 1
ν−1 (ν + w0)
1

ν−1 (w0 + 1)




= − 1

(ν − 1)2
(
−ν2w20 + 2νw20 + 2νw0 + 2ν + w20 + 2w0

)

N +MS = I +MS =
1

2




2 0 0 r cos θ 0
0 2 0 −r sin θ 0
0 0 2 0 α

r cos θ −r sin θ 0 2 −ν − 1
0 0 α −ν − 1 2




I −MS =
1

2




2 0 0 −r cos (θ) 0
0 2 0 r sin (θ) 0
0 0 2 0 −α

−r cos (θ) r sin (θ) 0 2 ν + 1
0 0 −α ν + 1 2




with eigenvalues 1± 1

2
√
2

√
(
α2 + (1 + ν)

2
+ r2

)
±
√(

α2 + (1 + ν)
2
+ r2

)2
− 4r2α2

MA =




0 0 0 − 1
2r cos θ 0

0 0 0 1
2r sin θ 0

0 0 0 0 − 1
2α

1
2r cos θ − 1

2r sin θ 0 0 − 1
2 (ν − 1)

0 0 1
2α

1
2 (ν − 1) 0




For some values of the parameters, the eigenvalues of I ±MS are positives.
For the purpose of section 9, we need to find a matrix relevant to the computation of (151):

√
N +M (S)

(
N −M (S) + 2M (A)

(
M (S) +N

)−1
M (A)

)√
N +M (S)

The eigenvalues of this matrix will tell if the field theoretic version of the three agents model, which describes
the interaction of a large number of copies of the three agents system, will present some stable pattern (if

the eigenvalues are positive), or some unstable ones (for negative eigenvalues). To compute
√
N +M (S) we

rewrite I +MS by using the previous change of variable. One has:

I +MS =
1

2




2 0 0 R sin (v) cos θ 0
0 2 0 −R sin (v) sin θ 0
0 0 2 0 R cos (v) cosu

R sin (v) cos θ −R sin (v) sin θ 0 2 −R cos (v) sinu
0 0 R cos (v) cosu −R cos (v) sinu 2



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The parameters R inserted in I +MS are defined by:

s2 = α2 + (1 + ν)
2

R2 =
(
s2 + r2

)

s = R cos (v) , r = R sin (v)

α = s cosu, (1 + ν) = s sinu

We will restrict to the θ = π
4 = u. By setting the internal parameters to the same value it reduces the

problem to compare relative strength of these parameters to N , which is equal to I and to the magnitude of
it’s action, which is read through R. Then:

I +MS =
1

2




2 0 0 R
2 0

0 2 0 −R
2 0

0 0 2 0 R
2

R
2 −R

2 0 2 −R
2

0 0 R
2 −R

2 2



, I −MS =

1

2




2 0 0 −R
2 0

0 2 0 R
2 0

0 0 2 0 −R
2

−R
2

R
2 0 2 R

2

0 0 −R
2

R
2 2




MA =
1

2




0 0 0 −R
2 0

0 0 0 R
2 0

0 0 0 0 −R
2

R
2 −R

2 0 0 R
2

0 0 R
2 −R

2 0




√
N +M (S)

(
N −M (S) + 2M (A)

(
M (S) +N

)−1
M (A)

)√
N +M (S)

The matrix
√
N +M (S) is computed by the diagonalization of N +M (S) whose eigenvectors and eigenvalues

are:

(
1
2

√
2 − 1

2

√
2 −

√
2
√

1
2 − 1

4

√
2− 2

√
1
2 − 1

4

√
2 −

√
2
√

1
2 − 1

4

√
2 1

)
for 1− 1

2
R

√
1

2
− 1
4

√
2

(
1
2

√
2 − 1

2

√
2

√
2
√

1
2 − 1

4

√
2 + 2

√
1
2 − 1

4

√
2
√
2
√

1
2 − 1

4

√
2 1

)
for 1 +

1

2
R

√
1

2
− 1
4

√
2

(
− 1
2

√
2 1

2

√
2

√
2
√

1
4

√
2 + 1

2 − 2
√

1
4

√
2 + 1

2

√
2
√

1
4

√
2 + 1

2 1
)
for 1− 1

2
R

√
1

4

√
2 +

1

2
(
− 1
2

√
2 1

2

√
2 2

√
1
4

√
2 + 1

2 −
√
2
√

1
4

√
2 + 1

2 −
√
2
√

1
4

√
2 + 1

2 1
)
for 1 +

1

2
R

√
1

4

√
2 +

1

2(
1 1 0 0 0

)
for 1

Moreover one computes directly that:

N −M (S) + 2M (A)
(
M (S) +N

)−1
M (A)

=




1
8R

2 8R2−128
R4−32R2+128 + 1 − 1

8R
2 8R2−128
R4−32R2+128 −4 R3

R4−32R2+128
1
2R

3 R2−8
R4−32R2+128 − 1

4R −16 R2

R4−32R2+128

− 1
8R

2 8R2−128
R4−32R2+128

1
8R

2 8R2−128
R4−32R2+128 + 1 4 R3

R4−32R2+128
1
4R− 1

2R
3 R2−8
R4−32R2+128 16 R2

R4−32R2+128

−4 R3

R4−32R2+128 4 R3

R4−32R2+128 2R2 R2−8
R4−32R2+128 + 1 −4R2 R2−4

R4−32R2+128
1
2R

3 R2−16
R4−32R2+128

R3 R2−8
2R4−64R2+256 − 1

4R
1
4R−R3 R2−8

2R4−64R2+256 −4R2 R2−4
R4−32R2+128 2R2 5R2−24

R4−32R2+128 + 1
1
4R− 1

2
R5

R4−32R
−16 R2

R4−32R2+128 16 R2

R4−32R2+128 R3 R2−16
2R4−64R2+256 − 1

4R
1
4R− 1

2
R5

R4−32R2+128 2R2 R2−16
R4−32R2+128

These formula allow to compute the eigenvalues and eigenvectors of

√
M (S)

(
N − 2M (S) +M (A)

(
M (S) +

(
M (S)

)−1)
M (A)

)√
M (S)
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For large r, the eigenvalues become negative since the magnitude of the parameters induces an instability.
For R 6 1 one finds a stable dynamics, and we report the eigenvalues for R = 0.5 and 1 as examples.
For R = 0.5, the eigenvalues are: (0.835 29, 0.874 28, 0.929 90, 0.973 32, 1).
For R = 0.3, the eigenvalues are: (0.286 17, 0.350 47, 0.735 61, 0.900 95, 1).
For R = 2, the eigenvalues are: (−1. 431 8,−0.811 19, 0.452 54, 0.798 76, 1).
Moreover the matrices of eigenvectors, multiplied by

√
I +M (S) yields the eigenvectors, in the initial

coordinates corresponding to these eigenvalues. The results are:




1. 553 6 1. 007 4 0.969 08 0.729 91 1.0
−1. 553 6 −1. 007 4 −0.969 08 −0.729 91 1.0
−3. 752 8 0.417 13 6. 874 5× 10−2 −10. 278 0
9. 059 7 0.173 09 −0.166 22 −4. 256 7 0
−2. 199 0 1. 424 7 −1. 370 3 1. 033 1 0



for R = 0.5




1. 566 1 1. 027 3 0.876 21 0.705 86 1. 000 00
−1. 566 1 −1. 027 3 −0.876 21 −0.705 86 1. 000 00
−2. 041 8 0.788 05 0.115 32 −5. 362 2 0
4. 928 7 0.326 79 −0.278 44 −2. 221 1 0
−2. 216 1. 452 5 −1. 239 1 0.998 3 0



for R = 1

Then one can check from the eigenvectors matrices that the more stable directions are the one for which the
system moves maximaly towards the directions of the substructures. In that case this direction of motion
relaxes the stress imposed by the dominating structure. The more stable solution is mainly driven toward
the second, intermediate agent, which acts as a pivotal point in the stability. Other modes are alternatively
driven mainly into the direction of one of the subtructures.

The eigenvalue 1 and its eigenvector is a particular case. Due to the exceeding number of parameters
compared to the directions of oscillations, this eigenvalue corresponds to an internal oscillation of the third
agent, and does not involve the two others.

On the other hand, for R = 2 the relevant matrix of eigenvectors is:




1. 055 4 1. 569 9 0.710 46 0.670 57 1.0
−1. 055 4 −1. 569 9 −0.710 46 −0.670 57 1.0
1. 099 6 −1. 506 8 0.126 98 −3. 751 3 0
0.455 46 3. 637 8 −0.306 65 −1. 553 8 0
1. 492 6 −2. 220 2 −1. 004 7 0.948 35 0




one has a reversed result. The two unstables directions correspond to a motion mainly in the direction of the
substructures. Actually, for R = 2 the parameters of the interactions are strong enough, so that the coupled
oscillations between the two substructures present an unstable pattern.

Results for various types of uncertainty

We compare the results for the classical dynamics for various degree of uncertainty σ2 in agents behaviors.
We look at three examples, mild uncertainty σ2 = 1, full uncertainty, σ2 → ∞, no uncertainty σ2 → 0,
which converges to the classical case.
The most interesting case for us will be σ2 = 1, the two others one being bechmarks cases. Some

interpretations will be given in the text, in section 2. Here, we give the relevant parameters for each of these
cases, but the interpretations will rely on the eigenvalues of the dynamic system, since these eigenvalues
describe the pattern of behavior of the structure as a whole. Recall that these eigenvalues are given by:

λ = ±
√
σ2ν (d+ βν2 − bdν2)×

√
N

D
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with:

N = α3β2 − dα3β2 − d2α3β + σ2d2α+ dα3β + fα2β + σ2df + σ2dαβ + σ2α3β2ω − dfα2β +
(
σ2
)2
dαβω + σ2dfα2βω

D = d
(
−σ2d+ (bd− β) r2 − σ2βν2 + σ2bdν2

)

×
(
α3β2 + d2fα2 − dα3β2 + σ2d2α+ dα3β + fα2β + σ2df + σ2dαβ + σ2α3β2ω − dfα2β + (N)2 dαβω + σ2dfα2βω

)

For σ2 → 0, one finds for the parameters of the system and it’s eigenvalues, to the second order in β:

d =
1

2

(
1 + β2δ +

√(
δβ2 + 1

)2 − 4β2ν2
)

b =
β

d
f = −αβ

λ = ±
√
−ν
d
=

√√√√√
2ν(

1 + β2δ +

√(
δβ2 + 1

)2 − 4β2ν2
) =

√
−ν
(
1− β2

2

(
δ − ν2

))
+O

(
β3
)

and we recover the classical results as needed.

For σ2 →∞, one obtains:

d = 1 +
1

σ2
β

− 1

σ2

(
δσ2β

(
σ2 + β

)
−
(
σ2
)2
βν2 + σ2 + 2β

)
−
√(

δσ2β (σ2 + β)− (σ2)2 βν2 + σ2 + 2β
)2
− 4 (β + σ2) (1 + σ2βδ)β

2 (1 + σ2βδ)

= 1 + o

(
1

(σ2)
2

)

b = o

(
1

(σ2)
2

)

f = −α β

βν2 + 1

and the eigenvalues are:

λ = ±
√√√√σ2ν (1 + βν2)

(σ2)
2
αβω

(−σ2 − σ2βν2)
(
(σ2)

2
αβω

)

= ±
√
−ν

As said before, the case for σ2 = 1 is the most interestng for us, since in gneral it corresponds to what we
aim at modeling: agents anticipating other agents, but taking into account for uncertain intrinsic behaviors.
The computations to the second order in β, simplify to yield the following values for the parameters:

b = β − ωβ2

f = −αβ
d = 1− β2

(
ν2 − δ

)

λ = ±
√
−ν − 1

2
β2
√
−ν
(
ωr2 + δ − ν2

)
+O

(
β3
)
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Appendix 6.b

We start again with the postulated effective action

Ueff (Xj (t)) = Yj (t)

(
Nii 0
0 0

)
Yj (t)− 2Yj (t)

(
Mii Mij

0 0

)
Yj (t− 1)

+
∑

i>k>j

2Xj (t)A
(j)
jk (Xk (t− 1)) + V (j)eff (Yj (t))

Ueff (Yj (t)) = Yj (t)

( (
A
(j)
jj

)
eff

0

0 0

)
Yj (t)− 2Yj (t)

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

0 0

)
Yj (t− 1)

+
∑

i>k>j

2Xj (t)A
(j)
jk (Xk (t− 1)) + V (j)eff (Yj (t))

with V
(j)
eff (Xj (t)) a certain function ofXj (t), that depends on the potentials V

(i)
i (Xi (t)) and V

(i)
j (Xj (t− 1)).

Note that for the sake of the exposition we discard all the constants X̄
(i)
j ,... X̄

(i)e
j but that they can be

reintroduced at the end of the computation.
Recall that (9) allows to find recursively the utilities Ueff (Xj (t)) :

exp (Ueff (Xi (t))) =

∫
exp

(
U
(i)
t

) ∏

rk(j)<rk(i)

∏

s>t

exp


∑

s>t

Ueff (Xj (s))

N


 dXj (s) (251)

As recorded in the text, we rewrite the utilities in terms of the variables Yi (t). We use the general form (35)

U
(i)
t =

∑

k>0

Yi (t+ k)

(
A
(i)
ii 0
0 0

)
Yi (t+ k) + Yi (t+ k − 1)

(
−ε(i)ii 0

0 βA
(i)
{jj}

)
Yi (t+ k − 1)

+Yi (t+ k)

(
0 β

1
2A

(i)
ij

β
1
2A

(i)
ji 0

)
Yi (t+ k − 1)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1)) +

∑

k>0

βkV
(i)
i

(
Xi (t+ k)

β
k
2

)
+
∑

j<i

(
V
(i)
j

(
Yj ((t+ k)− 1)

β
k−1
2

))

The normalization of exp (Ueff (Yj (t))) is obtained by letting:

C

∫
exp (Ueff (Yj (t))) (d (Yj (t))) = 1

writing:

Ueff (Yj (t)) = Yj (t)
(
A
(j)
jj

)
eff

Yj (t)− 2Yj (t)


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)




+V
(j)
eff (Yj (t))

≡ U
quad
eff (Yj (t)) + V

(j)
eff (Yj (t))

then

∫
exp (Ueff (Yj (t))) (d (Yj (t))) =

∫
exp

(
U
quad
eff (Yj (t)) + V

(j)
eff (Yj (t))

)
(d (Yj (t)))

= exp

(
V
(j)
eff

(
∂

∂Uj

))∫
exp

(
U
quad
eff (Yj (t))

)
(d (Yj (t)))
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with:

Uj =


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)




To compute ∫
exp

(
U
quad
eff (Yj (t))

)
(d (Yj (t)))

we use that:

U
quad
eff (Yj (t)) =


Yj (t) +

(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)





t (
A
(j)
jj

)
eff

×


Yj (t) +

(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)






−


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)



t

×
(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)




which yields, up to an irrelevant constant:

∫
exp

(
U
quad
eff (Yj (t))

)
(d (Yj (t)))

= exp


−


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)



t

×
(
A
(j)
jj

)−1
eff


 ∑

i>k>j

A
(j)
jk Xk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)






= exp

(
− (Uj)t

(
A
(j)
jj

)−1
eff

Uj

)

and

exp

(
V
(j)
eff

(
∂

∂Uj

))∫
exp

(
U
quad
eff (Yj (t))

)
(d (Yj (t)))

= exp

(
V
(j)
eff

(
∂

∂Uj

))
exp

(
− (Uj)t

(
A
(j)
jj

)−1
eff

Uj

)

and the normalization factor:

(
exp

(
V
(j)
eff

(
∂

∂Uj

))
exp

(
− (Uj)t

(
A
(j)
jj

)−1
eff

Uj

))−1
≡ exp

(
(Uj)

t
(
A
(j)
jj

)−1
eff

Uj + V̂
(j)
eff (Uj)

)

this choice of decomposition being justified by the fact that for V
(j)
eff = 0, one recovers a normalization of

exp

(
(Uj)

t
(
A
(j)
jj

)−1
eff

Uj

)
, as in the quadratic case.

This normalization factor has to be added to the global weight (i.e. the normalized effective utility) to
be taken into account for agent i is then, similarly to Appendix 1:
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Ueff (Yj (t))

=
∑

t>0

Yi (t)




A
(i)
ii +B11 B12

Bt12

{(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22

}

Yi (t)

+2β
1
2Yi (t)



−ε(i)ii A

(i)
ij

A
(j)
ji

{(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

}

Yi (t− 1) + V̂ (j)eff (U)

where MS = 1
2 (M +M t) for any matrix M , and

B11 = βA
(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
ji

B12 =

{
βA

(j)
ij

(
A
(j)
jj

)−1
eff

A
(j)
jk , β

(
A
(j)
ij

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))}

B22 =





βA
(j)
lj

(
A
(j)
jj

)−1
eff

A
(j)
jk ,

β
( (

ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)t (
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)

β

(
A
(j)
kj

(
A
(j)
jj

)−1
eff

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

))S





As a consequence, the total weight appearing in (251) is the same as in appendix 1, plus the non quadratic

contributions due to V
(i)
i (Xi (t)), V

(i)
j (Xj (t− 1)) and V

(j)
eff (Yj (t)). The same operations can be thus

performed and in the end the total weight to integrate in the R.H.S. of (251) is

W =
∑

s>t

(
−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) + Yi (s)BYi (s) + (Yi (s)− Yi (s− 1))CYi (s− 1)

)
(252)

+Yi (t)BYi (t) +
1

2
Yi (t)AYi (t)

+
∑

k>0

βk


V (i)i

(
(Yi (t+ k))i

β
k
2

)
+
∑

j<i

(
V
(i)
j

(
Yj ((t+ k)− 1)

β
k−1
2

))
+
1

N
V̂
(j)
eff

(
Uj (t+ k − 1)

β
k−1
2

)


=
∑

s>t

−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) + Yi (s)BYi (s) + (Yi (s)− Yi (s− 1))CYi (s− 1)

+Yi (t)BYi (t) +
1

2
Yi (t)AYi (t)−

∑

k>0

β(2−l)k


∑

l>3

∑

n1,...nl

B(i)n1,...nl (Yi (t+ k))n1 ... (Yi (t+ k))nl



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with:

A =
√
β




−ε(i)ii A
(i)
ij +A

(j)
ij

A
(i)
ji +A

(j)
ji





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j








B =




A
(i)
ii +B11 −

√
βε
(i)
ii

{√
β
(
A
(i)
ij +A

(j)
ij

)
, B12

}

{√
β
(
A
(i)
ji +A

(j)
ji

)
, Bt12

}




βA
(i)
jj +

(
A
(j)
jj

)
eff

, B22

√
β





−
(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2

, A
(j)
{kj}i>k>j , A

(j)
{jk}i>k>j












C =
√
β




0 A
(i)
ij −A

(j)
ij

−
(
A
(i)
ji −A

(j)
ji

)




(
ε
(j)

{kj}k6j

)

eff

2 ,
−
(
ε
(j)

{jk}j>k

)

eff

2 ,

−A(j){kj}i>k>j , A
(j)
{jk}i>k>j








and

Uj (t− 1) =


 ∑

i>k>j

A
(j)
jk Yk (t− 1)−

( (
ε
(j)
jj

)
eff

(
ε
(j)
{jk}k<j

)
eff

)
Yj (t− 1)




The potential:

V
(i)
i

(
(Yi (t+ k))i

β
k
2

)
+
∑

j<i

(
V
(i)
j

(
Yj ((t+ k)− 1)

β
k−1
2

))
+
1

N
V̂
(j)
eff

(
Uj (t+ k − 1)

β
k−1
2

)

depends only on Yi (t+ k) and will be denoted V̂
(i)

(
Yi(t+k)

β
k
2

)
.

Then the integral in (9) is computed in the following way. Write:

exp (W ) = exp

(
∑

s>t

−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) + Yi (s)BYi (s)

+ (Yi (s)− Yi (s− 1))CYi (s− 1) + Yi (t)BYi (t) +
1

2
Yi (t)AYi (t)

)
−
∑

s>t

βs−tkV̂ (i)
(
Yi (s)

β
s−t
2

)

=

{
exp

(
−
∑

s>t

βs−tkV̂ (i)
(

1

β
s−t
2

∂

∂ (Ji (s))

))

exp

(
∑

s>t

−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) + Yi (s)BYi (s)

+ (Yi (s)− Yi (s− 1))CYi (s− 1) + Ji (s)Yi (s) + Yi (t)BYi (t) +
1

2
Yi (t)AYi (t)

)}

Ji(s)=0

where Ji (s) is an external source term. Then we have to compute in the first place the integral of a very
similar weight as in the quadratic case. The only difference is the appearance of the source term. However,
it is known that such a term does not modify the fact that the successive gaussian integrals can be evaluated
at the saddle point.

