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Abstract

This paper presents an analytical treatment of economic systems with an arbitrary number of agents
that keeps track of the systems’ interactions and complexity. The formalism does not seek to aggregate
agents: it rather replaces the standard optimization approach by a probabilistic description of the agent’s
behavior. This is done in two distinct steps.

A first step considers an interaction system involving an arbitrary number of agents, where each
agent’s utility function is subject to unpredictable shocks. In such a setting, individual optimization
problems need not be resolved. Each agent is described by a time-dependent probability distribution
centered around its utility optimum.

The whole system of agents is thus defined by a composite probability depending on time, agents’
interactions, relations of strategic dominations, agents’ information sets and expectations. This setting
allows for heterogeneous agents with different utility functions, strategic domination relations, hetero-
geneity of information, etc.

This dynamic system is described by a path integral formalism in an abstract space — the space of
the agents’ actions — and is very similar to a statistical physics or quantum mechanics system. We show
that this description, applied to the space of agents’ actions, reduces to the usual optimization results in
simple cases. Compared to the standard optimization, such a description markedly eases the treatment
of a system with a small number of agents. It becomes however useless for a large number of agents.

In a second step therefore, we show that, for a large number of agents, the previous description is
equivalent to a more compact description in terms of field theory. This yields an analytical, although
approximate, treatment of the system. This field theory does not model an aggregation of microeconomic
systems in the usual sense, but rather describes an environment of a large number of interacting agents.
From this description, various phases or equilibria may be retrieved, as well as the individual agents’
behaviors, along with their interaction with the environment. This environment does not necessarily
have a unique or stable equilibrium and allows to reconstruct aggregate quantities without reducing the
system to mere relations between aggregates.

For illustrative purposes, this paper studies several economic models with a large number of agents,
some presenting various phases. These are models of consumer/producer agents facing binding con-
straints, business cycle models, and psycho-economic models of interacting and possibly strategic agents.
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1 Introduction

In many instances, representative agent models have proven unrealistic, lacking both collective and emerging
effects resulting from the agents’ interactions. To remedy these pitfalls, various paths have been explored:
complex systems, networks, agent based systems or econophysics (for a review of these topics see [1][2] and
references therein).

However agent based models and networks rely on microeconomic relations that may be too simplistic or
lack microeconomic justifications. In these type of settings, agents are typically defined by, and follow, various
set of rules. They allow for equilibrium and dynamics to emerge that would otherwise remain unaccessible
to the representative agent setup. However these approaches are highly numerical and model-dependent.
Econophysics, for its part, rely heavily on statistical facts as well as empirical, aggregate rules to derive some
macroeconomic laws, that ultimately should pose similar problems than ad hoc macroeconomics. Indeed ad
hoc macroeconomic models are prone to the Lucas critique, that led to the introduction of micro-foundations
in macroeconomic theory.

A gap remains between microeconomic foundations and multi agent systems. This paper develops a setup
that models micro, individual interactions along with statistic uncertainty and recovers macroeconomic,
aggregate relationships using physics-like methods to replicate interaction systems involving multiple agents.

This paper presents an analytical treatment of a broad class of economic systems with an arbitrary
number of agents, while keeping tracks of the system’s interactions and complexity at the individual level.
In this respect, our approach is similar to the Agent-Based one, in that it does not seek to aggregate all
agents, and considers the interaction system in itself. However, we depart from the Agent Based Model in
that we do not aggregate the agents in several different types and aim at considering the system as a whole
set of large number of interacting agents. This point of view is close to the Econophysics approach, in which
agents are often considered as a statistical system. Nevertheless, our objective is to translate, at the level
of these statistical systems, the main characteristics of a system of optimizing agents. The goal of this work
is to introduce, at the (possibly approximate) statistical level, the agents’ forward looking behaviors, the
individual constraints, the heterogeneity of agents or information, the strategic dominations relations.

In that, our approach is at the crossroads of statistical and economics models. From the statistical models
we keep the idea of dealing with a large number of degrees of freedom of a system without aggregating
quantities. From standard economic models, we keep the relevant concepts developed in the past decades to
describe the behaviors of rational, or partly rational agents. A natural question arising in that context is the
relevance of these concepts at the scale of the statistical system, i.e. the macro level. It is actually known
that some microscopic feature may fade away at large scales, whereas some others may become predominant
at the macroeconomic or macroscopic scale. The relevance or irrelevance - in the physical sense - of some
micro interactions when moving from a micro to a macro scale could indirectly shed some lights on the
aggregation problem in economics.

Our work is an attempt and a first step toward an answer to this matter. Although preliminary, it
demonstrates that translating standard economic models into statistical ones requires introducing some
statistical field models that partly differ from those used usually for physical systems. The models introduced
keep track of individual behaviors. Behaviors in turn influence the description in terms of fields, as well as
the results, at the macro scale.

The advantage of statistical field theories are threefold. First, they allow, at least approximatively,
to deal analytically with systems with large degrees of freedom, without reducing it first to an aggregate.
Second, they provide a transcription of micro relations into macro ones. Last but not least, they display
features that would otherwise be hidden in an aggregate context. Actually, they allow switching from micro
description to macro ones, and vice-versa, and to interpret one scale at the light of the other. Moreover, and
relevantly for economic systems, these model may exhibit phase transition. Depending on the parameters
of the model, the system may experience structural changes in behaviors, at the individual and collective
scale. In that, they allow to approach the question of multiple equilibria.

The statistical approach of economic systems presented here is a two-step process. First, the usual model
of optimizing agent is replaced by a probabilistic point of view. We consider an interacting system, involving
an arbitrary number of agents, in which each agent is still represented by an intertemporal utility function,
or any quantity to optimize depending on an arbitrary number of variables. However we assume that
each agent’s utility function is subject to unpredictable shocks. In such a setting, individual optimization



problems need not be resolved. Each agent is described by a time-dependent probability distribution centered
around its utility optimum. Unpredictable shocks deviate each agent from its optimal action, depending on
the shocks’ variances. When these variances are null, we recover the standard optimization result. It
furthermore takes into account the statistic nature of a system of several agents by including uncertainty
on the agents’ behavior. It nonetheless preserves the analytical treatment by slightly modifying the agents’
standard optimization problem.

Note that this form of modelling is close to the usual optimization of an agent when some unpredictable
schocks are introduced. In the limit of no uncertainty, standard optimization equations can, in some cases,
be recovered. However, the uncertainty introduce is not the one usually considered in economic models, but
rather an internal uncertainty about the agent’s behavior, goals, or some unobservable shocks. As such it is
inherent to the model, and should not be considered as a random and external perturbation.

The system composed by the set of all agents is consequently defined by a composite probability depending
on time, agents’ interactions, relations of strategic dominations, agents’ information sets and expectations.
This setting allows for heterogeneous agents with different utility functions, strategic domination relations,
heterogeneity of information, etc.

This dynamic system is described by a stochastic process whose characteristics - mean, variance, etc.-
determine the sytem’s transition probabilities and mean values. For example, the process mean value at
time t describes the mean state of each agent at time t. Besides, we can define transition probabilities that
describe the evolution of the system from t to t+1.

This setup is actually a path integral formalism in an abstract space — the space of the agents’ actions —
and is very similar to the statistical physics or quantum mechanics techniques. We show that this description,
applied to the space of all agents’ actions, reduces to the usual optimization results in simple cases, inasmuch
as the unpredictable shocks’ variances are null. This description is furthermore a good approximation
of standard descriptions and allows to solve otherwise intractable problems. Compared to the standard
optimization, such a description markedly eases the treatment of a system with a small number of agents.
As a consequence, this approach is in itself consistent and useful, and provides an alternative to the standard
modelling in the case of a small number of interacting agents. It allows to recover an average dynamics,
which is close, or in some cases even identical to, the standard approach, and study the dynamics of the set
of agents, as well as it’s fluctuations if we introduce some external shocks. Our main examples will be the
models developed in [3][4][5][6] describing systems of interacting agents, or structures in interactions,where
some of them have information and strategic advantage. We show through this examples the possibilities of
our approach in term of resolution.

However, this formalism becomes useless for a large number of agents. It can nonetheless be modified
into another one, based on statistical fields, that will be more efficient in that case. Nevertheless, this first
step was necessary since the statistical fieds model is grounded on our preliminary probabilistic description.
Actually, this one, by it’s form in terms of path integrals for a small number of interacting agents, can be
transformed in a straightforward way in a description for large systems. As a consequence, the first step is
also a preparatory one, needed for our initial goal, a model of large number of interacting agents.

The second step to reach this goal, therefore, consists in replacing the agents’ path integrals description
by a model of field theory that replicates the properties of the system when N, the number of agents, is
large. Actually, in that case, we can show that the previous description is equivalent to a more compact
description in terms of field theory. It allows an analytical, although approximate, treatment of the system.
This transformation adapts some methods previously developped in statistical field theory to our context
[7].

Hence, a double transformation, with respect to the usual optimization models has been performed. The
usual optimization system is first described by a statistical system of n agents. It can then itself be replaced
by a specific field theory with a large number of degrees of freedom. This field theory does not represent an
aggregation of microeconomic systems in the usual sense, but rather describes an environment of an infinity
of agents, from which various phases or equilibria may be retrieved, as well as the behavior of the agents,
and the way they are influenced by, or interact with, their environment.

This double transformation allows first, for a small number of agents, to solve a system without recurring
to aggregation, and second, for a large number of agents, to aggregate them so as to shape an environment
whose characteristics will in turn induce, and impact, agents’ interactions. This environment, or “medium”,
allows to reconstruct some aggregate quantities without reducing the system to mere relations between



aggregates. Indeed, the fundamental environment from which these quantities are drawn can witness fluc-
tuations that may invalidate relations previously established. The environment is not macroscopic in itself,
but rather describes a multitude of agents in interaction. It does not necessarily have a unique or stable
equilibrium. Relations between macroeconomic quantities ultimately depend on the state or “phase” of this
environment (“medium”), and can vary with the state of the environment. This phenomenon is the so-called
“phase transition” in field theory: The configuration of the ground state represents an equilibrium for the
whole set of agents, and shapes the characteristics of interactions and individual dynamics. Various forms
for this ground state, depending on the parameters of the system, may change drastically the description at
individual level.

For illustrative purposes, this paper presents several economic models of consumer /producer agents facing
binding constraints in competitive markets, generalized to a large number of agents and presenting various
phases or equilibria.

The first section presents a probabilistic formalism for a system with N economic agents, heterogenous
in goals and information. Agents are described by intertemporal utility functions, or any intertemporal
quantities. However instead of optimizing these utilities, agents choose a path for their action that is randomly
distributed around the usual optimal path. More precisely, the weight describing the agent behavior is an
exponential of the intertemporal utility, which concentrates the probability around the optimal path. This
feature models some internal uncertainty, as well as non measurable shocks. Gathering all agents yields
a probabilistic description of the system in terms of effective utilities. The latters are utility functions
internalizing the forward looking behavior, the interactions and the information pattern of each agent. We
also show that if we reduce the internal uncertainty to 0 one recovers for most cases including the case
of quadratic utilities, in principle if not in practice, the solution usual optimization problem. We end the
section by solving explicitly a basic two agents example to illustrate the main points of the method.

The second section develops a class of models applying the method presented previously. This class of
model has already been used previously by the authors to model single individual agents as an aggregate
of several sub-structures, some having strategical advantages on others. This class of model is quite general
and allows to describe systems with small number of heterogenous agents in interactions. We then provide
some applications to check that our method allows a simpler resolution than the usual optimization, but also
to recover, in good approximation, the results of the last one as the average path of the system.

Section three further details the effective utility of the whole system of agents, as composed of individual
utilities plus possibly some additional contributions. This section stresses the fact that this global effective
utility differs from a collection of individual ones. The agents as whole, are not independent from each other.

Section four turns to the probabilistic aspect of our models. We compute the transition functions of the
stochastic process associated with a system of N economic agents. These transition functions have the form
of euclidean path integrals. We show that, in first approximation, for agents with quadratic utilities, the
transition functions are those of a set of interacting harmonic oscillators. Some non quadratic interactions
may be added as perturbation expansions. Once diagonalized, the directions corresponding to the harmonic
frequencies correspond to mixed, or fundamental structures, that represent independent agents.

Section five introduces constraints relevant for individual agents, such as budget constraints. We show
that these individual constraints translate in the path integrals defining the system, into adding some non
local contributions. Some of them may be approximated by inertial terms, i.e. "kinetic energy" contributions.
Moreover, if constraints depend on other agents behaviors, these additional contributions consist of non local
interaction terms.

Section six provides some elements about the Laplace transform of Green functions. It also establishes
that general non local interactions must be considered, even when there are no constraints in the model.
These considerations will prove useful in the next sections.

Section seven modifies our formalism to systems with a large number of agents. It shows that, in that
case, the transition functions is computed as correlation functions of a field theory whose action is directly
defined by individual agents’ effective utilities. The section provides a back and forth interpretation between
micro quantitities - individual behavior - and macro computations, i.e. collective behavior defined by the
fields. It shows how some features of field theory, such as non trivial vacuum and/or phase transition, are
relevant to our context. We also introduce non local individual interactions such as constraints at the field
level. We show how they modify the Green functions of the system, and thus the individual agents’ transition
functions.



Section eight applies our formalism to several standard economic models with a large number of interact-
ing agents. The optimizing consumers/producers model and a simple business cycle model are studied. In
the first case, interactions appear through the budget constraint, an din the second case, through the interest
rate determined by capital productivity. For consumers/producers, we compute the correlation functions of
the field version of the system and interpret it at the individual level. We recover the usual consumption
smoothing, but we can also track the effect of the interaction between agents that increase the fluctuations
of an individual behavior. In the business cycle model, we show that a non trivial vacuum may appear: for
some values of the parameters, the equilibrium may be shifted in a non continuous manner. The system
enters another phase, with different individual behaviors.]

Building on previous results, Section nine details the mechanisms of non trivial vacuua for the field
theoretic version of models presented in section two. Stabilization effects between structures may appear
in field theoretic formulation through a stabilization potential. This stabilization allows to describe the
system as sets of integrated structures. Unstable patterns that would otherwise be short lived may use
others to stabilize and form larger and more stable structures. The vacuum configuration corresponding to
these integrated structures is different from the initials’ and new features may be present in the resulting
system. The section also developps the notion of effective actions. When several types of agents are present,
the actions of some of them may be integrated out, to be absorbed in the effective action describing the
remaining agents. "Hidden" agents are thus included as external conditions shaping the environment and
inducing possibly some phase transition.

Section ten sketches a method to compute macro quantities from micro ones in the context of the field
formalism. Introducing a macro time scale may allow, in some cases, to recover approximate macroeconomics
relations between aggregate quantities.

2 Method

2.1 Principle

In this paper, the usual optimization problem of each agent dynamics within the system is replaced by a
probabilistic description of the whole system. Several conditions must be satisfied to keep track of the system
of agents’ main features. First, at least in some basic cases, the optimization equations in average should be
recovered. Moreover, this probabilistic description needs to take into account the individual characteristic
of the agents. In a context of economic modelling, it means to include each agent constraint, interactions
with other, and last by not least, ability to anticipate other’s agents’ actions.

This probabilistic description involves a probability density for the state of the system at each period t.
In a system composed of N agents, each defined by a vector of action X; (t), we will define a probability
density P ((X;(t)),_; n) for the set of actions (X;(t)),_; 5 which describes the state of the system at
t. Importantly, for a large number of agents at least, working with a probability distribution is easier than
solving some, often untractable, optimization equations. This probability distribution may often be designed
to be gaussian and centered around the optimal solution of the utility problem. In that case, if the variance
of this distribution is proportional to an exogenous parameter, one may expect, at least for some particular
cases, that when this parameter goes to 0, then the probability distribution will be peaked around the
optimal, or "classical solution". Then, such a probabilistic description can be seen as a generalization of the
usual optimization problem where some internal uncertainty in agents behavior, uncertainty of each of them
with respect to the others, as in an imperfect information problem, but also to themselves. We justify this
"blured" behavior by the inherent complexity of all agents, their goals and behavior being modified at ech
period by some internal, unobservable and individual shocks, the classical case beeing retrieved when this
uncertainty is neglected.

To develop this point, consider first the intertemporal utility of an agent :

U0 = 3 8l (X () (X (1))
n=0

where ugn is the instantaneous utility at time ¢ + n. In the optimization setup, the agent ¢ optimizes on

the control variables X; (t +n). The variables (X (£ +n — 1)), represent the actions of other agents.



Remark at this point that the term utility used here is convenient for any quantity optimized. It can
encompass a production function, for example in oligopoly models, and/or production and utility functions,
in consumer /producer models. Moreover, this type of model may describe the interaction of several sub-
structures within an individual agent. See for example models of heterogeneous interacting agents L,GL,
GLW, or models of motion decision and control in neurosciences.

Now we will explain how to switch toward a probabilistic representations that satisfies our requirements.
We start with a simple example and then generalize the procedure. Assume first that agent 7 has no
information about the others, so that their actions are perceived as random shocks by agent i. We then
postulate that rather optimizing Ut(z) on X;(t), agent ¢ will choose an action X; (¢) and a plan (that is
recalculated period after period) X, (t), n > 0, for it’s future actions that follow a conditional probabilistic
law proportional to:

exp (Ut(i)) = exp Z 5”“,(:271 (Xz‘ (t+n),(X;(t+n— 1))]‘7&1‘)

n=0

This is a probabilistic law for X; (¢) and the plan X;.,, (t), n > 0. It is conditional to the action variables
X, (t+n —1) of the other agents, that are perceived as exogenous by agent i.

Remark that, for a usual convex utility with a maximum, the closest the choices of the X;i,, (t) to Ut(l)
optimum, the higher the probability associated to X;., (t). Thus, this choice of utility is coherent with a
probability peaked around the optimization optimum. This choice of utility is therefore coherent with a
probability peaked around the optimization optimum.

To better understand the principle of the probabilistic description, we will start with the simplest case, in
which one agent has no information about the others. In that case, the variables X; (¢t + n) will be considered
as random noises. Thus, agent ¢ will integrate out other agents actions as random noises. The probability
for X; (t) and X, ¢, (t), n > 0 will then be

/ exp (Ut“)) exp ( (s ) TTITdx; (s

jFi s>t

2

exp (— 5)> being the subjective weight attributed to the X; (s) by 4. In general if there is no information

i ..
at all, we can assume the o5 — 0o, exp (—ng—é)) — 0 (X (s)) where 0 (X (s)) is the dirac delta function

J
so that other agents may be considered either as inert or, in lack of any further information, as random
perturbations. Their future actions are set to 0 by agent ¢, or, which is equivalent, discarded from the agent

planification.
When there are no constraint and no inertia in ugl) - or, alternatively - when ugl) solely depends on X; (t)

and other agents’ previous actions (X (t — 1))j L0 the periods are independent. Consequently, exp (U,@) is
a product of term of the kind exp (B"ugﬁrn (XZ- (t+n),(X;(t+n-— 1))3‘;&1‘)) that are also independent. As

a consequence, the probability associated to the action X; (¢) is:

2

//exp(w)exp( ;8>HHdX T (5) o exp (1w (X (), (X (2= 1)),..))

#i s>t s>t

Each agent is described by its instantaneous utility: the lack of information induces a short sighted behavior.
Each term exp (ugn (Xl- (t+n),(X;t+n— 1))#1‘)) is the probability for a random term whose integral
on X4, (s)is set to 1. In absence of any period overlap, i.e. without any constraint, the behavior of agent
i is described by a random distribution peaked around the optimum of ugi) (le (), (X, (t— 1))j¢i) which

models exactly the optimal behavior of an agent influenced by individual random shocks.
Having understood the principle of the probabilistic scheme with this simple example, we can now com-
plexify the information pattern, to account for the agents’ heterogeneity. The knowledge that some agents



may have about others’ utilities affects the statistical weight describing the agent’s behavior. Actually, if
agent ¢ has some information about agent j utility, it would be able to forecast it’s influence on agent j
through X, (¢) and in turn the delayed reactions X; (t + n) of agent j.

Let us more precisely consider, as before, the conditional probability for X; (¢) and X;4, (¢), n > 0,
depending on the (X (s — 1))j 2i - For s > t we conveniently define this probability to be proportional to

exp (Uti)):
P (Xi (), X; (t+n) | (X, (5)>j7éi,s>t) X exp (Ut(i))

— exp Zﬁnugn (Xi (t+n),(X;(t+n— 1))#1)

n=0

to find the (statistical) behavior of agent ¢, given agents’ future actions. We then integrate this expression

on the (X; (s)), 4 ., and X; (£ +n), n > 1 to find:

P01 X (0= 1), (6 (= 1)) @

which is the statistical weight describing agent ¢ action at time ¢, as a function of past actions of the system.
Once this quantity will be found for all agents, the system will be fully described. However, one can’t procced

in this way to find P (Xi )| Xi(t=1),(X; (t=1)), S%). We will rather show that the system of all the
P (Xi O 1X@E=1),(X;(t=1)), S%) have to be found jointly, as a system of equations. Actually, in
the previous equations, the probabilities

P (X (0), X (4 m) | (X5 (5)),01,020)

are conditional to the actions of other agents (X (t+n—1));_;, as in the simple case of no information.
But now, these variables are themselves forecasted by agent ¢ as depending on X; (¢). One then needs to take

into account this interconnexion to find P (Xi (t),X; (t+n)|(X; (3))]‘# -

1’s expectation of) the conditional probability of other agents actions given X (¢):

. It leads us to define (agent

P ({Xj DY AKX N}y | X (t)) 2)
- EJ[P ({Xj (t+k+ 1)}, X+ k) #,j:i)
k

where FE; denotes agent ’s expectation.
It means that agent i, forecasts the probabilities P ({Xj C+k+D}, [{X;(t+E)},,,, X+ k)) for

other agents, including it’s dependence in X; (¢ + k) and take into account in it’s computations of it’s future
path. Now, we assume that agent i attributes the weight (2) to the path {X; (t + 1)}, ;. ... {X; (¢ + N)}, ;5 -

Then rather than defining a conditional expectation P (X,; t),X;t+n)| (X, (s))
joint probability:

itisst) We will define a

exp (Ut“)) E[[P ({Xj (t+k+ 1)}, X ¢+ k)}#i)
k
which describes the probability attributed by agent i to the joint path:
Xi(t),. . X;(t+n),..{X; t+ 1)}#1, s 41X B+ n)}#i

Then, once this weight is attributed, it takes ito account the interelations between the paths X; (¢t +n)
and {X;(t+mn)}, ;- One can now integrate on the {X; (t+n)}, ; to find the probability for a path



Xi (t) s 7Xz (ﬁ + n):
P (X0 (0), X (4 m), X (0= 1), 4 (= 1D},0)

_ /exp (UO) B TP (16 0 b 1)} | X 4 B ) A4 (64 R}
k

/eXp S g, (XZ- (t+n),(X;(t+n— 1))#1-)

n=0

<2 TTP (16 (0 bt 1)) | X (6 )Y ) 44X (24 R
k

As before, we need to express the behavior of agent i at ¢ given past actions:

P (Xi ) [ Xi(t—=1), (X, (t— 1))j¢i,s>t)

That describes the probability for X; (t) as a function of X; (t — 1) and {X; (¢ — 1)} To do so, we can

i
now integrate
P (Xi (), X (t+n), Xi(t) {X; (¢ - 1)}#2')
over X; (¢ +n) and this will yield P (Xi (8) | Xi (¢ = 1), (X; (¢~ 1)), 7ém%).
P (X0 1 X (= 1) X (0= D)) ®

/exp (Ut(i)) E; 1;[13 ({Xj (t+k+1)} ., [ {X5 ¢+ k:)}#i) d{X;(t+k+1)},,d{Xi(t+k)}

/eXp Z ﬁ”ugﬁn (Xi (t+n), (X;t+n— 1))j;£i)

n=0

<E [P ({Xj (t+k+ 1)}, (X5 (R}, X (- 1)) d{X; (E+ k)Y, d X (E+ k)}
k

and the set of these equations with ¢ = 1, ...k where k is the number of agents, defines the set of statistical
weights P (X (t) | Xi (t— 1), {X; (t 1)}#1.).

As such, the system of equations (3) depends on agents expectations and this ones have to be defined to
solve (3). To do so, we first define the effective utility for agent ¢ at time ¢, written Ues (X, () as:

P (X0 (8) | Xi (= 1) X (t = D} ) = 2 (Uefj;[(Xi (1)) W

where the normalization factor A is defined as:
N = [ exp (Uegs (X: (04X, 1)

The interpretation of Uess (X; (t)) is straightforward given our procedure. We express the statistical weight
describing the behavior of agent ¢ at time ¢ as a the exponential of an utility function that has included all
expectations of this agent about the future. In a classical interpretation, the first order condition applied to
Ueyrs (X (t)), that would express X, (t) as a function of the X; (t — 1), j # ¢ and X; (¢ — 1) corresponds to
the solution of the dynamics equation for agent i. Given our approach, this is of course not the case, but we
show in Appendix 1, that for quadratic utilities, Uess (X; (t)) encompasses this classical result and allows to
recover the optimization solution in the limit of no internal uncertainty.

Remark that, we could define the effective utility by including directly the normalization term A. More-
over, our definition does not define uniquely Ues; (X; (t)) sinces it allows to include any constant term.



However, it allows to work with Uy (X; (t)) without being careful with the normalization of this function,
and to add the needed factor only when it is necessary, i.e. when computing some expectations.
The previous definition (4) will allow to rewrite the conditional probabilities in (3) as:

P((t+1),. X; (t+N), | Xi(t—1))

E; (HP ({Xj (t+k+ 1)}j¢i | {Xj (t+ k)}j;éi) | Xi(t— 1))
k

E;exp ZZUEH i+ k)

k  j#i

where

E;exp ZZUeff j(t+Ek)) HE €xp (ZUeff t+k))>

k  j#i J#i

is the expectation of given agent ¢ own set of information. Then equation (3) becomes:

exp (Uess (Xi (1)) = / exp (U) T Biexo | 32 Ueps (X5 (5)) | dX; (s) (5)

s>t s>t

Equation (5) is a system making interdependent the statistical behavior of each agent. In order to solve (5)
and find the effective utility U, sy (X; (¢)) one needs to compute the expectations E; exp (Z@t Uesr (X (s)))

and to do so, we have to introduce some assumptions about the expectations formulation. Basically, we
generalize what was said before and will consider two cases, that will be sufficient for most cases (some
alternative hypothesis could be developped as well). We will distinguish the agents by their relation with
respect to the information they have about the others. An agent i has an information domination (or
strategic domination) over j, if it knows the parameters, or some parameters of the agent j utility and if
j has no information about i’s set of parameters. This allows ¢ to forecast agent j’s actions and take into
account how it can influence j as explained above in (3). On it’s side, agent j perceives agent i’s actions as
random noises. Moreover, we say that two agents ¢ and j have no information domination on each other, if
they have both information (or both no information) on the other one’s utility.

It is convenient for the sequel to define the rank of an agent with respect to the others in the following
way: When an agent ¢ has an information domination over an agent j one says that vk (j) < rk (i) (or
j < i when there is no ambiguity). We also set 7k (:) = vk (j) (or i £ j or j £ i) there is no information
domination relation between ¢ and j.

2
If 7 has no information about j, an arbitrary weight exp (—X;—f)) is assignated to j. As explained above, it
J

results in simply discarding the variable X (¢ + k) in the problem in consideration. We will use this point be-
low. If 4 has an information domination over j, rk (j) < rk (i) then we define E; exp (3, Uers (X; (t +k))) =

(X5 04R)
exp (Zk ffi

2
- ) with AV = [ exp (Z M) dX; (t). The function U%; (X; (¢ + k)) is the i-th
truncated effective utility of j, the effective utility Ue sy (X, (¢ + k)) in which all the variables X}, (¢t + k) with
rk (k) > rk (i) and some (depending on the precise form of the model) of the Xy, (¢t + k) with rk (k) = rk (4)
are set to 0. It reflects the fact that in that case, agent ¢ has no information about agents k with rk (k) > rk (i)
and for some agents k with rk (k) = rk (i), and as a consequence, no information on the way k impacts j.
The parameter O’? is a measure of the uncertainty about agent j future actions. For 0’? — 0, one recovers the
full certainty about the agent that behaves as the usual optimizer. For ¢ increasing, this behavior becomes
only an average behavior. For a? — 00, agent’s action is random. This normalization factor introduces the
measure of uncertainty about agents behavior, i.e. the measure of external shocks. We also assume that

each agent faces an uncertainty about it’s own future action. This is modeled by the fact that in (3), we
, u®
replace exp (Ut(l)) by exp ( e ) where 07 measures the degree of uncertainty of i about itself, as way did




for other agents. In fact, as we will se, in most case, the factor O'% can be rescaled to 1, but it’s presence, at
least in the beginning, allows to interpret the results more clearly.

The expression of the conditional probabilities appearing in (3), in terms of the U.s (X, (¢t + k)) allows
to write the conditional probablities as intertemporal sums. To find recursively each agent eﬁectlve utility
Ueyps (X (t)), we introduce the system of all agents effective utility in the previous formula.

Given our assumptions (5) rewrites:

exp (Ues s (Xi (1)) (6)
= P(X® X (=) (X (=D} )

(1)
[ e (Z) B TP (156 (4 b D) [ X5 (4B ) 055 (4 b+ D)
i k

or, replacing the expectations F;:

(@)
exp (Uegs (X: () = [ exp (Z) ™)

i

xexp [ Y Ueis (X (E 1K) A{X; (t+ k)Y, d{X (t+ R)}

k j#i J

with:

=3Bl (X (), (X (40— 1)) )

n=0

The system (6) defines the U sy (X; (t)) that determine ultimately the probabilities (1) describing the system.

We show in appendix 1 that, for quadratic utilities, when N; — 0 and then N; — 0, one recover the
optimization equations of the standard utility maximizing agent. In other words, the agent behavior, is
peaked on the usual optimal path. For non quadratic utilities, one would recover the same results but with
condition to replace the effective utilities Uefs (X; (t + k)) in the right hand side of (6) by their by quadratic
approximation around the saddle point solution. More precisely, if we were rather defining the effective
utilities as satisfying:

~—

i

(@)
exp Uy (X: () = [ exp (Z) (3

<exp [ D) Uy (X5 (6 + ) d{X; (t+k)},, d{X; (t+k)}

k j#i J

where

=Y gl (Xit+n), (X (t+n - 1)), )

n=0

is the intertemporal utility of agent j and
Ui (X5 (8),(Xp (8 = 1)) = —% (X (1) = X5 [(Xe (¢ = D)) Agy (X (8) = X5 [(Xe (¢ = 1))

is the quadratic approximation of Ué}f (X; (t),(Xk (t —1))) around X [(Xx (¢t — 1))], with X [(Xy (t — 1))]
the optimal solution in X; of U(ff (X, (t),(Xg (t—1))) for a given (X (¢t — 1)) which satisfies:

N (8){?(15)Uz}f (X (8), (X (£ = 1))))

X5 (0)=X;[(Xp (t=1))]

10



Then, Appendix 1shows that in that case, the integrals in (8) are peaked around the classical optimization
solution when 0? — 0 and then 7 — 0.

We do not choose this representation (8), and rather stay with (6), since we present a different formalism
from the standard one, and the form (6) seems both more natural and more convenient. It is sufficient for
our purpose to know that we can recover the standard approach as a particular case for the case of quadratic
utilities, and as a quadratic approximation for general cases.

Note also that for utilities of homogenous form, and of the same degre in the X; (s), one can rescale

X (s) = Xis) - x (s) = Xj(sz where « is the degree of the homogenous utility. In this case this is

(1) 77 (-2

2
equivalent to set 07 = 1 and to redefine a? to be equal to Z—; If we assume that all the a? are equal to o2,

thus we will replace o2 by Z—z The integrals in (6) include some irrelevant constant factor that are powers of

o? that will be absorbed in the normalization of the statistical weight exp (Ue.ss (X; (t))). As a consequence,
after integrations (6) reduces to:

exp (Uegy (X, () = exp (U x exp | 030 LI ) 0 14 k) a0 (04 1)
& jti

which is a more convenient representation. In that context, retrieving the usual optimization description
corresponds still to let a? — 0 (These optimization equations are in fact for the variables X/ (s), but due to

the homogenous form of the utilities, the factors in powers of (U?) g cancel and one retrieves the equations
for the X (s)).

The system (6) is solved given our assumptions on the agents information sets and the form of the ex-
pectations E;. Given our assumptions on the expectations E;, the computation of exp (Uesr (X; (2))) will
involve only the structures on which ¢ has an advantage of information or those that are in a relation of
non domination with . Actually, as said before, the structures about which structure ¢ has no informa-
tion, are considered as random shocks and not included in agent ¢ computation, that is, if 7k (i) < rk (5)

E;exp (ngtUeff (X; (s))) = 1. In other words, agent ¢ integrates only in his behavior all substruc-
tures possible paths. His choice, for a given set of X; (s),X;(s), j < i, s > t is exp (Ut(i)) weighted by

exp (Y., Ul (X (5))).

The resolution for the Ucy s (X; (t)) consists then first, by ranking the agents by their strategic advantages.
The Uess (X; (t)) are found recursively for each set of agents with the same rank. Second, the effective utility
just found are reintroduced in the system of equation defining the effective utility of higher rank.

Among a set for a given rank (we use the rescaling 0 = 1 described above) (6) rewrites:

exp (Uess (Xi (1)) (9)
= /exp (Ut(i)) H H exp Z U‘:HEVXJ(S)) dX; (s)
rk(j)<rk(i) s>t s>t J

X IT TIEiewm D Ues(X;() ] dX;(s)

rk(j)=rk(i) s>t s>t

The Ueys (X, (s)) with vk (j) < rk (i) are given by hypothesis, and so are the Ué}f (X, (s)) which are
obtained from the Uers (X, (s)) by truncation. We are thus left with a set of functional equations between
the Uesr (X (t)) of the same rank.

The resolution depends on the model, and on the formation of expectations for rk (j) = rk (¢). Several

11



hypothesis are possible in this case. For example:

Eiexp [ Y Ues (X, ()| = 1
s>t
Uer (X
Biexp | Y Uesr (X;(s) | = exp Z%
szt s>t J
Ueff (*Xz (S))Xi 8)— X; (s
Eiexp | Y Uep(X;(s) | = exp | > (5)=Xi(s)
s>t s>t J

In the first case, structures of the same rank share no information at all. In the second case, they fully share
their information. In the third and last case agents are identical: take agent i utility and replace X; (s) by
X; (s) (assuming thus that j is identical to 7).

We keep the first and simplest case E; exp (Zs>t M) = 1 when rk (j) = rk (7). It implies that
in the truncation procedure the X (s) with 7k (j) = rk (i) are set to 0 in the Ueff (Xk (s))-
Once the Ucys (X; (t)) are found, the whole system is described by the overall weight:

P((Xi (1) [ (X (t 1)) o< 77 exp (Z Uesy (Xi (), (Xi (£ - 1)))) (10)

where N’ is a global normalization factor and the parenthesis (X; (¢)) denotes the set of vectors X; (¢)
concatenated with the supscript ¢ running on the all set of agents.

This probability P ((X; (¢)) | (X; (t — 1))) yields the probability distribution for the system to be in the
state (X; (t)) and this will be used to describe the dynamic of the interacting set of agents.

We have seen that in the limit of no uncertainty N — 0, one recovers, at least for the quadratic approx-
imation, the usual optimization dynamics. In addition to the fact that the classical case can be seen as a
particular case of our model, one compare the advanges of the two approaches. Usually, one write the first
order condition for each X; (t), then postulates a form for the equilibrium dynamics, and solve the equation.
Difficulties come from the fact that, even if there is no optimization on the X; (¢t +n), n > 0, those variables
enters the dynamic equations, as a consequence of agents anticipations and possible information domination
of some agents, and have to be replaced by the dynamic form of the solution. There is thus a circularity
that implies difficulties to identify, analyticaly, the corefficients of this equilibrium dynamics.

Working with statistical weights avoids computing the solution for each agents. The probabilistic weights’
exponential form ensures that actions are taken so that the action X; (¢) and the planned action X; (t + n),
for n > 0, will be chosen in probability, close to their expected optimum. The process is performed each
period again, with no commitment to previous expectations. In the end, this results in modeling the all
system by the overall weight (10) and a dynamic centered around the classical optimum. The total effective
utility includes the partial resolution of the agents expectations and strategic interaction with others.

Several use of the weight (10) can be made. First, it can be seen as the exponential of an effective utility
for the system, and as such, it can be used, to find the average path of the system. Actually, the probability
P((X;(t)) | (X;(t—1))) concentrates on its saddle point value which is given by the set of equations:

VxUesr (Xi (1), (Xi (= 1))) =0

where again, ¢ runs over the set of agents. This is a usual Euler Lagrange type of equation, and as said before
for quadratic utilities it leads to the usual linear dynamic solution. The computation of the eigenvalues of
the dynamical system being in principle straightforward.
Some external shocks may also be directly included in this set up. Rather than considering . Uess (X; (t), (X; (t — 1)))
as a full effective utility of the system, one can includes some perturbation terms:

an )5 (X (t= 1)) + X; (£) Lk (1)

12



where g, (t) are some random external perturbations, and L;; the response to this shocks for agent i. The
dynamic equation thus becomes:

VixiiyUers (Xi (), (Xi (t —1))) + Likek () =0
and in the case of linearized dynamics, the response to e (¢) is simply:
(Xi (t+m)) = (Xi (t) + Dy (i (1))

where D,y is the matrix describing the linear solution (X;(t+ 1)) = Deys (X, (¢)) and the parenthesis
(€; (t)) denotes the vector of concatenated shocks.

There is moreover a second way to use the previous probabilistic description. Rather than focusing on the
mean path approximation, one may consider the system as a random process and look at the probabilities
of transition:

P((Xi(t+ k) [ (X (1))

that describe the random path of the whole system. Up the usual normalization factor, it is given by
successive integrals:

k k
P((Xi(t+k) [ (X (1) = /eXP <ZZU6H (X (t+10), (Xa(t+1 - 1)))) [Taxi+0
=1

% =1

In the continuous limit, W€ replace the lag variables (X; (t +1—1)) by (X; (t+1—1)) — (X; (t +1))) +
(Xi (t + 1)) and identify the difference ((X; (t + 1 — 1)) — (X; (t +1))) with minus the derivative & (X; (£ +1)) =
(Xi (t+ l)) We then obtain P ((X? (t+k)) | (X?(t))) in terms of the variables (X; (¢t + 1)), (Xl (t+ l))

Xi(t+k)=(X?

P((X2(t+k) | (X21)) :/ ( )GXP (/ZUeff ((XZ- (t), (X (ﬂ))) D(Xi(t)  (11)

Xi(6)=(X?)

for two given values of the initial and final state of the system (X? (t+k)) and (X? (¢)). The integrand
D (X; (t)) denotes the sum over all paths from (X? (¢t + k)) to (X?(t)) and the probability is expressed as
a path integral between those two points. We will come back to this approach in the third section. This
formalism, familiar in theoretical physics appear in a wide range of models, ranging from Quantum Mechanics
to statistical physics, and allows to go beyond, the "classical", or in our context, the average dynamics. The
system may then be considered as a fully stochastic process, whose transition functions are given by (11).
Such integrals are usually difficult to compute, except in the quadratic case. They can however yield many
information on the probabilitic nature of the system, notably through several techniques such as perturbation
theory, or Feynman graph expansion. Besides, path integrals have already been used in finance, to study
the dynamics of stock market prices for example [?].

2.2 Basic example. Comparison with intertemporal optimization

Before developping some more general models, we start with a basic example and consider a system with
two agents, with time ¢ utility:

1
Uy (ye) = — <2yt2 —ytﬂﬁt—1>
1 1
uy (1) = — (2%2 + 5%2—1 - 04%%—1)

Note that this is the model developped in [4] where we considered a two agents interaction model:

U (@ () = — (@ (1) ~ a0)® — a1 (B az (¢~ 1)
U (2(1)) = —% (o (t = 1) +o0ar (¢~ D aa (1) ~ 3 (a2 (1)°

13



where we set v = 0, ag = 0, to focus on the method of resolution. For comments and interpretations of the
model, see [4]. The agents intertemporal utilities are:

Uy(y) = Zﬂnuy(yt+n)
U (2) = Y B"u (Tr4n)

x; has a strategic advantage on y; which traduces here as a strategic - information - advantage. Agent x
knows the utility of agent y and it’s impact on y (coefficient —1) , as well as the impact of y on him (coefficient
—a). Agent y has no knowledge of agent x utility. It only knows the impact of  on itself, and this impact
is perceived as the action of a random shock. This kind of model of interaction will be generalized in the
next section. Let us remark that this type of model can also represent a dynamic version of the Stackelberg
duopoly model. Actually, in a Stackelberg duopoly, the payoff are quadratics:

T = Pga—aq
T2 = Pga—c2qe
Where the price is P and c;, co the costs, ¢; and g2 are the quantities produced. Using the inverse demand

function:
P=A-q —q

One is lead to:

™ = (A—Q1—(12—01)Q1
T = (A—q —q —c2)

In a dynamic version, agents would optimize the following functions. Given that in the Stackelberg setup,
agent 2 has a strategic advantage and anticipates future actions of the first agent, the time ¢ rewards become:

mt) = A-a(t-1)-q{)—c)at-1)
m(t) = A-qat—-1)—q@)—c2)q(t)

The lag in ¢; (t — 1) transcripts the fact that agent 1 having a strategic advantage, it fixes first its quantity
to match the demand at time ¢. Up to some constant and normalization, the functions ; (¢) have the form
of the model considered in this paragraph, except for the term ¢, () ¢; (t — 1) in m (¢) that would need slight
modification of our basic model (inducing some time translation in the computations of the effective utility
for the first agent), but this is not our purpose here and this will be discussed in the next section.

Back to the resolution of our example, in the optimization set up, this model is solved with standard
methods for optimization with rational expectations (here perfect information). Solving first for y;

Yt = Tp—1

leads to an effective utility for z;:

1902 + A AL+Li_9

and an intertemporal utility for x;:

1
Ugc (ZUt) = Z Bt <21‘t2 (1 + ,82) — QT Tt—2 — O£52l't$t+2>
leads to the optimization equation:
z (1+ B2) —ary_g—af’r =0 (12)

Postulating a solution of the type:
Ty = dwi_q

14



leads to the characteristic equation:
(1+5%) d*—a—ap’d*

whose solution is:

d:i\/MIBQ <1+ﬂ2—\/(1+,62)2—4a252) (13)

On the other side, we apply the formalization scheme developped in the previous paragraph, and then
compare the results with the dynamic solution (13). We then need to compute the effective utilities for both
agents x and y. We start with y and consider it’s intertemporal utility:

0= 8", (esn)

Given that y; has no information about z, it will behave according to the statitical weight defined by:

n x2
exp (Uesry (W) = / exp (Zﬂ uy<yt+n>> exp (;)Hdrt+ndyt+n+l

n n=>0

2
Tipn—
/exp Zﬁ < th+n yt+n$t+n—1> exp <_t+agl)Hd1't+n—ldyt+n

n>0 n>0

1 T,
/exp (/Bn (Qyt2+n - yt+n$t+n1>> exp (—Hgnzl> I dzen1dyesn

n>0

The integrals

give a constant result, set to 1 after normalization, so that:

n 1
/exp > B ( Yitn — yt+n$t+n—1) exp( t;1> 11 dzesn-1dyrin = exp <<2y2 —ytﬂft—1>)

n=0 n>0
which translates in terms of effective utility:
1
(Uerry (We) = §yt2 — Yrr—1 = u ()
The result previously stated is retrieved: the effective utility of an agent with no information is the initial

time ¢ utility.
Now we can compute the effective utility for agent x. Starting with it’s intertemporal utility:

Up(e) = Y A"y (@e4n)

n=0

= 3o (gt g

= t-l—n yf+77 1~ QT4nYt4n—1
n=0
" /1

= Z (2xt+n + 5yt+n71 - a\/B@Qtl)
n=0

where we changed the variables:
i‘t—i-n = (\/B) Tt4n
Jton = (\/B) Yt+n

we apply (9) and we are secking for (Uesy . (x¢)) defined by:

N N Ue Jt+n N .
exp (Uetfo (81)) = /eXp (Uy (&) exp Z M H dGt4n—1dTt4n (14)

ag
n=0 n>0
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where Uecssy (U44n) has to be normalized. We set:

1,2
EXp \5Y: — YtTr—1
exp (Uessy (yr)) = G tN )

and impose:
[ exp Wergy ) =1

which leads ultimately to find:
1 1 1
exp (Uess.y (yt)) = Noraa (2%2 — YiTi1 + 2»’5?1)

The factor —— is a constant factor and can be discarded from the computations and (14) becomes:

NeTS
A~ A~ Ue J n ~ A~
exp (Uugra @) = [exp (U @yes | | 0 L)) ) T dg s, (15)
n>0 n>0

1. 1 . . .
= /GXP Z <233?+n + 552/?+n—1 - O‘\/th+nyt+n—1>

n=>0
n 1 ~2 N o N
2Yi4n — \/Byt+n$t+n—1 Bl‘%_;'_n_l N .
X exp E 5 + 5 I I AYt4n—1dTi4n
o) 20
n=>0 n>0

or, when the variables at time ¢ and those at time t 4+ n are separated:

1 6\ . 1/1 R 1 . A 8. .
exp ( (1 + 02> &Y+ 5 (02 + ﬁ) 97 + 55%2—1 — ay/Biigi1 — \({;ytﬂft—l)

exp (Ueyf,u (21)) 5 5

X /exp <Z <; <<1 + fz) :it2+n + <O’12 + /6> Qt2+n> - O‘\/Bjt—&-ngt—&-n—l - \U/QBgt+nit+n—l>>

n>0

x [ dinsndisyndie
n>0

Now, define:

and the effective utility for z; is written as:

exp Uespa (31)) = exp (;Y< (125"‘) (10+ " )Y—JBY(O 3‘)Y> (16)

ol (C58T 1 (1))

n>0 o2

X H Yt 4-ndT iy ndy;

n>0

To compute the integrals we use a result about gaussian integrals for a path of variables {YHR = < zH" ) } .
t+n n>0

This result states that the gaussian integrals H djt4ndZiyy, are known to be equal to the (exponential of
n>0
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the) saddle point value of the integrand in the second exponential of (16), with initial condition (&4, §;) and
final value (0,0) at ¢ = co. More precisely,

1+ 4 0 0
/eXp <n2>;) <2Ytt+n< ( 0") (& +5) )Y;H-n VY, t+n< 1 g)Yan))
x H Aty ndi i ndys
n>0

= exp (Saddle point of (5))

with:

o2

1 1+ ﬁ) 0 @

S=-Y n ( o Y;H-n f n 1 }/t—i-n—l
2 < 0 (#+8) o 0

where the saddle point solution satisfies the initial condition given just above.

To compute this saddle point value, define three matrices A, B and C with A symetric, and C antisymetric
that allow to rewrite the integrand in the exponential as.

o 0 a—i—# . 0 a—%
A<a—|—012 0 )andc(—a—‘v—;g 0

)

so that:

oY

A+C:2< )andA—C:Q(i

(BA)((”JBZ) 0 >

0 (52 +5)
so that the quantity in the second exponential of the right hand side (16) is written as:

The matrix B is defined by:

S = ; Z ()/tz-n (B A Y;H-n \[ t+n A+O Y;H-n 1)

n>0

The saddle point equation is then:
2(B = A)Yiyn — VBAYViin-1 4+ Yigns1) = VBC (Vg1 — Yigni1)) (17)
We look for a solution of this equation under the form:
Yitn = DYiinta (18)
and the matrix D satisfies
—VBA-C)D*+2(B-A)D—-\/B(A+C)=0 (19)

One can check that the solution D of (19) has the form:

p=(i4)
and (19) leads to two equations for a and b:
1 1
a<026+1) — ﬂu?ab\/é
b<6+ ;) - %\/B—aba\/g

I
=

I
=
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whose solutions are:

— s (Lo e\ 20— i 1) (04 5 4 20 - o 1)
(20)
b = a\% (aﬂ +o%a — 0201\/B>
o?B+6° - \/(U2ﬁ+/82 — 208 — 0% +1) (025+52 + 208 — 0202+ 1) —0?a?B+1
= (" +5)

VB (026 + 8% - \/(025 + 8% - 208 — 02028 + 1) (028 + B2+ 208 — 02028 + 1) + 02028 + 1)

Having found D, we replace these expressions in the saddle point solution (18). The effective utility Ueys o (2¢)
can then be obtained by:

€xp (U'Bffym (:i't)) = /exp (; (Z <Y;St+n (B - A) Y'H'n - \/EY?—&-n (A + C) Y;f-i-n—l))) dgt

n>0
where Y;,, satisfies (18). The whole integrand

1
S =53 (Ve (B = A) Yirn — VBV, (A+C) Vi) (21)

n>0

can then be simplified via the dynamic equation (19). This dynamic equation (19) rewrites:
(A-C)D*+2(B—A)D+(A+C)=0

or, since D is invertible:
(A+C)D'=—-(A-C)D-2(B - A)

the sum (21) simplifies as:

1
5 Z (Ytt-i-n (B—=A)Yn — \/Bytt-i-n (A+0C) Yt+"—1)
n>0

= _?Yttﬂ (A+0O)Y;

+Z t+n B A )/t+n Z f t+nA}/t+n 1— Z f t+nC}/t+n 1

n>1 n>1 n>1

= _@Yttﬂ (A+0O)Y,

@C (}/t—i-n—l - }/t—i-n—i-l))

+ Z t+n ( B - A) Yt-&-n - ?A (Y75+7L—1 + Y75+n+1) - 9

n>1
= YV, (A+0O)Y,

VB

= Pyt Oy = -

—Tytt (A-C) DY,

The second term vanishes, as a consequence of the dynamic equation (17). Then:

1
Z < Ytt-i—n (B - A) Yt-&-n - \/Bytt-i-n (A + O) Yt-&-n—1>

n>0

= —@Yf (A=C)DY;
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and (15) rewrites:

exp Ugpa @) = [ow (¥ - 0% - vt (a4 0 s - Yt (4= 0) Y, ) ) ate

/exp <—; (Y,f ((B —A) - % (A-0) D) Yt) - ng (A+ C)YH) di

We can use again the dynamic equation for D:

(2B-4)-VB(A-C)D) = (A+C)D"!

and the previous relation becomes:
) 1 _ 1 .
exp (Uesr o (24)) = /exp <4 (Y (A+C) DY) — §Y;t (A+C) K1> diy

— /exp <i ((Yt - DY, ) (A+C)D (v, — DYt—l))> i

The integration on §; then leads to the following compact expression for Ueys (x4):
U (@) = (o~ (DYie1),) (A+C) DY)~ ((A+C)D7), (A+C)DY) ((A+C) D), (& — (DYi),)
= (¢ —ayi—1) Nupa (v1 — ays—1)

where the subscript « means the coordinate of a vector (or a matrix) in the x direction. The matrix N,
is defined by:

&
8

I
—~
—

A+C)D™)  —((A+C)DTY) ((A+C)DY) ((A+C)D7Y)

yr

As a consequence, the full system is finally described by the probability weight:
exp (—Ueysy (w1) = Ueys (yr))
= €xp (— (z¢ — ayi—1) % (¢ — ays—1) — (;yf - ytxt—1)>
whose minimum is given by the dynamic equation:
Ty = aYi—1
Yy = T

thats is:
Ty = T2

At this point we have obtained the following result. All computations performed, the mean path followed
by agent x is similar to the classical case, but with a different coefficient and this has to be compared with
the usual resolution we obtained previously:

Ty = dri_q

and the coefficients a and d* were given by (13) and (20).

We perform the comparison through a power series expansion in 8 which allows to compare the effect
of forward looking behavior in both models. Actually, as said previously, we know that both approach are
identical for § = 0. This is checked directly here. Actually, at the fourth order:

& = a+52a(a271)+64(2a271)a(a271)+0(ﬂ5)
a = a+52a(a271)+02a2(a271)253+a(a271)<2a2+04(a271)271)ﬁ4+0(ﬂ5)
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For 02 = 0, d? and « coincide at all orders, and the usual result is recovered as announced in the previous
paragraph. It corresponds to a system with no internal uncertainty and the usual optimization problem is
recovered. For 02 = 1, which corresponds include an uncertainty in agent’s behavior one finds:

a:a+,62a(a2—1)+0(53):d

To the second order, both approaches coincide. The case 02 = 1 is equivalent to the case in which the
dominant agent x has full information about y. His knowledge about y’s fluctuation are of same amplitude
as his own, i.e. he knows the most that can be known about y.

At the third and fourth order, for o2 > 0, the results diverge, and a > d?, this is the consequence of
the inherent uncertainty of our model. Whatever the external signals, an internal randomness has been
introduced in each agent behavior. This induces in turn fluctuations that destabilizes slightly the system
compared to the usual analysis. Only when 02 = 0, For 8 — 0, the two solutions coincide, as explained in
the first section. The reason is straigntforward. For § = 0, in both formalization, agents only care about
period ¢, and whatever their way to produce future forecasts, perfect, ordefined by statistical weight, it will
be irrelevant.

For o2 large, the previous series expansion for a breaks down and we have to come back to:

1 1, 1., 1 ; ; 1, ., 1
1/1 1 5 1 1/1 1 5 1
_ - (= _ = 2 -2 2 I - 2 -2 2
oz(? 5 (1 a)+2a)f0r(1 oz)>0anda<2+2 (1 a)+2a>f0r(1 a?) <0
= «

which is the result expected under no information. This is coherent: agent = information is of low relevance
when o2 is large. This coincides also with the result for 3 = 0, since in that case agents dicard next periods
and the consequences of their own actions.

Varying the parameter o2 therefore allows to interpolate between the full and no information schemes
or, equivalently in this context, between a dynamic Stackelberg and a dynamic Cournot game.

This example suggests two conclusions. First, our scheme allows to switch continuously between a model
with no internal uncertainty (the usual optimization problem) to another model including internal uncertainty
about agents behavior. In other words, it allows to consider the quality of information at disposal for the
agents as a parameter and interpolate between full and no information cases.

Our second conclusion concerns the resolution method. From the exposition above, the standard opti-
mization method seems to yield a mire straightforward answer for the dynamics in the case of no internal
uncertainty. From this standpoint, our formalism, eventhough more general, seems tedious in the o2 — 0
case. However, its advantages become clear when the number of agents increases. Whereas solving the
optimization equation (12) becomes harder when the number of agents increases, the dynamic equation (19)
will keep the same form. This first order matricial equation will be easier to solve for some particular values
of 02, such as ¢ = 1, thus providing a tool to describe analyticaly the behavior of the agents in a whole
range of systems. The dynamics thus obtained would differ from an optimization problem, but will remain
centered around the classical solution, and can be seen as an approximation of this one. Let us also note
that, however approximate, this "probability-based" solution is no less valid nor realsitic than the standard
description of the agent behavior.

3 Application: Several interacting agents defined by a graph

3.1 Static model of several interacting agents.

Having presented the general formalism and described a representative example, we can now apply the
above formalism to a general class of models that fit well with our approach. These type of models describe
interactions between n heterogenous agents, some agents dominating informationally and strategically others.
They are described by a graph ordering the agents by the relations of strategic domination among them (see
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[5]). They are equivalent to some dynamic games models, and are close to monopoly or oligopoly models.
These models can also be used to describe dynamic patterns of decision for agents composed of several
sub-structures (see [3][4][5][6]).

We will first present the static version of this class of model to introduce the agents’ utility functions
along with the domination graph that commands the resolution. We will then develop the dynamic version
that will be used. Each agent’s effective utilities are computed, to derive the whole system’s effective utility.
We then consider several examples.

3.2 Strategic relations between agents

The agents’ strategic relations define the model setup. An oriented graph I' whose vertices are labelled by
the agents involved describe these relations. When Agent i has a strategic advantage over Agent j, we draw
an oriented edge from ¢ to j and write ¢ — j. If there exists an oriented path from i to j, we write the
relation ¢ — j, and state that Agent ¢ dominates directly or indirectly Agent j or, equivalently, that Agent
j is subordinated to Agent i. If there is no oriented path from i to j, we write j ¢~ i, where it is always
understood that ¢ # j. In the following, we merely consider connected graphs without loops.

3.3 Matricial formalism

Agents’ utilities are described by the following matricial formalism. Agents’ actions are encompassed in
a vector of actions, or control variables. The number of possible actions determine the size of the vector.
Utilities being quadratic, matrices may be associated with them.

Let X; € R™ be Agent i’s vector of control variables, and X J(»i) € R™ the vector of goals associated with the
variables X;, as expected by agent i. We normalize X j(-i) to 0, so that Agent i wishes to achieve X; = 0 and

X; = XJ(Z) Agent i's utility is given by:

Lo 40 I () 40 - (0)
Ui = 5" XARX - 53 (x - X)) Al (- X)) (22)
Je=1
= xAl) (X - X7) = >0 (X - X)) Al x,
Je=i Joxi

In the absence of any interaction, Agent ¢'s utility is given by the term

1 i
—itXiA,Ei)Xi

The variables X; are normalized so that AZ(-? is a f; x n; diagonal matrix whose coefficients are 1 or 0.

If Agent 's subordinate agents’ actions X, depart from X 7@ , Agent i's will experience a loss of utility of

the form :
> () (3, 59)

i

The f; x n; matrix A;? of parameters is of course symmetric.
The impact of Agent j's action on Agent 7’s utility is

SorxAl) X - >0 (X - X9) Al X,

Je=i J#i

where j < i can be seen as the impact of Agent j's action on Agent 7. In our model, Agent j does not
know the agents to whom he is subordinated, and processes their signals as external ones. The second term
models the strain imposed on Agent ¢ by Agent j to achieve its own objectives for X;.
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Remark 1 Since the linear term in X; disappears during the resolution,

> XA X,
Joi

Sof(xi - x) AP X,

J#i

is equivalent to

Notation 2 By convention, for the n; X n; parameters matrices AEJ), we will write tAE;-) = A;?.

3.4 Dynamic version

This section describes the general model for dynamics interacting structures. We adapt the the procedure
of the previous paragraph by transforming the matricial static utilities in a dynamic context, and assuming
each agent optimizes a forward-looking intertemporal utility function, given it’s own information set.

The intertemporal utility is of the form :

t) = Z B E;Us (t +m)

m>0

where 3, is Agent i’s discount factor, and F; his conditional expectation at time ¢. Agents compute their
expectations according to the following information pattern. U; (¢t +m) is period ¢ 4+ m utility and is a

dynamic version of the static form (22), where the previous remark allows to set )N(Z-(j ) =0.

1 .
Uit+m) = —5X{(t+m)ADX; (t+m) (23)
1 ¢ K0 40 ()
—§Z(Xj(t+m—1) )A ( (t+m—1) - X! )
Je=i

=S X+ m)AY (X +m-1) - X7)
Jei
ST Xt +m) AV X (t+m - 1)
Joi
Which is, up to some constant irrelevant term, a straightforward generalization of the static model utility
function. Actually, in a dynamic context, we consider that agent i perceives external and other agents’

signals with a one period delay.
Concatenating X;(t + k) and the vectors X, (¢t + k) for all j < 4 in one normalized column vector, we

rewrite the utilities:
i (i
Y (t+k) = (52 (Xj (t+k) — X! ))N)

where, by convention Xi(i) =0, XJ@ = )N(J(»i), j < i. We work now with the system of variables Y; (¢). For all

i > j,1=j, one has the following map

X (t+k) =Y (t+ k)

defined by: . (ﬁXj (t + k)) - (o, Bt (Xj ()01
Y (t+k) =Y (t+k), given by /(Y (t +k)) = (6% ;

When there is no ambiguity, we will still write X;(t + k) and X;(¢t + k) for the images of these vectors by

these injections. In other words X;(t + k) = (Y; (t + k)), and X (t + k) = (Yi (t + k)); are the i-th et j-th

components of Y; (t + k) respectively.
With these conventions, the utilities rewrite:

J@) ,O,...O). Similarly, we define the injection
S+ R —X()) 0, ..0).

??‘/\
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g0 X Xi(t+k)A<i)X(t+k)+zj<i((Xj(Hk,l) X())A<( tbE-1) - —J@)))
o ’gﬁ F2X (4 R) A (3 (4 k1) - XJ('i))+Zj>i2Xi(t+k)Az('j)(X (t+k—1)

= ZE(Hk)(Aéf g)m(t+k)+mt+k1)<g BAO

) Yi(t+k—1)
k>0 {45}

0 piaf)
5%14@ 0
+3 02X (t+ k) AY (X (t+ k1))

J>1

+Yi(t+k)< )Yi(t+k—1)

We will also add possibility for an inertia term:

~X; (t) e X (t - 1)

to obtain:
U — th+k)<A§i> 0>Yi(t+k)+Yi(t+k1)<O 0 )n(tJrkl)
= 0 0 0 BA{”}
+mt+k)< 65:13) piay >m(t+k—1)
+3 72X (t+ k) AY (X, (t+ k1))

i>1

3.5 Pattern of information

The full resolution of the model relies on agents’ expectations, that is agents’ information sets or parameters
knowledge. The pattern of information over the domination graph we propose describes how agents perform
their forecasts. Each agent knows the domination relations of the subtree he strategically dominates, but
ignores the reactivity of the subtree’s agents to external, non dominated agents. In other words, Agent ¢
knows the values of the A,(C]Z) for i — k and ¢ — £. The remaining coefficients A,(CIZ) are forecasted to 0 for
this agent. Remark that, under our assumptions, agents do not attribute a probability to the coefficients
they forecast, but rather a fixed value.

We moreover assume that, at each period ¢, Agent ¢ knows the signals X (¢ — 1) for ¢ — j and X;(t — 1) for
j ¢~ by which he is affected. From these hypotheses, we can infer some results about the agents’ forecasts.
First, Agent i forecasts to 0 all the actions of agents he does not dominate. That is, for j ¥~ i and m > 0
one has:

E;X;(t+m)=0

This condition will allow to simplify some computations when computing the effective action of agent "¢".
The action variables X (t + m) for j ¢~ i will be discarded.

We conclude this paragraph by remarking that In the case of oligopoly interpretation, the pattern of
information chosen ulimately determines which kind of game is played, Stackelberg, Cournot...