The action we have to consider is then:

∑

s>t

(
−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) + Yi (s)BYi (s) + (Yi (s)− Yi (s− 1))CYi (s− 1) + Ji (s)Yi (s)

)

(253)
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and the equation for the classical solution of (252) is then of the usual Euler Lagrange type and quite
similar to (197):

A (Yi (s+ 1)− 2Yi (s) + Yi (s− 1)) + 2BYi (s)− C (Yi (s+ 1)− Yi (s− 1)) + Ji (s) = 0 (254)

and it’s solution is of the kind:
Yi (s) = Ds−t (Yi (t) + Fi (s)) (255)

with Fi (t) = 0 and where the equation for the matrix D is given in Appendix 4:

(A− C)D2 + 2 (B −A)D + (A+ C) = 0

we insert (255) in (254) which leads to:

A
(
D2 (Fi (s+ 1)− Fi (s))− (Fi (s)− Fi (s− 1))

)
−C

(
D2 (Fi (s+ 1)− Fi (s)) + (Fi (s)− Fi (s− 1))

)
+Ji (s) = 0

Let:
Gi (s) = (Fi (s)− Fi (s− 1))

the equation for Gi is

A
(
D2Gi (s+ 1)−Gi (s)

)
− C

(
D2Gi (s+ 1) +Gi (s)

)
+ Ji (s) = 0

or:
(A− C)D2Gi (s+ 1)− (A+ C)Gi (s) + Ji (s) = 0

− (2 (B −A)D + (A+ C))Gi (s+ 1)− (A+ C)Gi (s) + Ji (s) = 0

and it’s solution is:
Gi (s) = (A+ C)

−1∑

n>0

(
(A− C)D2

)n
Ji (s+ n)

and then:
Fi (s) = (A+ C)

−1 ∑

t<u≤s

∑

n>0

(
(A− C)D2

)n
Ji (u+ n) (256)

to satisfy the initial condition Fi (t) = 0.
Replacing the solution (198) in (253), this last quantity can be evaluated in the same way as in appendix

1. One find a quadratic term, as in appendix 1:

1

2
Yi (t)A (Yi (t+ 1)− Yi (t)) +

1

2
(Yi (t+ 1)− Yi (t))CYi (t) +

1

2
Yi (t)AYi (t)

and an additional term coming from the source term. It appears to be an infinite sum

1

2

∑

s>t

Ji (s)Yi (s) =
1

2

∑

s>t

Ji (s)D
s−t (Yi (t) + Fi (s))
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using (198) and (256) it yields an overall contribution:

1

2
Yi (t)A (D (Yi (t) + Fi (t+ 1))− Yi (t)) +

1

2
(D (Yi (t) + Fi (t+ 1))− Yi (t))CYi (t) +

1

2
Yi (t)AYi (t)

+
1

2

∑

s>t

Ji (s)Yi (s)

=
1

2
Yi (t) ((A− C) (D − 1))Yi (t) +

1

2
Yi (t)AYi (t) +

1

2
Yi (t) (A− C)DFi (t+ 1)

+
1

2

∑

s>t

Ji (s)D
s−tYi (t) +

1

2

∑

s>t

∑

t<u≤s

∑

n>0

Ji (s) (A+ C)
−1 (

(A− C)D2
)n
Ji (u+ n)

=
1

2
Yi (t) ((A− C) (D − 1))Yi (t) +

1

2
Yi (t)AYi (t)

+
1

2
Yi (t) (A− C)D (A+ C)−1

∑

n>0

(
(A− C)D2

)n
Ji (t+ n+ 1)

+
1

2

∑

s>t

Ji (s)D
s−tYi (t) +

1

2

∑

s>t

∑

t<u≤s

∑

n>0

Ji (s) (A+ C)
−1 (

(A− C)D2
)n
Ji (u+ n)

=
1

2
Yi (t) ((A− C) (D − 1))Yi (t) +

1

2
Yi (t)AYi (t)

+
1

2

∑

s>t

Yi (t)
((
Ds−t)t + (A− C)D (A+ C)−1

(
(A− C)D2

)n)
Ji (s)

+
1

2

∑

s>t

∑

t<u≤s

∑

n>0

Ji (s) (A+ C)
−1 (

(A− C)D2
)n
Ji (u+ n)

Then, adding the time t contributions leads to:

Yi (t)


 A

(i)
ii 0

0 βA
(i)
jj +

(
A
(j)
jj

)
eff


Yi (t) +

√
βYi (t)



−ε(i)ii 2A

(i)
ij

2A
(j)
ji

{
−
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

}

Yi (t− 1)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1)) + V (i)i (Xi (t))

+
1

2
Yi (t)

∑

s>t

((
Ds−t)t + (A− C)D (A+ C)−1

(
(A− C)D2

)n)
Ji (s)

+
1

2

∑

s>t

∑

t<u≤s

∑

n>0

Ji (s) (A+ C)
−1 (

(A− C)D2
)n
Ji (u+ n)

As before, the term V
(i)
j (Xj (t− 1)) has been discarded, since it depends only on t− 1 and will be cancelled

by the nomalization.
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After computations similar to that of appendix 1, the integral over Yi (t), j < i yields the effective action:

A = −1
2
(Yi (t))iMii

(
(Yi (t− 1))i +

(((
Ds−t)t + (A− C)D (A+ C)−1

(
(A− C)D2

)n)
Ji (s)

)
i

)

−1
2
(Yi (t))Mij

(
(Yi (t− 1))j +

(((
Ds−t)t + (A− C)D (A+ C)−1

(
(A− C)D2

)n)
Ji (s)

)
j

)

+
1

2
(Yi (t))i (Nii) (Yi (t))i +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+
1

2

t∑

s>t

(((
Ds−t)t + (A− C)D (A+ C)−1

(
(A− C)D2

)n)
Ji (s)

)t

× (A+ C)
∑

s>t

((
Ds−t)t + (A− C)D (A+ C)−1

(
(A− C)D2

)n)
Ji (s)

+
1

2

∑

s>t

∑

t<u≤s

∑

n>0

Ji (s) (A+ C)
−1 (

(A− C)D2
)n
Ji (u+ n)

where the matrices used in the previous expression are given by:

Nii = ((A− C) (D − 2) + 2B)ii − ((A− C) (D − 2) + 2B)ij
(
((A− C) (D − 2) + 2B)jj

)−1 (
((A− C) (D − 2) + 2B)ji

)

Mii = (Nii)
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ii

Mij = (Nii)
(
((A− C) (D − 2) + 2B)−1 (A+ C)

)
ij

Remark that applying 1

β
s−t
2

∂
∂(Ji(s))

to exp (A) produces a term:

((Yi (t))i + F (Ji (s))) exp (A)

where F (Ji (s)) is a linear function of FJi (s). As a consequence, one shows recursively that:

∂

∂ (Ji (s1))
...

∂

∂ (Ji (sn))
exp (A) = F(n) ((Yi (t))i , Ji (s1) ...Ji (s1)) exp (A)

for some function F(n) ((Yi (t))i , Ji (s1) ...Ji (s1)). As a consequence:

ln



{
exp

(
−
∑

s>t

βs−tkV̂ (i)
(

1

β
s−t
2

∂

∂ (Ji (s))

))
exp (A)

}

Ji(s)=0




= −1
2
(Yi (t))iMii (Yi (t− 1))i −

1

2
(Yi (t))Mij (Yi (t− 1))j

+
1

2
(Yi (t))i (Nii) (Yi (t))i +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1)) + V (i)eff (Yi (t))

where V
(i)
eff (Yi (t)) is some function obtained by the application of the derivatives

∂
∂(Ji(s1))

appearing in

the series expnsion of exp

(
−∑s>t β

s−tkV̂ (i)
(

1

β
s−t
2

∂
∂(Ji(s))

))
and then setting Ji (s) = 0. The previous

expression is then the expected formula for Ueff (Xi (t)).

190



Appendix 7

One applies the method of appendix 1, but using the recursive form for the agents effective utility:

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t)− X̄(i)e

i

)
(257)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+
∑

j6i

Xi (t)K
(i)
ij

(
E
(i)
t

∑

s

Zj (s)

)

E
(i)
t

∑
s Zj (s) = Zj (s) for s 6 t. It can be reduced to the form of appendix 1:

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
Nii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)Mii√
β

(
Xi (t)− X̄(i)e

i

)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)Mij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

by the shift X̄
(i)e
i → X̄

(i)e
i + (Nii)

−1∑
j6iK

(i)
ij

(
E
(i)
t

∑
s Zj (s)

)

Then, since one considers the computation of Ueff (Xi (t)) for an agent i, all effective actions Ueff (Xj (t))

for j < i have to be modified by this shift: X̄
(j)e
j → X̄

(j)e
j +(Njj)

−1∑
k6j K

(i)
jk

(
E
(j)
t

∑
s Zk (s)

)
. It is known

that the saddle point computation to obtain the integrals over Xi (s) and Xj (s) is still valid when the X̄
(j)e
j

depend on t (which is the case here after the shift), then the all method of appendix 1 applies.
Before integration, one then arrives to the intermediate effective utility (194):

∼
∑

s>t

−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) +

(
Yi (s)− Ŷ (1)i

)
B
(
Yi (s)− Ŷ (1)i

)

+(Yi (s)− Yi (s− 1))CYi (s− 1) + Yi (t)BYi (t)

+
1

2
Yi (t)AYi (t)

Integration over Yi (s), s > t would lead to (203), but recall that for Xi (s) = (Yi (s))i one has to impose

the constraint Xi (s) = Bi (s) + E
(i)
t Zi (s) − Bi (s+ 1) for all s, as well as the transversality condition

Bi (s)→ 0, t→ T . For a matter of convenience, in the sequel, we will write Zi (s) for E
(i)
t Zi (s) and restore

this notation in the end.
One can thus integrate over the vector which is the concatenation of Bi (s) + Zi (s) − Bi (s+ 1) and

(Yi (s))j for j < i and s > t. One changes the variables Bi (s) = B′i (s) −
∑

i>0 Zi (s+ i), so that Bi (s) +
Zi (s) − Bi (s+ 1) = B′i (s) − B′i (s+ 1) and the transversality condition is B

′
i (s) → 0, t → T . Then the

integrals over B′i (s) can be changed by change of variables as integrals over B
′
i (s)−B′i (s+ 1)

The result of the integration is thus (201):

1

2
Yi (t) ((A− C) (D − 1))Yi (t) +

1

2
Yi (t)AYi (t)

with a difference with case studied in Appendix 1: as in the simple exemple presented in the text, the series
of integrals over Bi (s) results in replacing in (203) Xi (t) by B

′
i (s)−B′i (s+ 1). The result for the integration

is thus:
1

2
Ŷi (t) ((A− C) (D − 1)) Ŷi (t) +

1

2
Ŷi (t)AŶi (t)

with:

Ŷi (t) =

(
B′i (t)−B′i (t+ 1)
(Yi (s))j for j < i

)
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and where B′i (s)−B′i (s+ 1) satisfies:
(B′i (s)−B′i (s+ 1)) = D (B′i (s− 1)−B′i (s))

(the matrix D is the dynamic matrix (199)). This relation alongside with the transversality condition allows
to rewrite the sum:

B′i (t+ 1) = (B′i (t+ 1)−B′i (t+ 2)) + ...+ (B′i (T − 1)−B′i (T ))
=

(
1 +D2 + ...+DT

)
(B′i (t+ 1)−B′i (t+ 2))

=
D
(
1−DT

)

1−D (B′i (t)−B′i (t+ 1))

where we used B′i (T ) = 0. As a consequence:

(B′i (t)−B′i (t+ 1)) =
(1−D)

D (1−DT )
B′i (t+ 1)

and we are left with:
1

2
Ŷi (t) ((A− C) (D − 1)) Ŷi (t) +

1

2
Ŷi (t)AŶi (t)

with:

Ŷi (t) =

(
(1−D)

D(1−DT )
B′i (t+ 1)

(Yi (s))j for j < i

)

=

(
(1−D)

D(1−DT )

(
Bi (t+ 1) +

∑
i>0 Zi (s+ i)

)

(Yi (s))j for j < i

)

then we use the constraint recursively to write:

Bi (t+ 1) +
∑

s>t

Zi (s) = −
∑

s6t

Xi (s) +
∑

s

Zi (s)

and then:

Ŷi (t) =

(
(1−D)

D(1−DT )

(
−∑s6tXi (s) +

∑
s Zi (s)

)

(Yi (s))j for j < i

)

Thus, as in appendix 1 formula (203), one adds contributions due to specific (i.e. non effective) time t
utility (we also change the sign of the first component of Ŷi (t), using the fact that the utiliy is quadratic)
to obtain a non integrated effective utility:

Û inteff (Yi (t)) =
1

2

( (
(1−D)

D(1−DT )

)(∑
s6tXi (s)−

∑
s Zi (s)

)

(Yi (s))j for j < i

)
((A− C) (D − 1) +A) (258)

×
( (

(1−D)
D(1−DT )

)(∑
s6tXi (s)−

∑
s Zi (s)

)

(Yi (s))j for j < i

)

+Yi (t)


 A

(i)
ii 0

0 βA
(i)
jj +

(
A
(j)
jj

)
eff


Yi (t) +

√
βYi (t)



−ε(i)ii 2A

(i)
ij

2A
(j)
ji

{
−
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

}

Yi (t− 1)

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

Using that, see (202) and (203):

Yi (t)


 A

(i)
ii 0

0 βA
(i)
jj +

(
A
(j)
jj

)
eff


Yi (t) +

√
βYi (t)



−ε(i)ii 2A

(i)
ij

2A
(j)
ji

{
−
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

}

Yi (t− 1)

= Yi (t) (B −A)Yi (t) + Yi (t) (A+ C)Yi (t− 1)
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and developping in (258) the quadratic terms in
∑

s6tXi (s)−
∑

s Zi (s) as Xi (t)+
∑

s<tXi (s)−
∑

s Zi (s)
as well as discarding terms that do not depend on Xi (t) and (Yi (t))j for j < i yields:

Û inteff (Yi (t)) =
1

2

( (
(1−D)

D(1−DT )

)
Xi (t)

(Yi (t))j for j < i

)
((A− C)D)

( (
(1−D)

D(1−DT )

)
Xi (t)

(Yi (t))j for j < i

)

+Yi (t) (B −A)Yi (t) + Yi (t) (A+ C)Yi (t− 1) +
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+

( (
(1−D)

D(1−DT )

) (∑
s<tXi (s)−

∑
s Zi (s)

)

0

)
((A− C)D)

( (
(1−D)

D(1−DT )

)
Xi (t)

(Yi (t))j for j < i

)

=
1

2
Yi (t)P

t ((A− C)D)PYi (t)

+Yi (t) (B −A)Yi (t) + Yi (t) (A+ C)Yi (t− 1) +
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+

(
∑

s<t

Xi (s)−
∑

s

Zi (s)

)
P ti ((A− C)D) (Yi (t))j

+

(
∑

s<t

Xi (s)−
∑

s

Zi (s)

)(
(1−D)

D (1−DT )

)t
((A− C)D)

(
(1−D)

D (1−DT )

)
Xi (t)

=
1

2
Yi (t)

(
P t ((A− C)D)P + 2 (B −A)

)
Yi (t) + Yi (t) (A+ C)Yi (t− 1)

+

(
∑

s<t

Xi (s)−
∑

s

Zi (s)

)
P ti ((A− C)D) P̃ Yi (t) +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+

(
∑

s<t

Xi (s)−
∑

s

Zi (s)

)
P ti ((A− C)D)PiXi (t)

where:

P =

(
Pi 0
0 1j

)
, P̃ =

(
0 0
0 1j

)

Pi =

(
(1−D)

D (1−DT )

)

1j = identity matrix for the block j < i

Then, to obtain the effective utility for Xi (t) one can integrate over the (Yi (t))j for j < i.
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Ueff (Xi (t)) =
1

2

(
Yi (t) +

(
P t ((A− C)D)P + 2 (B −A)

)−1

× (A+ C) (Yi (t− 1)) + P̃ t ((A− C)D)Pi
(
∑

s<t

Xi (s)−
∑

s

Zi (s)

))

i

× (Nii)
(
Yi (t) +

(
P t ((A− C)D)P + 2 (B −A)

)−1

(A+ C) (Yi (t− 1)) + P̃ t ((A− C)D)Pi
(
∑

s<t

Xi (s)−
∑

s

Zi (s)

))

i

+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+

(
∑

s<t

Xi (s)−
∑

s

Zi (s)

)
P ti ((A− C)D)PiXi (t)

∼ −1
2
((Yi (t))iMii (Yi (t− 1))i + T )−

1

2

(
(Yi (t))Mij (Yi (t− 1))j + T

)

+
1

2
(Yi (t))i (Nii) (Yi (t))i +

∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+

(
∑

s<t

Xi (s)−
∑

s

Zi (s)

)(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)
Xi (t)(259)

where the matrices used in the previous expression are given by:

Nii =
(
P t ((A− C)D)P + 2 (B −A)

)
ii

(260)

−
(
P t ((A− C)D)P + 2 (B −A)

)−1
ij

((
P t ((A− C)D)P + 2 (B −A)

)
jj

)((
P t ((A− C)D)P + 2 (B −A)

)
ji

)

Mii = (Nii)
((
P t ((A− C)D)P + 2 (B −A)

)−1
(A+ C)

)
ii

Mij = (Nii)
((
P t ((A− C)D)P + 2 (B −A)

)−1
(A+ C)

)
ij

and where the "T" means the transpose of the expression in the same parenthesis. Then, as explained in
the text, the terms

(
∑

s<t

Xi (s)

)(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)
Xi (t)

(261)
may be approximated by:

(Xi (t) +Xi (t− 1))
(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)
Xi (t)

and these terms may be included in the quadratic terms of the effective utility to produce the result announced
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in (257) with (and restoring
∑

s Zi (s)→
(
E
(i)
t

∑
s Zi (s)

)
):

Nii =
(
P t ((A− C)D)P + 2 (B −A)

)
ii

(262)

−
(
P t ((A− C)D)P + 2 (B −A)

)−1
ij

((
P t ((A− C)D)P + 2 (B −A)

)
jj

)((
P t ((A− C)D)P + 2 (B −A)

)
ji

)

+
(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)

Mii = (Nii)
((
P t ((A− C)D)P + 2 (B −A)

)−1
(A+ C)

)
ii

+
(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)

Mij = (Nii)
((
P t ((A− C)D)P + 2 (B −A)

)−1
(A+ C)

)
ij

K
(i)
ii =

(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)

Note also that in (257), the terms X̄
(j)e
j have to be shifted by X̄

(j)e
j → X̄

(j)e
j +(Njj)

−1∑
k6j K

(i)
jk

(
E
(j)
t

∑
s Zk (s)

)

and as a consequence, (192) implies that X̄
(i)e
i is shifted by

δX̄
(i)e
j =




A
(i)
ii +B11 −

√
βε
(i)
ii

{
B12, 2

√
β
(
A
(i)
ij

)S}

{
Bt12, 2

√
β
(
A
(j)
ji

)S}




(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22,

(
2
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

)S








−1

(263)

×




0
B
(3)
12

2(
B
(3)
12

)t

2

{(
A
(j)
jj

)
eff

, B”22,
B
(3)
22

2 ,
√
β

(
ε
(j)

{kj}k6j

2

)

eff

}


(

0

(Njj)
−1∑

k6j K
(i)
jk

(
E
(j)
t

∑
s Zk (s)

)
)

Keeping the i th coordinate of this shift and computing the expansion of the terms including δX̄
(i)e
j in the
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effective utility (257) yields a contribution:

∑

j<i

Xi (t)K
(i)
ij

(
E
(i)
t

∑

s

Zj (s)

)

= Xi (t)
(
Nii 0

)




A
(i)
ii +B11 −

√
βε
(i)
ii

{
B12, 2

√
β
(
A
(i)
ij

)S}

{
Bt12, 2

√
β
(
A
(j)
ji

)S}




(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22,

(
2
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

)S








−1

×




0
B
(3)
12

2(
B
(3)
12

)t

2

{(
A
(j)
jj

)
eff

, B”22,
B
(3)
22

2 ,
√
β

(
ε
(j)

{kj}k6j

2

)

eff

}



×
(

0

(Njj)
−1
K
(i)
ij

(∑
j6iE

(i)
t

∑
s Zj (s)

)
)

+Xi (t)
(
Mii Mij

)




A
(i)
ii +B11 −

√
βε
(i)
ii

{
B12, 2

√
β
(
A
(i)
ij

)S}

{
Bt12, 2

√
β
(
A
(j)
ji

)S}




(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22,

(
2
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

)S








−1

×




0
B
(3)
12

2(
B
(3)
12

)t

2

{(
A
(j)
jj

)
eff

, B”22,
B
(3)
22

2 ,
√
β

(
ε
(j)

{kj}k6j

2

)

eff

}



×
(

0

(Njj)
−1
K
(i)
ij

(∑
j6iE

(i)
t

∑
s Zj (s− 1)

)
)

In the approximation of the continuous limit


∑

j6i

E
(i)
t

∑

s

Zj (s− 1)


 '


∑

j6i

E
(i)
t

∑

s

Zj (s)




and the all contribution due to the constraint reduces to:

∑

j<i

Xi (t)K
(i)
ij

(
E
(i)
t

∑

s

Zj (s)

)

= Xi (t)
(
Nii +Mii Mij

)




A
(i)
ii +B11 −

√
βε
(i)
ii

{
B12, 2

√
β
(
A
(i)
ij

)S}

{
Bt12, 2

√
β
(
A
(j)
ji

)S}




(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22,

(
2
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

)S








−1

×




0
B
(3)
12

2(
B
(3)
12

)t

2

{(
A
(j)
jj

)
eff

, B”22,
B
(3)
22

2 ,
√
β

(
ε
(j)

{kj}k6j

2

)

eff

}


(

0

(Njj)
−1
K
(i)
ij

(∑
j6iE

(i)
t

∑
s Zj (s)

)
)
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which implies that:

K
(i)
ij =

(
Nii +Mii Mij

)




A
(i)
ii +B11 −

√
βε
(i)
ii

{
B12, 2

√
β
(
A
(i)
ij

)S}

{
Bt12, 2

√
β
(
A
(j)
ji

)S}




(
A
(j)
jj

)
eff

+ βA
(i)
jj , B22,

(
2
(
ε
(j)
{kj}k6j

)
eff

, 2A
(j)
{kj}i>k>j

)S








−1

×




B
(3)
12

2 (Njj)
−1
K
(i)
ij

(∑
j6iE

(i)
t

∑
s Zj (s)

)
{(

A
(j)
jj

)
eff

, B”22,
B
(3)
22

2 ,
√
β

(
ε
(j)

{kj}k6j

2

)

eff

}
(Njj)

−1
K
(i)
ij

(∑
j6iE

(i)
t

∑
s Zj (s)

)




Now, if we were to keep the terms (261) without approximation, the effective utility (257) should be
modified from the begining to include some additional lag terms:

Ueff (Xi (t)) =
1

2

(
Xi (t)− X̄(i)e

i

)
N
(0)
ii

(
Xi (t)− X̄(i)e

i

)
−
(
Xi (t)− X̄(i)e

i

)M (0)
ii√
β

(
Xi (t)− X̄(i)e

i

)
(Uefffnlbsbs)

−
∑

j<i

(
Xi (t)− X̄(i)e

i

)M (0)
ij√
β

(
Xj (t− 1)− X̄(i)e

j

)
+
∑

j>i

2Xi (t)A
(i)
ij (Xj (t− 1))

+Xi (t)Mi

(
E
(i)
t

∑

s

Zi (s)

)
+
∑

j6i

∑

s<t

Xj (s) ε
(i,n)
ij Xi (t)

These terms modify the matrices A, B, and C in (195) by modifying the inertia terms ε
(j)
{kj}k6j as a sum

ε
(j)
{kj}k6j → ε

(j)
{kj}k6j +

∑

n>2

ε
(j,n)
{kj}k6jL

n−1

and as well for their transpose:

ε
(j)
{jk}j>k → ε

(j)
{jk}j>k +

∑

n>2

ε
(j,n)
{jk}j>kL

n−1

and these operators are included in the computations that are similar to the previous one. Now, the
saddle point equation (197) is still valid, as well as it’s solution (198). However two modifications have to
be included. First, Given that the saddle point equation is derived from (196):

∼
∑

s>t

−1
2
(Yi (s)− Yi (s− 1))A (Yi (s)− Yi (s− 1)) + Yi (s)BYi (s) + (Yi (s)− Yi (s− 1))CYi (s− 1)

+Yi (t)BYi (t) +
1

2
Yi (t)AYi (t)

and since this equation includes coupling between Yi (t) and Yi (t± n), due to the inertia terms ε(j,n){kj}k6jL
n−1,

then in (197):

(
Yi (s)− Ŷ (1)i

)
A (Yi (s+ 1)− 2Yi (s) + Yi (s− 1))+2Yi (s)BYi (s)−

(
Yi (s)− Ŷ (1)i

)
C (Yi (s+ 1)− Yi (s− 1)) = 0

this fact is taken into account by replacing in A, B, C the terms ε
(j,n)
{kj}k6jL

n−1 by ε(j,n){kj}k6j
(
Ln−1 + L−(n−1)

)

(this is the analog of the symetrization process appearing in this kind of equations but translated to the lag

operators level L→ L−1 in this transposition), and as well for their transpose ε(j,n){jk}j>kL
n−1 that have to be

replaced by ε
(j,n)
{jk}j>k

(
Ln−1 + L−(n−1)

)
.
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Second, one can first solve formaly for D as in (198) by letting:

Yi (s) = Dt−sYi (t)

and the solution is formally the same as if no inertia was present. But this equation, solves D as a function

D
(
ε
(j,n)
{kj}k6j

(
Ln−1 + L−(n−1)

)
, ε
(j,n)
{jk}j>k

(
Ln−1 + L−(n−1)

))
. Let us call D̃ this solution. To find the "true"

matrix D as a function of the parameters, one replaces in Yi (s+ 1) = DYi (s), and in that case:

DYi (s) = D̃
(
ε
(j,n)
{kj}k6j

(
Ln−1 + L−(n−1)

)
, ε
(j,n)
{jk}j>k

(
Ln−1 + L−(n−1)

))
Yi (s)

and given the solution Yi (t), LYi (s) = DYi (s), the previous relation can also be written:

DYi (s) = D̃
(
ε
(j,n)
{kj}k6j

(
Dn−1 +D−(n−1)

)
, ε
(j,n)
{jk}j>k

(
Dn−1 +D−(n−1)

))
Yi (s)

which yields the equation for D:

D = D̃
(
ε
(j,n)
{kj}k6j

(
Dn−1 +D−(n−1)

)
, ε
(j,n)
{jk}j>k

(
Dn−1 +D−(n−1)

))

Then this equation can be solved as a series expansion in the ε
(j,n)
{kj}k6j . In fact, as seen in the text, the

inertial term are of order 1
T
where T is the characteristic length of the interaction process. As such, T is the

"largest" parameter in the system, and the series expansion can be stopped at the first order.
Once D has been found, the resolution is the same as before. One arrives at the effective action given in

(259), which yields ultimately the required form (92). Then, one expands the coefficients involved in (259)

as series ε
(j,n)
{kj}k6j to obtain:

N
(0)
ii =

[(
P t ((A− C)D)P + 2 (B −A)

)
ii

−
(
P t ((A− C)D)P + 2 (B −A)

)−1
ij

((
P t ((A− C)D)P + 2 (B −A)

)
jj

)((
P t ((A− C)D)P + 2 (B −A)

)
ji

)

+
(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)]
zeroth

M
(0)
ii =

[
(Nii)

((
P t ((A− C)D)P + 2 (B −A)

)−1
(A+ C)

)
ii

+
(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)]
zeroth

M
(0)
ij =

[
(Nii)

((
P t ((A− C)D)P + 2 (B −A)

)−1
(A+ C)

)
ij

]

zeroth

Mi =
(
P ti ((A− C)D) P̃ (Nii)

(
P t ((A− C)D)P + 2 (B −A)

)−1
+ P ti ((A− C)D)Pi

)

the subscript zeroth standing for the zeroth order expansion in the ε
(j,n)
{kj}k6j . The expression for the

matrices N
(0)
ii , M

(0)
ii and M

(0)
ij are the same as the one presented in (262) since N

(0)
ii , M

(0)
ii and M

(0)
ij are

obtained by the zeroth order expansion of Ueff (Xi (t)) in ε
(j,n)
{kj}k6j and thus their expression is similar to the

case without constraint. The higher order terms in the expansion, in fact the first order being sufficient, will
be gathered to yield the terms

∑
j6i

∑
s<tXj (s)NiXi (t). We do not present any detailled formula here,

since it depends for each particular case on the form of D̃ as a function of the ε
(j,n)
{kj}k6j .
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Appendix 8

We present here an alternative approach to build an effective action for Cs when the transition probability
〈Bs+1| |Bs〉 defined in the text is known. Starting with the basic example presented in the text, recall that
we have:

〈Bs+1| |Bs〉 =
∫ T∏

i=2

dBs+i exp

(
U (Bs + Ys −Bs+1) +

∑

i>0

U (Bs+i + Ys+i −Bs+i+1)
)

which reduced, in the quadratic approximation, to (79):

〈Bs+1| |Bs〉 = exp


− (Bs + Ys −Bs+1)2 −

1

T

(
Bs+1 +

∑

i>0

Ys+i

)2


The point is to get rid of Bs+1 and to find an effective utility for the control variable Cs.
One proceed in the following way. One has to consider that Cs and Bs are "dual" variables (i.e. (78)

implies that in the continuous approximation, the variable Cs is, up to an exogenous function Ys, proportional
to the time derivative of Bs, denoted Ḃs).
It is known that in such case, the transition 〈Cs+1| |Cs〉 that measures the probability of transition of

the system between time s and s + 1, and which is the analog here of (65), is computed by considering an
Hamiltonian quantum system in the continuous approximation with imaginary time.

The reason is that Cs and Bs being related through different periods, one cannot recover directly
〈Cs+1| |Cs〉, the probability we are interested in, from 〈Bs+1| |Bs〉, the quantity we have at our disposal.
The hamiltonian of the system is written

H = (Πs+1)
2
+

(
Bs+1 +

∑

i>0

Ys+i

)2

This is obtained by rewriting (79) and replacing Bs+Ys−Bs+1 by Πs+1. The momentum Πs+1 is the same
as Cs, but, in this formalism, it has to be considered as an operator: More precisely one sets:

Πs+1 =
∂

∂Bs+1
− Ys

In other word, the computation of 〈Cs+1| |Cs〉 needs to replace Bs+1 − Bs by
∂

∂Bs+1
. The second step is to

find the hamiltonian equation for Bs+1. It is obtained by the computation of the commutator between Bs+1
and H that is:

Ḃs+1 = −Πs+1 + Ys
and consequently (changing the variable Cs − Ys → Cs): Let Ĉs = Ys − Πs is an operator

[
Ĉs, Bs

]
= −1.

Ĉs and Πs have the same eigenvectors, Ĉs |Cs〉 = Cs |Cs〉, Πs |Cs〉 = (Ys − Cs) |Cs〉
|Bs〉 = exp (iBsΠs) = exp (iBs (Ys − Cs))

and the transition function for Cs is:

〈Cs+1| |Cs〉 =
∫
exp (iCs+1Bs+1 − iCsBs) 〈Bs+1| |Bs〉 dBsdBs+1

〈Cs+1| |Cs〉 =

∫
dBsdBs+1 exp


iCs+1Bs+1 − iCsBs − (Bs + Ys −Bs+1)2 −

1

T

(
Bs+1 +

∑

i>0

Ys+i

)2


=

∫
dBsdBs+1 exp


i (Cs+1 − Cs)Bs+1 + i (Bs+1 −Bs)Cs − (Bs + Ys −Bs+1)2 −

1

T

(
Bs+1 +

∑

i>0

Ys+i

)2


= exp

(
−T
4
(Cs+1 − Cs)2 −

1

4
C2s − i

∑

i>0

Ys+i (Cs+1 − Cs) + iYsCs
)
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which yields the global weight along the path:

∫
dCdY exp

(
−T
4
(Cs+1 − Cs)2 −

1

4
C2s − i

∑

i>0

Ys+i (Cs+1 − Cs) + iYsCs
)

=

∫
dCdY exp

(
−T
4

∫ (
d

ds
C

)2
− 1
4

∫
C2s − i

∫ ∫

t

Ys

(
d

ds
C

)
+ i

∫
YsCs

)

=

∫
dCdY exp

(
−T
4

∫ (
d

ds
C

)2
− 1
4

∫
C2s − i

∫
YsCs + i

∫
YsCs

)

=

∫
dC exp

(
−T
4

∫ (
d

ds
C

)2
− 1
4

∫
C2s

)

Bs → 0, s → T implies the constraint
∫
Ys − Cs. It has to be included at time T to impose effectively the

constraint (not only in expectations at any time s < T ). It yields an overall weight:

∫
dC exp

(
−T
4

∫ (
d

ds
Cs

)2
− 1
4

∫
(Cs)

2

)

If Ys is a white noise, then it implies that the weight is equal to:

∫
dCdY dλ exp

(
−T
4

∫ (
d

ds
C

)2
− 1
4

∫
C2s + λ

∫
(Ys − Cs)−

∫ (
Ȳ − Ys

)2
)

=

∫
dC exp

(
−T
4

∫ (
d

ds
C

)2
− 1
4

∫
C2s −

(∫ (
Ȳ − Cs

))2
)

Difference with the exponentiated classical eqn. Quadratic potential, coming from the diference between
exp (〈u〉) and 〈exp (u)〉 or any convx fctn.

∫
dC exp

(
−T
4

∫ (
d

ds
C

)2
− 1
4

∫
C2s −

(∫ (
Ȳ − Cs

))2
)

is identical to the one obtained with an hamiltonian (operator) version

exp


UΠ (Πs+1) + Ǔ


Bs+1 +

∑

i>1

Ys+i






where

〈Bs+1| exp


UΠ (Πs+1)− iYsΠs+1 + Ǔ


Bs+1 +

∑

i>1

Ys+i




 |Bs〉 = exp


U (Bs + Ys −Bs+1) + Ǔ


Bs+1 +

∑

i>1

Ys+i






In the continuous approximation:

〈Bs+1| exp


UΠ (Πs+1) + Ǔ


Bs+1 +

∑

i>1

Ys+i




 |Bs〉

= 〈Bs+1| exp (UΠ (Πs+1)− iYsΠs+1) |Bs〉 exp


Ǔ


Bs+1 +

∑

i>1

Ys+i






=

∫
exp (UΠ (Πs+1)) exp (−iΠs+1 (Bs+1 −Bs − Ys)) dΠs+1 exp


Ǔ


Bs+1 +

∑

i>1

Ys+i





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so that
F−1 exp (UΠ) = exp (U)

or, which is equivalent:
UΠ (Πs+1) = lnF exp (U)

The Hamiltonian equation
Ḃs+1 = −∇UΠ (Πs+1) + Ys

and the constraint:
Cs = Bs + Ys −Bs+1

lead to an identification
Cs = ∇UΠ (Πs+1)

so that
Πs+1 = f (Cs)

with
f (Cs) = (∇UΠ)−1 (Cs)

Then, the transition amplitude between Cs+1 and Cs is given by:

〈Cs+1| |Cs〉 = exp


U (Bs + Ys −Bs+1) + Ǔ


Bs+1 +

∑

i>1

Ys+i


+ if (Cs+1)Bs+1 − if (Cs)Bs


 dBsdBs+1

= exp


U (Bs + Ys −Bs+1) + Ǔ


Bs+1 +

∑

i>1

Ys+i




+ i (f (Cs+1)− f (Cs))Bs+1 + i (Bs+1 −Bs) f (Cs)) dBsdBs+1

= exp


Û (f (Cs)) + ̂̌U ((f (Cs+1)− f (Cs))) + i


−f (Cs)Ys + (f (Cs+1)− f (Cs))

∑

i>1

Ys+i






Û = lnF exp (U) = UΠ

̂̌U = lnF exp
(
Ǔ
)

∫
exp

(
Ǔ (Bs+1) + i (f (Cs+1)− f (Cs))Bs+1

)
dBs+1

=

∫
exp

(
U (Bs+1 −Bs+i+2) +

∑

i>1

U (Bs+i −Bs+i+1) + i (f (Cs+1)− f (Cs))Bs+1
)
∏

i>1

dBs+i

∫
exp

(
Ǔ (Bs+1) + i (f (Cs+1)− f (Cs))Bs+1

)
dBs+1

= F
∫
exp

(
U (Bs+1 −Bs+i+2) +

∑

i>1

U (Bs+i −Bs+i+1)
)
∏

i>1

dBs+i

=
∏

i>1

F exp (U (Bs+i) + constraint BT = 0 )

= exp (TUΠ (Bs+1) + constraint BT = 0)
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The global weight along the all path will imply a sum

∑

s


−f (Cs)Ys + (f (Cs+1)− f (Cs))

∑

i>1

Ys+i




=
∑

s


−f (Cs)


Ys +

∑

i>1

Ys+i


+ f (Cs+1)

∑

i>1

Ys+i




=
∑

s


−f (Cs)

∑

i>0

Ys+i + f (Cs+1)
∑

i>0

Ys+1+i


 = 0

Remains:
exp (UΠ (f (Cs)) + TUΠ (f (Cs+1)− f (Cs)) + constraint BT = 0)

The overall constraint λ
∫
(Ys − Cs)−

∫ (
Ȳ − Ys

)2
and the integrals over Y and λ can be performed to yield

a term −
(∫ (

Ȳ − Cs
))2

exp

(
U (Cs) + Û

(
Cs − Cs+1 + Ȳ

)
−
(∫ (

Ȳ − Cs
))2

)

As a consequence, the constraint is introduced as for the quadratic case. And ultimately, for N agents,
the procedure is the same as for the quadratic utilities.
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Appendix 9

An operator of the form

−∇2 + ax2 + α =
(
−∇+√ax

) (
∇+√ax

)
+ α+

√
a

has eigenvalues
n
√
a+ α+

√
a = (n+ 1)

√
a+ α

with eigenvectors:

ϕn (x) =

(√
a

π

) 1
4
√

1

2nn!
Hn

(
a
1
4x
)
exp

(
−
√
a

2
x2
)

where the Hn

(
a
1
4x
)
are the Hermite polynomials. The Green function

G =
(
−∇2 + ax2 + α

)−1

which is equal to the propagator:
G (x, y) = 〈Ψ(x)Ψ (y)〉

is given by:

G (x, y) =
∑

n

ϕn (x)ϕ
†
m (x)

(n+ 1)
√
a+ α

Applying this results to our problem yields G (x, y):

G (x, y) = 〈x| 1

−∇2k +m2
i +

(
(xi)k −

(
Y̌eff

)
k

)
(Λi)k

(
(xi)k −

(
Y̌eff

)
k

) |y〉

=
∑

n

ψn (x)
1

m2
i +

(
n+ 1

2

)
(Λi)k

ψ∗n (y)
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Appendix 10

As explained in the text, we have to compute the Green function under the following form:

Ḡ (x, y) = P (0, s, xi, yi)

〈
exp

(
− 1
T

(∫ s

0

X (u) du

)(∫ T

0

X (u) du

))〉

=
exp

(
− (x−y)2

σ2s

)

√
s

〈
exp

(
− 1
T

(∫ s

0

X (u) du

)(∫ T

0

X (u) du

))〉

Where X (u) a brownian motion starting at xi at time 0 and reaching yi at time s and
〈
exp

(
−1
s

(∫ s

0

X (u) du

)(∫ s

0

X (u) du

))〉

is the expectation value of exp
(
1
s

(∫ s
0
X (u) du

)2)
given the process X (u).

The appearance of the factor P (0, s, xi, yi) in (136a) comes from the fact that in (135) the measure is
not normalized, and (135) is computed for the measure of a free Brownian motion. The global weight for
the path starting at xi at time 0 and reaching yi at time s is thus not equal to 1 but to P (0, s, xi, yi). We
then decompose X (u) as:

X (u) =

(
t

s
x+

s− t
s

y

)
+
(
B (u)−

(u
s

)
B (s)

)

where B (u) is a free brownian motion. Then, the use of Ito formula yields:

(∫ s

0

X (u) du

)
=

∫ t

0

(
t

s
x+

s− t
s

y

)
dt+

(∫ s

0

(
B (u)−

(u
s

)
B (s)

)
du

)

= s

(
x+ y

2

)
+

(
sB (s)−

∫ s

0

udB (u)

)
− s

2
B (s)

= s

(
x+ y

2

)
+

(
s

2
B (s)−

∫ s

0

udB (u)

)

= s

(
x+ y

2

)
+

(∫ s

0

(s
2
− u
)
dB (u)

)

and one obtains:

exp

(
−1
s

(∫ s

0

X (u) du

)2)
= exp

(
−1
s

(
s

(
x+ y

2

)
+

(∫ s

0

(s
2
− u
)
dB (u)

))2)

= exp

(
−1
s

(
s2
(
x+y
2

)2
+ 2s

(
x+y
2

) (∫ s
0

(
s
2 − u

)
dB (u)

)

+2
∫ s
0

∫ u1
0

(
s
2 − u1

) (
s
2 − u2

)
dB (u2) dB (u1) + σ

2
∫ s
0

(
s
2 − u

)2
du

))

= exp

(
−1
s

(
s2
(
x+y
2

)2
+ 2s

(
x+y
2

) (∫ s
0

(
s
2 − u

)
dB (u)

)

+2
∫ s
0

∫ u1
0

(
s
2 − u1

) (
s
2 − u2

)
dB (u2) dB (u1) + σ

2 1
12s

3

))

so that:
〈
exp

(
−1
s

(∫ s

0

X (u) du

)2)〉

= exp

(
−1
s

(
s2
(
x+y
2

)2
+ σ2 112s

3 + 2s
(
x+y
2

) (∫ s
0

(
s
2 − u

)
dB (u)

)

+2
∫ s
0

∫ u1
0

(
s
2 − u1

) (
s
2 − u2

)
dB (u2) dB (u1)

))

〈
exp

(
−1
s

(
2s

(
x+ y

2

)(∫ s

0

(s
2
− u
)
dB (u)

)
+ 2

∫ s

0

∫ u1

0

(s
2
− u1

)(s
2
− u2

)
dB (u2) dB (u1)

))〉
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using classical methods of differential stochastic equations:
〈
exp

(
−1
s

((∫ s

0

f (u) dB (u)

)
+

∫ s

0

∫ u1

0

g (u1, u2) dB (u2) dB (u1)

))〉

= exp

(
− 1

2s2

∫ s

0

f2 (u) du− 1

2s2

∫ s

0

∫ u1

0

g2 (u1, u2) du1du2

)

and then:
〈
exp

(
−α

(∫ s

0

X (u) du

)2)〉

= exp

(
−
( (

s
(
x+y
2

)2
+ σ2 112s

2
)
+ 2σ2

(
x+y
2

)2 (∫ s
0

(
s
2 − u

)2
du
)

+2σ
4

s2

∫ s
0

∫ u1
0

(
s
2 − u1

)2 ( s
2 − u2

)2
du2du1

))
exp

(
− (x−y)2

σ2s

)

√
s

= exp

(
−
(
s

(
x+ y

2

)2
+
σ2

12
s2 +

σ2s3

6

(
x+ y

2

)2
+
σ4s4

144

))
exp

(
− (x−y)2

σ2s

)

√
s

In the text, we consider several approximation that yield a simplified form of the Green function. These
hypothesis are justified in the text. We assume first that σ < α, and s ' 1

α
. Moreover the individual

fluctuations |x− y|, which are of order σ√s ' σ√
α
, will be neglected with respect to the mean path x+y

2

over the all duration of interaction. It translates in x+y
2 >> |x− y| and since |x− y| is of order σ√s ' σ√

α
,

(
x+y
2

)2
>> σ2s and

(
x+y
2

)2
>> σ2

α
.