3.6 Effective utility

As explained in the previous section, each agent j behaves at time ¢ with a so called effective utility
Ueps (X5 (t)) = Uesy (X;) whose form is found recursively. As shown before, for the less informed agents -
those for which X; (t) = Y; (¢) - the non normalized effective utility reduces to time ¢ utility:

Ueps (X ZY 1) ADY: (1) — V/BYi (t— 1) Vi (t— 1) + 32X, (1) AT (X, (1))

>t
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The previous section has shown that (Uess (X; (t))), the effective utility that determines the probability of
behavior of agents who dominate others informationially is given by (9):

oo s (5 0) = [ew (0F) ] oo | Z =5 ax e e

rk(j)<rk(i) s>t s>t

Appendix 2 proves that, after coming back to the variable X; (¢), the non-normalized effective utilities
solving (24) have the form:

v = v (g 0 ) re-are (N e

+ 3 285X (s) AY) (X (s — 1))

i>k>j
with:
(e) _ £ _ e
Y (t+ k) = <g2 (X (¢ + k) - X )Kj) (25)

where X ,gj ) is the effective goal of j for k. Appendix 2 provides a formula for the effective goal given the
parameters of the model, and proves that Uy (X; (t)) is given by:

Uess (X1 (0) = 5 (Xe0) - Xf)e) N (Xi ()= X77) = (Xi - x) Afg (Xi (t—1)— X )26)
_;;(& )%%(X(t—l )+;;X (X (t—1))

The matrices Mjy;, M;j, Ny, also computed in Appendix 2, are:

Ni = ((A=C)(D-2)+2B); (27)
~(A=C)(D-2)+2B)] (A=~ C)(D-2) + 2B)fj>_1 ((a=-c)(p-2)+2B))

My = (Ni) ((«A ~O) (-2 +283)°) (A+ C>),,

wy = ) (((a-00-2+2m) " (4+0)

ij

where S stands for the symetrized matrix, and with:

_eg) @) A(;) " A%i
A = B AW 4 4D ~( “”}“J)eff _<6{.jk}2j>k)e~ff7
SR BT R
{kj}i>k>j0 “H{jk}i>k>j
AD 4 By — VBD {/{A”+A“»Bm}

BAD 1 (Agy)eff , Ba

B ) . .
{\/B (A;.li) + Ag.ji)) ,Bb} /B (e ijk)a}kq)#f (<P k)eff
b Y
{kj}Yi>k>5 “{jk}i>k>j
0 A(Z) _ A(J)
ij
C = \/3 @) G) (({]k)a}kq)pff (({]J)k}3>k) etf
— (A - a7) ) O
AJ,, =AY
{kj}i>k>j> {jk}i>k>j
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and

-1
By = ﬂA(J) (AJJ))G“A%)

By = {ﬂA(J (Agé))_ Aﬂ)’ﬂ( ( 7) fl ( ((J)) (Ghrns). ))}
o () 4.
ﬁ( (§jJ)>eff ( ({Jﬂ)k}k<J)eff ) ( )Eff< ( (J))eff (?J)k;k<J> 1 >7
i (A(J) (A(J )eflf ( ( ;Jj)> ” ( ({J])k}k<3)€ff ))

It is shown in Appendix 3 that the matrix D satisfies the dynamic equation:
(A-C)D*+2(B—A)D+(A+C)=0 (28)
The notation {} used here is convenient to describe concatenated blocks of matrices such as for example

514@ + (Ag»jz)) , Baa

B

eff
( ({Jk>]}k<7)eff ( ({J]>k}_7>k) ot to refer to matrices BAJJ, Bss,... that are concatenated in
VB (
A J) A(J)

{kj}ti>k>j " {jk}i>k>j
a larger one, say M. The matrix M is built by concatenating the matrices BAU, Bss, that are pasted
given their indices. The dimension of M will thus be implicitely determined by its constituing matrices. For
example BAE-Z]-) has elements along the coordinates (j,j). When several matrices have elements at the same
place in M, these elements are simply added.
Alternatively one can also represent the effective utility as:

Uups (60) = 3% 0 Ma 0= (%0 = (7)) oty (3561 = (7))
+% (Xi (t) — (ﬁ‘”)i) Ny (Xz‘ (t) — (Yi(l))i)

with: 1
Nj; = Nii + 5 M

X; (t) refers to the discrete derivative, that is X; (t) = X; (£) — X; (t — 1).
Remark that (26) is not in a normalized form. The normalization can be achieved by imposing that:

[ e (Vg (X () X () =
and this implies:

Uess (X (0) = 3 (X () — X) Nat (X (1) - X1°) (29)

=Y (K - X J‘jﬁj (X5 (t-1) - X)) + DX () A (X, (- 1)

f% Afg (Xi (tfl)—Xi(i)e) +Z% (Xj (t—1) X"”) ZA‘” S(t—1))

x (Nit) ™! J‘\% (Xi (t) — X}“e) > % (Xj (t— ) ZA DX (t—1))
—Indet (V;;) ] j
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However the terms depending on contributions for j > i may be discarded due to our pattern of information,
in which X (¢) with j > ¢ is considered as a random noise by agent 7. We are then left with:

U (X0) = 5 (%000 = XO%) N (X0 - X°) (30)
— (xi (1) - x) Afﬁ (it -1 - x)

-y (Xz X(”e) M (Xj (t—1) X(”e) X () A (X (- 1)

J<i J>i

7% AfB (Xit—1) - x) + ; ]‘jﬁﬂ (x5t -1 - x)

D

t

x (Nig) ™t x Af% (X( )+Z =4 ( (t—1)— Xj(i)e) — Indet (N;;)

and this more precise form is used when needed to compute conditional expectations.

More about this point and the derivation of the normalization is given in Appendix 2. But let us now
consider an application of (30). The important point is that the effective utility remains quadratic, after
integrating both anticipations and interactions between agents.

The probability associated to that utility is then:

oc exp (Ueys (Yi (1))

Remark that the effective utilities for X; (¢) depend on, and implicitely include the discount factor that
was previously absorbed in the definition of, Y; (¢). Considering again (9) and using (4) means that (recall
the notation X;(t + k) = (Y; (t + k)); and X;(t + k) = (Vi (t + k)),):

P ({Xj (4 D)}y A (N} o | X (t))

= B TP (X b+ D} |G (4R ) X (4 B
k

Mzz Mij

— e[S (Eno( T ) )ne-mo( F Y )ve-y

j<i \k>0

+ ) 2(v (1), AY) (Vi (t - 1)),

i>k>j
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then rewriting this expression in terms of the initial variables X;, X; and including the normalization:

P ({Xj (4D} AKX N}y | X (t))

% (Xj ® - Xﬂ('j)e) (NJ” - Mj; (Nj;) ™ ij) (Xj (t) - X;j)e)

1 S (Xj (t) — Xj(k)e) Nk (Xj (t) — Xj(k)e)

2
izk>j
1 (ke t (ke
-3 > (Xk t) — x® ) My Ny My (X‘ (t) — X )
izk>j
1 _ t
S (o0 et (500 5
i2k>j

_ (Xj () —X’j(,j)e) M

_ ; (Xj (t) — XJ('j)e> % (Xk (t—1)— X,gj)e)

that is, the probability of future values X; (t + k), j < ¢ presents a discount behavior. The uncertainty for
future values is increased by the relative absence of concern for future periods.

3.7 Effective action for the system
Having found the non normalized form for agent ¢ effective utility in (26):

U 000 = (50 K 0 (5,01 567) - (300 - X0°)

M;; (Xi (t—1) — Xi(i)e>

=

=3 (X0 = X) T (% (=)= X7) + X0 A (X (- 1)

we form the effective utility for the set of all agents by summing over i:

> Uess (X: (1))

At this point some precisions have to be added. In the previous expression, one could sum over the normalized
utilities defined by:

[ exp (U (X)) i () = 1 (31)

Normalizing the effective utilities was legitimate when computing U.rs (X; (t)). Actually to perform its
"random" optimization process each agent was attributing a probability to each other agent’s action, so
that the normalization was needed. But now, all computations done, Uess (X; (t)) describes the utility of a
"blind" agent, since all anticipations are included in the form of Uy (X; (¢)). These agents participate to a
system composed of N interconnected parts, and for this global system the different periods are connected.
This is similar, at the individual level, to our procedure attributing a single weight corresponding to the
intertemporal utility.

One can check that imposing (31) would correspond, on average, to let all agents optimize Ue s (X; (t))
independently. In other words, the normalization condition amounts to consider independent agents. How-
ever, once the effective utilities have been computed, the agents’ forward-lookingness, computational skills
and rationality have been fully taken into account and are included within the form of the effective utility.
From this point onward, agents cannot be considered as independent anymore, but must rather be considered
as integral and "blind" parts of a global system, whose elements are interconnected through the different
periods.
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In probability terms, it means that each agent utility at each period can’t be normalized independently
from the others, but only the probability defined by the all path. As such, only a joint probability has to be
defined, and the normalization is performed over all agents and the all set of periods. As a consequence, at
the utility level, we will consider the intertemporal effective utility for the system as

> Z Uess (X

where, in the previous expression, we use the non normalized individual utilities. The global probability
weight considered, will be, up to a global normalization:

exp (Z Z Uesy (Xi (ﬂ))

it describes he system as a whole, whose weight relates all parts of it and all periods as related. Of course,
summing over all agents except ¢ and all periods after ¢ would lead us to retrieve Ueys (X; (t)) (plus past
contribution that would disappear in a normalization) as needed.

Remark also that this effective utility can be modified by adding also interaction terms between the
agents, that were not taken into account in the derivation of effective utility for any of them. It represents a
system where each agent has adapted his behavior given it’s information, but this one about the all system
is incomplete, even for the most informed agents.

By summing over ¢ the expressions in (26) and reordering the sums over agents, one obtains the following
expression for the global weight a time ¢:

Uery ((Xi (1))

-3 (%) - x0) % (5 (= 1) = X9 + 32X (1) AD) (X, (£ - 1))

j<i J>1

Define the X¢ as the stationnary solution of the saddle point equation. They satisfy the following system

(5= 5 ) (R =)0 (a5 - (5 7))} (%5 - 3 (55 - 57) ) =0

that can be rewritten as:

(;N _ “) Xe + Z (A(Z) ZJ) Z ZJ X(j Z Z] X(z)e

J#i j>i 7<i
It can be solved as:
> My; o e My; o (ke
X6, | S e e
J>k J<k

with G the concatenated matrix defined by:

1 M;; iy _ My
Gij = <2N“ — \/B) 5ij + (1 - 5”) <A£J) o \/BJ>

Then define X (¢), the concatenation of the X; (t) and X® the concatenation of the X¢. Then, the total
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effective action rewrites:

Uess (X (1) = 3 (X (1)~ XN (X (1) - X°) (32)
(X () - X) MJBO (X (t—1) — X) + Ungy (X°)
1 . _ sy M+ 0O .
= - XN (X~ %) - (x ) - %9 G (x - - x)

with:
N = (Ni)
M = (M)
0y = AP -MPifj<i
0y = AV -MPifj>i

The second term coming from the general property of a quadratic form plus linear term:
q(X)=XAX+ XBX,
for X a constant vector. If X is the saddle point of g (X), one can rewrite:
g(X)=(X-X)A(X - X)+q(X)

The quadratic term Ucyy (X' 5) is constant and irrelevant when considering the dynamic over a given time
span 1. Its contibution to the effective utility is a constant TU.yy (X e) that can be discarded. However,
later we will look at a statistical set of processes with a variable time span T'. In that case this term will play
a role when comparing and averagit over these processes. Note ultimately that TU.s¢ ()_( e) can be negative,
which will be the most interesting case for us. It corresponds to a lowered effective utility, with respect to 0
as a benchmark case, consequence of internal tension between the different elements composing the system.

Having found the general form for the effective utility, we now describe several examples including different
patterns of strategic dominations.

3.8 Example: N non strategic agents

Consider the simplest example/case where N agents have no information nor strategic advantage. In this
"N non strategic agents case", which is actually equivalent to a Cournot oligopoly, the utility of each agent

- ZB( 1) AV X )+Z2X (t) A (X; (£ - 1))

J#

where the individual goals of any agent has been set to 0 for the sake of simplicity. The agents being non
strategic, other agents’ actions are perceived as mere external perturbations. In that situation, X; (s) for
s >t is seen as a variable independent from X; (t). As such the integrals over these variables does not affect
the part of the utility depending on X; (¢t) and, as explained in the first section:

Uep (Xi (1)) = =X (1) )+ 2X; (1) X;(t=1))
J#i

So that the global weight is:

(S in0) (£ o S

t i VE)
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As a consequence the probability for the system path is centered around the minimum of:

D[ XA )+ 32X, (8) AD (X (¢ - 1))

J#£i

and this minimum satisfies:
AVX (1) =D AD (X5 (t-1))
JF#i

for all £. This dynamic equation is the usual optimization of individual utilities. Our method thus reproduces
the classical optimization problem, including, through the probability distribution, a modelling of random
perturbations on the system. The reason is the following: the absence of any information about the others
leads the agents to behave independently from the others. Arguably, under no information, agents tend to
behave independently, inducing their actions to be randomly distributed around the individual optimums.

3.9 Example: N+1 agents. Domination of one on the others

This case is a generalization of the basic example of section one. It could be interpreted as a Stackelberg
oligopoly with one dominant agent. For the first, least strategic, type of agent, the procedure is the same as
in the previous example, and its effective utility will be its time ¢ utility:

Uerr (X5 (1) = —X1 () AV X1 (1) +2X; (8) AY) (X (t — 1)) +2X; (8) AY (X1 (¢ — 1))

we assume that A%) = A;;) =1, A,%) = o for all j and k, including j =1 or k = 1.
For the strategic agent, on the other hand, the effective action (26):

Uepr (X (1) = %(Xi(t)—Xf”e)Nii (%0 - %) = (x ) - X(”e>]\\/}[%(Xi(t—1)— x0°)
- X (50 - X7 7 (660 -X7) + X049 05 - 1)

is computed using the formula (27) given in the previous paragraph. The matrices M;;, M;;, N;; are computed
in Appendix 2 and listed above in (27).

We show in Appendix 5 that we obtain (we record the results for N > 1 and the case N = 1 is presented
in the same Appendix):

N
Niy = (1480 +fa QNV%F/

—B2 (a(NV + W) + (N - 1))*

a _ 2
(ﬂ (VN = 1)+ W+ (N - 2) - 5° Ly ) N?

X

((1+26) = 5W) ((1428) = B+ N (B (N = 1)+ W+ (V= 2) - 32 (B ) )

a 1)) 2
N ((1 +28) — BW + N (ﬁ (V(N=1)+ W+ (N -2) -5 éjgg;@lﬁf%}}v ))

((0+28) = ) (14+20) = 00 + 8 (B(V (V= 1)+ W4 (¥ - ) - 2 L0000 ) )

avBBN (1426 BW) 55 5o saan xraw

((0+20) = 6W) ((1428) = W 4 N (B (N = 1) W (V= 2) - 32 (B0 ) )

VB(N = 1) B (1428 — W) (e

(1+Ba?)+pa2 N AHY

My = —(Nn)

Mij = - (Nll) (17 s 1)

(1+Ba?)+a2 N ETEL

(1+28) - W) ((1 +28) - W +N ((v (N-1)+W+B(N -2)) - <a<NV+W>+ﬁ<N—1>>2>>
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with:
W L /432

and V satisfies:

(N =1)>+Na2(1+ ) .

Np
N-1
28 ((N—1)2+Na2(1+6)) +(@+B)N(N-1)a2B+ (N —3)N2B+ (4N —2) B+ N — 1)V
+
N -1
+((N—1)ﬂ+(1+,6’)a2,3)W2+,6(N—1) (N+2a2+a?8-2)W+ (N—-1)((N-1)a?8+1)
N-1
The full action for the system of agents is thus:
Uet (X5 (0) + Ueps (i (8)) = D2 (=X, (0 ADX; () +2X; (1) AT (X (¢ = 1) +2X; () A (X (- 1))
Jj<1
% (Xi (t) — XZ.(’”G) Nii (XZ- (t) — X}“e) - (Xi (t) — Xi“)e) % (XZ- (t—1)— Xi“)e)

-3 (% - x) Ajé (x5 -1 -x")

The average dynamics is the saddle path of the previous global effective utility and is thus given by the
dynamic evolution:

(0 ) (RS ) o (5653)

M, = ((Nll)o

with:
"My (Nu) 7t My >
0

0 0
My = ( a(l,., 1) (1)-1 )
where we denote by (1) the matrix filled with 1 in every row. We are mainly interested in the dynamical

pattern of the system and we will thus set )_(fi)e = )_(j@e = 0, so that the equilibrium is for X; (t) = X; (t) = 0.
The dynamical pattern is then determined by M and it’s eigenvalues, and Appendix 5 shows that:

M = (N11) ™" Mig (N11) ™ My
@ (1)-1
B —ay/BNm —(1,.,1)(N—-1)m
- a(l,.., 1) (1) —1
with:
NVAW)+B(N—
s
m =

(1+Ba2?)+a2 N XYW

(1+28) - W) <(1 +28) - W+ N <(V (N-1)+W+B8(N -2)) — <Q<NV+W>+B<N1>>2>>

The eigenvalues of M are:

1 1 AN (N —1)
—1,2(a+1):l:2\/a2—2(N—1)a+\/Ba

31



with:

(a«(NV4+W)+B(N—1))
P aVBN (28 - W +1) a2 NYVER | (14 5a?)

a(NV+W)+B(N—1))?

((0+20) = W) ((1420) = W 3 (V8 = )4 W+ 5V = 2) - G200 ) )
THE full study of the dynamical pattern as a function of the parameters being beyond the scope of this
paper, we will merely draw the main characteristics of the results. First, the fact that eigenvalues are
propotional to o means that interactions between dominated agents create instability in the system. Second,
when 3 is relatively small, W ~ 1 — 8 and (28 — W + 1) ~ 35. This implies that a grows with 3, at least
for relatively low values of this parameter. Interactions may thus become unstable when agents grow more
forwardlooking and attempt to drive the system toward their optimum. Finally, the larger is N, the more
unstable the system is, as shown by the term proportional to N (N — 1) in the square root, and the fact
that a can be proved to be of constant magnitude when NV increases. Moreover, for large N, the eigenvalues
become imaginary, so that the system presents an oscillatory pattern. The interpretation is that a large
number of dominated agents produces fluctuations further amplified by mutual interactions. Under such a
setting, no single dominating agent may stabilize the system.

3.10 Example: the three structure model.

This case considers GLW model involving three agents ranked by their relations of strategic advantage.
Each agent optimizes, given it’s own information set, a forward-looking intertemporal utility function of
the form:

(Vit) = > By EUi(t+m)

m>0

The forecasts by Agent i of future quantities is computed given its information set.
The utilities take the following dynamic form:

Us () = —%(n(t)—kl—w(t—l))g—an(t)sn(t—l) (33)
Un() = —gp(1-w=1) =) = Syt —1) = 0) — 53 (1) — 553 (1) — 253 ()
Uc(t) = —%(w(t)—wof—%&Lz(t—1)—vn(t—1)w(t)—/isf(t—1)(l—w(t)—ﬂ—nsw(t—l)(w(t)—f)

under the constraint: w+ f = 1.

Note that in each of the above utilities the agent own action variables appear with a time index ¢, as
expected for utility at time ¢, whereas other agents’ action variables appear with a time index ¢ — 1

Utilities are quadratic and normalized so that the terms containing the square control variables have
coefficients of f% or 0.

The reasons for these choices, as well as the interpretation of the variables is detailled in reference GLW.

We give a short acount now.

The utility of the body The body, being an automaton, has no specific goals, and its utility function
Ug merely describes its reaction to other agents’ actions'. Without any interaction with the unconscious U,
the body would, in first approximation, react linearly to the conscious C action, "feeding" :

—%(n(t)+17w(t—1))2

'n this setting, endowing the body with specific goals would have allowed it to manipulate the conscious, which was not
our purpose here.
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The unconscious influences the body by perturbating its signal

—Qansy

Whereas in the absence of the unconscious, the body’s optimum would be reached for

n=—f=0

This result being suboptimal for Agent U, he will tilt the equilibrium toward its own goal f.

Recall that the task performed by the conscious w is not physically demanding, and has no impact on
the body’s response n. Indeed, we do not model physical efforts per se, but rather seek to understand how
the unconscious can manipulate an existing equilibrium between the body and the conscious, i.e. the use of
body signals by the unconscious to reach its own goals. By convention « is positive, so that a positive strain
will respond to a positive feeding.

The utility of the conscious In the absence of both the unconscious and the body, the conscious’ utility
would be :
1

=5 (w— w0)2

so that in the absence of any constraint set on w, Agent C would optimally choose w = wq > 0.

Body needs affect Agent C' through

1
—§5n2 — vnw

so that the higher is the need, the more painful is the task.

In the absence of Agent U, Agent C sets w = 0 by adjusting the feeding to the anticipated need. The
need is in itself painful since:

1
—5(57’1,2

so we set
6>0

The above assumption is a direct consequence of dismissing any cost to the feeding f. Here we depart from
standard models where costs, or constraints, are imposed to an agent’s tasks. Without Agent U, Agent B and
f could be discarded from Agent C’s equilibrium. Once Agent U is included in the system, it indirectly
manipulates Agent C through Agent B by assigning a strategic role to f. However we impose a binding
constraint on the feeding by considering f and w as complementary activities within a given time span, and
set f+w = 1, as previously mentioned. The unconscious imposes its goals f and w on the conscious through
perturbation terms: ~
—rsp(f = ) = s (w — )

driving Agent C’s actions away from 0 and towards f and .

Some additional technical conditions on Ug will prove convenient. We will ensure that Ug is negative
definite and has an optimum by setting :
§—12>0

Furthermore, excessive working combined with unsatisfied needs should induce a loss in Agent C utility.
This is implemented by imposing:
v>0forn>0and w>0
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Furthermore, excessive working combined with unsatisfied needs should induce a loss in Agent C utility.
This is implemented by imposing;:
v>0forn>0andw>0

The utility of the unconscious Agents, conscious or unconscious, build their interpretation of a situation
- and thus its utility function - through an own, specific, grid of lecture. See ([4]) for further details.

Agent U and Agent C will therefore have two completely different interpretations of a single situation. And
while Agent C will consider f and w as optimal, Agent U will consider other levels of the conscious’ activity,
f, W as optimal.

Agent U’s goals with respect to Agent C’s activity are:

—%p(f - - %v(w — )2

To insure that Uy can have an optimum, we further impose p and « to be positive.

Since the three agents are sub-structures of one single individual, a strain inflicted by one agent ends up
being painful for all. The costs incurred are :

1
YR Y

The information setup follows the order of domination among agents. For the sake of clarity we do not
present here the information set up. It will be fully described in the resolution of the general model. Agent
B, the less informed of all agents, is only aware of the strains he’s affected by. Agent C is aware of it’s own
influence on Agent B, and of the strains Agent U puts on him. Agent U, the most informed of all agents,
knows the utilities function of both Agent C and Agent B.

The instantaneous utility U;(¢ +m) at time ¢ + m reproduces the model described in previous papers. We
assume that each action taken at time ¢ by any agent will only be perceived by the other agents at time
t+1.

3.10.1 Resolution

Following our general procedure in this case presents the same pattern as in the previous example. We
compute first the effective utility for the least informed agent, namely B, then for agent C and ultimately
for agent U. Then all these effective utilities are gathered to form the effective utility of the all system. All
computations are performed in Appendix 6, and they result in the following..The effective utility for the
system is:

Uess = (S ©- (8(3))eff) N (S "= (8(3)>eff> - <S ©- (8(3))eff) Mo ( Zg— B - E:((;)))eff )
+ (1= w? () + 20w () (t— 1)+ nsp (= 1) (1= w(t) = F) +ns0 (t = 1) (w(t) — F)
(@)’ —2nMwt—1)+2an®) (1 0 0)s(t—1)

Appendix 6 displays the computations leading to coefficients matrices Ny;, M;; and ¢ and constants (5(3))
(w®)
w

eff?

off The average dynamics for such system has the standard form

XHMX(t-1) (34)
and the matrix M has three nul eigenvalues, and the two others satisfy:

Num
Den

A =402 (d+ fr? — bdv?) x
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with:

Num = dafwo* + (d2a + fwda®B + dafB + fd + wa?’ﬂz) o?
+ (da®B — daPB? — d*a®B — fda?B + o®B* + fa?p)

Den = d((bd? ~ 60 ~d) o ~r* (3 o)
x (dafwo’ + (P + fwda®B +daf + fd+wa®5”) o?
+ (fd*0? — do®B® + da®B — fda’B + o* 5% + fa’ )

where o2 is the degree of uncertainty in agents behavior defined before when designing the effective utilities.

The interpretation is similar to [5][6] : Agent B reacts to Agent C’s feeding in a 1 to 1 ratio, and Agent
C’s will react to Agent B’s need with a ratio v, so that both agents’ actions will be multiplied by over a
two-period horizon. Agent U’s action paying only over a two to three-periods horizon, it is irrelevant when
B = 0, and prevents Agent U from taking it. The myopic behavior among agents leads to an oscillatory
dynamics. Each agent, reacting sequentially, adjusts its action to undo other agents’ previous actions. This
describes cyclical and apparently inconsistent or irrational behaviors in the dual agent. These oscillations
may diverge or fade away with time, depending on the value of v. When g is different from 0 but relatively
small, the system is still oscillatory. When 3 increases, the time concern will have an ambiguous effect on
its stability. Agent U would tend to stabilize the system through the indirect chanel, but the sensitivity of
agent C, may impair this possibility and the stability of the system depends on the relative strength of the
parameters.

However, as explained previously, our method providing an interpolation between full certainty and full
uncertainty, one can study how the parameter o2 influences the results. To do so, we compare the results for
the classical dynamics for various degree of uncertainty o2 in agents behaviors. We look at three examples,
mild uncertainty o2 = 1, full uncertainty, 02 — 0o, no uncertainty o2 — 0, which converges to the classical
case. The most interesting case for us will be 02 = 1, the two others one being bechmarks cases. The
parameters and eigenvalues of the model for these cases are listed in Appendix 6, we only keep here the main
results.

For 02 — 0, one finds for the system’s eigenvalues, to the second order in 3:

A=i\/2=ﬂ:\5<1—5;((s—u2)>+o(53)

and we recover the classical results as needed. This confirms the fact that in the case of no uncertainty, one
recover usual optimization results. For the interpretation of this result, see ([6]).
For 02 — oo, one obtains:
A=+V-v

and the interpretation is straightforward: this results is the same as for 02 = 0, 8 = 0. When the agents are
facing a full uncertainty concerning the future behaviors, it behaves with a myopic reaction: reacting only
to past signals, and not anticipating about the future.

As said before, the case for 02 = 1 is the most interesting for us, since in general it corresponds to what we
aim at modeling: agents anticipating other agents, but taking into account for uncertain intrinsic behaviors.
The computations to the second order in 3, simplify to yield the following values for the parameters:

A= £V LBV (@ 46— ) +0 (6)

In that case, with respect to the benchmark case 0? — 0, the amplitude of the oscillations increase. The
agents forecasts others, and take into account their behavior in their action. But the increased internal
uncertainties increase in turn the internal fluctuations between the agents. The more uncertain the future
actions, the more agents react to the information at their diposal.
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4 General form for the effective action

Previous sections show that each agent is described by an effective utility Uess (X; (¢),X; (t —1)) and a
probability exp (Uesy (X; (t),X; (t —1))). We have seen that Ugsr (X; (¢),X; (t —1)) can be computed
explicitly for a quadratic utility and is then itself quadratic. If agent’s utility Ut(z) is not quadratic, the
successive integrals defining Ue s (X; (t) , X; (t — 1)) do not simplify, but we propose an approximate formula
for the effective utility that we will justify from the model point of view.

Relaxing the condition of quadratic utility, we set the following intertemporal utility:

Ul = —ZB’“ VIO (X (1) + 0 (VD (6 (6 ) = 1)) + 2 (¢ 4+ R) AR (X (¢4 k) = 1))
+32x: () AD (X5 (1 1))

7>

Where V;(Z) (X; (t)) and Vj(l) (X; (t — 1)) are agents ¢ and j arbitrary utilities. We have kept quadratic
interaction terms (or linear response) between agents. We assume that each agent respond linearly to the
external perturbations.

It is useful to rewrite Ut(z) with the variables Y; (¢) introduced in the previous section, adding the possibility

of an inertia term 57(:7:):

, (i) —9D
vl = mem(f“g g)n(t+k)+m(t+k—1)< Cii )n(t+k—1) (35)

(4)
k>0 0 5‘4{]]}

-
0 piaf)
+Yi(t+k)<ﬂéA('? ()J Yi(t+k—-1)

s e (5422, 5o (5220
= R N AP =

Using the procedure given in the first section, we find recursively the effective utility Ues; (X; (¢)). It is
computed trough the integrals in (9):

exp (Ues s (Xi (1)) = / exp(Uf“) I IJew ZM dX; (s)

g
rk(j)<rk(i) szt szt

and depends on the effective utility Uy (X; (s)) where rk (j) < rk(i). We prove in appendix 6.b that
Uesf (X (s)) has the form:

Ui 0) = i (g 8)%)—2%)(%“ W) Y- 0V m o) 6o
+3 02X, () AW (X (¢ - 1))
k>j

where Ve(}} (X (t)) is some function of X (¢) that depends on the potentials V( 9 (X; () and V( 9 (X; t—-1)).

This is very sunllar to the quadratic case, where an additional potential has been added. The proof is similar
to the one given in Appendix 2.
Gathering the terms in the exponentials, the whole system is modelled by the probability weight:

exp Z D Ueps (X (s)) (37)

ey (0 (S 5 ) no-me (Y e oo
' 2055 2X5 (1) A§ (X (t—1))
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as needed to show the recursive form of (36). The fact that the effective action is very similar to the one
obtained for the quadratic case, allows to find directly the effective action fo the system as a whole (without
normalization). It is obtained by adding to the quadratic action the corrections due to the effective potentials:

i , L M+0

(X (t=1) = X)+Vess (X (1) (38)

=

Vers (X () = Y. VY (X5 (1)

The inclusion of an intertemporal constraint will be modeled in ad hoc way by adding a term

Z / X ( t) dsdt

in the effective utility, for a final result:

1. i
Uesp (X5 (1) = ; _§Xi (t) M;; X; (t) — )+ Z/X t) dsdt
4.1 Extensions: measure of uncertainty and optimal control

Our formalism allows to recover, in the limit of no "internal uncertainty" for the agents, the usual opti-
mization dynamics of system. But our formalism may encompass other kinds of models : actually, models
including an exogenous dynamics for a state variable which is accessible only through an indicator variable
would fit our set up provided that we extend our basic model of interaction between agents. This extension
will include a particular type of uncertainty of information for every agent about other structures which is
an intermediate possiblity between full/no information.

4.1.1 Exogenous dynamics, indicator variables and Kalman filters

Consider a dynamic system for an arbitrary variable X; (¢) (the "state of the world"):
X;j(t)=AX;(t—=1)+BX; (t —1) +¢;(t) (39)

with gaussian shocks ¢; (¢) of variance covariance matrix X. The vector X; (t) is the control variable for an
agent "¢" that influences X; (t) and is in turn influenced by X (t). This type of model appears for example
in neuroscience motor control theory. Agent ¢ has an - instantenous - objective function

X, () AYX () + Xt —1) AV X, (t—1)

similar to the one studied in Appendix 4. However the difference here is that agent i does not measure
directly X; (t — 1) at time ¢, but only an indicator function Z; (t — 1) related to X (t) through:

Zj (t) = HX; (t) +w; (t)

where w; (t) is gaussian of variance covariance matrix €.

This model fits in our context providing few modifications. First, the state of the world X (¢) can be
considered as describing a single non strategic agent - or equivalently as an aggregate of such agents - and
as such have no forward looking plan with respect to "i". The statistic weight associated with (39) is:

exp (= (X; (1) = AX; (£ = 1) = BX; (1= 1)) S (X, (1) = AX; (1= ) = BX; (t 1)) (40)

Actualy, (X, (t) — AX, (t) — BX, (t)) is gaussian with variance covariance matrix ¥. The probability asso-
ciated to X (t) is thus proportionnal to (40).
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This set up is thus encompassed in the two agents model developed in Appendix 4. Since the weight (40)
represents a probability at time ¢ , the method used to derive (26) can be applied here, and the contributions
depending only on ¢ — 1 in (40) can be discarded. As a consequence, (40) is equivalent to:

exp (= (2 () Z7 () + 2 (0) (5714 X ¢ - D2 0) (57B) Xt -1)  (41)

where (Z_IA)S and (E_lB)S are the symetrization of ¥~'A and ¥~ 'B.
Since agent j is not strategic, its effective utility (41) can be rewritten as:

(X5 ()" ADX; () +2(X; (0)" e X5 (¢ — 1) +2(X; (1) AV X (£ 1)

Ji
with:
_ S
g =
A = (5B

The effective action for agent ¢ can thus be directly taken from Appendix 4, except that X, (¢t — 1) being
unknown, it will be replaced by X; (¢t — 1|t — 1), agent ¢ forecast of X, (¢ — 1) given all its information at
the beginning of period ¢, i.e. Z; (t —1) and X, (¢ — 1).

S S
o1t (6 0) = = (06 @), E X - 1) - ((Xi () 5% (-1t 1)) 0 (V) X2 1)
(12)

with:

M; = —(Nyre! (A(G(Vl)t) (VlAg))t>_

where the matrices FE, F', G are defined as a function of

-1

()
j ( {ka}a>k)e i , ,
E= | VBAD | | VB —— A0 e, ({ﬁAgg +(47),,, ,BZQ} G+ \/BAg.;)) ~ BiG

( () )
; {kJ}]/ e
\/EA%) \/E 9 — e A?k]}z>k>J

j)
€ k}k\
. {BA“) + (A(])) eff }H * \[ ( j)eff A%Ja)k}z>k>j — Bl
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( ?J)k}MJ)eff () B

_ ()
G=H 2 P Ajkyisk>j Aji (45)
and H satisfies a quadratic equation. Defining;:
~ (Gnes) B
JkkS
_ eff  40) (4)
H/ =H 9 A{jk}z>k>] + \/B (AJJ )eff

the relation defining H' and then H is:

() -
o <€{kj}j2k>€ff ) () (7 () A
T A es {5Ajj + (49 )eff ,Bzz} +VB <H ~ VB (48 )(,ff)

-1

( ) )
{Jk}]>k eff A(J
9 {jk}i>k>j

_ /3<A<a>) ! _\[(\[AnA )—1>’1 (46)

The matrix V; is defined such that dim (V;) = dim (A( ) =m x (m+k) (m and k are given by the
problem), and V; is the concatenation in column of a nul m x k matrix and m x m identity. The matrix

(V,gll), O) is the concatenation in column of V,,(Tl) which is m x k£ matrix with the m x m nul matrix. The

matrix V;$" is the concatenation in line of a k x k identity and a (m — k) x k nul matrix if m > k. Otherwise

it is the concatenation in column of a m x m identity and a m x (k —m) nul matrix if m < k.
We also define:

(con) = x7 (WAz(j))t,G:X*l (A,Eji))t
. \@Ag, f{ 62(])}
A = {5/1” (A(J) 322}

5((4)) (42) (<)

By

where the matrix X solves:

((fx +5(a9) 1f> A§§’AE§)+1>
(D) ot mah)om) () ot

(5(A<J>) ' Bx- )

The solution is unique, since it is imposed to have a series expansion in § that fits with the § = 0 case.
With matrices N;; Mi‘(’; and M;? at hand, we find the usual reaction function for agent i by assuming
full certainty about agent ¢’s behavior. Under the assumption of the variance of its effective action being
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nul, agent’s ¢ action is given by it’s quadratic action minimum, and its response to agent j is given by the
optimization of (42)

Xi(t) = ( 7 X (t 1)>+< 75 X;(t—1]t 1)> (47)
= EX;(t-1D)+7TX;(t—-1]t—1)
supplemented by:
X;(t)=AX; (t—1)+BX; (t—1)+¢; (?) (48)
Zj(t) = HX; (t) +w; (t) (49)

with w; (t) an unknown error of (known) variance matrix €.

These three equations, respectively for the state variable X (¢), the indicator variable Z; (t) and the
reaction function X; (¢) for agent ¢, describe the system in interaction.

We also assume, as is usually done in this type of model, that expectations for X (¢) are updated through
a linear projection ([9] 13.12.13):

Xp (14 =X; (]t =)+ K (Z;(8) = Z; (| t = 1)) (50)
with:
K = E((X0) =X @l t=10)(Z 0~ Z 1 t-10)) < {B((Z 0 -2 t1t-0)Z ) - Z¢|t-1)")}
— Py H(H'Ppy_H+9Q)

and Py,_; is defined as:
Py = B ((X;(0) = X5 (611 = 1) (X5 (0) = X; ¢ £~ 1))')

and where (49) has been used.
Given (49), equation (50) is also equivalent to:

X;t|t)=X;(t|t—1)+KH(X;(t)—X;(t|t—1)) + Kw;(t) (51)
To solve the dynamics of system, we proceed by finding the Kalman matrix K and the form of the expecta-

tions:
To find P,;—; and K, we follow [9] and first define an other squared expectation denoted P, given by:

Py = B (6 () = X, (1) (X, (1) = X; (¢ £))')
Using eq. 4.5.31 and 13.12.16 in [9)]
Py =B (X5 (1) = X5 (£ | 0) (X (1) = X; (¢ 1))
= B0 =X (1= D) (X @) - X; (|t -1)")
—B((X; () = X; (1t = 1) (Z; (1) = Z (t| £ = 1))
< (B((Z () - 2@ t=1) (2 () - Z; k|t =1)"))

<B ((2; (1) = Z; (¢t = 1) (X; () = X; (| £ = 1))

)
)

or, using (49):
—1
Py, =Py — Py H (H'Pyy 1 H+ Q) H'Pyy4 (52)
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To find the terms P, and Py;_1, we first use (48)
and introduce the dynamic equation (47), which leads to:
Xi(t+1)=AX; )+ BEX, ¢t —1)+TX,;(t—-1]t—1))+¢e;(t+1)

and then, one obtains an expression for P, }; as a function of P; and an expression for P, }; as a function
Of Pt‘t:

Prap = B((X(E+1D) =X ¢+1]0) (0 (¢+1) - X, (¢ +1]1))
= AB((X; (1) = X; (1) (X5 (8) = X; (] )') A“+ 5
= AP A'+3X
which leads, using (52), to the dynamic equation for P,y
Py = A (Pt‘H — Pyy_y H (H' Py H+ Q)" HfPﬂt,l) A4 D
Given our system we look for a stationary solution that is P, 1, = P which satisfies:
P=A (Pﬂ,g_1 — Pyy_y H (H' Py H+ Q) Htpﬂt_l) Al 4+ ¥
The Kalman Matrix is then given by:
K =PH(H'PH+Q)™"
Having found K, the system reduces to:
X; (1) EX;(t-1)+TX;(t—-1]t—-1)
) = AX;(t—1)+BX;(t—1)+¢;(t)
Zj(t) = HX;(t)+w;(t)
) = Xi(t[t-1D)+K(Z®)—-2;t|t-1))

Xj(t]t=1)+ KH(X;(t) = X; (¢t —1))+ Kuw; (t)

The variable X (¢ | ¢ — 1) is found by taking the expectation by agent ¢ at time ¢ — 1 of equation (48):
Xi(t|t—-1)=AX;(t—1|t—1)+ BX;(t—1)

We are thus left with a system with three dynamic variables:

X;(t) = EX;(t—1)+TX;(t—1|t—1)
Xj(t) = AXj(t—l)—‘rBXi(t—].)—f'Ej(t
X;j(t|t) = A-—KH)AX;(t—1|t—1)+ (1 —KH)BX;(t—1)+ KHX; (t) + Kw; (t)

= (1-KH)AX;(t—1|t—1)+ KHAX; (t— 1)+ BX; (t — 1) + Kw, (t) + KHe, (t)

of matricial form:

X () = 0 T Xi(t—-1) 0
Xj (t) = B A 0 Xj (t* 1) + €j (t)
X)) B KHA (1-KH)A X;t—-1]t-1) Kuw;j(t)+ KHej (t)
whose solution for dynamic starting at ¢ = 0 is:
X; (t) i (20 T e 0
X0 |=3 (B 4 0 i (5)
X, (|t s=0 \ B KHA (1-KH)A Kuw;j(s)+ KHej (s)
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4.1.2 Uncertainty in observations and agents interactions

We have used our formalism to model the interaction between an uncertain exogenous medium and an
optimizing agent. The reverse point of view is straightforward to develop, in order to introduce some
uncertainty of measurement in our formalism.

For the general form of effective utility (53) in the quadratic case, introducing uncertainty in the infor-
mation agent ¢ receives from other agents j amounts to replacing past actions X; (t — 1) by X; (t —1 |t —1).
We thus obtain

v = v (g o ) ne-me (g )v-e-) e
+32x; (t) Agzjxk(t—u( )‘)
k>1

where Y (t —1|(@t- 1)1) denotes agent ¢ forecast of Yj (t — 1) at t—1. The statistical weight exp (Uers (X; (t)))

associated to agent X; (¢) implies that the reaction function of agent i is given by:

X (8) = (Nai) ™ M X (6= 1)+ 30 (Ni) ™ Mg X (6= 11 (= 1)') + D ADX (¢ =11 (= 1)) +e: 1)
7<i k>i
(54)
with &; (¢) of variance (Ny;) ™'
The forecasts X (t -1 (- 1)1) and Xj (t —1](t- 1)Z> are obtained as in the previous paragraph
through indicator variables and Kalman matrices. We also assume indicator variables for X (¢t — 1) and
Xk (t — 1)2

Zj(t) = H;X;(t)+w;(t) (55)
Z (t) = H. X (t) —+ wg (t)

where w; (t) and wy, (¢) have variances Q; and Qj respectively. For the sake of simplicity we will assume
all agents have common indicator variables. However some specialized indicators to some of agents could be
introduced. To be consistent with our previous assumptions, we assume that agent 7 has no information
about X}, (t) apart from Z, (¢), and that:

Xp (=11 (= 1)) = Zi (8) = HyXo (1) + i () (56)

a random variable of variance: .
HQkHt —+ (Nkk)_l

Up to some details, the forecasting procedure is thus the same. Agent ¢ faces an exogenous dynamic given
agents j, j < i and k is perceived as a random shock. For i the dynamic of the "state of world" is then:

XD (8) = (N;) " M. )Y (V) My X (t— 1] (t—1) ) Y A9x, (t— 1 (t— 1) )+ej (t)
I<j izl>g

(57)

Given our initial (first section) assumptions, the actions of agents I > 4, being unknown to 4, are discarded.

The vector X J@ (t) is the dynamic for j anticipted by ¢ which is different from X (¢), given the terms for
[ > i that have been discarded)). Then:

x{ (t | (t = 1)i) = (Ny) " My X; (t— (t—1) ) D (N T M X (t_ Ll =1y )

I<i

+ 3 ADX () (t—l | (t— 1)j)

=15
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Note that agent ¢ having more information than agent j we have used that X (t 1= (t- 1)Z> =

X (t —1|@¢- 1)j> in the previous expression.
As before, the actualization of forecast is given by (we remove temporarily the upperscript (i) in the
forecast):
Xj(t|t)=X; @l t=1)+K(Z;(t)=Z;(t]t-1)) (58)
with:

K = B((X0-X;(t[t-10)(Z0) -2 t-1)")

A (2,0~ 201 -0 0 -2 1-D))}
Py Hy (H{ Py Hy + Q)

and Py;_; is defined as:

Py = B (X, (0) = X (¢ [ 1= 1) (X, ()~ X (¢ [ £~ 1))
and where (55) has been used. Given (55), equation (58) is also equivalent to:
Xj(#]1) =X (|t =1)+ KH; (X (8) = X; (£ [t = 1)) + Kw; (1) (59)

Following the same procedure as in the previous paragraph, one finds the Kalman matrix K, by defining P,
which is given by:

Py = B (X (0) = X (¢10) (X; (1) = X; (¢ 1))")

that satisfies

-1
Pyt = Pyi—1 — Pye—1H; (Hjt'Pt\tlej +Q) HJt‘Pt|t71 (60)
Now, we use the dynamics equations (57) and (54) to find Py, and Py;_. Starting with (57)
X)) = (N My (= 1)+ 30 (Ngy) M X (1= 1] e 1)) (61)
I<j
0 AP (-1~ 1>J‘) +e5(0)
i>1>j

and then, since
S (V) T M x (t— 1) (t—1) ) + 3 ADx ( 1) (t— 1)j)
1<j izl>j

is known to agent ¢ at time ¢ — 1 (agent ¢ has more information than agent j), then

S X (-1 =)+ 3D ARXD (-1l - 17) | - 1)

1<j i>1>7

- S (V) MIX<“(7:_1| (t—1) )—i-ZA(”X()( \(t—l)j)

I<j i>1>j

one thus obtain an expression for P, as a function of P:

Py = E <(XJ() (t+1) = XD (t+1] t)) (Xj(i) (t+1) - XD (t+1] t))t>
= (07 aa) B (3 0 - X0 10) (30 0 - X 1)) ()7 a5) + 0"
= ((ij)fl ij) P, ((ijf1 ij) + (N~
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Leads, using (60), to the dynamic equation for P;14); - We reintroduce now an index j to recall that the
probabitity P ), is computed for X; and an index i to stand for the fact that the expectations are computed
by agent i:

, -1 i, i,j -1 ¢ -1
Pt-‘gl\t ((ij) ij) <Pt|tj—1 _Pt|tj—1H (HJtPt|t 1 Hj +Q) H;Pﬂt 1) ((ij) ij) + (Njj)

Given our system, we look for a stationary solution, P, ; = P, which satisfies:

P = ((ij)fl ij) (Pw — PV H; (HjP" H; +Q)71H§Pi’j> ((ij)fl ij)t +(Ng) ™

The Kalman Matrix is given by:
K9 = PO, (P + )
which produces the forecast
X (1w = P (-0 KV (250 - 2 (L - 1))
= x (t | (¢ — 1)1') + K" H (Xj (t) - X" <t | (t — 1)i>) + K5 Hyw; (t)
which, using (61) and (56), is equal to:
xP (@) = xP(te-0) K9 (20 -2 (tHe-1)1))
= X (e =1+ KYH; (N My (X0 =) = X (1= 11 (- 1)7))
+K Y Hj (wj (8) + i (1))
= (N My xY (t —1|(- 1)i> +Y (V)T My x\” (t —1|(t- 1)j)

I<j
+ 3 APXx (tfl | (t— 1)j)
i>1>5
K H (Njg) ™ My; (X0 (0= 1) = X (£= 1] (¢ = 1))

+KHj (w; (t) + & ()
= K'YH;(Nj;) ™ My X0 (6= 1) + (1= K™ Hy) (Nj;) ™ M, X0 (t -1 (- Ui)
+ 50 () T My x (t— 1] (t— 1Y ) + 3 AW (EHX (8- 1) Fwn(t- 1))
I<j izl>j

+KYHj (w; () + & (1))

and, supplemented by the three equations:

Xi() = (Na) ' MuX, (t—1)+ > (V) My XD (t 1 (- 1)1') (62)
+ ZAg.-QXk (t 1 i<1)i) i)
- (J\f>)1 My Xi (t—1)+ > (Vi)™ My x Y (t 1 (- 1)i)
+ 3 AW (H X (2~ 1)Jjwk (t—1)) +ei (t)

k>1i
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(Nij) My X7 (8- 1) + > (V)™ My x[” (t -1[(- 1)j)
1<j

+ > AP (t —1](t— 1)j) +e5(t)
i>1>j
D+ >0 (Ng) Mux ) (e-1] (- 1))
I<j

+ 3 AP EHX (- 1) +wi (- 1) +e; ()

iz1>]

= (N) MJJX(U

X2 (t | (t)j) = X2 (t | (t— 1)j) + K (Zl t) - 2 (t | (t— 1)1))

= KPH (N T MaX (= 1)+ (1= K (V) XD (=1 - 1)7)
+3 (V) My X[ (t -1t 1)j)

p<l

+ > AP H

jzp>l

X, (t—1)+w, (t—1)) + K7 H (w; () + ¢ (1))

leads to the dynamic system:

X (t)
(@)
(i({i} ()
X (1)
(i
Xy (t1@Y)
(Nyi) ™" My (Nyi) ™ M;; 0
; ( ) JJa 1
AV H, W g 0 Nea ) Mo
j { {A{]l} }l {(v) ™ My, )
- ; H; (Nj;) M, 1 1— K% H;) (N;;)"" Mj; _
A5, { {Am Al ( 1) N Mg, {VGn) ™ My, }
'ty (M) M,
K ’lH (Nl]) M]l, {(N”)_l Mlp}
0 A(J)H } 0 i ;n<l
PP s ps (1— K7'H)) (Nu)™" My
X; (t —-1) S o A@ (HiXp (t— 1) + wp (t — 1))
" ()X{J}(t_l) N Zz>l>]A3w1(t_1)+5j(t)
X0y (-1l e-1y) S A 1t =)+ KU, o )2, 0)
X0 (t 1 (t—1) ) S eyt AV, (£ = 1) + KHH, (wr () + &5 (1)

5 Transition functions (Green functions)

5.1 General form for the transition function

As explained previously, the mean path dynamics, i.e. the mean time evolution of the interacting agents, is
obtained as the saddle path solution of the effective action of the interacting system. This saddle path is
relatively easy to compute since all anticipations and forwardlookingness have been absorbed in the effective
action. However we have also seen that (11) the path integral of the effective action allows to model the
stochastic nature of the interacting system. It provides more precise results about the agents actions’
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fluctuations and their transition probability between two states, thus allowing to represent the stochastic
paths associated to the system. Moreover, Because this approach will also prove important when we shift
to the field representation for a large number of agents, this section will detail the form of the transition
functions, and their interpretation.

To do so, let us start with the system as a whole. As in (11) we define:

X ()= (Xi (1)
the concatenated vector of all the X; (¢) with ¢ running on the set of all agents. Moreover, Ue ¢ ((XZ ), (XZ (t)))
is the total effective action found in the first section (see (32)):

exp Uess (X (1)) = eXP{— (; (X (1) = X°) N (X (8) = X°) = (X () = X°) M (X (t = 1) _Xe)>}

where we redefined O\'/"BM as M. The quantity:

X (t+k)=(X? (t+k))

P((X°(t+ k) | (X0 (0)) :/

Xi(t):(xzo)

e ([vs (x0.X0))Poxe)

is the transition probability from a state (XO) of the global system at time ¢, to a state (XO) at time t 4 k.
To understand better this quantity, it is useful to use a continuous time representation. To do so, we
first rewrite the quadratic effective utility in a convenient manner. In the formula (32):

Ueps (X (1) = - (; (X (1) = X)N (X () - X°) = (X (t) — X°) % (X (t—1) —)_(e))

Decompose M = M® + M# where M*® and M# are symetric and antisymetric respectively. Then, since
Uess (X (t)) will be summed over ¢, rewrite the first contribution to ), Ueys (X (t)):

- 2
Z% () — X¢) N (X () — X°)
- X (F X0 XN (X0~ X+ X)X N (x4 - X))
_ Z( PR xe ) (FEE R X ) (K ) - X )N (041 - X 0)

On the other hand, the second contribution in Ues; (X (t)) can be transformed by expressing the symetric

part of (X (t) — X¢) % (X(t—1)—X°) as

(X () = X) Tz (X (6= 1) - X°)
S
- (HORIEED ) 2 (RO ) L -x ()

Ultimately, the remaining term in U (X (t), X (t))

S
W(X(Hl)—X(t))



can be rewritten:

e MA v e
(X ()~ X) Tz (Xt 1) X
1 e MA v e 1 __eMiA _ _ e
- 5<X<> x) A0 (K (-1 - X + 5 (X (0 - %) 22 (x - 1) - X)
_ - X° thXeMAthX'@lXt XeMAthXe X (t)— X°
XX (XD =X A (X1 - X+ (X0 - X) T (X - ) - X+ (X () - X))
(X +X(t-1) o\ M4 B - e MAXWOHX(E-1) o,
= < 5 X)\/B(X(t 1) = X°) + (X (¢) — X°) B( 5 X)
since M# is antisymetric. And thus,
(X(t)—Xe)Aj;(X(t—l)—X"‘)
B B WM XX o,
= (X{t)—X{(t 1))\/B< 5 X)

Gathering these terms allow to write ultimately:
XH+X{t+1) o, MS\ (X () +X(t+1) o,
ZUeff(X(t))=( (t) + X{ )—X><N_>< (t) + X ( )_X>
t

2 VB 2
1 M
+Z(X(t+1)—X(t)) <N+\/B> (X({t+1)—X (1)

A - _
_(X(t)—X(t—l))]‘\‘/[B<X(t)+;((t 1) —X€>

We can then switch to a continuous time formulation of the effective action by using the mid point approxi-

mation between X (t) and X (¢ + 1), that is replacing w
and introducing

S

with X (¢) (and ¢ is a continuous variable)

Xt)=X@{t)-X(t-1)
so that Y, Ueys (X (t)) becomes:

o B M75 ooy, Ly MY ey M
/[(X(t)—X ) (N \/B) (X(t)-X )—|—4X(t) <N+ \/B)X(t)—k(X(t) X°) BX(t) dt
If we add a potential Vers (X (t)) with:
Vers ( Z V(X

then (we include the factor (\/B)fl in the definition of M and M4):

U x) = [ (FRO@M)ZO+ (X0 -X) (VM) (X0 -X) (o)

(X (1) = X MAX () + Vegs (X () )
and the path integral defining the transition probability between two states is:
P(X't+s|X%¢) (65)
X (t4s)=Xx" 1. ] B ~
= /exp </ Z <4X () (N+M7) X (t)+ (X (t) - X°) (N - M%) (X () — X°)

X (t)=X0

(X (1) = X) MAX () + Vers (X (1)) ) D (X (1)
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External perturbations - shocks - may be added by the mean of a linear term X (t) J (t) often refered to
as "the source terme". It describes the linear response of the system to a general and arbitrary external
perturbation. The form of the transition function, or Green function, in (65) allows to compute, analyticaly
for a quadratic effective action, or as a series expansion (see below) when V.s; (X (t)) is introduced, the
stochastic pattern of a system deviating from it’s static equilibrium X¢.

5.2 Transition function for the quadratic case
Putting aside the perturbations V (X, (t)) + X (¢) J (), but keeping the quadratic potential term which is
relevant for usual dynamic systems, the Green function associated to
1. ) _ _ ) _
d e e e
/ AU (X (1) = X (8) (N + M) X (5)+(X (8) = X°) (N = MT) (X (t) = X)+X (¢) M4 (X (t) — X°)

(66)
is obtained in a way similar to the discrete case arising in the individual agent problem (basic example of the
first section or Appendix 2 ). Since the effective utility (66) is quadratic, the computation of (65) reduces to
a saddle point computation. We thus need to compute (66) for a classical solution X¢ of the Euler Lagrange
equation :

% (N + M) X (t) + ((M(A))t - M<A>> X (t) = 2(N = MY) (X (t) — (X)) ~0 (67)
That will be inserted in the action:
- (ix () (N + M%) X (1) + (X (t) — X°) (N = MF) (X (t) — X) + X () M* (X (t) - Xe)>

with initial conditions:
X(t)=X"and X (t+s) = X"

and the exponential of the result, after a suitable normalization, will be P (Xl, t+s| X9, t).

/0 AT (X (1))

[ (3RO 0+ 219 X 0+ 0 (0 - X% (V=015 (X (0 X + X () M (X (0 - X))

t

— EX (t) (N + M) X°(t)
0

+ /t (ixc (t) (N + M%) X (t) — (X () — X¢) MAX(t) — (X°(t) — X©) (N — M%) (X°(t) - Xe)> dt
Given, the equation of motion for X ¢ (t), the second term becomes
/t (ixc () (N + M%) X (t) — (X (t) — X¢) MAX (t) — (X°(t) — X°) (N — M%) (X°(t) — )‘(6)) dt
(56005 (= () = ) e+ 20 = %) (300 - (X))
— (X (1) = X°) MAX® (1) = (X° () = X°) (N = M) (X° (1) - X°) ) at

-3 [ o= X () ar) ) a

0
= 0

since M(4) is antisymetric, and we are led to:
uad c 1 c " c ¢
/ dtUZ ! (X° (1) = = [(X (t) — X°) (N + MS) X ()}
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To find this last expression one needs to compute X ¢ (t). We rewrite (67) as:

X (t)+AX (t)+ B (X°(t) - X°) =0

with:
A = <;(N+MS)>1((MA)t—MA):—4((N+MS))1MA (68)
B = —<;(N+MS)>_1(N—MS)

and set (X°(t) — X¢) =exp (—4!) X' (t) so that X' () satisfies:

(’;1) X’(t)—i—X’(t)—%2X’(t)+BX’(t) ~ 0
X' (t) + (B—’f) X'(t) = 0

Diagonalizing ATQ — B allows to find 4/ ATQ — B and

(X°(s) — X¢) =exp (—f) (exp (\/ﬁ% a + exp (‘\/ﬂﬁ ﬁ)

Now we can use the initial conditions:

X°0) = =z
Xe(t) =

to find the coefficients a and :
T — (X') = a+p

1~ (%) = o (<) (o (5 - ) o (/5 - ) )

and ultimately, the classical solution is:
sinh< T—B(t—s))

sinh (1 / ATZ — Bt)
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Therefore the statistical weight we are looking for is:

/0 AU (X (1))
1

which can be written:

/0 AU (X (1))

@

D [

L)

-3 [(X (t) — (X)) (N + MS) X (t)r

— Bt
. A2
sinh T
A2
T — B

The normalization can be now introduced, as usually done for propagation of quadratic potential:

Pyt+s|at)=

Where M is the matrix defined by:

quad c
[fawcx

exp ( / dt
det

t

M

z— (X

y— (X

Uz (e 1))

x— (X

y— (X

This is a direct expression of the propagation kernel for a time span of t. We will give below an example of
computation for the transition function P (y,t + s | x,t) in the two agents model previously studied. However
before doing so, and to ease the interpretation, it will be useful to separate this expression in two types of

contribution.



5.3 Interpretation: harmonic oscillations around the equilibrium

In the previous expressions for fo atUZy 4 (X< (t)), a change of variable:

c ! (N+MS) c v
(X ) —U f(x (s)—X) (70)
where U diagonalizes 4 \/ — B = UAU™! leads to replace the relevant quantities in
Jo UL (X< (1)) by:
(VM
2
—1 —
s s
‘L _2< (N+M )) MA< (N +M ))
2 2
—1 —
S s
B - _< <N+M>> (N_MS)< <N+M>>
2 2
2
AT—B — A

exp(—?) — Ulexp<—ét>U

so that the effective quadratic action becomes:

[amgr oo = (- %) [ ) (- %) ™
3 (=) [ | (- %) + [0 %) (g ) (- )]
3 [0 %) (oo (-4) 1) g * s (o (+5) 1)) (- %)

The last term in the right hand side represents the interaction between structures induced by the interaction
term A. It can be neglected if M4, which measures the asymetry between the various agents, is relatively
small with respect to the other parameters of the system. If we do so, the three first terms on the right
hand side describe a sum of harmonic oscillators whose frequencies are given by the eigenvalues of A. These
oscillator are not the initial structures, but rather some mixed structures involving all the initial agents.
They represent some independent and stable patterns arising from the interactions of the system.

This formulation of the effective utility allows in turn to model the system in terms of deep - i.e.
fundamental - independent structures whose internal frquencies are given by the A; (). The combination of
their fluctuations, plus some interaction leads to the apparent behavior, as an interaction between cycles of
different time scales.

o1



5.4 Example of transition function

We will illustrate the computation of the transition functions using the basic example from the first section.
The exponential of the effective utility for the two agents’ system is then:

exp (— Z (Uesy (w4) + Ueyy (.%)))

o 1
(@ — ayr—1) 5 % (ze — ayr—1) — Z (2%2 - yt$t1>>

t

(>
= oxp ( (5o —azi1) = (;y? - yt%tl))
(

exp

t t

Z 7xt+ yt Oéxtytl—ytfﬂt1>>

t

= exp

where a was defined in (20

1
:wmm(”Nﬂ”“zﬁ*ﬂ?—WWW—M—WM) (N6+52+2a5—Na25+1)>

The effective utility has the form of (32) with:

o - (2)or=(h 2 )w-(2 )

s 0 1ta A 0 a—1
s = (0 ) w0, (72)
= 0 -4 0
The diagonalized transition function (71)
1 = A -
dthuad X (¢t - _ o X/ o X/
| Wer (X°0) 2 (y )[tanh(At)} (y )

5 [ ) [0 ) () (- %)

w30 =0) (o0 (-3) 1) sy * s (o (-7) -1)) (- %)

can now be computed. The matrices A and B are given by (68) and (72) :

g _1 A 1 1+« -1 0 a—1
A = A((N+M7) MA=-4( 1. a2a _a-1 (2)
2 2
_4 (a+1)(a—1) . 8aa(a—1)
_ —2a+4aa—a?—1 72a+4aoz a?—-1
- 8(a—1) 4(a+1)(a—1)
—2a+4aa—a2—1 —2a+4aa—a2—1
—1 —1
1 1 1+a 1 _1+ta
B = —(Z(N4+M? N — M%) = -2 2 2
2( ) ( ) Lo aa —e aa
2(2a+4aa+a2+1) 8ac(a+1)
—_ 2a—4aa+a?+1 T 2a—4daa+taz+1
8((x+1) 2(2a+4aa+a2+1)
T 2a—4daa+aZ+1 2a—4aa+a2+1
2 6atdaa—a’—1 _ a+1
Af*B 2—2a+4aa a2—1 8aa —2a+4aa—a2—1
4 8 a+1 2 6a+4ac— a’—1
—2a+4aa—a2—1 —2a+4aa—a?—1
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The change of variables (70) is:

(x7 () - %) = 0y LD (e ) - )
with:
v = (i v )
aa aa
(N + M9) 1 %\/—§X+§aa+%% —L(a+1) YoaXhaeety
S W Y e S URRIE S
for X = \/a2a2—2aa+a2+2a+2

and the diagonal matrix A is defined by:

A2 \/2 1+a2—(6a+4aa+day/aa+4/aa) 0
\/7_.3 = UAU71 with A = 1+2a—4aa+a?
4 0 \/2 1+a?+4av/aa+4v/ao—(6at4daa)
1+2a—4aa+a?

For o« > 1 close to 1 the interaction term

|- 3) (o0 (-5) =) smnas * g (o0 (7)) 1)) &= 9)]

between the two oscillators is negligible, since A is close to 0 so that (exp (—%) — 1) << 1 for any finite

span of time. considering « close to 1 is reasonable since it describes mutual interactions between the two
agents that are of the same order of magnitude.
We can check that for relatively large degree of uncertainty N and for « close to 1, a is of order «, and

14a?+day/aatdyv/aa—(6a+dac) nd 2 1+a2—(6a+4ao¢+4a\/aa+4\/aa)
1+2a—4aa+a? a 1+2a—4aa+a?

the two eigenvalues 2 are positive with:

\/21 + a? — (6a + daa + da/aa + 4y/ac) S \/21 + a? + dav/aa + 4y/aa — (6o + dac)

1+ 20 — daa + 2 1+ 20 — 4dac + 2

In our range of parameters the smallest one is close to 0, and the other one is of order 1.
As explained previously, computing the transition function between two states reduces to evaluating the
exponential along a "classical" path:

P(y,t+s|x,t)=

1 ¢ uad c
S —— ( / drua (X (t))>
A/ det (?) 0
and, given our assumptions, fot dtUeq}‘;d (X¢(t)) reduces approximatively to

/0 dtUg;;d (Xe®) = _% (y' B Xl)1 [tan}?(lAlt)] (yl B Xl)1

Le-x) Lfm)} (- %) + [(yf %) (tnhA(At)> (« - x)}

where A, is the eigenvalue:

A — 21 + a? — (6a + 4aa + dav/aa + 4+/aq)
e 14 2a — daa + o?
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The subscript 1 assigned to the vectors represents their coordinate along the eigenvector corresponding to

A;. This eigenvector describes a mixed structure of z; and y;.The transition function for (y’ - X ’) =0
1

and (:c’ - X' ) = z is proportionnal to
1

o (-3 (i)

A short time approximation looks like a Brownian path with transition function exp (—é—i) which describes

a diffusion process without interaction. However this approximation is not correct for longer time scales,
and the diffusion allows for transitions between far states.

5.5 Non quadratic contributions, perturbation expansion

Up to now we have described the classical - or mean value - dynamics of the whole system of interacting
structures, as well as its associated random diffusion process in the case of quadratic utilities through the
transition function P (z,y,t) . For non quadratic corrections, the interaction potential V (X; (t))+ X (¢) J (¢)
can be introduced as a perturbation. It allows to describe Gf\c"” (z,y), the Green function for the whole
system, as a perturbative series in V (X, (¢)) + X (¢) J (£).