Then one can rewrite some contributions:

σ2s3

6

(
x+ y

2

)2
+

σ4

144
s4 '

(
σ2

α2

)
α

6
s2
(
x+ y

2

)2
+

1

144

(
σ4

α4

)

and:

s

(
x+ y

2

)2
+
σ2

12
s2 +

σ2s3

6

(
x+ y

2

)2
+

σ4

144
s4

' s

(
x+ y

2

)2
+
σ2

12
s2

the error made in neglecting σ2s3

6

(
x+y
2

)2
being lower than 1

6 . One has, in first approximation:

Ḡ (α, x, y) = L



〈
exp

(
−1
s

(∫ s

0

X (u) du

)(∫ s

0

X (u) du

))〉 exp
(
− (x−y)2

σ2s

)

√
s




= L


exp

(
−
(
s

(
x+ y

2

)2
+
σ2

12
s2 +

σ2s3

6

(
x+ y

2

)2
+

σ4

144
s4

))
exp

(
− (x−y)2

σ2s

)

√
s




' L


exp

(
−s
(
x+ y

2

)2) exp
(
− (x−y)2

σ2s

)

√
s




= exp

(((
x+ y

2

)2)
∂

∂α

)
exp

(
−
√
2α
∣∣x−y
σ

∣∣)
√
2α

=

exp

(
−
√
2
(
α+

(
x+y
2

)2) ∣∣x−y
σ

∣∣
)

√
2
(
α+

(
x+y
2

)2)
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To find a field formalism including Ḡ (α, x, y), the green function modified by the constraints one has to find
a differential equation satisfied by Ḡ (α, x, y), and one does so by first computing:

(
∇2 − 2α+

(
x+y
2

)2

σ2

)
Ḡ (α, x, y)

Using that:

σ2

2

(
∇2 − 2 α

σ2

) exp
(
−
√
2α
∣∣x−y
σ

∣∣)
(√

2α
σ

) = δ (x− y)

one obtains:
(
∇2 − 2α+

(
x+y
2

)2

σ2

)
Ḡ (α, x, y)

= δ (x− y) + (x+ y)2 ∂2

∂α2

exp

(
−
√
2
(
α+

(
x+y
2

)2) ∣∣x−y
σ

∣∣
)

√
2
(
α+

(
x+y
2

)2)
+

∂

∂α

exp

(
−
√
2
(
α+

(
x+y
2

)2) ∣∣x−y
σ

∣∣
)

√
2
(
α+

(
x+y
2

)2)

−2


(x+ y)

∂

∂α

exp

(
−
√
2
(
α+

(
x+y
2

)2) ∣∣x−y
σ

∣∣
)

√
2
(
α+

(
x+y
2

)2)






(
∂

∂x

∣∣∣∣
x− y
σ

∣∣∣∣
)√√√√2

(
α+

(
x+ y

2

)2)



= δ (x− y) + (x+ y)2




3
(√

2
(
α+

(
x+y
2

)2)
)5 + 3

∣∣x−y
σ

∣∣
(
2
(
α+

(
x+y
2

)2))2 +
∣∣x−y
σ

∣∣2
(√

2
(
α+

(
x+y
2

)2)
)3




× exp


−

√√√√2
(
α+

(
x+ y

2

)2)∣∣∣∣
x− y
σ

∣∣∣∣




−



∣∣∣∣
x− y
σ

∣∣∣∣+
1√

2
(
α+

(
x+y
2

)2)



exp

(
−
√
2
(
α+

(
x+y
2

)2) ∣∣x−y
σ

∣∣
)

2
(
α+

(
x+y
2

)2)

+2 (x+ y)



∣∣∣∣
x− y
σ

∣∣∣∣+
1√

2
(
α+

(
x+y
2

)2)



exp

(
−
√
2
(
α+

(
x+y
2

)2) ∣∣x−y
σ

∣∣
)

√
2
(
α+

(
x+y
2

)2)
H (x− y)−H (y − x)

σ

As a consequence Ḡ (α, x, y) satisfies the following differential equation:

δ (x− y) =
σ2

2




(
∇2 − 2α+

(
x+y
2

)2

σ2

)
− (x+ y)

2

2
(
α+

(
x+y
2

)2)







3

2
(
α+

(
x+y
2

)2) +
3
∣∣x−y
σ

∣∣
√
2
(
α+

(
x+y
2

)2)
+

∣∣∣∣
x− y
σ

∣∣∣∣
2







−
1 +

∣∣x−y
σ

∣∣
√
2
(
α+

(
x+y
2

)2)

2
(
α+

(
x+y
2

)2)



(
2 (x+ y)

H (x− y)−H (y − x)
σ

)√√√√2
(
α+

(
x+ y

2

)2)
− 1





 Ḡ (α, x, y)

206



Then use our assumptions about the parameters to obtain:

3σ2(
2
(
α+

(
x+y
2

)2)) <
3σ2

α
<<

(
x+ y

2

)2

3σ2
∣∣x−y
σ

∣∣
√
2
(
α+

(
x+y
2

)2)
<

3σ |x− y|√
2
(
α+

(
x+y
2

)2)
<< σ < α

σ2
∣∣∣∣
x− y
σ

∣∣∣∣
2

= |x− y|2 <<
(
x+ y

2

)2

σ2
1 +

∣∣x−y
σ

∣∣
√
2
(
α+

(
x+y
2

)2)

2
(
α+

(
x+y
2

)2) <
σ2√

α
(
x+y
2

) + σ |x− y|√
2
(
α+

(
x+y
2

)2)

< < σ + σ < 2α

and the differential equation reduces to:

δ (x− y) =
(
σ2

2
∇2 − 2

(
α+

(
x+ y

2

)2))
Ḡ (α, x, y)
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Appendix 11

When some discount rate is introduced, we go back to the initial individual agent formulation and modify
it accordingly. Recall that the transition probabilities between two consecutive state variables of the system

are defined by (79):

〈Bs+1| |Bs〉 =
∫ T∏

i=2

dBs+i exp

(
U (Cs) +

∑

i>0

U (Cs+i)

)

but now, the constraint rewrites:
Bs+1 = (1 + r) (Bs + Ys − Cs)

or equivalently:

Cs = Bs + Ys −
Bs+1

(1 + r)

Then, the integral over the Bs+i is similar to the previous one, since one can change the variables:
Bs+i

(1+r)i
→

Bs+i for i > 1.

=

∫ T∏

i=2

dBs+i exp

(
−
(
Cs − C̄

)2 −
∑

i>0

(
Cs+i − C̄

)2
)

=

∫ T∏

i=2

dBs+i exp

(
−
(
Bs + Ys −

Bs+1

(1 + r)
− C̄

)2
−
∑

i>0

(
Bs+i + Ys+i −

Bs+i+1

(1 + r)
− C̄

)2)

=

∫ T∏

i=2

(1 + r)
i
dB′s+i exp


−

(
Bs + Ys −

Bs+1

(1 + r)
− C̄

)2
−
∑

i>0

(1 + r)
i

(
B′s+i −B′s+i+1 +

Ys+i − C̄
(1 + r)

i

)2


=

(
T∏

i=2

(1 + r)
i

)
exp


−

(
Bs + Ys −

Bs+1

(1 + r)
− C̄

)2
− 1
∑

i>0 (1 + r)
−i

(
Bs+1

(1 + r)
+
∑

i>0

Ys+i − C̄
(1 + r)

i

)2


=

(
T∏

i=2

(1 + r)
i

)
exp


−

(
Bs + Ys −

Bs+1

(1 + r)
− C̄

)2
− r

(1 + r)
T − 1

(
Bs+1

(1 + r)
+
∑

i>0

Ys+i − C̄
(1 + r)

i

)2
 (265)

where the sum has been performed up to T where T is the time horizon defined previously.

The factor

T∏

i=2

(1 + r)
i
can be included in the normalization factor, as explained before, and then we are

left with:

〈Bs+1| |Bs〉 =

∫ T∏

i=2

dBs+i exp

(
U (Cs) +

∑

i>0

U (Cs+i)

)

= exp


−

(
Bs + Ys −

Bs+1

(1 + r)
− C̄

)2
− r

(
Bs+1

(1 + r)
+
∑

i>0

Ys+i − C̄
(1 + r)

i

)2
 (266)

which is similar to (79), except the 1
(1+r) factor in front of Bs+1 and the (1 + r)

i
multiplying

(
Ys+i − C̄

)
.

One also replaces T by 1
r
. Then the previous analysis following (79) applies, except that, writing Bs+1 as a

function of the past is now:

Bs+1 =
∑

i60

Ys+i

(1 + r)
i
−
∑

i60

Cs+i

(1 + r)
i

(267)
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that will lead directly to the weight, after normalization:

exp


−

(
Cs −

σ
1
r
+ σ

C̄

)2
− 2r

(1 + r)
T − 1 + σ

Cs

(
∑

i<0

Cs+i

(1 + r)
i

)
− 2r

(1 + r)
T − 1 + σ

Cs


∑

i60

Ys+i

(1 + r)
i
+
∑

i>0

Ȳ

(1 + r)
i






The global weight, over all periods is then:

exp

(
−
∑

s

(
Cs −

σ
1
r
+ σ

C̄

)2
− 2r

(1 + r)
T − 1 + rσ

∑

s1,s2

Cs1 (1 + r)
|s2−s1| Cs2 (268)

− 2r

(1 + r)
T − 1 + rσ

∑

s1,s2

Cs1

(
(1 + r)

s1−s2 Es1 (Ys2)
))

with Es1Ys2 = (1 + r)
s2−s1 Ys2 if s2 6 s1 Es1Ys2 = (1 + r)

s2−s1 Ȳ if s1 6 s2.
Now, switching to an endogenous expression for Ys2 , we introduce an index i to describe a set of N

agents. Each of them is described by an action C
(i)
s and has an endowment Y

(i)
s = α

∑
j C

(j)
s . The global

weight for the set of agents is then:

exp

(
−
∑

s

(
C(i)s − σ

1
r
+ σ

C̄

)2
− 2r

(1 + r)
T − 1 + rσ

∑

i

∑

s1,s2

C(i)s1 (1 + r)
|s2−s1| C(i)s2 (269)

− 2r

(1 + r)
T − 1 + rσ

∑

s1,s2

∑

i,j

C(i)s1

(
(1 + r)

s2−s1 C(j)s1

)



To understand the field theoretic equivalent of the two last terms in (269), one proceeds as follows. First,
neglecting as before the term proportional to σ, we turn to a continuous representation:

exp

(
−
∫ s

0

ds1

(
C(i)s1 −

σ
1
r
+ σ

C̄

)2
− 2r

exp (rT )− 1
∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2 (270)

− 2r

exp (rT )− 1

∫ s

0

ds1

∫ s

0

ds2
∑

i,j

C(i)s1

(
exp (r (s2 − s1))C(j)s2

)



The second term of (270):

− 2r

exp (rT )− 1
∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2

can be introduced in very similar way to the case r = 0, in (270), but now, terms of the form exp (r (s2 − s1))
are inserted:

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

)
− 2r

exp (rT )− 1
∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2

)

=

〈
exp

(
− 2r

exp (rT )− 1
∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2

)〉

where the Brackets denote the expectation for a Brownian path moving between x and y during a time s.
As before, describing the estimated interaction duration time T by s, one is left with:

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

)
− 2r

exp (rT )− 1
∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2

)

=

〈
exp

(
− 2r

exp (rs)− 1
∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2

)〉
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We write:

X (u) =

(
u

s
x+

s− u
s

y

)
+
(
B (u)−

(u
s

)
B (s)

)

where B (u) is a free brownian motion. As before, to our order of approximation, in integrals of the kind:

(∫ s

0

exp (ru)X (u) du

)
=

∫ s

0

exp (ru)

(
u

s
x+

s− u
s

y

)
du+

(∫ s

0

(
B (u)−

(u
s

)
B (s)

)
du

)

we can neglect contribution due to the ito integrals and approximate X (u) by
(
u
s
x+ s−u

s
y
)
. Then:

∑

i

∫ s

0

ds2

∫ s2

0

ds1Xs1 exp (r (s2 − s1))Xs2

=

∫ s

0

(
v

s
x+

s− v
s

y

)
exp (rv)

(
1

r

(
y − exp (−rv)

(
v

s
x+

s− v
s

y

))
+

1

sr2
(1− exp (−rv)) (x− y)

)
dv

=

∫ s

0

(
1

r

((
v

s
x+

s− v
s

y

)
exp (rv) y −

(
v

s
x+

s− v
s

y

)2)
+

(
v
s
x+ s−v

s
y
)

sr2
(exp (rv)− 1) (x− y)

)
dv

Each term in the previous integral can be computed directly:

∫ s

0

(
1

r

((
v

s
x+

s− v
s

y

)
exp (rv) y −

(
v

s
x+

s− v
s

y

)2))
dv

=
1

r2
(x exp (rs)− y) y − 1

sr3
y (x− y) (exp (rs)− 1)− 1

3r
s
(
x2 + xy + y2

)

∫ s

0

((
v
s
x+ s−v

s
y
)

sr2
(exp (rv)− 1) (x− y)

)
dv

=
1

r3s2
(x− y)

(
s (ersx− y)− 1

r
(ers − 1) (x− y)

)
− 1

2r2
(x− y) (x+ y)

So that one finds:

∑

i

∫ s

0

ds2

∫ s2

0

ds1Xs1 exp (r (s2 − s1))Xs2

=
1

r2
(x exp (rs)− y) y − 1

sr3
y (x− y) (exp (rs)− 1)− 1

3r
s
(
x2 + xy + y2

)

+
1

r3s2
(x− y)

(
s (ersx− y)− 1

r
(ers − 1) (x− y)

)
− 1

2r2
(x− y) (x+ y)

One can simplify this result for two different regimes. In the first one, the interaction duration is relatively
short so that (rs) << 1, or, which is equivalent,

(
r
α

)
<< 1 since 1

α
is the mean duration, and in that case,

in first approximation:

2
∑

i

∫ s

0

ds2

∫ s2

0

ds1Xs1 exp (r (s2 − s1))Xs2 =
1

4
s2 (x+ y)

2
+
1

15
(rs) s2

(
x2 + 3xy + y2

)

The second term appears as a correction with respect to the case with no discount rate in the constraint.
Since rs << 1 one can approximate s by it’s mean 1

α
, then rs ' r

α
and:

2
∑

i

∫ s

0

ds2

∫ s2

0

ds1Xs1 exp (r (s2 − s1))Xs2 = s2

[(
x+ y

2

)2
+
1

15

r

α

(
5

(
x+ y

2

)2
−
(
x− y
2

)2)]
(271)

= s2

[(
x+ y

2

)2 (
1 +

r

3α

)
− 1

15

r

α

(
x− y
2

)2]
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then including the discount rate keeps the global form of the green function, but reduces the binding tendency
to set x = y. Due to the discount rate, the various periods are no more equivalent, which is reducing the

smoothing behavior. This reduction reflects in the introduction of the term −− 1
15

r
α

(
x−y
2

)2
. Actually, (271)

implies that in the approximation rs << 1:

2r

exp (rs)− 1
∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2

' 2

s

∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2

= s

[(
x+ y

2

)2 (
1 +

r

3α

)
− 1

15

r

α

(
x− y
2

)2]

which leads, as in the text to the following Green function:

Ḡ (α, x, y) = L



〈
exp

(
1

s

(∫ s

0

X (u) du

)(∫ s

0

X (u) du

))〉 exp
(
− (x−y)2

σ2s

)

√
s




= exp

([(
x+ y

2

)2 (
1 +

r

3α

)
− 1

15

r

α

(
x− y
2

)2]
∂

∂α

)
exp

(
−
√
2α
∣∣x−y
σ

∣∣)
√
2α

=

exp

(
−
√
2
(
α+

(
x+y
2

)2 (
1 + r

3α

)
− 1

15
r
α

(
x−y
2

)2) ∣∣x−y
σ

∣∣
)

√
2
(
α+

(
x+y
2

)2 (
1 + r

3α

)
− 1

15
r
α

(
x−y
2

)2)

Ḡ (α, x, y) which satisfies:

δ (x− y) =



(
∇2 − α+ q (x, y)

σ2

)
− 1

2 (α+ q (x, y))







6q (x, y)

(α+ q (x, y))
+ 12

∣∣x−y
σ

∣∣ q (x, y)√
2
(
α+

(
x+y
2

)2)
+ 4q (x, y)

∣∣∣∣
x− y
σ

∣∣∣∣
2







−1 +
√
2 (α+ q (x, y))

2 (α+ q (x, y))

×
(((

2 (x+ y)
(
1 +

r

3α

)
− 2

15

r

α
(x− y)

)
H (x− y)−H (y − x)

σ

)√
2 (α+ q (x, y))− 1

)]
Ḡ (α, x, y)

with:

q (x, y) =

(
x+ y

2

)2 (
1 +

r

3α

)
− 1

15

r

α

(
x− y
2

)2

In the limit σ << 1, one finds then a quadratic term in the action:

Ψ† (x)

[
∇2 − α+

(
x+y
2

)2 (
1 + r

3α

)
− 1

15
r
α

(
x−y
2

)2

σ2
− 2

∣∣∣∣
x− y
σ

∣∣∣∣
2
]
Ψ(y) (272)

= Ψ† (x)

[
∇2 − α+

(
x+y
2

)2 (
1 + r

3α

)

σ2
−
(
2− 1

15

r

α

) ∣∣∣∣
x− y
σ

∣∣∣∣
2
]
Ψ(y)

and the presence of r 6= 0 reduces, as announced, the second smoothing term
∣∣x−y
σ

∣∣2 that constrains x − y

to oscillate around 0.
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The second regime is more appropriate, since it focuses on the long run effect of a discount rate. Actually,
for rs > 1, the interaction process is sufficiently long to allow the discount rate r to impact the dynamic
system. In that case:

2r

exp (rs)− 1
∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2

' 2r

exp (rs)

∑

i

∫ s

0

ds2

∫ s2

0

ds1C
(i)
s1
exp (r (s2 − s1))C(i)s2

' 2r
(y − x (1− rs)) (x− y (1− rs))

r4s2

' 2xy

r

and this modifies the Green function as:

Ḡ (α, x, y) =
exp

(
−
√
2α
∣∣x−y
σ

∣∣− 2xy
r

)
√
2α

which satisfies:

(
∇2 − α

σ2

)
Ḡ (α, x, y) = δ (x− y) +

(
4y2

r2
Ḡ (α, x, y) + 4

xy

r
√
2α

∣∣∣∣
x− y
σ

∣∣∣∣
)
Ḡ (α, x, y)

which leads to the quadratic term:

Ψ† (x)

[
∇2 − α

σ2
− 2x

2 + y2

r2
− 4

√
2αxy

rσ
(H (x− y)−H (y − x))

]
Ψ(y) (273)

The the third term in (270) can also be written

exp


− 2α

1
r
+ σ

∑

i,j

∫ s

0

ds1 exp (−rs1)C(i)s1
∫ s

0

ds2 exp (rs2)C
(j)
s2


 (274)

We have seen previously how to introduce the field theoretic counterpart of such a product. One has to

find the counterpart of each term exp
(∫ s

0
ds1 exp (−rs1)C(i)s1

)
and exp

(∫ s
0
ds2 exp (rs2)C

(j)
s2

)
, and then to

take simply the product of the field equivalent quantities. We then focus only on
∫ s
0
ds2 exp (rs2)C

(i)
s2 , and

compute it’s expectation in the path integral to find it’s field theoretic formulation.

∫
exp (−αsi)

∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))
exp

(∫ s

0

ds1 exp (−rs1)C(i)s1
)

(∫ s

0

ds1...

∫ sn

0

ds2nC
(i)
s1
exp (rs1)C

(i)
s2
exp (rs2) ...C

(i)
sn−1

exp (rsn−1)C
(i)
sn
exp (rsn)

)

=
∑

n

〈∫ s

0

ds1...

∫ sn

0

ds2nC
(i)
s1
exp (rs1)C

(i)
s2
exp (rs2) ...C

(i)
sn−1

exp (rsn−1)C
(i)
sn
exp (rsn)

〉

where the expectation 〈A〉 of any expression A is computed for the weight
∫
Dxi (t) exp

(
−
∑

i

∫ xi(s)=yi

xi(0)=xi

(
ẋ2i
2
(t) +K (xi (t)) dt

))

and the path integral leads to contributions:
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〈∫ s

0

ds1...

∫ sn

0

ds2nC
(i)
s1
exp (rs1)C

(i)
s2
exp (rs2) ...C

(i)
sn−1

exp (rsn−1)C
(i)
sn
exp (rsn)

〉
(275)

=

∫ ∫ s

0

ds1...

∫ s2n

0

ds2nP (0, s1, xi, X1)X1 exp (rs1)P (s1, s2, X1, X2)X2...Xn exp (rsn)

×P (sn−1, sn, Xn−1, X2n)P (sn, s,Xn, yi) dX1...dXn

Writing:

exp (rs1) ... exp (rsn)

= exp (nrs1) ... exp (2r (sn−1 − sn−2)) exp (r (sn − sn−1))

(275) can be transformed as:
〈∫ s

0

ds1...

∫ sn

0

ds2nC
(i)
s1
exp (rs1)C

(i)
s2
exp (rs2) ...C

(i)
sn−1

exp (rsn−1)C
(i)
sn
exp (rsn)

〉

=

∫ ∫ s

0

ds1...

∫ s2n

0

ds2nP (0, s1, xi, X1)X1 exp (nrs1)P (s1, s2, X1, X2)X2...Xn exp (r (sn − sn−1))

×P (sn−1, sn, X2n−1, X2n)P (sn, s,X2n, yi) dX1...dX2n

whose Laplace transform is:

G+nr ∗X ∗G+(n−1)r ∗X ∗ ...G+r ∗X ∗GG+nr ∗X ∗G+(n−1)r ∗X ∗ ...G+r ∗X ∗G (276)

One can find an approximation for such contributions by the following trick. Actually, write the convolution
of the Green functions, without the interacting term X as:

G+nr ∗G+(n−1)r ∗ ... ∗G+r ∗G

as a product of operators:
(
G−1 + nr

) (
G−1 + (n− 1) r

)
...
(
G−1 + r

)
G−1

And this product is formally a product series

n∏

k=1

(
(rG)

−1
+ k
)

=
N !Γ

(
(rG)

−1
+ 1
)

rNΓ
(
(rG)

−1
+N + 1

)

Using asymptotic expansion for Γ
(
(rG)

−1
+ 1
)
and Γ

(
(rG)

−1
+N + 1

)
, assuming r small, yields:

N !Γ
(
(rG)

−1
+ 1
)

rNΓ
(
(rG)

−1
+N + 1

) = N !

rN
exp

(
−
((
(rG)

−1
+N + 1

)
ln
(
(rG)

−1
+N + 1

)
−
(
(rG)

−1
+ 1
)
ln
(
(rG)

−1
+ 1
)))

Factor the first term in the exponential by (rG)
−1
+ 1 leads to a first order expansion:

(
(rG)

−1
+N + 1

)
ln
(
(rG)

−1
+N + 1

)
=

(
(rG)

−1
+ 1
)
ln
(
(rG)

−1
+ 1
)

+N
(
ln
(
(rG)

−1
+ 1
)
+ 1
)

+
1

2

N2

(
(rG)

−1
+ 1
)
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and:

N !Γ
(
(rG)

−1
+ 1
)

rNΓ
(
(rG)

−1
+N + 1

) =
N !

rN
exp


−N

(
ln
(
(rG)

−1
+ 1
)
+ 1
)
− 1
2

N2

(
(rG)

−1
+ 1
)




=
N !

rN

((
(rG)

−1
+ 1
))−N

exp (−N) exp


−1

2

N2

(
(rG)

−1
+ 1
)




= N !
(
(G)

−1
+ r
)−N

exp (−N) exp


−1

2

N2r(
(G)

−1
+ r
)




' N !
(
(G)

N
)
exp (−N) exp


−NrG− 1

2

N2r(
(G)

−1
+ r
)




The terms in the series expansion becomes negligible for a value of N , denoted N̄ that is proportional 1
1−aij

and then the previous contributions are approximated by:

G+nr ∗X ∗G+(n−1)r ∗X ∗ ...G+r ∗X ∗G

exp

(
−
(
r +

1

2

N̄r

(1 + rG)

)
G

)

' exp

(
−
(
r +

1

2
N̄r

)
G

)

and then, (276): rewrites

G+nr ∗X ∗G+(n−1)r ∗X ∗ ...G+r ∗X ∗G (277)

' G ∗
{
exp

(
−
(
r +

1

2
N̄r

)
G

)
∗X

}
∗G ∗

{
exp

(
−
(
r +

1

2
N̄r

)
G

)
∗X

}
∗

...G ∗
{
exp

(
−
(
r +

1

2
N̄r

)
G

)
∗X

}
∗G

where:
{
exp

(
−
(
r +

1

2
N̄r

)
G

)
∗X

}
=
1

2

(
exp

(
−
(
r +

1

2
N̄r

)
G

)
X +X exp

(
−
(
r +

1

2
N̄r

)
G

))

This leads to an interaction potential:

{
exp

(
−
(
r +

1

2
N̄r

)
G

)
∗X

}

and a field contribution:
∫
Ψ† (x)

(
exp

(
−
(
r +

1

2
N̄r

)
G (x, y)

)
x+ y

2

)
Ψ† (y) dxdy (278)

We can come back to our problem and find the field counterpart of: (274).

Similarly to (278), the term

exp

(∫ s

0

ds1 exp (−rs1)C(i)s1
)
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induces a field counterpart:

∫
Ψ† (x)

(
exp

((
r +

1

2
N̄r

)
G (x, y)

)
x+ y

2

)
Ψ† (y) dxdy (279)

Then the expansion of

exp


∑

i,j

∫ s

0

ds1 exp (−rs1)C(i)s1
∫ s

0

ds2 exp (rs2)C
(j)
s2




yields contributions of the form:
∫ ∫ s

0

ds1...

∫ s2n

0

ds2nP (0, s1, xi, X1)X1 exp (rs1)P (s1, s2, X1, X2)X2...Xn exp (rsn)

×P (sn−1, sn, Xn−1, X2n)P (sn, s,Xn, yi) dX1...dXn

×
∫ ∫ s

0

ds′1...
∫ s2n

0

ds′2nP (0, s
′
1, xi, X

′
1)X

′
1 exp (−rs′1)P (s′1, s′2, X ′

1, X
′
2)X

′
2...X

′
n exp (−rs′n)

×P
(
s′n−1, s

′
n, X

′
n−1, X

′
2n

)
P (s′n, s

′, X ′
n, yi) dX

′
1...dX

′
2n

and as previously, using (278) and (279), in field theoretic formalism it leads to the potential:

[∫
Ψ† (x)

(
exp

(
−
(
r +

1

2
N̄r

)
G (x, y)

)
x+ y

2

)
Ψ† (y) dxdy

]

×
[∫

Ψ† (w)

(
exp

((
r +

1

2
N̄r

)
G (w, z)

)
w + y

2

)
Ψ† (z) dwdz

]

The Green function introduced here are the one found in (??) and includes the constraint at the individual
level. Ultimately, gathering this result and (273) we are left with the following action with constraint and
discount rate in the case r

α
>> 1:

S
({
Ψ(k)

}
k=1...M

)
(280)

=
1

2

∑

k

∫
dX̂

(1)
k dX̂

(2)
k Ψ(k)†

(
X̂
(2)
k

) [[(
∇
X̂
(1)
k

)(
∇
X̂
(1)
k

−M (1)
k

(
X̂
(1)
k −

(
X̃
)
k

))
+m2

k + V
(
X̂
(1)
k

)]
δ
(
X̂
(1)
k − X̂(2)

k

)

+2

(
X̂
(1)
k

)2
+
(
X̂
(2)
k

)2

r2
− 4

√
2αX̂

(1)
k X̂

(2)
k

rσ

(
H
(
X̂
(1)
k − X̂(2)

k

)
−H

(
X̂
(2)
k − X̂(1)

k

))

︸ ︷︷ ︸
constraint, individual level


Ψ

(k)†
(
X̂
(2)
k

)

+
∑

k

∑

n

Vn

({
X̂
(i)
k

}
16i6n

) ∏

16i6n

Ψ(k)†
(
X̂
(i)
k

)
Ψ(k)

(
X̂
(i)
k

)

︸ ︷︷ ︸
intra species interaction

+
∑

m

∑

k1...km

∑

n1...nm

Vn1...nm

({
X̂
(inj )
kj

}

16inj6nj

)
m∏

j=1

∏

16inj6nj

Ψ(kj)†
(
X̂
(inj )
kj

)
Ψ(kj)

(
X̂
(inj )
kj

)

︸ ︷︷ ︸
inter species interaction

+

∑
k1,k2

ak1,k2
∫ ∫ (

Ψ(k1)†
(
X̂
(1)
k1

)(
exp

(
−
(
r + 1

2N̄r
)
G
(
X̂
(1)
k1
, X̂

(2)
k1

))
X̂
(1)
k1
+X̂

(2)
k1

2

)
Ψ(k1)

(
X̂
(2)
k1

))
dX̂

(1)
k1
dX̂

(2)
k1

×
∫ ∫ (

Ψ(k2)†
(
X̂
(1)
k2

)(
exp

((
r + 1

2N̄r
)
G
(
X̂
(1)
k2
, X̂

(2)
k2

))
X̂
(1)
k2
+X̂

(2)
k2

2

)
Ψ(k2)

(
X̂
(2)
k2

))
dX̂

(1)
k2
dX̂

(2)
k2

︸ ︷︷ ︸
constraint, collective level
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Appendix 12

Case 1: one type of agents

As said in the text, we compute the sadlle point for:

S (Ψ) = −
∫
Ψ† (x)

[(
−∇2 + α

σ2
+ x2

)
δ (x− y) +

(
x+y
2

)2

σ2
+ 2

∣∣∣∣
x− y
σ

∣∣∣∣
2
]
Ψ(y) dxdy

−f
∫
Ψ(x)Ψ† (x) (xy)Ψ (y)Ψ† (y) dxdy

and show that the minimum solution is for Ψ(x) = 0.

The saddle point equation is:

(
x2 + ε2

)
Ψ(x) +

∫ [(x+y
2

)2

σ2
+ 2

∣∣∣∣
x− y
σ

∣∣∣∣
2
]
Ψ(y) dy − 2fxΨ(x)

∫
yΨ(y)Ψ† (y) dy = 0

and this implies that the only absolute minimum is reached for Ψ(x) = 0. Actually, for a non nul solution
of this saddle point equation, the effective action rewrites:

S (Ψ) =

(
−f
∫
Ψ(x)Ψ† (x)

(
x
(
y + Ȳ

))
Ψ(y)Ψ† (y) dxdy

−
∫
Ψ† (x)

(
2fxΨ(x)

∫ (
y +

Ȳ

2

)
Ψ(y)Ψ† (y) dy + fȲΨ(x)

∫
yΨ(y)Ψ† (y) dy

)
dx

)

= f

∫
Ψ† (x)Ψ (x)x

(
y + Ȳ

)
Ψ(y)Ψ† (y) dy

= f

(∫
Ψ† (x)xΨ(x) dx

)2

Since f > 0, the last term is positive and the only minimum is for Ψ(x) = 0.
Moreover, any solution to the saddle point equation Ψ(x) 6= 0 is not even a local minimum. Actually,

the computation of ∂2S
∂Ψ(x)∂Ψ(y) for this solution yields:

(
x2 + ε2

)
δ (x− y) +

[(
x+y
2

)2

σ2
+ 2

∣∣∣∣
x− y
σ

∣∣∣∣
2
]
− 2fx

[∫
yΨ(y)Ψ† (y) dy

]
δ (x− y)− 2fxyΨ(x)Ψ† (y)

= −2fxyΨ(x)Ψ† (y)
This corresponds to a local maximum since f > 0 and :

∫
ϕ† (x)

∂2S

∂Ψ(x) ∂Ψ(y)
ϕ (y) dxdy

= 2f

(∫
ϕ† (x)xΨ(x) dx

)2

Case 2: several types of agents

We proceed in a similar way as for the case of a single type of agents. Given the action functional:

S ((Ψα)) =
∑

α

(∫
dxαΨ

† (xα)
(
x2α + ε

2
)
Ψα (xα) +

∫
dxαdyαΨ

† (xα)

[(
xα+yα
2

)2

σ2
+ 2

∣∣∣∣
xα − yα

σ

∣∣∣∣
2
]
Ψα (yα)

)

− 1
T

∑

α,β

fαβ

[∫
Ψ†α (xα)xαΨα (xα)

] [∫
Ψ†β (xβ)xβΨβ (xβ)

]
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the saddle point equation becomes:

0 =

(
(
x2α + ε

2
)
Ψα (xα) +

∫
dyα

[(
xα+yα
2

)2

σ2
+ 2

∣∣∣∣
xα − yα

σ

∣∣∣∣
2
]
Ψα (yα)

)

− 1
T

∑

β, α6=β
(fαβ + fβα)xαΨα (xα)

[∫
Ψ†β (xβ)xβΨβ (xβ)

]

− 2
T
fααxαΨα (xα)

[∫
Ψ†α (xα)xαΨα (xα)

]

and the action for this solution is:

S ((Ψα)) =
∑

α

(∫
dxαΨ

† (xα)
(
x2α + ε

2
)
Ψα (xα) +

∫
dxαdyαΨ

† (xα)

[(
xα+yα
2

)2

σ2
+ 2

∣∣∣∣
xα − yα

σ

∣∣∣∣
2
]
Ψα (yα)

)

− 1
T

∑

α,β

fαβ

[∫
Ψ†α (xα)xαΨα (xα)

] [∫
Ψ†β (xβ)xβΨβ (xβ)

]

=
1

T

∑

β, α6=β
(fαβ + fβα)Ψ

†
α (xα)xαΨα (xα)

[∫
Ψ†β (xβ)xβΨβ (xβ)

]

+
2

T
fααxαΨα (xα)

[∫
Ψ†α (xα)xαΨα (xα)

]

− 1
T

∑

α,β

fαβ

[∫
Ψ†α (xα)xαΨα (xα)

] [∫
Ψ†β (xβ)xβΨβ (xβ)

]

which simplifies as:

S ((Ψα)) =
1

T

∑

α,β

fαβ

[∫
Ψ†α (xα)xαΨα (xα)

] [∫
Ψ†β (xβ)xβΨβ (xβ)

]

confirming that Ψα (xα) = 0 is the absolute minimum. The reason of this vacuum at Ψα (xα) = 0 is the
direct consequence of the constraint that induces the terms:

− 1
T

∑

α,β

fαβ

[∫
Ψ†α (xα)xαΨα (xα)

] [∫
Ψ†β (xβ)xβΨβ (xβ)

]

in the effective action. The minus sign is crucial for preventing any phase transition. Thus the constraints
smoothes the interaction between agents. It prevents from switching from a symetric (nul) equilibrium to an
asymetric one favouring somes groups of agents.Assume that there is a solution Ψ(x) 6= 0 for this equation.
As before one can check that any other solution of the saddle point equation is not a minimum by studying

the stability of this solution. One computes the second order matrix elements:

∂2S

∂Ψα (xα) ∂Ψα (yα)

=


x2α + ε2 − xα


 1
T

∑

β, α6=β
(fαβ + fβα)

[∫
Ψ†β (xβ)xβΨβ (xβ)

]
− 2

T
fαα

[∫
Ψ†α (xα)xαΨα (xα)

]


 δ (xα − yα)

+

[(
xα+yα
2

)2

σ2
+ 2

∣∣∣∣
xα − yα

σ

∣∣∣∣
2
]
− 2

T
fααxαΨα (xα)Ψ

†
α (yα) yα

= − 2
T
fααxαΨα (xα)Ψ

†
α (yα) yα

and:
∂2S

∂Ψα (xα) ∂Ψβ (yβ)
= − 1

T
(fαβ + fβα)xαΨα (xα)Ψ

†
β (xβ)xβ
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So that the second order variation, for an arbitrary ϕα (xα) becomes:

− 1
T

∑

α,β

∫
ϕα (xα)

∂2S

∂Ψα (xα) ∂Ψβ (yβ)
ϕβ (yβ) dxαdyβ

= − 1
T

∑

α,β

(fαβ + fβα)

(∫
ϕα (xα)xαΨ

†
α (xα) dxα

)(∫
ϕβ (yβ)xβΨ

†
β (xβ) dxβ

)

which is negative if we choose the perturbation in a single direction ϕα (xα).

Case 3: endogenous interest rates

We start with the following function

Ueff (Ci) =

∫
C2i (t) dt+2

∫

t>s

exp

(
−
∫ t

s

r (v) dv

)
Ci (s)Ci (t) dsdt−2

∫

t>s

Ci (t) exp

(
−
∫ t

s

r (v) dv

)
Yi (s) dsdt

(281)
and transform the last two terms. One first obtains:

2

∫

t>s

exp

(
−
∫ t

s

r (v) dv

)
Ci (s)Ci (t) dsdt− 2

∫

t>s

Ci (t) exp

(
−
∫ t

s

r (v) dv

)
Yi (s) dsdt (282)

= 2

∫

t>s

(
rKi (s)− K̇i (s) + Fi (Ki (s))

)
exp

(
−
∫ t

s

r (v)

)(
rKi (t)− K̇i (t) + Fi (Ki (t))

)
dsdt

−2
∫

t>s

Fi (Ki (s)) exp

(
−
∫ t

s

r (v) dv

)(
rKi (t)− K̇i (t) + Fi (Ki (t))

)
dsdt

= 2

∫

t>s

(
rKi (s)− K̇i (s)

)
exp

(
−
∫ t

s

r (v)

)
Fi (Ki (t)) dsdt

+2

∫

t>s

(
rKi (s)− K̇i (s)

)
exp

(
−
∫ t

s

r (v)

)(
rKi (t)− K̇i (t)

)
dsdt

We compute separately these two expressions. The last term can be decomposed as:

∫

t>s

(
rKi (s)− K̇i (s)

)
exp

(
−
∫ t

s

r (v)

)(
rKi (t)− K̇i (t)

)
dsdt (283)

=

∫

t>s

K̇i (s) exp

(
−
∫ t

s

r (v)

)
K̇i (t) dsdt−

∫

t>s

r (s)Ki (s) exp

(
−
∫ t

s

r (v)

)
K̇i (t) dsdt

−
∫

t>s

K̇i (s) exp

(
−
∫ t

s

r (v)

)
rKi (t) dsdt

+

∫

t>s

r (s)Ki (s) exp

(
−
∫ t

s

r (v)

)
r (t)Ki (t) dsdt

The first term in (283) is:

∫

t>s

K̇i (s) exp

(
−
∫ t

s

r (v)

)
K̇i (t) dsdt

=

∫
Ki (t) K̇i (t) dt−

∫

t>s

r (s)Ki (s) exp

(
−
∫ t

s

r (v)

)
K̇i (t) dsdt

=
1

2

[
K2
i (t)

]T
0
−
∫

t>s

r (s)Ki (s) exp

(
−
∫ t

s

r (v)

)
K̇i (t) dsdt
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The border terms that can be neglected (no accumulation at 0 and T ), so that to the first order in r (283)
simplifies:

∫

t>s

(
r (s)Ki (s)− K̇i (s)

)
exp

(
−
∫ t

s

r (v)

)(
r (t)Ki (t)− K̇i (t)

)
dsdt

= −
∫

t>s

K̇i (s) r (t)Ki (t) dsdt

−2
∫

t>s

r (s)Ki (s) K̇i (t) dsdt

= −
∫
r (t)K2

i (t) dt+ 2

∫
r (s)K2

i (s) ds

=

∫
r (t)K2

i (t) dt

by assuming again that Ki (0) = Ki (T ) = 0. The first term in (282) can also be simplified at the first order
in r:

∫

t>s

(
r (s)Ki (s)− K̇i (s)

)
exp

(
−
∫ t

s

r (v)

)
Fi (Ki (t)) dsdt

= −
∫

t>s

(
r (s)Ki (s) + K̇i (s)

)
exp

(
−
∫ t

s

r (v)

)
Fi (Ki (t)) dsdt

+2

∫

t>s

r (s)Ki (s) exp

(
−
∫ t

s

r (v)

)
Fi (Ki (t)) dsdt

= −
∫

t>s

d

ds

(
Ki (s) exp

(
−
∫ t

s

r (v)

))
Fi (Ki (t)) dsdt

+2

∫

t>s

r (s)Ki (s) exp

(
−
∫ t

s

r (v)

)
Fi (Ki (t)) dsdt

= −
∫
Ki (t)Fi (Ki (t)) dt+ 2

∫

t>s

r (s)Ki (s)Fi (Ki (t)) dsdt

Then, using (281) and (282) Ueff (Ci) can be written:

Ueff (Ci) =

∫
C2i (t) dt− 2

∫
Fi (Ki (t))Ki (t) dt+ 2

∫
r (t)K2

i (t) dt+ 4

∫

t>s

r (s)Ki (s)Fi (Ki (t)) dsdt

Case 3: Saddle points and stability: general form of the second

order variation

We start by writing the second order variation in a convenient way. A straightforward computation yields:

1

2
δ2S (Ψ) = ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
ϕ (x) +

4η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫
Ψ†1 (y)F (y)Ψ1 (y) dy(284)

+
4η

N

∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)∫

ϕ† (y)F (y)ϕ (y) dy

+
8η

N
Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)
Re

(∫
ϕ† (y)F (y)Ψ1 (y) dy

)
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and the last term can be decomposed in a useful way for the sequel. Assume that F (x) − F ′ (x)x > 0 (if
the reverse is true the role of F ′ (x)x and F (x) are exchanged), then

8η

N
Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)
Re

(∫
ϕ† (x)F (x)Ψ1 (x) dx

)

=
8η

N
Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)
Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)

+
8η

N
Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)
Re

(∫
ϕ† (y) (F (x)− F ′ (x)x)Ψ1 (x) dx

)

The last expression can be estimated by the Cauchy Schwarz inequality as:

∣∣∣∣Re
(∫

ϕ† (x)F ′ (x)xΨ1 (x) dx

)
Re

(∫
ϕ† (y) (F (x)− F ′ (x)x)Ψ1 (x) dx

)∣∣∣∣

<

√∫
(ϕ† (x)F ′ (x)xϕ (x) dx)

√∫
Ψ†1 (x)F

′ (x)xΨ1 (x) dx

×
√∫ (

Ψ†1 (x) (F (x)− F ′ (x)x)Ψ1 (x) dx
)√∫

ϕ† (x) (F (x)− F ′ (x)x)ϕ (x) dx

Letting then

A =

∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)

B =

∫
Ψ†1 (y)F (y)Ψ1 (y) dy
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the three last terms in (284) can be regrouped and estimated in the following way:

4η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫
Ψ†1 (x)F (x)Ψ1 (x) dx+

4η

N

∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)∫ (

ϕ† (x)F (x)ϕ (x) dx
)

+
8η

N
Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

∫
ϕ† (x)F (x)Ψ1 (x) dx

)

=
4η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫
Ψ†1 (x)F (x)Ψ1 (x) dx+

4η

N

∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)∫ (

ϕ† (x)F (x)ϕ (x) dx
)

+
8η

N
Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)
Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)

+Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)
Re

(∫
ϕ† (y) (F (x)− F ′ (x)x)Ψ1 (x) dx

)

>
4η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫
Ψ†1 (x)F (x)Ψ1 (x) dx+

4η

N

∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)∫ (

ϕ† (x)F (x)ϕ (x) dx
)

+Re

(∫
ϕ† (x)F ′ (x)xΨ1 (x) dx

)
Re

(∫
ϕ† (y) (F (x)− F ′ (x)x)Ψ1 (x) dx

)

>
4η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫
Ψ†1 (x)F (x)Ψ1 (x) dx+

4η

N

∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)∫ (

ϕ† (x)F (x)ϕ (x) dx
)

−8η
N

√∫
(ϕ† (x)F ′ (x)xϕ (x) dx)

√∫
Ψ†1 (x)F

′ (x)xΨ1 (x) dx

×
√∫ (

Ψ†1 (x) (F (x)− F ′ (x)x)Ψ1 (x) dx
)√∫

ϕ† (x) (F (x)− F ′ (x)x)ϕ (x) dx

=
8η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)

+
4η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫
Ψ†1 (x) (F (x)− F ′ (x)x)Ψ1 (x) dx

+
4η

N

∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)∫ (

ϕ† (x) (F (x)− F ′ (x)x)ϕ (x) dx
)

−8η
N

√∫
(ϕ† (x)F ′ (x)xϕ (x) dx)

√∫
Ψ†1 (x)F

′ (x)xΨ1 (x) dx

×
√∫ (

Ψ†1 (x) (F (x)− F ′ (x)x)Ψ1 (x) dx
)√∫

ϕ† (x) (F (x)− F ′ (x)x)ϕ (x) dx

=
8η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)

+
4η

N

(√∫
(ϕ† (x)F ′ (x)xϕ (x) dx)

√∫ (
Ψ†1 (x) (F (x)− F ′ (x)x)Ψ1 (x) dx

)

−
√∫

ϕ† (x) (F (x)− F ′ (x)x)ϕ (x) dx
√∫

Ψ†1 (x)F
′ (x)xΨ1 (x) dx

)2

>
8η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)
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and inserting this in (284) yields:

1

2
δ2S (Ψ) > ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
ϕ (x) (285)

+
8η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)

= ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))
+
8η

N
AF ′ (x)x

]
ϕ (x)

If F ′ (x)x− F (x) > 0 we have rather:

1

2
δ2S (Ψ) > ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
ϕ (x) (286)

+
8η

N

∫ (
ϕ† (x)F (x)ϕ (x) dx

) ∫ (
Ψ†1 (x)F (x)Ψ1 (x) dx

)

= ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))
+
8η

N
BF (x)

]
ϕ (x)

This can be positive depending on the parameters of the model. The sign of δ2S (Ψ) will be studied for
each case in the next paragraphs of this section.