External shocks can aso be introduced through X (¢) J (¢). Both term are now included in V.¢s (X (2)).
The computation of the Green function P (X Lt+s] X0 t) is computed by decomposing

P (X1, t+s|XO ) (73)

X (t+s)= _ _
= /exp/ ( X () MSX (t) + (X (t) — X°) (N — M%) (X (t) — X°)
X(t)=X0
+X (8) MA (X (£) = X°) + Vegs (X (1)) D (X (1))
X (t+s)=X"
Jew ( / (v G )+ Ve (X <t>>)> DX ()

X(t)=X0

and expanding exp (fx tt)+s))(oX (Vers (X (t)))) in series. One then finds P (X', ¢+ s | X°,¢) as a sum:

P(Xx't+s|X%1)

/ (Z;'exp ( /X Z(:j; Ut (X (u))du) ( /, " Veps (X (u))du) ) D(X (1))
/ Zn' /<u1<t+8u i—l.n

X(t+s)=X
_ Zm/< . H du; /exp</ Ug;;‘d(X(u))du> [T Vers (X () D(X ()

X(t)=Xx° w;,i=l..n

(t)=X0

ui,t=1...n

This expression can be simplified by using the convolution properties of:

X(t+s)=X
exp (/ Ug;f}ld( (u))du)D(X(t))EPO (X' t+s]X%0)

X(t)=X0

which are, in terms of integrals over X (¢):

Py (X' t+s]X°¢t) :/PO (Xl,t—i—s \ X',t+u) Py (X' t+u| X%t)dX’
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X (t+s)=X"
du z'/eXp (/X ULt (x (u))dU> I Vers (X (w) | D(X (1)



and more generally, for arbitrary u;,7 = 1...n, with u; < u; for ¢ < jand t <wu; <t +s:
Py (X' t+s|X°1)
= /{Po (X' t+ s | Xp,un) < H Po (Xit1,uiv | Xiyui)> Py (X1, u1 | Xoyt)} H dX;
i=l..n—1 j

As a consequence (74) becomes:

X (t4s)=Xx"
/ exp ( / et (X (u))du) [T Vers (X (u))D(xX (1)

X (£)=X0

uii=1l...n

= [ T R (X0t 5| Xon) Vi (X ()

i=1..n

X ( H PO (X,;+1,u,;+1 | Xi,ui) ‘/eff (X (Uz))> P() (Xl,ul | Xo,t)}

i=1..n—1
and the propagator we are looking for becomes a series of convolutions:

P(X't+s|X%1)

/ (Z % exp ( /X z()tjo_X1 Ug}?d (X (u)) du) ( /t HS Vers (X (u)) du) n) D (X (t))

n

ug,i=1...n X(t)=Xx0

Zil/ H dui/ H dX; {PO (Xl’t+5 ‘ Xmun) Vers (Xn)
T Ji<u<tts

u;,i=1...n i=1l...n

u;i=1...n

X ( H Py (Xig1,wigr | Xi,ui) Vegy (Xz)> Py (X1, t+uy | Xo,t)}

i=1l..n—1

This series can be understood a series of Feynman graph without loops.

For each n, draw n + 1 lines connecting ¢, u1, us..., t + s. Label each point u; with Vess (X (u;)). This
graph represents the propagation of the system between ¢ and ¢ + s. During the intervall of time u;, u;41, it
propagates "freely" from X; to X;;1, i.e. with probability Py (X;41,t 4+ w1 | Xi, t + ;). Then, at u;41, a
perturbation occurs, of magnitude Vegs (X (u;41)), and the system propagates again freely between u; and
u;41. The total contribution to P (Xl, t+s| X9 t) coming from this graph is then:

Py (X" t+ 5| Xn,un) Veps (X5) ( H Po (Xig1,uiv1 | Xiug) Vegy (Xi)> Py (X1, t+uy | X°,t)

i=1...n—1

The overall transition function is an infinite sum over all possibilities of perturbations at u;, where the
u; are the times at which the perturbation occurs, and X;, the points where they occurs.
Let us remark that the previous series can also be obtained through a Laplace transform by defining:

G () = / dtexp (=) P (2,1, 1) (76)

In that case, the convolutions in time - the integrals over the u; - are replaced, after Laplace transform, by
products of terms. Defining the free propagator:

68 (z,y) = / dtexp (~M) Py (1, .1)
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the laplace transform of

Zl;/ II dui/ [T aXi {Po (X" t+ 5| X, tn) Vegs (X)
w v Jt<ui<t+s

u;,i=1...n i=1...n

X ( H P() (XZ'+1,’U,H,1 | XZ,’U,Z) Veff (Xl)) P() (Xl,t+u1 | XO,t)}

i=1l..n—1

n (75) becomes:

= Z % / ‘ H dXng (XlaXn) Veff (Xn) X ( H Gg)\ (Xi+17Xi) Vfo (XZ)> G(;\ (Xi""l’XO) (77)

i=1..n i=1l..n—1

which is easier to compute. The graphical interpretation is similar to the one developped for (75), Except
that the time variable has disappeared. We rather sum over perturbations regardless their time of occurence.
The n'" term occuring in (77) correspond as before to n + 1 segments of "free" propagation, purturbed n
times by external influences or shocks. ultimately, all these perturbation terms can be formally added, before
retrieving the time representation P (z,y,t) by inverse Laplace transform.

The green function G (x,y) not only eases computations : besides its meaning it will prove usefull, for
a large number N of agents, to compute the transition function for finitely lived agents whose probability of
transition between x and y is a process of random duration ¢, with Poisson distribution of mean % It then
describes the mean transition probability for a process with average lifespan of % and A is a characteristic
scale for the system with a large number of agents. We will come back to this point later.

6 Introduction of constraints

Up to this point, no constraint has been included in the behavior of the agents. For usual models in
Game theory, such as simple oligopolistic models, or independent interacting structure models, this is not
a problem. It may however represent a limitation for producers/consumers models, or systems including
global constraints in the interactions between independent agents. We will now consider the introduction of
constraints, in an exact way for simple cases, or as first approximation in the general case.

To start with an example, we will consider the introduction af a budget constraint for an economic agent
optimising a quadratic utility. We will then extend the result to N agents with quadratic utilities and bound
by linear arbitrary constraints. We will finally suggest an approach to the general case of arbitrary utility.

6.1 Example: Single agent budget constraint

Consider the example of an agent, endowed with a quadratic utility, whose action vector X; () reduces to
its consumption. Successive periods are linked through a current account intertemporal constraint of the
following form:

Cy=B,+Y, — Bey (78)

where Y; is an exogenous random variable, such as the revenue in the standards optimal control models.
For the sake of simplicity, we will discard any discount rate here. The inclusion of a discount rate will be
considered later in the context of a large number of agents described by a field theoretic formalism.

Since the successive periods are interconnected through the constraint, when replacing Cs by the state
variable Bg, the probability weight studied previously becomes:

exp (U (CH+Y U (Cs+z')> = exp (U (B +Ys = Boi1) + ) _ U (Byyi + Yoy — Bs+i+1)>

>0 i>0

This measures the probability for a choice Cy and Csy;, ¢ = 1...7 with T the time horizon, or alternatively
the probability for the state variable B, to follow a path {BSJri}i2 o starting from B,. The time horizon
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T represents the expectation at time s of the interaction process remaining duration. It should depend
decreasingly on s, but will later be supposed a random following a poisson process. As a consequence, the
mean expected duration will be a constant written 7', whatever s. Integrating over the {Bs+i}i>2 yields a
probability of transition between Bs and Bgiq written (Bsy1||Bs). The latter is the probability to reach
Bgy given B, and is equal to

T
(Bsy1]|Bs) = /H dBsiexp <U (Bs +Ys — Bsy1) + Z U(Bsyi+ Ysri — Bs+i+1)>

=2 >0

Computing (Bsy1||Bs) rather than the transition function for Cs does not change the approach developped
previously. It merely has to be applied to the state variable By rather than to the control variable Cj.
However, due to the overlapping nature of state variables, the probability transition (Bs1]| |Bs) now measures
a probability involving two successive periods. The whole point will be to rebuild the probability for the
path {Cs}z;o from the data (Bsy1||Bs).

To do so, consider a usual quadratic utility function, or at least its second order approximation, of
the form, U (Cs) = —« (C’S — C_')Z, with objective C. Then rescale —a (C’s — C_’)2 — —C? for the sake of
simplicity. The constant C' can be reintroduced at the end of the computation. The transition probability
between two consecutive state variables thus becomes:

(Bst1|Bs) = /HdBSJri exp (U(Cs) + Z U (Csﬂ')) Cs

i=2 i>0
T
= /Hst+i exp (— (C’S — C_')z — Z (C’S+i — C_')2>
i=2 i>0
T
= /Hst+i exp <— (Bs+Ys — Bop1 — 0)2 - Z (Bs+i + Yoqi — Boyig1 — C)2>
i=2 i>0
. 2
= exp _(Bs+ys_Bs+1_C’)2_T (Bs+1+Z(Ys+z‘—C)> (79)
i>0

with By — 0, s — T to impose the transversality condition. The number of periods, T, is itself unknown,
but as said before T is the expected mean process duration.

If Y5y, is centered on Y with variance o, > oo Ysti centered on Y with variance To, integration over
Ys4s yields

i>0

2 T
1 - 1 _
/I |dYS+i 2 <Bs+1 + § (Yei — C)) T E (Yori — Y)2

>0

1 I ’ 1 2

S 41 CERE S EED IR ) IRE D ol e
=1 3

with Y/, = Y,4; — Y. The exponential rewrites:

T 2 T
1 ;o 1
exp T (Bs+1 + E (Ys+i - (C - Y))) -5 E (Ye/-H)Z
i=1 ;

2 2

~ exp <_71, (Bt =T(C=Y))’ = 2 (Boss =T (C~ V) YoV - (i + ;) > (Y—S/H)z)

o7



and the integration over the Y/ ; leads to a weight:

exp <_; (Buss T (C—V))* - % (Boy1 =T (C—Y)) ;m - (i + }) > (Ys’ﬂ')z)

i=1

exp (—111 (Bsy1 =T (C - Y))Q + ﬁ (Bsy1 =T (C - Y))2>

1 ~ —\1\2
= ———(Bs41 —T(C-Y
o0 (<37 (Ben - T (€= 1))?)
We can now write B,41 as a function of the past variables:

Boi=) Yii—) Cori (80)

i<0 i<0

Along with the expression B, + Ys — Byy1 — C = Cs — C to write the global weight (79) as:

i<0 i<0

2
o 1 o
~ exp|—(Cs—C) — T (ZYSH- _ZCS“ —T(C—Y))
1<0 1<0
for a time scale large enough, so that T >> o. The statistical weight thus becomes:

2
T+1 T = 1 _
€xp <T> CSMCM(;YS+iZCS+iT(CY)))

<0

2
T+1 1 _
- <T> CSZFH(ZYS“ZCS+"+TY>)

i<0 <0

= exp —<T;1> CS—Y—Tl_H(Z(Ysﬂ—y)_Z(CsH_Y)))

i<0 <0

For T >> 1, this reduces to:

~exp | — (CSY;’ (z;(y‘“”y)z(cﬁin))

and defining Cy = C; — Y, we are left with:

exp | - (c; -7 (z Vi =3 c) ) ) o (— (c.) + 2 (z Vari - zc@ﬂ) )

i<0 <0

The global weight, over all periods is then:



As a consequence, the introduction of a constraint is equivalent to the introduction of non local interaction
terms. The non local terms may, in some cases, be approximated by some terms in the derivatives of Cj.
Actually, remark that the quadratic terms

1
T > €., C,

S1,52

can be approximated by a sum of local terms through a taylor expansion of Cs,. Indeed, writing the n -
arbitrary - lag contribution:

1 1
T ; Csl Csl—n = T ; Csl (Csl—n - Oslf(nfl) =+ Cslf(nfl) — ...t Csl) (82)

introduces derivatives of Cy,. For example, the term for n = 0, i.e. % > s, U5, Cs, shifts the quadratic
potential, and the term for n = 1

= chlcsl— = Z (051 + CS ) - (081 - C181—1)2

becomes in the continuous approximation

7 e ‘u/(jcsfds

Similarly, (82) can be written in the continuous approximation as a linear combination of terms;

1 n dp
7 / Cs (Z} d0>

with integer coeflicients a,. Integrating by parts and neglecting the border terms we are led to a sum:

2

p even

These terms do not, in general, have to be expanded very far. Actually, when several agents interact through
short term interactions, some inertia naturally appears. When an 1nert1a term —a [ (d%CS) ds is added in

the utility — (Cs ) the characteristic time of interaction is of order T’ and the agent is behaving in first
approximation as an oscillator described by an effective utility:

f(cs)ta/ <i03>2ds

and in that case, in first approximation:

s—t
CSNthos( \/a>

s—1
/ dtdsC,C; ~ C? cos (ﬁ) = / dtC?

as a consequence, the interaction term % >, O Csy 1 reduces to a correction to the quadratic term. We

so that

will see later how to deal with the whole contrlbutlon m > 61,55 1 Cs, when considering a large number

of interacting agents in the context of a field formulation. However, if one is interested in only one agent
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behavior, one can, in first approximation, keep only the one lag correction term to account for an action
including the constraint:

exp <_Z<CS_TU—|-U> _72003 1+ 2081 E51Y52)>

51752

or, which is equivalent, using (83):

2 2
o = 1 d 2
exp (‘Z (Cs - T+oc> Y (dc> T e 2 On (E*YS?)) (8

S S $1,82

6.2 Case of N>>1 agents

Until now, computations in this section were performed under the assumption that the constraint included
some exogenous variable Y;. For a system of N agents however, constraints are more likely imposed on
agents by the entire set of interacting agents. For example, in the previous paragraph, the variable Yy in the
constraint (78) represented the agent’s revenue. In the context of N interacting agents, this variable depends
on others activity, or in our simple model, on their consumption. Actually, in a system of consumer /producer,
the others’ consumption generates the flow of revenue Y. In other word, agent i revenue Y depends on
other agents’ consumptions CY - or possibly C?_, if we assume a lag between agents actions and their effect.
More generally, for a system with a large number of agents, the revenue Y, may depend on endogenous
variables that can still be considered as exogenous in agent i’s perspective. Thus our benchmark hypothesis
in this section will be that agents are too numerous to be manipulated by a single agent. Therefore the
procedure developped in the previous section to introduce a constraint for a single agent remains valid and
can be generalized directly. Again, we will impose a constraint for each agent and encode it in Y, or Y.
First Y, will be considered as exogenous by the individual agent and thus (84) will apply. Then (84) will be
modified to take into account the fact that Y, depends endogenously on other agents. Assume for example
that Y = Zaj»Cgi)l The term 2 5. (B! YD) can then be replaced in (81): E,,Y,, — Za cl

S1, SQ S17 S2
if s < s1. We will need to find E§1 Cig)_ for so > s; If we assume that agents’ forecasts C’ ; have a
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gaussian random error and the number of agents N is large, the sum of errors in ay C’(J ) 1 cancels out.
Note that here we rule out a collective mistake that could otherwise be reintroduced. As a consequence one

can replace 2 D er.ss Os (EL Vi) — D s aj-CSng)_l
Thus the interaction terms for an agent ¢ in (81) becomes:

Z Z C) (E,,Ys,) Z//a cHc dsdt (85)

To sum up, the introduction of several agents translates the constraints as some non local interactions
between agents, and each agent constraint is shaped by the environment others created. Similarly, the
quadratic term becomes:

—7 <Z (Es,Ys,) ) — —— Z //ahajo(]l)C 72) dsdt

81,82 ]1,J2

This cannot be integrated out, but yields a contribution to the system’s statistical weight:

%Z//a;lcg)ct(ﬂdsdt > //a ol COCY) dsdt
1,J

4,J1,J2

1 . N
= 7 Z// (204} — Zafaf) Cg’)ij)dsdt
i,j k
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and consequently, for the system as a whole, including the constraint leads considering the term in the
effective utility:

1 )
>/ <2a;. _Zafa§> COC dsdt = Z v (0. dsat (36)
ij k

Writing the constraints in term of a potential terms V' (Cgi), Ct(j )) allow taking into account, when necessary,

some non linear constraints modelled by the form of the potential V' (Cs(i), Ct(j ). Gathering these results

leads the global statistical weight for the set of agents as a continuous time version of (81):

exp (U/T) = exp —Z/(Cl ds — —Z//Cl(ﬂdsdt TZ//CZCstdt——Z// C() CU dsdt

(87)
Keeping only the first contributions of inertia terms % | [ CiCidsdt as in the previous paragraph would lead
to:

exp (UF) = exp —Z/(H%) ds—//< §>2ds—;Z//Cf;()’fdsdt—;Z//V(C@,Ct(j))d

_ (88)
where o and f3 are constants depending on the expansion of Y, [ [ C:C{ and the parameters of the system.

6.3 Quadratic effective utility with constraints, general case for large N

We can now apply these methods to the more general model of interacting agents with quadratic utilities
presented above. Recall the form for the effective action without constraint (26)

s Xi(6) = 5 (X0 - Xf”‘f) N (X 0) - 1-“)@) - (Xz- - x") % (Xz- ) - )

—Z( X“S)%(Xj(t )+Z2X Xj(t=1))

j<i J>1

It is found recursively by starting from the less informed agents. Including a linear constraint can be done
in the following way. Assume as before a constraint of the form:

X;(t)=B;(t)+ Z; (t) — B; (t +1) (89)

where Z; (t) is other agents’ exogenous influence. Due to the large number of agents involved in the inter-
action process, we suppose each agent may at best influence those surrounding agents on which it has a
strategic advantage. We can therefore assume that their weight in the whole set of agents is negligible. As
a consequence, the term Z; (t) being the other agents’ influence, and beyond the control of any agent, it
must be considered exogenous.. Once this is specified, we can then introduce in the effective utility a term

X; (t) M; (Et(i) Yoo Zi (s)) with Et(i)Zi (s) = Z; (s) for s <t and Et(i)Zi (s) = constant for s >t , where M;
is found recursively, which yields:

Uers (e (0) = 5 (X0 = XO%) Na () - X0°) = (0 0) - X°) AjB (Xi (t) - %) (90)
- ; (Xi (t) — ‘Z@@) AjBJ (Xj (t—1) — X' ’>€) + ]Z;QX X, (t— 1))
+3 X (1) K (Eﬁ” > <s>>



and apply the methods presented in Appendix 2 to find Uesys (X; (¢)) given the Uess (X; (1)), 7 < ¢ .
Note however that we have included agent ¢ constraint by replacing X; (t) = B; (¢t) + Z; (t) — B; (t + 1),
and imposed the transversality condition B; (t) — 0, t — T). For detailed computations and results, see
Appendix 4.

The matrices are given by:

Ni = (P'(A-C)D)P+2(B—A)),.

(91)

~(P((A-C)D)P+2(B-A) ] ((P'(A-C)D)P+2(B-A4),,) (P (A= C)D) P+2(B - 4)) )

+(PL((A=C)D)P(Ng) (P (A= C)D) P+2(B~ A)) ™"+ P! (A~ C) D) P)

My = (Nii)((Pt((A—C’) D)P+2(B - A)) A+c)
+(PH(A-C)D)P(N:) (P (A= C) D) P+2(B - 4)) ™ + P} (A-C) D) P)
Mi; = (Niz')((Pt((A*C) D)P+2(B - A)) A+C)
M; = (Pf((A—C)D)P(Nu)(Pt((A—C) D)P+2(B—A))~ —I—Pf((A—C’)D)P,L)
A + By — V/Bel) {Blg,Q\f (Af.;l))s} -
EY = ( Ny+M; M) (A%))f +BAY, Bas,

{B§2,2\/B(A§§))S} (2(@ ) 240
ef s

Ckiyh<i {kj}z>k>3>

B —1 (i i
(V) K (S, BV S, 2 (9))
X ) 3) ) )
J n o B RUINIEY) -
{(AS-?’)efva 5 v (g )ff}(Nm K (0 B Y, 25 ()

where D is the solution of (28) and:
0 ~ 0 O
1 > = ( 0 1 )

-

7= (p0om)

1; = identity matrix for the block j < ¢

— o

The effective utility thus obtained includes the constraint > ._. X; (¢) Kfj) (Et(z) Yo Zj (5)) that mixes the
agent action with some external dynamic variable, that may include the contribution of the whole set of
agents perceived as an externality, as in (85). Note that, compared to (81), a quadratic but non local in time
term X; (t) X; (s) arises in the effective utility. The reason is that we have considered the same approximation
as in the example of the consumer with a budget constraint (the first example of the previous paragraph)
and kept only in these quadratic interactions the most relevant terms, X; (¢) X; (t — 1). Appendix 7 shows
however that the full analog of (81) as well as an exact effective utility with constraint could be retrieved,
for a total result of:

<t

Uess (X (1)) = 5 (Xi(0) = XY N (X (0) - Xf“e) - (Xt - 1) Mf;) (x: (1) = X )02)
- ; (x: () - %) ]\\4/(3; (x5(t-1)- X)) + g 2X; (1) A (X (¢ — 1))
+ZX,» ( EY ZZ )—i—ZZX e X (1)
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that includes the quadratic terms > . ;> ., X; (s) egj’n)Xi (t) that were, in (90), reduced to the "one lag"
approximation.

6.4 Non quadratic utilities with constraints

Now consider some constraints introduced in the context of non quadratic utilities. To do so, we start with
a simple constraint:
CS ES Bs_’_}/s _Bs+1

At time t, agent i statistical weight is a generalization of the quadratic case:

/ [Texp (U (Bs+ Yo = Bop1) + 3 U (Bagi + Yayi — BSHH)) B,

i>1 i>0

Performing the following change of variables,

By — Beri_E Ys+j
Jj=i

Bsti+Ysri — Bstiv1 —  Bsyi — Bstiga
the successive integrals become:
/H exp | U(Bs +Y; — Boy1) + U | Bog1 — Bsgiyo + Z Yori | + Z U (Bsti — Bstiy1) | dBoyi
i>1 i>1 i>1
and the result can be written:
exp | U(Bs+ Y, = Boy1) + U | Boy1 + > Yy
i>1

where the function U (B,4) results from the convolutions integrals:

exp | U | Bss1 + Z Yo = /GXP U | Bsy1— Bsyite + Z Yori | + Z U (Bst+i — Bstit1) H dBsy;

i>1 i>1 i>1 i>1

As in the previous examples, the transition probability is obtained by integrating the variables Y ;

/HdYsﬂ-exp U(BS‘FY; —BS+1)+U BS+1+ZY;+7;

=1

This can be obtained by replacing

/HdYsHeXp U Bs+1+ZYs+i _%Z(}/s+i_y)2

i>1 i>0

A exp (U (Bs+1 + )7))

and using the constraint to write:

Bs+1+zys+i :ZYS+i_ZCS+’L+Y

121 i<0 <0

It results in:
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/HdY;_H exp U (Bs + YS - B5+1) + U Bs+1 + ZY;+1

i>1

o< exp |U(Bs+Ys— Bsy1) +U ZYsH*ZCsHJrY

i<0 i<0
2 2 2 _
o exp | = (C)° = 70 | D Cusi | + 50 | Y Vari+Y
<0 i<0

To the second order approximation for U, this has the form,

xexp [ U(Bs+Ye = Bop1) =7 [ D Yari—= D> Cogi+V

1<0 <0

where v is the coefficient of the second order expansion of U (C) in C. In that case, we recover a result
similar to the first example of the present section. The system statistical weight over all periods is then (see

(81)):
exp <_ ZU (Cé) - % Z 081082 + 2% Z C(51 (ESIYS2)>

81,82 81,82

with B, Y, =Y, if so < s; and E, Y, = Y if 51 < s9. Again, the approximation for the constrained term
can be used if needed:

exp —Z/((mﬁ-;)(d(](l) +U (c) )ds—Z/ (¢, ) dsat

To conclude, let us briefly remark that Appendix 8 presents an alternative method to find an effective utility
for the general case of arbitrary utility with constraint.

7 Fundamental structures and non local interactions: toward large
N systems

The system studied until now had a relatively small number of interacting agents. To later adapt the
formalism to a system with a large number of agents, two points have to be developped. First we will justify
the need for non local (in time) interactions between an arbitrary number of agents, even without constraints.
Second, it is usefull to come back to the Laplace transform of the Green function, and give a more accurate
account of its necessity.

7.1 Fundamental structures and non local interactions

We have found the transition functions for quadratic effective utilities. The potential term acting as an
interaction term was developped perturbatively and provided an expansion for the transition functions for
any interaction potential. In the following, we will show how some simplification may arise and reduce the
system to sums of independent subsystems, called the fundamental structures.

To do so, rewrite the action (64):

Ues (X (1) = / (ix (5) (N + M5) X (£) + (X (£) — X¢) (N — MS) (X () — X°) + X (t) MA (X () — X°)

+Verp (X (1)) dt
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and rescale the variables:
VN+MSX () — X(t) (93)
(VNTA5) " M@ (VN4 5) T M

-1

(\/m)_l(N*MS)@/m) — (N - M%)

where v/ N + M5 is a square root obtained through the Jordan form of N + M* obtained through the Jordan
form. The matrix v N + M¥ is symmetric. Consequently, the effective utility rewrites:

—%X () X (t) — X (t) M@ (X (t) — (X)) - (X (t) — (X)) (N — M%) (X (t) - (X))
- —% (X +MW (x @) - (X)) (X0 +MD (x 1) - (%))

~(xw = (9) (v w = (u) () (x 0 - (5)

The fact that M) and (N - M3 ) can be simultaneously diagonalized by blocks - for example if (N - M*° )
is proportional to the identity as will be assumed here - leads to a sum of independent subsystems.

- A (Ewr () (xo - (1)) (o + (40 (x0 - ()
- (k0 - (%)) (=09, - () (7)) (K 0 - (%))

_ zk:_; (f(k (1) + M (K (1) (X))) ()?k () + M (K (8) - (X»)
- (%0 - (%)) (@ =2) = (M) (1Y) ) (K0 - ()

where (M IEA)) and (N - M5 ) ,, are block diagonal matrices, whose blocks are written respectively M ,EA) and

(N - M5 ) .- Change the coordinates according to the eigenblocks of A. Each X (t) defines an independent

structure, or equivalently the whole set of {X K (t)} are of different type or species. These species correspond

to mixed structures, combinations of several agents or substructures. In a psycho-economic perspective, they
account for both conscious-unconscious structures. Note that it is a vague reminder of the Lacan/Mobius
strip. We will call these mixed structures, the fundamental structures. Remark that if each block is itself

t
diagonalized so that (N — Ms)k — (MIEA)> (M,gA)) — Acy then, by a change of basis

5 (Ker (0= W Xog (1)) (Kep (6) = Mg Xep () + (Xef O (Y<1>)€f) Aes (Xef () - (Y“))Q

(64)
represents a sum of n independent structures, each having its own fundamental frequencies given by A.;.
This translates the independence of these structures in terms independent oscillations.

Remark also that, in a more comprehensive setting, the appearance of M, ¢ reminds of the evolution of a
system on a curved manifold. The connexion of this space is tracked in M, + and takes into account internal
tension inside an independent structure. This tension induces a non trivial, i.e. curved, trajectory. The
apparent coherence of motion reflects the independence and internal coherence of each of these structure.
Inversely, a break down in coherence, i.e. continuity of the motion may come from a singularity in the metric.

Once the fundamental blocks or structure are isolated, they evolve independently. This is the mark of the
stationnarity or stability of the system. The only interactions are local and internal to each block, tracked
by the curved classical trajectory.

For psychological agents/structures however, the local in time interaction may not be relevant. Actually,
for this type of models we are rather interested in "structures to structures" interactions, independent
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from any causality. By this, we mean a type of interaction involving the global form of each structures.
Mathematically, it translates into a non local interaction involving the whole dynamic path of each interacting
structure: i.e. the interaction cannot be reduced to time to time action/reaction schemes.

Besides, we saw that for models including a binding constraint between agents, these constraints where
not local, but involved all periods as a whole. In large scale models, each agent participate to others’
environment. As such, in this case also, interactions are seen, not as time to time action-reaction scheme,
but rather as global.

Large scale or global interaction between structures must therefore be introduced in our formalism. They
may take several forms, and describe inter and intra species inter-relations. These interactions will be added
through constraints representing long term, and not local in time, interaction.

Thus, whatever the kind of system consider, be it a large N economic system, or a large population of
structures with long-term interactions, non-local in time interactions have to be added to the system. We
have shown above that these interactions have the form:

> / Vi (X1 (1) ... X (Sn)) ds1...ds,

where the variables X (s;) define the control variables of a fundamental structure "i" and V,, stands for any

potential of interaction (including the case of a linear constraint). We will see later how the formalism can
be modified to account for these terms when the number of agents is large.

7.1.1 Green function as a kernel of operator

Alternatively, the Green function can be described through an operator formalism that will prove useful for
a larger N. Using the generic effective action (64):

Vs (X ®) = [ (le (8) (N 4+ M) X (0) + (X (8) = X°) (N = M) (X () = X°) + X () M* (X (t) - X°)
+Verp (X (1)) dt
and rewriting it to include M# in the kinetic term.

Uers (X ) = /(411 (X(t)+2(N+MS)_1 (M) (X (t) —Xe)) (N + M) (X (1) +2 (N + M%)~ M4 (X (1) _Xe)>

— (X (t) - X9) (N — M5 — (MY (N + M5 MA) (X (t) — X°) + Vogp (X (t))) dt

The transition function associated to this functional is known satisfy (see [10]) :

%p(x,%g) - v (M(S) +N>71 (V+ (M?) (z— X))
— (= X (V= M5 = ) (V4 07 M) (- X

A Laplace transform of the above equation replaces the derivative in times by a multiplication by «, and
G (z,y,a), the Laplace transform of P (x,y, s) satifies:

Sx—y) = (—v (M +N)_1 (V+ (M*) (2= X)) + (o= X°) (N = M5 = ()" (N + M) M) (@ - X9) +(8
xG (z,y, a)

Namely, the propagator G (z,y) (76) satisfies (95). It is thus the kernel of a differential operator, and as
such satisfies:

6 wa) = (=7 (MO N) (T4 () (- X)) (96)

(o= X) (N = M5 — (M) (N + M5) T M) (2 X) +a) (@ - )
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As an example, if we were to specialize to the fundamental structure k that appeared in the previous
paragraph and whose effective action (94) after change of variable was

,% (Kes (©) = Mg Xep (1) (Keg (6) = Mg Xep (9) + % (Xef (t) (yu))ef) Aes (Xef (t) — (ff(n)ef)

one would obtain the green function as the inverse of a differential operator for each fundamental structure.
More precisely:

1 ~ B - 1 /5 - A >
67 = =5 (V) (V= Aoy (K= (X)) + 5 (e - (X)) der (%= (5))
2( k) k f k ) + 2 k . f k .
Ultimately, and more generally, the analogy between non quadratic utility and the dynamic on a curved
variety mentionned above leads us to consider the possibility of Green function in a more general form:

ol %(vi)mm (@) (ijja (z) — M’x) + % (x - (Y(l))) N (ac - (?(1))) (97)

where m;, (z) is the vielbein associated to the metric M, igl = Mj,Mjq. This possibility would stem from non
quadratic utility contributions included in the coeficients m;, (z). The idea remains the same however: the
internal tension inside each structure induces a kind of "curved" trajectory.

The utility of representing the green function as the inverse of a diferential operator will appear in the
next section, but the idea is the following: for a large number of agents, a different point of view is necessary.
Rather than describing an assembly of N agents, it is more usefull to consider a medium constituted by
the assembly of agents, in which we can study the actions and interactions of an agent with others. The
Green function previously described participates to this description. The second order differential operator
associated to G~! will model the basic displacement operator, i.e. the diffusion process, associated to an
agent in the surrounding.

8 Half Phenomenological model for interactions between large
number agents

We now use the results of the previous sections to transform the formalism in a collective representation, in
terms of fields, that will allow modelling systems with large number of agents.

8.1 Transition toward field theoretic formulation. Laplace transform

The results of the previous section can be summed up as follows. We described a set of several individual
economic agents by a stochastic process defined in a space whose dimension depends of the number of degrees
of freedom, that is number of state variables, of the system. For the sake of the exposition, we will choose a
simplified version of the model developped previously, in its continuous time version. Each agent’s behavior
can be represented during a time span of s by a probability weight for each possible path of actions. For a
path z () of actions - such as consumption, production, signals - for ¢ € [0, s] , the weight is:

exp <_ / (::y (”“"22 )+ K (1)) dt))

where K (z (t)) is a "potential term" whose form depends explicitely on the agent’s utility function, or any
other intertemporal function the agent optimizes.

The term ”—22 (t) represents an inertia term that may be induced by the externalities, the agents’s envi-
ronment, or some constraint function in first approximation. We may associate to this probability weight

the probability of transition between states x and y, that is the sum of these probabilities for all possible
paths:
z(s)=y P2
P(z,y,8) = /D:z: (t) exp 7/ (2 )+ K (z(t)) dt) (98)
z(0)=z
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It represents the probability for an agent to reach y starting from z during the time span s. It is the
probability of social mobility - moving from point x to y - for an agent in the social space. Written under
this form, the probability transition (98) is given by a path integral: The weight in the exponential includes
a random, brownian motion, plus a potential K describing the individual goals as well as social/economical
influences. It can be seen as an intertemporal utility whose optimization would yield the usual brownian
noise plus some external determinants.

Now we can consider interactions between N agents in two ways. The first one is local. Interactions
between agents are direct: an agent’s action implies a reaction at the next period, and the weight associated
to the system has the form:

(0)==z

z(s)=y @2
exp _/ Z? (t) +ZK(x,- (t))dt—i—zai,jmi (t)d; (t)

The quadratic interaction term z; (t) &; (¢) between agents could be generalized by a potential V' (x1 (t), &1 (t), ..

This type of interaction describes strong interactions as well as possibly strategic domination relations be-
tween agents.

This inclusion of local interactions can be set in a more compact form. By concatenating the agents’
actions in one vector X (t) whose dimension is the sum of the dimension of the z; (t). The total weight for
X (¢) has the form:

z(s)=y

exp (—/ <1X (t)MX (t) + K (X (t))> dt) (99)
z(0)=z 2

where the matrix M encompasses the terms with derivatives (inertial or interaction terms). In other words,

the whole system can be described by a single path integral in a space of configuration which is the sum of

the individual configuration space, reflecting the strong interaction between agents.

The second kind of interactions is non local in time and may arise in two cases. The first one arises from
constraints agents impose on others. In standard economic models, the consumption function is subject
to the budget constraint, itself determined by a flow of income. This flow of income depends in turn on
the overall agents’ behavior. This implies interactions between the system’s various agents. Besides, when
forward looking behavior and usual intertemporal optimization are accounted for, the resulting interaction
becomes non local. The action’s effective utility then becomes:

z(s)=y G2
v (- [ CE O+ K @)+ [TV (o 0).0(5) dsi

0)=x

and the potential term V' (x; (t) , z; (s)) reflects the interaction through the constraint and the potential term
V (x; (), z; (s)) reflects the interaction through the constraint.

The second case where non local interaction may arise in our context comes back to (99). The effec-
tive utility may, in some cases, be diagonalized in some fundamental structures, and written as a sum of
independent terms:

%X (6) MX (1) + K (X (1)) = Zk: <;Xk (6) My X (1) + Ky (X (t)))

Since the probability weight of the system is a product of each structure weight, these structures have
independent dynamics. However, one may want to include some previously neglected interactions. Since each
structure has a long term persistence, one may assume that the whole set of agents shapes the environment
of each agent, considered individually. This type of interaction may be modelled by constraints, or more
generally non local interactions.

Including these types of interactions yield the following effective utility:

N
-y (;Xk (t) MXy, (t) + K (X5 (t))> YD V(Xk, (s1) 0 X, (1))
k

1=1 ki,....k;
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and the path integral:

exp Z/ ( X (8) My Xy, (t) + Ky, (X (¢ > dsy, + Z/o V (Xky (81) 500y X, (51020D)

<si<s

XDXl (81) ...DX»,L (Sn)

where the potential terms include all possible non local interactions between the several fundamental
structures. This type of model includes the several cases mentionned just above. The local interactions are
included in a system from which some fundamental structures emerge. Then the non local interactions and
constraints arise as non local interactions between these fundamental structures.

Our aim would now be to deal with such models, but for a large number of agents. However, since
the number of variables X}, (t) increases with N, (100) becomes untractable when N becomes large. As a
consequence our formalism needs to be simplified or modified to deal with a large number of agents.

We can do so by first supposing that the agents involved in (100) are not so entirely heterogenous that
they would have different effective utilities. We rather expect agents to belong to broad classes or types.
Inside each class, differences arise from the internal uncertainty present from the beginning, from interaction
terms among a class, or with the other classes. It is these internal uncertainty and interactions that will
provide statistical differences results among the various types of agents.

Second, since (100) describes an interaction process with a duration - or agents’ lifespan s -we might
assume that this duration, for a large number of agents, may vary among interacting agents, or group of
agents.

To model this, we use the single agent transition function P(x,y, s) and compute its Laplace transform:

Gk (z,y,a) = /exp (—as) /D:z: (t) exp ( /g:::)_;y (222 )+ K (z (1)) dt)) ds

This expression models the transition function between z and y for an agent whose lifespan is a Poisson
process of average i It fits well for a large number of agents whose interaction duration varies among the
population. The Poisson law has the advantage, among others, to describe a memory-free process. So that,
at each period, the same law will model the probability for the remaining time of interaction. Describing
the system in terms of G (x,y,«) is a step toward the modelling of large N systems. It models a mean
transition function for a set of agents with random lifespan duration (or more generally, the duration of the
interaction process), where agents are themselves unaware of the length of this duration.

The green function Gk (z,y,«) is the one worked out in the previous section for an arbitrary effective
utility, along with a kinetic term ”52—2 (t) induced by interactions, inertia, and or constraints. We quoted
previously that Gk (z,y, ) can be seen as the inverse of an operator. Actually, it is the laplace transform

of P(x,y,s), with P (x,y, s) solving the usual laplacian equation:

%P(x,%s) - (;VQ - K(@) P(x,y,s)

As a consequence its Laplace transform G (z,y, ) satisfies:

<—;V2 +a+K(:z:)> Gk (z,y,a) =6 (z —y) (101)

Considering the description in term of Laplace transforms, the path integral to consider for the whole set of
agents becomes:

[exo(-as)ds [ exp (— > / ! (;X () M X (1) + K (X, <t>>) dsi (102)

0<si<s .

+ Z/ V ( Xk, (51) 00 Xiy (51)) | X DX (51) .. DX,y (50)
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Or, if we consider different average lifespan for the various agents:

/Uexp (fai5<i)) dsi/exp (Zk:/o (;Xk (t) My Xy, (t) + Ky (X3, (t))> dsy, (103)

+ Z/ Z V (Xky (1) 50, Xiy (81)) | x DX1 (51) ... DXy (80)
1 0<s5;<s By ks

Up to the Laplace transform, (103) is the description we adopted in the previous sections. The third
adaptation we have to perform on the model starts with formula (103). Indeed, the sum of potentials
> f0<si<s(i> Y kriiks V (Xky (51) 5+, X, (81)) accounts for interactions between several types of agents,
some of whom may involve numerous structures. Our description being statistical, it should average over
interactions involving a variable number of agents of various types, which would allow to describe both the
interactions of a large number of agents in average, and the evolution of a small number of structures in the
whole set of agents’ environment. This can be performed by resorting to the following device: rather than
considering (103) directly with a large number of agents (that is a sum for k = 1,..., N with N large), where
among the sum, the agents are divided into few classes of identical agents, one will sum over systems with
variable number of agents from 1 to N — oco. Consider a single type of identical agents. We will generalize
the procedure to different types later. The so called Grand Partition Function for a set of N interacting
individual paths associated to the partition function (103):

z;(s)=

Z N H/exp —as;) /’Dxl exp( Z/ o), ( (t) + K (z; (1)) dt) (104)

zi(s)=

- Z Z / le (tl) Ty, (tk)) dtldtk

k= 2217 0) T

Up to the sum over N, this is the - Laplace transformed - transition function for a system of N identical
agents interacting through the potentials Vi (z1 (¢)...zx (t)). We assume arbitrary interaction processes
through the potentials Vi (21 (¢) ...z (¢)), with A standing for the maximal number of agents in interaction.
Recall that the Nth term in (104) computes the transition probability between {z;},_; , and {y;}
for a system with N agents during a time interval s.

As said before, the sum over NV implies the possibility of interaction processes involving a variable number
of agents. The N! reflects the fact that agents are identical in that context.

Some difficulties arising from the computation of (104) can be avoided by considering the potential
K (z (t)) as a source term. To do so, we follow the presentation of [7]. and adapt this one to our context.
Starting with the simplest case of no interaction, i.e. Vj (21 (t) ...z (t)) = 0, the function of interest to us is:

ZN'H/eXP —as; /Da:z exp( Z/ o y( )+K(azl())dt>> (105)

i(0)=x;

i=1...N

Each of these integrals being independent from each others, the results for (105) is

15 wilo)=vi (32 LN
%: il il:[l/exp (—asi)/Dxi (t) exp (— Z/w (2 (t) + K (z; (1)) dt)) = %: N ]‘;IIGK (w4, 9, @)

i i(0)==;

(106)

N
which is a mixed sum over N of transition functions for N agents. Each product % H Gk (zi,yi, ) com-

i=1
putes, as needed, the transition probability from {z;},_;  to {y;},_; » for N ordered agents during a
process of mean duration é Thus the sum can be seen as a generating series for these probabilities with
N agents. However, between identical agents, order is irrelevant, so that the probability of transition of the

system from {z;},_, 5 to {yi},_, y is the sum over the permutations with N elements of the terms on
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N
(106) rhs. Since these terms are equal, the "true" probability of transition is H Gk (24, yi, ). The whole
i=1
problem at stake is to recover the case with interaction (104) from the "free" case (105). The benchmark case
interaction contribution (105) can be recovered using the following method. Using the functional derivative
with respect to K we write:

Sl vt fosen (S5 [T (s staoa))

0K (21,) &

Bl oo L7 (o)

=1

5K (z;

:le (8)=vi,

@.M

dtd (LL’il (t) — le)}

mn (0)=z4;

Where d (x4, (t) — x4,) is the delta of Dirac function. By extension, this generalizes for any function V (z;, ),

/da:“ (i) ZN|H/eXp s /Dxt exp< Z/(O)_y( )+K(xl())dt>>
ZN|H/exp s /sz eXp< Z/m: :(2 )—i—K(mZ())dt))

Liq (s )_yll
-3 / dtV (24, (1))
i Tiq (O)inl

and for any function of several variables, to:

Sallf exp<—wz->/ e (-2 [ (Foneoa)) o

[\]

z;(s)=
> Z / (i, () oy (L)) dity...dty,
k>211,.. 0) T
. k ‘ . ‘ ‘ 1) )
= Z Z {( 1) /da?“...dxlka (T4, 24,) K (1)K (%k)}
k22 214..-0k

X ; % f[l/exp (—as;) /Dxi (t) exp (— Z /:(l:)sijh (mj (t) + K (z; (1)) dt>>

3

To find (104) from (105), the next step is to exponentiate (107) as

;;,ﬂ [ewas) [ Do)
X exp _Z/:i(s)zyi <2 () + K (&1 ( dt) Z Z / O s (1) o, () ot

i i (0)=; k=2 iy,...i 7 ©i(0)=2
)
= exp|— [ dxy...de, Vi (zi,...25,) K () 3K (1)
11 Uk

)
(
X ; % f[l/exp (—as;) /Dwi (t) exp (— ; /ji(S)Zyi (1‘; (t) + K (z; (1)) dt))

z;(0)==;
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In other words, using (106) one finds the partition function for the system of agents in interaction:

> L f[ [epas) [Pai)
X exp 2/1(05) ?=/< (t) + K (z; ( ) XA:

z; (0)=x
1)

N
= exp <—/d£€lld$1ka (xllxzk) oK (x“) (SK mu ) ; H xz,y“

Ti=1

zi(s)=
x“ (tl) gy, (tk)) dtl...dtk

_‘,1/,1

This would allow to compute the transition functions, or average quantities for interactions processes in-
volving all agents. However, there exists a more compact and general way to compute the same results
and, eventually, to obtain more results about the nature of the interacting system. This implies a switch
in representation from the N agents’ system to the collective surrounding description of these N agents.
We can actually infer from (101) that the determinant of operator Gx whose kernel is Gk (z,y, @) can be
expressed as an infinite dimensional integral different from the ones studied up to now:

(det (Gx)) ™ = / exp (\p (2) (;v2 fat K (x)) vl (x)) DYDY (108)

where the integrals over ¥ (x) and W' (z) are performed over the space of complex-valued functions of one
variable z. The function W' () is the complex conjugate of U (z).
The formula (101) is simply the generalization in infinite dimension of the gaussian integral formula

(det (M))™" = / exp (—X (M) X" DXDX'

where (101) is used.
Introducing a source term J (z) U' (x) + JT (2) ¥ (z), we claim that:

Jexp (¥ (z) (-iV? + o+ K (2)) Ut (2) + J () Of (z) + JT (2) ¥ (z)) DIDT!
[exp (=¥ (z) (-1V? + a+ K (2)) U (z)) DIDYT

1 -1
= exp (J (z) (—2V2 +a+ K(:c)) JT (:C))
= exp (J(2) Gk (z,y,0) J' (2))
This comes directly when changing the variable ¥ (z) — ¥ (z) + J (x) in the numerator of (109).

The terms in (105) can thus be recovered from (109). Actually, the transition function for N agents
(109):

(109)

N

i=1

providing that , in (106) accounted for a chosen order among agents, and that we multiplied N! to restore
the indentity between the agents, can directly be written as:

J=J1=0

a § ) J J
e )= | (57535717 ) - (700 77y ) 20 @G et 1 0)

Consequently, we now have an infinite dimensionnal integral representation for the transition functions for
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N agents:
N
H GK (Iiv Yi, &
i=1

N waxn)éﬁfx > (M(xm M?xm )L_ﬁ
(@)

Jexp (=¥ (z) (- 1V2+a+K( ) U (z) + J (z) ¥

' [exp (=¥ (z) (- 1V2 +a+K(z)¥
1

*+ta+ K (z) Ul (2)) DYDYT

> <5J (wiy) 6J1 foN)):|J_JT—()

Lo+ K (x)) O () + J (2) Ot (2) + T (2) @ (x)) DUDY!

=0
T (z)+ JT (2) ¥ (z)) DYDYT
t(z)) DYDY

fexp( \If(x)(

(ot
Jon(-vin (-t

The normalization factor

N)M—IH

1
Jexp (=¥ (z) (-iV*+a+ K (2)) Uf (z)) DYDYH

is usually implied and will thus be - whenever possible - omitted in the formula. The transition functions
are computed by taking the derivatives with respect to J (z) and J1 (z) of

/exp (—\1/ (z) (—;W +a+ K (x)) U (2) 4+ J (2) OT (z) + JT (2) ¥ (x)) DUDY!

However, the source term is also usually implied and only reintroduced ultimately, at the end of the compu-
tations. As a consequence,

1
/exp (—\If (z) (—2V2 +a+K (::;)) \al (g;)> DYDYT (111)
will describe the same system of identical non interacting structures. We will use this representation occa-

sionally.
On the other hand we have seen how to introduce interactions between agents. It amounts to make an

operator act, namely
1) )
exp (—/dxil...dxikvk (T4y---Tiy,) K (1) 0K (o1 )>
21 Tk

on the transition functions. In other words, the quantity

5 0
exp <_/dxi1~--dl“ikvk (@i, 0K (v5,) 0K (mik))

X /exp (—\IJ (z) (—;VQ +a+ K (w)) U (z) + T (2) 0T (2) + T (2) @ (m)) DYDY

allows to compute, by differentiation with respect to the source terms J (z) and J'(z), the transition
functions for a system of N interacting particles. The action of the functional differential operator can be
written:

5 0
exp (/dziwdmika (@i, @iy) 57 (zi,) 0K (; ))

X /eXp <—\IJ (z) (—;VQ +a+ K (m)) 4l (m)) DYDY

- /exp (-w (@) (—;VQ fa+ K (m)) U (2) = W (21,) 0 (23,) Vi (24, os,) O (5,) .01 (xik)> PUD!
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The above formula can be directly extended by considering all types of interaction process involving k
identical agents where k > 2. We can sum up the previous development by asserting that the quantity

/exp <—\Il(x) <—;v2 +a+K(x)> o (@) (112)

0D W) W (i) Vi (@, wi) O (2,) 0T () + T (2) U (2) + T (2) @ (2) | DIDET

k>2i1,...i%

computes, by successive derivatives with respect to J (z) and J' (x), the transition functions of a system
of infinite number of identical agents, with effective utility X; (¢) (—%V2 + K (z)) X; (t), and arbitrary, non
local in time, interactions Vi, (X, (¢1)...X;, (tx)) involving k agents, with k arbitrary. The constant « is
the characteristic scale of the interaction process, and é the mean duration of the interaction process, or
alternately the mean lifespan of the agents. The transition functions are given by:

G ({ai}, {ui} ) 1)
- KM(&%) w*iyz—l)) (w &-N) 571 ?m) / P (“I’(“f) (‘évz tat K@)) v ()

0N @) W () Vi (@) O (25,) 0T (2,) + T (2) OF () + T (2) @ (2) | DEDET

k>241,..0

J=J1=0

and Gg ({z;},{y:},) is the probability of transition for N agents from a state {x;} to a state {y;}.
Remark that this formulation realizes what was announced before. The switch in formulation induces that
the transition of the agents, i.e. their dynamical and stochastic properties, takes place in a surrounding.
Instead of computing directly the dynamic of the system, we derive this behavior from the global properties
of a substratum, the global action for the field ¥ (z). By global action we denote the functional, or action:

1 A
= X )| —= + o+ X x) + Tiy ) WA x,) Vi (24, ..., Ty ) -ee Ty,
S0 = [do [0 (<57 4ot K@) U@+ 30 T W) (00 Ve a1is) U () ¥ (52)

k>211,...ik

The infinite dimensional integral (113), the so-called "path integral", can be written as a shortcut when the
source terms are omitted:

/exp (=S (1)) DY

This point of view is usual both in quantum and in statistical field theory. The latter, that is the closest
to our approach, deals with system with large degrees of freedom. To reach an analog degree of formalism, we
built the notion of effective utility, starting from interacting and strategic agents. This notion has then been
used to find the action functional for a field describing a large number of structures. The individual features
of the effective utilities render the action functionals more specific than their analog physics. Moreover, the
physics and the symetry laws generally at stakes in statistical physics ultimately constrains the form of the
global action. These constraint are not present here, and we will see that the form of the problems involved
by the systems of socio/ eco interacting agents lead to very different forms of global actions than the one
studied in physics. These symmetries are absent here. Besides, systems of socio/economic interacting agents
lead to very different forms of global actions than those studied in physics. However, some basic ideas and
principles remain valid and will conduct the use of this formalim.

The first application of this formalism asserts that in the expression

A
S (1) :/% (TF (z) (V2 +a+ K (z)) ¥ (z)) dm+/ZV(x1,...,zk)\If(x1)\pT (1) ..U (23) OF (24) oy ...dzxy,
k=2

(114)
the contibutions of the potential V (z1, ..., ) to the computation of the two points Green functions can be
obtained as a series of Feynman Graphs. This one represents also the "sum over all histories" and will yield
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the statistic "fate" of a single path through the various interaction processes These graphs actually compute
how the path of single agent is perturbed by interaction processes with one, two... and more agents. Each
of these interaction processes will contribute in probability to the transition of the agent from one state to
another. That is, the series of graphs models the environment impact on the trajectory of a structure.

More generally, n points correlation functions give the probability of transition between 2 sets of states
for n agents: given a certain process with n agents and initial values, it yields the probability value for the
outcome.

The second application of the formalism of statistical physics is the possibility of non trivial vaccua and
phase transition. The system (114) can be studied independently from the system of agents it represents.
The functional S (V) may present some non trivial minima, and these minima modify the properties of
the correlation functions of the system. The field ¥ for which S () reaches it’s minimal value describes
the phase of the system. Given the parameters of the model, the phase may change and confer different
properties to the system. The properties of individual behavior will then depend on the phase of the system
as a whole.

Both possibilities will be studied in the next sections, but before doing so, we will conclude this section
by generalizing our results to the models developped in the previous sections.

Remark that the first term in (114) 3 [ (¥f (z) (V> + @ + K (z)) ¥ (2)) can be identified with 1 [ UT (2) (G%' (z,y)) ¥ (z)
Besides, Gk (x,y) is the Green function for the effective utility of a single agent, or a single subset of several
interacting structures, or some fundamental structure.

As a consequence of the previous discussion, the formalism may be generalized for curved space of
configurations that appeared in the previous section, and which represents the most general form of quadratic
effective utility. Actually, consider a single interacting system with effective action (64), in which we now
include the term derived in (32) and previously discarded:

Vs (X @) = [ (ix (1) (N + M5) X (1) + (X (1) - X°) (N = M5) (X (1) - X°)
(X (6) = X9 MAK (8) + Vegs (X (0) + Uegs (X°)) db

The associated Green function G (z,y, @) is the inverse of a differential operator given by (96):
G (2, y,0) = (—v (2 + N>71 (V+ (M4) (z — X))
(o= X) (N = M5 — (M) (N + M5) 7 M) (2= X9) + Ungy (X) +0) (2 — )
and then G (z,y, ) satisfies:
§(x—y) = (—v (M<S> + N)fl (V + (M*) (z — X))

(= X0 (N = M5 = (MA) (N + M) ™ MA) (2= X) + Ungy (X°) +0)

xG (z,y, a)
Gathering the potential terms

(2= X) (N = M5 = (M) (N M5) 7 M) (2= ) + Uegy (X9) @t Vg (@) = m? +V ()

allows to write the effective utility and associated inverse Green function as:

G (ey) =~V (MO £ N) (V4 (M) (2~ X)) +V (@) (115)

with:
m? = o+ Uepy (X°) (116)

note that m? can be positive or negative, depending on U, s ()_( ") - « is always positive, but we keep this
notation by analogy with the mass term in field theory.
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Formula (115) leads to the field formulation of large number of interactions:
1 -1 _
s = [3(@ (-7 (O n) (@0 @ X) V@) ) )

+/Z > W (i) (@) Vi (@i, U (2,) 0 (2,) day.day, (117)

k>21i1,...08

If we change the coordinates (:c — Xe) — VMO + N (:1: — Xe) to normalize M%) + N to 1, we have:
S(T) = / 1 (qﬁ (z) (—v2 F UMW (2= X) 4 m2+V (x)) v (x)) dw (118)
B 2

k>2i1,...ik

That describes a set of fundamental structures over the whole relevant time span, as well as their potential
temporal realizations.

The first contribution describes the dynamic of a set of identical structure whose fundamental state - or
classical solution - is bended by its own internal interactions and constraints as explained in the previous
sections. The second term represents the possibly non local interactions between agents. Each interaction
type creates a surrounding constraining the individual structures.

8.2 Introduction of several type of agents

The previous paragraph has introduced a field theoretic description of a large number of interacting identical
agents, or structures. To differentiate between fundamental structures, one introduce the different species,
either by diagonalizing the initial system and replicating it, and then adding non local interactions, either
directly by introducing some original bricks and their interactions. Each of these types corresponds to a
field living in a space whose dimension is given by the dimension of each block X (t). We denote them
(k) (X k). The coordinate Xy describes the space, or variety, of characteristic variables of the fundamental
structure k.

The treatment of these several species is straightforward given the previous paragraph. Without inter-
action, each fundamental structure is described by a quadratic action similar to the ones described in the
previous paragraph (see (115)). Recall that:

/exp (=S (¥)) DY

computes the probability weight for a system. Gathering the various systems of identical fundamental
structures, the path integral to consider reduces to the product of the weights of each system of fundamental
structures. The non interacting blocks Path. Integrals is then:

/ 1;[7)\1: (Xk) X
< exp (Z [ (w0 () [0 (1 5 3) ™ (w1 (- (5),)) + v ()| w0 (x,g)))
where V(%) includes § (%, — (X) ) (Ne = 2) (% = (X) ).

The inclusion of the interaction potential between fundamental structures follows the same previous steps
and leads to the decomposition for the full action of the system with an infinite number of agents divided in
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M type, or species, of structures:

s({o),, )
3 i ( (5o (52) [0 (3 27 (932 (53 (5),)) 4 (5) 0 () ))

ST ({0, T () v () o

1<i<n

intra species interaction

+Z Z Z Vi1 ,n1) e (b mim) ({X(M )}1<i ) H H VAC (X(:" )> (ki) (X(:" ))

m ky..ky,ninm, Stnj Jj= 11<zn,<nj

inter species interaction
The variables X ,ii) are copies of the coordinates on the fundamental structure k. The intra type/species in-

teraction terms describes then the interactions between several structures of the same kind. The inter-species

interaction term rather involves coordinates X (in;) on different manifolds, and describes then interactions
between different types of agents. The potentlaf Vik1,m1)...(kmonm) i0VOLVes m1 copies of structures k..., ny,
copies of structures k,,

8.3 Computation of Green functions. Graphs

We start with the system composed an infinite number of agents of one type, whose action is described by
(117). Without interaction, we have seen that the Green function for 2n independent variables through (113)

G(IJ( (QEZS SHS (73 SN ) (120)

B 5 5 5 5
a KN (23,) 6T (yi1)> <5J (i,) 01 (yz-n)>
/ exp (—\If (z) (—v2 F UMW (z— X) +m2+V (a:)) Ut () + J () U (@) + I (2) @ (x)) D\IJD\I/T}

J=Jt=0
The upperscript 0 has been added on GY% ({z;}, , ,{vi}; .. .a) to denote the Green function without
interaction potential between the different agents. Equation (120) can also be rewritten as :
G ok lih @) = [0 ¥ () ¥ ) W () (121)
exp (—\1/ () (—v2 + UMW (2 - X) 4 m2 4V (x)> ot (x)) DYDY

And the left hand side of (121) can be rewritten as a product when there is no interaction potential (see
(110)), so that:

Z H G?( (mij7yl7(i]‘)7 O‘) = /\Ij (xh) \IIT (yll) .U (xln) \IIT (yln) (122)

oco, j=1

exp (—\Il () (7V2 + VMW (2 — X°) +m?+V (x)) \al (x)) DYDY

This is known as the Wick theorem (see [11]) and is the basis to compute perturbatively the 2n points Green
function when a potential is added to the action.

Now, consider the full 2n points Green function including an interaction potential as in (113), but with
the general action (117):
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Gr ({zi} {yi}, @)

B K‘U (6331'1) 5JT(zyi1)) (CU (im) o1 ((Syz'N))
x /exp (-qf (2) (-v (MO £ N) (T + (M) (2 X)) 4 m? 4V (x)) i (2)

=N W@y) W () Vi (@) O (25,) 0T (@) + T (2) O () + T (2) U (2) | DEDWT

k>211,...1% J=Jt=0

Exactly in the same way as for the case without interaction, the 2n points Green function can also be
written:

K (e {ui)a) = / W () T () W () U (35, (123)

e (qj @) (V (M(S) T N>_1 (V+ (M) (z - X)) +m>+V (x)> ol (2)

=0 @) O () Vi (@) O (2,) 0T (2,) | DIDET

k>211,...9

and given the Wick theorem, this can be computed in the following way as a function of the Green function
without interaction G% (i, Y (i), @).
Actually, expanding the exponential term containing the potential Vj (x;,...z;, ):

exp [ =30 Y Wwi,) W (2i,) Vi (i, i) O (2,) 0T (2,)

k>211,...1%

S IL (0 Gt [ ) ) ) ) )
=0 k;>2
1<5<!

And using the Wick theorem, contributions like:

/ H Vk f x(f)) [\If (x(f)) U (x(f)) ot (x(f>) ( (ks ))} dalt) . da;(’f_)}mfmﬁ

for a given sequence {k; > 2}, j =1,...,1, are equal to:

n
0 . . 0 . .
Z Z Z Z Gk ("E’a(nﬁlwyla'<n1+1)7a) -Gk (xlam)’y%'(ngla‘?)
ni=00€o,,0'€o, 6€0 k. k.
! TN {z1,...,w2n }= <U< &{wglj)...wg ’)}
5 )

0 0 0
XGK (xi(,(l)awlaa) GK (yiax(l)aan ) (xia(nl)aa:?nl—laa) GK (yi,,/(nl),m%pa)
N
0 (ki) (kj) (k) (k)
H G (zap—1, T2p, @) H {ij( T dz;, ...dxikj
p=ni+1 kj>2
1<y<l

where N = 25‘:1 k; and with the convention that the contributions are nul for 2n; > N. The Green
function is obtained by summing over [ from 0 to co and over the sequence {k; > 2}, j = 1,...,l . Remark
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that the sums have to be performed only on sequences corresponding to connected graph, as explained just
now above.
Actually, these integrals have convenient graph representations. Draw the 2n external points labelled

by x;,, then for j = 1 to | draw [ vertices with ky,...k; legs and labelled by Vj; (xif”a:gfj)) Then draw
2n lines joining the external vertices to the legs of any internal one. Then link all remain{ng internal legs
together in all possible ways labelling them by the points they are joining, such a way that the resulting
graph is connected Finally link all remaining internal legs together in all possible ways, and label them by
the points they are joining, in such a way that the resulting graph is connected. This gives a series of graphs,

each providing a contribution to Gg. The contribution of any graph is computed in the following way:

(km’éj—l) x(kmizj) 04)
b

For each internal or external line, associate a factor G% (mi" , x£212n1—1 ), a) or GY <$mzj ) s Triy,
o _

where the variables in the function G represents the points the line is connecting. Then multiply by the

factors Vi, (mffj ) fo] )) associated to the internal points. Then integrate the results over all internal points.
J

The fact that only contributions corresponding to connected graph is explained for example in [11] but can

quickly be understood as follows. Recall that the path integrals for n-points correlation functions like (124)

have to be normalized by dividing by the "zero point" correlation functions:
-1 B
/eXp (-qf () (—v (M<S> + N) (V+ (M) (z - X)) +m? +V (a:)) i (a:)) (126)

x/ IT {ve (e07al?) [w (a02) v (a02) wt (20 0t (o0))] dal?) .ol | DODWT

1<

and the contributions to (126) given by (125) are precisely given by (any) product of graph made of cycles
(due to the fact that there are no external points). These contributions cancel precisely the non connected
graphs in (125), that is those containing themselves cycles.

The method of graphs computations can be useful to find corrections to the individual propagators G9.
However, given the particular form of our model, it will often be more useful to use some other aspects of
the collective field representation, as will be explained later.