Case 3: Saddle points and stability: example of scale economy

Now, to understand further the non trivial vacuum in the model of this paragraph, we will assume some
particular forms for F (x). We start with the action of the first case where

F (x) = c (x− f (x))

and the action given by (147):

S (Ψ) =

∫
Ψ† (x)

[(
−∇2 − 4f (x) (x− f (x))

)]
Ψ(x) dx+

16

N

(∫
Ψ† (x)xΨ(x) dx

)(∫
Ψ† (x) (x− f (x))Ψ (x) dx

)

The saddle point equation is:

0 =
(
−∇2 − 4f (x) (x− f (x))

)
Ψ(x) +

16

N
(A (x− f (x)) +Bx)Ψ (x)

with:
∫

R+

Ψ† (x)xΨ(x) dx = A

∫

R+

Ψ† (x) (x− f (x))Ψ (x) dx = B

and this equation can be reorganized:

0 = −∇2Ψ(x) +
((

16A

N
− 4f (x)

)
(x− f (x)) + 16B

N
x

)
Ψ(x)

For 16A
N
− 4f (x) + 16B

N
> 0, a square integrable solution on R+ exists. Given that f (x) is slowly varying, a

first approximation for the saddle point equation is:

0 =
(
−∇2 − 4f (x) (x− f (x))

)
Ψ(x) +

16

N
(A (x− f (x)) +Bx)Ψ (x) (287)
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Now, we factor Ψ(x) = aΨ1 (x) with Ψ1 (x) of norm 1. Then (287) becomes:

0 =

((
−∇2 − 4f (x) (x− f (x))

)
+
16a2

N
(A (x− f (x)) +Bx)

)
Ψ1 (x)

=




−∇2 +

(
16a2

N
(A+B)− 4f (x)

)
x−

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16a2B

N

)






Ψ1 (x)

where the constants A and B have been redefined as:
∫

R+

Ψ†1 (x)xΨ1 (x) dx = A (288)

∫

R+

Ψ†1 (x) (x− f (x))Ψ1 (x) dx = B

The solution Ψ1 (x) is proportionnal to an Airy function:

Ψ1 (x) = αAi


 3

√
16Aa2

N
− 4f (x) + 16Ba

2

N


x−

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16a2B

N

)






with the following normalization condition:

∫

R+

α2


Ai


 3

√
16Aa2

N
− 4f (x) + 16Ba

2

N


x−

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16a2B

N

)







2

dx = 1

To have a minimum, one needs to show that the action S (Ψ) is bounded from below. Note that given the
saddle point equation:

S (Ψ) =

∫
Ψ† (x)

[(
−∇2 − 4f (x) (x− f (x))

)]
Ψ(x) dx+

16

N

(∫
Ψ† (x)xΨ(x) dx

)(∫
Ψ† (x) (x− f (x))Ψ (x) dx

)

= −16a
4

N

∫
Ψ†1 (x) (A (x− f (x)) +Bx)Ψ1 (x) +

16a2

N

(∫
Ψ†1 (x)xΨ1 (x) dx

)(∫
Ψ†1 (x) (x− f (x))Ψ1 (x) dx

)

= −32
N
ABa4 +

16

N
ABa4 = −16

N
ABa4 < 0

One thus has to show that Aa2 and are Ba2 bounded.
To do so, one uses the normalization equation and the defining equations for A and B rewritten as:

∫

R+

α2


Ai


 3

√
16Aa2

N
− 4f (x) + 16Ba

2

N


x−

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16a2B

N

)







2

dx = 1

α2
∫

R+

x


Ai


 3

√
16Aa2

N
− 4f (x) + 16Ba

2

N


x−

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16Ba2

N

)







2

dx = A

α2
∫

R+

(x− f (x))


Ai


 3

√
16Aa2

N
− 4f (x) + 16Ba

2

N


x−

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16Ba2

N

)







2

dx = B

By a change of variable

u =
3

√
16Aa2

N
− 4f (x) + 16Ba

2

N


x−

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16a2B

N

)



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and using that f (x) is slowly varying, and that f (0) = 0, so that

x−

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16a2B

N

)

is increasing from 0 to +∞, one gets, in first approximation (f (x) is considered as constant and can be
replaced by its mean f̄):

∫

R+

α2 (Ai (u))
2 du

3

√
16Aa2

N
− 4f (x) + 16Ba2

N

= 1

α2
∫

R+


 u

3

√
16Aa2

N
− 4f (x) + 16Ba2

N

+

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16Ba2

N

)


 (Ai (u))2 du

3

√
16Aa2

N
− 4f (x) + 16Ba2

N

= A

α2
∫

R+


 u

3

√
16Aa2

N
− 4f (x) + 16Ba2

N

+

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16Ba2

N

) − f (x)


 (Ai (u))2 du

3

√
16Aa2

N
− 4f (x) + 16Ba2

N

= B

As a consequence α2 is of order 3

√
16Aa2

N
− 4f (x) + 16Ba2

N
, and then:

∫

R+


 u

3

√
16Aa2

N
− 4f (x) + 16Ba2

N

+

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16Ba2

N

)


 (Ai (u))2 du = dA

∫

R+


 u

3

√
16Aa2

N
− 4f (x) + 16Ba2

N

+

(
16Aa2

N
− 4f (x)

)
f (x)

(
16Aa2

N
− 4f (x) + 16Ba2

N

) − f (x)


 (Ai (u))2 du

3

√
16Aa2

N
− 4f (x) + 16Ba2

N

= dB

with d =
∫
R+
(Ai (u))

2
du. In first approximation A = B and one is reduced to the following relation between

A and a:
∫

R+


 u

3

√
32Aa2

N
− 4f (x)

+

(
16Aa2

N
− 4f (x)

)
f (x)

32Aa2

N
− 4f (x)


 (Ai (u))2 du = dA

We replace f (x) by f̄ , so that this relation becomes

∫

R+


 u

3

√
32Aa2

N
− 4f (x)

+
f̄

2


 (Ai (u))2 du = dA

or, in a more compact form:
e

3

√
32Aa2

N
− 4f̄

+
f̄

2
d = dA

where we defined e =
∫
R+
u (Ai (u))

2
du. The relation between A and a reduces to:

e3 =

(
dA− f̄

2
d

)3(
32Aa2

N
− 4f̄

)
(289)

In most cases, depending on f̄ , this equation has a positive solution with 32Aa2

N
− 4f̄ > 0 as needed. Now,

for a→∞

A =
N

32a2


4f̄ +

e3

(
f̄
2d
)3



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As a consequence Aa2 is then bounded and has a maximum, so that S (Ψ) is bounded from below and has
a minimum for the value of a that maximizes Aa2.
The second order variation simplifies in that particular case as follows. Here, F ′ (x)x > F (x) and (286)

applies:

1

2
δ2S (Ψ) > ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
ϕ (x)

+
8η

N

∫ (
ϕ† (x)F (x)ϕ (x) dx

) ∫ (
Ψ†1 (x)F (x)Ψ1 (x) dx

)

= ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))
+
8η

N
BF (x)

]
ϕ (x)

and here it writes:

ϕ† (x)

[
−∇2 +

(
F 2 (x)− 2F (x)x

)
+
32η

N
AF (x)

]
ϕ (x)

= ϕ† (x)

[
−∇2 − 4f (x) (x− f (x)) + 32η

N
B (x− f (x))

]
ϕ† (x)

= ϕ† (x)

[
−∇2 +

(
32η

N
B − 4f (x)

)
(x− f (x))

]
ϕ† (x)

(
8η

N
B − 4f (x)

)
'
(
32a2

N
A− 4f (x)

)
> 0

in our assumptions, and thus:
1

2
δ2S (Ψ) > 0

Case 3: Saddle points and stability: example of increasing return
to scale

The second case we consider is:
F (x) = x+ cx2

with 0 < c < 1 which measures an increasing return to scale. In that case:

S (Ψ) = η2
∫
Ψ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
Ψ(x) dx

+
4η4

N

∫ (
Ψ† (x)F ′ (x)xΨ(x) dx

) ∫
Ψ† (y)F (y)Ψ (y) dy

= η2
∫
Ψ† (x)

[
−∇2 +

(
x+ cx2

) (
cx2 − x

)]
Ψ(x) dx

+
4η4

N

(∫
Ψ† (x) (1 + 2cx)xΨ(x) dx

)(∫
Ψ† (x)

(
x+ cx2

)
Ψ(x) dx

)

' η2
∫
Ψ† (x)

[
−∇2 +

(
c2x4 − x2

)]
Ψ(x) dx

+
4η4

N

(∫
Ψ† (x)

(
x+ 2cx2

)
Ψ(x) dx

)(∫
Ψ† (x)

(
x+ cx2

)
Ψ(x) dx

)

and the saddle point equation is:

[
−∇2 + c2x4 +

(
4c

N
(A+ 2B)− 1

)
x2 +

4x

N
(A+B)

]
Ψ(x) = 0
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with:

A = η2
(∫

R+

Ψ† (x)
(
x+ 2cx2

)
Ψ(x) dx

)

B = η2
(∫

R+

Ψ† (x)
(
x+ cx2

)
Ψ(x) dx

)

One shows in appendiw 6.a that the action S (Ψ) is bounded from below and that it has a minimum
obtained as a first order correction in c ot the function :

Ψ0 (x) = η exp


−

√
4c
N
η2 (A+ 2B)− 1

2

(
x+

2

N

η2 (A+B)
4c
N
η2 (A+ 2B)− 1

)2



This can be reorganized as:
[
−∇2 + c2x4 +

(
4c

N
(A+ 2B)− 1

)(
x+

2

N

(A+B)
4c
N
(A+ 2B)− 1

)2
−
(
2

N

(A+B)
4c
N
(A+ 2B)− 1

)2]
Ψ(x) = 0

We write the solution Ψ(x) = ηΨ1 (x), and Ψ1 (x) has a norm equal to 1. The saddle point equation
becomes ultimately:
[
−∇2 + c2x4 +

(
4c

N
η2 (A+ 2B)− 1

)(
x+

2

N

η2 (A+B)
4c
N
η2 (A+ 2B)− 1

)2
−
(
2

N

η2 (A+B)
4c
N
η2 (A+ 2B)− 1

)2]
Ψ(x) = 0

with:

A =

(∫

R+

Ψ†1 (x)
(
x+ 2cx2

)
Ψ1 (x) dx

)

B =

(∫

R+

Ψ†1 (x)
(
x+ cx2

)
Ψ1 (x) dx

)

Note that the action at the saddle point solution is equal to:

S (Ψ) =

∫
Ψ† (x)

[
−∇2 +

(
c2x4 − x2

)]
Ψ(x) dx+

4

N

(∫
Ψ† (x)

(
x+ 2cx2

)
Ψ(x) dx

)(∫
Ψ† (x)

(
x+ cx2

)
Ψ(x) dx

)

= −η2
∫
Ψ† (x)

(
4

N

(
A
(
x+ cx2

)
+
(
x+ 2cx2

)
B
))
Ψ(x) dx

+
4

N

(∫
Ψ† (x)

(
x+ 2cx2

)
Ψ(x) dx

)(∫
Ψ† (x)

(
x+ cx2

)
Ψ(x) dx

)

= −
(
4η4

N
(AB +AB)

)
+
4η4

N
AB = −4η

4

N
AB < 0

As before, one has to show that this is bounded from below.
We start first by soving the saddle point equation. Since c << 1, the term c2x4 can be treated pertur-

batively and one rather solves:
[
−∇2 +

(
4c

N
η2 (A+ 2B)− 1

)(
x+

2

N

η2 (A+B)
4c
N
η2 (A+ 2B)− 1

)2
−
(
2

N

η2 (A+B)
4c
N
η2 (A+ 2B)− 1

)2]
Ψ(x) = 0

adding some corrections due to c2x4 later. The change of variable

x′ = 4

√
4c

N
η2 (A+ 2B)− 1

(
x+

2

N

η2 (A+B)
4c
N
η2 (A+ 2B)− 1

)
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for
4c

N
η2 (A+ 2B)− 1 > 0

yields the saddle point in a normalized form:

[
−∇2x′ + (x′)

2 − ε
]
Ψ(x) = 0 (290)

with:

ε =

(
2
N

η2(A+B)
4c
N
η2(A+2B)−1

)2

√
4c
N
η2 (A+ 2B)− 1

=

(
2
N
η2 (A+B)

)2
(
4c
N
η2 (A+ 2B)− 1

) 5
2

X4 − (3X − 1)5

, Solution is: {[X = 0.535 62]}The equation (290) has a bounded solution only if ε = 2n + 1 with n a non
negative integer. The solution of norm 1 in that case is:

Ψn (x
′) = Hn (x

′) exp

(
− (x

′)2

2

)

with Hn (x
′) the n-th Hermite polynomial. The condition to find a solution of norm 1 is thus:

(
2
N
η2 (A+B)

)2
(
4c
N
η2 (A+ 2B)− 1

) 5
2

= 2n+ 1 (291)

where

A+B =

(∫

R+

Ψn (x
′)
(
2x+ 3cx2

)
Ψn (x

′) dx

)

(A+ 2B) =

(∫

R+

Ψn (x
′)
(
3x+ 4cx2

)
Ψn (x

′) dx

)

and:

x =
x′

4

√
4c
N
η2 (A+ 2B)− 1

− 2

N

η2 (A+B)
4c
N
η2 (A+ 2B)− 1

These equations are show that η2A and η2B are of same order, and then (291) yields that

2

N
η2 (A+B) ∼ 1

(2n+ 1)
2 (292)

so that

S (Ψ) = −η4 4
N
AB < 0

has its minimum for n = 0. More precisely, for n = 0, (291) gives:

(
2
N
η2 (A+B)

)2
(
4c
N
η2 (A+ 2B)− 1

) 5
2

= 1

and thus in the first approximation A = B, 4c
N
η2A = 1 and 4c

N
η2 (A+ 2B)− 1 = 2.

As a consequence, one has shown that the action S (Ψ) is bounded from below and that its minimum is
obtained for:

Ψ0 (x
′) = exp

(
− (x

′)2

2

)
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or, coming back to the initial variable:

Ψ0 (x) = exp


−

√
4c
N
η2 (A+ 2B)− 1

2

(
x+

2

N

η2 (A+B)
4c
N
η2 (A+ 2B)− 1

)2



The inclusion of the corrective term c2x4 can be done perturbatively. To the second order, the eigenvalues
of the operator in the left hand side of (290) are transformed as:

E′n = En + c 〈Ψ0 (x)|x4 |Ψ0 (x)〉+ c2
∞∑

l=1,l 6=n

∣∣〈Ψn (x)|x4 |Ψl (x)〉
∣∣2

En − El

with En = 2n+ 1 and (291) is modified as:

(
2
N
η2 (A+B)

)2
(
4c
N
η2 (A+ 2B)− 1

) 5
2

(293)

= 2n+ 1 + c 〈Ψ0 (x)|x4 |Ψ0 (x)〉 − c2
∞∑

l=1

∣∣〈Ψ0 (x)|x4 |Ψl (x)〉
∣∣2

2l

Moreover the eigenvector Ψ0 (x) is also modified:

|Ψ′0 (y)〉 = |Ψ′0 (y)〉 − c
∞∑

l=1

〈Ψl (x)|x4 |Ψ0 (y)〉
2l

|Ψl (y)〉

+c2
∞∑

l=1

∞∑

m=1

〈Ψl (x)|x4 |Ψm (y)〉 〈Ψm (x)|x4 |Ψ0 (y)〉
4lm

|Ψl (y)〉

−c2
∞∑

l=1

〈Ψ0 (x)|x4 |Ψ0 (y)〉 〈Ψl (x)|x4 |Ψ0 (y)〉
4l2

|Ψl (y)〉

−c
2

2

∞∑

l=1

〈Ψ0 (x)|x4 |Ψl (y)〉 〈Ψl (x)|x4 |Ψ0 (y)〉
4l2

|Ψ0 (y)〉

These relations modifies to the second order the values of A, B and η. However, as η2 (A+B) remains of
the same order as η2 (A+ 2B) and since the corrections to the right hand side of (291) given by (293) are
finite (only few elements of matrices 〈Ψ0 (x)|x4 |Ψl (x)〉 are non nul), then the asymptotic behavior:

η2A ∼ 1

(2n+ 1)
2

remains valid. As a consequence, S (Ψ) is bounded from below and Ψ′0 (x) is the minimum of S (Ψ).
Now, to study the stability we have to compute δ2S (Ψ). Here

F ′ (x)x− F (x) = x+ 2cx2 −
(
x+ cx2

)

= cx2 > 0

and thus (285) applies:

1

2
δ2S (Ψ) > ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
ϕ (x)

+
8η

N

∫ (
ϕ† (x)F ′ (x)xϕ (x) dx

) ∫ (
Ψ†1 (x)F

′ (x)xΨ1 (x) dx
)

= ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))
+
8η

N
AF ′ (x)x

]
ϕ (x)
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which, in this particular case, becomes:

1

2
δ2S (Ψ) > ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))]
ϕ (x)

+
8η

N

∫ (
ϕ† (x)F (x)ϕ (x) dx

) ∫ (
Ψ†1 (x)F (x)Ψ1 (x) dx

)

= ϕ† (x)

[(
−∇2 +

(
F 2 (x)− 2F (x)x

))
+
8η2

N
BF (x)

]
ϕ (x)

= ϕ† (x)

[
−∇2 +

(
c2x4 − x2

)
+
8η2

N
B
(
x+ cx2

)]
ϕ (x)

= ϕ† (x)

[
−∇2 +

(
x+ cx2

)(
cx2 − x+ 8η

2

N
B

)]
ϕ (x)

Given (292) and n = 0 for the minimum, 2
N
η2 (A+B) ∼ 4

N
η2B ∼ 1

(2n+1)2
= 1

cx2 − x+ 8η
2

N
B ∼ cx2 − x+ 2

and this is positive for c > 1
8 . In this range

1
2δ
2S (Ψ) > 0.

229



Appendix 13

Stabilization of a finite number of negative eigenvalues by an inter-
action potential

We start with the saddle point equation described in the text.

0 = KΨ(y) + 2U (y)Ψ (y)

∫ (
Ψ(y2)U (y2)Ψ

† (y2)
)
dy2 (294)

with:

K =

(
−1
2
∇
(
M (S)

)−1
∇+ yM (A)∇+ yNy

)
+m2

Normalize Ψ(x) =
√
ηΨ1 (x) where η =

∫
Ψ†1 (y)Ψ1 (y) dy. The saddle point equation including this

potential can also be written:

0 = KΨ1 (y) + 2ηU (y1)Ψ1 (y)

∫ (
Ψ1 (y2)U (y2)Ψ

†
1 (y2)

)
dy2 (295)

If, as assumed before, K has a negative lowest eigenvalue λ0, with eigenvector Ψ
(n) (y) then, one can find a

solution (Ψ1 (y) , η > 0) of (295).
Then, expand

Ψ1 (y) =
∑

n>0

anΨ
(n) (y)

with
∑

n>0 |an|
2
= 1, where Ψ(n) (y) are norm one eigenvectors of K with eigenvalues λn. Then, take the

scalar product of (295) with Ψ†1 (y1):

0 =

∫
Ψ†1 (y1)KΨ1 (y) dy

+2η

∫
Ψ†1 (y1)U (y1)Ψ1 (y1) dy1

∫ (
Ψ1 (y2)U (y2)Ψ

†
1 (y2)

)
dy2

which allows to find η:

η = −1
2

〈Ψ1|K |Ψ1〉
(〈Ψ1|U |Ψ1〉)2

Thus, if we find a solution with η > 0, this solution |Ψ1〉 is mainly a combination of negative eigenstates of
K, so that 〈Ψ1|K |Ψ1〉 < 0.
Given that: (

−1
2
∇
(
M (S)

)−1
∇+ yM (A)∇+ yNy

)
Ψ1 (y) =

∑

n

anλnΨ
(n) (y)

(295) rewrites:

0 = KΨ1 (y)−
〈Ψ1|K |Ψ1〉
(〈Ψ1|U |Ψ1〉)2

U (y1)Ψ1 (y)

∫ (
Ψ1 (y2)U (y2)Ψ

†
1 (y2)

)
dy2

= KΨ1 (y)−
〈Ψ1|K |Ψ1〉
〈Ψ1|U |Ψ1〉

U (y1)Ψ1 (y)

or, equivalently:

Ψ1 (y) =
〈Ψ1|K |Ψ1〉
〈Ψ1|U |Ψ1〉

K−1U (y1)Ψ1 (y) (296)
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This relation can be written in any orthonormal basis. Using Ψ1 (y) =
∑

n>0 anΨ
(n) (y) with

∑
n>0 |an|

2
= 1

and Ψ(n) (y) the eigenvectors ofK for the value λk and to order them by increasing eigenvalue, so that Ψ
(0) (y)

is the state with the lowest eigenvalue λ0 < 0 by assumption.
Using the norm condition

∑
n>0 |an|

2
= 1, and that the previous systems of equation has one relation of

dependence, one can get rid of a0 (up to an irrelevant phase) and reduce the system to:

an =
〈Ψ1|K |Ψ1〉
(〈Ψ1|U |Ψ1〉)


∑

m>0

〈
Ψ(n) (y1)

∣∣∣K−1U (y1)
∣∣∣Ψ(m) (y1)

〉
am


 for n > 1

with
∑

n>1 |an|
2
6 1 and where a0 is replaced in the sums in the numerator and denominator by

√
1−∑n>1 |an|

2
.

As a consequence the system has a solution (an), if the application:

(an)n>1 7→


 〈Ψ|K |Ψ〉
(〈Ψ|U |Ψ〉)


∑

m>1

〈
Ψ(n) (y1)

∣∣∣K−1U (y1)
∣∣∣Ψ(m) (y1)

〉
am +

〈
Ψ(n) (y1)

∣∣∣U (y1)
∣∣∣Ψ(0) (y1)

〉√
1−

∑

n>1

|an|2




n>1

has a fixed point. This possibility arises depending on the properties of the potential U . To get a more
precise account for this point write the application as:

Γ : |Ψ〉n>1 7→


 K−1U(

〈Ψ|U |Ψ〉
〈Ψ|K|Ψ〉

) |Ψ〉




n>1

where ()n>1 denotes the projection on the space of eigenvalues n > 1. Let 0 < c < 1, any arbitrary constant.
Assume that U preserves the space V generated by the negative eigenstates, so that Γ defines an appli-

cation V → V . We also assume that if 0 is eigenstates of K, it is an isolated point.
A fixed point exists in the ball B ⊂ V of radius c,

∑<0
n>1 |an|

2
6 c, where

∑<0
n>1 runs over the negative

eigenstates, if for any state |Ψ〉 of B

|Ψ〉 =
<0∑

n>1

anΨ
(n) (y)

such that
∑<0

n>1 |an|
2
6 c (and thus |a0|2 > 1− c):

∥∥∥∥∥∥∥


 K−1U(

〈Ψ|U |Ψ〉
〈Ψ|K|Ψ〉

) |Ψ〉




n>1

∥∥∥∥∥∥∥

2

=
〈Ψ|

(
U
(
K−1)2 U

)
|Ψ〉′

|〈Ψ|U |Ψ〉|2
|〈Ψ|K|Ψ〉|2

6 c

with

〈Ψ|
(
U
(
K−1)2 U

)
|Ψ〉′ =

∑

n>1

〈Ψ|UK−1
∣∣∣Ψ(n)

〉〈
Ψ(n)

∣∣∣K−1U |Ψ〉

=
∑

n>0

∣∣∣〈Ψ|UK−1
∣∣∣Ψ(n)

〉∣∣∣
2

− 〈Ψ|UK−1
∣∣∣Ψ(0)

〉〈
Ψ(0)

∣∣∣K−1U |Ψ〉

= 〈Ψ|
(
U
(
K−1)2 U

)
|Ψ〉 − 〈Ψ|UK−1

∣∣∣Ψ(0)
〉〈
Ψ(0)

∣∣∣K−1U |Ψ〉

so that:

∥∥∥∥∥∥∥


 K−1U(

〈Ψ|U |Ψ〉
〈Ψ|K|Ψ〉

) |Ψ〉




n>1

∥∥∥∥∥∥∥

2

=
|〈Ψ|K |Ψ〉|2

|〈Ψ|U |Ψ〉|2
(
〈Ψ|

(
U
(
K−1)2 U

)
|Ψ〉 − 〈Ψ|UK−1

∣∣∣Ψ(0)
〉〈
Ψ(0)

∣∣∣K−1U |Ψ〉
)
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Then, a sufficient condition to have a fixed point, and thus a non trivial solution to (295) is that

|〈Ψ|K |Ψ〉|2

|〈Ψ|U |Ψ〉|2
(
〈Ψ|

(
U
(
K−1)2 U

)
|Ψ〉 − 〈Ψ|UK−1

∣∣∣Ψ(0)
〉〈
Ψ(0)

∣∣∣K−1U |Ψ〉
)
< 1− c

for all |Ψ〉. This is achieved for example if U develops along the negative eigenstates of K and if the overlap
of U and K is concentrated around

∣∣Ψ(0)
〉
, that is:

U =
∣∣∣Ψ(0)

〉
U0

〈
Ψ(0)

∣∣∣+
<0∑

i,j>0,i+j 6=0

∣∣∣Ψ(i)
〉
Uij

〈
Ψ(j)

∣∣∣+ ...

with Ui
U0

<< 1. Actually, in that case: |〈Ψ|U |Ψ〉|2 > (U0 (1− c))2 and |〈Ψ|K |Ψ〉|2 < λ20 and then:

|〈Ψ|K |Ψ〉|2

|〈Ψ|U |Ψ〉|2
(
〈Ψ|

(
U
(
K−1)2 U

)
|Ψ〉 − 〈Ψ|UK−1

∣∣∣Ψ(0)
〉〈
Ψ(0)

∣∣∣K−1U |Ψ〉
)

6
λ20

(U0 (1− c))2
(
〈Ψ|

(
U
(
K−1)2 U

)
|Ψ〉 − 〈Ψ|UK−1

∣∣∣Ψ(0)
〉〈
Ψ(0)

∣∣∣K−1U |Ψ〉
)

6
λ20

(U0 (1− c))2
<0∑

i>0,k>0,,j>0

Uij
1

λ2j
Ujk

and this is lower than c for
Uij
U0

small enough. As a consequence |Ψ1〉 is also peaked around
∣∣Ψ(0)

〉
, and

η = − 1
2
〈Ψ1|K|Ψ1〉
(〈Ψ1|U |Ψ1〉) is positive as needed. Then, a fixed point exists in B, and thus on the space of all states,

for the type of potential considered. The minimum of S (Ψ) is reached for the fixed point with lowest S (Ψ).
The interpretation of this case is clear. A positive potential of interaction counter balances the direction

of instability and allow the composed system of two structure two stabilize around a composite extremum.

(
−1
2
∇
(
M (S)

)−1
∇+ yM (A)∇+ yNy +m2

)
δ (y − y1)

+2U (y) δ (y − y1)
∫ (

Ψ(y2)U (y2)Ψ
† (y2)

)
dy2 + 2Ψ (y)U (y)U (y1)Ψ

† (y1)

To inspect if the solution we found is a minimum, one has to compute the second order variation 〈ϕ| ∂2S
∂Ψ1(x)∂Ψ1(x)

|ϕ〉.
The variation ϕ (y) is arbitary but can be considered of norm 1, since this norm can be factored from the sec-
ond order variation, and that only the sign of this variation matters. If one finds condtions on the potential
to have

〈ϕ| ∂2S

∂Ψ1 (x) ∂Ψ1 (x)
|ϕ〉 > 0

we will have found a lower minimum than Ψ(x) 0, since, in that case:

S (Ψ) =

∫
Ψ(y)

(
−1
2
∇
(
M (S)

)−1
∇+ yM (A)∇+ yNy +m2

)
Ψ† (y) dy

+

(∫ (
Ψ(y2)U (y2)Ψ

† (y2)
)
dy2

)2

which is equal, given (294):

S (Ψ) = −
(∫ (

Ψ(y2)U (y2)Ψ
† (y2)

)
dy2

)2
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Now, the second order variation 〈ϕ| ∂2S
∂Ψ1(x)∂Ψ1(x)

|ϕ〉 is computed as:
∫
ϕ (y)Kϕ† (y) dy

+2η

(∫
ϕ (y)U (y)ϕ† (y) dy

)∫ (
Ψ1 (y2)U (y2)Ψ

†
1 (y2)

)
dy2 + 2η

∣∣∣∣
∫
Ψ1U (y)ϕ

† (y) dy

∣∣∣∣
2

= 〈ϕ|K |ϕ〉 − 〈Ψ1|K |Ψ1〉〈Ψ1|U |Ψ1〉

[
〈ϕ|U |ϕ〉+ |〈ϕ|U |Ψ1〉|

2

〈Ψ1|U |Ψ1〉

]

=
1

〈Ψ1|U |Ψ1〉

(
〈ϕ|K |ϕ〉 〈Ψ1|U |Ψ1〉 − 〈Ψ1|K |Ψ1〉

(
〈ϕ|U |ϕ〉+ |〈ϕ|U |Ψ1〉|

2

〈Ψ1|U |Ψ1〉

))

>
1

〈Ψ1|U |Ψ1〉
(〈ϕ|K |ϕ〉 〈Ψ1|U |Ψ1〉 − 〈Ψ1|K |Ψ1〉 〈ϕ|U |ϕ〉)

Given that the saddle point solution satisfies (296):

Ψ1 (y) =
〈Ψ1|K |Ψ1〉
〈Ψ1|U |Ψ1〉

K−1U (y1)Ψ1 (y)

1 =
〈Ψ1|K |Ψ1〉
〈Ψ1|U |Ψ1〉

〈Ψ1|K−1U |Ψ1〉

one can write:

〈ϕ|K |ϕ〉 〈Ψ1|U |Ψ1〉 − 〈Ψ1|K |Ψ1〉 〈ϕ|U |ϕ〉

= 〈Ψ1|U |Ψ1〉
(
〈ϕ|K |ϕ〉 − 1

〈Ψ1|K−1U |Ψ1〉
〈ϕ|U |ϕ〉

)

〈ϕ| ∂2S

∂Ψ1 (x) ∂Ψ1 (x)
|ϕ〉

= 〈ϕ|K |ϕ〉 − 〈Ψ1|K |Ψ1〉〈Ψ1|U |Ψ1〉

[
〈ϕ|U |ϕ〉+ |〈ϕ|U |Ψ1〉|

2

〈Ψ1|U |Ψ1〉

]

= 〈ϕ|K |ϕ〉 − 1

〈Ψ1|K−1U |Ψ1〉

[
〈ϕ|U |ϕ〉+ |〈ϕ|U |Ψ1〉|

2

〈Ψ1|U |Ψ1〉

]

> λ0 −
〈ϕ|U |ϕ〉

〈Ψ1|K−1U |Ψ1〉

> λ0 −
U0

〈Ψ1|K−1U |Ψ1〉
where λ0 is the lowest eigenvalue of and U0 (which is negative by assumption), the minimum eigenvalue of
U0. Then:

〈ϕ| ∂2S

∂Ψ1 (x) ∂Ψ1 (x)
|ϕ〉 > λ0 −

U0

〈Ψ1|K−1U |Ψ1〉
and this is positive if

U0 > λ0 〈Ψ1|K−1U |Ψ1〉
that is if the potential is strong enough to compensate for the instability of the system.

Instability due to non linear terms

We generalize the previous paragraph by considering the instability introduced by a more general term than
m2. Assume that the operator K (for m2 = 0) has been set in a basis such that it rewrites in a diagonal
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form

K = −1
2
∇2 + yD′y (297)

where D is a diagonal matrix with eigenvalues λi > 0 that ensure the stability of each fundamental
structure without the perturbation . Assume that due to the interactions among the structures components,
a potential V (y) with a negative minimum is added to K to yield:

K1 = −
1

2
∇2 + yD′y + V (y) (298)

Operator (298) has the form of an harmonic oscillator plus a perturbation term.

The eigenvalues of K are En1,...,nk =
∑k

i=1 nik
√
λi+

k
2 where k is the number of components of y, y = (yi)

and the n1, ..., nk are natural integers.

The eigenfunctions Ψ
(n1,...,nk)
1 (x) corresponding to these eigenvalues of Harmonic oscillators are:

Ψ
(n1,...,nk)
1 (y) =

k∏

i=1

ϕni (yi)

ϕn (x) =

(√
a

π

) 1
4
√

1

2nn!
Hn

(
a
1
4x
)
exp

(
−
√
a

2
x2
)

where the Hn are the Hermite polynomials. Then, introducing the eigenvalues modify both the eigenvalues
and eigenfunctions as series expansion of C. We choose a perturbation that shifts essentially the lowest
eigenstates of K, that is quadratic and antisymetric (the quadratic and symetric part being included in D′

by a series expansion and we assume that this part does not affect the sign of D′’s eigenvalues). We choose
for the potential the particular form

−yV A (y,∇)∇
which describes, as −yMA∇ the internal interaction inside the structure, but taking into account non linear
terms (as resulting for non linear utilities for example).

The perturbation can be rewriten, using the usual creation and destruction operators as:

−yV∇ = −
(
a+ + a−

)
V A

(
a+ − a−

)

= 2a+V (A)a−

since V (A) is antisymetric. Note that a+ and a− have dim y = k components: a+ ≡
(
a+i
)
and a− ≡

(
a−i
)

and y = (a+ + a−), ∇ = (a+ − a−). To model that this potential modifies mainly the lowest eigenstates of
K, we choose:

〈
Ψ
(n′1,...,n

′
k)

1 (y)

∣∣∣∣V
(A)
∣∣∣Ψ(n1,...,nk)1 (y)

〉
= δ(n′1,...,n′k),(n1,...,nk)

f ((n1, ..., nk))

with f ((n1, ..., nk)) is a quickly decreasing function of n
2
1 + ...+ n

2
k.

Since V (A) is antisymetric, and for the ground state Ψ
(0,...,0)
1 (y), a+V (A)a−Ψ(0,...,0)1 (y) = 0 and one can

then deduce that the series expansion for the perturbed ground state is nul. Thus one still have a state

Ψ
(0,...,0)
1 (y) with eigenvalue k

2 .
As a consequence:

(
−1
2
∇2 − yV (A)∇+ yD′y

)
Ψ
(0,...,0)
1 (y)

=

(
−1
2
∇2 + yD′y

)
Ψ
(0,...,0)
1 (y)

=
k

2
Ψ
(0,...,0)
1 (y)
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and the saddle point equation is not satisfied.

This situation changes for the first excited states. Consider Ψ
(1,i)
1 (y) = Ψ

(0,.,1,..,0)
1 (y) with the 1 set in the

i th position. These are the first excited energy levels, the closest to Ψ
(0,...,0)
1 (y) with energy Ei =

√
λi +

k
2 .

The perturbation expansion for the eigenvalue of
(
−1
2
∇2 − yV (A)∇+ yD′y

)

to the second order is then:

E′i = Ei + 4
k∑

j=1,j 6=i

∣∣∣
〈
Ψ
(1,i)
1 (y)

∣∣∣ a+V (A)ij a−
∣∣∣Ψ(1,j)1 (y)

〉∣∣∣
2

√
λi −

√
λj

(299)

= Ei +
k∑

j=1,j 6=i

4
(
V
(A)
ij

)2

√
λi −

√
λj

=
√
λi +

k

2
+

k∑

j=1,j 6=i

4
(
V
(A)
ij

)2

√
λi −

√
λj

Note that, due to the hypothesis on f , the shift E′n1,...,nk in En1,...,nk can be neglected for n
2
1+ ...+n

2
k >> 1.

One can thus focus on the first eigenstates.

We call
∣∣∣Ψ′(1,i)1 (y)

〉
the corresponding eigenvector to E′i:

∣∣∣Ψ′(1,i)1 (y)
〉

=
∣∣∣Ψ(1,i)1 (y)

〉
+

k∑

j=1,j 6=i

2V
(A)
ij

λi (η)− λj (η)
∣∣∣Ψ(1,j)1 (y)

〉

+

k∑

j=1,j 6=i

k∑

l=1,j 6=i

4V
(A)
jl V

(A)
li(√

λi −
√
λl
) (√

λi −
√
λj
)
∣∣∣Ψ(1,j)1 (y)

〉

+2
k∑

j=1,j 6=i

(
V
(A)
ij

)2

(√
λi −

√
λj
)2
∣∣∣Ψ(1,i)1 (y)

〉

This approximation is valid if we assume that V (A) is relatively small with respect to the λi and this
assumption is necessary if the fundamental structures are assumed to have a certain stability. If we rank the
λi in increasing order, equation (299) shows that the eigenvalue E

′
1 is driven below E1. It means that the

equilibrium of the system is reduced by it’s internal interactions/tensions. For a sufficient magnitude of the
perturbation, one may have E′1 < 0 and the previous analysis concerning the stabilization of the system by
the interaction between structures apply. Remark, that some other first excited states may be also driven
below 0, by the perturbation, but the number of such eigenstates remains finite given our assumptions about
the potential V . Higher order excited states have eigenvalues increasing with n21 + ... + n2k = a, whereas, f
decreases with a.

Generalization to several types of interacting structures

We consider k fields in interacting, characterized independently by an operator:

Kl =

(
−1
2
(∇l)2 − ylM (A)

l ∇l + ylDlyl + Vl (yl)

)

for l = 1, ..., k, where the Vl (yl) have a negative minimal eigenvalue. The saddle point equations for the
fields with interaction are then
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0 = KlΨl (yl) +

(
∂

∂Ψ†l (y)

∫
V
(
(x1)p1 , ..., (xk)pk

) [
Ψ1 (x1)Ψ

†
1 (x1)

]
p1
...

[
Ψl (xl)Ψ

†
l (xl)

]
pl
...
[
Ψk (xk)Ψ

†
k (xk)

]
pk
d (x1)p1 ...d (xk)pk

)

= KlΨl (yl) + pl

(
∂

∂Ψ†l (y)

∫
V
(
(x1)p1 , ..., (xk)pk

) [
Ψ1 (x1)Ψ

†
1 (x1)

]
p1
...

[
Ψl (xl)Ψ

†
l (xl)

]
pl−1

...
[
Ψk (xk)Ψ

†
k (xk)

]
pk
d (x1)p1 ...d (xk)pk

)
Ψl (y)

where (xl)pl represents pl copies of the coordinates xl and
[
Ψl (xl)Ψ

†
l (xl)

]
pl
indicates a product of pl inde-

pendent copies of Ψl (xl)Ψ
†
l (xl). The interaction involves then pl copies of the l-th structure.

Then, one normalizes

Ψl (xl) =
√
ηlΨ

(1)
l (xl)

where Ψ
(1)
l (xl) is of norm 1 and the saddle point equations rewrites:

0 = KlΨ
(1)
l (yl) + pl

(
k∏

i=1

(ηi)
pi

)

ηl
(300)

×
(∫

V
(
(x1)p1 , ..., (xk)pk

) [
Ψ
(1)
1 (x1)Ψ

(1)†
1 (x1)

]
p1
...
[
Ψl (xl)Ψ

†
l (xl)

]
pl−1

...
[
Ψk (xk)Ψ

†
k (xk)

]
pk
dx1...dxk

)
Ψ
(1)
l (y)

As in the previous case of simililar structures interaction, one can multiply by Ψ
(1)†
l (xl) and integrate to

find:

0 =
〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉
+ pl

(
k∏

i=1

(ηi)
pi

)

ηl
(301)

×
〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣
(
V
(
(x1)p1 , ..., (xk)pk

)) ∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉

Where we defined
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉
∈ (H1)

⊗p1 ⊗ ... (H1)
⊗pl−1 ...⊗ (Hk)

⊗pk

the state corresponding to the product of fields
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk where the Hl are the

state spaces for the structures l = 1, , , k. Similarly, the individual fields Ψ
(1)
l (yl) are know seen as vector on

a tensor product space:

Ψ
(1)
l (yl) ≡

∣∣∣Ψ(1)l (yl)
〉
⊗ 1⊗ ...⊗ 1 ∈ (H1)

⊗p1 ⊗ ...⊗ (Hk)
⊗pk
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The value of the ηl are found to satisfy:

ηl = −pl
(

k∏

i=1

(ηi)
pi

)

×

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣
(
V
(
(x1)p1 , ..., (xk)pk

)) ∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉

〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉

for l = 1...k, and

(
k∏

i=1

(ηi)
pi

)
is computed by the product of the k previous relations:

(
k∏

i=1

(ηi)
pi

)1−∑k
l=1 pl

=

(〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣ (V )
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉)∑k
l=1 pl

k∏

l=1

(
− 1
pl

〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉)pl

where V stands for V
(
(x1)p1 , ..., (xk)pk

)
, so that one finds:

(
k∏

i=1

(ηi)
pi

)

=




(〈[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl
...
[
Ψ
(1)
k (xk)

]
pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl
...
[
Ψ
(1)
k (xk)

]
pk

〉)∑k
l=1 pl

k∏

l=1

(
− 1
pl

〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉)pl




1

1−
∑k
l=1

pl

and:

ηl = −
1

pl

(〈[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl
...
[
Ψ
(1)
k (xk)

]
pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl
...
[
Ψ
(1)
k (xk)

]
pk

〉) 1

1−
∑k
l=1

pl

(
k∏

l=1

(
−pl

〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉)pl

) 1

1−
∑k
l=1

pl 〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉

As before we ssume that V
(
(x1)p1 , ..., (xk)pk

)
preserves the eigenstates of the Kl (our results would be

preserved if they are only preserved in first approximation).
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As in the one field case, replacing the values of the ηl in (300), leads to a fixed point equation:

Kl

∣∣∣Ψ(1)l (yl)
〉
= −pl

(
k∏

i=1

(ηi)
pi

)

ηl
(302)

×
〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉
Ψ
(1)
l (y)

=
〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉

×

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉
Ψ
(1)
l (y)

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉

for l = 1...k, where V
(
(x1)p1 , ..., (xk)pk

)
is now seen as an operator V on (H1)

⊗p1 ⊗ ... ⊗ (Hk)
⊗pk . The

partial amplitude:
〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉

is then an operator on Vl.

As in the one field case, one can developp the fields Ψ
(1)
l (yl) in a basis of eigenvectors of Kl, and since V

preserves the negative eigenstates, we can restrict the sum on these states (this will be implicit in the sequel)

Ψ
(1)
l (yl) =

∑

n>0

an,lΨ
(n)
l (yl) with

∑

n>0

|an|2 = 1

and Ψ
(n)
l (yl) are eigenvectors of Kl with negative eigenvalues ordered such that Ψ

(0)
l (y) is the eigenvector

for the lowest eigenvalue λ0,l.
The equations (302) are not independent for the coefficients an,l This can be seen by multiplying both

sides of (302) by Ψ†l (xl) and to integrate to obtain a trivial relation. Actually,

0 =
〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉

(303)

+pl

(
k∏

i=1

(ηi)
pi

)

ηl

×
〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣
(
V
(
(x1)p1 , ..., (xk)pk

)) ∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉

is trivial given the definition of






k∏

i=1

(ηi)
pi






ηl
. Thus, one can look for a solution of (302) by choosing the

coefficients a0,l with
a20,l = cl 6= 0 (304)

, so that the solution we are looking for is a perturbative expansion around the minimum of the Kl. Rewrite
first

Kl

∣∣∣Ψ(1)l (yl)
〉

(305)

=

〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉
(Kl)

−1
VlΨ

(1)
l (y)

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉
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with:

Vl =

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉

is an operator on Vl. It can be written more compactly as:

(∣∣∣Ψ(1)l (yl)
〉)

(306)

=

(〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉
(K)

−1
V
(
Ψ
(1)
l (y)

))

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉

where
(∣∣∣Ψ(1)l (yl)

〉)
is the vector with l components

∣∣∣Ψ(1)l (yl)
〉
, andK, (K)

−1
V are the diagonal matrices

with components Kl, (Kl)
−1
Vl on the diagonal. The vector

(〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉
(K)

−1
V
(
Ψ
(1)
l (y)

))

has l components
〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉
(K)

−1
V
(
Ψ
(1)
l (y)

)
.