This formula can be generalized for interactions beween various types of structures. Starting from (119),
a computation similar to the previous ones yields the following contributions to the transition functions
Gg (({xl} AU, o @i} s {wib), ,a) for 2ny points of type 1,...., 2n 4 points of type A:

np

A
0,B ) )
H Z Z Z Z GK (xlo(n1+1)’yl(,/(n1+1)a CY) X

B=1 | (n1)p=00€0n,0'€0n5 6€ET2Ny . (kj) (k)
{z1,...., 020 }=6 1<L__;7lgl wilg Lz Y

STy
kj

0,B (.. )
X X Gy (x%(nB)’y%’(nB)’a>
Np

(127)

0 0 0 0 0
x Gy (xia(l),xl,oz) Gk (yia,(l),mg,a) .Gy (mig<n1),$2n1_1,a> Gy (yia,m),mgm,a) H Gk (.sz_l,xgp,a)‘|

p=ni+1

l
(n) ()
<11 {W(kl,nlw.(km,nm)}p ({% d ‘
p=1 ISin <y 1< in; <y

with Ng = 22:1 (nB)p where (nB)p is the number of copies of the species kp appearing in {(k1,n1) ... (km,7m )}

. The Green function is obtained by summing over [ from 0 to co and over the sequences {(k1,n1) ... (km,7m )}
p=1,..1

p?
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8.4 Non trivial vacuum, phase transition (one type of agent)
8.4.1 Principle: Vacuum value and Green function

The previous perturbative computation relies on a development around the Green functions of a system of
non interacting agents. However, this expansion may not be valid in (113). The effective action arising
in the exponential of (123) may have a non trivial minimum ¥q (z) in some cases. Changing the coor-
dinates (a: — )_(e) — VMG £ N (x — )_(e) for the sake of simplicity, the Green functions are then better
approximated by expanding:

S(W) = / % (07 (@) (-9 + VMW (2= X) +m? + V (2)) ¥ (2)) da

+/Z S U (@) U (@) Vi (@ w,) O (@) 0T (20,) daoyday,

k>2i1,...05

to the second order around ¥ (). The Green function is then recovered by computing the integral of the
second group of terms over ¥ (z), plus higher order contributions. The possibilities of non trivial minima
Uq (x), depending on the parameters of the model, is related to the phenomenon of phase transition (for
a short account see Pesh). Given the particular form of action functional S (¥) involved in this context,
its minima are quite different from the one obtained in usual models in field theory. Hower, the principle
remains the same. Assume a non zero minimum ¥y (z) for

W () (—v2 F UMW (z— X) 4 m2 4V (m)) vt (z)
0D W) W (@) Vi (@) O () 0T (2,

k>21i1,...ik

ie.

- {5\1/5(33) (~¥ @) (~V2+ VMWD (2= X) 42 + V (@) ¥ ()

0D W) W (@) Ve (@) O () 0T (2,)

E>2i1,..0k V(@)= o ()
Then, expanding
S () = —U(x) (—v2 + VM@ (z— XY +m2+V (x)) Ut (z)
— Z Z v ({,Cil) o (aclk) Vk (mhxlk) \I/T (&Ch) \I/T (Z,Clk)
k>2i1,...0k
with:
U (z) =g (z) + 0V (2)
yields:
S (W (2) 4+ 00 (z)) = S(¥(x))— 0V (z) (—v2 + VMW (2 - X°) +m?+V (x)) out (z) (128)

A

k=21i1,..i i;
XU (24,) U8 (4,) ) (24,) 60T (2,)
~+higher order terms in §W¥ (xZJ)

where the hat over ¥ (.171]) and its conjugate Wt (mij) means that these terms are omitted. In other words,
the potential term in the individual action has been shifted from K (z) to

A

k=2i1,...i5 i;
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yielding a change in the individual Green function and in turn, in the individual effective utility. The
influence of a large number of interactions induces a non trivial collective minimum: it shifts the individual
behavior. Actually, the new individual action term:

—ov (.’E) v2 + o+ K Z Z Z \Ifo x“ .\if() (.’E%) \I/(J (Sl'zk) Vk (lexlk) (129)

k= 2Z1, ’Lk 7,J

U (23,) 0 (2,) . 0 (mik)) 5T (2) da, ..dai, ..da,

modifyies the inverse of the Green function by some "constant", independent from §¥ (), inducing a damped
or extended dynamic. In other words the individual fluctuations can be frozen or magnified, justifying the
use of the term phase transition. We will see below that the presence of a non trivial minimum may also
shifts the equilibrium values for individual agents.

Remark that the higher order terms in (128) model the effective several agents interactions in the new
phase at stake after expansion around Wq (x). These results fit with the change of representation implied by
the use of field theory. The study of the set of agents as a continuum substratum leads to modifications of
individual transitions as a result of the fluctuations from this medium.

8.4.2 Shift in equilibrium values

The second consequence of a phase transition is the shift in equilibrium value. The expansion around a non
trivial vacuum leads to a quadratic term (129) that impacts the agent’s effective utility. Actually, considering
the reciprocal link between individual dynamics and collective fluctuations, we can assert that the form of
the effective action impacts the effective utility. Facing a phase transition, the correction term in the effective
action (129) would lead to an individual effective utility of the form:

- (1) + K (x (1) + V(2 ()

o ‘ﬁ,\;

with:

k=21i1,...05 15
xdx;, ...cixij...dxik
This effective utility has a new saddle point x with respect to the individual case, which satisfies:

% (K @)+ V(@) =0

As a consequence, the possibility of phase transition, i.e. the existence of non trivial minimum ¥ for
S (VU (x)) depending on the parameters, induces a shift in each agent’s individual equilibrium. The collective
system impacts directly the individual ones and prescribes A DIFFERENT effective potential THAN the
one describing initially the system at the micro level.

8.5 Several possibilities of Interactions

Having described the formalism of collective fields and its possible use, we now detail two examples of
interactions between fundamental structures.

8.5.1 Reciprocal interactions between identical agents

By reciprocal interaction we mean the introduction of a symetric potential of any form:

Vv ($i17$i27 "'7$in)
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between agents of the same species. It models the mutual influence of these agents when none of them have
a strategic advantage over the others. The graph expansion for the Green functions with this potential is
given by (125) with a single type of agent, i.e.Gx ({z;},{vy:}, @):

& ({zi} Ay}, o) (130)
S okt ) ) et ) )

P1,-- )anE{Zla 7/77,}
ly,d2n€fin,...in}

V() (A7) I et (s20)
(4,3),(r;s)
i j "
( (T)’x‘g]))u{zl()kk)}k=1 ..2m
LW ) ) (m)

11:127a1ﬂ7711712:71n

xdz{DdelD . delM | el del™ ™

11 12 n

The various individual propagators G% (ac“, (i) a) .. can be obtained through Laplace transform of the

general formula (69). However for later purpose it will be more useful to use a different way.

We consider G for an individual effective utility of quadratic form. As shown in the previous section,
if we neglect the curvature effects for individual fundamental structures, and if we consider a system of
coordinates where the potential is diagonalized (see (94)), the propagator INVERSE for block & (i.e. 41 or
i9) is:

(G(IJ() = ~Vi+mi + ((fci)k - Yeff) (Ai)y ((l“i)k - Yeff)

m% can be positive or negative depending on the parameters of each fundamental system (see (116)). The
kernel of this operator can be computed through its egenvalues and eigenfunctions. Actually we can cast the
previous differential operator in the form:

Vi mi 4 (@), — (Yers),) M)y (@), = (Yers) )

0@ (m+ (ns 3) ) 2 0)

Such an operator has a kernel (i.e. the Green function) such that:

Vi mi + (@), — (Yers),) (M), (@) — (Yers),) £ ((a),) :/G((xi)k7(yi)k)f((yi)k)d(yi)k

for any function f ((x;),). For such operator, the Kernel can be written in terms of its eigenfunctions:

@) (4 (nr 5) 40 v (131)

where 9, is the nth Hermite polynomials, times a gaussian term with shifted variable (z;), — (Ye ¥ f)

b (@) = (Q i (o) e (_{I)

where the H, (aim) are the Hermite polynomials. Some details are given in Appendix 9. The Green function

i

can thus be found directly and is given by:

_ N n (@) 0l (2)
G(z,y) = zn: m
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Applying this results to our problem yields G (z,y):

0 X = X = 1 =
(G) (@) @ —Vi+m?+ (), — Yerr),) (Mg (), — (Yerr),) v (132)

]‘ *
S @) e Ty

This form of Green function is usefull to deal with (125). Actually, the infinite sum here can be truncated
if we assume in first approximation that only a finite number of "harmonic" n participate to the dynamic

of the system. This kind of truncature, or cut off, will also be used below. We can insert formula (132) in
(125). Defining:

/HVk 1+Z]1k7..$k+2]1k)

kj=2
1<5<1

Xty (i) Ui (@) Vi (V000 ) Vi (22)
X..-wq27z171 (:L‘id(nl)) ¢;2n171 (-’I/'infl) qunl (yi,,/(m)> w:;z"l (xznl) d.’l?]_...dl‘in

X II Yy, (T2p—1) Vg, (v2p) dwop_1dasp
p=ni+1

= Vv{kj>2,1gjgz} (xio(lwyial(l)---axi(,(.,,/lwyial(nl)7q17 weey QN)

one uses the permutation symetry of the Vj, to write (125) as

n
0 0
E : E : E : Gk (xia(n1+1)’yia’(n1+1)’a) -Gk (miu(n)7yi0/('n)’a>

ni1=0c€0,,0' €0y 6§ET2N

N
1
xV, ( Yi Yire s @ . qzv)
{2215 o Yioray o oy Yior gy Bty - E[ mZ + (g, + 1) (Ao)y

with k; = 23:1 k;. Then summing over | and the k; yields:

({xl} {y’t Z Z Z Z Z GO <mla(n1+1)7y’t I(n1+1)° )GOK (:Eig(n)ayig/(n)7a>

=0 k;j>2 M= =0oc€o,,0'€on 6E€ETIN
1<5<1

X Z Vr{kgz,lgjgl} (331‘6(1)ayia/(1>~-~7$i6(n1)7yz‘al(nl)aﬂhy~-~7(IN)

p=1 mi + (ap + 3) (M),

8.5.2 Non reciprocal interactions

We want to model an interaction potential where one type of agent imposes a stress on another one to drive
it towards, or push it away, from a certain equilibrium position.

It is useful for agents with strategic advantage models, such as those presented in the second section. We
assume two types of agents, the first one imposing a strain on the second one. We choose:

V (i, xiy) =V (9% :ﬁ( ))
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(11)

where 7;" is the objective function set for i3 by 7;. We will later consider an example with

. 2
Vv (xinxlé) =0 (:Ci2 - :%1(21))

The formula for the Green function (127) simplifies, since the first agent is not involved in the potential, and
the Green functions reduces to a product of Green functions for both agents:

G ({2} AYiNn, s i}, (iD), @) = G (({zi} {yid)n, - @) G ({23}, {yi})n, - @)

The function G(Ig) (({xi} AYibn, ,a) is the free Green function with 2n; points for the first type of agents,
since there is no potential for this type of agent. while G (({x;}, Wi, ,a) is the Green function with

2ny points for the second agent. The function G (({w;}, i), ,a) includes a sum of contributions given
by (125) for a potential depending on one variable only.

n
0 0
Z Z Z Z Gk (xiamﬂ)’yia’(nﬁl)’a) -G (micr(n)’yiawn)’a)

ni=00c€o0,,0'€0, 6€ET2N N k.
" " {z1,...,zan}=6( U zl( i)
1< g1 1

0 0 0 0
XGK (zi0(1)7x17a) GK (yig/(1)7x2705> GK (xid("l)7x2n1—17a) GK (yig/(n1)7$271,1505)

ﬂ GY% (zop_1, Tap, @) H {ij (ngﬂ — :ﬁxl)) dngj)}

p=ni+1 k=2
1<5<!

N = 22:1 k;. However, since the potential depends only on one variable, these contribution can be re-

summed to produce a free Green function shifted by the potential V' (xiz — ff;l))

(G) ™' = =VE - mi + (@) = Vers) (A (@) = Yerg) +V (2, — 310)

Thus the system describes a free effective utility for the first agent, and a potential, effective utility for the

second agent, that is shifted by a term driving it towards or away i:l(-il), given the sign of V' (miz — 5:5;1))

8.6 Introduction of constraints

When agents face constraints, like the budget constraint for example, some additive terms have to be added
to (119). Recall that, for a set of interacting individual agents, a linear constraint binding the agents implies
to include, in the effective utility, a term of the form (87):

1 s i s 7 1 ® 4 T 7
—T+G;/O Csds/o Ctdt—TJrU;/o/O CiC dsdt (133)

where Agent i is defined by an action C!, and T and ¢ are some parameters of the model. As explained when
(87) was introduced, o measures the uncertainty about the future, and T is proportional to the characteristic
time scale of the interaction process. As explained before, we assume that each agent estimates at each
moment the remaining duration of the interaction process by a Poisson process of mean 7. We also assume
that among the set of interacting agents, the statistical mean of the estimated duration reaches the true
value s. That is, we suppose unbiased estimations. We will inspect less restrictive assumptions at the end
of this paragraph, and show that this does not modify the result.

If we moreover neglect o, the fluctuation term with respect to the duration of the interaction process,
we are left with the following expression for (87):

[ a2 [ [ oo
—= Clds | Cidt— - CLCldsdt
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and (87) can be generalized for any type of vector of action X* (s) or constraint:

S (f we i) - D BY Y RIS AREEICERE (134)

and a; ; describes the interdependence of two different species through the constraint.
The second term in (134) has already been described in the field theoretic formulation. It amounts to
include a potential:

s / / (201 () %w® (1)) (30 (%) %9 (%)) dX,dxs

in the global action. The first term requires some additional computations. We compute the Green function
of the individual agents with effective utility including a term:

2
—Z (/X{ (s)ds)
We start with:

/exp (—as;) /’Dxi (t) exp (— Z/:O(:)_jfl <:1c212 () + K (z; (1)) dt) - % </OS dslcfs(zl')> /Os ng8>

K3

and neglecting the potential K (z; (t)) that can be reintroduced as a perturbation term, one thus has to
compute:

G (z,y) = /exp (—as;) /D:ci (t) exp <— Z/:(l::i:h (x; (t) dt) - é (/08 dleg)) /OS ngs> (135)

(2

which is the Green function for an agent under constraint. It can also be written:

G (z,y) P(0,s,z;,v;) <exp (—; (/OSX (u) du) </OTX (u) du>>> (136a)
_ “p(\/(;"y)) <exp <_; </OSX(u)du) (/OTX(u)du>>>

Where X (u) a brownian motion starting at x; at time 0 and reaching y; at time s and

(o ([ 300m) ([ x00)

is the expectation value of exp (% (fy X (u) du)z) given the process X (u).

The appearance of the factor P (0,s,x;,y;) in (136a) comes from the fact that in (135) the measure is
not normalized, and (135) is computed for the measure of a free Brownian motion. Thus the global weight
for the path starting at x; at time 0 and reaching y; at time s is not equal to 1 but to P (0,s,z;,y;). We
compute G (x,%) in Appendix 10, and show that, when o < «, s being of order é, and individual fluctuations
measured by ﬁ are negligeable with respect to the mean path % over the all duration of interaction, one
has in first approximation:

Star = £ [(on (2 ([ xas) ([ xwa))y ]




These assumptions are quite always satisfied since a = %7 with T the mean duration of all interaction
processes. We furthermore expect the sum of fluctuations on this period, i.e. the sum of the fluctuations on
the global time span, to be lower than one, or equivalently, the fluctuation per unit of time o to be lower
than % By a similar reasonning, we assume that the fluctuations over the all time span, measured by %

or equivalently by o+/s, are lower than the mean value of the path, i.e. Zﬂ The formula (137) has an
interpretation in term of individual agents fluctuations. Actually, in (137) G («, z,y) satifies:

_(@=y)?
G (o, z,y) = /exp < (Oer <$42ry>2> 5) EXI)(\/;;’IS')dS

This is easy to see: G (o, z,y) is the Laplace transform of the usual brownian transition function 7

with « shifted to (a + (“'y) ) By a change of variable:

(ot (5)7)

/

§=—~———%5
@
we have:
exp | — (z—y)*
e 0-2 s/
: (G
G(a,z,y) = | exp(—as) ds (138)
o+ (24
(@rC57)
(et (=44)°)

Up to the factor — , which is constant with respect to s, this is the Laplace transform of a gaussian

path with variance:
o 2

O
(o (5277)
Recall that there is usually no inertia in the standard models of utility optimization under constraint.
This amounts to setting 02 — oo in our formalism, to model no other interconnexion between periods
than the constraint. Recall however that (137) was derived under the assumption that o2 << (%)2 As a
consequence, the introduction of the constraint leads us to describe the individual agent following a brownian
path with (o’ )2 << 1. Considered at the scale of the overall processes - i.e. compared to the unit of time
which is much lower than s - this variance (¢’ )2 is of order 1, and the agent is described by a brownian path
with variance of order 1. The introduction of the contraint has thus transformed the individual dynamics
into an apparent brownian noise. This replicates the usual result in classical consumption smoothing theory
(see [12] for example).

The field theoretic counterpart of the Green function G (a,z,y) is obtained by finding a differential
operator whose inverse is G (a, x, %) or equivalently, a differential equation satisfied by G («, z,y). Appendix
10 shows that G («, x,y) satisfies:

d(z—y) = %2 <V2_2a+(?y)>_2(($+y)2 373

ot (552)°) Q(a (2u)? \/—ﬂ,

B =2 (o )2) (2($+y)H(zy)H( 2<a+<$;y>2>1 G (a,2,y)

(o))" =
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and the term in brackets is the operator whose kernel is G («, x,%). The Appendix 10 also shows that, given
our assumptions, this reduces in the limit of small fluctuations, to:

2
0(x—y) = (U;V2—2<a+(x—2~_y) ))G(a,x,y)

Reintroducing the potential K (z), the field theoretic formulation of the problem for a single type of agent
with effective action (133) reduces to describing the set of individual agents by the effective action:

/exp (—\1/ (z) [(G‘ (,,9)) "+ K (x)} of (x)) DIDYT (139)

which discards temporarilly interactions among agents. Of course, when we remove the constraint, G (o, z,y)
reduces to G (o, z,y), and (G (o, z, y))_l = —%V2 +a+ K (), as in the previous cases. In developped terms,
the exponential in (139) becomes:

2 T4y 2 2 2 T—y 2
+ (=2 3 3= -
of (z) (—aQVQ+a (22)>+ Al f)Q — + ol B e
o 2ty 2ty o
2(a+ (=) {20+ 20) Lo (ar (222))
1 [252]yf2 (o (252)°)
+0? 2 X
2(a+ (52))
H(z—vy)—H(y— 2
X (2(a?+y) (@ y)g y x)) 2<a+(x42-y>>_1 + K (z)| ¥(y)
In the case of 0 << 1 considered here, in which individual fluctuations are relatively small, it remains:
2 2
ot (2) l—gw +2 <a+ (T) ) U (y) (140)

This form of propagator has a direct interpretation in terms of constraint. The first term ensures that the
mean of x + y is centered on its expectation value, which is nul here by normalization. The second term
ensures that x and y are equal in means. Both contributions thus describe a smoothing behavior, which
is characteristic of long-run binding constraints. The path for X (s), apart from a white noise contribution
€(s), is constant in time:

X(s)=X(s—1)+¢€(s)

We also recover the results of (83) and its subsequent formulae. For z — y << 1, we recover the series
expansion in gradient:

iy

Ul () <V2—%)5($—y)—(272—2 —
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Then, introducing the constrained propagator (140) in (119) yields:

()
= 53 [afatPur (30) [(Vap) (T - Ml (K (%)) i v (51)]o (20 - %)

2 xW_x W (o(2) 0 k)t k) (00
L B e () ey ()T e () e (50)
k n 1<i<n
constraint, individual level intra species interaction

3 Z Z Vi . <{X,S]”)}1< <n>ﬁ H k)T (X,Sj'w)) k) <X,SJJ)>

m ky..kpy N1...Mgy

inter species interaction

£ [ [ (07 (i) K00 (£0,)) (90 (K0,) K9 (K1) s

k1,k2

constraint, collective level

Appendix 11 shows how to generalize this result in presence of a discount rate and we show that in that
case, in the approximation = >> 1, which means that the time span of interaction is long enough for the
discount rate to be effective:

s ({\P(k)}kzl,,,M> (141)
= 52 [ axaxPenr (62) [[(Vp ) (Vg -l (5 = (5),)) ot v (€1)] 0 (20 - %12)

L) () vms (1 (50— X2) (X2 - x0)) | wr (%)

72 ro

constraint, individual level

T () T () (1)

1<i<n

intra species interaction

DN Vi, <{X'Snj)}1<inj@j>ﬁ g [ wr <X£],)) o) (X;S]’))

m ki..kp N1...Nyy 1 injgnj

inter species interaction
. _ (D) ¥(2) . . .
St b @bt | (ww* (%) (exp (= (r+ 30 6 (%), %)) Za e ) wik) (X,i?)) ax( Xy
XD L@
(2 (1 (2
Jw (22) ) axiDax?

(w0t (210 (o (o 307) 6 (200, 52)) T

constraint, collective level

+

We conclude this paragraph by inspecting other assumptions about the expected time horizon 7. Assume
that agents have some hint about the true duration s, and, as a consequence the Poisson distribution is
no more accurate. These informations translate into the fact that 7" depends on the time at which it is
evaluated. For example T (v) = s — f (v) where f is a slow varying and increasing function. Under this
hypothesis, the quadratic term due to the constraints becomes:

exp (/0 (slf(v)x () /O X (u) du) dv)
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and since f (v) varies slowly, one can approximate f (v) by its mean over [0, s] in the integral:

J, (fX

~

v) /yX(u)du> dv

I s
The term § [; (X (v) [y X

bation. Since @ varies slowly, it can be approximated by o f ( E) Where =

We are thus left with:
exp (
was) (/ X ()

/X du)dv— /( /X du)dv

du) dv is the one we dealt with before and < ( ) can be considered as a pertur-

g)5

is the mean duration process.

)

(y)

O'S

G (a7 x? y) \/g

12

() o) e (vl
PP T TaF () da V2a
() )2z
exp <_\/2 <OZ+ (1af(;))>’ o |>

z+y

(C£)°) o
l—ozf(%) O
right after expansion. As a consequence, the introduction of a varying time horizon shifts the mean path

where the notation : exp ( : denotes the ordered product, i.e. all the derivative are set on the

(“éﬂ) to ; \/izyw but all the previous results are kept, when this shift is included.
9 Examples

9.1 Consumers/Producers with current account constraint
9.1.1 Case 1: One type of agents
Each of them is producing one good that

is consumed by other agents in constant proportion.The production/revenue Ys(i)

agents consumption (plus some exogenous constant flow):
Y, :Zf(cgj)) +Y
J

with Nf = 1. Each agent is facing the C.A. balance constraint:

We consider N identical agents that are consumers/producers.
is proportionnal to other

(142)

B(Z)

C‘(;Z) s+1

Co=B,+ Y (£(c) +
J

— Bgi) + Yg( DI
which rewrites, given (142):
Y) ~ Bun
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We have seen that, with such a constraint, we obtained the following weight (88):

exp (U97) = exp ZZ( )_%chgcgu I Y ael

i S1,82 %, S1>S2

Here, the consumption variable was shifted by substracting it’s optimum, i.e. as before —C? stands for

-« (CS — }7)2 and Y, for Y, +Y. When we consider a large number of identical agents, we can follow the
procedure given above (see (85), (86), (87),(88)). The main point is that Y; is endogeneized. The effective
action in the continuum approximation is:

N 2 . . . .
exp (U/) =exp [ =) (/ (CS@) ds+;/C§i)C§;)d51d82) + %Z//C’S(l)cég)dsldsz
i 2]}

whose field theoretic formulation is defined by:

S(U) = _/\Iﬂ(x) (—V2+%+m2)5(x—y)+ 2 ) 49|22 (y) dudy
o o o
f [ V@V @) () ¥ () W () dody
Remark that since the variable z stands for C —Y — z, z is not constrained to z > 0.
2 (Hy) rT—Yy ’
/dx\IJ (2) (-V? + 2 + ¢ /dxdy\I/T 22 +2 T (y)
o
f [ V@V @) () ¥ () W () dody
if no inertia:
(=59 -yl
o /dz\IJ () (2 + %) U (z) + /dasdy\IJT (x) 21 +2 U (y)
o o

—f / (zy) ¥ (y) V' (y) dady

We show in Appendix 12 that the minimum of S (¥) is reached for ¥ (z) = 0 and that there is no other
minimum, even local, so that no phase transition appears. The reason of this vacuum at ¥ (x) = 0 is the
direct consequence of the constraint represented by the term:

_%f Uqﬁ (z) zW (a:)} U Ut (y) yW (y)]

in the effective action S (¥) . The minus sign is crucial for preventing any phase transition. Thus the
constraints smoothe interactions between agents, which prevents from switching from a symmetric nul equi-
librium to an asymmetric one favouring some agents.

As a consequence one can directly consider the graph expansion around ¥ = 0. Here (125) yields for the
two points correlation functions:

+Z GK z,y1,0) y1Ge (Y1, Y2, @) Y2 Y21 G (1,9, @)
1>0

where GY- (x,y, @) is the Green function of the operator:

2 2
(% oo (53]
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. 2. . . . .
as explained before, the term (%ﬂ) induces a smearing in the behavior of the agents, due to the constraint.

The contributions in (143) can be resummed so that:

Gt (@,y,0) = (G%) 7 (,y,0) + faG% (2,9, )y

and thus Gk (z,y, «) is the Green function of the operator:

2 2
<—02V2 +a+w2> d(x—y)+ (T) + f22GY% (z,y,0) y

Gy (v,y,0)y = G% (z,y,a) ((m—;y)Q (5”;9)2)

g2 . . . . .
and that the term (LQy) can be neglected under our basic assumption of low fluctuations, the inclusion of

. . . . . . 2
the interaction with other structures modifies the smearing potential (%ﬂ) by:

Now, given that

(x 42— y>2 (1+ f2G% (z,y,))

Inserting this result in (138), leads to model the apparent behavior of the agent as a brownian path, whose
variance is modified from:

to

= o
(a+ (14 f2G% (2,9, a)))

In other words, the variance of the movement is reduced by the presence of other agents. The interaction

reinforces the effect of the constraint and imposes smaller variations for the individual agents.

9.1.2 Case 2. Several types of agents

If we consider several types of agents denoted by greek indices {«...}, we can define Cﬁi)’“ as the consumption
of agent ¢ belonging to type a. The constraint becomes:

oo = pie 5 (fag (ng),ﬁ> + y/) — Bl
8
the coefficients f,s3 define the fraction of consumption of an agent 3 spent in the good produced by agents
of type a. They satisfy:
ZNoefoeB =1

where N, is the number of agents of type a, so that ) N, = N with N the total number of agents.
As in the previous paragraph, the effective utility for the system becomes:

exp (U7) = exp —zi: (/ ((Cl </C( > >+;§//C§“’a ;B:faﬁct(j)ﬁ dsdt

Which leads to the field equivalent description:

a:a+y(,)2 2

S((W,) = Z </ dza 0T (z0) (—V2 + 22 + ) U, (24) +/dxadya\IfT (za) l( ;2 +2
Zfaza [ ) ana o) | [0 0) 00 (a)

Ta — Ya
g

Vo (ya)>
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Appendix 12 shows that the minimum of S ((¥,)) is reached for ¥, (z) = 0 and that there is no other
minimum, even local. Again this is the direct consequence of the constraint that induces the terms:

_foaﬁ [/ Ul (24) 24T, (xa)} U Ul (25) 2505 (z5)

in the effective action. Here again, the constraints smoothe the interactions between agents, and prevents
from switching from a symmetric nul equilibrium to an asymmetric one favouring somes groups of agents.

The two points Green functions can be computed similarly to the previous case. In term of graphs, the
term fop [[ U (20) TaVa (24)] [f \IJ,L (z5) 2p¥p (1‘5)} implies that vertices o with two legs are connected
to vertices 8, a # [ with two legs through a line labelled f,3. The factors foo can be absorbed by
To — V faaTa- Keeping only connected graphs, one finds:

GK( )y, ) - GO( y(@ a) (144)
+ 30 () 6 ( () (e, ) (@) G0 ( ) gl )yéa e ( ) y(@) )
>0

where fl(a) includes the modifications to G% (z,y, «) due to the interactions with all other type of agents:

m\~

Z_: (fac)® Z Faoafos, /G (ol — k)HG (Bots(BroaBik))

/817 15[ k

where g (61, -~-a5171€) is the number of times [ appears in the set (Bl, ...,Blfk) and with

G = /yYB)G%( 2.08,0) 6% (17,97, 0) G (5207 ) gyl
For fao =1, and thus f,3 = 0 for a # 3, so that one recovers the one type of agent case:
Gt (xm),y(a)’ a) = (G9! (xm),y(a),a) 1@ (xm),y(a),a) (@

For foo =0

fl(a) _ Z fozﬁl fozﬁl /HG (B85 (B1s--81))
ﬂla 761

*[

= [ (S0 (+5%,0)
where * denotes the convolution product, and (144) becomes:

GK( ) y(@) ) - QY ( (@) y@), a)
+Z(_1)l Zfaﬁgg( (mw%yw)’a)

>0
xGY ( ) ) ) () G0 ( @) (@) )yg‘*)...y}”‘)ao (y§a>’y<a)’a>

67 (50,41, 0) = 6 (s7,41, )

That can be resummed as:
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9.2 A simple business cycle model

In this section we use again the single type of agent model, but we indentify the saving variable By with the
stock of capital involved in the production function, as is usually done standard business cycle models. As
a consequence, the budget constraint becomes:

Ci(s)=rK;(s) — K;(s)+Y;(s)

We also endogeneize Y; (s) and consider this variable as a function of the capital: Y; (s) = F; (K; (s)). The
budget constraint can thus be written as:

Ci(s) =71K;(s) — K;(s) + Fi (Ki (s))

Now, introduce the interest rate r given by the mean productivity of the set of agents:
1 /!
"N Z Fi (K;)
i

As before, the effective utility for agent ¢ with constraint writes:

vt (c;) = / C? (t) dt+ /t P ( / tr(v) dv) C; (s) C; () dsdt—2 /t y C; (t) exp < / tr(v) dv) Y; (s) dsdt

This is computed in Appendix 12., and the result in first approximation in 7 is:

Ui (c) :/03 () dt—Q/FZ- (K; (t) K; (t) dt+2/r(t) K2 (t) dt+4/ 7 () K; (s) F; (K (t)) dsdt

t>s

At this point, it is more convenient to switch to a representation in the K; () variable. Replace [ C? (t)dt
by:

[ezma = [ (k0 - K0+ B (5 0) e
= [Rwas oK@+ R ©) @
72/1'{1- (t) (rK; (t) + F; (K; (t))) dt

and write the last term as a border contribution (with F; = GY):

T

/Ki () (rK; (t) + F; (K; (¢))) dt = BTKf (t) + G (K; (t))}

0

Since we rule out accumulation of capital at 0 and T', we discard border terms, and this term can be neglected.
As a consequence:

/ )dt = / (rF. (t) — K (1) + i (K, (t)))th
- /K2 (t) dt+/(rm () + F, (K (1)) dt
and U¢f/ for agent i becomes at the first order in r:
Uers = / K2 (t)dt + / (F2 (I (1)) — 2F; (K (1)) K (8)) dt

42 [1(0) (K2 (@) + K (0 F (6 0)) de o+ 4 [ (5) K (5) B (K (0) dde

t>s
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Summing over all agents, the global action for the system is:
v = Z/K2 dt+/(F2(K (t)) — 2F; (K; (1)) K; (t)) dt

+2/r(t)(K2()+K() s (K dt+4/ ) F; (K (t)) dsdt

S

_ /K dt+/(F2(K())—2F( § (1) K (1) dt
by 3 [ F G 00) (K2 0+ K 0) B (53 (0) de + 7 Z (8)) K (s) F (K (1)) dsdt

And since agents are identical, we can assume that in first approximation the two last terms are:

(K7 () + Ki (t) F; (K; () ~ (K (t)+K; (t) F (K; (1))
Ki(s) =~ K;(s)

2

the error in this approximation being of order lower than r. In that approximation:
—Z/F’ 0) (K2 () + K (£) F (K, dt—QZ/F’ K2 () + K; (1) Fy (K; (1)) dt

and this individual potential term is of order r, through F} (K (t)). As a consequence, it can be neglected
with respect to

[ (2 )~ 2, (5 ) K ()

We then end up with:
Suet = Z/KE (t)dt+/(Fi2 (K (1)) — 2F; (K; () K (t)) dt
+% Z . F (K (s)) K; (s) Fy (K (t)) dsdt

Assuming agents are identical, so that F; = F', such an effective utility for the system has for Field theoretic
equivalent:

S () = ! (&) [(-V* + (F (@) - 2F (0)2))] ¥ (a) + 3y [ (¥ (@) F' (&) ¥ () da) [0 () F () ¥ () dy

Depending on the sign of (F? (z) — 2F (z)z), the action S (¥) may present some non trivial saddle point.
To inspect this possibility, write the saddle point equation %S (P) =0 as:
0 = [(-V+ (F?(z) —2F (2)2))] ¥ (2) (145)

+%F’ (z)z (/ Ot (y) F (y) O (y) dy> U (z) +% </ U (y) F' (y) y¥ (y) dy> F(z) ¥ (z)

Now, let:
U (z) = vV (2)
with ||¥y (z)|| = 1, so that (145) can be written in function of ¥, (z):

0 = [(-V?+ (F?(z) —2F (2)2))] ¥4 (2)

tig (F @ [H 0 Fon @y Fo ([ om o)) e
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If (F? (z) — 2F (z) z) < 0, then, a solution for 1) # 0 may exist. Actually, for such a solution we can compute
(145):

4
S(P) = Ul (z)[(-V?*+ (F?(2) = 2F (z)2))] ¥ () + N/ (U7 (z) F' (z) 2V () dz) /\IJJr (y) F (y) ¥ (y) dy
4
- - [egri@ (Fes [oloroneas o ([ ma)) e
4 .
by [T @F @0 @) dn) [ )F )V ) dy

= [ Y@ (F’ (Js)w/‘lii (y) F (y) 1 (y) dy + F (2) (/\Ifi W) F' (y)y¥1 (y) dy)) U, (z)

< 0
Which is below S (0). The solution of (145) may thus present a non trivial minimum, as asserted before.
To prove this point, we have to show that among the set of possible solutions of (145), the action S (V) is
bounded from below. Moreover, the second order variation of S (¥) around the solution with the lowest value

of S () has to be positive. We write this second order variation %S (¥). A straightforward computation
yields:

S = ¢ @ [+ (F (@) - 2F @) o) o (a) + 3 [ (o @) F @)oo (o)) [ 9] () F () s () dy

N
Sre( [ @ F @an @) Re ([ ) F 0) 6ty (146)

i [(H@F @ov @) [o ) Fw)ew)dy

and we require that 625 (T) > 0 at the saddle point. The question of stability may be adressed if a more
precise form for F (z) is given, and this will be done below. However, rewriting 2S (¥) in a more compact
form will be useful in each case. This rewriting is done in Appendix 12.

To better understand the possibility of a non trivial vacuum, we will assume some particular forms for
F (z). The first case we will consider will be:

F(z)=c(z—f(z))

with 1 < ¢ < 2, to allow for the possibility of a phase transition, and f (z) slowly increasing with f (0) = 0.
It models a production function with some economies of scale, up to a certain level of capital x to finally
reach a constant return to scale when x is large. In that case:

SWw) = / U (2) [(-V + (F? (2) — 2F (2) )] ¥ () dm+% / (U (2) F' () 2V (z) de) / Ul (y) F (y) ¥ (y) dy
/‘I’T (z) [V +c(z—f(2)(c—2)x—cf ()] ¥ (z) dx

e ([v o) ([0 e-ra)ve )

where we used that f/ (z) ~ 0.

We assume that the integrals are all performed on the range x > 0, since the variable it represents, the
capital stock, is positive. Moreover, we also assume that the parameters are such that our model has a non
trivial solution to the saddle point equation. We choose ¢ = 2 to have a simple example. In that case:

12

S (W) = /\IJT (@) [(-V? —4f (2) (@ — [ (2)))] ¥ (=) dx+1—]\? </ U (2) 20 (2) d:z:> </ U (2) (2 — f (2)) T () dx)

(147)
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We show in Appendix 12 that a minimum exists for a non trivial value of the field, namely: ¥ (z) = a¥; (z)

16 Aa? 16 Ba?

—4f () +

(1422 — 4 (@) f (=)

N N

U, (2) = adi (\/

(x_

where Ai (z) is the Airy function, « is a normalization constant such that || ¥ (z)]

(%—4]“(33)4—%)

)

| =1, ais a factor satisfying

an equation determined by the saddle point equation, and where the constants A and B are defined as:

/ Ul (2) 20 (@) da
R+

/ V! () (2 — f (2)) V1 () do
R+

The second case we consider is:
F(z) =x + cx?

A

B

(148)

with 0 < ¢ < 1. The definition (148) models increasing return to scale. In that case:

S (D) n2/qﬂ (@) [(—V2 + (F? (2) — 2F (2)2))] ¥ (2) d +

n* / Tl () [fVZ + (2 4 cz?) (ca? — 2)] U (z) dz

ot
N

n? / Ut (z) [—V2 + (P2t — 2*)] U (z) dw +

_|_

47}4

4774

N

J @ @F @av @) do) [0 @) F ) ) dy

</ Tl (2) (1 + 2cz) 2P (2) da:) </ Ut (z) (z+ ca®) ¥ (2) dx)
ot (z) (z +2c2”) ¥ () da of (z) (z+cz®) U (2) da
w(/ ) )

where W (z) is normalized to 1 and 7 is a parameter for the norm. The saddle point equation is:

2 2
{—V2+02x4+<4?\7(A+2B)—1>x2+4f\?(A-i—B)}\Il(m):O

with:

A

B

< /R . Ut (z) (v + 2c2?) ¥ (2) d:c)
</}R+ U (2) (2 + ex?) U () da:)

We show in Appendix 12 that the action S (V) is bounded from below and that it has a minimum obtained

as a first order correction in ¢ ot the function :

\/475772 (A+2B) -1
2

Uy (z) = nexp (—

/

This modified eigenvector ¥ (z) is expressed as a series of ¢:

(W ()] 2 | (y))

6 (v) -

n* (A+ B)

2
(“N;‘&WAHB)

)

Wi (y))

(U1 ()] 2 [ Wy () (P ()] 27 [ W0 (3))

4lm

W ()

472

2N (o (@) [P (y)) (¥ ()] 2 [Wo ()

(Wo ()] 2 [¥y () (W1 ()| 2% [T (y))

[V (y))

412
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To conclude, let us stress that we could also introduce interactions between different agents via technology.
We neglect the interest rate and the interaction related to it, and suppose K; (s) is enhanced by a technological
factor depending on the accumulated capital, with:

RO = (6|52 [ K @ ds | RO o)

If we expand G (% > fg K (s) ds) in series:

1 K 1 ¢
NZ/ K (0)ds | = T Nz/ K, (s) ds
then, given that to our order of approximation:

/((K (t))2+(FZ- (K (t)))2> di+2 | (K () F (K (0) do

>s
can be replaced with:

/((K <t>)2+(m (K; (t)))Q) dt+2/> F?L;(ﬂ)dt

t>s g

As a consequence, the technological factor becomes

1 ' F? (Ki (1))
NZJ:/O K, (s)ds 2

n

zn:gn ;fzj:/() Kj(s)ds

n

ZgnZ/dt ]tZ/otKj(s)ds w
) TS [ [ 10 600 ) P20

JisJn

Zgn n+1 ( > / / Z J1 51 32 (82) an (Sn) Fj2n+1 (an+1 (Sjn+1)) dsl...dsnd$7,+1

Ji,--Jn41

whose field theoretic equivalent is:

;gnm @)n (/ U (2) 20 (2) daz)n (/ ot () 220 (2) d:c)
= 012 (/\pT()x2\1/(x)dx)G(/\1/T dm)

for G’ = G. The effective field action is thus:

—Ut (2) K—VQ + (2 + %) e (/ Ul (2 dl‘)) } (%)

The quartic term
- (2 + %) /\IJT (x) [xQC?é (x — y)} T (y) (/ Ul (2) 20 (x) daz)

models an interaction term resulting from the tchnological factor, as announced. We will not pursue this
trail here.
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10 Interactions between Fundamental Structures and Phase Tran-
sitions. Non trivial Vaccua and integrations of structures

10.1 Interaction between similar Fundamental Structures

In the two previous examples, no phase transition appeared. The constraint implied a single vacuum for any
parameter of the system.

In our context, multiple vacua may arise only if the fields considered are defined on a space of at least
two dimensions without constraint, that is when agents’ actions are multicomponent. Actually, in that case,
we saw that the effective global utility functions (see (115), (116) (97)) have the form:

Usss (X) = —%X(t) (M) 4+ N) X () - X () MO (x (1) - (X)) (149)

- (X (t) — (X)) (N - M<S>> (X (t) — <X>) + Veps (X (1))

Recall that in the second section, we noticed that a constant term has to be added to this effective
utility. It was discarded when looking at the dynamics of a single system. However, now that we consider a
large number of such systems, this constant has to reintroduced. Actually, recall that our model considers
interacting copies of the same system, each system interacting over a variable time span s, previously denoted
T. For such systems, we sum over the possible time spans through a Laplace transform. In that context,
adding a term sUeyy ()_(e) in Ueyy (X) leads to shift a by Uesy ()_(e) after Laplace transform.

Recall (95) that the Laplace transformed Green function becomes, without the potential Ve :

G (za1) = <—;V<(M(S)+N)1V+M(A) (;«-(X)))
+ (2= (%)) (N BYEESTRYETE +N)1M<A>) (- (X)) +a) 5z — 1)

Then, adding the Uy ()_(6) term and letting y = (3: — (X)) leads to the field action:

1 1 ~1
S(U) = i/qﬂ (y) <2v(M<S>+N) V 4+ yMAV + m? (150)

+y (N —~M® 4+ MW (M<S> + N)A M(A)> y+V (y)) ¥ (y) dy
A

—I—/ZV(xl,...,xk)\I/(xl)\IJT (1) .0 (x3) OF (21) doy ...y,
k=2

where V (21, ..., ) is any interaction potential between the various agents, and where we set:
m? = (o + Uesy (X))

As said in the second section, Ueys (X' 8) can be negative. It is a direct consequence of costly, in utility
terms, tensions between the components of the considered structure. Then, depending on the parameters of
the system, m? can be positive or negative. We nevertheless keep the notation m? by reference to the usual
mass term in field theory.

The possibility of a non trivial minimum for S arises from two possible mechanisms. To describe this two
possibilities we first assume V (y) = 0, in order to focus on the effect of the interaction term V (x1, ..., x).
The first part in S (¥):

1 1 -1 -1
/ 3 (w (v) <2v (M<S> + N) V+yMAV 4y (N - M + MW (M<S> + N) M“”) y+ mz) v (y)) dy
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will be expressed in a diagonal form. Consider the concatenated vector (z, p)t with p = V the "momentum"
we can rewrite:

1 -1
<2v (M<S> + N) V4 yMAY 4y (N ~ M 4 M<A>M<S>M<A>) y+ m2)

: MO + N M@ » ,
(p, @) ¢ 1 +m
— (M(A)) N — MO 1 pr(4) (M(S) 4 N) MA) T

Now, given that we can decompose the matrix

M) 4+ N M@
( — (M@)! (N—M(S> + M@ (M) +N)’1M<A>) )

as:
M®S + N MW
— (M) (N — MO 4 MA (MO 4 N) M(A))

< — (M@W)' (11\4<S> +N) (1) )

M® + N 0
x 0 (N — M) 4 M@ (M) 4+ N M<A>) — (MO (M + N M@
x( L= (M® 4 N) " (M) )
0 1
1 0 M) 4+ N 0
— (M) (M) £ N)T" 1 0 N — M 4 2@ (MS + N) ™ M@

(1 e o) )

we define the change of variable

(2)- (3 oo ;)

which satisfies [2/,p] = [¢/,p] = —1. We can thus rewrite the differential operator K as:

1 -1 -1
K = <—2v (M(S) + N) V4 yMAY 4y (N — M 4 M@ (M(S) + N) M<A>) y+ m2)

— A M(S)+N 0 @ 2
= (2,9 0 N — M) Lo (M(s)_’_N)flM(A) o +m

which describes a set of coupled oscillators. A second change of variables allows to diagonalize M%) + N =
ODO! and to obtain K in a standard form. We let:

(o) =(O€Mtow$*m><§>

- ( @ (\/M<S)O+ N)_l ) ( (1) _(M(S)HY)I (M) > ( ;j )

This change of variable preserves the commutation relations between xz and p and leads to the following
expression for K :

1 0
o t _ T 2
K= (21,p1) ( 0 \/M(S>+N(N—M(S)+2M(A) (M) 4+ N) 1M(A)) ME F N ) < 2 >+m
(151)
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Thus, K may present some states with W (y) # 0 and S (¥) < 0 in three cases. First, if M%) + N has some
negative eigenvalues, second if

N =M 2@ (M 4+ N) W

presents some negative eigenvalues, or ultimately, if the term m?, which represents the internal tension
between components of a fundamental structures is negative and large enough to lower the minimum of
S (¥) to some negative value.

The two first possibilities are similar, and differ from the third one. We will focus on this last possibility.
Actually, the two first possiblities represent an unstable system that will quickly break out, and thus no
stability can be achieved. The third possibility rather describes a milder instability with a certain persistance
in the dynamic system.

However, this latter kind of instability may be turned into a stable minimum, through a mechanism of
interaction between similar structures.

Consider for example, that we add to K an interaction potential modelling the simplest form of long
term interactions between two fundamental structures:

V (y1,y2) = U (y1) U (y2)

where U (y) > 0 and such that the minimum for U is reached at y = 0. We assume that m? < 0 and that K
has a finite number of negative eigenvalues, which means that the first eigenvalues of the harmonic oscillator
are lowered to a negative value by m?2.

We also assume that the matrix elements of U (y;) between the eigenfunctions of K are positives. This
is often the case for standard examples, if we choose U (y1) = (y1)' C (y1) with C definite and positive.
Actually, up to the perturbation term yM AV, K is of harmonic oscillator type. For such operators, the
matrices elements of (yl)t C (y1) are positive.

Given the sign of U (y1), it models an attractive force between two types of similar structures (note in
passing the analogy with neural activity, where neurons, firing together, tend to bind together). The saddle
point equation including this potential is then:

0= KW (y) +2U (4) T (y) / (¥ (42) U (92) ¥ (1)) i

We show in Appendix 13 that for a potential of large enough magnitude and peaked around the minimum
of K, the saddle point presents a non trivial solution which is a minimum: ¥ (z) = \/n¥; (z) where ¥, (z)
has norm 1 and satisfies:

(U] K [¥y)
(U1 U [¥1)

The vector |¥1) is a combination of the eigenvectors of K with negative eigenvalues, so that (1] K |¥;) < 0.
Moreover the norm of ¥ (z) is:

Uy (y) = KU (1) U1 (y)

1 (0| K|
1 (K| 1>2 50
2 (| U [21))
Appendix 13 shows also that the same results hold if internal tensions are modelled by a more general

potential V (y) than a simple shift m? < 0. It is sufficient that the potential V (y) has a negative minimum
of large enough magnitude.

10.1.1 Example, the three agent model

In Appendix 6, we show that the effective action for the three agents model is given by:

Ueps (X (8) = (X (1) = X) (N - M*) (X (1) - X) (152)
%(xo X (t— 1)) (N + M) (X (1) = X (1~ 1)) — (X (1) - X) M4 (X (1 - 1) - X)
(X = X) (N = (M = M)*) (X - X9) = (X - X)) X



where the matrices and vectors involved are defined in section 1 and Appendix 6. The vector X is computed
in Appendix 6, and represents the equilibrium value reached by the three agents’ system. The vectors X2(2)
and X€ represent the goals, i.e. the desired values for X, for agents 2 and 1 respectively. Due to these
competing objectives, the equilibrium X is a combination of these two vectors. Appendix 6 shows that:

X =X4 (N-M5"" <(N+MS) Xe;(M')tXf)) (153)
The term in bracket in (152):
Ues (X) = { (X = X°) (N + M5 = (M = M) (X = %) = (X - %) M X}

represents the loss in utility due to the competing goals between the different elements of the structure. Even
if, globally, it is optimal to stabilize around X, each sub-component experiences a loss from the difference
between X and it’s own goal. As a consequence, at least for some values of the parameter, this term is
negative. Actually, assume that, due to its strategic advantage and the magnitude of the stress it can impose
to its subcomponents, the third agent is able to drive X close to X¢. Then:

Ues (%) = = (X - ) u'X (154)

and given the definition of M’, this last term measures the loss experienced by the second agent when X,
i.e. the equilibrium value of X (¢) is away from XQ(Q), thus Uesy (X) < 0. Then, the term (154) induces an
instability in the system by lowering the lowest eigenvalue of the Green function. To get more insight about
this phenomenon, we computed the matrices involved in U,y (X (¢)) for § — 0:

Ueps (X (1) = (X()—X) (I -M%)(X(t)-X) (155)

o (X)) -XE-1)I[+M) (X)) -X(t-1)- (Xt -X)M* (X (t-1)-X)

N |

n ((1 — M) Xl)t (MM — 2M) ((1 — M) Xl)

Appendix 6 shows that the operator appearing in (151), except the mass term:

1 0
- t .
K= (z1,p1) < 0 VM® (N—M<S> +2MA) (M) +N)’1M<A>) M) ) ( P )

has positive eigenvalues for a range of parameters of relatively small magnitude, so that the stability is
preserved. We also show that, as previously said, competing objectives between the components of the
system imply the possibility of a constant term

((1 M) X1>t (M*M — 2M) ((1 M) Xl)

of negative sign. The stability may also be impaired by any internal negative potential in the direction of
the lowest eigenvalue of K. As one could expect, this direction corresponds to a state of maximal strain
imposed by agent 3 to agent 2. These states may be more easily turned into an unstable one than others by
some perturbation.

However, as explained in the previous paragraph, any positive interaction potential between different
structures, and pointing in the direction of instability may restore the stability to produce some composed
states. Thus, this is the relative instability of such states that makes possible, in an indirect manner, the
aggregation into integrated structures with more degreees of freedom.

10.2 Interaction between different types Fundamental Structures

The whole procedure can be generalized when different types of structures interact. Having chosen a system
of coordinates such that the field action ultimately takes the form:
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1

s =[5 (90) (-5 MOVt uD Vo)) v ) (159

A
+/ZV(x1,...,xk)\Ifil (1) Ol (21) .0y, () U] (2) doy...day
k=2
In (156), operators of the form
1
K; = <—2 (Vi) - yM]EA)Vi +yDry +V (yk)>

appear. If some of them have negative eigenvalues due to a negative minimum of V (y;), and if the interaction
potentials V (z1, ..., ) are positive, then the saddle point equations:

1
0 = (5% =NV D)) Wi )

9 A
+ <8\IllT ® /év(xlw-ka)qln (ml)‘l"j1 (z1) V4, (xk)‘l’jk (xk)dxl-ndxk) W (y)

may have non trivial minima. This possibility is studied in Appendix 13. We show that for a potential
V (21, ...,x)) oriented towards the lowest eigenstates of the operators K;, the whole system has a non trivial
minimum with S (¥) < 0. This minimum is a composed state made of the lowest eigenstates of the K; along
their directions of instability. The goal of the rest of the section is to detail this statement, in particular the

form of the composed state and it’s interpretation in terms of integrated structure.
(0)

i

To do so, we need to precise some notations. In the sequel we will write ¥
of the operators K; and \IJEn) (x;) for the other eigenstates of the K;. We can write a composed states in the

following way: Assume that the potential connects p; copies of structure 1, po copies of structure 2 and so on

(x;) for the lowest eigenstates

until p, copies of structure r. Thus, we can write the potential V' ((xl)p1 N (xk)p7-> with py + ... +p. =k

where (aci)pi represents p; independent copies of z;. In other words, (xi)pi is a coordinate system for F; X ...
x F; with F; the manifold of states for structure 7. Given these notations, a composed state for the various
structures writes as a sum of eigenstates:

> Any),, (12, s, {‘1’§n1) (561)}

(nl)p17(n2)p2 ..... (n,ﬂ)lJ

[\I’l(”") (ml)} [Wﬂ (xr)}

D1 b1 Pr

where [\Ilgn’) (mz)] is a product of p; copies of eigenstates for structure i:
pi

[0 @] = 0 (@) W2 (), 0 (@),

pi
We will also denote, as a shortcut for identical copies of the lowest eigenstate:

00 @)] =00 () 9 (@) -0 ((2),,)

pi

Moreover, for practical purposes, the potential V' ((zl) P12 () pr) can be written in an operator formalism
as a kernel, whose form in the eigenstate basis is:

1% ((xl)pl e (@) (1) s e (y,,.)p") (157)

= > Vi )y, |98 (@) (W )] [0 )] [0 ()

(nl)p17(n2)p27~»-7(nr)p »

V)

"

... {\IIS.”T) (:U,-)L)T {‘I’S-nm (yr)}
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where the coefficients V(nl)m)(w) are defined by:

p27"'7(nr)p,r

Vi), (), vnn),, = /[‘I’gnm(xl)]plm [‘Ifl("’”(scz)]

< (w0 @] e ()]

- [xp}"l” (ml)]

[\Ifg"r) (zr)}

N V ((xl)pl s e (wr)pr)158)

[‘I’z(m” (xl)}

p1 pPi Pr Y2

Our hypothesis is that the potential localizes around the ground states of each structure. This translates in:

Vinn) (), g vens(nn),, << V(0),,,1(0),, 0 (0),, 1 sOME (123), 7 (0),, (159)

where (0) p, denote multi-indices with all their components set to zero. Actually, this condition means that
in 157, the terms proportional to the tensor products of ground states:

@] [ ] [ o] (e ] [0 @] [0 )

p1 D1 DPr DPr

dominate, as required. As a consequence of the assumption 157, the matrix elements of 158 rewrite:

V (@1, s @)y, W)y 5o (),

= o [0 @) [T 0] e @] ()] [ @] [0 ()]
p1 p1 P V2 Dr

> Vina)yy (n2)y o)y, {‘I’Y“)(wl)}p (o] e )]

(1), (72) yses(mr),, s ! P b

not all (ni)pi are nul
x... [qunr) (x,.)] [\pgnr)* (yr)}
Pr Pr
with: Vo = V0,100 (0),, == Vi), (12, (),

Pr

[\Ijl(nl)T (yl)}

V2

In first approximation, keeping only the dominant contributions of the potential, the action (156) rewrites:
1
S(v) = /5 (‘I’I (yi) Ki¥; (yz)) dyi (160)
A
+Z/V(x1,...,:ck)\ll,;l (1) Ol (21) .05, (2x) U] (24)doy...day
k=2
1
— (Ut (u) KU (4 ,
= / 9 (\Ijz (vi) KV, (yt)) dy;
A
b [ S0V (@01 @)y @y s a0y, ) [ ), 9] )]
k=2

p1

X (W1 (@), [V @] dlen),, -die),

T

A
+Z/Vo {‘I’go) (xl)]pl {‘IIEO)T (yl)}
k=2

1 @)y, [Pl @] eox @, [ w)] (@), d @), d), d ),

p1 Pr

d(y1),, --d(Yr),,

r

0 @] (e w)] [0 @] [0 ()]

p1 Y2 pi Pr Pr
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Appendix 13 shows that under some conditions on Vj, a non trivial saddle point exists and satisfies:

0 = KWy (a) (161)
+pz{ / ivo[\lzgm(azl)} O @] [0 @] [ )] e [e0 @] [0 )]
k=2

(@), (9] 0] o @, [ @]

x [, ("Er)}pr [\I/I (yr)]pr d (331)p1 ..d (a:l)pl_l .d (Jc,n)pr d (yl)p1 d (yl)pl_1 d (yr)pr} U, ()

p1 P1 pi P Pr Pr

Considering again the correspondance between the micro and the collective interpretation of the system,
we can wonder, at the individual level of effective utilities, what would correspond to interaction potential

\%4 ((zl)pl s e (l”r)pr , (yl)p1 s (yr)pr>. As explained above, the lowest eigenstates for the operators K are

gaussian functions. The fact that these eigenstates are oriented towards some unstable patterns means that
they can be written, up to a normalization factor, as:

Uy (2;) = exp (—)\EO) ((1 - HEO)) ‘xi>2>

where )\EO) is the lowest eigenvalue of

1
Ki =V (y:) = <2 (Vi)* — yMi(A)vi + yDiZJ)

that was assumed to be positive. We define HEO) to be the orthogonal projection on the eigenstate direction
corresponding to )\EO). As a consequence, (160) involves an interaction depending on the (1 — Hgo)) z;, Or,

if we allow for the more general form, a potential:

v ((1 - n§0>) 21, (1 - HEO)) i, e <1 - H§P>> x)

At the individual structure level, it may seem that one should describe the system by gathering the effective
utilities as in (149) for all ¢ plus some interaction terms:

1% ((1 - H§°>) X1 (1), .. (1 - HEO)) Xi (1), .. (1 - ngm) X, (t))

The situation is however a bit different. Actually, the interactions defined by V on the field level correspond
to non local interactions like:

/V ((1 - H§0>) X1 (t), (1 - HE‘”) Xi (k) (1 - H,(f))) X, (tr)) dty..dt,
for a global functional:

S Uesr (X0) + /V ((1 - ng°>) X1 (t), - (1 - HEO)) Xi (t) s e (1 . H§.0>> X, (tr)) dt;...dt,

1

(162)

= > <—2Xz- () MO X, () = X () M (X0 = (%)) = (X0 = (%)) N (X (0) = (X0)) + Vegs (X (t))> at,

+/‘7 ((1 - Hio)) X1 (t), e (1 - H§°>) Xi (L), (1 - Hg())) X, (tr)> dty..dt,

The utility in (162) is the effective utility for one single integrated structure, whose form differs however
from the initial model. The non local character of the interactions describes a "non causal" dynamics for the
whole set of interacting structures: in the field formulation, the set of structures acts as a global environment
for the others. The existence of a non trivial minimum at the field theoretic level, i.e. the fundamental state,
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translates at the individual level in the emergence of an integrated structure. Its behavior breaks the causal
dynamics of the initial structures as individual systems. Recall that the integrated structure emerging from
the non trivial vacuum has to be understood as some "average" or typical structure, and that the system
of agents is in fact an assembly of such integrated structures. They interact together, through non local
effective potentials. At the individual level, this leads to a non local auto interaction for the representative
structure of the assembly, the non locality modeling the action of the environment created by the set of
structures on the representative one.
Coming back to the system of large number of interacting structures described by (160):

5> [V [0 @] [0 @)
k=2 !

) {\I,go) (xT)LT [\I,go)T (yr)]

[ (1), [ ()]

@] [ W)

P1 pi y2

Pr

< [0 ()], [U1 )] d(@),, d(@), d@n), -d),

P1 Dr

we can describe the fluctuations around the minimum by decomposing;:
U, (1) = U, () + 005 ()

where W, (x) satisfies (161). Let (\ilZ (xl)) be the vector with components ¥; (x;). The second order
variation for S (¥) is then:

S(¥) = s((\p (xl)))+/25\1/j () K80, (27)

—I—Zpl P — 1) 860 (z {/ZVO [ (w1 Ll [‘I’gw (2/1)}
x [\Ifl ()] | )]

P1

p1

o X [‘I'r (mr):| [‘i’j (yr)L)T d(x1),, -d(z1),,_y -d@), dr), dW), 1-d (y,.)py} oWy ()

+ 3 mpndtl @) § [ SV [0 @] [0 )] [0 @] [ )]
l,n k=2
(WO ()] w0 )]

<[ @] (W] ox ()] [een] b)) [He]

()| d@),, d(@),y-d (@), ), d(ym,,n_l...d(yr)pr}wzm)

At the individual level this represents the linearized version of (162):

> Ueps (Xi) Z/Vw X, (t1), Xom (b)) dtydt

l,m

where the coefficients matrices Vij are the second derivatives of V ((1 — H§0)> X1y eee (1 — HEO)) Ly e (1 — H@) .ac,,)
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computed at the saddle point:

A
Vie=pi (1) { [ ([w%‘” @] [ @] [ @] (e )]
k=2

< [Wnen] [#)] o [ (@)

9O @] 90 )]

D1 Dr Dr

. , X1, {‘i’; (yz)} X X

P1 pi—1

< (O] 9]

pi—

) d(x1),, -d(x1),, _y -d@), d1), -dW), 1 -d (yr)pr}

DPr

and

Vin = pipn { / S ([wﬁ‘” )] [0 )]
k=2 !

[0 )] [#] )] o [ G
X [qf,,. (x,.)} [@j_ (y,,.)]

r Pr

P1

» X1y [‘I’;r (yl)}

) d(ar),, d (@), 4 Az, d(y), ~du), .d (y,,.)pr}

This set of non linear relations mixes the various types of structure and, consequently, the different coordi-
nates x1...xx. The saddle point solution has the general form:

Uy (o) = Y / O Px (ay, (1), oy (wp)™*) d (1) d (g)™

P1s--Pk

where (z;)"" is p; copies of the i th structure coordinate space. In other words, the saddle point solution is
represented by extended field configurations mixing all structures coordinates. The combination of internal
tensions/curvatures and interactions between fundamental structures has thus turned the ground state into
an integrated object whose coordinate space mixes those of the previously independent structures.

As an example, use again (156) with two different types of agents’ interaction:

s = 3 [ (vo) (500 -V D W) 0 )) do

k=1.2
JF/(yl)t C (1) (y2)" C (y2) ¥y (21) ‘I’J{ (1) ..Uy (zk) ‘Ifi (x) dz1dxg

The saddle point equation is then:
1
0 = (‘2 (Vi)? —yMMV; + yDiy + Vi (1/)) ¥ (y)

+ ((yzf C () ()" / (52)" C (y2) W () ¥} (mw) v (y)

10.3 Extension: Several type agents, effective field action
10.3.1 Principle

When several species of agents appear, the possibility to integrate first one type of agent behavior appears. It
amounts to consider a system with one type of agent less, but with a modified action which takes into account
the interactions with the suppressed agent as a global modification of the system. This representation fits
well for systems with "hidden" agents, or if, for some purposes, we are interested in the behavior of one (or
several) particular types of agents. By integrating out the remaining types of agents, one can focus on the
dynamic of a certain class, given an integrated landscape.

The general principle is the following Consider, that in the computation of the path integral

Jow (s (o), )P (e} (163
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where we take the most general:

s({r}, L) -
Z/dxk ((—QWH (%0) [(90) (Vo= 27 (= (%), )) i v () | w® (Xk)»
S ({7, ) 1w (30) v (50)

1<i<n

intra species interaction

3 Y Z v ({Xgnj)}lq < ) m I w ()A((ln )) o k) (X]Sj]))

m ky..ky N1 §ST j:llgiﬂ,jgnj

inter species interaction

Partition M as M = M; + M the integration with over {\I/(k)}k:M2+1 i (163) can be performed using
the methods given in the previous paragraphs (by graphs, saddle point approximation, or both). Though it
is usually impossible to get an exact result (we will give below examples for which it is), in principle, the
integrals over {\I'(k)}k:MzﬂmM, will leave us with:

Jor (s (o} ) o (oh )

Sers ({‘I’(k)}kl Ml)
Z/ka (< 5PN (%) [(T0) (Te = M (Ri = (X)) +mi + verd (%)) w® (X,Q))
ST ((50),..) T e ()00 5

1<is<n

S5 S ({0 T e (5 e (560)

m ki..ky N1...Nm j=1 1<z" <ng

where

Note that the individual potential Vef/ (X' k) is also affected. It follows directly from the fact that in the

integration process, interaction terms involving only "integrated structures" plus one "non integrated one"
leaves us with one individual potential. This reflects the fact mentionned previously, that is one ends with a
modified individual behavior. As well, the interaction process between remaining structures is itself modified
by it’s surrounding.