Then, replacing for a0,l in (306) implies that

ϕ :
(∣∣∣Ψ(1)l (yl)

〉)
→

(〈
Ψ
(1)
l (yl)

∣∣∣ (K)
∣∣∣Ψ(1)l (yl)

〉
(K)

−1
V
(∣∣∣Ψ(1)l (yl)

〉))

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉

defines an application from V = V1 × ...× Vk where the Vl are the negative eigenstates of the Kl. Moreover,
using the condition (304) for the norm implies that solving · is equivalent to find a fixed point for this
application on the ball of radius c in the finite dimensional space V

(0)
1 × ...×V (0)k where V

(0)
1 is the orthogonal

of the lowest eigenstate in V1.
Given the definition of ϕ:

∥∥∥∥∥∥∥∥

(〈
Ψ
(1)
l (yl)

∣∣∣ (K)
∣∣∣Ψ(1)l (yl)

〉
(K)

−1
V
∣∣∣Ψ(1)l (yl)

〉)

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉

∥∥∥∥∥∥∥∥

2

6




Maxl

∣∣∣
〈
Ψ
(1)
l (yl)

∣∣∣ (K)
∣∣∣Ψ(1)l (yl)

〉∣∣∣
〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉




2

×
∥∥∥
(
(K)

−1
V
∣∣∣Ψ(1)l (yl)

〉)∥∥∥
2

V
(0)
1 ×...×V (0)

k

and that:

∥∥∥
(
(K)

−1
V
(
Ψ
(1)
l (y)

))∥∥∥
2

V
(0)
1 ×...×V (0)

k

=
∑

l,m

(〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−2
Vlm

∣∣∣Ψ(1)m (ym)
〉
−
〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−1
∣∣∣Ψ(0)l (yl)

〉〈
Ψ
(0)
l (yl)

∣∣∣ (Kl)
−1
Vlm

∣∣∣Ψ(1)m (ym)
〉)
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then:

∥∥∥∥∥∥∥∥

〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉
(K)

−1
V
∣∣∣Ψ(1)l (yl)

〉

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉

∥∥∥∥∥∥∥∥

2

6
kλ20,sup

V 20

∑

l,m

(〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−2
Vlm

∣∣∣Ψ(1)m (ym)
〉

−
〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−1
∣∣∣Ψ(0)l (yl)

〉〈
Ψ
(0)
l (yl)

∣∣∣ (Kl)
−1
Vlm

∣∣∣Ψ(1)m (ym)
〉)

where V0 is the minimum of the potential, and λ0,sup the lowest eigenvalue among the λ0,l, l = 1..., k.
Then we arrive to similar conclusion as in the one structure case. A fixed point exist, and then a solution
to the saddle point equation (302) if the minimum of the potential is strong enough, and if the potential is
mainly localized oriented in the directions of instabilty to compensate them. Actually, in that case:

∑

l,m

(〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−2
Vlm

∣∣∣Ψ(1)m (ym)
〉
−
〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−1
∣∣∣Ψ(0)l (yl)

〉〈
Ψ
(0)
l (yl)

∣∣∣ (Kl)
−1
Vlm

∣∣∣Ψ(1)m (ym)
〉)

=
∑

l,m

(
∑

q

〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−1
∣∣∣Ψ(k)l (yl)

〉〈
Ψ
(k)
l (yl)

∣∣∣ (Kl)
−1
Vlm

∣∣∣Ψ(1)m (ym)
〉

−
〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−1
∣∣∣Ψ(0)l (yl)

〉〈
Ψ
(0)
l (yl)

∣∣∣ (Kl)
−1
Vlm

∣∣∣Ψ(1)m (ym)
〉)

=
∑

l,m


∑

q 6=0

〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−1
∣∣∣Ψ(k)l (yl)

〉〈
Ψ
(k)
l (yl)

∣∣∣ (Kl)
−1
Vlm

∣∣∣Ψ(1)m (ym)
〉



and given our hypothesis of a potential which is mainly non nul around the
∣∣∣Ψ(0)l (yl)

〉

∑

l,m

∑

q 6=0

〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−1
∣∣∣Ψ(k)l (yl)

〉〈
Ψ
(k)
l (yl)

∣∣∣ (Kl)
−1
Vlm

∣∣∣Ψ(1)m (ym)
〉
< c

for a certain constant depending on V . Then

kλ20,sup

V0

∑

l,m

(〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−2
Vlm

∣∣∣Ψ(1)m (ym)
〉
−
〈
Ψ(1)m (ym)

∣∣∣Vml (Kl)
−1
∣∣∣Ψ(0)l (yl)

〉〈
Ψ
(0)
l (yl)

∣∣∣ (Kl)
−1
Vlm

∣∣∣Ψ(1)m (ym)
〉)

<

and
ckλ20,sup
V0

< 1 is realized for V0 >> ckλ20,sup.
Once a saddle point is found, the stability is studied through the second order variation:

∑

l,m

blb
∗
m 〈ϕm|

∂2S

∂Ψ
(1)
l (x) ∂Ψ

(1)†
m (y)

|ϕl〉
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where
∑

l bl |ϕl〉 are considered normalized to 1.

∑

l,m

blb
∗
m 〈ϕm|

∂2S

∂Ψ
(1)
l (xl) ∂Ψ

(1)†
m (ym)

|ϕl〉

=
∑

l

|bl|2 〈ϕl|K |ϕl〉+ pl

(
k∏

i=1

(ηi)
pi

)

ηl
〈ϕl (xl)|

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

∣∣∣∣

V

∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉
|ϕl (xl)〉

+
∑

l

|bl|2 pl (pl − 1)Re

(
k∏

i=1

(ηi)
pi

)

ηl
〈ϕl (xl)|

〈[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl−1

...
[
Ψ
(1)
k (xk)

]
pk

∣∣∣∣

V

∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl−2

...
[
Ψ
(1)
k (xk)

]
pk

〉
|ϕl (yl)〉

+2
∑

l,m,l 6=m
plpm

(
k∏

i=1

(ηi)
pi

)

√
ηlηm

Re 〈ϕl (x)|
〈[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl−1

...
[
Ψ
(1)
k (xk)

]
pk

∣∣∣∣

V

∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ(1)m (xl)

]
pm−1

...
[
Ψ
(1)
k (xk)

]
pk

〉
|ϕm (y)〉

The terms:

〈ϕl (xl)|
〈[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl−1

...
[
Ψ
(1)
k (xk)

]
pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl−2

...
[
Ψ
(1)
k (xk)

]
pk

〉
|ϕl (yl)〉

Re 〈ϕl (x)|
〈[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl−1

...
[
Ψ
(1)
k (xk)

]
pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ(1)m (xl)

]
pm−1

...
[
Ψ
(1)
k (xk)

]
pk

〉
|ϕm (y)〉

represent the matrix element between two fields configurations, and this is assumed to be positive since we
look for a binding interaction. This is satisfied for a potentil with separate variable, as the one designed in
the one field case. Then:

∑

l,m

blb
∗
m 〈ϕm|

∂2S

∂Ψ
(1)
l (xl) ∂Ψ

(1)†
m (ym)

|ϕl〉

>
∑

l

|bl|2 〈ϕl|K |ϕl〉 δlm

+
∑

l

|bl|2 pl

(
k∏

i=1

(ηi)
pi

)

ηl
〈ϕl (xl)|

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉
|ϕl (xl)〉
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using (301), it reduces to:

∑

l,m

blb
∗
m 〈ϕm|

∂2S

∂Ψ
(1)
l (xl) ∂Ψ

(1)†
m (ym)

|ϕl〉

>
∑

l

|bl|2 (〈ϕl|K |ϕl〉

−
〈ϕl (xl)|

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉
|ϕl (xl)〉

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉

×
〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉)

Multiplying equation (302) on the left by
(〈
Ψ
(1)
l (yl)

∣∣∣
)
allows to write

k =
∑

l

〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉〈
Ψ
(1)
l (yl)

∣∣∣K−1
l Vl

∣∣∣Ψ(1)l (yl)
〉

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl ... [Ψk (xk)]pk

〉

and:

∑

l,m

blb
∗
m 〈ϕm|

∂2S

∂Ψ
(1)
l (xl) ∂Ψ

(1)†
m (ym)

|ϕl〉

>
∑

l

|bl|2 (〈ϕl|K |ϕl〉

−
〈ϕl (xl)|

〈[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
... [Ψl (xl)]pl−1 ... [Ψk (xk)]pk

〉
|ϕl (xl)〉

k
∑

l

〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉〈
Ψ
(1)
l (yl)

∣∣∣K−1
l Vl

∣∣∣Ψ(1)l (yl)
〉

×
〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉)

λ0,sup

−
∑

l

|bl|2
〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉

k
∑

l

〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉〈
Ψ
(1)
l (yl)

∣∣∣K−1
l Vl

∣∣∣Ψ(1)l (yl)
〉U0

Assuming as before that if some of the Kl have 0 as eigenvalue, this eigenvalue is an isolated point one
obtains:

∑

l,m

blb
∗
m 〈ϕm|

∂2S

∂Ψ
(1)
l (xl) ∂Ψ

(1)†
m (ym)

|ϕl〉

> λ0,sup −
λ20,inf

k
∑

l λ0,sup

〈
Ψ
(1)
l (yl)

∣∣∣Vl
∣∣∣Ψ(1)l (yl)

〉U0

where λ0,inf is the closest to 0 negative eigenvalue of the operators Kl. Then the saddle point is a minimum
for a large enough potential, set along the negative eigenvlues.

Note that a larger k makes stability more difficult to achieve. At this minimum one has:

S (Ψl (yl)) =
∑

l

(ηl)
〈
Ψ
(1)
l (yl)

∣∣∣Kl

∣∣∣Ψ(1)l (yl)
〉
+

(
k∏

i=1

(ηi)
pi

)
×

×
〈[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl
...
[
Ψ
(1)
k (xk)

]
pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl
...
[
Ψ
(1)
k (xk)

]
pk

〉
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and using (301):

S (Ψl (yl)) = − (pl − 1)
(

k∏

i=1

(ηi)
pi

)

×
〈[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl
...
[
Ψ
(1)
k (xk)

]
pk

∣∣∣∣V
∣∣∣∣
[
Ψ
(1)
1 (x1)

]
p1
...
[
Ψ
(1)
l (xl)

]
pl
...
[
Ψ
(1)
k (xk)

]
pk

〉

6 0

Then, for pl = 1, the minimum is S (Ψl (yl)) = 0, and we have two states corresponding to this level, the
saddle point solution Ψl (yl) and 0.

For pl > 2, S (Ψl (yl)) < 0 and the non trivial saddle point Ψl (yl) is the only minimum.
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Appendix 14

Effective action for the first field:

We start with effective action Sef. (Ψi1 (xi1))

Sef. (Ψi1 (xi1)) = ηS (Ψi1 (xi1)) +
∑

n6N

ln


1 +

(
n+ 1

2

)
δη +

δΛi2η

Λi2+δη

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
Λi2 +m

2
i2




and study the possibility for a non nul minimum, i.e. a minimum with η 6= 0.

We first consider the case δ > 0.
If δ > 0 remark that, if S (Ψi1 (xi1)) > 0, The function Sef. (Ψi1 (xi1)) is an increasing function in η

and the only minimum of Sef. (Ψi1 (xi1)) is for η = 0. Then if 1
2 (Λi1) + m2

i1
> 0, the only solution is

〈Ψi1 (xi1)〉 = 0.
The case S (Ψi1 (xi1)) < 0, requires m

2
i1
< 0, so that one replaces m2

i2
→ −m2

i2
with m2

i2
> 0.

Then, S (Ψi1 (xi1)) < 0 implies that 1
2 (Λi2) − m2

i1
< 0. The minimum for S (Ψi1 (xi1)) is obtained if

Ψi1 (xi1) is in the fundamental state Ψ
(0)
i1
(xi1) that is the eigenstate of (167) for n = 0.

Ψ
(0)
i1
(xi1) =

(√
a

π

) 1
4

H0

(
a
1
4x
)
exp

(
−
√
a

2
x2
)

=

(√
a

π

) 1
4

exp

(
−
√
a

2
x2
)

For n = 0 one then has:

S
(
Ψ
(0)
i1
(xi1)

)
=
1

2
(Λi1)−m2

i1

The derivative in η leads to:

∂Sef. (Ψi1 (xi1))

∂η
=
1

2
(Λi1)−m2

i1
+
∑

n6N

(
n+ 1

2

)
δ +

(Λi2)
2
δ

(Λi2+δη)
2

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
(Λi2 + δη) +m

2
i2
+

δΛi2η

Λi2+δη

((
Y̌eff

)
i2
− x̂(i1)i2

)2

This is increasing for η close to 0 and decreasing for η large.

Then, one can find the conditions for a minimum with η 6= 0. Actually, since
∂Sef.(Ψi1(xi1))

∂η
→

1
2 (Λi1) − m2

i1
< 0 for large η, then if

∂Sef.(Ψi1(xi1))
∂η

|η=0< 0 and if there exists an η0 > 0 such that

∂Sef.(Ψi1(xi1))
∂η

|η=η0> 0, then there is an η1 6= 0 such that Sef. (Ψi1 (xi1)) is a minimum. In that case we

have a phase transition 〈Ψi1 (xi1)〉 6= 0.
For δ > 0, the conditions for a phase transition are then:

1

2
(Λi2)−m2

i1
< 0

∂Sef. (Ψi1 (xi1))

∂η
| η=0 =

1

2
(Λi1)−m2

i1
+ δ

∑

n6N

(
n+ 1

2

)
+
((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
(Λi2) +m

2
i2

< 0

∂Sef. (Ψi1 (xi1))

∂η
| η=η0 =

1

2
(Λi1)−m2

i1
+
∑

n6N

(
n+ 1

2

)
δ +

(Λi2)
2
δ

(Λi2+δη0)
2

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
(Λi2 + δη0) +m

2
i2
+

δΛi2η0
Λi2+δη0

((
Y̌eff

)
i2
− x̂(i1)i2

)2 > 0
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The case δ < 0 is studied in a similar way.

If 12 (Λi1)+m
2
i1
< 0 (that ism2

i1
is negative),

∂Sef.(Ψi1(xi1))
∂η

< 0, there is no minimum, the action decreases

with η which is the (squared) norm of Ψi1 (xi1). That case means that Sef. (Ψi1 (xi1)) is unbounded from
below, which is meaningless. The model breaks out for this values of the parameters and this case has to be
ruled out.
If 12 (Λi1) +m

2
i1
> 0, then

∂Sef. (Ψi1 (xi1))

∂η
=
1

2
(Λi1) +m

2
i1
+
∑

n6N

(
n+ 1

2

)
δ +

(Λi2)
2
δ

(Λi2+δη)
2

((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
(Λi2 + δη) +m

2
i2
+

δΛi2η

Λi2+δη

((
Y̌eff

)
i2
− x̂(i1)i2

)2

is increasing for η close to 0 and decreasing for η large. Since
∂Sef.(Ψi1(xi1))

∂η
→ 1

2 (Λi1)−m2
i1
> 0 for large η,

then
∂Sef.(Ψi1(xi1))

∂η
|η=0> 0 is the condition for a solution η1 6= 0 to

∂Sef.(Ψi1(xi1))
∂η

= 0. In other words: If

1

2
(Λi1) +m

2
i1

> 0

1

2
(Λi1) +m

2
i1
+ δ

∑

n6N

(
n+ 1

2

)
+
((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
Λi2 +m

2
i2

< 0

then
∂Sef.(Ψi1(xi1))

∂η
is nul for a value η 6= 0, and this value correspond to the minimum of Sef. (Ψi1 (xi1)).

In that case, there is a phase transition 〈Ψi1 (xi1)〉 6= 0.

if, on the contrary

1

2
(Λi1)−m2

i1
+ δ

∑

n6N

(
n+ 1

2

)
+
((
Y̌eff

)
i2
− x̂(i1)i2

)2

(
n+ 1

2

)
Λi2 +m

2
i2

> 0

the minimum is for 〈Ψi1 (xi1)〉 = 0.

Effective action for the second field:

As explained in the core of the text, the integration of the action for the first agent yields the effective action
for the second one:

Sef. (Ψi2 (xi2)) = ηS (Ψi2 (xi2)) +
∑

n≤N
ln


1 + ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)(

n+ 1
2

)
Λi1 +m

2
i1


 (307)

Remark first that for δ > 0 and
(
n+ 1

2

)
Λi1 +m

2
i1
< 0 or δ < 0 and

(
n+ 1

2

)
Λi1 +m

2
i1
> 0 one can find η > 0

such that, whatever
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2) one has

1 + ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

1
2Λi1 +m

2
i1

→ 0+

Thus, being unbouded from below, the model breaks down (Sef. (Ψi2 (xi2)) being unbouded, one cannot
define a probability exp (−Sef. (Ψi2 (xi2)))).
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In other words, for δ
(
1
2Λi1 +m

2
i1

)
< 0, it is not possible to define an effective action for Ψi2 (xi2).

For δ > 0 and
(
n+ 1

2

)
Λi1 +m

2
i1
> 0, the first order condition for η is:

S (Ψi2 (xi2)) +
∑

n≤N

δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

= 0 (308)

If 12Λi2 +m
2
i2
> 0, then

S (Ψi2 (xi2)) > 0

δ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2) > 0

S (Ψi2 (xi2)) +
∑

n≤N

δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

> 0

There is no solution to
∂

∂η
Sef. (Ψi2 (xi2))

and this derivative is positive. As a consequence, the minimum for Sef. (Ψi2 (xi2)) is reached at η = 0.

If 12Λi2 +m2
i2
< 0, (308) may have a solution, but in that case, the second derivative ∂

∂η
Sef. (Ψi2 (xi2))

is negative, the extremum is thus a maximum, and the minimum for Sef. (Ψi2 (xi2)) is reached at η = 0.

The case δ < 0 and
(
n+ 1

2

)
Λi1 +m

2
i1
< 0 is treated similarly: The first order condition can be written

S (Ψi2 (xi2)) +
∑

n≤N

(−δ)
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

−
((
n+ 1

2

)
Λi1 +m

2
i1

)
− ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

= 0 (309)

and we come back to the case δ > 0 and
(
n+ 1

2

)
Λi1 +m

2
i1
> 0 by the change of variable:

δ → −δ,
(
n+

1

2

)
Λi1 +m

2
i1
→ −

((
n+

1

2

)
Λi1 +m

2
i1

)

Then, as announced the only vacuum of Sef. (Ψi2 (xi2)) is η = 0.
To inspect the possibility of a non trivial vacuum, first remark that for

δ > 0

and
1

2
Λi2 +m

2
i2
> 0

(??) is increasing with η and then the only minimum for Sef. (Ψi2 (xi2)) is for η = 0, that is, the unnormalized
field satisfies Ψi2 (xi2) = 0. Actually, even if

(
n+ 1

2

)
Λi1 + m2

i1
< 0 for some values of n < n0, one may

assume that the contributions n > n0 compensate those for n < n0 so that

∂

∂η



∑

n≤N
ln


1 + η

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)(

n+ 1
2

)
Λi1 +m

2
i1





 > 0

In fact this result generalizes for all the values of the parameters.
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Actually, write the first order condtion for (??) including a constraint
∫
dxi2Ψi2 (xi2)Ψ

†
i2
(xi2) = 1

0 = η
δ

δΨi2 (xi2)
S (Ψi2 (xi2))+

∑

n≤N

2η
(
xi2 − x̂(i1)i2

)2
Ψ†i2 (xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ η

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

+2λΨ†i2 (xi2)

(focps)
and multiply by Ψi2 (xi2):

0 = ηΨi2 (xi2)
δ

δΨi2 (xi2)
S (Ψi2 (xi2)) +

∑

n≤N

η
(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ η

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

+λΨi2 (xi2)Ψ
†
i2
(xi2)

Integrating over xi2 and using both the constraint, as well as that S (Ψi2 (xi2)) is quadratic in Ψi2 (xi2), so
that ∫

dxi2Ψi2 (xi2)
δ

δΨi2 (xi2)
S (Ψi2 (xi2)) = 2S (Ψi2 (xi2))

leads to:

λ = −ηS (Ψi2 (xi2))−
∑

n≤N

η
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ η

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(310)

On the other side, the first order condition for η is:

S (Ψi2 (xi2)) +
∑

n≤N

δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

= 0 (311)

and the comparison of the two last equations yields:

λ = 0

S (Ψi2 (xi2)) +
∑

n≤N

δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

= 0

If 12Λi1 +m
2
i1
> 0 and 1

2Λi2 +m
2
i2
> 0 for all n, then

S (Ψi2 (xi2)) > 0

δ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2) > 0

S (Ψi2 (xi2)) +
∑

n≤N

δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

> 0

∑

n≤N

δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)
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is unbounded below, one can find values of η such that, whatever
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2),

(
n+

1

2

)
Λi1 +m

2
i1
+ ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)→ 0−

Being unbouded from below, the model breaks down (Sef. (Ψi2 (xi2)) being unbouded, one cannot define a
probability exp (−Sef. (Ψi2 (xi2)))).
In other words, for 1

2Λi1 +m
2
i1
< 0, it is not possible to define an effective action for Ψi2 (xi2).

For δ > 0 and
(
n+ 1

2

)
Λi1 +m

2
i1
> 0, the first order condition for η is:

S (Ψi2 (xi2)) +
∑

n≤N

δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

= 0 (scndcdt)

If 12Λi2 +m
2
i2
> 0, then

S (Ψi2 (xi2)) > 0

δ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2) > 0

S (Ψi2 (xi2)) +
∑

n≤N

δ
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

(
n+ 1

2

)
Λi1 +m

2
i1
+ ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

> 0

There is no solution to
∂

∂η
Sef. (Ψi2 (xi2))

and this derivative is positive. As a consequence, the minimum for Sef. (Ψi2 (xi2)) is reached at η = 0.

If 12Λi2 +m2
i2
< 0, 308 may have a solution, but in that case, the second derivative ∂

∂η
Sef. (Ψi2 (xi2)) is

negative, the extremum is thus a maximum, and the minimum for Sef. (Ψi2 (xi2)) is reached at η = 0.

The case δ < 0 and
(
n+ 1

2

)
Λi1 +m

2
i1
< 0 is treated similarly: The first order condition can be written

S (Ψi2 (xi2)) +
∑

n≤N

(−δ)
∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

−
((
n+ 1

2

)
Λi1 +m

2
i1

)
− ηδ

∫
dxi2

(
xi2 − x̂(i1)i2

)2
Ψi2 (xi2)Ψ

†
i2
(xi2)

= 0 (scndcdt)

and we come back to the case δ > 0 and
(
n+ 1

2

)
Λi1 + m2

i1
> 0 by the change of variable: δ → −δ,(

n+ 1
2

)
Λi1 +m

2
i1
→ −

((
n+ 1

2

)
Λi1 +m

2
i1

)

Then, as announced the only vacuum of Sef. (Ψi2 (xi2)) is η = 0.
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