10.3.2 Example: two types of agents

To be more precise, consider now a simple two agents model, for which the space of configuration is one
dimensional: The propagator for block (fundamental structure) k (here renamed 41 or ig) is:

Vi +mi + (i), — Veff) (Ai)y, (), — veff)

1 3
mi:akfln(QDk)JriTr (M(l)( M(Q)) 2)

with Dy, dimension of the state space for block k. mi can be positive or negative depending on Dj and
M® (M (2) definite positive by assumption). Moreover, we consider as before a non reciprocal interaction

term:

V(xiy, i) =9 (xi2 — :i:l(il)>2
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i.e. a strain on the agent type 2 is imposed by agents of type 1.
As a consequence the action of the two agents system is:

S Wiy (@i2),) = Wiy (1) (=924, + (0 = (Verp),, ) A (w1 = (Vers),, ) ) W (a2)
\Ij’iz (xi2) (_V2 + mlzz + (miz - (Yeff)i2> Ai2 (xiz - (Yeff)iz)) \p;‘fz (3712)
N2
+6/dxi2\pi2 (mi2) \IIIQ (miz) (miz - jj’Egl)) /dwilqjh (xll) \II;[I ('7311)
We start by integrating the behavior of the second agent: To do so one an consider that it’s action is:
Wi, (2iy) (*VQ +mg, + <l‘z‘2 - (Y/eff)iz) As, (% - (Yeff)iz» LINEN
SN2
+5/d117z'2‘1’z‘2 (23,) U, (24,) (% - 5%(;1)) /dfﬁil‘l’u (@3,) O] (27,)
= Wy, (25) (—V2 +m, + (% - (Yeff)i2> Aiy (% - (YEff)iz)
(i0)? i i
+0 (ﬂ% — &, ) /d%‘l’il (2i,) W5, (2i,) V3, (ﬂ%)>

Up to some normalization (that we will reintroduced later), the integral for the exponential of this term is
straightforward:

exp (—\I»'Z-2 (Tiy) (—V2 + m?z + ($i2 — (Yeff>i2) A, (:Eiz - (Yeff)iz) (166)
46 (i, - gagl))Q / deiy Wy, (2,) W (22,) 01 (%))) X DU, (1) U (11,
= <det <(V2 +m; + (:% - (Yeff)iQ) A;, <:171-2 - (Yeff)iQ) +4 (:% - igi”)Q/dwil\Ifil (zi,) U] (%J)))l
exp <—T7" <—V2 +m2 (%‘2 - (Yeff)iz) A, (xiz — (Yeff)iZ) +9 (mi2 - fgél))Q/d$il\I’i1 (4,) \IJZTI (m)))

This term can thus be reintroduced in the action for the remaining field ¥;, (x;, ), and thus the integration
over the second strucure field leads to an effective action for ¥, (z;,):

Sef~ (\Ijll ($21>)
= S(\Illl (mll))

. § N 2
+1rIn (V2 +m?, + (% - (Yeff)iZ> A, (% - (Yeff)h) +9 (% - Iz(';)) /dzil‘I’il (i) W], (%))
Recall now that we saw before that the spectrum for the operator:
_Vz + mzzz + (‘Tlé - (Ye.ff)i2> Aiz (miz - (}V/eff)iz) (167)
(where the eigenvalues of the diagonal matrix A;, are positive) is given by

(n + ;) (Aiy) +m3, (168)

and it’s trace: .

> (n + 2) (As,) +m,

n

(here we use the notation (n + 3) (A;,) for the product between a vector of m half integers (ny + %, ...,n, + 3)

and the, say, m eigenvalues of A,;,).
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Actually, from (131), since the kernel of this operator is:

s = S0 @) (2 + (4 3) (4, ) 03, 0)
Then:
Tr (—V2 +mf2 + (a% — (Yeff)iQ) A, (miQ - (Yéff)b)) = /G(x,x) dx

- e ()

n

due to the orthonormality of the eigenfunctions ¢, ().
As a consequence, for an operator:

(—V2 + m?Q + (3% — (Yeff)iz) A, (%‘2 — (Yveff)h) +9 (xiz — i£21)>2/dxi1\11¢1 (24,) \I/:-r1 (xi1)>

which also quadratic in potential, the spectrum is similar and can be found by writing;:

) ) SN2
(—VZ + mzzz + (xi2 - (Yeff)i2> A, (xiz - (Yeff)ig) +0 (mlz - 'i'( 1)) /dxh 5611 l‘“ )}
= —V’+m
Aiz (Y/eff)m + ‘%521)6 f dmil \Il'h (wl1) \Djl ($z1)
Ay + 6 [ di, Uy, (24,) O (24)

Niy (Veys), +&008 [ day, W, (24,) !, (2
X((Aﬁé/d%%(%w;(%)» . 2 (Yeyp),, 850 [ dus, (T D) (@)
Niy +6 [ dai, W, (24,) O (4,)

+ | zi, —

5Ai2 f dmil \IIil (xil) \1,1'1 (mil) (( >, ) . :fj(”)>2
Ay + 6 [ doy, Uy, (24,) O], (21,) <! ”

This is again an operator with quadratic potential, with an additional positive constant and a shift of
variables. It’s spectrum is then similar to (168) to yield:

Ty <ln <(—V2 + mi + (zi2 — (Yeff)iz) A, (%'2 — (Yeff)iz) 4+ (331‘2 — igil))z /dmillllil (z4,) \I/;rl (x“)>>)

0N, [ dxi, Wy, (24, ol i - i 2
Zln < ) (Azg +($/d(£“\:[/“ (le)\:[/:r ($11)> -|—m122 + 2 .f XL (lE ) le(z ) ((}/ejf) _:i'gll)>
' Aiz + 6fd$i1 \I/il (xll) \I,il (mll) " :
for n integers. As a consequence:
Sef' <\IJ7;1 (wil)) = S(\II (xh))

+Zln << ) <AL2 4—5/033511 i (i) L (%)) +mZ,

5Ai2 fd‘ril i1 (mil) \I/;rl (mil) >, ~ (31 2
+ T ((Yeff>‘2 — i )>
Ai2 + 5fdx21 \Ijil ('T'll) \I]il (mll)

1 f SN, [dzi U, (ggl )\pj (aj,i ) . (1) 2
(n + 5) 4 f dxil \I’h ($L1) \Ijil (LIJ“) + Az‘2j5fdm11 ‘1/11 (av;)‘l’i (:vl) ((Yeff)iz o ‘T‘21 )

CERPE
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We can come back to the problem of normalization mentionned before. Remember that we showed before
that for normalization reasons, (166) has to be divided by it’s value for a nul interaction potential, i.e.
One can normalize this sum by substracting it’s value for a nul interaction, i.e.

exp (—\IJZ-2 (24,) (—V2 +m;, + (miQ . (Kff)w) A, (xiz - (Yeff)iz>) \Il;-r2 (a%))
XD, (5,) U, (24,)

= exp (—Tr (—V2 + m?z + (371‘2 - (Yeff)i2) A, (xiz - (Yeff)zg)))

whose value is: )
Zln ((n + 2) (As,) + mi)

bu virtue of (166). This value has thus to be substracted to Ses. (¥;, (x;,)), and as a consequence, one has:

Sef~ (\I,H (wll))

1 t oA, fdcri 2 (:z)ll)\ll;r (ml ) - (1) 2
(n + 5) 0 fdxil \I/il (:Ell) \I,il (.’17“) + A¢2Ji6 J dx; ‘Pil (mn)‘l‘il (:611) ((}/eff)m - xi; )

+zn:1n 1+ T

However, this sum does not converge in n. This is a standard phenomenom when dealing with infinite
degrees of freedom. Several methods exist to rule out this problem, and usually in physical problems,
methods of renormalization are used. Nethertheless, for the problem of interest here one can use a more
simple solution. Actually, for our system in teraction, we do not need to assume that all frequencies of
oscillations (see effective utility as harmonic oscillator), participate to the dynamic, or at least one can
assume that these high frequencies are quickly damped. As a consequence, one assumes that the sum will be
regularized in a reasonable way if we introduce a cut off in the sum. It amounts to assume that oscillations
of field ¥;, have bounded frequencies. We assume n < N. Moreover, for later purpose we normalize the
field, by introducing [ dx;, ¥;, (z,) \I/ZT1 (x;,) = n and rescale

\Ijil (1‘21) - \/ﬁ\IIil (xll)

with now ¥;, (x;,) of norm 1.
Ultimately, the effective action for agents of type 1 is thus:

. ~ i 2
(n+3) 0+ ozl ((Veps),, — 35)

Sef‘ (\1111 (.'L'“)) = 775 (\Ijll (xll)) + Z In|1+ (77,+ l) A + m2
2 12 12

n<N

(170)

10.3.3 Possibility of phase transition

One is interested in the possibility of phase transition, which requires to study the possibility of a minimum
for Sey. (¥;, (z4,)) with n > 0. This possibility depends on the parameters involved in Sey (U;, (2;,)). A
detailled study is performed in Appendix 14, and the results are the following:

For 6 > 0, then, if
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and if there is an 7, such that

(i) —m2 + Z mra)dv ﬁ (e, = 257)

>0
~. ’L 2
n<N (n+ 1) (A, +6mg) + mZ + Alzfg,‘]’o ((Yeff)i2 — 951(21))

DN =

(the possibility exists depending on the parameters since, the function in the sum is increasing starting from
1y = 0.), then there exists n; # 0 such that

W0 ) = v () ey (L2

is a minimum for the action Ser.. As a consequence a non trivial vaccum exists, a results whose implications
have been explained earlier.
For 6 < 0 the conditions are simpler. If:

1
5 (AIL‘2) — m?l > 0
Y A(Zl)
1 ((Yeff)w T, )
5 (i, m,1+6n<ZN ey < 0

then there is 1 # 0, such that \/77\115?) (2;,) is the minimum of Sey. (¥, (24,)).
For all other cases the minimum for S.¢. (¥;, (z;,)) is reached for 7 = 0 and no phase transition occurs.
If we rather integrate over W;, (z;,) we obtain the effective action for x;,:

-V +m? + (xil — (Yers), ) i (%1 (Yers), )

+6 [ da, <z - ng“)) o (25,) UL (3,)
= 5V, (zi,)) + Z/dzmﬁn (% - (Yeff)il) 2 ((% - (Yeff)il))
X In ((n + ;) Ay, +mi + 5/dmi2 5% — @(11)) U, (21,) \IIL (x12)>

1‘ Zln _VQ + ma + (xil - (Yeff)il) Ail (xh - (Yeff)il)
— 2 9
i +5fdxi2 (5522 j(ll)) U, (ziy) \I/;-rz (zi,)

Sef' (\Illé (-ng)) = S (\I’iQ (-’1712)) +Trln

As before, we normalize by substracting

(SO

2
deUiQ (xlz - i(zl)) \Ijiz ($Z2) \IIIQ ($i2)
(n 5) A+ m?l

leading to:

Ser. (Wi, (3,)) = S (Wi, (2,)) + > In | 146

Again, one has to regularize by allowing only a finite number of Fourier components, n < N.

fdxlé (‘le - 3}(“)) \Ilig (ng) \IJIQ (1'22)
Sef~ (\Illé (‘7:72)) = S xZ? T;Vln 1+9 (n E) Ai1 + m?l
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Normalize
\I/iz ($22> - \/ﬁ\piz (xlz)

As a consequence:

. 2
fdziz (xiz - jz(zl)) \Ijiz (zi2) \I/IQ (xtz)

2 21 i1

n<N

We show in appendix 14 that for such a system, the expectation value for (¥;, (x;,)) is nul, and thus no
phase transition occurs.
At the lowest order in perturbation theory,

Sep. (Wi (222)) = S (W, @) + | 3 0 [ (o= a0 i (i) ¥, (1)

n<N (n + %) Ai, + ml21
that is the frequencies of oscillations for the second species is shifted

1)
(n + %) A+ m?l

AiQ — Ai2 —+ Z

n<N

depending on the sign of §, fasten ou dampened. The center of oscillation is also shifted as a combination
’il)
.

of (Yeff)il and i‘g

10.3.4 Consequence of phase transition

The effective action

Sef- (\Ijil (131'1)) = S(\I/h (3311)) (171)
5 (n-+3)0 [ doi, Wi, (01) W], () + LBl (3 ) o al00)
+ In|1+ 2!
n<N (Tl + %) A2‘2 + m?z

where we reintroduced [ dz;, U;, (;,) \I/:fl (z4,) = 1 has now two phases. One can compute the second order
approximation of (171) for of each of these phases. In the case of a trivial background expectation ¥;, (z;,),
the second order expansion of Sey. (U;, (z;,)) is:

. i 2
(n 3+ ((Verp),, — 22 ) 0 [ dui, Wi, (wi,) W, ()
(n+3) Aiz +m,

Sef‘ (\Ijll (mil)) = S(\I/“ (xil)) + Z

n<N
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whereas in the phase where the minimum for a field W9 (z;,), shifting W;, (z;,) — ¥;, (25,) + Y, (x4,) one
is lead to:

Sef- (\:[17«1 (x'bl)) = Sef- (\Il?l (SL'“)) m'll)
. i)\ 2
4 )+ g (e —52)') f
’ Z 5(n2)(n+3)+0Ai, 5 72 ,<(Y ) _gz<i1>>2 /dwil\l}i1 (zir) \Ij“ (ir)
n<N (m —|—A n "2 5(712)+Ai2 eff )iy~ Tin +1

m3, +Ai, (n+1)

+Z(/ di, (9, (1)) (Wi, (i)' + (W, (@0,)) (25, <wi1>)T)>2

n<N

(5( 3) + o8y ((Vers),, —28) <AA+,5)>2

X 7
Y (i1)
) 26(n+l)+ 25AM +(m2 + A; (n+l))
n 2 n 12 on? +AL2 12 12 2
AZ - L)) 2
§2 (Ary 1770 (<Yeff)iz - xgzl))
_|_
((?eff)i;i’ﬁ;”y

7725 (n + %) + 7726‘/\1‘2 2+, + mlzz + Ai2 (’fl + %)

The interpretation is the following. The effective action for the first type of agent is shifted by a constant
quadratic term of the type:

)\/dxil‘l’il (w4,) W i (Tiy) + (/ dﬂ?u o (i) (U4, (i) + (W, (21,)) (v, (xil))T))Z

We have seen in the previous paragraph that it amounts, coming back to the individual behaviors, to modify
the utility of an individual agent by a constant term, that is the equilibrium value is unchanged by the
introduction of the surrounding. However the introduction of this constant quadratic term has the effect to
dampen the oscillatio around he equilibrium. In fact the shift in the action is equivalent to a shift in mf17
or which is equivalent a shift in a, the parameters which measures the inverse of interaction time for agents
of type 1. It means that integrating the behavior of the second type of agents is equivalent to reduce the
duration for the interaction process of agents of type 1. Agents of type 1 spend time to control agents of
type 2, which corresponds to a loss of time/energy. As a consequence agents of type 2 act as stabilizers.
On the other side, if we consider effective action for agents 2,

dar, (1, — 300) Wy, (22,) UL (21
f xlz mlz .’Ew 12 (xlz) [ (mm)
(n+3) Aiy +mf,

Ser. (Wi, (w3,)) = S (Vs (2,)) + > In | 146

Given there is no phase transition (i.e. the minimum is for ¥;, (x;,) = 0) the action, at the second order is
then:

2
fdxiz (3912 - j’.(“)) \Iin (xlz) \1112 (3912)
(?’l 5) Ail + m221

Here, the situation is different with respect to agents of type 1. Coming back to the individual utilities
corresponding to this colllective field, the first order correction due to agent 1 is to shift the utility by a term

Sef. (\1112 (mm)) =5 (\I/lz (xtz)) +4
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2
0 (ac,z i(“)> , the attractive (for 6 > 0) or repulsive (for 6 < 0) potential. By a computation analog to

(169) the shift in the equilibrium value is:

(Y ) - Aiz (Yeff)iQ + jxl)(sfdmll lIIil (mil) \I/Il (5521)
eff i
: Agy +6 [ di Uy, (24,) U (24,)

Recall that [ dw;, U;, (2,) U]

(z4,) = n and that 7 satisfies:
(M) (3 L)
(A ) 9 _|_Z ( )6+(A +6) ((}/eff)zz_xm )
i1 —m;

11 ~
n<N ( )(Alg +577) +m + A; ii(;’n ((Yeff)lz AZI))

In continuous approximation this equation rewrites:

=0

1
2

(Ai)*d ¢ (i) J ( 2 Shun (o (i1) 2)
T (T e (B o (VAT B
’ ((Aiz + o)’ ((Fesr)., =22) (s, +om? N2 T R b (o) = 2")

. i 2
(N + 1) (Aiy + 6n) +m2 +Aﬁ$0nﬁ) &)

- ~ (i1 2
(A, +3m) +m2, + 24 ((Yeff)w — @, ))

N|—=

11 Introducing macro time scale and aggregated quantities

We come back to the general field theoretic action (119)

S ) am)
2 [ (-9 () o (7o (5 (3),) o v ()] 0 () )
+ZZV ({X@} ) 11 \I,Um( )\I;(k) (Xm)

1<i<n

intra species interaction

Y Y Vi ({Xlgm)} N )ﬁ [T vt (X;SZ”)) o) (X;SZ"))

m ky..kpy N1...Mgp 11<1n <ny

inter species interaction

Ny,
and we aim at computing the expectation value of the agregated quantity Z X ,(C““ ) for every species k, where
i=1
(ix) labels the agents among class k. To do so, recall the transformation that switches from the N agents
effective statistical weights (103) to the effective action (172). The statistical weight (103) without border
conditions on the paths:

ZN'H/exp —as; /Dml exp Z/ ( t)+ K (z; ( dt) Z Z / Vi (24, (1) i, (L)) dty...dty,

k=211,.
(173)
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allows to compute the expectation [ >, z; () dt by adding a linear potential Jz; (t) to K (x; (t)) and by
taking the derivative at J = 0 of (173).

</Ozm (t) dt>

_ (2 (v as) [ Do =SS (B 0+ (I (i (1) + T (1))
= <3J (ZN:N!E/eXp( asl)/Dxl(t)eXp< 0 ( g ) >>>J_O

- ZZ‘:Q Zil i 051 Vk (LI?Z‘I (tl) &gy, (tk)) dtl...dtk

yees

Then, switching to the field representation (172) means that we replicate the change of potential in the field
action and replace V' (Xk) by V (Xk> + JX. The laplace transform of <fos o (t) dt> is thus given by:

/exp (—as) </0 Zx (t) dt> ds
(B (o (s (o (), ) D [0 (1) 0 (i) ) o o ()}, )

And if one is interested in the quantity ( [; 3", z; () dt), this can be recovered by the inverse laplace transform
of the previous quantity:

J=0

S ((;}/exp (s ({v™ (%)}, )
P W () 50 () i) o {0 (5], )

One cannot derive the quantity ([, Y, z; (t) dt) with respect to s to get:

<Z <s>> o (;J ( I <_s (3 (1)), )+ o f 0 () 50 () dxk)
A SO} )

actually, in < fos o xi(t) dt> the bracket term, the expectation over the path depends itself on s through the
weight appearing in (173).

However, reminding that T' = é can be seen as the mean time for the process of interaction between the
agents of the system, one can interpret [ exp (—as) (5 >, i (t) dt) ds as the mean quantity X =", x; (¢)
aggregated over a period T'. This a static view, actually, nothing in the interaction process makes a difference
between two different time span, T and T” except the fact that a different length of the process will yield a
different result.

To make the connection with a dynamic evolution in the macro quantities and to consider X (T'), there
are three different ways, that are not exclusive. The first one is to assume that the all parameters in (172)
depend exogenously on T, this represents the evolution of interactions, technology, or any quantity external
to the system.The second way is to consider the individual equilibrium values of each individual agent as

given as an external condition which is (f()k =57 (X (T - 1))k (rewritten also (X (T — 1))k for the sake
of simplicity). The third way, which is the more usual nd more direct, comes from the constraints, where

exogenous parameters where included in the budget constraint, such as the time ¢ mean endowment }7 and
to replace it by w7 (X (I'—1)), — (X (I'—1)),. The contibutions of this terms, that are like ¥ X}, are

J=0

linear terms and can by themselves be integrated in (X )
k
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The first way to introduce the macro time dependence is exogenous, the two others are endogenous.
Combining the two last posibilities in one and including the two remaining ways to reintroduce some macro
time dependence leads to consider the effective action:

s({v},_, ) (174)
- Z/ka ((—;w(’f” (Xk) [(vk) (vk — MY (Xk — (X (T - 1))k)) +m2(T)+V (XkT)] y(o) (X,Q))
R ([ ) T e () e ()

1<i<n

YT Ve, ({ A’E;n,-)}lginjgnj )H H g kT (X( )>\I,(k)(A(J ))

m ki..kp, Ni...Ny J 11<7,n<

where now some exogenous dependencies in T have been introduced in the interaction parameters, through
the interaction potentials) and in m? (T'). To make contact with more usual models of statistical physics,
his is usually these exogenous variation that are responsible for phase transition of a system. As explained
above the macro quantity (X (T — 1)) , satisfies a recursive equation:

(X (1)), = (ank (/exp <s ({v® (%)}, ) +V]L;Jk/\1/<k>f (%) £iw® (%) dX’,21>75)
D ()} )

11.1 From micro to macro relations

One can wonder if some micro relations between some quantities are stable when switching to the macro
scale. Assume some aggregated quantity during the time of interaction process:

Z:/OSZh(mi(t))dt

Then similarly to (175):

@, = (a0 (oo (5 (0 (1)), )+ S [0 () (1) w2 () s
S CO) )

A consequence of (176) is that if h (Xk) is linear, h (Xk> = X}, then this relation remains valid after

agregation (Z ) p=nh (X k) However for a more general relation one has rather, afer computing the derivative
in (176):

@)= (f (oo () (%) v () ase oo (o5 ({0 (%)}, )2 (%)), )

Using the definition of the interaction Green function

G (2,y) = (/ v @) e ® exp (-5 ({e® (%)} ))p{e® (X’“)}k_l...M>
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leads to:

Zk:/h(a:)Ga:xdx

(%), = /xa (2, 7) da

and specializing to h (z) = z:

and the relation - -

(Z)k =h ((X)k)
is not valid. Only when translation invariance is present in the model, that is G (x,y) = G (y — ) and thus
G (z,z) = G (0,0), then some simple macro relations can be found (normalizing G (0, 0) to 1):

(Z)k / h(z)dx
(%), / vdz

Assume the lower bound is 0 in both integrals. In the expression for (Z ) . let change the variable u = ‘”—22 to
get:

(Z)k = / h(z)dx

However, in the models at stake in this work, involving effective utility of harmonic oscillators plus interaction
terms, the translation invariance is not preserved, and no simple macro relation can be found.

11.2 Effect of phase transition on aggregated quantities
Starting with:

= (i (fom (o (o0 (8], )= [0 () 80 (5 5o s (), )

k
(177)
Assume a non zero vacuum expectation value for the ¥*) ( k), denoted \D((Jk) (X k) and expand, as before:

s({eo ()}, )+ 2 f et (x
- s({xpgk) (Xk)}k N M)+ZJ /W”( K
+Z/(6\I/(k2))T(Xk2) 525({\I'ék> (Xk>};; ) s (K, d, d5,

k1,ks swik) (Xkl) J (\I!(()kQ
@t (%) %500 (%) g%
i 2}; T / SU (Xk) X060 (Xk) e

+higher order terms in §¥*) (Xk)

Xpu® (Xk) e (178)

where Ak epends implicitely on the Ji through the first order condition defining them:
h \pg’“X“Md ds implicitel he Jj, through the first ord dition defi h

o5 ({\I’ék) (Xk>}k:1...M) + 5500 (%) = 0
o) (5) )
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The first order condition (179) allows to compute the J dependency of the two first terms in the right hand

side of (178):
i (5 (0 (80}, )+ o o (5) ot () s
(s ({ws” (Xk)}kzl._M) Ll (%) oud) (%)
(o) ()
+ / o (%) Xew (£,) a%y
_ / bt (%) Xew) (%) ax,

and (175) becomes at the second order approximation:

(X (1)), (180)

_ / w0 (%) Xewl) (%) ax,

+ </6\IJ(W (Xk) X 00k <Xk) ka>{w( .
+ sk’ Xk, 0 <{\Ij(k) (X)} k=l M> swk) (X, ) dXy, dX,
(o 0 3 g ) e o)
9

{\pék)(Xk)}k=1M

where we define for any field dependent quantity A ({

S A
= Jalfr () )

oo 5= [ oo (5) S D ) e 6 ) g at | o feo (5,
(’fzk/ () () Mfé’“)(Xkl)a(mg“))*(ka) (%) ) {r® (%)},

e

is found by using again the first order condition (179):

k=1...M

The quantity

® ({5 (W(E);(k)(i)w) + % (%) =0 (182)
0 k
and differentiating by Ji then letting J; = 0:
o5 ({wl (%)}, ) [oud? (%) A A
(o) () (9 () ( ) -5 (1) =0
0 0 J,=0
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which yields:

-1

o () s ({n” (), 0)

) - ) T ) (447) (1) Xewd (X) (183)
(181) can then be computed as:
o (s (5], )
P\t (%) (w) (30.) )],
o5 ({06 (%) oy n) 0u (%)
- o () ool () () () ) LR

-1

o 535 ({\pék) (Xk>}k:1...M) 528 ({\If(()k’) (Xk>}k:1...M) £y, W) (Xk )
Mjéko) (Xko) 5\11(()1@1) (Xh) 5 (‘yékz))T (Xk2> 5 (W(()ko)y (Xko) 5 (q;(()%)) (j(ko) 0 o

where (183) has been used.
The first term in (180) is the macro quantity (X (T))/,C evaluated in the phase defined by the state \Ifék‘)).

In other words, the aggregated value (X (T))k depends on the phase of the environment. The two other
contributions represent additive contributions due to the fluctuations of the environment, that themselves
depend on the phase of the system.

12 Conclusion

This work has investigated the dynamical patterns of a system with N heterogenous economic agents. For
a small number of agents, relaxing the optimizing behavior for a probabilist description centered around the
optimal path allows to deal with some otherwise untractable systems. The classical optimization solution can
be retrieved, in some cases, as the average dynamics of our formalism. Moreover, this probabilitic treatment
can conveniently describe the fluctuation patterns of agents’ behaviors. The transition functions of the
system are computed by path integrals. They describe the system as a random process, whose fluctuations
are deviations from the classical path. For large IV, collective behaviors are better studied by switching
to a field formalism, as usually done in statistical physics. Techniques of perturbation expansion, non
trivial vacuua and phase transitions yield some insights about the relevant quantities of the system. Some
aggregate or effective structures absent in the initial micro description, may appear, and become relevant at
the collective level. A phenomenon of emergence is thus possible.

Moreover, our formalism allows to interpret the influence of the dynamics of the system as a whole at the
individual level. This approach presents some circular features. On the one hand, while resulting from the
individual relations, the macro scale cannot be reduced to a sum of individual systems. On the other hand,
individual behaviors are shaped by the environment.

Our work ends with a short inspection of the aggregation issue in our context. We show that some
agregated quantities can be retrieved from the field formalism. We introduce a macro time scale that should
allow to derive an approximate dynamics for the macro quantities, based on the field formalism. This
extension is left for future researches.
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Appendix 1

We show that, as claimed in the first section, that our probabilistic definition of the agents behavior encom-
passes the usual optimization behavior in the limit of no uncertainty. For 02 — 0 and then o? — 0, we aim

J
at showing that (7)
U
exp (Uegs (X: (0) = [exp

i

xexp [ Y Ueys (Xi (0 + 1) A{X; (t+ k)Y, d{ X (E+ R)}

k j#i J

is peaked around the classical optimization solution, where:

U =3 Bl (Xt m), (X (¢4 m = 1), )

n=0

is the intertemporal utility of agent j and

0t (X5 (0), (X (6= 1) = 3 (X (1) — X5 [(Xi (6 = D)) Ay (X () = X, [(X (6 = 1))

with X; [(Xy (t —1))] is the solution for X; of

0= (g Utns O 0. Gttt = 1)

X5 (0)=X;[(Xp (t—1))]

for a given (Xj (¢t —1)). The function Ueff (X; (t),(X; (t —1))) has been defined in the first section as the
i-th truncated effective utility for agent j.
To do so, recall first that in the classical set up, agent i optimizes:

Uf = B Y Bl (X (), (6 6+ n - 1))

n=0

knowing the impact of X; (¢) on (X (t+n —1)). Then, agent ¢ optimizes Ut(i), taking into account that
the agents j about which agent i has the knowledge of their behavior, act by optimizing a certain utility
function U% (X (¢), (Xi (t —1))). Thus, the (X (¢ + n — 1)),_, are not independent variables, but depends

eff
on X; (t — 1) through agent j first order condltlon.
9 )
U t),(X;(t—1))=0 184
6Xj() eff( ()7( ( ))) ( )
The classical solution of optimization problem for agent ¢:
9 (4) n, (i _
Xl = E”Z:Oﬁ Hn( (t+n), (Xj(t+n—1))#i)_o
becomes, using (184):
_ 9 o
0 = sx v (0, (G- 1)) (185)
0X; (t —|— n—1) 0 )
E; X; X —1))..
’ ;XJ: & 8Xj(t+n—1)“t+"( () (X (o n=D) )
and the X; (t +n — 1) satisfy:
0 = Biger U (X, (), (X (t— 1)) (186)
0X; (t) /T I
0

WU;V (X (), (X (¢t - 1))
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One can find ( B t( T ) from this relation by differentiation:

_ 0X; (t) 0 o ;
0 = g (axk (t— 1)> 9X; (1 — 1) 0X, (1) (Ue(f)f( (1), (X (- 1))))

0 b ;
+WW (Ue(f)f (X5 (t), (X, (¢t — 1))))

which yields:

. 2 -1
(%) = ;(an(t—anaxj(t) (Ué})f( (t),(Xi(t1))))>

e (U (5 0. = 1))

and 82( X(t(t)” ) is found recursively:

0X; t+n Z i(t+n) 00X (t+n—1)
0X; ( 8Xl t+n—1) 0X; (t)

the sum is for [ # i since the X (t), X; (t') are independent variables on which agent ¢ optimizes.
Now, we show that we recover these optimization equations when the uncertainty in our description goes
to 0. In the weight:

(i)
exp (Unys (X (0)) = [ e (Z) exp (187)
xexp [ YN Ve (X5 (0 ) d{X; (t+k)} s d{X (t+K)}

k  j#i ]
(4) k
eXp(Ueff(Xi(t))):/eXp (lfg) xexp [ DD Vet (X (44 1) X (t+ )}, d X (8 + R))
? k  j#i

GiVGI'I that U(fff (X, (t+k)) are positive, for o2
solution of:

5 — 0, the path localizes around the maximum of U tf Iz

Uty (X; (¢ + ) =

so that X (t + k) is set to X [(X} (t + k — 1))] which is solution of the saddle point equation for Uej,f

0= Uty (X 0+, (X e+ = 1))

< 0
0X; (t+Fk)
That is the value of X (¢) that are solutions of:

o
mUeff (X (s),(

X (0)=X;[(Xk(t-1))]

Xi(s—1)))=0fors>t

Solving for the X (s), j # 4 allows to express recursively all the X; (s), j # ¢ as functions of X (), X, (s),
s > tand X; (t—1), j # i, then, the integrations reduce to a sequence of integrals on the X; (s), s >t
Ultimately, for 7 — 0, the path localizes around the solutions of:

0

= Do k>0
X, (t+ k) ¢t "
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where the X (s), j 75 i for s > t have been replaced as functions of X; (t), X; (s), s >t and X (t — 1), j # 1,
which yields for k& >

0 = Mfmu&) (X,; (t+ k), (X;(t— 1))#1-)
n— 0 i
+n>zk+2§j: t—|— Uﬁnaxj e (XeG+m), (6 (6 +m— 1))

This is the sequence of optimization equations, as planned by agent 4 at time ¢ with X; (¢ + k) satifying

0 Ul (X (t+ k), (X (t+k—1))) for k>0

0= ox, v hy ers

as needed. As a consequence, the result is proved.
Note that for quadratic utilities:

0X; (t) -1
(an(t—1)>:(Ajj) Aj
and
Uers (X5 (0, (Xa (= 1)) = 3 (X5 00+ (A3) ™ Age (X (6= 1)) Agy (55 (0) + (A3) ™" Age (X - 1))

= Uepr (X5 (1), (X; (t—1)))

and the result rewrites as:

(%)
exp (Unps (X (1)) = / exp (%)

xexp [ 3N Uy ( Hk)) d{X; (t+k)},, d{X; (t+k)}

k  j#i

which peaks on the optimization solution for a? — 0 and then 0’? — 0, as claimed in section 1.
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Appendix 2

As recorded in the text, we rewrite the utilities in terms of the variables Y; (¢)

‘ t Xi)AYX )+ (X -1) - X
by _ ;5/(Z< () AD X, (1 ((. ¢y )1

i<i

+ 32X () AP (X (tl)))

j>i

(7,
2oV (A g)m(t>+mt—1)<8Miﬂ})m(t—l)

5 A .
v L e TN Y-+ Y 2% () AD (x5 (- 1)
prdy 0 >0

expected utilty at ¢t.We will also add possibility for an inertia term:
~Xi (1) el X (¢~ 1)

Each agent j behaves at time ¢ with a so called effective utility Ueys (X (t)) = Ueys (X;) whose recursive
form for the non normalized Uesy (X;) is assumed to be:

49 0 . . ©) ©)) .
Ues (Y (s)) = Yj(e) (s) ( ( Jjo)eff . Yj( ) (s) _2yj( )(3) ( Jjo)eff ( {Jk}l:)<3) eff Yj( ) (s—1)

+ ) 2X;( D (X (t—1))

izk>j

where Yj(e) has been defined in (25):

v = (5% (0 - X0) )

The normalization of exp (Uess (Yj (t))) is obtained by letting (we omit temporarily the upperscript (e)):

c / exp (Uess (¥; (1)) (d (¥; (£))) = 1

writing:
t
sarn = (00 (), ( 3 agmen-((),, (hnal, D)) (49,
i>k>j
x (Yfe)() (49)., (Z A== () (B, )w—n))
i>k>j
t
— | > A9x, (t—l)—( (eg))e” (eg)k}m)eff )Yj(t—l)
i>k>j
x (Agg]))eflf DZR;A DX (t—1) — ( (5?) » ({{J}k}m)e” )yj(t—l)
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yields the normalization factor (introducing again the upperscript (e)):

% = exp Z;}f;j AW X (t—1) + ( (%)) o (ef{?k}kq)eff )Yj(e) (t—1)
<(42) 2 AR -0+ ( (), (Fina),, )V €1

and the normalizes effective utility becomes:

t

uosm = (vO o+ () [ X a@xee-n- (), (Gs),, )e-n)) (),

izk>j

@ (a8) | X A= (), (sl )1

e
i>k>j

Given the definition of Yj(e) (s) one can concatenate all the vectors v (s) for ¢ < j to form a vector

j
(Yj(e) (s)) and given the definition of Y; (s) one can write:
j<i

(Yj(e) (8))j<i = (Yi(s)jci + 67 t( X=X >j<i

where the subscript j < ¢ means that we only concatenate the component vectors of Y; (s) for j < i. This is
Y; (s) without its component along i. Concatenate this vector with (Y; (s)),, that is adding the component
along ¢ one obtains a composed vector:

7o) = (@) () )
We will also need to define:
i) = (0060 0,5 (317 )

The normalization factor has to be added to the global weight (i.e. the normalized effective utility) to be
taken into account for agent 4 is then (in the sequel, the sum over j < i is always understood):

_ ; X (8) AL X (1) = X () e X0 (8= 1) + X5 (¢ - 1) AV X (¢ - 1) (m)
Ueps (Vi () = ;6 ;( +2Xl()A§;>(X](t—1)> +Upy (Y))
+sz () A (X (t - 1))
(i) . LD gu®
- Zm<t><Ag 5j<i>>n(t>+5m<t>< e 21‘(‘; )wn
t>0 27

0 0 0 0
+ZYj(8)(t)<0 (A%))eff) 0RO {((j) )ff} R

>0 {kjh<y

L 0 0
+65Y¢(t)<2AQj) {249 }) (t=1)+ D2, (1) A (X; (= 1)
3

{kj}i>k>j G>i
(3)
> By Bi ) > (e) < 0 0 ) (e) - 0 By, ()
+Yit< V() +v© (1 VY yv@ @+ 7, ¢ ' Y
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where, by convention Yj(e) (t) has been extended with a nul component in the coordinate ¢, that is: Yj(e) (t) —

0
( Yj(e) ® > Then, Uess (Y; (t)) can be written:

(l) 0 0
0 (e) ) (e)
Uess (Vi = > Vit ( 0 AW )K(tHZYj (t) ( 0 (A(J)) B )Yj t) (188)
t>0 3J t>0 13 ) esf
(3)
15 Biin Bl ) ~ ~ 0 B, ()
"‘51‘25/1'75( Yi(t)+Yi(t Y (t
(t) (Bly)! Bl (t) (t) ( :;)) Bg) 7 ()
(i) (1) 0
1 —€.. 2A%. -
v (o A ) vie- st 0 AT
0 0 2A{Jkg}z>k>j}
0 0

+8:Y 70 |, (01005) VIOt — 1)+ 2K () AY (X5 (¢ - 1))
{kj}k<g eff j>i
We aim at writing Ue s (Y; (t)) under the form:
) AE:) + Bi11 Bis ©
U. v : v (¢ 189
5 ( = > B, {( A9, oAy B} (t) (189)

t>0 27
Q) AW
1y (@ v K ©
282V M| 40 (y0e) AP o1
ji Qhite<i ) pp0 Hkiyi>k>i

+3 02X, (1) AL (X (¢ - 1))

7>

where:
By = pAY (Ag.gl));f AP (190)
By = {5,42(;') (A%))e_flf AD 3 <A§§j> (Ag))—flf ( ( %)) » <eg)k}k<j)€ff ))}
BAY €) (A(J)) N A;J]'C)’

B22 = ﬁ( (.S.JJ)) eff (Sli]])k}k<ﬂ>eff ) (Ag;))e;f( ((J)>eff (%?k}k<]) eff )
S
3 (4 (49). ()., (Dhnsi),,, )

. . 1 .
B, = BAY A‘(J))efng.ﬂ,g (191)

pa = 5((4),,, (), ) () (), (D), )

s = o (4 (), ()., (Gha),,,)
. A\ —1 ; s
BS) =F (A’(“jj) (Agjj))eff( (6%))61”1‘ ( gjj)’“}MJ)efJ“ )>
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with M® = 1 (M + M?") for any matrix M, and where we have defined:
Yi(e) (s) = ﬁ%t (Xj (s) — (X](i)e))j<i

For a vector ()_(j(i)e) to be determined. Given the form of (189), is the equilibrium value of (188) when

X, (t—1)=0forj > ¢. Thus, X'](i)e is found as the solution of the first order condition %Ue” Y;(t)=0
when X; (t — 1) =0 for j > ¢. This equation yields:

0 ez L [ 0 g :
N RS [ ()

\ ( By B e 1 0 By ’ @)
+6? ( 11 12 )X-Ze-i- t X_ze
(BL) B )70 T2\ (BR) BY | Y

s
1 0 By (X(”e ( 0 ))
9 3 3 i (e
2 (352)) B§2) ! (Xj )
s
(i) MO\, , 0 0 ,
1 —eai 24y (e _ (i) 3 , ‘ o (i)e
+32 < 0 Oj ) (Xj X; ) + B; 2A§Ji) {2Aijlc)j}i>k>j} j
0 0

+6% A (-@6_< K )>:
0 {(6?133'}%]‘)6”} j ( J(a)a)

The constant terms in this equation are

v i )(~Z + () 9 -(j)e
(1) J. \J
0 BAjj ! 0 (A“ )eff + B2 ( J )

S
0 BY

0
sy ) ()
0
0

Q) @) e
+4% ( g“ 2/(1)” ) §)+5%

() ) (o)

and the equation for X j(-i)e becomes:

AE? + B B2
(4) (7)
Bi, {(Ajj)eff—’_ﬂAjijZZ}

1 1] 1] .
1 -(i)e
R N SN G ) ) ° (XJ’ )
Ajit + 45 2 ({ (6{kj}k<j>eff ’A{kj}i>k>j}>

(@ (@) (@)
= (( A o ) + 6 ( Y )) (%)
0 ’BAjj Aji 0

0 , 0 1 0 BS) 1 0 S
+ <0 (Agﬂj))eff—kB”zz >+2 (Bg))t Bég) +5 0 ({(ef[ﬁj}kéj)eff}) ( (_ -



with solution:

-1

. . A\ S
R ey
X = (A%)) + ,BAJJ , Baa, (192)
eff
Bia, 25 (A7)
{kJ}k<J ff {kj}i>k>j

X

i e (3 i
A9 - B {B;QWA,Eﬁ} (xs

B®)*
( 122

0 5 0
+ B®)* . . BO® & (e
() {(A‘gy)eff,Bm 2, v (i) } ((Xj )
eff

Including the terms X; (t) AEE)Xl- t), Xt )A(Z) (X; (t—1)) and Uesy (Y;) at t. Using Y;(t —1) —
Y; (t — 1), by extension of notation (Yj)eff — (0, e (Yj)eff , O) in the sum

>4 Z( () A X () = X3 () D X5 (8= 1)+ X (6 = 1) AL X (= 1) +2X (1) AT (X (2= 1)) + Ueys (5)

t>0 <t
+> 02X ( X;(t—1))
J>i
Z Al(.f») + By By
= Y (t) @) (i) Y (t) (193
t>0 Bis {(Ajj>ej»f+ﬁ‘4j77322
O 24
1 2 1]
+62Yi (1) () (”) %) Y (t—1)
245 - (E{kj}kgj) ff72A{kj}i>k>j
_ (4 — e @ ( _
;23@@ ( ])ef +3 2, (1) A (X (1 - 1)
j>i

3 o (), (), )re

t>0 \izk>j

X (A§§)>;f1f Z A(J)X ( (E%))eff (Egc)j}k<j>eff )YJ (-1

izk>j

The second lower part of Y; (¢) includes all substructures of X; (¢). Then A%)j} (written latter as Ag.? for
the sake of implicity) is a Block matrix including all interaction between j and k for j and k < 1.

(4

{35

(7) (4) : : . (4) ) . ..
yt (A ) it <A{kk}k<j)eff) matrix obtained by letting A{jj} + (Ajj )eff in place (j,7) and

(A?k )k}k<j) .y in place (k, k). The bracket denotes this operation for the all collection of j substrctrs. Same

. ) (9 )
operation for { ((A{Jk}k<]7 A{ka}k<j>eff ) A{jkj}i>k>j> }
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Define also

OO
A = (4
) _ (W ‘
Likyizk T (e{kj}p k)
and rewrite:
e 240 —ef? Ay
0 ) R = @), 40) (ees)yy (Bhri).,
245 {_ (e{kj}ksj) ’QA{kj}z'>k>j} Aji + Aji ) N ’
eff AN LAY .
{kjti>k>j> " {jk}i>k>j
0 ALY —AD
+ @) G ’(eijk)j}kéj)eff (Eijz')k}»k)eff
- (45 - a?) () ° ON
J J
A{ka}i>k>j’ 7A{jk}i>k>j
The two first terms in (193) can thus be rewritten as:
v A§§) + Bn B Y. (0
i ( ) (@) i
Bi, {(Aj_j )effJFﬁAjj,Bm
w A
+1/BY; (t) oq@) J_ (e(j) ) 540) Yi(t-1)
ji {kiYks<s) opp 7 S RIYI> k>
AZ(-Z:) + B11 By
= Y;(t) : () Q) Yi (t)
B12 (AJJ )eff+ﬁA']‘7’B22
VB ad @) AZ(;) " Agi))
—5 (Y; (t) = Y; (t—1)) AD 4 40 _(E{'m‘};w)ﬂ”’ _(e{jk}; k)eff’ (Y; (#) =Y (t—1))
Je J 40) 40)
{kj}i>k>5 " {jk}i>k>j
—l® AD 4 AD
17 () )
— e(j). . — e(j.) ]
+@Yz‘ (t) () ) ( {ka}k@)e”7 ( {ik}i> k)eH’ Y (¢)
2 Azl + AL 3 N
AD A
jri>k>j {jk}i>k>j
—e AR + A7
) | )
+gyi (t—1) AD 4 4D *<€{ka>2re<j)eff7 7<6{ij}2]> k)eff7 Y (t—1)
Ji Ji A(j) A(j)
{kjti>k>j> " {jk}i>k>j
0 ALY —AD
) )
WARO-T-0) | o o) TS WG T S ) 0
Jt Ji A(j) 7A(J')

{kjYisk>5 ~jk}isk>j

As a consequence, discarding the terms quadratic or linear in Y; (¢t — 1) since they are absorbed in the
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normalization at time ¢, the sum in (193) starting from ¢ 4 1 is then:

AD 4 By — VB {VB (4] +47) i}
() (4)
>_Yils) (), 40 ﬁftjf - )“’f f<;>B22 Yi(s)
SO a3 ), 0,
(9) (9)
’A{ka}i>k>j7A{]jk}i>k>j
VB e AR + A7
i (9 —(b)
-5 (Yi(s) = Yi(s — 1)) (i) ) ( “"J}KJ)EH’ ( U’“W’“)eff’ (Yi(s) —Yi(s—1))
2 A+ A 2 2
I 7 A1) AW)
{kj}i>k>5 “{jk}i>k>j
0 AW _ 40
% i
(D Ko
+3 VB (Yi(s) ~ Yi(s 1)) (A9 — ) (Coes)oss (Bhrmnegs | | ¥igs-1)
s>t J J A(j) _A(j)
{kiYi>k>50 “H{jk}i>k>j
—2./BY; (s). (Y + (Yj)eff)
e AR + A
VB (e () /_>
+7Yi (t) A0 440 ({kj};\f>eff7 <{J’€}21/k)eff7 Y; (1)
J* J* A(j) A(j)
{kj}i>k>j " {jk}i>k>j
1
= 2 5 (Ni(s) = Yils = 1)) A(Yi(s) = Yi (s = 1)) +¥; () BY: (5) + (Yi () = Vi (s = 1)) CYi (s = 1)
s>t
1
+5Y: (1) AY; (1)
1 N N
~ DS () = Vil = D) AW () = V(s — 1) + (Vi) = ) B (i) - 1)
s>t
+(Yi ()~ Yi (s — 1)) OYi (s — 1) + Y; (1) BY: (1)
F5Yi(0) AY; () (194)
—el AY + AY
7(60), ) 7(60) ) )
A= VB 4o 40 R (195)
Je It A(J) A(J)
{kj}ti>k>j " {jk}i>k>j
AD 4 By — /B {VB (4D +4D), B}
(@) (@)
B BAjj + (Ajj )effyB22
{\/B (Aglt) + ASJz)) ’Bb} VB _<6({];j}k§j)eff _(6({3)’“}3'2"')eff
s A(J% A(j) g
Vi kjYi>k>g0 T {jk}i>k>]
0 AW _ 40)
) v v
C = \/B ) ) (eiﬁj}kgj)eff 7(6({]].2}].2 k)eff
_<A_A> 2 ’ 2 )
I g —A(j) A(])

{kj}i>k>j " {jk}i>k>j

The sum includes the potential at time ¢ but not the inertial term.
The effective action for Y; (t) is computed in the following way: it is know ([?]) that for a quadratic
weight as the one obtained in (194), the integral over future variables Y; (s) localizes around the classical
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solution of motion starting at Y; (¢) and such that Y; (s) — 0 for s — oo. That is, to compute the integrals
of (194) on Y; (s) it is enough to minimize (194) on the Y; (s), s > t with Y; (¢) as initial condition and to
compute (194) for this solution.

The equation for the classical solution of (194):

S5 (i s) = Yils — D) A(Yi(5) = Yi (s — 1)) + i (5) BY; () + (¥i (5) — ¥; (5 — 1)) O (s ~(196)

YL (1) BY: () + 5Yi (1) AYi (1)

is of the usual Euler Lagrange type:

(3@ () — Yi(”) A(Y; (s +1) — 2 (s) + Y; (s — 1))+2Y; (s) BY; (s)f(YZ- () — y.“)) C(Yi(s+1)=Yi(s—1))=0

(2

(197)
and it’s solution is of the kind:
Y; () = D' (#) (198)
We show in Appendix 1.b. that the matrix D satifies:
(A-C)D*+2(B—A)D+(A+C)=0 (199)
We also give a recursive equation for D in this appendix.
We now compute each term of the action
1
S5 Yils+ 1) = Yi(s) A(Yi (s +1) = Yi () + Yi (5) BY; (5) + Vi (s + 1) OYi (s)  (200)

s>t

along this classical solution to find our effective utility. We to first rewrite the first term in (200) as a discrete
version of the integration by part:

S L s+ 1) Vi) A (s +1) - Vi (s)

2
= Y i)~ Yi(s) A (s + 1)~ i (5)
1/ 1
= VWA -+ = Yi()+5 D Vils) A(Yi (s +1) = 2Vi (5) + Yi (s — 1))

s>t

We gather all these contributions with the second term in the classical action (200) and use (197) as well
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as (198) to find:.

S W) Vi) AN s+ 1)

2
s>t

—Yi(s)) +Yi(s)BY; (s)+Yi (s +1)CY; (s) +

5Yi (1) AY; (1)

= SV AV s+ 1) = 20 (5) + Yi (s — 1)) + Y5 ) BY: () + Yi (s + 1) OYi (9

s>t

FSYi A (4 )

2 2

= SV A(¥i(s+ 1)~ 2 () + ¥i(s — 1)) +

SV A 0+ 1) = Vi) + ¥ (4 DOV ) +
~ YA (1) = Vi) + Y+ DY () +
= VDA (1) - Vi) + 5 (1) -
= SV ((A-C) (D= 1)Yi(t) + i () AYi(1)

To find the effective utility for agent 4, that is Ue.rs (Y; (t)), we also include the time ¢ contribution that was

CYi (1) + 2Y: (1) A (1)

Yi (1)) CY; (t) +

Y (5) BY: (s) — 3 Vi (s + 1) O¥; (s)

Ly ) avi (1

=Y, () AY; (1)
~Y, () AY; (1)

(201)

first discarded in our computation and consider the intermediate effective utility:

Ui () = 5

Y; (1) ((A-C) (D -

Y; (t) ( Al ¢
+Y; (¢ (1) (4)
0 AT+ [ AY
BA;; ( 3J )eff

+> 02X, ()

>

X (t=1))

This is still not Ueys (X,

Before doing so, we can simplify Ué?} (Y;

e
st i,
Ju Jrk<j eff

D)Y: (6)+ ¥ (1) AY (1)

24()
A(])

Yi(t—1)
{kj}ti>k>j

i (t)) since it depends on the X (¢) that should also be integrated out.
i (t)), by neglecting the contributions depending on ¢ — 1 only

(we will use the notation ~ each time we neglect such terms):

Ui} (Vi (1) = ¥ () (A~ O) (D

A(i) 0 ( )
Y t it . ) Y ’Ll- A
+Y; (1) ( 0 gAY+ (A%)) ., ) () + V8 ( 241 {_ (€<J>

(1) AD (x

+> 02X (t)
Jj>i

= Y(A-O)(D

Xj(t-1)

D) i (1) + 5 ¥ () A (1)

~1)F 2B (1) — Vi (1) AY: () +

(202)
A@
Y (t—1)
() i
2A{jk]}z>k>7} )

{kj}ksj) eff

Vi () (A+C)Y; (t— 1)+ > 2X; (t) X;(t—1))

J>i
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Since C' is antisymetric, this is also equal to:

Y; () CYi (¢ — 1)

t) AV (X

U (G (0) = SY(0(A-0) (D~ 1)+ 2B) Vi) - LY (1) (A~ O)Yi(0) + Y, Y1)
+ZZX £) ALY (X (t — 1))
. %Yi(t)((AfC)(D72)+QB)Yi(t)+Y¢()(A+C) (=) =YY+ Y 2X ()
= N0 ((A-0)(D —1>+2B>m>—%(n(t)—mt—n)A(mw—mt—nH
+22X () A (X (t - 1))
and then:
Uy (Yi (1) ~ % (1) (A= C) (D —2)+2B)Y; (t) + Y; (1) AY; (t — 1) + Y; () CYi (t — 1) +sz
v LMW+ (A-0) (D=2 +2B) (A+0) (it~ 1))

X (A= C)(D=2)+2B) (Yi () + (A= C) (D—2) +2B)” ((4+C) (¥; (1~ 1))))

+3 02X, (1) AL (X5 (1 1))

J>1

Now, the Integration on X (t) for j < i yields:

Uess (X1 () = 5 (Vi () + (A~ O) (D ~2) + 2B) ™ (A + O) (¥i (¢~ 1)),
x(%)(}@() <<Afc><Df2>+2B> (A+C)(Ya(t 1))

+Z2X X;(t—1))
~ —%((Yiu))-Mﬁ(w—1>>-+T>—1((m (1)) My (Y; (¢ = 1)), +T)
b () (N O+ 22 (0) 47 (4 2= 1)

where the matrices used in the previous expression are given by:

Ni = (A-C)(D-2)+2B); (4~ C) (D -2 +2B), ((A-C) (D -2 +28),,) ((A-C)(D~2)+2B),,)

Mi = (Vi) (A=) (D=2)+2B)"" (4+0))

i1

My = (Vi) ((A=C)(D=2)+2B)7 (4+0))

j

and where the "T" means the transpose of the expression in the same parenthesis.

It can also be written in a form reminding the continuous time description:

1

Uess (X (0) = —5% () X () — (Xi (1) = (V) ) 0y (\}ij(t_n_(z(l))j)

# (0= (79),) (%) (.0 - () ) + Lax )
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where we defined: _
Xi(t) = (Xi(t) - Xi(t —1))

and where the matrices used in the previous expression are given by:

Ni = ((A=C)(D=2)+2B), - (A-C)(D-2)+2B), ((A-C) (D—2)+23)jj)_1 ((a-c)(D-2)+2B),)
i = ((A-0) D=2 +2B) 1 (A+0)) (V) ((A-C) (D=2 +2B)  (4+0))

My = (V) (A=) (D=2 +2B) 7 (4+0))

Nii = Nu+ My

Adding up all effctv weight for all structres leads to consider the term

ZZ2X X (t—1))

= 23X (1) AyX; (- 1)

with A;; = A if j <4, 0 otherwise.
By the same trick as before it leads in the continuum to the result:

ZX (1) (/Lj + (Aﬁ-)t) X, (t—1)

o t R R t
Later in the sum on ¢, +X; (t) <A (Aﬂ-) )Xj (t)+ 31X (t—1) <A,-j + (Aji) )Xj (t—1) will re-

placed by X; (¢) (A” + (A )t> X (¢t) for an overall weight:
_% Z X, (1) (Aij + (Aji)t) X; (1)
+ ZXz (t) (Aij + (Aji>t> X (1) — %ZXz (t) </Lj - (Aji)t> X; (1)
- = ZX ADX; () + ZX ADX; (t) - % X; () AYX; (1)

The total effective action is then:

Lk - (9~ £) <Xf 0= (5),) + 4 (0 - () () (0 - (59))
WZX ADX; (t +ZX () AYX ,,ZX () AVX; (1)
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We want to rewrite the quadratic terms in a form that will be useful when looking at the continuous

approximatio. Introduce:
X (t) = (X (1)) and( 1)) ((fv(l))i)

and rewrite the various terms in the previous form:

(- (00 (5,

N_xw%@N*F@%)

The second term is a derivative that will cancel when integrating on t. We are then led to:

~ —%X () MX (t) + % (x0 - () (3) (x @& = (¥0)) + X 0 ADX (&) - X () I (1)
where:

i = (it + AQ) 8 = (%) 41 = (a8, - 349

Since the symetric part of M cancels when integrating over ¢, M can be considered as antisymetric, and M
and A symetric. We can write:

—%X(t)MX(t)+%(X(t)—(Y(l)»(N) X (1) = (YO)) + X (5 ACLX (1) - X (1) MX (1)
= (o -wrx )i (o -wx o)+ (X - (7)) (%) (o - (7)) x 0 (7) x 0
where:

N = A 4 NN
= N
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Appendix 3

The quadratric action has to a classical solution whose Equation is:
A(Yi(s+1) = 2% (5) + Vi (s = 1)) + 2B (Yi(s) = V) = C (Vi (s +1) = Vi (s = 1)) = 0

The solution of this second order difference equation with initial condition Y; (¢) is:

(vi(s) - ¥V,) = Dt (vi ) - V,V) (206)
where the matrix D satisfies:
A(D*-2D+1)+2BD-C(D*~1) = 0 (207)
(A-C)(D-1)*+2(B-C)(D-1)+2B = 0
(A-C)D*+2(B—A)D+(A+C)=0 (208)
Writing B = A 4 § one obtains:
(A—C)D*+20D+(A+C)=0 (209)

The unicity of D is granted by the problem at hand. We look for a solution whose [ expansion is obtained
recursively, and whose first term is identical to the one obtained for § = 0 in the inltlal problem. To do so,
we can find, at least, a recursive solution to this equation. Rescaling A — %, C — f’ D can be obtained

as a series expansion in /3, Y (\/B)n D,,. Equation (209) becomes:

(oo}

S0 (1—2(\/5)"Dn>2—2<5+\/B(A—0)) (15 (v5)" 0. +2(5 4 v

=1

(A—C) (ZDan - k>+251) ))2(51+\/B(A0))+2(5+\/BA)

k=1

<\/B(A o)+ i (\/E)n ((A ys) (Z Dan_l_k> + 26Dn> + 2\/551)1) +2/BC

k=1

n=1

/\
,’L
Q
+
iyt
/—'\
v
/\:

(A+C)+ f: (vV5) ! ((A e) (f: Dank> + 25Dn+1) 426Dy =0

k=1

As a consequence, the first term is
51 A+C

2

Dy =—0" 14-0) <ZDan k)

and
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Appendix 4

To solve the class of models presented in the text, the equation (209) can be cast into the block form:

- A AV + B B
0 = VB| (Bors)r G o " oo (@) <1‘2> D
A% {W’A?j)k}i>k>j} Bi, {lej + (Ajjj )eff ’BQQ}
Jr\/B A.gji‘) {_(Eijj)k}zkgj)ef‘f7A§{.§_)]€}i>k>j}
with: £ F
=G i)

is the block decomposition of D imposed by the matrices eg), Ag)
In most systems, the "per se" inertia egf) is nul. If moreover A%) = 0, that is agent 7 is sensitive to his
substructures goals, but not directly to their actions, one can find F and F' as functions of the other matrix

blocks. Actually, given that in that case (209) writes as:

0 . Av(i) , AY + B By
0 = VB 0 {(E{m‘}f k)eff7AF{]];)j}i>k>j} D* + B, {514%) n (A%))eff’Bm} D
0 0
+v/B A9 {(6({§>k}21c<j)effAg)k}bbj}
one can divide the equation (209) in two blocks:
AD
0 = VB {(Egc)j}» k)eff A9 } (GE+ HG) (210)
2 ALk i k>
AY 4 By Bz

E 0
+ i j + /8( j )
Bl {BA§-;+(A§-§-))€”,322} (G) VB g
and:
AW
. 1/‘7
0 = \/B {-(E%ﬂc)j}pk)e” 40 } (GF+H2) (211)
2 )

{kj}i>k>j

AD 4 B Bis 0
(1 F (7)
+ @) 4 (40 ( ) +VB | [ (B 40
Bi, {5Ajj + (Ajjj )eff’Bzz H P s Afikyisks

The first one (210) allows to find E. Actually, the two equations of (210) yield:
-1

( ) )
— | € .
{kjtizk) ; i i ;
9 L ) Aijk)j}i>k>j <B§2E + {BA;J‘) + (A§§)>efj. ) 322} G+ \/BA%)>

(212)

(GE+ HG)=—| /B
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and

0 = (A +Bu) B+ BuG - /6D | VB

x <B§2E + {,BAg.? +(49)) » ,Bgz} G+ \/BA;{?)

so that:
E (A D4 311) \[A VB
( ()
y fA(J) {kJ}J>

normalize AE—? =1, and use that (Agjj))

eff
G (4D) " (?J)"}P")eff
B, ﬁAi‘j (Ajj )6” - 9 A{jk}l>k>_}
By, = 614 J) (A(J)) » AEJ?)
ﬂAl_] ( jjj))efng'jk)’
( )J > )e N~ 7(6(”
By = ﬂ <{M A{jk}}l>k>] (Agjj))eff

({
qe

(AE? + B11) - Aﬁﬁ)

_ (1 — 3D (A%));flf

Thus, the expressions for E simplify as:

( ?k)J}]>k)

2

‘/Bf

{Jk}7>k)pff A(]

(Am (A(J))eflf ({ (<

2

( gJ’“)”’P"“)eff A

9 {kj}i>k>j

-1

)
eff 40)
A{kj}2>k‘>j

( () )
kjyizk

{k

-1

t
Bl2

(o4 + (42),,,

can be considered as symetric.

{ik}i> k)eff

2 {jk}i>k>j

}+{

- (49),,

/

() (e

(cfy521)
{kiYizk eff A(J
2 {jk}i>k>j

B (egji-e)j}pk)eff

2

(4)

Aﬁ) + 311) =1

-1

(4)
{kj}i>k>j
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{]k}z>k>]

2

( bj}ﬁ k)(,ff A(]

2

Ba (

) ({F

( )] Jz )p
} + {WW A{]k}z>k>]

{kj}i>k>j

({84 +(a2) .

(3)

GYi>k>j

(213)

}G+ \FAU)) ~ B1xG

©)
{jk}i>k>j

{jk}i>k>j

A9,

/)
/)
49 0

(Fr2)
“lik}iz k), (4)
2 = A{Jk:}z>k>j

)

1 —1

t
B12

Pa}

G+ fA(”> ;e

(214)



Similarly, the second block (211) leads to:

— (elyson)
0 = 3 A § RNC))

2 {kj}i>k>j

~ (Ghnss).,
J <J ;
+f —7A%j)k}i>k>j

(GF + H?) + By F + {BA§? +(49) ,ng} H (215)

eff

yielding (GF + H?):

(i), -
JsJ ;
(@F+H) = —| VB ——5 " A, (216)

( () )
i . {_]]c}k<_7 .
x | Bl + {6A§'j) + (A%)>eff ’B22} H+ /B f’A?j)k}Dkx'

and after coming back to (211), the expression for F:

-1

)
) ( {]’“’}P’“)eff
VBAY | VB LAY

2 {k]}7>k>] (217)

{Gk}Yi>k>j — Bi2H

x {BA§§)+ (A%.)) " }H+\[ M AY)

The resolution of the problem is thus reduced to a system of two remaining equations:
(fAU G+ (A“ + BH)) E+ (Bu + fA(J)H) G=0 (218)

(VBADG + (A7 + 1)) F+ (Biz + v/BAYH) H =0 (219)

where E and F are given in (213) and (44).
Multiply the second equation (219) by H~'G and compare with (218) one obtains:

FH'G=EFE

This can used to write that:
(GF + H2) H'G = (GE+ HG)

and, using (212) (216), one is led to:

—1
{jk}z>k>] H™G

(Jj
st {1 (47) , ma v B g

= (BizE + {514%) + (AS-?))Eff 7322} G+ \/BAﬁ))
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and using again that FH G = E:

(9)
/B ({Jk}k<J)ef'f A9 A e = /pad)

9 P jkYi>k>j

One can thus express G as a function of H:

( g)k}k<J)eff ) :

()
2 I GkYi>k>j AjZ (220)

The all problem then reduces to find H. To do so, one uses (215):

( () )
€{kitizk . ; ,
0 = VB +,A%}i>k>j (GF + H?) + By F + {BAE.J? + (A%.))eff,BgQ} H (221)
(¢ ?L}k )oss
J <J ;
+V/B ’A?j)k}i>k>j

which is, after expanding the terms involved in this equation:

~(ctiszr) %%k ) B
7 j> 7 <J . .
eff 4() eff ) €))
Vo 2 s Alkjyisk>j {ik}ish>j Aji + Bx |(222)
G
) O\ WRINIEE ()
x [ A B A{k]}1>k>j
()
(@) 4 (A4 J <J CNURIRSI epr ()
: {BA- +(43),,, e H+\f VAfkyisksg (| — Bl
(?2} )
J iz
eff 4() 2
+VB A{Jkg}z>k>j H
() i )
(4) €) URMS<I ) ery ()
+ {/BAJJ T (Ajjj> o f }H+ VB A kyiskss

This equation completes the resolution by yielding H. However it is simpler to solve if we cast it into an
other form through a change of variable. Actually, using (220) and (44), equation (215) can be organized in
the following way. Regroup the terms proportional to F' and let:

((y) ) !
MRS epp 1)

- G\~
H =H 2 kN>R +\/B(Ajjj)eff
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then:

( () )
{kjtizk
eff 40)
\/B{Q A{JkJ}z>k>g (G+ Boy) F
( €) ) (4 1
— e .

{kiXizk) crr () ({7k}k<7) FoAG) o

= (\/B va{kj}i>k>j H f’A{jk}i>k>J‘ Aji

—(eiyion) )
TIIZE)eff o 4(9) G\ 40)
5 s Afkgyisksj (A“) A

- (ef{Jk) } k) ( %J)k}k ) b 1
Jj}ti= ., . J <Jg . . . — .
eff 40) eff 40) () ()
2 »Afisass (| H 2 P Ajkyizh>j +VB (Ajj )eff A

_ (e(j) )
N\ HAkibzR) AW

(J
9 {kj}i>k>j A
A

{’”}P’“ NP epp 40

2 {k7}1>k>7 {kj}ti>k>j

(9)
1
A(J) + ﬂ)
fo

B (G%}DQ " }

(9)
— (e
({kﬂ}ﬂ>k>eff Jk}J>k N UMIFR eff (@) ! () -1
- 6{ 2 A{kg}z>k>y A{]k}1>k>ﬂ (H N (Ajj >eff>
= (Dhnes)
J <J
eff  40)
X 2 A{]k}z>k>]
The remaining terms
() (i)
B2k epp 4 G) 2 (4) () IMRST) efp 4 (h)
VB 5 Afgyisess (H +{5Ajj + (Ajj) o B22}H+\F s Afiyisk>j

can also be factored:
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() )
()., () 2 0, (40
VB ——5 L Ay B 5Ajj+(Ajj)eff,Bm H (223)

- (€g)k}k<j)€ff

(9)
+\/B f’A{jk}i>k>J’

( () )
N oy )
2 {kj}i>k>j

: <{BA§? =(45),,, ’322} (H - (A%))eflf> i ﬁ))

( () )
ISRy
2 1A GkYi>E>)

VBH (H’— (A%));flf) L M )

2 {kj}i>k>j

And (223) becomes:

—1

(9)
. . ( {k]}j>k)e
0=VvB  HaPAD | TR A
X (({BA@ +(49) 322} (H’ = \/B(A(”) 1 ) + f)
Wy 37 eff ’
( ?’*)J}Pk)eff () o) (Eg)k}j%)eff ) ' @) !
- 5 9 A{k]}z>k>J (Ajj )eff 2 A {jk}i>k>j <H - \/B (Ajj >eff>

—1

)
N1 - (E{kj}pk)e ;
+V/BH (H/ \[(A( )) >+ %’A%wm

eff

X <{ﬁA§? + (A%))eff ,BQZ} <H’ VB (A%))e—flf> N \/B)

or equivalently:

{k j >k
0= (VBH'ADAD + 1) { T AP e

<({oa + (42),, 2 f;>* )+ i)

(J)
{Jk}3>k -1
1 4(3) 4(9) ) N WHIER eff 4l H' ()
-V Az A7 (43) ( Ak ( VB (45 )eff)

{Jk}.]>k "ff ) , G) -1
+V/B (H’ _ AD ey ¢ | (B = VE (4 )eff

(J)
eff
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f (({J)’“}Pk)eff A(J) / A(j) -1 : . n—1 £
actor by —— Ak H — \/B( 5 )eff on the right, multiply by (H’)" " and fac-
tor by <\fA(])A (H')_l) on the left yields:
O—([A(JA(j)+ )1)
. -1
(9
<€{kj}12k>eff 46)

2 »EHkjri>k>g

) !
; . -1\ ! ( {Jk}]>k> .
x ({ﬁA§j> + (A;jj))eff 7322} +VB <H/ ~ /B (Ag.aj)) ) ) f’Ag‘)k}Dkn

eff

(R ) (1)

or, which is equivalent:

(4) _
({JW}QM)- {k7}l>k>7 A(Z (A%))eff ,B22} + \/B (H' — \/B (A%))eflf) 1)
( ({JJ)’“}P") _NUBP epp 40
X B) Afkyisk>
_ ﬂ(Am) ! _f(\[A”A () 1 - (224)

For later purpose, note that the transpose of this equation shows that (H’ )t is solution for the same equation.
Given the unicity of solution when 8 — 0, (H’)t = H’, thus H' is symetric.

This equation, once solved, allows to find E, F, G by (232), (44) and (220), and then the dynamical
matrix D from which we derive the effective action, as explained in appendix 1. The dynamical matrix D is

then: ) -
p-75(6 r)

We now include the coefficient ﬁ in the definition of E, F, G, H.

Havmg found D, we recover the matrices needed to compute the effective action, by finding an expression
for £ ((A—C)D+ QB) However, since,
((A-C)(D—-2)+2B)
= ((A-C)D+2(B—-A4)+2C

and C' is antisymetric,

(A=C)(D-2)+2B)° = (A—C)D+2(B — A))°

0 TN(E FY\, (A& B2\’
0 © G H By As

[ TG+A, TH+By \°

= oG+ By OH+A,

Which can be rewritten:

(A= C)D +2B)°

DN =
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with:

r = /BAY

0 = \/B _(6?;7}2%)5”7 gi)j}i>k>j
A = AY 4By,

Ay = {BA%.) + (Ag.g))eff : 322}

and Ag) normalized to 1. By construction, A; and As are symetric matrices. Given (232), (44), (45) (222)
and (224) it yields:

-1

_ (e(j.) )
VRIRST) egs )

tG+ar - VAADH LT S VTR 2%)
@) (1 DY 1 4@
= AU (H —\/B<Ajj)€ff> AW 4 A,
(9)
, N —1 - (e{jk}kgj) ,
_ (4) (4) eff 40
TH = Aj (Hl_\/B(Ajj)eff> 5 ARk
_( ) ) _( ) ) !
€ JR Ef. .
{kitizk ; {7k}k<j ; .
_ eff 40) eff 40) ()
oG = D) ’A{kj}i>k>j H 9 ’A{jk}i>k>j Aﬂ

( () )

(9

{kj}izk . N —1 .

eff  40) / (7) ()
2 ’A{kj}i>k>j (H o \/B (Ajj ) > A5

N -1
Since H' is symetric, as explained before, and since (Ag?) i is symetric by construction, then I'G + 1 is
e
symetric and moreover I'H = (6G)". Moreover,

2 » Hkjti>k>j 93 ) erg 2 » A GkYi> k>

)*1 > M AW

_ (6@ ‘ )
O — aY2k) opp ) (H’—\/B(A(-j)

is also symetric. As a consequence:

s _
(A-C)D+2B)” = OG + By OH+ A,

N =
N —

((A—C)D+2B):( LG +A TH+ Bz )

and:

-1
((a-c)(p-2)+2B)%) (a+0)

B T, — (TG +Ay) " (TH + Bia) X Ty (00
- *(®H+A2)71 (@G+Bgl) X Tl TQ ® v
[ =G+ A) T (TH + Bia) Yo® — (DG + A1) ' (TH + Byy) ToU

- Ty® T,
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where:

T,

((FG + A]_) — (FH + Blg) (@H + Ag)_l (@G + B21))71
Ty, = (@H + Ay — (OG + Bay) (TG + Ay) ' (TH + B12))71

The matrices intervening in the effective action (204)

Ni = ((A-C)(D—2)+2B), — (A-C)(D-2)+2B), (((A_C) (D—2)+2B)jj)71 (((A—C) (D—2)+ZB)jZ.>
= I'G+ A, — (TH + By3) (OH + Ay) ' (6G + Byy)

My = (Vi) ((((A —O)(D-2)+2B)°) (A+ C))M
=~ (Ni) (G + Ay~ (TH + Buy) (OH + Az = (G + Byy) (TG + A1) ™ (TH + Bu))_l rt

My = (Vo) ((A-C)(D-2)+2B) (A+ 0))U

= —(Na)(TG+ A1)~ (CH + By») (@H + Ay — (6G + Byy) (TG + Ay) ™" (TH + Bn)>_1 o

Where the various matrices are given by (225).

When AZ(-;) is (m 4+ k) x m (that is, AZ(-J-) has more rows than columns), one can go further in the resolution
and obtain more tractable relation than (222). The reason is that in that case, the dominating agent has a
number of action variables greater or equal to the number of substructures. This over determination creates
some symetries (possibilities of switching the way of action to get equivalent results).

These symetries reflect in the following way: Consider k¥ matrices V; I = 1...k where dim (V}) = dim (A;?)

which is m x (m + k). Each V; is filled with 1 in m places and 0 elsewhere, such that rank (V}) =
Coming back to (218) and (219), we multiply the first equation (218) by (V;)" on the right allows for
expressing H as a function of G.

(\FA NG+ ( A 4 BH)) E(W) + (312 + JBAgf)H) G() =0 (226)
(VBADG+ (A7 + B1)) F+ (Bia + V/BADH) H =0 (227)

Then multiply the first equation by (G (Vl)t) and (219) by H—1. Then, since (fA G+ (A( Dy Bu))

is a square matrix one obtains:

EW) (GW)')  =FH

Given (43) and (44) it is equivalent to:

({49, 22} - 22) ﬁ< ) (o >t>1>

_ (i) ) 3’“}’“3 C NURRSI opp () -1
= ({5Ajj + (Ajj )eff’BQQ} - BlQ + ﬁ A{jk}i>k>j H
that is:
t v [ (ges)
) A IRIRST) et 4 () 1
(WA” ) (G (Vl) ) - f A{jk‘}l>k‘>] H
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That expresses H as a function of G:

B) (ikyi>k>j

N\ T (Ef{j')k}k< )

. t J <J .
H=(GWw)) ((VzAE?) ) — e A0
With E, F, H expressed as functions of G, the all problem consists now in finding G. However, given (220):
-1

_ (e(j.) )
WRIRST) eps )

G=H D) {jk}Yi>k>j

()
AY,

one obtains:

Q

|
—
@
—~
=
<
~—
N
D N
=
=
SS
~—
N———
|

N
[P=N
S

Nt -1
with X = (VlAgj)) (G (Vl)t> . Then, the all system reduces to find (G(Vl)t>7 or equivalently X
which appears to be a more convenient variable. With that choice of variables, H rewrites:

- (Ef[j')k}k< )
H:X71 J SJ eff’A(])

9 {jk}i>k>j

However, the independence of H in [ yields & — 1 constraint equations, that ultimately reduce the free
parameters to (G (Vl)t>. Actually when [ # m:

H = (¢o)') ((vmg;»)t)l W no,

9 {Gk}Yi>k>j

- o) () [ ey

9 y Ak i>k>j

that is:

() = (cwy) ((VzAz(?))t)l ((a))

If V,,, is partitionned in two matrices:
Vi = (Vi V2)

and Vn(ll) is transverse to V; (by transverse we mean that the 1 of the submatrix V,S) are not in the same
columns as the 1 of V}), the constraint allows to express rank (V,SP) parameters of V; in function of (G (Vl)t>

that remain the parameters to determine:

(o(20)) = o) ((oas)) " ((20) )
This allows to find G as a function of (G (Vl)t>
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Actually,

(e (v00)) = (con) ((a9)) (0 a2
6 () = an (waf)') () 49)’

i\ -1 4
allows to compute G (Ag?) \/BAZ%) in the following way:

or:

N1 .
Partition G and (Afz)) \/BAZ(;) along V;\" and V;:

¢ = (o((0) (o))
- (e(u)' (o))
v = () vy

where Vl(l) is defined by V; = (0’ Vi(l)).
As a consequence:

(VBAGG+ (47 + Bn)) = (\/BAE?Xl (Agj))t + (A + BH)>
and the equation (218) becomes:
(JBAggI)X—l (Aﬁj'))t + (A§jf> + B11)> E(W) + (B12 n \/BA§§>H) G (V) =0

which is equivalent to:

-1

(VBADx (49) 4 (42 + B ) ) B0 (6 00 (228)
= — (Bu + \/BAE;)H)

- (egj')k}k< )
() yv— IRIRSI S eff o 4 09)
— | Bl +/BAY X! s A isks

1 - (G?)k}« )
_ OFFOS () y—1 TIRST ) eff o 4(9)
= - (5‘45 (Ajg‘ )eff +VBAG X ) Al

Use the expression for By; multiply by V; and simplify by (V}Ag)):

1

(VA (a2) = (1a2) " (100 (4) ) A2) ) iy () e

(4)
o\ -1 B _(E{jk}kgj)e .
< (o) g, |

eff
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given that:

-1 ) - (Eggj}pk) fFoAG) -
t t j - e) j
s (con) " = Ay [{ 2 e a0
. B . -1
x (({BAE»? (A7), B}) G (VD) + V545 (sz) ~ BoG w) (¢my)

. -1
()
I NG (e{kj}j>k)eff 40)
= ij B) » Al kjyisk>j

(), o) 59
_(6@ )
—(ﬂAEjf) (AV.))];) VUMM err q0)

73 2 VRS k>
~(lyion) -
_ 4 IZE) eff 4 G) () )
= A3 9 ’A{kj}i>k>j (({ﬁAjj + (Ajj )eff ’BQQ}) + \/BX)
- (€§j‘)ic}k< ) 1 1
TR eff o 4 () @MY~
2 ’A{jk}i>k>j -8 (Ajj )eff
_ (.
(6{j’“}‘“<j)e.ff ()
N ARk
Equation (229) becomes:
_ () -t -1
(6 (A” )eff * \/BX )
—1 4D\ 40 DY " 40 40)
- (\/BX (49) A9+ (1+ﬂ (4 )effAji AY )>
— (i) B
TIIZE)eff o 40) (i) )
% Ak (({5Ajj + (Ajjj )eff 7322}> + \/5X>
- (ef{j')k}k< ) - 1
TERIRSITeff o 400) @MY
Y ARk -8 (Ajj )eff
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that is:
(5 (A(’) e > (230)
<\//§X +,8 ):)A“ A(’)—H)

—1
{k3}1>k)e i |
L ) (), mef) o)

(J)

{Jk}k<J>eff ) @)
% 2 P AGRyisr>g -5 (45 )

-1

This quadratic equation for X, when solved for X, allows to find the all matrix D. Actually, collecting our
previous results:

(con) = x*(via)’
G = x! (AF?))t

ij

( {Jk}k<’)<’ff AV

-1
H = X 2 {jk}i>k>j
(i) h
Jjyizk), i j
E = | /FAY L A s <{5A§.j>+(,4§;>) » BQQ}GJF\fA(J)) — B12G
~(cier) B

B () BIZR) epp 0 ()

F = \/BAJ fﬁl{j}q}»kx
AD 4 (4D H++/B ({j)k}k<J>eff AW BiH
x | {84;; +( jj) eff + i ) A

Note for the sequel that since the equation for X can be rewriten in a symetric form. Actually, set
1
Y =VBX 45 (aY)
eff

the equation (230) is turned to:

(e impk)eff ) - (i) () Y -
- — A ks BA;; + (Ajj )eff s Baa ¢ ) V0 (ﬁ - \/B)
(ralag 1) (Bhrnes)ers o - M)
({ ! A{]J)k}z>k>a}> -8 (Ajjj >eff
or, simplifying by Y:
~(Gnn), G) - () ) v !
- — ARk BAjj + (Ajj )eff By o )+ VB (ﬁ - ﬁ)
(Aﬁ)AEﬁ) + Yﬁl) (<, ) -t -1
({727“ A({Jg)k}z>k>g}> - B (Ag']j)>eff
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which means that the two matrics in the left hand side are each other inverse (up to a minus sign). One
thus also have:

(5) -1
- "{kjmk)e, G) () ) !
({H’A{jkj}mw}) (({BAJJ’ * (AJ% )eff’322}> Vi (% a ‘/B) )
~(Fhynes) ) - W)

whose transpose is (we recall here that By is symetric by construction, as well as AE-? by assumption of
the model, and (A%)) by construction):
eff

,(Emj J’>k>e _ -1 i _ t 3
g | () ({0 (00),, ) 959 )
(a4 + 097) | .
n 7(€f{j~’l')k}k<j)eff ) G\
ARk -8 (Ajj )eff

and then Y is also solution of the problem, which in turn implies that X is also solution of (230).
However, since we look for the unique solution X corresponding to the perturbative solution in powers of 3,

Nt —1
one deduce that X is symetric, X* = X. Moreover, since X = (VlAg)) (G (Vl)t) , one can also say that

(Ag.gf)Ag) + Y—l) -1

1 t (7) N . . ..
X = (G V) ) (VlAij ) is symetric. This is useful below.

Having found D, we recover the matrices needed to compute the effective action, by finding an expression
for 1 ((A—C) D+ 2B)”. However, since,

(A-C)(D-2)+2B)
= (A-C)D+2(B-A))+2C

and C' is antisymetric,

(A=C)(D-2)+2B)° = (A—C)D+2(B — A))°

cu)(h 1))

<FG+1 TH >S

Which can be rewritten:

(A= C)D+2B)°

N | =

Il
I/
N
o o
@ -
N~
N

oG OH + A
with:
_ (4)
r = /BAY
(4)
— | € Y -
<{kJ}J>k)eff )
® = VB g Ak
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and Ag) normalized to 1.

IG+1 = /BAY X! (Agjf))t+1
- ( E{J)k}k< )
. _ J J eff :
g = \/BAZ(';)X ' f"‘l({]g’)k}okn
(({]’“)J}P’“)eff —1 (4@
oG = 3 5 A e 0 X (Aij)

Since X! is symetric, as explained before, then I'G + 1 is symetric and moreover ['H = (@G)t.

Moreover,
(i), ~ (Fhpees)
Jyi= . 7 <J .
foAG) -1 eff 40)
o = f —’A{jkj}i>k>j X f’Agjk}i>k>J‘
As a consequence:
1 s 1 ([ TG+1 '
5((A—C)D—|—QB) _2((A—C’)D+QB)_( oG @HJrA)

and:

(A=) (D-2+2B)%) (a+0)

) 1 - (TG+1)"'TH
(rG+1)-rH (©H +A)™ 6G)

—(eH+A) oG
X ((FG +1)-TH(OH +A)™! 96‘)71

(s v)

- TG+1)"'TH - (IG+1)"'TH

_ x (9H+A — G (TG + 1)*1FH)_1¢ x (9H+A — G (TG + 1)*1PH)_1 v
(@H FA-OG(IG+1)7! rH)_1 o (@H FA-OG(IG+1)7! FH>_1 v

The previous expression can be concatenated again.

H Gvt(vr)~'et

X~ le!
(@H FA-OGIG 1) PH)

(\/BAE?G+ (AE:) +B11)) V) (B12 + fA(J)H) Vi) =0
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x (@H +A-OGIG+1)"" FH>_1

(@H +A-OG(IG 1) FH)_1
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() !
— | € N
. ( {k‘]}j)k)e ] i . .
o (\/BAS) ((\/g{ : ff’A?]gj}Dm}) ({,BAg,j) i (A%))eff ,322} G+ \/BA%))) - BlgG)

(232)
(TG + A1) (TO (A2G +T") — B1»G) = — (B2 +TH) G

V(TG + Ay) (TOT (MG +TY) — BioG) (V)" + Vi (B + TH)G (V) =0

(VD) (GT + 1+ By, D) (07 (82G +TY) = BI,G) (Vi)' + Vi (Bia + TH) G (Vi)' =0

(GT' +1+ Bj,I) (@-1 (AzG (V)" + (VzF)t) - B|,G (Vz)t) + ((VEFY1 (VilBYy) + H) GW)' =0
(GT 41+ By (@—1 <A2 + (viD)* (G (Vl)t)_1> - B{1> + B, =-H
(TG + Ay) ™' (TH + By»)
= —(TG+A)™" <(FG + AT <@1 (AQ + (Vi) (G (Vl)t> 1) - Bgl)>

- T (@‘1 (AQ + (WD)’ (G(Vz)t)1> - Bil)

= —(TO7' (AG+T") — B12G)

OH + Ay — (G + Bay) (TG + Ay)~ (FH+B12)

1
= < (GT + 1+ Bj,I) (6 <A2 + W) l)t) ) - Bil) + Bil)

+(OG + Byy)T ( -1 (A2 +(viD)* G ) BH> + Ay
-1
= ( (GT + 1+ B, T) (@ (Ag + ( z)t> ) - Bh) + Bh)
+0O (GT + B4 T) ( -t (Az ) Bh) + Ay

- < (AQJer ) (e ) BH+B11>+A2

= i) (o)
= —O'H!

A\ —1
By =0(a7)) T

(TG + AT (071 (MG +T) — B1L,G) (V) + (B, +TH)G (V)" =0
(TG + Ay)T (@—1 (A2 4T (G(Vl)t)1> - B{2> +T (B}, + H) =0

OH + Ay — (0G + Byy) (TG + Ay) ! (TH + Byy)

OH + Ay + (OG + Bsy)T (e—l <A2 + I (G(Vz)t) ) - Biz)
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o) [(Gr + Ay) (@—1 <A2 + (VD) (G (Vl)t) 1) — B12> + (VD) " (ViBi2)

—1
+ (@G + Bgl)F (@_1 (AQ + Ft (G (W)t) ) - B12> + AQ
OH 4+ Ay — (0G4 Byy) (TG + Ay) ' (TH 4+ Byy) = —H ™!

(TG + A1) (TH + Biz) (OH + Az — (6G + Bar) (TG + &)™ (TH + B”))_l
— —(TG+Ay) " (TH+ B)H (69
— (TO7! (AG +T") — B1,G) H (01"
— T (@‘1 <A2 + (WD)’ (G(Vz)t>1> - Bil) H (0"
= T(07' (A +O'HY) — By H (6

- T (@*1 (A2H (G)t)71 + 1) - By H (@t)A)

And ultimately the matrices involved in (204) become:

-1

Ni = (A=C)(D=2)+2B), - (A-C)(D-2)+2B), ((A-C)(D-2)+2B);,) ((4-C)(D-2)+2B);,)

= TG+ Ay — (TH+ Bys) (OH + A) ' (OG + Byy)
My = (N-)((((A—C)(D—2)+QB)S>1(A+C’))H

= (V)T (07! (8 (6) "+ 1) — B, H () )T
My = ((A C)(D —2)+2B)” (A+C)) }
= ()T (07 (Aol (89 4+ 1) = BLH(0) ') ©f
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Appendix 5

For the strategic agent, the matrices defining the effective utility are given by 27, with, in this case:

W), 40)
A = \/B( A(l)_?_A(J) {AA](CJ])TAJ?JZ}>
10 + BAf) (49)) "AW VB (A + Af) )+{ﬁA<J> (49 ) 1 }
b= AL L 40) A0 (40 401 (457 +45).
\/B( 1+ j1)+<{5 ij ( jj)eff m}) \/B{AECJJ),AJ)}

0 A AP )

¢ = \/B< (A() Am) {Ak]7 Au}

As described in the text, we need to find the expression for the matrix D, and the effective utility for the
dominant agent will be deduced from it’s expression. The matrix D satifies the equation:
1+ BAW AW BAD AW

0 AP v W 40Y JELAD 40 0 0
VB O | D+ @ 4\ (5AJ37 4 ) VB {A’W Aj } D+VB | 40 @1 ] =0

o {aiR} (A AR) ARG AR {ag)}

ik ij Pk 3AY) (A(J)) AW J I
1 33 ) gy ik

J J

(233)
To solve this equation, we partition this matrix as:

E F
D= ( e >
and applying (213), (44) appendix 1.b allows to find all the parameters as a function of H:
) @) - (1 N aa@ (4D 40 i) i) 40G)
o <\/BA% ((\/B{A{ka}bbj}) <{6Ajj) A 04y (AS?Jf )eff A }G +VBAG )) - AT A5, G)
) ) @) 4 A0) ) (4@ ) 3 ()
(\[AJ (\[{ {jlw}l>k>a}) ({IBA + A gAY (AJ ) » A }H+ f{ Mbbj}) BAD AY )

¢=4a ({Agj)k}1>k>]})_l A;z)

The problem reduces to find H and H satisfies (222), whose expression, given our assumptions about the
parameters A%-) = Ag) =1 in this particular case:

0= <\//§ {A&)J}DM} ({A%}Dm})*l AY + Bgl> (234)
(0 () (03 (02). VB ) - )
+\[{ {kj}1>k>_]} H?

ofpa + (49) B V{8,

Given our hypothesis concerning the agent’s interactions, we can use the following normalizations A%) = q,

Ag‘_]])k}1>k>_l =(1) - 81 where we denote by (1) the matrix filled with 1 in every row. As a consequence, one
can find the inverse of {A{ka}l>k>J}'

) o1 N-2_ 1
({48os}) = =7 =00~ F=0m = =7 (D= 6)
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AD A0 = 2 (1), N number of agts. Al(;)Ag.j,;) = ((N—=2)(1)+0;x). As a consequence we compute
some intermediate quantities involved in (234):

{54+ (49) ,, Ba} = {48840 40) = 1433 050720

({Ag‘)’c}bbj}) - Nl— 7 (D)= ()

and

({Ais}) 4% = (570 6w) el
a(}\&—l) 1,.,1) = Noil a,..,1)"

BAY ({AF{JJ)k}Z>k>J}) = Ba (1) (1) = 0jx) = Ba (N —1) (1)

We look for a solution for (234) of form:

H=\/BV (1) + /W

We first solve the case for N > 1 and consider N = 1 as a particular case.
Using first that all the matrices involved in (234) commute leads to:

o = (VA (A }) 4207
(o) ({5 ()., 5} 105 (4} {480} 1))
+VB{AL ks }
{o (4), B b1+ V(A
And this expression can be factored ultimately as:
= (VB (o) o) A0 ) ({045 (A7), Pt 4 V5 (8000
B A 575 (V34 045 1) 4709 {4

Replacing then for the various expressions involved in (235) yields:

0 — ((,3 (V (1) + W) <N11 (1) — ((m)) +,3> o (1) + 1)
X((T4+28+B((N=2)(1)(V Q)+ W)+ ((1) = ;1))
FB((1) = 853) (V (1) + W) = B2((V (1) + W) + (1) — d;1)) @ (1) ((1) — 8;5) (V (1) + W)

and this leads to a system of equations:
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0 = (2B+1)W —pW?—1)

ozv“ﬁ (N — 2)N4<

Va2 25 (V (284 1)+ BW (N = 2) +1) — Va2B* (V + 1) >N3
N -1

~Va2p? (V - %) (N —2)
V2B +a2B2(V-W)(V+1) =V (W=-1))

2
i ( —a*f (V - %) (V (28 +1) + W (N —2) + 1) + Va?B (8 — W) (N — 2) + Va2 g1 ) N

QB (W (V+1)+ (W =1)(V-W)) -8 (V2-2VW)

+< +a2(6—BW)(V(2ﬁ+1)+BW(N—2)+1)+VB(N—2)—aQB(V—%) (W (28+1)—1) )N
+(V2B+1)+B8 (W2 =2VW) +a? (B —BW) (W (28 +1) — 1) + W (N — 2) + o*B°W (W — 1) + 1)

which reduces to:

_ 1 _ 2
W—ﬂ<1+2,3 N +1>

and:
B (N =12+ Na2(1+p)
0 = Ng N1 &
25(( 1)? + Na? (1+,6’))+((2+,6)N(N—1)a26—|—(N—3)N2,8+(4N—2)B+N—1)V
N-1
+((N—1)6+(1+B)o¢26)W2+B(N—1)(N+2a2+0426—2)W+(N—1)((N—l)a2,3+1)
N -1

Once V, W, H are recovered, one can ultimately find the other matrices that determine the dynamics of the

system. For G, one has directly:
— ©) ()
G = H ({A{jk}i>k>j}) Agz
NV +W ¢
1,..,1
CY\/B N _ 1 ( ? ? )

For F and F we use need the expressions for the matrices involved in the problem:

A0 ({A%Qj}i>k>j})il = a(l,..,1) (Nll (1) - (5jk-)>

1j

" B4 ({4 s b) = B (1) (1) = d56) = Ba (N = 1) (1)
Then E and F are given by:
E = /BAY ((\/B {Agj}bbj})_l <{BA(1) + 49, 8AD (A )_flf A;f,g} G+ \/BA§§)>) —pAPA%a
= (L) (((1 F20 BN ~2) () a/Fy o= (1, . 1)t> ++/Ba(l, ... 1)t>
—Ba(1,...,1) (1) = 3,1 aﬂ% (1,..,1)°
- J\?ﬂ (((1 +28+B((N—-2)N)) aﬁjv‘_/_NJ + \/Boz> — Ba?\/BVN?

—1+NV(1+8)
(N -1)?

N
= Ny/Ba?
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P ([A (\f{ {i)J}1>k>J}) ({ﬁAUJFA(a) BAﬂ(A(a))f A(J)}H+\f{A(ﬂ)k}1>k>J}) BAD AD )

= 7 (1 ) (4284 BNV =2) W) VBV (1) + VB (1) = 830)) = Ba (1, 1) (1) = 456) VBV (1)
- (1,...,1)(Na_1((1+25+5 N))\/BVN + /B (N )—ﬁa(N—n\/BVN)
_ (1’”"1)\/BO[N71+NV(1+B)

N -1

The case N = 1 has to be considered separately, since for N = 1, {A(j ) } = 0. We can however

{kj}i>k>j

recover the solution by letting {A(j ) } = ¢, and considering the limit ¢ — 0. We look for a solution:

{kjYi>k>j
H = /BW. (235) becomes:
((BW (7" +B8) > +1) (L+BYW + &) + BeW? — B (W + €) oW
or, when reorganized in W.

2

<ﬂe — 2B+« (,B + 1)) w2+ ((ﬂ +1) (BQQ + 1) +a?p — a26262) W +e (ﬂozz + 1) =0

Looking for a solution W = ew, yields by a first order expansion in e:

0= e(w ((ﬂ—i— 1) (Baz—i— 1) +a2B) +a?B+wid?B(B+1)+ 1)

and the solution w = fﬁ, which allows to recover the solution obtained by solving directly (233):
_ VB
= ——€—0
B+1

B1°

"o ( ( {A&E}Dm})* ({BA AP, pal (49) » A§J,3}G+ m@)) gAY A(”G)
- (a( (1+5 G*‘\fa))—ﬁaeG)—m

o= ( (j) A({jk)]}1>k>j})_1 ({5‘4;? +A(]) BA; i (A(])> eff Aﬁ)} H+ \/B{A({Jj)k}bkw}) 5A(j)A(J )
(a(e) ((1 +5)H + \/Be) —BaeH) -0

Having found the matrices E, F', G and H so that the dynamic matrix D for the first agent is known, one
can find the effective action. We use the general formula (205) developped in the the previous section:

Uegs (X 0) = 5 (X)) = XO7) N (X0 = X0) = (300 = X077) T2 (X (0= 1) - X[
- ; (%) - %) A\% (x5(t-1)- X)) + JX;ZQX 1) AD (X (1 - 1)
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where we have introduced some objectives X (z)e, X J@e for the first agent. In the text, these objectives are
set to 0, since we want to focus on the dynamical pattern of the system rather than on it’s equilibrium. The
matrices M;;, M;;, N;; are computed in Appendix 1, (27). They are:

Ni = ((A-C)(D-2)+2B)5 — ((A-C)(D~2)+2B)] (((A—c*)(D—2)+QB)fj)_1 (((a=-c)(p=-2)+2B))

M = ) (-0 -2 +28)) a4 0))

i

My = ) (- 0-2+2m) " (a4 0)

j

where the upperscript S denotes the symetrization of a matrix. We first need to compute the symetrized
matrix (A — C) D +2(B — A))®. Since C is antisymetric,

(A-=C)(D—-2)+2B)° =((A—C)D +2(B - A)*°

As before, we start with the case NV > 1, and we will consider the case N = 1 later. For NV > 1, the relevant
matrices are:

0 AY a
(A-C) = \/B< 0 {A<§;)} ) = ﬂ( 8 (1(’1'5"_1)1 > (237)
0 0
e = ( b1
- Na? N71+1\1V(21+B) (1,..,1) aN71+N7\/1(1+,6’)
b= ( =i aN]‘V/leVUZ1,1.).,1)t V(l)—HI/IV/ )

1+ BAY A(]

BAW + A(.j.)>
( ) ( 77 77
ﬁAz] A f { j )

< 1+ﬁa BN -1)(1,..,1) )
L., 1) (1 +26)+6<( “9)(1))
And we find:

(A-C)D+2(B-A)

_ ( (14 Ba?) + Ba?NEYEL B(1,..;1) («(VN+W)+ (N —1)) )
N Ba(NV+W)+(N—-1))1,.,1)" B(V(N=1+W+(N—-2))(1)—8W +(1+28)

The inverse of this block matrix is given by:

N

((A—C’)D+2(B—A))_1:<

N~
~——

with:
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NB%(a (VN + W)+ (N —1)*(28 — W +1) -
(1+28) = W) ((1+28) =W +NB(V (N —1)+ W + (N —2)))

+ (1+ Ba®) —

NV +W
2N
(O‘ N1

y = (1,._’1)(( <B(V(N—1)+W+(N— 2)) — 52(ﬁ‘ﬁ§avz+$li§%vﬂ)vi) ) a(NV+ W)+ (N 1)))

—BW + (1 +28) 1+Ba2)+ﬁa2NNV+W
e e (Q(Navfwli“zwll)w)<1> NV W) +(N=1)
o ( —ﬂW+<1+2g)+B A ﬁ(1+ﬁa2)+ﬁa2z\ﬂv¥%¥v )

-1
ro_ (B e-p e o) - g el ) )
—BW + (1+25)

These terms involve the following quantity:

T = <<B(V(N—1)+W+(N—2))—52(((;?;;)1[/;;%\71\&;?/ > (1)+(1+26)—5W>

o _ 2
(307 001y (v -2 - s Y

((1+428) — BW) ((1 +28) — BW + N (6 (V(N = 1)+ W + (N — 2)) — g2 La@WVEW)+(N_1D) ))

(1+Ba?)+pa2 N XEEY

<(1 +28) — W + N (ﬂ (V(N—=1)+W 4 (N —2)) - g é‘ﬁéﬂ@f&ﬁfw@}v >)

(@428~ 6w) (1428~ 4w N (37 (V1) 4 W 4 (V- 2)) P el )

NV+W
1+80a2)+Ba? N NHY

One can compute (((A —C)D+2(B-A)"'(A+ C)) by using (237). Some blocks are involved in the
computation, that are:

xﬁ(a(VN—i—W)—&—(N—1))(6(V(N—1)+W+(N—2))(1)—6W+(1+2ﬁ))_16(a(NV+W)—|—(N—1))

NB (@ (VN +W) + (N~ D) [B(V.(N —

JFWAH(N=-2)1) - (1+28) W+ NBV (N -1+ W+ (N -

1
(1+28) = W) (1 +28) =W+ NB(V (N - 1)+ W + 3 (N - 2)))

—(1,..,1) (Ba (VN + W)+ (N —1))
X (BV(N=1+W+(N=2)1)=BW+(1+28)""'B(a(NV+W)+(N-1)(1,.,1)
B (a(VN 4+ W)+ (N —1))?
(1+28) = W) (1 +28) = BW + NB(V (N — 1) + W + (N - 2)))
x[B(VIN=1)+W+(N—=2))N*—((1+28)— W+ NB(V (N -1)+ W + (N —2))) N|
B NB%(a (VN + W)+ (N —1))* (28 — W + 1)
(1+28) = W) (1 +28) = BW + NB(V (N — 1) + W + (N - 2)))
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NV +W
N_1

() BV W)+ (V= 1) (B2 S (1 50%) ) B @Y W)+ (8 - 1) (1)

BNV W)+ (N 1)) (1)
= (1—|—ﬁ0[2)+042/6NNV+W

And as a consequence, the blocks involved in (((A —~C)D+2(B—A)""(A+ C’)) are:

(((Afc)DJrQ(B—A))_l (AJrC))11

o _ 2
(37 =1+ w6 ) s o

((1+28) — BW) ((1 +28) - BW + N (ﬂ (VN =1+ W+ (N -2) - (gcfgavzﬂvgltz(v]v”ﬁ?))

« _ 2
((1 1+ 28)— BW + N (ﬁ (VN =1)+ W+ (N -2) - 5 éﬁ?&ff?li%ﬁiw)) N

((1+28) — W) ((1 +26) — BW + N (5 (VN =1+ W+ (N -2)) - 57 (%vamgmvw)>
B(a(NV +W)+ (N —1))
x\/Ba (1+ pa?) + BoN NEW

av/BBN (1+28 — W) (fiﬁ]\;;ivﬁvczjjfrjfvw?v)v

((1+28) — BW) <(1 +26) — W + N <6(V (N=1)+W+(N-2) -5 (gﬁggg;;%();}(ﬁ%))

((A-0)p+2m-a)™(4+0)

(N -1)
((1+28) — AW) (<1 +28) ~ BW + N (5 VN =D+ W+ N -2)- ¢ <(1a+(gav2>+f?5§vjvw>)
2(@(NV + W)+ (N - 1)) o
(1+ Ba?) + a2 N AEHY

2 (@(NV + W) + (N —1))°
_((1+25)—ﬂW+N<ﬁ(V(N—1)+W+(N_2)>_B (1+ﬁa2)+ﬁa2NW>>>

= (1,.,1)

x <<B(V(N—1)+W+(N—2))—ﬁ

(a(NV + W)+ (N —-1))
<o (14 Ba?) + fa2 N A

(a(NV+W N
(N 1) (1+28 - W) (S G

= —(1,.,1)8/8

((1+28) - W) (<1 +26) — AW + N (5 (VN =D +W+ (N -2) -5 <(1a+(évav2>++vgltf(vjv’w>)

The matrices involved in (236) are then ultimately obtained as:
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NV +W
N11 = (]_ +ﬁ0{2) + ﬂa2Nﬁ

B2 (a(NV + W)+ (N -1))*

a(NVAW)+(N-1))?
(B =1 W (= 2) - P O ) e

X

((1+26) = ) (14 28) = W4 3 (B(V (V= 1)+ W 4 (- 2)) = 57 (200 ) )

_ 2
N ((1 1 28) — W + N (B (V(N=1)+ W+ (N-2) -5 éﬁfavavszg;z(vjv’@”))

((1+28) — W) ((1 +28) — W + N (5 (V(N = 1)+ W + (N — 2)) — p2La@V+HW)HN_1)7 >)

(1+Ba2)+ﬁa2N7N1¥flw

aV/BON (1428 - BW) (ST awaw
My = —(Nu) =

((0+20) = 6W) ((1428) = B+ N (B (N = 1)+ W+ (V= 2) - 32 (B ) )

VBN = 1) B(1+28 — W) {2ty

1+Ba2)+Ba> N S+

Mlj = - (Nll) (17 s 1)

(1428) -W) ((1 +28)-W+N ((v (N-1)+W+B(N-2)— %fﬁgﬁgﬁﬁﬁg >>

Having found the matrices Ny1, My; and My, the full action for the system of agents is:

Uers (X5 () + Ve (Xe (1) = 3 (=X (0 A5 (0) 42X (8) AR (X (¢ = 1) +2X, (1) A7) (X2 (1 - 1))
+% (Xi (t) - )‘(Z(i)e) Ny (Xi (t) — XZ_(i)e> _ (Xi (t) - Xi(i)e) % (Xi (t—1)— Xi(i)e)
: j<i (Xi © - Xi(i)e> A\/j% (Xj (t=1) - XJ('i)e>

Then, the mean dynamic, saddle point of the previous global effective utility, is given by the dynamic
evolution: ' )
X-(t)—Xi(")e) A [ X=X <Xi(f—1)>
! = v(i)e + M.
( X; (t) Lxe-1) - xW 2L X5 (-1)

o (Nu) T My (Ny) T My
My = < 0 0

I YT

On one hand, the previous equation leads to an equilibrium defined by:
X _ X(i)e ) XZ . *‘(i)e ( Xi )
T A — ‘2\4'1 _ _’LZ_ . + M2 7
( Xj Xj - j( ) X
=(i)e 7 (i)e
- (N7 ) - S
0 X;
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with:

M =M + My, = ( (Z\fll)(;1 My (N?l))__l ]lwlj )

On the other hand, the matrix M and it’s eigenvalues yield the dynamical pattern of the system.

M o= <(N11)‘1M11 (Nll)_1M1j>

with:

a(NV+W N—
Q_ (N =1) (20— W +1) TR0

a (N-1))?
((0+20) = W) ((1420) = W 3 ((V (V= 1) 4 W+ 5V = 2) - GEEH000E ) )

whose eigenvalues are:

1 1
—1,§(a+1)i§\/a2—2(N—1)a+4Nb

with:
o aVN (28— W + 1) N0
(1428) W) <(1 +28) - W +N <(V (N-1)+W+B(N-2))— %%gﬁ;ﬁ%ﬁ)
— aN(N—=1)(28—-W +1) gﬁ%ﬂfﬁ—;;
(1+28)—W) <(1 +28)-W+N <(v (N=1)+W+5(N-2) - %fﬁgﬁ;ﬁ%?)

Having found the dynamical pattern for NV > 1, we can focus on the case N = 1. For N = 1 the formula
reduce to:

-0 = vi( o ¢)
o) = vi( 0 )
+=E —=F 0 0
R . A
Y (;BG w) (- 0)
- 14+ pa?  Bo
B-4 = ( Ba 1+6>

leading directly to:

((A—C)(D-2)+2B)° ((A—C)D+2(B - A)°

. 0 « 0 0 n 14+ 8a? Pa
o 0 0 -5 0 Ba 1+p

_ <1+a2ﬂﬁ‘fl afB )
af 145
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and we find:

O£2

s\t T B—a?+a’B11
(A=) (D=-2)+2B)°)  (A+0)= [, sudbrsadsoobisn
& (apZraB)(F—ata?Btl)

0

As a consequence, the coefficient for the effective utilities are:
& app BB ratB ol 1)
F+1 (B + ap) (B—a? + a2B + 1)

Ba?
p—a?+a?f+1

Nii = 1+Oé2ﬂf

My = (Ni)
My = 0

The previous formula for the equilibrium and the dynamic matrix are still valid. The matrix M is:

Ba® 0
M = B—a?+a?f+1
« 0

with eigenvalues 0.

2 B
B—a?+a?f+1’
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Appendix 6

Recal that the model described above starts with utilities of the kind:

1 1 - - .
—S G =Yt = 1)) AN () Vit = 1)—5 (Y0 - ¥ P) AD (i) - ¥ )i e (vie-1) - 7,)
(238)
where:
(1) (4) €)
i Aif + A5
A = /8B (i) ) 7(5&).7‘}%.1)6; *(Eji?km k)eff
Ay + A 0 O ’
J J
A{kj}i>k>j’A{jk}i>k>j
AZ) + Bi1 — \/BES) {\/B (AEJL) + AE?) 7312}
(4) )
B . ﬂAJ‘] + (A_]j )eff’B22
{\/B (Ag? + Ag?) anz} \/B{ ’(E({Jk)j};@)eff’ 7(6({Jj)k}2j2 k)eff }
(9) (9)
’A{kj}i>k>j’A{jk}i>k>j
0 AD A0

e(j). < i - e(j.) .

c = VB| (A@ _ A<_J:>) { ( ““”;”)eff, ( ““;/’“)eff, }
7 7 () ©)
_A{]kj}i>k>j’A{]jk}i>k>j

Start with the utilities of the three agents:

—~ () +1—wt—1)—an(t)s, (t—1)

_,p<1_w(t—1)—f)2—%y(w(t—l)—d})z—%si(t)_

N RN~ DN —

and put them in the following form corresponding to our general model:

(n(t) + 1)+ 2an (t) s, (t —1) — 2n () w (t — 1)
= (n®+1)*+2an@) (1 0 0)st—-1)—2n{t)w(t—1)

2 2
s(t)([d)s(t)+p(1—w(t—1)—f) Fry(w(t—1) — )

= s(t>(1d)s(t)+(p+v>(w(t—U— ’ (“f)_ ; w)2

(w (£) = wo)® + 802 (¢ = 1) + 2vm (¢t = D)w (§) + 2n5 (¢ = 1) (1= w (8) = ) + 2080 (t = 1) (w (1) - F)

= (w(t) —wo)* + 00 (= 1) + 2n (¢ — Dw(t) — 2usp (t— 1) (w(t) = (1= F)) + 20 (¢ = 1) (w (1) — )
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Effective action for the first agent:

Starting with the less strategic agent utility
nE)@) (@) —2nt) (VDwt—1)+2an() (1 0 0 )s(t—1)+2n(t)
we add some inertia in this agent’s behavior:
)M (n@)—eant)nt—1)—2n{t)(DwE—1)+2ant) (1 0 0)s(t—1)+2n()
and the matrices defined in (238) are:

A = —61\/,5
B = 1—61\/5
cC =0

The equation for the dynamic matrix (239)
(A-C)D*+2(B-A)D+(A+C)=0

reduces to:
AD?4+2(B—A)D+AD =0

with solution

D=1-+/-24"1B
61\/>D2+1 61\/B
L 2(1—e1v/B)
D = 1 =73
v _ 1
’ 1-eVB

in the limit ¢; — 0

((A-C)(D-2)+2B)

_ 6\[( (12\73\/>) )+2(1_€1\/E>

— 2
and the effective utility (which in this case is also the intermediate effective utility)
(Yi ) -V 4 (A-C)(D-2)+2B)"" ((A L0 ( (t—1)— Y“))))
X ((A=C)(D-2)+2B) (12 ) -V +((A-C)(D-2)+2B)"" ((A+ ) ( (t—1) — ff;”)))

is in this limit ¢; — 0:

<n (t) — (n<1>>eﬁ> 2 (n (t) — (nﬂ))eff) —2n(t)(Dwt—1)+2an(t)(1 0 0)s(t—1)

nM -
so that ultimately:
Ueps (n(t)) = 2(n(t)? = 2n(t) (1) w(t — 1) + 2an (t) (10 0)s(t—1)

. 1o e . .. v(i)e —(1)e
Using (192), the equilibrium value for this agent is just: XJ(» e = ng e = .

with
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Effective action for the second agent:

Here again, we can identify the utility for the second agent. The action for the first agent:
Usr (@) =2n @) —2n ) (Dwt—1)+2an) (1 0 0)s(t—1)

2
leads to consider the additional quadratic weight % Starting with the intertemporal utility for agent
2:

w(t)? +0n2 (t— 1) + 2vn (t — 1w (t) — 268 (t — 1) (w(t)— (1—f)) + 25, (E— 1) (w (t) — 1) — 2w (£) wo

the identification of the affective utility in (238) starts by setting:

1
0 Hy>
I

b= (\/B(—fﬁ—v)

A

I
>
7~

; 1 {85
_ 0 (-v+2)
o= Vi T0)
The equation for the dynamic matrix D
(A-C)D*+2(B—A)D+(A+C)=0 (239)

since

0
AtC = 2\/B<_01 _0”>

o
=
&)
5}
o
=
0
S
1
o
)
<5
o
g
@]
=]
T
Il
7N
o
Qo
N~
oK
=
—~
[\)
w
L

and:

(125+1> —ﬁy—%bcﬁ = 0
0(55—1-012) —é\/ﬁ—bc\/gu

Il
o

b:#\/ﬁy(c(l—i—a%é)—\/ﬁ)
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(1+0288) /B — (90" 8 — 0 B1? + 60°B* + 0> +28) c+ (B+02) /B =0

(6028 (0 + 8) = (0%)" B + 0> +28) — \/ (3026 (02 + B) — (02)2 B2 + 0> +28) —4(8+ %) (1+0280) B
2(1+0280)VB

CcC =

0% + 028 (0212 + B6 + 025) — \/(5025 (02 + B) — (02) B2 + 02 + 2@)2 —4(B+02) (1+02B5) B
b= 2(02+ B)o2y/Br

- 1702(5fy2)5\/5+0(\/552)

since C is antisymetric:

%((A—C)(D—2)+2B)S:(A—C)D+2(B—A)
1 [(J—— 0 b 1+ £ 0
3 (4-0(D-2)+2B)° = \/'E<u 0 )(c 0)+< 0’ C}2+65)
LB—LeyB+1 0 )
( 0 Bs+ 5 — by/Br

From now on the upperscript S will be omitted.As a consequence, the intermediate effective utility (see
appendix 1) is:

(Vi) -7+ (A- ) (D -2 +2B) " ((A+0) (it - 1) - V)
x((4-C)(D -2 +2B) (Yi(t) - ¥V + (A=) (D=2 +2B) " (4+0) (vi(t - 1) - ¥)))

The relevant matrices are then:

(- s (A ) (Y )

0 __a*/Bv
_ o2+B—cV/B
VB 0
02B5—02by/Br+1
The matrices needed to compute the effective action are then:
-1
Ni = (A=C)(D=2)+2B),; — (A-C)(D-2)+2B), ((A-C)(D-2)+2B);;)  ((A-C)(D~2)+2B);)

1 c
= 1+ ;5 - ;\/B

1
= 1+ ﬁﬁ

23 (52 2\2 3,2 4 ;2 23 (52 2\2 3,2 4 52 2 2 2
(6028 (2 + 8) = ()" B> + +25)\/(50ﬂ(0 +8) = (02 B2+ 0%+ 28) —4(B+02) (1+0280) B
202 (1 + 029)

My = (Vo) ((A=C)(D=2)+2B)" (4+0))
=0
1 1 1 o?v
Ny = Nii"‘Mii:Nii:l"’%ﬁ_c\/B
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To find the equilibrium values X ;2)8, we use (192) and our previous result that X 1(1)6 = 0. Moreover,
given the utility of the second agent, it’s optimal goal would be w = 0.Then, X j(-i) = 0. In that case (192)

becomes: X j(-i)e = 0. As a consequence, the effective action:
1 > A
ar i) = (5 (7)) (3 e (7))

{002 )
g (X = (7)) o) (30 = (7)) + L2504 (3 (2~ 1)

7>

becomes for the second agent:

Ueps (w(t)) = <1+ B—cf) )—2vw (t)n (t—1)+/<csf(t—1)(1—w() f)+nsw(t—1( (t)—t)

which implies the inertia:
€10 =V

Effective Action for the third agent

Starting with the utility for the third agent at time ¢,

s(t)(Id)s(t)—f—(p—i—v)<w(t—1)— P (1—f)— 7 w)2 (240)

(p+7) (p+7)
and including the additional normalization factor for agents 1 and 2 effective utility:

B 1
02 (14+ 5B —cVB

%(—w(t—l)—l—a( 1 00 )s(t—l))2—|— )(l/n(t—l)—HSf(t—1)+’l7$w(t—1))2

B wr(t—1)+a?s2 (t—1) = 20w (t—1)s, (t—1) +v2n?(t—1)
02< +r%87 (L= 1) +nsh, (t—1) = 2vkn (t = 1) sy (t = 1) + 2vmn (t — 1) 5y (t — 1) = 26ms5 (E = 1) 50 (t — 1) )

and defining as before: 7, K, « — x%

0 0 0 n 0
0 0 0 —K 0
A = \/—? 00 0 0 a
g n —K 0 0 717612
0 0 « 717612 0
2
+pL -pE 0 VB 64
Vo et 0 Bk B
B = o) 0 0 o+ B —Ba VB«
VBn  —VBr  —fa d+B+0%w VB(-1-v)
-84 8% VBa  VB(-1-v) 1484
0 0 0 —n 0
0 0 0 K 0
c = \/—QB 00 0 0 —a
g n —k 0 0 1— €19
0 0 « 71+612 0

168



where we set

d

w

1
1+§ﬁ—£\/§
(p+7)

The equation for the dynamic matrix D is then:

(A-C)D*+2(B—A)D+(A+C)=0

000 7 0
0 0 0 -k 0
0= +B|l 00O 0 a
0 0 O 0 -1
0 0 O —€12 0

0O 0 0 0 0

0O 0 0 O 0

+vBl 0 0 0 0 0

n —k 0 0 —e€po

0 0 o -1 0

o'+ 8 B
—B5E o’ +B
0 0
0 0
—BT T

1+ 5 —Lay 0 n o0
G 1+ 550 | =~ 0 <
0 0 14 5a? 0 «a
n0 0 -1\ '[[d+E 0
X -k 0 o 9
0 a —€12 0 0 1+v5
Of the type:
0 T 2 Bi1 Bia
(0 @)D+(B21 Ba
D
D=—
VB
with:
n 0
r = -k 0
0 «
0 -1
- ()
A = B(y+p)+ Naz
0
_ n —x 0
¢ = ﬁ(O 0 «
o 0 —€12
v
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E F
v = (6 )
D2 - E*+FG EF+FH
B GE+ HG GF+ H?

The equation for D:

o O

(

can be decomposed in blocks:

I'(GE+ HG) T (GF+ H?) BuE+Bi,G BuF+BipH \ (0 0 _,
©(GE+HG) ©(GF+ H?) BoE + BosG BoyF + BosH ® v )

r 2 Bi1 Bio 0 0\ _
@)D+(B21 BQQ>D+<<I> \11>_0

leading to two systems:
r (GE + HG) + (BHE + BlQG) =0

(GE+ HG) = —07'((BnE+ Bx»G)+ @)
FO~ " ((BaE + ByG) + ®) = (BuE + B12G)

E (Bi1 —=TO ' By) ™" (TO7! (BysG + &) — B15G)

and
T (GF + H?) + (BiF + BioH) =0
O (GF + H?) + (Bo1F + By H) + ¥ =0

F=(Bi1 —TO 'By) " (10! (ByyH + ¥) — By H)

The two remaining equations:

I'(GE + HG) + (B11E + B12G) =0
O (GE + HG) + (B E + ByaG) + & = 0
)

I'(GF + H?) + (BuF + B1oH) =0
© (GF + H?) + (Bo1F + BasH) + ¥ =0

(FG —+ Bll) FE + (FHG + B12G) = 0
(TG + B11) F + (TH? + BioH) =

0 1 0
0 0 1

allow to find a relation between G and H. Let:

v

multiply the first equation by V*.

Multiply the first equation by (G (V)t> and the second one by H~1. It yields:

(PG + Bu) E(V)' (G (V)t> = (PG + Byy) FH™?
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and then, since (I'G 4 Bj1) is square:
-1
E(V) (G (V)t) — FH

Using the equation for E and F' gives:

E(V) (G (V)t)f1 (B —TO By, ! <r@1 (322 + o (V) (G (V)t> B > - B12>
FH™' = (B;y—TO© 'By)  (TO7! (By+ VH ') — Byy)
ro-! <322 re) (¢w))” ) —TO! (Byy + WHY)

multiply by (V) on the left and simplify by (V) ' TO~!:

~1
W) (Gv))  =eH!
since (VT)" = (VT), it leads ultimately to:
H= (G (V)t) (vr)~let

This last equation allows to reduce the problem to find (GV?'). Actually, we can take benefit from the
arbitraryness of the matrix V' to make an other choice. Let

100
W<001>

H= (G(W)t) (wr)~' et

one also have:

and the two identities for H yield:

Writing

the previous equation leads directly to:

a = —1p
K
d = —1e
K
Thus, it remains to determine
b ¢
t __
avt = ( b )
To do so, recall that:
E = (Bu—-TO 'By) ' (TO ! (ByuG + &) — B1,G)
0 0 —nl5?
= 0 0 ritel
—kB+bd+o2bBw do kB—bd—o?bBw 0

dan r(a?B+o2d—da?3) a?B+o2d—dap
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F = (Bu—TO 'By) ' (T® ' (ByH +T)— ByyH)

Lol 0
= | L 0
2
0 dav H(Zfﬁf(i?g_iiﬁm
H = (G(W)t) (wr)~' et
by

- ()

and insert these relations in (242), the equation for D to find:

: 0 plm gl 0
1 0 0 N 0
_ —kB+bd+02bBw kB—bd—o2bBw kB—bd—o>bBw
b= VB dann(a2ﬁ+a2dfda25) d a?f+o2d—da?p 0 0 daym
—1 b 0 0 2y
0 0 f -£ 0
replace b by bx and set 72 = k2 + 12, then the equation for b and f are:
0 = ba®B*—a®B% +bd®fo? — bda® 5% + o?bd?a + bdo® B + bf o B + o2bdf — df o3

+02bdaf + o*ba’ 2w — odaf — bdf o B + o*bdafw + o2bdf o fw
—fBr? — o2df + bdfr? — af*r? — o2 fBr? + bdar?B — o daf + o2bdfv?

=
I

1 (6028 (02 4 B) — o*Br? + 0% +28) — \/(502ﬂ (624 B) — (62)* Br2 + 02 + 2ﬂ)2 —4(B+02)(1+0280)
o2 2 (1 + 0236)

And the relevant matrices for our problem become:

VB (A=C)D+2(B - A))

2 2 2
Bn’+o dd—bdn nﬂ—ﬁjbd 0 0 v —ﬁ;-bd
nk 7B;bd m2B+o2dd7bdm2 0 0 Vﬁﬁfdbd
= 0 0 M —(f+ap) 0
0 0 —(f +aB) f+dataB+o®aBw 0
@ 2 2
v —ﬂjbd Vﬁﬁjibd 0 0 d+Bv dfbdv
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((a-cypv2m-a)%) (a+0)

-1

Bn+o2d—bdn? —B+bd —B+bd
] dbd] ’L’Tm%zdbd? 0 0 T bd 00 00 0
e e 0 pu=s 00 0 0 0
= 0 0 afto didie _(f 4 ap) 0 00 0 0 ©
0 0 —(f +aB) [tdotafto®aBw 0 n -k 0 0 —v
vn w;rbd Uﬁﬁzlbd 0 S dwuifbdu? 0 0 o -1 0
0 0 aun=Ltbd vn=td 0
0 0 am/@ mu@ 0
= ndo ';“ﬁ —kdo T8 0 0 —vdo T8
no 26+0'Xd+dfa — ko 2B+de+dfa 0 0 —va 2B+de+dfa
0 0 am2,8+[3n2+02;j—bd52—bdn2 n2[3+[3n2+02j—bdn2—bd7]2 0
with:
X = a?B% 4+ dfa? — do’B? + o?dPa + do’B + fa?B + o%df + o2daf + o2a’BPw — dfa®p + (02)2 dafw + o?df o Bw
x = —kr?B—pn? —od+ bdr? + bdn? — o2 Bv? + o2bdr?
which leads to the expression for Ny, My;, M;;:
2
o = (A-C)(D-2)+ 2B)z’i
~((A-C)(D-2)+2B),, <((A —C)(D-2)+ 23)”.) (((A —CO)(D-2)+ 2B)jl.)
Bn2+02d7bd172 277/{ ;B;rbd 2 0
— nﬁfﬁ;bd K ,BJroddfbdn ] (2)
B+o?d+df
0 0 T
0 Vﬁ# f+dataB+o®afw 0 -t
_ 0 I/Ii’ﬁ_bd « 5 2
d 0 d+Br~-—bdv
—(f+apB) 0 d
(0 0 —(f+ap)
Vﬂ# zmﬁ%dbd 0
[37]2+02dd—bdn2 nk —[3+bd 0 0 yp =B+l B+bd
nk —B(j-bd K /3+a2dd bdr> 0 0 Imﬁ—dbd
a2 0'2 «
x 0 0 apregdtdle  —(f 4+ ap) 0
0 0 _ (f + O[ﬂ) f+do¢+a5+0 afw 0
B+bd B—bd d+Bv? —bdv?
vy === VES 0 0 T
-3 702d+bd 2 _o2Bv%+52bdr? B—bd
. —d— [gu?-i-bdu KN —g—gvz1ba? 0
— K B—bd —k2B—02d+bdr?—o2Br3+02bdr? 0
N —a=Bv2+bdi? —d—BrZFbd?
0 0 X
d(f+datap+oafw)
0 0 auny
My = Ni (((A—C) (D—2)+QB)_1(A+C))_4 = Ni; 0 0 arp b4
“ nda—f‘mﬁ —/{da—ft(aﬂ 0
vn B-bd 0
My = Ni((A-C)(D-2)+2B)7 (4+C)) =Ny w=id
Y 0 —vdaites

X
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and the effective utility for the third agent is:

(Xi (t) — (Yi(l))) Ni; (Xi (t) — (Ai(l))i)— (Xi (t)— (Yi(l))]) Mi; (X (t=1)- (ﬁ(l)%)

Ueps (Xi () =

N —

Or, rexpressed in the variables s (¢):

wit=1) - (),
Uer (s (t)) = <s (t) — (5(3))eff) Ny; (s (t) - (5(3)>eff> (s (t) - (5(3))€ff> M;; ( n (z _ 1) - En(?»)))e;; )

where the constants

form a 5 dimensional vector. The vector X ()¢ satisfy (192), which reduces to:

A A NS -
AEZ') + B — \/BGS) {31272\F (A(-z-)) }
S(3)e ()
X®e _ (49) » + AV, Bos, (243)

{B§2,2x/5 (Ag))S} <2( ) L ()

e{kj}kgj A{k]}7>k>j)

A - e {2 VB ()
J

B®)' @)
( 12 ) BA” B2

given that (Xj(.j )e> = 0, as shown in the previous computations for the first two agents. Moreover (240)
shows that:

0
(i) P 1 i 0
") = 1—f)+ w) 0
( ! ) ((p+v)( ) (p+7) 1
0
and then (243) simplifies as:
X(3)(>
N
( (p+v)w)
, . . -1
A( + Biy — /Bel? {3127 VB (A(Z) + Aw)} B® (i) 1
(A(J')) +5AY . B { éQ,ﬂAm} 0
= ) 93 ) epy 322 X o B 1
B A; s i
o VB (454 A7) o () o) <5Ajj + 2> 0
{kﬂ}k’<ﬂ ff7 {kj}ti>k>j
1
12 ’\FAU 0
= B 'x .
<6Ajj) + ) 0
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p+~v O
0 0

B = 8 (Agg) (A%))e_flf< (eg))eff (eg)’“}’“<j)eff ))

() (), (s,

Given the effective action for the two first agents, one has:

Using again (240) yields AZ(-;-) =0, Ag»? = ( ), whereas (191) gives Bg’) and ng):

3
By

(4)
€. = 0
( 73 )eff
(6@ ) _ (0 =By
{jk}k<j eff 0 0
(A(,j.)) _ (1+#=B-c/B O
i3 ) ety 0 1
) VBn 0
AP = | —vBr 0
0 VBa
40— 0 —VBv
g VB 0
0 - 0 -0 vls—
3) _ 7\/577 14+ %6 _ C\/B 0 1 0 — BV _ 5 ) o2+5y—a'2(,\/B
Bz b vBr 0 0 1 0 0 0 kB g meyE
0 VBo 0 0
B(3)=,6’( 0 —\/Bv)<1+,}2ﬂ—c\/ﬁ 0)‘1<0—5y> :(0 L0 )
22 *\/B 0 0 1 0 O 0 ag ﬁ m
and then:
(3) i 1 (3) 1
o) (D)) F0) .
= =pp+
i ) 1 i 1
b)) 2)
so that:
0
~ ~ 0
X0 = g(p(1-f)+va)B | 0
1
0
2 2 2
—V/Bn (d — Bv) &Lt d=ded
rV/B (d - By) el
_ —UQdaBu%
a2((lfd)r2+02u27da2r2)52+d((o’2)2u2702da2+02a2+02r2)B+(a2)2d2
C
\/Bag(17d)r252+o’2d((17d+1/)042+r2)5+d2(02)2(1+V)
]
with:

c = a? (V2 —dv? + Kw + w4 02w — drw — dn2w) i
+d (021/2 —20°v + (02)2 V2w + o2a’w + 02Kk%w + o nPw + 2do’y — Uzda2w) 52

+d? (—20’2V +a?+ (02)2 w— docZ) B+ o?d?
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Global action for the system

Gathering the previous result, one can gather all effective utilities into the global system utility:

Uesr = (s (t) — (3(3))eff) Nii (s (t) — (s(?’))eff> - <8 (t) - (5(3))eff> M, ( T:LE:: B : E:((j))))eff )
(1= w? () + 20w () n (t— 1)+ nsp (= 1) (1= w(t) = F) + 150 (t = 1) (w(t) — F)
@) —2n®wt—-1)+2an@®) (1 0 0)s(t—1)

We can first study the stabilty of the system by having a look on the clasical system associated to this
effective utility. Discarding the equilibrium value, the first order condition can expressed by:

N11 0 0 Mll M12 M13
0 N22 0 X (t) = M21 M22 M23 X (t — 1)
0 0 1 Msy Mz 0

where X (t) concatenates in column the vectors s (t), w (t) and n (¢). The solution of the system is then:

(Nip) "My (Npp) ™" Miyp (Nip) ™' Mg

Xt = (Nag) " My (Nag) " May  (Nag) " Mz | X (t—1) (244)
M3, Mso 0
= MX((t-1)

Recall that
My = (Vi) (A=) (D =2)+2B) ' (4+0))

ij
and as a consequence one obtains the various matrices involved in the dynamics:

(Vi) M = (A= ~2)+2B)7 (4+0))
0 a5V7I+<72577€12
= 0 _QM
)
—bde) —% (aff — bda) 0
(Ni) ™ (Mg, Myg) = ( ~2)+28) 1 (4+0)) (A=) (D-2)+2B) " (4+C)) )
/3V7l+f7 bneis 0
— K?BV—'FO' lmelz 0
—%612 (af — bda)
with:
o0 = 0%bk? — K28 — Br? — Bn? — 0% + o’n? + oPbes, + b2 PP + by + b2 Bed, + bBn?el,
+21),‘12BV€12 + 2bﬁu7}2612

and:

< (Na2) ™" My (Nag) ™' My (Naz) ™' Mag ) _ <
M3, Mso 0

The determinant has three nul eigenvalues, and the two last ones satisfy:

oals
o&\z
o o
=
—
o |
v
~~

A = £/ (d+ Br? — bdv?)

. X~ a2 (1 af)
d(—o2d+ (bd — B8)r? — 0212 + 02bdv?) x
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with 72 = n? 4+ k2. Then one can study these eigenvalues numerically as functions of the system parame-
ters. This will be the goal of next paragraph.

The effective utility allows also to study the stability of the all structure in interaction with a large set
of similar structures. We rewrite:

Ny 0 0 0 Mis M3
U = (X(t)—X°) 0 Np O |(X@H)-X)—-(X@®)-X)[ 0 o0 0 (X (t—1) —(219)
0 0 1 0 0 0
My 0 0
—(X(t)—)_(Q(Q)) My, My Mo | X (t—1)
Mz Mz 0
where: .
X = (X0<,0,0)
and:

x5 = ((pJprv) <1_f> * (plv)w>

o= O OO

Then, the saddle point equation for the equilibrium value X, derived from (245):

Ny 0 0\ 0 My My \°®
0= 2 0 Np 0 |(xX-%X)-2[0 0 0 | (X-%9
0 0 1 0 0 0
My 0 0\ /Myo0 0\
—| Mar May Maz | X — | Mz May Mag (X - Xg( ))
M31 M32 0 M31 Mgz 0
or, which is equivalent:
o My 0 0\ My 0 0\,
2(N= M%) (X=X = | Mu My My | X7+ My My My | (X°—X{7) (246)
M31 M32 0 M31 M32 0
= 2M5X°c— (M) X{?
whose solution is: .
X=X (N M%) (MSXe Ly X§2>) (247)

We can now express Uess (X (1)) as:

Uers (X) = (X=X (N =M -M)°) (X - X°) = (X - %) X
_ (MSXe ;(M’)txg“)) (V= M%) 7" (N = (M = 1)) (N = %) 1(MSXe ;(M’)tX2(2)>
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(X ()~ X)N (X ()~ X) — (X () - X) NM (X (t — 1) - X)
+Uess (X)

= (XM -X)N(X(#)-X)— (X)) - X)M(X(t-1)-X)
+(X = X) (N = (M- M)°) (X - X9) = (X - X)) X

Ueps (X (1))

An other convenient form for Uess (X (t)) in the sequel is obtained by writing it’s continuous time
approximation (149), plus its constant term:

Upr (X (1) = (X () - X) (N - M?) (X(t)—X)+%(X(t)—m—1>><MS+N)<X<t>—X<té2nas>>
(X)) -X)M* (X (t-1) - X)
+(X - X) (N = (M )(* X - (X - x87) m'x

One can also consider that some externalities produce an inertia term of the form: with € > 0, that will seen
below as stabilizing the system, so that ultimately:

Ues (X () = (X (&) = X) (N = M%) (X (1) - X) (249)
%(X() X (t— 1) (N + MS) (X () — X (= 1)) — (X () — X) MA (X (t— 1) — X)
+(X=X) (N = (M = M)°) (X - X9) - (X - X)) X

For the purpose of some applications, we record the particular results for 3 — 0. As explained before, in
that case, the effective utility simplifies to the initial utility:

() +1)*+2an(t)sp (t—1) —2n(H)w(t—1)
= @ +1)*+2an@t) (1 0 0)st—1)—2n{t)w(t—1)

s(t)([d)s(t)er(l—w(tfl)ff)2+'y(w(t71)fﬁ;)2
_ s(t)(ld)s(t)+(p+7)(w(t—l)— P (1—f)_ 7 11))2

(p+7) (p+)
(w (t) = wo)” +6n (¢ = 1) + 2um (t = D) w (£) + 2ns7 (= 1) (1= w(t) = F) +2ns, (¢ 1) (w (t)  F)
= (w(t) —wo)* + 00 (= 1) + 2n (¢ — Dw(t) — 2usp (t— 1) (w(t) = (1= F)) + 250 (¢ = 1) (w (&) — )

That can be gathered in a matricial expression:

Ueps (X () = (X (8) = X0) I (X (8) = X1) = 2X (¢) MX (£ — 1)

with:
0 0 0 O 0 0 0 0 O 0 0
0 0 0 O 0 0 0 0 O 0 0
M=]0 0 0 0 O = 0 0 0 0 0 and X; = 0
n -« 0 0 -—-v rcos(d) —rsin(d) 0 0 —v wo
0 0 a -1 0 0 0 a -1 0 -1

The saddle point equation:



yields the "constant term":
Uy (X) = (X - X)) (X - X)) - 2XMX
- (M(l — M) Xl)t (M(1 — M) Xl) —9 ((1 — M) Xl)tM(l M) X
- ((1 M) X1>t (M*M — 2MM) ((1 —M)”! Xl)
and we can gather these results:
Usps (X (8) = (X (8) — X) T (X (£) — X)—2X (£) MX (t — 1)+((1 — M) Xl)t (M*M — 2M) ((1 M) Xl)

that can be rewritten as in (249):

Uess (X (1) = (X (5) = X) (1= M) (X (1) = X) 5 (X (1) = X (6= 1) (& + M) (X (1) = X (¢~ 1)) ~ (X (1) ~ X) M

+ (- Xl)t (m'ar = 2m) (1= )7 xa)

The matrices involved in the previous expression are:

0 0 0 rcos(d) O 0 0 0 0 0
00 0 —rsin(d) 0 0 0 0 0 0
(MM —2M) = 000 0 o 0 0 0 0 0
0 0O 0 -1 rcos(f) —rsin(d) 0 0 —v
0 0O —v 0 0 0 a -1 0
0 0 0 O 0
0 0 0 0 0
-2 0 0 0 0 0
rcos(f#) —rsin(d) 0 0 —v
0 0 a —1 0
r2 cos? 0 —r2cosfsingd 0 0 —rvcosf
—r2cosfsind r2sin® 0 0 0 rvsin 6
= 0 0 o> —a 0
—2r cosf 2r sin 0 —« 1 2u
—rvcosf rvsin 6 —2a 2 V2
1 0 0 0 0
0 1 0 0 0
1-M)"'= 0 0 1 0 0
cos 0 sin 6 v 1 v
Ly rl/fl Sy Tu—1 v—1
I
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1-M) "X, = 0 0 1 0 0 0o | = 0
e I — Ly (v o)
A iy (o +1)
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((1 M) Xl)t (M*M —2M) ((1 My Xl)

= (0 0 0 —%_1(V—|—w0) %_1(11104—1))
r? cos® 0 —72 cos 0 sin 0 0 0 —rvcosd 0
—r?cosfsin® —1r?(cos20—1) 0 0 rvsind 0
X 0 0 o —a 0 0
—2rcos 6 2rsin 6 —a 1 2v ——L (v +wy)
—rvcos rvsind —2a 2 v? L (wo + 1)
1
- “G17 (—v*w + 2vwg + 2vwo + 2v + w + 2wo)
2 0 0 rcosf 0
0 2 0 —rsind 0
N+M%=1+M°= 0 0 2 0 a
rcosf —rsinf 0 2 —v—1
0 0 a —-v—1 2
2 0 0 —rcos(6) 0
1 0 2 0 rsin(0) 0
I-M5 = 3 0 0 2 0 —a
—rcos(f) rsin(d) O 2 v+1
0 0 -« v+1 2
2
with eigenvalues 1 4+ 2\@\/(052 +(1+v)°+ r2) + \/(a2 +(14+v)°+ r2> — 4r2a?
0 0 0 —%r cosd 0
0 0 0 %r sin 6 0
M4 = 0 0 0 0 —1a
ircosf —1irsing 0 0 —-1(v-1)
0 0 ja (v—1) 0

For some values of the parameters, the eigenvalues of I + M® are positives.

For the purpose of section 9, we need to find a matrix relevant

N+ M <N — M) 2™ (M(S> + N)

to the computation of (151):

—1
M<A>> N+ M®)

The eigenvalues of this matrix will tell if the field theoretic version of the three agents model, which describes
the interaction of a large number of copies of the three agents system, will present some stable pattern (if
the eigenvalues are positive), or some unstable ones (for negative eigenvalues). To compute VN + M(5) we
rewrite I + M* by using the previous change of variable. One has:

0

0

[+ a5 =1 2
Rsin (v) cosf —Rsin (v)sinf 0

o= oo w

0
2
0
(
0

R cos (v) cosu
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Rsin (v) cos 6 0
—Rsin (v)siné 0
0 Rcos (v) cosu
2 —Rcos (v) sinu
—Rcos (v)sinu 2



The parameters R inserted in I + M?® are defined by:

2 = ?+(14v)

R = (s*+1r?)
s = Rcos(v), r= Rsin (v)
a = scosu, (1+v)=ssinu

We will restrict to the § = 7 = u. By setting the internal parameters to the same value it reduces the
problem to compare relative strength of these parameters to IV, which is equal to I and to the magnitude of
it’s action, which is read through R. Then:

2 0 0o & o 2 0 0 % o0
o 2 0 =F 0 0 2 0§ 0
S R S R
I+M° = -l o o 2 o & |, 7-M=-| 0o 0 2 o0 -Z
2l B _r ¢ o _E 2 R R g 9o R
5_533_5 _EiRRi
o o & -& 2 o o & &
o 0 0 -& o0
2
(o 0 0o F o0
M* = o o o o -Z
2 & _r E
22201%2
o o & - o0

—1
VN + M(S) (N — M) popm@ (M<S> + N) M(A)> VN +M®

The matrix VN + M) is computed by the diagonalization of N + M () whose eigenvectors and eigenvalues
are:

1 1 1
VGRS 7f\/7” 272\/%%& N 1)forlf§R\/§—Z\f2
1 1 1
W2 -4vE VEL-1vete /i - 1vE VR L 1ve 1)for1+§R 5—1V2

N

AN
- S
_|_
N —

3
3
f 1 f 1[ 1 1[ 1 f 1\/7 1 f 1_1R
2 W2 VR IVE+ L -2y /iva+ ) VEIVE+L 1) forl- g
V2

1 1
Ve WVE oIV L -vEIVE+ ) —VB VB L 1) for 14 gRy (VR4S
1100 O)forl

Moreover one computes directly that:

N — M oM@ (M<S> + N) ey

1p2  8R*-128 _1p2  8R%*-128 _ R? 1p3 R?-8 1 - R?
sR RT—32R? 1128 +1 R R1-32R?+128 4R4732R2+128 R R 52R2+128 R 16R47322R?4

_1p2_  8R?*-128 1p2  8R2-128 1p3 R?-8 R
R RT-32R?+128 R RT—32R?+128 +1 4R4 52R2+128 R R R4252R2+128 16R4532R2+

_ 2 R?— _ 2 —4 1p3 R?—16
- 4R4 32RZ+128 4B4 32R2+128 2R RT- 32R2jl28 +1 4R R~ 32R2+128 R R 3232+122
3 R?-8 1 1 3 R?-8 2 —4 2  B5R?-24 R®
R 2RI— 64R2+256 4R R R 2R4 64RZ 1256 —4R Ri— 32R2+128 2R R4 32R?+128 +1 R 2R4 32R

—16 16 RS R?’—16 1R 1R R 2R2 R*-16
RT— 32R2+128 R 32R2+128 2RT_64R21256 4 2R4 32R24128 RT—32R?+1:

These formula allow to compute the eigenvalues and eigenvectors of

M) (N — oM 4 (M(S) + (M(S))l) M(A)> M(S)
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For large r, the eigenvalues become negative since the magnitude of the parameters induces an instability.
For R < 1 one finds a stable dynamics, and we report the eigenvalues for R = 0.5 and 1 as examples.

For R = 0.5, the eigenvalues are: (0.83529,0.87428,0.92990,0.97332,1).

For R = 0.3, the eigenvalues are: (0.28617,0.35047,0.73561,0.90095, 1).

For R = 2, the eigenvalues are: (—1.4318,—0.81119,0.45254,0.79876, 1).

Moreover the matrices of eigenvectors, multiplied by v I + M) yields the eigenvectors, in the initial
coordinates corresponding to these eigenvalues. The results are:

1.5536 1.0074 0.969 08 0.72991 1.0
—1.5536 —1.0074 —0.969 08 —-0.72991 1.0
—3.7528 041713 6.8745x 1072 —10.278 0 for R = 0.5
9.0597  0.17309 —0.166 22 —4.2567 0
—2.1990 1.4247 —1.3703 1.0331 0

1.5661 1.0273  0.87621  0.70586 1.00000
—-1.5661 —1.0273 —-0.87621 —0.70586 1.00000

—2.0418 0.78805 0.11532  —5.3622 0 forR = 1
4.9287 032679 —0.27844 —2.2211 0
—2.216 1.4525 —1.2391 0.9983 0

Then one can check from the eigenvectors matrices that the more stable directions are the one for which the
system moves maximaly towards the directions of the substructures. In that case this direction of motion
relaxes the stress imposed by the dominating structure. The more stable solution is mainly driven toward
the second, intermediate agent, which acts as a pivotal point in the stability. Other modes are alternatively
driven mainly into the direction of one of the subtructures.

The eigenvalue 1 and its eigenvector is a particular case. Due to the exceeding number of parameters
compared to the directions of oscillations, this eigenvalue corresponds to an internal oscillation of the third
agent, and does not involve the two others.

On the other hand, for R = 2 the relevant matrix of eigenvectors is:

1.0554 1.5699  0.71046  0.67057 1.0
—1.0554 —-1.5699 -0.71046 -0.67057 1.0
1.0996 —1.5068 0.12698 —3.7513 O
0.45546  3.6378 —0.30665 —1.5538 0
1.4926 —2.2202 —1.0047  0.94835 0

one has a reversed result. The two unstables directions correspond to a motion mainly in the direction of the
substructures. Actually, for R = 2 the parameters of the interactions are strong enough, so that the coupled
oscillations between the two substructures present an unstable pattern.

Results for various types of uncertainty

We compare the results for the classical dynamics for various degree of uncertainty o2 in agents behaviors.
We look at three examples, mild uncertainty o2 = 1, full uncertainty, 0> — 0o, no uncertainty o> — 0,
which converges to the classical case.

The most interesting case for us will be o2 = 1, the two others one being bechmarks cases. Some
interpretations will be given in the text, in section 2. Here, we give the relevant parameters for each of these
cases, but the interpretations will rely on the eigenvalues of the dynamic system, since these eigenvalues
describe the pattern of behavior of the structure as a whole. Recall that these eigenvalues are given by:

A =+v/02v (d+ fv2 — bdv?) x ,/%
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with:

N = o2 —da®p? — d*®B + o?d*a + do®B + foB + o?df + o%daf + o2’ BPw — df o + (02)2 doBw + o?df a? fw
D = d(-c*d+ (bd—B)r* —o*Bv* + o*bdv?)

x (0;’52 L d2fa? — dadB? + 2 dPa+ doPB + fa?B + o2df + o%daf + 020 Bw — dfa?B + (N)? dafw + UQdeQBwj

For 02 — 0, one finds for the parameters of the system and it’s eigenvalues, to the second order in 3:

d = ;(1+626+\/(552+1)24621/2>
_ B
T d

f = —ap

A== (HBQHW;’;H)Q452y2>=ﬁ(l—i<6—v2>)+o<ﬁ3>

and we recover the classical results as needed.

For 02 — o0, one obtains:

. (5025 (02 +8) — (02)° B2 + 0 + w) - \/(5025 (02 + B) — (02)% B2 + 02 + 25)2 —4(B+02) (1 +a2B5) B
0'2 2(1 —|—0’2ﬁ5)

_aﬁlj2 +1

and the eigenvalues are:

(62)% afw

e\ LR sy ((02)? apw)

+v/—v

As said before, the case for 02 = 1 is the most interestng for us, since in gneral it corresponds to what we
aim at modeling: agents anticipating other agents, but taking into account for uncertain intrinsic behaviors.
The computations to the second order in 3, simplify to yield the following values for the parameters:

b = B—wp?
f= —af
d = 1-p>*-9)

A=V - VT (46— 7) 40 (5)
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Appendix 6.b

We start again with the postulated effective action

vy = v (5 0 ) ne-mo (g % ) e
+ 372X, () AY) (X (- 1) + VI (¥ ()
izk>j

Uesr (Y5 (1)) = Y;(t) ( (A§§)>eff 0 >Yj () —2Y; (t) ( (€§§))eff (eg)k}kq)eff >Yj (t—1)

0 0 0 0
+ D0 2 (AN (X (- 1) + V) (Y ()
izk>j
with V;(f} (X (t)) a certain function of X (¢), that depends on the potentials Vi(i) (X; (t)) and Vj(i) (X; (t—1)).

Note that for the sake of the exposition we discard all the constants )_(J(i),... )_(j(.i)e but that they can be
reintroduced at the end of the computation.
Recall that (9) allows to find recursively the utilities Ue s (X (2)) :

exp (Uesy (X (1)) = / exp (Ut“)) I Ilex (Z ff(fv(())) dX; (s) (251)

rk(j)<rk(i) s>t s>t

As recorded in the text, we rewrite the utilities in terms of the variables Y; (¢). We use the general form (35)

AD W 0
Z}/i(t-l—k)( v O)Yi(t+k)+Yi(t+k—1) 0” ga | Yiltrk=1)

k>0 {45}
0 pBzAW
+Y; (t+k 1 K Yit+k—-1
( )( o A@ . ) (t+k-1)
- o (5558 5 o (8
>i k>0 B2 j<i B8z

The normalization of exp (Uess (Y (t))) is obtained by letting:
C [ exp (Uess (Y; (1)) (d(Y; (1)) = 1

writing:
Uers (V; (1) = ;3 (0) (4) | ¥5(8) =25 ( Z At -1) - ( () (Fgees) )Y,

! ! 1 eff ’ 73 eff {j Ye<j eff J

VG ()
= UL (Y (1) + Vi (G (1)

then

[ew@er 5 @000 = [ e (U85 000 +
e (v (5)) / exp (Uﬁ}‘?d ¥ 1)) @(Y; 1)
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with:

To compute

we use that:

s = (v () (3 apnen-((4),, (i), re
i>k>j
x<nu>+@%0;} > ARxce-n-( (), (Ghwss),,, )V
i>k>j
t
: <i>k>j Aﬁ)Xk == ( (€§§)>€ff (Eg)k}kq)eff ) EACE)
<(45) 0 | S Axee-n - (), (e, ¥t

which yields, up to an irrelevant constant:

/ngfmwnwmm>

= exp|— Z A%)Xk t—1)— ( (6%)>eff ( f{é)k}kq) o )Y] (t—1)
ik>j
8 (Ag));flf Z;JAO) )7( ( %)> eff <€g)’€}’“<ﬂ‘) ef f )Yj(t* 1

and

and the normalization factor:

exp (VO (2} ) exp (— )" (AU))*1 0;)) = e (@) (A(j))A U; + VY9 (U))
NG P 3V N7 ) oyt =PI ) YT et s
this choice of decomposition being justified by the fact that for Ve(;; = 0, one recovers a normalization of

N1
exp <(Uj)t (A‘gjj))eff Uj>, as in the quadratic case.

This normalization factor has to be added to the global weight (i.e. the normalized effective utility) to
be taken into account for agent 7 is then, similarly to Appendix 1:
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S [ o
- Y; (t ; Y (1)
i () (1) i
t>0 Biy { (Ajjj ) + BA]S ’BQQ}

o) A@

: . Y ()
282V (0 |0 ) 9.40) Y (t—1)+ V3 (U)
Ji Ckiyh<i epp’ kI Yi>R>

where M = 1 (M + M?) for any matrix M, and
Ba = oAl (47) A7
ma = oA (a) 400 (42 (1), ()., (Gonsi),y, )}
BAY () (Am) N A;J]‘C)’
Bn = ﬁ( (%)) eff (?J)k}k@)eff ) (A%))eflf( ((])>eff (E{JJ)’”’W) eff )
3 (A(J) (AU )eflf( (;?) » ( ({J]);g}kﬁ)eff ))S

As a consequence, the total weight appearing in (251) is the same as in appendix 1, plus the non quadratic

contributions due to V(l)( X; (1)), V( )( X, (t—1)) and Ve(;}( i (t)). The same operations can be thus

performed and in the end the total welght to integrate in the R. H S. of (251) is
W= 3 (5 0506 = Yol = 1) A (9) = Yi (s = 1) 4 Y5 6) BY (5) 4 (3 () — Vi (s = D) CYi (5 (293

YL (1) BY: (1) + 5Yi (1) AYi (1)

+> 85 (v (W) <Vj<i> (YJ((tt’M)) Lo (W)
l;) ( B> +jz<:i BT JrN rf gt

+Y;(t)BYi<t>+§Y;() Yi(t) =y g (Z Z By, (Vi (t+R)), ...<mt+k)>m)

k>0 >3 ni,..ny
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with:

—652) Az(';') +A§j)
(D (o
A= VBl o, 40 ("“”“’)6“ (““é”)eff,
gi T e 40
{kj}ti>k>5 “{jk}i>k>j
AD 4 By — B {I(AE;)+A<J)>’BH}
5Ajj (A%)) » B
B - 04 A9 .5 e, L)
{\fﬁ(Aji +Aji>,B12} {k;}kq erg T\GMRE) gy
VB 3 b
A{kg}z>k>J’A{Jk}z>k>j
0 AD _ A
) “ ?5)
cC = B (A(i) A(ﬂ) ({k]}m)e”,i(“k“”)e“,
Ji Jji A(J) A(J
{kj}ti>k>j " {jk}i>k>j

and

-0 = 3 alvie-n-( (<)), (Gnes),, )¥iE-D

izk>j

The potential:

(Yi(t g (Y ((t+Ek)—1) Loy (Uj(t+k—1)
(B (v (M5 ) e (5

depends only on Y; (t + k) and will be denoted V(¥ <Y’gz'k))
2

Then the integral in (9) is computed in the following way. Write:

exp () = exp(;—;<m<s>—ms—1))A<ms>—m<s—1>>+n<s>3ms>
FO60) ilo ~ D) CYile ~ ) 4 X0 BY )+ 5% (0 AV () = 3771 <5( )>
- (e ()
exp(;—;<ms>—m<s—1))A<n<s>—m<s—1>>+n<s>Bms>
FOL) X - DOY D+ AV TR O B0 £ Y0 A0) |

where J; (s) is an external source term. Then we have to compute in the first place the integral of a very
similar weight as in the quadratic case. The only difference is the appearance of the source term. However,
it is known that such a term does not modify the fact that the successive gaussian integrals can be evaluated
at the saddle point.

The action we have to consider is then:

5 (=5 (460 = ¥is = D) AT (9) = ¥ s = 1)+ ¥ 6) BY; (94 (35 (9) = i s = D) COYi (s = 1)+ 5 ()i )

(253)
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and the equation for the classical solution of (252) is then of the usual Euler Lagrange type and quite
similar to (197):

AYi(s+1)=2Yi(s) +Yi(s = 1)) +2BYi(s) —C(Yi(s +1) = Yi(s = 1)) + Ji (s) = 0 (254)

and it’s solution is of the kind:
Yi(s) = D*"" (Y; (t) + F; (s)) (255)

with F; (t) = 0 and where the equation for the matrix D is given in Appendix 4:
(A-C)D*+2(B—A)D+(A+C)=0

we insert (255) in (254) which leads to:

A(D*(Fi(s+1) = Fy(s)) — (F; (s) — F; (s = 1)))=C (D* (F; (s + 1) = F; (s)) + (Fi (s) — F; (s — 1)))+J; (s) =0

Let:
Gi(s)=(Fi(s) - Fi(s — 1))

the equation for G; is
A(D*G;i(s+1)—G;(s)) —C (D*Gi (s + 1) + G, (s)) + Ji (s) =
| (A—C)D*Gi(s+1) = (A+C)Gi(s)+ Ji (s) =0
—-2B-A)D+(A+C)Gi(s+1)—(A+C)G;(s)+ Ji(s) =0

and it’s solution is:
Gi(s)=(A+0)" ) ((A-C)D*)" Ji (s +n)

n=0

and then:
Fi(s)=(A+C)"" > Y ((A-C)D*)" Ji (u+n) (256)

t<u<snz=0

to satisfy the initial condition F; (t) = 0.
Replacing the solution (198) in (253), this last quantity can be evaluated in the same way as in appendix
1. One find a quadratic term, as in appendix 1:

SV AL+ 1)~ Yil) + 1 (Vi (14 1)~ Yi () CY (1) + 5% (1) AY; (1)

and an additional term coming from the source term. It appears to be an infinite sum

S () Vi) = 5 30 i () DY (Vi 6) + i (9))

s>t S>t
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using (198) and (256) it yields an overall contribution:

SV (O A(D (Vi (1) + Fi (44 1) = ¥i () + 5 (D (Vi (0) + Fy (¢4 1)) = Y; (1) OYi (1) + 3Y; (1) AY: ()

£330 T 5) Vi (s)

s>t

= NO(A-OD-1))Yi()+ g
1
3

+5 ZJ ) D*tY; (¢ Z Z Z J(A+C) (A= C)DY)" J; (u+n)

Y (t) AY; (t) + le— (t) (A—C)DF; (t+1)

= JY@(A-0)(D >nw>+;YUAY<>
+; () (A—C)D(A+C) T;) (A= C)D¥)" J; (t+n+1)
+= ZJ ) DY (¢ Z YN Ji(s)(A+C) (A= C)D*)" Ji (u+n)
s>t s>t t<u<sn=0
- %»O«A—CM —>nﬂw+§mwAn@>
4 ZY (Dst Y (A-O)D(A+C)! ((A—C)DQ)”) Ji (s)

+= Z SN Ji(s)(A+C) (A=) D))" Ji (u+n)

s>t t<u<snz=0

Then, adding the time t contributions leads to:

AD 0 i} 24];
Y; (t) . (i) () Y; () + V/BY; (t) ) ) ) Yi(t—1)
0 B4y + (Ajj )eff 245 - (€{jkj}k<j) of f A{ka}z>k>J
+3 72 (0) ALY (X (6 - 1) + VO (X0 (1)

Jj>i

iy @ 3 ((DH)t +(A=C)D(A+C) ((A=C) D2)") Ji (s)

2
s>t

4= Z YD Ji(s)(A+C)H (A= C)D*)" Ji (u+n)

s>t t<u<sn>0

As before, the term V( 9 (X, (t — 1)) has been discarded, since it depends only on ¢ — 1 and will be cancelled
by the nomalization.
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After computations similar to that of appendix 1, the integral over Y; (t), j < ¢ yields the effective action:

A= ) M (=) + (D7) + (A=) DA+ ) (A=) D)) i (9)) )
5 0O (=), + (D7) + (A=) DA+ 0) (4= €) DY) () )
3 (V5 (0), (Vi) (% (9), + 322X (1) AL (X, (6~ 1))

2 —
7>
t

B3 (o) +(a-op@r oy (a-0p)) 1)

s>t

x(A+C)Y ((DH)t +(A-C)D(A+C) ' ((A-C) DQ)") Ji (s)

s>t

55 Y L AU (A=) D) Tt n)

s>t t<u<sn=0

where the matrices used in the previous expression are given by:

Ni = (A=C)(D-2)+2B), - (A-C)(D-2)+2B),; (A~ C) (D—2)+23)jj)71 ((a-c)(D-2)+28),)
My = (V) ((A=C)(D=2)+2B) " (A+0))

My = (Vi) ((A=0)(D=2)+2B) } (4+0))

ij
Remark that applying —— 8(J Gy o exp (A) produces a term:
ﬁ

((Yi (8)); + F (Ji (5))) exp (A)
where F' (J; (s)) is a linear function of F'J; (s). As a consequence, one shows recursively that:

0 0
9 (Ji(s1)) 0 (Ji(sn))

for some function F,) ((Y; (t)),,Ji (s1)...Ji (51)). As a consequence:

exp Zﬂg thy () ( e a))GXp(A)} )
({ ( s>t g 9L (s)) Ji(s)=0

1 1

exp (A) = Flu) (Y (1)), Ji (1) i (1)) exp (4)

= —5 (Y1) Mii (Vi (t = 1)), — 5 (Y (1)) My; (Vi (¢ - 1)),
1 i
g (Vi (8)); (Vi) (i (8)); + Y2 (1) A (X5 (¢ = 1) + V3 (Y (1)
Jj>i
where Ve(f)f( ; (t)) is some function obtained by the application of the derivatives m appearing in

the series expnsion of exp ( e BT thyy () (B - a(Ja( ))>) and then setting J; (s) = 0. The previous

expression is then the expected formula for Ueys (X; (2)).
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Appendix 7

One applies the method of appendix 1, but using the recursive form for the agents effective utility:

Uers (X0 0) = 5 (X0 = XY i (X ) = XO7) = (i) - %) Ajg (XZ- (6 - X°)(257)
_;(Xl _xW )]‘\% (x5 (-1~ Z)e>+§2X X (t—1))
X () K (Ei“ > 7 <s>>
ENS . 7 (s) = Z; (s) fo: s < t. It can be reduced to the form of appendix 1:
U (00) = 5 (%00 = XO%) N (30 - X7) = (30 - X7 7; (Xi - x)
X () = x77) 22 (3, - - X)) + > 2% )45 (X5 (1= 1)

by the shift X7° — X0+ (V) ' 2, K (E S 7 (s ))

Then, since one considers the computation of Uess (X; (t)) for an agent 4, all effectlve actions Ues s (X (2))
for j < 4 have to be modified by this shift: Xj(j)e — X](.J)e +(Nj;)~ Zk<j K(Z ( S Zi (s )) It is known
that the saddle point computation to obtain the integrals over X; (s) and X (s) is still valid when the X J(j Je

depend on t (which is the case here after the shift), then the all method of appendix 1 applies.
Before integration, one then arrives to the intermediate effective utility (194):

S

~ Y )~ Yils D) A (8) ~ Yi(s — 1)+ (% () - 5) B (i () - ¥,

2
+(Yi(s) =Yi(s = 1)) OYi(s = 1) + Y; () BY; (¢)

YL (1) AV (1)

Integration over Y; (s), s >t would lead to (203), but recall that for X; (s) = (Y; (s)); one has to impose

the constraint X; (s) = B;(s) + Et(Z)Zi (s) — Bi(s+1) for all s, as well as the transversality condition
B;(s) — 0, t — T. For a matter of convenience, in the sequel, we will write Z; (s) for Et(l)
this notation in the end.

One can thus integrate over the vector which is the concatenation of B; (s) + Z; (s) — B; (s+ 1) and
(Yi(s)); for j < i and s > t. One changes the variables B; (s) = B; (s) — >_;. Zi (s + 1), so that B; (s) +
Z;(s) — B;(s+1) = Bi(s) — Bl (s+ 1) and the transversality condition is B} (s) — 0, ¢t — T. Then the
integrals over Bj (s) can be changed by change of variables as integrals over B} (s) — B} (s + 1)

The result of the integration is thus (201):

Z; (s) and restore

SYi(0) (A= 0) (D~ 1) Vi (1) + i (1) AY; (1)

with a difference with case studied in Appendix 1: as in the simple exemple presented in the text, the series
of integrals over B; (s) results in replacing in (203) X; (t) by B. (s)— B} (s + 1). The result for the integration
is thus:

Yi(t) (A= C) (D= 1) Yi () + 5 Vi (1) AY; (1)

N | —
N =

with:
: B (t) - Bi(t+1)
Wt)z((n()) forj<%>
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and where B} (s) — B} (s + 1) satisfies:
(Bi(s) = Bi(s+1)) = D(Bj(s —1) = Bi (s))

(the matrix D is the dynamic matrix (199)). This relation alongside with the transversality condition allows
to rewrite the sum:

Bi(t+1) = (Bi(t+1)=-Bj(t+2))+..+(B;(T'—1)-B;(T))
= (1+D*+..+D")(Bj(t+1)— B/ (t+2))
D (1 — DT) / ’
= —1-p (Bi(t) = B; (t+1))
where we used B] (T) = 0. As a consequence:
(Bi (t) - Bi(t+1)) = D((ll_DD)T) Bi(t+1)

and we are left with:

Vi (1) (A~ €) (D~ 1) Vi (1) + 5¥i (1) AV (1)

o _ [ pacpmBHE+1)
ne - (REEE)

B ( %(Bi(tJrl)JrZi)OZi(SJri)) )
(Yi(s)); for j <i

|~

with:

then we use the constraint recursively to write:
Bi(t+ 1)+ Zi(s)=—>_Xi(s)+ > Zi(s)
s>t s<t s
and then:
1-D
Vi (t) = D((l—D)T) (_ Dt Xi(8) + 22, Zi (s))
(Y (s)); for j < i

Thus, as in appendix 1 formula (203), one adds contributions due to specific (i.e. non effective) time ¢

utility (we also change the sign of the first component of Y; (t), using the fact that the utiliy is quadratic)
to obtain a non integrated effective utility:

-} B0 25 e

(( 1%%%@;qx Zgz@)>

Y (s)), for j <i
O @ 240
IR AON ERONNNC i)+ VBY:() | 0 ) ) Yi(t—1)
0 ﬁAjj + (Ajj )eff 24;; ( {kﬂ}k<J) ff’2A{kj}z'>k>j
+> 02X (t) X (t—1))
Jj>i
Using that, see (202) and (203):
Al 0 —e!? 24"
Yi (t) N i) ) Y; (t) + V/BYi (1) ) ) ) Yi(t—1)
0 BAjj + (Ajj) eff 2Aﬂ ( {kﬂ}k<J) eff 2A{kj}1>k>J

— Yi()(B-A)Yi(t)+Yi (1) (A+C)Yi(t—1)
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and developping in (258) the quadratic terms in ), Xi(s) =>_, Z
as well as discarding terms that do not depend on X; (¢) and (Y;

where:

?t))zj for j < ¢ yields:

Sint (v _ 1 % X (t) _ % X (t)
el B0 = 5 < ((Yi(@)) %erq >((A C)D)< <(Y(< 1); %2rj<¢
Y (1) (B—A)Yi () +Y; (1) (A+O)Yi (t— 1) + Y 2X; (8) AT (X (¢ - 1))

J>1

+ ( (D(ll g)T)> (Ze<tX ( ) Zs Zi (s)> ) ((A—C) D) ( (%) ){i (t) )
(Y (1)), for j <

SYi(O P (A=) D) PY; (1)
1Y; (1) (B - A)Y; (t) +Y; (¢) (A+ C)Y; t—1+22X AY (X (t-1))

’L

n (z () - Yz <s>> PL((A-O)D) (Y (1),
n (Z X5~ Y. 2 <s>> (pi=mr) (-0 (Fa=2-) %0

%mt)(Pt((A—c>D>P+2<B—A>)m>+m><A+0> (- 1)
PL((A—C)D) PY; () + Y 2X; (t) AL (X (t — 1))

s<t s ) j>i

Y

Il
/N
—~ o
o
~_
vl

Il
/N
o o
o
N

n = (pa=m)

1; = identity matrix for the block j < ¢

Then, to obtain the effective utility for X; () one can integrate over the (Y; (t)), for j <.
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-1

(Yi(t)+(Pt((A—C’)D)P+2(B—A))

N | =

Uesr (Xi (8)) =

x (A+C)(Yi(t—1) + P ((A (;X ZZi(8)>>_
x (Nii) (Y: (1) + (P* (A= C) D) P+ 2(B —SA))_l s l
(A+C)(Yi (t—1))+ P*((A (ZX ZZZ‘@))
+Z2X () A (X (t - 1)) h s i
+<ZX ZZ > ((A—C)D)PX; (t)
~ —%((E(t))-Mii(E‘(t— >>}+T>—1(<n<t>>Mij (¥ (¢~ 1), +T)
4 (Y (1), (N (D0 2X (1) AD) (X (- 1))

J>1

+<ZX ~2 4l )( (A=C)D) P (Ni)) (P' (A= C) D) P+2(B — A)) "' + P/ (A= C) D) P,) 209)

s<t

where the matrices used in the previous expression are given by:
Ni = (P((A=C)D)P+2(B—A)), (260)

—(P'((A-C)D)P+2(B - A) (P (A-C)D)P+2(B-4),) (P (A= C)D) P+2(B - 4)) )
My = (Na) ((P'(A=C)D)P+2(B - 4) ™ (4+C))

(4+0))

My = (N) (P'((A=C)D)P+2(B—4)" .
ij

and where the "T" means the transpose of the expression in the same parenthesis. Then, as explained in

the text, the terms

(ZX ) (P! ((A=C)D) P (Ny) (P' (A= C)D)P+2(B - A)) ™ + P! (A= C) D) P,) X; (¢)
s<t (261)
may be approximated by:

-1

(Xi (t) + Xi (¢ — 1)) (P; (A= C)D)P(Ny;) (P'(A—C)D)P+2(B—A))"' + P! (A—C) D) Pi) X (1)

and these terms may be included in the quadratic terms of the effective utility to produce the result announced
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in (257) with (and restoring ) . Z; (s) — (Etm > 2 (s)))

Ny = (P ((A-C)D)P+2(B-A)), (262)

~(P((A-C)D)P+2(B - 4)) ((Pt (A—C)D)P +2(B — A))jj) ((Pt (A—C)D)P+2(B - A))ji)

+(PH(A=C)D) P (M) (P' (A= C) D) P+2(B— A) ™' + P (A= C) D) )
My = (N) ((P(A=C)D)P+2(B=4))" (A+0))
+(H((A—C)D)P(Nii)(Pt((A—C)D)PJrQ(B—A))*l+Pf((A—C)D)Pi)
My = (Ni) ((Pt((A_c)D)PJrQ(B_A))*l(A+C))Z_j
K = (PH(A=C)D)P(Ny) (P' (A= C)D)P+2(B - A) "' + Pl (A~ C) D) P})

Note also that in (257), the terms )_(](-j)e have to be shifted by )_(J(j)e — )_(J(.j)e—&—(ij)*l dok<j KJ(.Q (Et(j) YosZk (s))
and as a consequence, (192) implies that Xi(l)e is shifted by
. . NS -1
AEZ) + Bi1 — \/BEEZ) {312,2\/B (AS)> }
(4) (@)
(Ajj )e i T B445, Baa, (263)

{3{2’2‘/3 (A%))S} (2 (fines) 240 )S
Ir

Ckitk<i), {kjYi>k>j

(e _
0X; =

3
By

0 ! 0

X B® t i (3) e(‘j?. . 1 (i)
(=) {(A;y) ff,B”zz,B?,\/B(“‘g’“) } (Njj) ™t S, Kk

‘ eff

(Egj) > s 2k (5)> )

Keeping the i th coordinate of this shift and computing the expansion of the terms including § X J(-i)e in the
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effective utility (257) yields a contribution:

SXi () kY (Ef“ >z <s>>

, , NS
AEZZ‘) + B — \F&g) {312, 2\ (A(‘Z‘)> }

(Agjy)) eff + BAJ] » Ba2,

{B{z,Q\/B (Agi))s} (2 ( ) ) a0 >s
eff

C{kjth<i {kj}i>k>j

= X)) (Nu 0)

3)
Bj
2

0
<[ () ") . BY e
- (4%).,,-B 22,;2,¢B< s )eff

0
8 ( (ij)_l Kz(;) (ngiEt(i) Zs Zj (5)) )

. . \ S -1
AD + By — VA {Bu2va (49)")
(4)
+X ( )( Mu sz ) ") S (Ajj> eff +ﬂA_U 73227
{352,2\/5 (Aji ) } ) i o
(2 (e{kj}ksj)eff ’ 2A{k’j}i>k>j>
x| (8) ) » B Pirue
), B ()
0
X
(Vi) K (S, B S, 25 (s - 1)
In the approximation of the continuous limit
ZE()ZZ s—1) ZE(”ZZ
J<i Jj<t
and the all contribution due to the constraint reduces to:
(2) (4) )
SNoXi K| BV Z5(s)
j<t s
) ) NS -1
AD 4 By — /B {Blz,2f (49) }
(7)
= Xi(t)( Nis+ My M) NS (A”) o +5AN s Baa,
{3527 2\/3 (Ajz ) } 9 ) 2A )
( {k?j}k}<j) eff {kjti>k>j
53
0 2

0
X B®) ; 3) e —1 (i i
(=)’ {(A;y) B v (et ) } <<ij> K (ngiEstZj(s)))

eff
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which implies that:
) . N\ S -1
A + Biy — /Bel} {Bl% 2P (Afj))
()
(Aj] ) off + BAJJ aB22a

{B{zﬂ\/g (Agjz)>s} (2 ( () ) QA(J)
eff

Ckiyh<i {kj}1>k>a>

Kfj) = ( Nu+M; M;)

B -1 (i i
= (V) K (S0 B2 (9))
X . (3) @) ) .
” B lkith<j — i i
{(AE»?)WB v (g )ff}(Nm K (S B S 7 (6)

Now, if we were to keep the terms (261) without approximation, the effective utility (257) should be
modified from the begining to include some additional lag terms:

Ueps (Xi () = %(X () - X NP (X (1) - ) - (x; (t)—X}“‘f)J‘f/; (X: (1) udafiit)sbs)

MO
—Z( X“’e)ﬁ(xj(t 1)~ X”‘f)+22x (£) AD (X (t - 1))

i<i j>i

X ( < )ZZ >+ZZX ) el X (1)

j<i s<t

These terms modify the matrices A, B, and C in (195) by modifying the inertia terms ef{jlgj}kgj as a sum

() (4m)
lrjyk<i e{ky}k<J + Ze{kj}k<J

n=2

and as well for their transpose:

) ) Gmn)  pn-1
€likyizk " Skyizk T Z 6{]"9}]>k
n=2
and these operators are included in the computations that are similar to the previous one. Now, the
saddle point equation (197) is still valid, as well as it’s solution (198). However two modifications have to
be included. First, Given that the saddle point equation is derived from (196):

~ Z*E(Yi(S)*Yi(sfl))A(Yi(S)*Yi(S*1))+K~(5)B1ﬁ(5)+(Y¢(5)*Yz—(S*I))CYi(S*U

2
s>t

YL (1) BY: (1) + 5Yi (1) AYi (1)

and since this equation includes coupling between Y; (t) and Y; (¢ £ n), due to the inertia terms EF{]k;L]? ke L

then in (197):

(3@ () — ffi(”) A(Y; (s +1) — 2 (s) + Y; (s — 1))+2Y; (s) BY; (s)f(YZ- () — ffi(l)) C(Yi(s+1)=Yi(s—1)) =0

this fact is taken into account by replacing in A, B, C the terms e{]k”})qu” L by e?k;.?kgj (Lr=t 4 L=(n=1)
(this is the analog of the symetrization process appearing in this kind of equations but translated to the lag

operators level L — L~1 in this transposition), and as well for their transpose ef{j k})j> WL I that have to be

replaced by €~({j7:})g>k (Ln—l + L—(n—l))-
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Second, one can first solve formaly for D as in (198) by letting:
i (s) = D'*Y; (1)

and the solution is formally the same as if no inertia was present. But this equation, solves D as a function

D (e?k;l})kgj (L=t + L_("_l)) ,eg’:})pk (Lt + L_("_l))). Let us call D this solution. To find the "true"

matrix D as a function of the parameters, one replaces in Y; (s + 1) = DY (s), and in that case:

DY; (5) = D (e, (0 L7 0m0) ) (277 L0 0) ) Y Gs)

and given the solution Y; (¢), LY; (s) = DY; (s), the previous relation can also be written:

DY (s) = D (e, (D714 D=0) L) (D4 D=0) ) vy (s)

which yields the equation for D:

7N (4,m) n—1 —(n—1 (4,m) n—1 —(n—1
D =D (e, (D74 D70 0) ) (Pt + D7)

Then this equation can be solved as a series expansion in the é{%?kq" In fact, as seen in the text, the

inertial term are of order % where T is the characteristic length of the interaction process. As such, T is the
"largest" parameter in the system, and the series expansion can be stopped at the first order.
Once D has been found, the resolution is the same as before. One arrives at the effective action given in

(259), which yields ultimately the required form (92). Then, one expands the coefficients involved in (259)
(m)

as series €} . to obtain:

Ny = [(P'(A-C)D)P+2(B - A4)),
~(P'((A-C)D)P+2(B - A) (P (A-C)D)P+2(B-A4),,) (P (A= C)D) P+2(B - 4)) )
+ (PH((A=C) D) P(Ni) (P (A= C) D) P +2(B — 4)) ™" + P (A~ C) D) Pi)]zemh

M = () ((PH(A-C) D) P+2(B-4) " (4+0))
+(PHA-C) D) P(N) (P (A= C) D) P+2(B=4) T + PL(A-O)D)R)|

Mi(JQ) = {(N“) ((Pt (A-—C)D)P+2(B — A))*1 (A+0O) J .

M;, = (P; (A= C)D) P (Ny;) (P' (A= C)D)P+2(B—A))"' + P/ (A-C) D) Pi)

(g.m)
{kj}k<g®
matrices J\fi(io)7 Mz-(io) and Mi(;)) are the same as the one presented in (262) since Ni(io), Mi(i0 ) and Mi(;)) are
(4.m)

{kj}k<i
case without constraint. The higher order terms in the expansion, in fact the first order being sufficient, will
be gathered to yield the terms > ., >, X; (s) N;X; (t). We do not present any detailled formula here,

since it depends for each particular case on the form of D as a function of the e?k;? K<

the subscript zeroth standing for the zeroth order expansion in the € The expression for the

obtained by the zeroth order expansion of Uess (X; (t)) in € and thus their expression is similar to the

198



Appendix 8

We present here an alternative approach to build an effective action for C's when the transition probability
(Bsy1||Bs) defined in the text is known. Starting with the basic example presented in the text, recall that
we have:

T
<Bs+1‘ |BS> = /H stJri exXp <U (Bs + 1/s - Berl) + Z U (Beri + sz+i - Bs+i+1)>

=2 >0

which reduced, in the quadratic approximation, to (79):

2
(Bys1||Bs) = exp | = (Bs + Yy — Byy1)? — % <Bs+1 + ZYSH>
i>0
The point is to get rid of Bsy1 and to find an effective utility for the control variable Cs.

One proceed in the following way. One has to consider that Cs and B, are "dual" variables (i.e. (78)
implies that in the continuous approximation, the variable C; is, up to an exogenous function Y;, proportional
to the time derivative of By, denoted Bb)

It is known that in such case, the transition (Cs;1||Cs) that measures the probability of transition of
the system between time s and s+ 1, and which is the analog here of (65), is computed by considering an
Hamiltonian quantum system in the continuous approximation with imaginary time.

The reason is that Cs and B being related through different periods, one cannot recover directly
(Cs41]|Cs), the probability we are interested in, from (Bsi1]|Bs), the quantity we have at our disposal.
The hamiltonian of the system is written

2
H= (Hs+1)2 + <B5+1 + ZYHZ>

i>0
This is obtained by rewriting (79) and replacing Bs + Ys — Bs11 by IIs41. The momentum I, is the same
as (s, but, in this formalism, it has to be considered as an operator: More precisely one sets:

0

Y,
aBerl ’

Hs+1 =

In other word, the computation of (Cs11]|Cs) needs to replace Bsy; — Bs by ﬁ. The second step is to

find the hamiltonian equation for B, ;. It is obtained by the computation of the commutator between B
and H that is:

Bey1 = —1li4q1 + Y5
and consequently (changing the variable Cs — Yy — C): Let Cs =Y, — I, is an operator [C’S,Bs} = —1.
C, and II, have the same eigenvectors, C |Cs) = C |Cy), IL, |C) = (Vs — Cy) |Cs)
|Bs) = exp (iBsIls) = exp (iBs (Y5 — Cs))

and the transition function for Cj is:

(Curn||Ca) = / exp (iCus1Bay1 — iCsBy) (Bupr| | B) dBdBoyy
1 2
<CS+1| |Cs> = /dBSdBS+1 exp iCs+1Bs+1 — iCsBS — (Bs -+ Y; — Bs+1)2 — f <Bs+1 + ZY;_H)
>0

2
1
= /dBSdBS+1 exp | i (Csp1 — Cs) Bogr + i (Bsy1 — Bs) Cs — (Bs + Yy — Byy1)® — T (BsH + ZY5+i>
i>0

T 1
exp (-4 (Cs+1 — 05)2 — ZCL? — ZZ Y5+i (CS+1 — Cs) + ’LYSCS>
>0
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which yields the global weight along the path:

/dCdY exp (—Z (Cor — Co)° — %CSQ —1 ZYsH (Cor1—Cs) + iYsCs>

>0

Jacaren (<5 [ (o) 3 [er=i [ [ (ie) v+ [ rer)
/dCdYexp (—Z/(icf—i/cg—i/ncsﬂ/ygcs)
[icess (_g [(&e) - /03)

By — 0, s — T implies the constraint [ Yy — Cy. It has to be included at time T to impose effectively the
constraint (not only in expectations at any time s < T'). It yields an overall weight:

/dC’exp (—Z/ <;SOS>2 - i/(Csf)

If Y, is a white noise, then it implies that the weight is equal to:

/dCde)\exp (Z/(iC)Qi/C§+A/(YsCs)/(YYs)2>
- Jum(1] ) e (o))

Difference with the exponentiated classical eqn. Quadratic potential, coming from the diference between
exp ((u)) and (exp (u)) or any convx fctn.

oo (5 (i) -3 (i)

is identical to the one obtained with an hamiltonian (operator) version

exp UH (H5+1) + U Bs+1 + ZYS-H

i>1

where

(Bogalexp [ Un (May1) = iVillar + U | Bay1+ Y Yayi | | [B) =exp | U(Bs+Ye = Boy1) + U | Bog1 + ) Yapi

i>1 i>1

In the continuous approximation:

(Bor|exp | Un (Mey1) + U | Boyi + Y Yara | | 1Bs)

i>1

= (Boga|exp (Un (as1) — iVTlopn) [Bs)exp | U | Bag1 + > Vayi

i>1

= /exp (Un (ag1)) exp (=illsq1 (Bag1 — By = Ya)) dlgyrexp [ U [ Boyr + ) Vi

=1
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so that
F~rexp (Un) = exp (U)
or, which is equivalent:

Un (Ils41) = In Fexp (U)

The Hamiltonian equation )
Boy1 = —VUn () + Y
and the constraint:
Cs - Bs + }/s - Bs+1
lead to an identification
Cs = VU (Is41)

so that

Hs+1 = f (OS)
with )

f(CS) = (VUH)7 (CS)

Then, the transition amplitude between Csyq and Cs is given by:

<CS+1| |Cs> = exp U (BS + YS - B5+1) + U (Bs+1 + Z Y;+z) + Zf (CS+1) BS+1 — Zf (Cs) BS) dBSdBS+1

=1

= €xp U (B +Y, - Bs+1) ( s+1 T Z }/s+z

i1

+ Z(f (CS—H) - f (Cs)) Bs+1 +1 (Bs+1 - Bs) f (Cs)) stst+1

= o [U(f(C)) + T ((f (Corr) — £(C)) +i (f(Cs)Ys + (f (Cs41) ZYW))
i1
U = InFexp(U)="Un
f] = InFexp (U)

exp U s+1 (f (Cs+1) - f (Cs)) Berl) stJrl

exp ( Byi1 = Botiva) + U (Boyi = Borivn) +i(f (Corr) = £ (C5)) Bs+1) [[dBs+i

i>1 i1

/ exp (U (Bay1) +i (f (Cor1) — £ (Co) Bus1) dBuys

- F / oxp (U (Busr = Bayira) + S U (Bays — Bayina ) T a5

i>1 i>1

= H Fexp (U (Bsyi) + constraint By =0 )
i>1

= exp (TUn (Bs+1) + constraint By = 0)
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The global weight along the all path will imply a sum

Z _f (Cs) Ys + (f (Cs+1) - f (Cs)) ZY;+i

s =1

= Y | —FC) Vet D Yori | + £ (Corn) Y Ve

s i>1 i>1

= Z —f (CS)ZYSH +f(cs+1)ZYs+1+i =0

s i=0 120

Remains:
exp (Un (f (Cs)) + TUn (f (Cs41) — f (Cs)) + constraint By = 0)

The overall constraint A [ (Y, — Cs) — [ (37 — YS)2 and the integrals over Y and A can be performed to yield
- 2
aterm — ([ (Y = Cy))

exp (U (C)+U (Cs = Copr +Y) — </ (Y — Cs)>2>

As a consequence, the constraint is introduced as for the quadratic case. And ultimately, for N agents,
the procedure is the same as for the quadratic utilities.
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Appendix 9

An operator of the form

—V2+ax2+a:(—v+\/5x) (V+Vaz) + a++a

has eigenvalues

nat+a+va=n+1)Vata

on(o) = (L)t (o) e (~L57)

where the H, (aix) are the Hermite polynomials. The Green function

with eigenvectors:

G = (—V2 +az? + oz)71

which is equal to the propagator:
G(z,y) = (¥ (z) ¥ (y))
is given by:

N e (@) ol (@)
Cen) =2 04T Jita

n

Applying this results to our problem yields G (z,y):
1

G (x, = (x -
@9 = e e o — (o)) By (@ =
1 *
2 Y

[
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Appendix 10

As explained in the text, we have to compute the Green function under the following form:

G (z,y) P(0,s,2i,ys) <exp (_; (/OSX(U) du) (/OTX(U) du>>>
= ) o (< ([ o) ([ x0))

Where X (u) a brownian motion starting at x; at time 0 and reaching y; at time s and

(o ([ 30) ([ x))

is the expectation value of exp <% (fg X (u) du)Q) given the process X (u).

The appearance of the factor P (0, s, z;,y;) in (136a) comes from the fact that in (135) the measure is
not normalized, and (135) is computed for the measure of a free Brownian motion. The global weight for
the path starting at z; at time 0 and reaching y; at time s is thus not equal to 1 but to P (0, s, z;,y;). We

then decompose X (u) as:

X (u) = (taH— S;ty> + (B(u) - (S) B(s))

S

where B (u) is a free brownian motion. Then, the use of Ito formula yields:

</Osx(u) du) /Ot (Zx—i— Ss_ty) dt + (/0 (B (u) — (%) B(s)) du>

and one obtains:

o (< ([ o))

I
@
e
i)

so that:

ol o))

= e (L) 0P st 28 (552) (f; (5 - w) dB (w)
p( s( 2[5 o (5 —w) (%—ug)d%( 2)dB (u1) ))

<exp (-1 (25 (”“"?”) (/0 (5 -u)an (u)> Lo OS /Oul (3 —w) (5~ o) 4B (ws) dB (u1)>)>
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using classical methods of differential stochastic equations:

(o (4 ([ 1) [ [ semimriz)
= eXp( /f2 du—@// (u1, up duldu2>

Lo (o[ o) )>)

z+y 21
= exp < ( (S( + 12

2
u1 S S
§ § — ) d’UIQ d’Ull

N2
Tty +02 2+0'23 T4y +a4s4 eXp(_ o%s )
= e —|s —
P 2 12 6 2 144 NG
In the text, we consider several approximation that yield a simplified form of the Green function. These

hypothesis are justified in the text. We assume first that ¢ < «, and s =~ é Moreover the individual

fluctuations |z — y|, which are of order /s ~ %, will be neglected with respect to the mean path “"Qﬁ

and then:

over the all duration of interaction. It translates in ££¥ >> |z — y| and since |z — y| is of order o/s ~ T

a+y)2 2 a+y )2 et
(2) >>0‘S&Hd(.2) >> . '
Then one can rewrite some contributions:

and:

02653 (—) being lower than <. One has, in first approximation:

(] o) ([ o)) =5
(5 s (53 o))

12 6 2 144 Vs

Glaay) — L <exp (

12
Y
@
>
o
/‘\/T\
Vo)
/~
&

N |+
N
~
[\v]
N——
@

]

ko)

|

rnm‘@

s

SN—
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To find a field formalism including G («, 7, y), the green function modified by the constraints one has to find

a differential equation satisfied by G («, x,y), and one does so by first computing:

<V2 Sl W i (ZTW) ) G (a,z,y)

g

Using that:

one obtains:

Tty 2
<V2 _ 2W> G(a,x,y)

0o 2 (a + (ITer)z) oo 2 (a—|— (ﬂc;y)2)
5eXp<_ 2(a+(aj2y)2)‘TD ( 9 |z—y \l ( T4y 2))
- (:C )7 a.. 2|« —Z
T R o) (el =D\ (57)
= S(@—y + @ty 5 L3 = . Es

N LG )
T2 (are)) 2 (a+ (552)°)
2+ | |22 : o (2 (0 ) 1) ey
’ 2 (a+ (552)°) 2 (ot (242)°) =

As a consequence G («, z,y) satisfies the following differential equation:

206



Then use our assumptions about the parameters to obtain:

30?2 302 z+y 2
> < — <<
BEe )
2 |z—y _
30 | 434 < Sole =yl __.c.
20+ (552)7) 2 (e (53)7)
2 2
- wy’ _ ey << (Hy)
o 2
a—y m2)
2]‘+|0| 2(0‘+(2) o2 olz— 1y
g < +

VA (o )

< <o+4o0<2x
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Appendix 11

When some discount rate is introduced, we go back to the initial individual agent formulation and modify
it accordingly. Recall that the transition probabilities between two consecutive state variables of the system

are defined by (79):
T
(Bs+1] |Bs) = /H dBsiexp (U (Cs) + Z U (Cs+i)>
i=2 >0

but now, the constraint rewrites:
Bsi1=(147r)(Bs+Y,—Cs)

or equivalently:

Bs+1
Cs = Bs + sz -
(I+7)
Then, the integral over the By, is similar to the previous one, since one can change the variables: (it;
By fori>1.
a = 2 N2
- /HstH exp <— (Co—C)? =3 (Cori = C) )
i=2 i>0
T Boi 2 Buiiie 2
= dBspjexp | — By +Y,— —=—C) = (Bepi+ Yoy — C)
/H * Xp( ( (1+7) ) Z( P T )
A : B 2 : Yo —C\
= 1+7)"dB.,,exp <BS+YS h C) - 147 (B, =Bl .+
/1_1( ) dBl, s S B Bl +
T : B 2 1 B Yo - C\
= H(l‘i”f’)z exp | — (B9+Y9 s+l C> - — s+l +ZL7,
i=2 (1+7) Yiso(1+7) (1+7) iso (147)
T : B 2 r B Yo - C\
- (1+7) )exp | — (B 1Y, - C> - am AR (265)
(1:[2 ) (1+7) 1+n" -1 \A+r) Z; (1+7)
where the sum has been performed up to 1" where T is the time horizon defined previously.
T
The factor H (1+ T)i can be included in the normalization factor, as explained before, and then we are
i=2
left with:
T
(Bst1||Bs) = /H dBs; exp (U (Cs) + Z U (Cs+i)>
i=2 i>0
B ? B Yo — O\
= ex —| Bs+Y, — stl —C') —7r s+l + dsti T M 266
(- ( T+7) T iy (266)
which is similar to (79), except the ﬁ factor in front of Bsy1 and the (1 + r)i multiplying (Y,1; — C).

One also replaces T' by % Then the previous analysis following (79) applies, except that, writing Bsy1 as a

function of the past is now:
Y;+i Ceri
Bs+1 = T 7 (267)
KZO (1+47) ; (1+7)
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that will lead directly to the weight, after normalization:

g

Y (PRI SR - R S o I
P T ot+o A+ —1+0 \Z0+r)") Q+n'—1+0 \Z0+r) Z0+r)

1<0 <0 >0

The global weight, over all periods is then:

2
o - 2r _
> (c - c) - Y oc,a ls2=s1l o, 268
eXp( ( lio ) (1+r)T (1) : (268)

B - —1+ro

51,52

PN ( Fr) TR R, (3/82)))

81,82

(1+ ) —1+ro

with By, Ys, = (1 +7)27 %Y, if 5o <81 By, Ve, = (1 4+ 7)Y if 51 < s0.
Now, switching to an endogenous expression for Y;,, we introduce an index ¢ to describe a set of N

agents. Each of them is described by an action C’gi) and has an endowment Yg(i) =a)y, y Céj ). The global
weight for the set of agents is then:

exp | — (1) _ A 2_ ‘32 o
p< Z<C i+ac> (1+n" —1—1—7‘0220 cg) (269)

s i 81,52

_ 2r DR ( by Cm)

(1—|—r) —l+ro 7, i

To understand the field theoretic equivalent of the two last terms in (269), one proceeds as follows. First,
neglecting as before the term proportional to o, we turn to a continuous representation:

S 2 s s
( ~ 2r 2 ) 4

_ d C('L) C) - / d / d C(z) _ C(Z) 970
exp< /0 o1 ( 140 exp (rT) — 1 ; 0 52 0 51057 exp (1 (s2 — s1)) C;(270)

2r s s , 4

S (1) _ ()

op (T — 1 / d81/ dso ZCSI (exp (r(s2 —s1))Cy) )
p 0 0 -

The second term of (270):

2r s 52 i ;
—W;A d52/0 dslc’s(l) exp (1 (s2 — $1)) ng)

can be introduced in very similar way to the case r = 0, in (270), but now, terms of the form exp (r (s2 — s1))
are inserted:

zi(8)=y; .’132 o s So ) )
Da, = T 4 K (2 S — (@) _ (i)
/ =i (£) exp < - L‘i(o)_mi ( 2 () + K (z: (t»dt) exp (rT) — 1 & /0 d82/0 d10sy exp (r (2 = 1)) G,

2r s 2 ; ;
= - = () _ (4)
<exp ( oxp (1) — 1 zz:/o d82/0 ds1CgY exp (1 (s2 — 51)) O, >>

where the Brackets denote the expectation for a Brownian path moving between x and y during a time s.
As before, describing the estimated interaction duration time T by s, one is left with:

/sz exp< Z/(O))_: ( (t) + K (x; (¢ ))dt> p—_— _12/ dSQ/ ds; CD exp (r (52_31))()8(2))

2r 2 , )
= - E (4) _ ()
<exp ( oxp (rs) 1 i /0 dSQ/O ds1CgY exp (r (s2 — s1)) Cg >>
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We write:

X (u) = <zx+ 5;“;;) + (B - (2)B)

S

where B (u) is a free brownian motion. As before, to our order of approximation, in integrals of the kind:

</Osexp (1) X (u) du> - /Osexp (ru) <Z:c—|— S;“;,) du + (/0 (B (u) — (%) B(s)) du>

we can neglect contribution due to the ito integrals and approximate X (u) by (%x +4 = y) Then:

Zl:/os dsa /082 ds1 X, exp (r (s2 — 51)) X,
/OS (Zm + S;vy) exp (rv) (71, <y —exp (—rv) (q;:c + 8;”;;)) + # (1 —exp (—rv)) (z — y)> dv
/Os (i <(zx+ 8;1}y> exp (rv) y — (Z;c 42 ; Uy>2> n w (exp (1v) — 1) (z — y)) do

Each term in the previous integral can be computed directly:

/OS <i ((Zm + S;Uy> exp (rv)y — <Zm+ S;vy)Q)) dv

1 1 1, )
= p(wexp(TS)—y)y—@y(w—y)(exp(m)—l)—gdﬂc +zy+y°)

/Os ((;’x il ?y) (exp (rv) — 1) (z — y)) dv

ST

r

- ﬁ(x—y) (s(e”ax—y)—(em—l)(ﬂf—y)> -

So that one finds:
s So
Z/ d52/ ds1 X5, exp (1 (s2 — s1)) Xs,
—Jo 0
1

= S @en(rs) ~y)y— gy (e —y) exp(rs) ~ 1) — o5 (2 + 2y + )
ey <s<e”x—y>—1<e”—1><x—y>) L ey

7352 r 2r

One can simplify this result for two different regimes. In the first one, the interaction duration is relatively
short so that (rs) << 1, or, which is equivalent, (g) << 1 since é is the mean duration, and in that case,
in first approximation:

s 52 1 1
22/0 d32/0 ds1 X, exp (r (s2 — s1)) X, = Z32 (z+y)* + 5 (rs) s* (z* + 32y + y?)

The second term appears as a correction with respect to the case with no discount rate in the constraint.
Since rs << 1 one can approximate s by it’s mean é, then rs ~ = and:

S S2
QZ/O d82/0 ds; X, exp (r(sy —51)) X,, = 82
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then including the discount rate keeps the global form of the green function, but reduces the binding tendency

to set z = y. Due to the discount rate, the various periods are no more equivalent, which is reducing the

smoothing behavior. This reduction reflects in the introduction of the term — — = © (“—;y)2 Actually, (271)

implies that in the approximation rs << 1:

2r s 52 ) '
— (4) _ (4)
exp (rs) — 1 ;/o dSQ/O ds1C5Y exp (1 (s2 — 1)) C,

2 s 52 . .
S Z/ dss dlegi) exp (r (s2 — s1)) C’g;)
—Jo 0

2 2
z+y T lr fx—y
( > ) (1+35) ma( 2 )

which leads, as in the text to the following Green function:

1

(z—y)*

ot = el (3 ([ o) ([ x0m)) )

(5 - ()]s
exp (=2 (oo (35207 (1 ) - 5 (259)%) 1554
V(o (3 0 ) - 4 (52))

G (o, z,y) which satisfies:

. - s a+tq(zy)) 1 6q (z,y) |5 a (2, y) . uz
sen = (V) e || et TRERE o) | =

1+ +v/2(a+q(z,y))
2(a+q(z,y))

« <<<Z(x+y) (1+i) —2T(x—y)) H(x_y)_H(y_"T)) \/m—1>] G (a,z,y)

3 15 « o

o= (5) ()i (5]

In the limit ¢ << 1, one finds then a quadratic term in the action:

with:

v () [Vz_aJr(zzﬂ’) (1+§)—%§(r§y) 5 x;y2  (y) (272)
— \I/T(gc) [V2_a+(232(1+37a)_(2_115;) w;y‘ U (y)

9L‘—y|2
o

and the presence of r # 0 reduces, as announced, the second smoothing term { that constrains = — y

to oscillate around 0.
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The second regime is more appropriate, since it focuses on the long run effect of a discount rate. Actually,
for rs > 1, the interaction process is sufficiently long to allow the discount rate r to impact the dynamic
system. In that case:

2r # o2 ; ;
(1) _ (4)
oxp (1) — 1 % /0 d82/0 ds1CgY exp (1 (s2 — 51)) O,

2r s 82 ) .
— (4) _ )
oxp (r9) 21:/0 dSQ/O ds10g) exp (r (s2 — s1)) C.

oy =2 (1 —7s)) (@ —y(d—rs))
rts2

1

1

2xy

1

r
and this modifies the Green function as:

5 oxp (—v2a|#7¥| - 2
G (o, 3,y) = ( \/’271 | )

which satisfies:

LAY 4y° zy
(v —UQ)G(a,x,y)Zé(x—y)-i-(TQG(a,x,y)+4r %

x_yDG(a,x,y)

a

which leads to the quadratic term:

« 2 +y? V2axy
U (z) lVQQQ 7 —4 (H(z—y)—H(y—z))| ¥y (273)
o r ro
The the third term in (270) can also be written
2 s e ,
exp | —7 —fo Z/ dsy exp (—rs1) C’S(?/ dsyexp (rs2) Cg-;) (274)
o 7 o 0

We have seen previously how to introduce the field theoretic counterpart of such a product. One has to
find the counterpart of each term exp (f; dsyexp (—rs1) Cg)) and exp (fos dss exp (782) ng)), and then to

take simply the product of the field equivalent quantities. We then focus only on fos dsqexp (rs3) C’é?, and
compute it’s expectation in the path integral to find it’s field theoretic formulation.

zi(8)=y: 52 s .
/exp (fasi)/Dxi (t) exp ( Z/ <x2l (t) + K (z; (1)) dt)) exp </ dsyexp (—rs1) C(E?)
(/ ds... / dSQnC’g) exp (rs1) ng) exp (rs2) ...C’S(?_l exp (1sp—1) Cs(i) exp (rsn)>
0 0

= Z </ ds... dsan'g? exp (rs1) C’é(,i) exp (rsz) ...C’g?ﬁl exp (rsp—1) C’g? exp (rsn)>
0 0

n

where the expectation (A) of any expression A is computed for the weight

[P (— > ((: (”; (t) + K (2 (1) dt))

7

and the path integral leads to contributions:
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</ ds... / d327LC£i) exp (rs1) Cb(,? exp (rs2) ...C’g?ﬁl exp (rs$p—1) C’g? exp (rsn)> (275)
0 0

s S2n
= // dsl.../ dson P (0, 81,2, X1) X1 exp (rs1) P (s1, 82, X1, X2) Xo.. X, exp (7sy)
0 0
XP(Snflys'ranflaX?n)P(Sn787Xn7yi)dX1-~-an
Writing:

exp (rs1)...exp (rsy)

= exp(nrsy)...exp (2r (Sn—1 — Sn—2)) exp (1 (8, — Sn—1))

(275) can be transformed as:
</ ds... / d32n0§i) exp (rs1) C’g? exp (rss) ...C’g?ﬁl exp (rs$p—1) C’g? exp (rsn)>
0 0

= //S dsy... /82” dsan P (0,51, z;, X1) X1 exp (nrs1) P (s1, 82, X1, X2) Xo.. X, exp (7 (S5, — Sp—1))
xP(()sn,l, sn,OXgn,l, Xon) P (sn, 8, Xon, yi) dX1...dXap,
whose Laplace transform is:
Ginr * X Gy * X %G x X 5 GG pp * X 5 G (onyp * X % .G x X 5 G (276)

One can find an approximation for such contributions by the following trick. Actually, write the convolution
of the Green functions, without the interacting term X as:

Ginr ¥ Ginotyr ¥ . x G x G
as a product of operators:
(G 4nr) (G +(n—1)r) .. (G +r)G!

And this product is formally a product series

n

H ((7”G)71 + k)

k=1
NIT ((rG)‘1 + 1)
rNT ((7"(?)71 + N+ 1)

Using asymptotic expansion for T’ ((7"6')71 + 1) and T ((7"G)71 + N+ 1), assuming r small, yields:

NIT ((T’G)_l + 1) A

T ((rG) T N 1) = v (- (06 N (66 4 N 1) = (06 1) (66) " 1))

Factor the first term in the exponential by (7“G)_1 + 1 leads to a first order expansion:

((rG)*1 +N+ 1) In ((rG)*1 FN+ 1) - (@»G)*1 + 1) In ((7{;)*1 + 1)
+N (ln ((rG)‘1 + 1) + 1)
TR
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and:

N (G) 7 +1) N » N2
FNT ((TG)_l LN+ 1) = NP (—N (ln ((rG) + 1) + 1) — 7((70)_1 N 1>)

_ 2
— rﬁ]\; (((rG)—l + 1)) Nexp(fN) exp (;((7«61)]\_714—1))

= N! ((G)71 +T>_N exp (—N) exp (;((G)]\_[?;T))

N | =

1R
Z
—
Q
2
N—
@
><
S
I
=
e}
><
o
I
=
3
Q
|

1N2r)
2(@)"+r)

The terms in the series expansion becomes negligible for a value of N, denoted N that is proportional —=

17(1”'

and then the previous contributions are approximated by:

Ginr * X xGyno1)yr ¥ X % .G x X x G

()
~ exp (— (r + ;Nr) G)

Ginr ¥ X *Gpoyr x X % .Gy x X 5 G (277)
~ G*{exp (— <r+;Nr> G) *X}*G*{exp (— <r+;N7’> G) *X}*
.G % {exp ( (7‘+ ;Nr> G) *X} * G
where:

1 1 1 1.
{exp <— (r—l— 2Nr) G) *X} =3 (exp <— <r+ 2Nr) G) X + Xexp <— <r—|— 2N7") G))
This leads to an interaction potential:
1_
{exp (— (7" + 2N7"> G> *X}
and a field contribution:

/ ot (2) <exp (- (r + ;NT) e (m,y)) x;y) U (y) dedy (278)

We can come back to our problem and find the field counterpart of: (274).

exp </ dsy exp (—rs1) C’(g?)
0
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and then, (276): rewrites

Similarly to (278), the term



induces a field counterpart:

/ ot (2) (exp ((r + ;m) Gz, y)) 33;”) Ut (y) dady (279)

Then the expansion of
exp Z/ dsy exp(—rsl)C’s(?/ dsg exp (rs3) Cs(g)
- JO 0

yields contributions of the form:

S S2n
// dsl.../ dson P (0,s1,x;, X1) X1 exp (rs1) P (s1, 82, X1, X2) Xo.. X, exp (7sy,)

0 0
XP(SnflaSnaanlaX%’L)P(SnaSaXn;yi)Xm-“an

s Son

X// ds’l/ dsh, P (0, s, x;, X1) X exp (—rs)) P (s}, s5, X1, X3) X5..X] exp (—rs))
XP( n 17 n7X1/1 1;X§n)P(SlnvslaX;myi)dX{'“dXén

and as previously, using (278) and (279), in field theoretic formalism it leads to the potential:

[ (exp <— (r n ;Nr> G (z, y)> f”;“”) wt (y) d:vdy}
x [/ T (w) (exp (<r n ;NT> G(w,z)) “’2“/) vt (2) dwdz]

The Green function introduced here are the one found in (??) and includes the constraint at the individual
level. Ultimately, gathering this result and (273) we are left with the following action with constraint and
discount rate in the case = >> 1:

5 ({\P(k)} ) (280)
k=1...M
o [ (52 [T ) (Fagr M0 (50— (5),)) ot v (5] (50 - )

() + (%) vmxxp (1 (X0 = 2(2) - 1 (X - %)) |0 ()

72 ro

+2

constraint, individual level

() OINS dCAR OS¢V
S ({H, ) I e () e (50)
intra species interaction

Y Y Ve ({X,g)} )ﬁ [T wr (X,E")) o (k) (X,S"))
1<in, <nj ) ; .

m ky..kp,m n1oNm Sin; <Ny

inter species interaction
. _ (1) v(2) . . .
S anss [ (007 (X0) (o0 (= (o 400) 6 (X0, 50)) 575 ) wiw (202) ) ax(ax?
R _ N . 1), v (2) R . .
<[ [ (qﬂkz)* (%) (exp ((r+38m) 6 (22.52)) X’“;Xk) (k) (X,ij’)) dx(Vax®

constraint, collective level

+
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Appendix 12

Case 1: one type of agents

As said in the text, we compute the sadlle point for:

S(¥) = —/\Pf(x) (—V2+%+x2)5($—y)+

-f / ) (zy)  (y) O (y) ddy
and show that the minimum solution is for ¥ (z) = 0.

The saddle point equation is:

(2% +€) U (z) +/

and this implies that the only absolute minimum is reached for ¥ (z) = 0. Actually, for a non nul solution
of this saddle point equation, the effective action rewrites:

( f/ (z(y+Y)) ¥ (y) ¥ (y) dady

@ (wa @ [ (4+3) ¥V Gty 700 [0 0¥ ) dy) o)

f/\IfT Yo (y+ Y)W () U () dy

f (/ Ul (2) 2V () dm>2

Since f > 0, the last term is positive and the only minimum is for ¥ (z) = 0.
Moreover, any solution to the saddle point equation ¥ (z) # 0 is not even a local minimum. Actually,

()"

o2

+2

2
r—=y
o

W (y) dy — 2f27 (z) / Y () U () dy = 0

S (T)

the computation of % for this solution yields:

z+y)?

(m2+€2)6(x—y)—|—

2
T —
- ] ~2fs | [y )W Way] 5 1) - 27299 () 91 )
= —2fay¥ (z) ¥ (y)
This corresponds to a local maximum since f > 0 and :

/ o' (z) (N(z;(y)w (y) dwdy

_ 2f</¢f(g;)xqf(x)dx>2

Case 2: several types of agents

We proceed in a similar way as for the case of a single type of agents. Given the action functional:

To+Ya )2

S((Ta) = Y, (/dxa\lﬁ (za) (22, + €) Uy (z0) +/dxadya\1ﬁ (o) [( ;2 +2
Zfaﬁ [ )t )| | [0 @) 2095 0)

2
Ta — Ya
g

U, (ya>>

[0
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the saddle point equation becomes:

0 = ((m§+62)\pa(xa)+/dya [(z?:a) +2

- 3 Ut S o) [ ¥ @205 )]

_% FoataVo (22) [ / Ul (2a) TaVa (sco»]

and the action for this solution is:

2
Lo — Ya

g

Ta+Ya )2

S((Wa)) = Z </ dxa\IlT (Ta) ("Ti + 52) U, (Ta) + /dmadya\lﬁ (za) [( 22 42

ag

U, (ya)>

«

_foaﬁ [/ Ul (24) 24T, (xa)} [/ Ul (2p) 2505 (3?,8)}

= 5 X Ut S W o) o (20 | [ ] o)W )]

B, a#p

+wa%\pa (za) [/ Ul (20) 20T, (ma)}
_foaB [/ Ul (24) 24Ty (xa)} U U (25) 2505 (xﬁ)}

which simplifies as:
Zfaﬁ [ ) ana o) | [ ] ) 00w ()

confirming that ¥, (z,) = 0 is the absolute minimum. The reason of this vacuum at ¥, (z,) = 0 is the
direct consequence of the constraint that induces the terms:

_foaﬁ U\Iﬁ (o) 2aPu (xa)} U\PE (zp) 23 (xﬁ)}

in the effective action. The minus sign is crucial for preventing any phase transition. Thus the constraints
smoothes the interaction between agents. It prevents from switching from a symetric (nul) equilibrium to an
asymetric one favouring somes groups of agents.Assume that there is a solution ¥ (z) # 0 for this equation.

As before one can check that any other solution of the saddle point equation is not a minimum by studying
the stability of this solution. One computes the second order matrix elements:

028
OV, (20) 0Vq (Yo )

= |22+ -z % > (fas + f5a) U Ul (2p) 2505 (ﬂﬂﬁ)} Tfaa {/ b (o) TaVa (Ta) § (Ta = Ya)

B, a#p

(252)°

g

2

2
Lo — Ya
- Tfaawa\lla (xa) l:[ﬂ; (ya) Yo

a

- +2

2

2
= _Tfaa%xwa (Ta) ‘I’:& (Yor) Yor

and:
928
OV, (2a) 005 (y5)

(fa@ + f30) TaVa (za) U (25) 25
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So that the second order variation, for an arbitrary ¢, (z,) becomes:

_*Z / a% ) ¥ (Yp) dzadys

- -1 = (s + ) ( / ula)2al (2a)don ) ([ 03 )29 (a3 dos )

which is negative if we choose the perturbation in a single direction ¢, (z4).

Case 3: endogenous interest rates

We start with the following function

Uets ( / C2 (t) dt+2 / e (— / ") dv) C; () Ci (£) dsdt—2 /mci () exp (- / ) dv) Y; (s) dsdt

(281)
and transform the last two terms. One first obtains:

2 /t ew (- / @) dv) C; (5) C; (1) dsdt — 2 /t Ciew (- / @) dv) Y (s)dsdt  (282)

2/t>s (’I"Kz' (s) — Ki (s) + F; (K; (s))> exp ( /: r (v)) (rKi (t) — K; (t) + F; (K; (t))) dsdt

2 /t B e (- / ' (v) dv) (TKZ- (t) — K; (t) + F, (K; (t))) dsdt
2 [ (i) exp (= [ v ) £l ) dsa
+2 /t B (rE: (5) — K (9)) exp <_ / ' (v)) (rE: (1)~ K (1)) dsds

We compute separately these two expressions. The last term can be decomposed as:

t

/bs (TKi (s) — K (8)) exp (—/s r (v)) (rKi (t) - K; (t)) dsdt (283)
- [ &en (- [ro) ks [ re g e (- [ro)kod:

_ /t>s K (s) exp ( /Str (v)> rK; (t) dsdt
+/t>sr (5) K; (s) exp (— /Str (v)) r(t) K; (t) dsdt

The first term in (283) is:

/t>s K; (s) exp (— /:T(v)) K, (t) dsdt
[r@ia- [ rosen (- [ ro)iods

= KO - /t>s7‘(s) K, (s) exp (- /}«@)) K, () dsdt
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The border terms that can be neglected (no accumulation at 0 and T'), so that to the first order in r (283)

simplifies:
/ (7 (5) Ki (5) — i (5) ) exp (— / tr<v>) (r () K (1) — Fi (1)) s
- -/ K (s)r () K, () dsdt
-2 /m r(s) K; (s) K; (t) dsdt
= [rorEmare [ K2 (s ds
- [roK: @

by assuming again that K; (0) = K; (T') = 0. The first term in (282) can also be simplified at the first order
in7:

/t>s (r (s) K; (s) — K; (5)) exp <— /st T (v)) F; (K; (t)) dsdt
- _/t>s (T(S)K (s) + K; (s ))exp (-/str(v)) Fi (K; (t)) dsdt
+2/t>sr(s)K (s )exp<

/
Lilan( L
[

+2 r( s) exp (
_|_

:/K

Then, using (281) and (282) U¢'f (C;) can be written:

F; (K; (t)) dsdt

~— T —

F; (K; (t)) dsdt

/ r(s) K; (s) F; (K; (t)) dsdt

Uets (¢ /02 b dt — / K; (1)) i(t)dt+2/r(t)Kf(t)dt+4/ r(s) K; () Fs (K (1)) dsdt

Case 3: Saddle points and stability: general form of the second
order variation

We start by writing the second order variation in a convenient way. A straightforward computation yields:

S = @) [V + (F (2) - 2F (0)2))] ¢ (@ (o @) F' (@) () ds) [ W) F () 1 @)
+?\7; (\I/J{( )2V (x dx /apT

+8ﬁ” Re (/w* z) 20 (x m) Re ( y) 1 () dy)
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and the last term can be decomposed in a useful way for the sequel. Assume that F' () — F' (z)z > 0 (if
the reverse is true the role of F’ (z)x and F (z) are exchanged), then

87\7 Re (/ o' () F' (z) 27, (2) d:c) Re (/ o' (2) F () ¥y (2) dw)
= %’ Re </ o (z) F' (z) 20, (z) dx) Re (/ ol (z) F' (z) 20, (x) dz)

S ([ o @F @ o @do) Re ([ 0)(F (@)~ F (@0)0) 01 (0)d

The last expression can be estimated by the Cauchy Schwarz inequality as:

(/gof(x)F()x\Izl() )Re(/ T(y)(F(x)—F'(ac)m)\Ill(m)dx>

\//wf z) zp (x dx\//\lﬂ z) 20y (2
W ¥, (2) ds W@ 2o (2) dz

Letting then
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the three last terms in (284) can be regrouped and estimated in the following way:

%’7 (¢ () F' (2) 2 () dx)/ dx+—/ \IJT z)z0y (z )/(soT (z) F (z) ¢ (z) dz)
e ([ @ P @ >dx/ () F () W1 (@ >dm)
_ %7 (¢ () F' (2) 2 () do) / o) do+ 21 / (H@F @t @ )/ (¢" (@) F (2) ¢ () dz)

—&—%Re (/@T(x)F'(x)x\Ill(x) Re(/ o () F' (z) 20 (z )dx)
T
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and inserting this in (284) yields:
%525 (@) > of (@) [(-V? + (F? (z) — 2F (2)2))] o (2) (285)
S @ F 0o @) [ (¥ @) F @)o0: (0) do)
— @[T (@) - 28 0)2) + A @] 6 0)
If F' () x — F () > 0 we have rather:
%525 (W) > o (@) [(-V?+ (F? (2) — 2F (2)2))] o (2) (286)
3 [ @ F@e@ds) [ (1@ F @) @) do)
— @) |-V (7 (o) - 2F (0)2)) + JBF ()] o 0

This can be positive depending on the parameters of the model. The sign of §25 (¥) will be studied for
each case in the next paragraphs of this section.

Case 3: Saddle points and stability: example of scale economy

Now, to understand further the non trivial vacuum in the model of this paragraph, we will assume some
particular forms for F' (x). We start with the action of the first case where

F(2)=c(a— f ()

and the action given by (147):

S0 = [ 0@ (-7 17 @ @~ F )] V@ ae ([ v @av@ i) ([0 @ @£ v )

The saddle point equation is:

with:
/ Ul ()20 (z)de = A
R+

/ U () (2 — f (2)) U () do
R+

|
Sy

and this equation can be reorganized:
16A 16B
0=V (z)+ <(N —4f (x)) (x— f(z))+ Nx) U (x)

For % —4f (z)+ % > 0, a square integrable solution on RT exists. Given that f (z) is slowly varying, a
first approximation for the saddle point equation is:

0= (=V*—~4f (2) (x — [ (2))) ¥ (2) + % (A(z = f(2)) + Bx) ¥ (2) (287)

222



Now, we factor ¥ (x) = a¥; (x) with Uy (z) of norm 1. Then (287) becomes:

0 = <(—V2 —Af () (x— f (x))) + 1?\7 (A(z — f(2)) + Bx)) U, (z)

164a> x x
((_v2+< 60> 44 p)— 4f(x)) (g;_ (1(%&2 4;{() Uf}i)))) , (2)

where the constants A and B have been redefined as:

/ Ul (2) 2V (2)de = A (258)
R+
/]R+ Ul (2) (x = f(2) W1 (z)de = B

The solution ¥, (z) is proportionnal to an Airy function:

" 2 1640° —4f (@) f ()
Wy (x)aAi(3 16;3 74f(z)+% (I (1(6;\1[:2/ >16a2B)>)

Af (x) +

with the following normalization condition:

2 2
o[ 2[164a2 16Ba? (% —4f (x)) (@)
/}wa (Az (\/N —4f (x)+ N (x— (16Aa2 Toq 16a2B) dr=1

To have a minimum, one needs to show that the action S (¥) is bounded from below. Note that given the
saddle point equation:

S(W) = /\I/T (@) [(-V? —4f (2) (@ — f (2))] ¥ (= )dx+lﬁ6 (/qﬁ (x)xqf(x)dx> (/qﬁ (@) (x—f(x))\p(x)dx>

= B W @) (A 1 @) + B @)+ 5 ([¥i@an @) ([9l@ @ s @)w @)

32 16 16
= —"ZABa*+ —ABa* = — = ABa*
N a” + N a N a* <0

One thus has to show that Aa? and are Ba? bounded.
To do so, one uses the normalization equation and the defining equations for A and B rewritten as:

16442 2
[ s/16Aa? 16Ba? SN —Af () f (=)
/RJron Ai N —A4f (z) + e (1(6Aa2 Tt )16(123) dr = 1
16Aa? 2
| s/16Aa2 16Ba? =25 —4f (@) f (@)
az/uwx Ai Na —4f (@) + Na = (1<6]<1[a2 Af (z) + >163a2) de = A
2 [ +[164a2 16Ba? (4 - 4f @) £ @) 2
a /R+ (x— f(x)) | As ~ —4f (x) + N x — (16;\4}(12 s 163a2) de = B

By a change of variable
vmaa o) OB (1842 — 47 (@) £ (@)
u = - x T — 5 =
N N (184e2 _ 4 f (3) 4 1622B)
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and using that f (z) is slowly varying, and that f (0) = 0, so that

(184~ 4f (@) f (@)
(1()]14\1]112 4,f ( ) 16a23)

is increasing from 0 to +oo, one gets, in first approximation (f (x) is considered as constant and can be
replaced by its mean f):

du

[ e (i) :
a R s @)+ R

‘| “ N (154 — 47 () £ (=) ) du
R+ i/lGXXfa? Af ( ) 16Ba2 (16Aa2 4f ( ) + %) 3 16]13(12 —Af ( ) 16Ba2
u (M—4f<m>)f<> du

— (@) | (Ai(u))?

2
“ /]R+ \/16Aa2 Af (z) + 16]13@2 + (16;1[11 —Af (z) + 1GBa2)

., ., 2 - 3/16Aa? 16Ba? .
As a consequence o is of order \/T —4f (z) + =x*, and then:

u (842 —4f (@) f (@)

= Ai (u))? du
,/R+ \/16Aa2 Af () + 163{12 + (16]@@ —Af (x) + lﬁBa ) (Ai (u))

I - e ) ELC T TS -
we \ QI af (o) + 10 (SR 47 () + R {1 af (@) + 105

with d = [, (Ai () du. In first approximation A = B and one is reduced to the following relation between

A and a:
/ N S L) P
- 3%—4]‘(33) 32Aa —4f (@) —

We replace f (x) by f, so that this relation becomes

/ U
BB - 4f (@)

or, in a more compact form:

l\"\“’v\

)(Az( N2 du = dA

++gd=dz4
3 32ﬁa _4f

where we defined e = [;, u (Ai (u ))? du. The relation between A and a reduces to:

<dA£ ) (32]‘3“ 4f) (289)

In most cases, depending on f, this equation has a positive solution with % —4f > 0 as needed. Now,
for a — oo
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As a consequence Aa? is then bounded and has a maximum, so that S (¥) is bounded from below and has
a minimum for the value of a that maximizes Aa?.

The second order variation simplifies in that particular case as follows. Here, F’ (x) 2z > F () and (286)
applies:

S8 > @) [(-92 4 (F (1)~ 2F (1) )] ¢ (2)
3 [ @ F@e@ds) [ (W@ F @0 @) d)
@) [V () - 2P @) 0) + BP0 @
and here it writes:
o (2) RV (F? (x) — 2F (z) z) + =L AF (a;)] o (2)

- ) [V @ e @)+ BB e @) ¢ @)

~ @ |-+ (B -1 @) e r@)] v @

(Fe-1@)= (32]52A4f (@) >0

in our assumptions, and thus:

1
§525(\1/) >0

Case 3: Saddle points and stability: example of increasing return
to scale

The second case we consider is:
F(z) =x + cx?

with 0 < ¢ < 1 which measures an increasing return to scale. In that case:

S(v) = 772/\IJT (z) [(—V2 + (F2 (z) —2F (x)x))] U (x)dz

+% (¥ (@) F' () 0¥ () dﬂﬂ)/\l’T () F(y) ¥ (y) dy
= 772/\IfT () [-V? + (v + c2?) (ca® — 2)] ¥ (2) da

+% (/ Ut (z) (14 2cz) 2V (2) dx) (/ Ut (2) (z + ca®) U () dx)

1
3
]
S
s
—~
~—
I
<
[\+]
_|_
—~
Q
DN
8
Ny
I
8
(V)
~—
S
—~
8
~—
U
&

+4Ni4 (/ Ut (2) (z + 2c2?) ¥ (2) dm) (/ Ut (z) (v + cz?) ¥ (2) d:c)

and the saddle point equation is:

[—V2+c2m4+ (4]:\?(/1+2B)—1>x2+4;\3;(/1+3)}\Il(x)zo
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with:

A = P </R+\IIT(:C)(w+20m2)\II(:r)dm)
B - n2</R+\I/T($)(x+cm2)\Il(x)dm>

One shows in appendiw 6.a that the action S (¥) is bounded from below and that it has a minimum
obtained as a first order correction in ¢ ot the function :

\/%772(14+2B)—1 or 2 7’ (A+ B) ?
2 N ¥n?(A+2B) -1

o (z) =nexp | —

This can be reorganized as:

-V 4Pt + (‘;VC (A+2B) - 1) <:c+ ;m; - (émﬂ U (zx)=0

We write the solution ¥ (z) = n¥; (z), and ¥4 () has a norm equal to 1. The saddle point equation
becomes ultimately:

—V? 4+ ot +<;1V (A+ZB)—1><+2 772(A+B)_1>2—<2 772(‘4+B)_1>T\11(x)=0

N 22 (A +2B) N 22 (A+2B)

with:

A = (/}R+ Wl (@) (2 + 2¢2%) U, () dw)
B = </}R+ Ul (2) (z + ca?) Uy (2) dac)
Note that the action at the saddle point solution is equal to:
SWw) = /qﬁ (2) [-V2 + (o — 2%)] U (2) dw+% (/ U (2) (x + 202) U (2) dx) </ U (2) (2 + ca®) ¥ () da:)
= —nQ/\IJT(x) (; (A (z + c2?) + (z + 2c2?) )
+;\L[(/\I/T(x)(x+20x2){!( )dx) </ z) (z + cz®) ¥ dm)
_ (4;\7[ (AB + AB)) 4’74,43 - —%AB <0

As before, one has to show that this is bounded from below.
We start first by soving the saddle point equation. Since ¢ << 1, the term c?z* can be treated pertur-
batively and one rather solves:

e (roen ) (o d i) - (edi)

adding some corrections due to c2x? later. The change of variable

.J4c 2 n*(A+B)
r= (A 2B) — 1 d
v \/N"( +2B) (“N4C2(A+2B)_1)

U(z)=0
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for
4ec 2

N
yields the saddle point in a normalized form:

(A+2B)—-1>0

{—vi, +(a)? - e} U(z)=0 (290)

with:

(2 n?(A+B) )2
N Zn2(A+2B)-1

__ (Gr@+B)
\/ 2(A+2B)—1 (%2 (A+2B)—1)

5
2

X*-(3x -1)°

, Solution is: {[X = 0.53562]}The equation (290) has a bounded solution only if ¢ = 2n + 1 with n a non
negative integer. The solution of norm 1 in that case is:

W, () = H, (') exp (— &) )

2

with H,, (') the n-th Hermite polynomial. The condition to find a solution of norm 1 is thus:

Graent o)
(%n?(A+2B)—1)
where
A+B = (/}W W, (2') (22 + 3cz®) ¥, (') dz)
(A+2B) = (/R+ U, () (3z + 4ca®) U, (2') dm)
and:

! 2 7 (A+B)
i 4en2 (A+2B) -1 N % (A+2B) -1

xr =

These equations are show that A and n?B are of same order, and then (291) yields that
9 1
~ (A+ B) ~ m (292)
so that 4
S(V) = —174NAB <0

has its minimum for n = 0. More precisely, for n = 0, (291) gives:

2(4+ B))?

(&7 -1
(den2 (A +2B) —1)*

and thus in the first approximation A = B, ¥n?4 =1 and $¥n*(A+2B) -1 =2.
As a consequence, one has shown that the action S (W) is bounded from below and that its minimum is

obtained for:
/ ()
W (2') =exp | — 2
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or, coming back to the initial variable:

U () — \/%n2(A+2B)—1 2 2(A+B)  \’
o (z) =exp 5 I+N4CQ(A+QB)—1

The inclusion of the corrective term c?z* can be done perturbatively. To the second order, the eigenvalues

of the operator in the left hand side of (290) are transformed as:

o] 2
@)t |9y (2))]
E;:E,L+C<\I/0($)| 4“1/0 Z
I=1,1#n E —E
with E, = 2n + 1 and (291) is modified as:
2n*(A+ B)
(%n 2(A+QB) —1)2
2
|$ | (2))]

= 2+ 1+c(Ug(z) 2t T (z 22‘

Moreover the eigenvector ¥q (x) is also modified:

() = [y cZ Wl W) 1y, )

o (W ()]0 (W (1)) (W ()] 2 [0 (1))
+e? g mZ 2 W1 ()
g (o @)l 1o () (W1 ()] 1o () g

472
2

A (Ro (@)] 2 [ () (Wi (@) 2 [ Wo ()
2

- o (3)

MXEMS

1

These relations modifies to the second order the values of A, B and 1. However, as n? (A + B) remains of
the same order as n? (A + 2B) and since the corrections to the right hand side of (291) given by (293) are
finite (only few elements of matrices (Vg ()| 2 |¥; (z)) are non nul), then the asymptotic behavior:

1

2
Anv ————
7 (2n + 1)

remains valid. As a consequence, S (¥) is bounded from below and ¥ () is the minimum of S ().
Now, to study the stability we have to compute 65 (¥). Here

F'()z—F(z) = x4 2c2®— (z+cz?)
= c®>0

and thus (285) applies:
S8 > @) [(-V2 + (F (2) 2F (2) )] o (0)
W" / g (v) dz) / (\Iﬂ{ (2) F' (z) 29, (z) dx)

: [( V4 (1 () - 2F (0)2)) + AP (2)3] o 2)
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which, in this particular case, becomes:
S > ot @) [~V (F (@)~ 2F (2)2))] o ()
Y [ @ F@e@ds) [ (0@ F @) @) d)
r 2
= ¢'@) |(-V+ (F? (2) - 2F (l’)ﬂf)) + SLBF (x)} ¢ ()

= o () _fv"’ (P2t — 2?) + == B (z + ca? )}so(x)

= goT(x) -v? 4+ x—i—cx (m —Z+B>:|QD($)
Given (292) and n = 0 for the minimum, %7]2 (A+ B) ~ %TFB ~ m =1
2
cm2—m+8%3~cx2—:c+2

and this is positive for ¢ > £. In this range 1528 (¥) > 0.
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Appendix 13

Stabilization of a finite number of negative eigenvalues by an inter-
action potential

We start with the saddle point equation described in the text.

0= KU (y) +2U (5) ¥ (y) / (¥ (42) U (32) ¥ (32) e (204)

with: ) .
K = (—2V (M(S)> V+yM(A)V+yNy> +m?

Normalize ¥ (z) = \/nV; (z) where n = f\IIJ{ (y) U1 (y)dy. The saddle point equation including this
potential can also be written:

0= KW (y) +2nU (y1) ¥1 (y)/ (\Ifl (y2) U (32) ¥] (y2)) dys (295)

If, as assumed before, K has a negative lowest eigenvalue \g, with eigenvector (™) (y) then, one can find a
solution (¥ (y),n > 0) of (295).
Then, expand

Uy (y) = Z an\II(n) (y)

n=0

with > - lan|? = 1, where ¥(™ (y) are norm one eigenvectors of K with eigenvalues A,. Then, take the
scalar product of (295) with W (,):

0 = /\IJI (y1) KW (y) dy
+277/‘I’J{ (y1) U (y1) Y1 (1) dy1/ (‘1’1 (12) U (y2) 91 (y2)) dy2

which allows to find #:
(W] K [0y)

1
2 (U] U [04))?
Thus, if we find a solution with 7 > 0, this solution |¥;) is mainly a combination of negative eigenstates of
K, so that (U] K |¥4) < 0.
Given that:

1

-1
_z (5) (A) — (n)
<2V(M ) VyM WyNy)xIa(y) ;anw ()

(295) rewrites:

0 = K- tlELU 00w ) [ (802 ) ¥ 02) e
— K 0) - U ) )
or, equivalently:
) = g K ) ) (296)
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This relation can be written in any orthonormal basis. Using W1 (y) =", ., a, U™ (y) with Y ns0 lan|> =1
and ¥ (y) the eigenvectors of K for the value Ay and to order them by increasing eigenvalue, so that () (y)
is the state with the lowest eigenvalue Ay < 0 by assumption.

Using the norm condition Zn>0 |an|2 =1, and that the previous systems of equation has one relation of
dependence, one can get rid of ag (up to an irrelevant phase) and reduce the system to:

(W] K |Wq)
(V1] U [¥1))

Ap =

Z <\IJ(") (yl)‘ KU (1) ‘\Il(m) (y1)> Q| forn>1

m=0

with ) 1 [a, > < 1 and where ag is replaced in the sums in the numerator and denominator by /1 — Yons1lan 2.
As a consequence the system has a solution (a,,), if the application:

e | oy | 2 (0 @0 K70 0| @) + (0 0] 0 ) [0 ) 1= S )

m>=1

=z

has a fixed point. This possibility arises depending on the properties of the potential U. To get a more
precise account for this point write the application as:

KU
LofW),o = W |)
(V| K|W) n>1
where ()n> ; denotes the projection on the space of eigenvalues n > 1. Let 0 < ¢ < 1, any arbitrary constant.

Assume that U preserves the space V' generated by the negative eigenstates, so that I defines an appli-
cation V' — V. We also assume that if 0 is eigenstates of K, it is an isolated point.

A fixed point exists in the ball B C V of radius c, Zflgl |lan|? < ¢, where Zi; runs over the negative
eigenstates, if for any state |¥) of B

<0
0) =3 0,0 ()

n=1

such that 27;01 lan|? < ¢ (and thus |ao® > 1 — ¢):

2
KU (v (U(K*I)ZU)|\IJ>’
(MUM) - (2 [U]w) 2 S
(TIK[T) 1 (T [K[0)?
with
—1\2 1 -1 | g, (n) (n)| pr—1
(\If|(U(K )U)|\p> = Y (UK ‘\If ><\If KU |0)
n>1
= 3|k ‘\1/(")>‘2 — (@ UK 9@ (9O KU |w)
n=>0
— (U (K—Y? U) W) — (U] UK )\1/<0>> <¢<°>’K*1U|\y>
so that:
2
K~'U _|<‘I’|K“I’>‘2 132 10 O =1
(wm))‘m ST ((\If|(U(K )U)|\Il)—<\IJ|UK ‘\IJ ><\p ‘K U\\I/>)
(TK[T) o
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Then, a sufficient condition to have a fixed point, and thus a non trivial solution to (295) is that

IO g (o 20 o o00) o0 o) <1

for all |¥). This is achieved for example if U develops along the negative eigenstates of K and if the overlap
of U and K is concentrated around ’\I/(O)>, that is:

<0
U= ‘\II(O)>U0 <\I’(O)‘ + Z ‘\I/(i)>Uij <\I/(j)‘ + ...
4,5>0,i+57#0

with g—; << 1. Actually, in that case: [(¥|U |0)|* > (Uy (1 — ¢))* and |(¥| K |¥)|* < A2 and then:

[ K|¥)P o (U (KU @) — (@ UK~ | w®) (vO| k17 |w
b¥: 1\ 2 _ _
< m(@\ (U(K D) U) 0) — (U|UK 1‘\p<0>><\1/<0>‘1( 1U|\I/>)
0 (1 —
Y L 1
< N oy gL,
2 ij 32 Vi
(Uo (1 =0)) i>0,k>0,,j>0 A
and this is lower than c for [[Jjg small enough. As a consequence |¥;) is also peaked around |\I/(O)>7 and
1 (0 |K[P,)

= =3 (@01 is positive as needed. Then, a fixed point exists in B, and thus on the space of all states,

for the type of potential considered. The minimum of S (V) is reached for the fixed point with lowest S ().
The interpretation of this case is clear. A positive potential of interaction counter balances the direction
of instability and allow the composed system of two structure two stabilize around a composite extremum.

1 -1
(—2V (M(S)> V+yMYY +yNy +m2) d(y—v1)

12U ()6 (y — 1) / (0 (1) U (32) 0 (5)) s + 29 (5) U () U (52) ¥ (31)

To inspect if the solution we found is a minimum, one has to compute the second order variation (| m lo).

The variation ¢ (y) is arbitary but can be considered of norm 1, since this norm can be factored from the sec-
ond order variation, and that only the sign of this variation matters. If one finds condtions on the potential
to have
0?8
el 5%, )0, @)

we will have found a lower minimum than ¥ (x) 0, since, in that case:

le) >0

S(¥) = /\IJ (y) <—;V (M(S))71 V +yMAV +yNy +m2) Ul (y)dy

+ ( [ (@)U () ¥ (2) dyz)z

which is equal, given (294):

S (W) = ( [ (@)U @) dy2)2
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Now, the second order variation (y| % |©) is computed as:

/ o (W) Ko () dy

v ([ @U@ W) [ (900U 00) W] ) i 20| [ 020 () ()t

(| U [91)]?
(el Ulp) + LU0

= e <<¢|K<p> (04| U [01) — (1| K [Ty) <<¢|U¢> i WW))

_ (W] K |W)

(01| U W) (01| U W)
> gy (P19 (WU 190 = (0] K [90) (0] U |)
Given that the saddle point solution satisfies (296)
W) = g K ) )
U= e )

one can write:

(Pl K [0} (W1 U [W1) — (W1 | K [W1) (| U |)

— w101 (Wl K1) - gy U 1))
828
(¢l m o)
(V1] U [¥1) (1] U [¥1)
_ 1 (| U [91)[?
= <@\K|¢>—W <@|U|¢>+m
{(elU )
Z T W KU )
U
> N0 R T

where )¢ is the lowest eigenvalue of and Uy (which is negative by assumption), the minimum eigenvalue of
Up. Then: ,
%S Uo
I >N
Yl e man 19 2 T wEo ey
and this is positive if
Uy > o <\I/1‘ KU ‘\I/1>

that is if the potential is strong enough to compensate for the instability of the system.

Instability due to non linear terms

We generalize the previous paragraph by considering the instability introduced by a more general term than
m?2. Assume that the operator K (for m? = 0) has been set in a basis such that it rewrites in a diagonal
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form L
K= —§V2 +yD'y (297)

where D is a diagonal matrix with eigenvalues A; > 0 that ensure the stability of each fundamental
structure without the perturbation . Assume that due to the interactions among the structures components,
a potential V (y) with a negative minimum is added to K to yield:

1
Operator (298) has the form of an harmonic oscillator plus a perturbation term.

The eigenvalues of K are E,,, ., = Zle Ni Vi —i—% where k is the number of components of y, y = (y;)
and the nq, ..., n; are natural integers.

The eigenfunctions \Ilgn1 """ ) (z) corresponding to these eigenvalues of Harmonic oscillators are:

k
\I,gm,...,mc) (y) = H )
i=1

on (@) = <\/a)i L, (aa) exp (\/%2)

T 21 2

where the H,, are the Hermite polynomials. Then, introducing the eigenvalues modify both the eigenvalues
and eigenfunctions as series expansion of C. We choose a perturbation that shifts essentially the lowest
eigenstates of K, that is quadratic and antisymetric (the quadratic and symetric part being included in D’
by a series expansion and we assume that this part does not affect the sign of D’’s eigenvalues). We choose
for the potential the particular form

_yVA (y7 v) \Y

which describes, as —yM“AV the internal interaction inside the structure, but taking into account non linear
terms (as resulting for non linear utilities for example).

The perturbation can be rewriten, using the usual creation and destruction operators as:

—yVV = —(at+a") VA (a" —a")
= 22TV
since V(4 is antisymetric. Note that a™ and a~ have dimy = k components: a® = (af) and a= = (a;)

and y = (at +a7), V= (a™ —a~). To model that this potential modifies mainly the lowest eigenstates of
K, we choose:

with f ((n1,...,ng)) is a quickly decreasing function of n? + ... + nj.
Since V(4) is antisymetric, and for the ground state \Ilgo,...,o) (y), a*V(A)a’\Ilgo""’O) (y) = 0 and one can

then deduce that the series expansion for the perturbed ground state is nul. Thus one still have a state
\IJEO""’O) (y) with eigenvalue %.
As a consequence:

Vi oy v ¢ yD’y) v (y)

v+ yD’y> w0 (y)
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and the saddle point equation is not satisfied.

This situation changes for the first excited states. Consider \Ilgl7i) (y) = \11507"17"’0) (y) with the 1 set in the
1 th position. These are the first excited energy levels, the closest to \Ilgo""’o) (y) with energy E; = v/\; + g
The perturbation expansion for the eigenvalue of

1
(—2V2 —yVAYT 4 yD’y)

to the second order is then:

E} = Ei+4 Y (299)
=L VA= VA
ko4 V(.A)>2
)
= B+ Z

J=1,5#i VA = VA

2

A

()

Note that, due to the hypothesis on f, the shift E},
One can thus focus on the first eigenstates.

g i By o, can be neglected for ni4..+n2 >> 1.

.....

We call ‘\Dll(l’i) (y)> the corresponding eigenvector to E.:

(4)
) = et (y)}f_i WO RS (nivijij o [T )

4Dy ‘

k k
gl li \I/gl’j)
* 3 Y v W)

L)
22w w)

This approximation is valid if we assume that V(4) is relatively small with respect to the \; and this

assumption is necessary if the fundamental structures are assumed to have a certain stability. If we rank the
A; in increasing order, equation (299) shows that the eigenvalue Ff is driven below Ej. It means that the
equilibrium of the system is reduced by it’s internal interactions/tensions. For a sufficient magnitude of the
perturbation, one may have F] < 0 and the previous analysis concerning the stabilization of the system by
the interaction between structures apply. Remark, that some other first excited states may be also driven
below 0, by the perturbation, but the number of such eigenstates remains finite given our assumptions about
the potential V. Higher order excited states have eigenvalues increasing with n? + ... + ni = a, whereas, f
decreases with a.

Generalization to several types of interacting structures

We consider k fields in interacting, characterized independently by an operator:
1
K; = (-2 (Vi)? - yle(A)Vl +yi Dy +V, (yl)>

for I = 1,...,k, where the V; (y;) have a negative minimal eigenvalue. The saddle point equations for the
fields with interaction are then
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)
ov] (y)

0 = KU (y)+ ( /v ((xl)pl ,...,(mk)pk> [\1/1 (z1) ! (xl)]

p1

(0 @) 9] (@0)] o [0 (w0) O] (a0)] d(a0),, ...d(:ck)pk)

y2

KU, (y) +m (({N/?(y) /V ((m)pl Sy (xk);::«) [‘1’1 (1) \IJI ($1)]p1
I

[‘I’z (z1) ] (l’l)}

Pk

= {\I!k (xk) \I!,JL (xk)} d(zl)pl d (zk)pk> v (y)

pi— Pk

where (ml)pl represents p; copies of the coordinates x; and {\Ill (1) \I/lT (xl)} indicates a product of p; inde-
P

pendent copies of ¥, (z;) \IllT (). The interaction involves then p; copies of the I-th structure.
Then, one normalizes

Uy (2) = ¥y (@)
(1)

where W,/ (;) is of norm 1 and the saddle point equations rewrites:

(i)

m
X (/v ((xl)pl ,...,(xk)pk> [qu” (z1) OV (xl)]

[xpk (z4) U] (:z:k)]

0 = KUY @) +p (300)

[qzl (z1) U] (xl)}

pi—1

d:cl...dxk) v (y)

p1

Pk

As in the previous case of simililar structures interaction, one can multiply by \I/l(l)T (z;) and integrate to
find:
k
(o)
0 = (w w| Ko @) + p~=— (301)

M

« <M> @) e[ @, - [V (@),

(V (@), s @)y, ) )

(o0 @)] @), 0 (zk)}pk>

p1

Where we defined

‘ (o0 @)] @],y 0 (xk)]pk> € (H)®P @ .. (H)®P' ™' @ (Hy)®"*

p1

the state corresponding to the product of fields [\Ifgl) (xl)} [y (21)],, - [Pk (2k)],, where the H) are the

p1
state spaces for the structures [ = 1,,, k. Similarly, the individual fields \Ill(l) (y;) are know seen as vector on
a tensor product space:

v () = 0 ) @10 @1 e (H)™ @..0 (Hy)™
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The value of the 7; are found to satisfy:

k
m = —h (H(m)”)

(V (@) (@), ) ‘ [w(? (xl)}pl [T (@), - [V (:ck)]pk>

(o )| K| o () )

< {\Ijgl) (xl)}m @), - [Yr (2E)],,

X

k
for | = 1...k, and (H (m)p’) is computed by the product of the k previous relations:

i=1

k 172;‘”:1 pi
(1)
i=1

<< R (xl)]pl [T @), e [ ()],

H (—ﬁ <‘I’l(1) (yl)‘ K; M” (yz)>)pl

=1

()], - [P (mk)]pk>>zz_1pz

)| [0 @)

p1

where V' stands for V ((arrl)p1 ) eens (ask)pk), so that one finds:

(H <m>“>

<< [\Ifgl) (9c1)]p1 [\I/l(l) (xl)]p, [\1;;1) (xk)]pk v ‘ [\I/(ll) (xl)]pl [‘I’z(l) (xl)]p,, [\I};n (xk)]pk>>2flpl

TL(- (ol |k [ )

=1

1
=T, m

and:
1

oo ], [0 e, [0 ], )

1
172?:1 P

(], o ], ]

m=—-—

’ (I (- o] o )

o (zk) m) preserves the eigenstates of the K; (our results would be

<‘I’l(1) (yl)‘ K "I’l(l) (yz)>

As before we ssume that V' ((wl)pl ,

preserved if they are only preserved in first approximation).
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As in the one field case, replacing the values of the 7, in (300), leads to a fixed point equation:

k
(H (m)’”)
~=L 7 (302)

m
X <{\Il§1) (xl)}pl e (W ()] g [Pk ()],

_ <\P§1>( ’Kl‘q,( ) ( >
<[\p<1>< D] @)y, e [ ),
([0 @] o, 0 )

K; “I’;@ (yz)> =-p

W ()], o [P (xk)]pk> v (y)

v [ e

p1

p1

W @], e <xk>]pk> ¥ (y)

v {[#? )

V][ )]

X

(@), - [P (wk>1pk>

P1
for I = 1...k, where V ((xl)pl ey (xk)pk) is now seen as an operator V on (Hy)*"" @ ... ® (Hy,)®"*. The

partial amplitude:

<[ng1> (xl)] A1) M L ) g (@] o [ (mk)]pk>

V][]

is then an operator on V.
As in the one field case, one can developp the fields \Ill(l) (y1) in a basis of eigenvectors of K;, and since V
preserves the negative eigenstates, we can restrict the sum on these states (this will be implicit in the sequel)

) = Z a,,L7l\IJl(n) (y1) Withz |an|2 —

n=0 n=0

and \Ifl(") (yi) are eigenvectors of K| with negative eigenvalues ordered such that \Ifl(o) (y) is the eigenvector
for the lowest eigenvalue Ao ;.
The equations (302) are not independent for the coefficients a,,; This can be seen by multiplying both

sides of (302) by \I/Zr () and to integrate to obtain a trivial relation. Actually,

0 = (v | |v () (303)
(o)
tp =t
m
x <[qu1> (ml)]m...[q/l @]y, - [k @)y, | (V (@), 50 (@), ) H\I,g) (xl)]pl W (@), - [ (mk)]m>

(H(n >Pt)
is trivial given the definition of i Thus, one can look for a solution of (302) by choosing the

coefficients ag,; with
aal = #0 (304)

, so that the solution we are looking for is a perturbative expansion around the minimum of the K;. Rewrite
first

K |0V () ) (305)
(o )| a5 |wf? yl>>< 0 w<”<>

<[\p§1> (ml)}pl [0 (@) o [T, ()] [ (@), e [T, (mk)]pk>

vl

Pl
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with:

vim ([0 @] e 01 Gl 0 ),

p1
is an operator on V;. It can be written more compactly as:
() (306)
(¥ o \Kl\‘l’ yz> (W(”( )
(00 @0)] @], [ (e [0 @) @), (B )]
v @) @l k (Tr) YTy, o YR (TR)

where (‘\I/l(l) (yl)>) is the vector with [ components ‘\Ill(l) (yl)>, and K, (K)~" V are the diagonal matrices
with components K, (K;)~' V; on the diagonal. The vector (<\Ill(1) (yl)‘ K ‘\Ifgl) (yl)> (K)"'v (\Ill(l) (y)))

has [ components <\I/l(1) (yl)‘ K ‘\Ill(l) (yl)> (K)"'v (\I/l(l) (y))
Then, replacing for ag; in (306) implies that

o (jE @) — ( (o o] a2 w1 ) ) (e )

00 @)] @], [ ()], v“qf ()] ..[\Ill(ml)]pl...[\I/k(mk)]pk>

p1

p1

defines an application from V = V; x ... x Vi, where the V; are the negative eigenstates of the K;. Moreover,
using the condition (304) for the norm implies that solving - is equivalent to find a fixed point for this

application on the ball of radius c in the finite dimensional space Vl(o) X oo X Vk(o) where Vl(o) is the orthogonal
of the lowest eigenstate in V7.
Given the definition of ¢:

((o” ] () [ ) () v [ 9 ()
<[qu1> (“)Ln [ @), e [ (2], | V ‘ [0 )] W @), - (xk)]pk>

M| (97 0] ) |2 )
<[\1,§1> (“)]pl [0 ()], - [k ()], |V ' [0 @) @), [ (xk)}pk>
v ),

/A

p1

.xV,fO)

and that:

(v (w6 )))Higmx‘..xv,sm

S (2 ()| Vit (1) Vi |92 (i) ) = (0 ()| Vi (B~ |2 0)) (2t ()| (2D) ™ Vi [ 42 (0)) )

lm
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then:

(o1 0] 9 ) 1 w ) |
<[\I/§1) (ml)}pl e[ ()], - [Pk ()] V‘ ‘I’(l 961 -~-[‘I’l (@), - [Yk (mk)}pk>
< mégup > (2 ()| Vit (507 Vi | W62 () )

<\I’(1) (ym)

Vout (50~ |9 () (01 ()| (5D Vi [ 92 (1))

where Vj is the minimum of the potential, and Mg ,p the lowest eigenvalue among the Aoy, I = 1..., k.
Then we arrive to similar conclusion as in the one structure case. A fixed point exist, and then a solution
to the saddle point equation (302) if the minimum of the potential is strong enough, and if the potential is
mainly localized oriented in the directions of instabilty to compensate them. Actually, in that case:

D () )| Vit (50 Vi [952) (in) ) = (952 ()| Vit (50 |21 () (21 )| (5D Vim [ 52 (9 ))
= > (Z (0 )| Vint (B0 |9 () ) () )| (K1) ™" Vi [ 92 (310))
Lm \ ¢

— (WS () Vi (B0 |90 () ) (9 ()| ()™ Vi |90 () ))

= 30 (3 () ()| Vi (07 [ 0 (0 ()] (D) Vi [950) ()

I,m \ ¢#0

and given our hypothesis of a potential which is mainly non nul around the ‘\Il,@ (yl)>

S (940 )

l,m ¢q#0

Vit (80) ™ 21 () (0 ()] (507" Vi |92 () <€

for a certain constant depending on V. Then

% > (<‘I’7(ﬁ) (ym)‘ Vit (K1) ™% Vi “I’fﬁ) (ym)> - <\IJ§,{) (ym)‘ Vit (K) 7" )\Ill(o) (yl)> <\IJI(U) (yz)‘ ()" Vim ‘qurll) (ym)>) |

l,m

kAZ
and = —3 < 1 is realized for Vo >> ckA; sup-

Once a saddle point is found, the stability is studied through the second order variation:

0%S
bibr, (P ©1)
2 o S Gy )
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where ), b; |¢;) are considered normalized to 1.

0%8
U () 005 (y)

<ﬁ (m)’”)

= > bl (] K |ipy) + pi—~=—2
. m

o)

bib*
; lm<<ﬂm\8

k
()
S0 = D Re S g ] [0 (o)
l

m

v ' @] e @) e (xk>]pk> o1 ()
fit
+257£",plpm7i:1nznm Re<soz(fc)l<[\1'§”(x1)]pl vV (xl)hl_l [wg? (xk)}pk
V{0 @], e @] [ @] ) len o)
The terms:
(1 (a1 <[w§” @] @] [ @] (v \ ] e @] e <wk>]pk> [0 ()
Refe o] ([0 0] o [0 )] [0 0] (V[0 @] [0 00] [0 @] o )

represent the matrix element between two fields configurations, and this is assumed to be positive since we
look for a binding interaction. This is satisfied for a potentil with separate variable, as the one designed in
the one field case. Then:

biby,
Z lm<<pm‘a

Im

028
U () 00T (ym)

> Z ol (o] K [6py) Siom
1

(i)

m

ler)

(o ()]

+Z|bl|2pz
I

< o @) @] [ ), [0 @),y e [0 (xk>1,,k> 1 (@)

V| )

P1
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using (301), it reduces to:

928
biby, (P lr)
2 ou () 00T (y,)

D lbl* (orl K L)
l

(o1 ()| <[W§” (0] e [0 @)y o (W ()],

p1

ey (1))

v ’ [qu1> (xl)] [V @),y e [V ()],

=
\/\/

<[\1/(11) (1;1)} e [ ()], g [k (20)],,
X <\Ifl(1) (yz)’ K, “I’gl) (yl)>)

[0 @0)] o [ @)y [ 0],

Multiplying equation (302) on the left by (<\Ill(1) (yl)Dallows to write

(o o] &t ) (9 | K7 Vi )

-3

([0 )] e, e, V][00 )] 0 0, )
and:
. %S
lZm:bzbm (Pl 3\111(1) () 0T () lr)
Sl (ll K 1)
l
“Dl(”)'<[¢"1”<w1>]p1-~~[%<xz>1pl_1 o, [V [ o) .[qn<xl>1pl_1...[@k<xk>1pk>mm»
‘ . o o0 ) (8 G )

X <\Ijl(1) (yl)’Kl ‘\Ill( ) yl)>) )‘O,sup
I SR,
T (e o Ko ) (v ) K o))

Assuming as before that if some of the K; have 0 as eigenvalue, this eigenvalue is an isolated point one
obtains:

Uy

929
blb <pm| |(pl>
lz owit (1) 00" (ym)
A2
P /\O,sup_ 0.inf UO

kEon,sup< z() (i ‘Vz)‘l’l(l) (yl)>

where Ag it is the closest to 0 negative eigenvalue of the operators K;. Then the saddle point is a minimum
for a large enough potential, set along the negative eigenvlues.
Note that a larger k£ makes stability more difficult to achieve. At this minimum one has:

k
stwn = 3o (05 o 00) (T )
l -

x <[\11§1> (xl)]pl [‘Ifz(” (xl)}pl [\pgy (mk)}

1% ‘ [\pgn (xl)Ll [\115” (a:l)]pl [q;g) (xk)]pk>

Pk
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and using (301):

k
SWi(w) = —(m—-1) (H(m)’“)

i=1

x <[qf§1> (xl)] - [\115” (xl)]

< 0

. [\p;y (mk)]

v ‘ [ (xl)}p o (xz)}m - ("”’“)}pk>

P Pk 1

Then, for p; = 1, the minimum is S (¥; (y;)) = 0, and we have two states corresponding to this level, the
saddle point solution ¥; (y;) and 0.
For p; > 2, S (¥; (y;)) < 0 and the non trivial saddle point ¥; (y;) is the only minimum.
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Appendix 14

Effective action for the first field:

We start with effective action Ser (U;, (z4,))

. N2
(n+3) 0+ ozl (Vegs),, —210)
U, 1)) = E In|1 :
Sef~( i1 (le)) ’175( (.’II“))"‘ . + (n 5) AZQ +m122

n<N

and study the possibility for a non nul minimum, i.e. a minimum with 7 # 0.

We first consider the case d > 0.

If § > 0 remark that, if S (¥;, (z;,)) > 0, The function Sy (U;, (z;,)) is an increasing function in 7
and the only minimum of Sey. (¥;, (2;,)) is for n = 0. Then if § (A;;) + m2 > 0, the only solution is

The case S (U5, (2;,)) < 0, requires m7 < 0, so that one replaces m?, — —m? with m?, > 0.

Then, S (¥, (;,)) < 0 implies that § (A;,) —m? < 0. The minimum for S (¥;, (z;,)) is obtained if
U, (z4,) is in the fundamental state \IIE?) (x;,) that is the eigenstate of (167) for n = 0.

\/6 % 1 a
W) = (L) o at) e (-4
1
1
T 2
For n = 0 one then has:

The derivative in 7 leads to:

0Sey. (Ui, (7iy))
n

(v 4) 5+ 7225 (7))
(A, m“+z (Asy +5)( 17 )

neN (n+3) (A, +0n) +m?, + o2 ((Yeff)w A(“))

12

l\D\»—~

This is increasing for 7 close to 0 and decreasing for n large.

9Ses. (Viy (231))

Then, one can find the conditions for a minimum with n # 0. Actually, since o —
OSes (Viq (Ti . .
2 (Ai,) —mZ < 0 for large 7, then if W lp=0< 0 and if there exists an n, > 0 such that
88y (Wi,

# ln=n,> 0, then there is an 1, # 0 such that Scy (¥;, (z;,)) is a minimum. In that case we

have a phase transition (U;, (z;,)) # 0.
For 6 > 0, the condltlons for a phase transition are then:

1 2
§ (Aiz) —my, < 0
Y, ~(i1)
05.s. (Wi, (w1,)) ! ) + ((Vegp),, - at3)
— —0=15(Ay)—m? 46 § <0
on T 2( n<N 2)(Ai2)+m§2

(n—i—%)(ﬂ—% ((Yeff) 5;”)

Aiy+0mg

5 —— >0
neN (1) (Aiy +0m0) + 3, + o2 ((Yogy),, - 30)
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The case § < 0 is studied in a similar way.

. OSef (Viq (Ti . . .
If 3 (As,)+m2 < 0 (that is m?, is negative), W < 0, there is no minimum, the action decreases
with n which is the (squared) norm of ¥;, (z;,). That case means that Ser (¥;, (x;,)) is unbounded from
below, which is meaningless. The model breaks out for this values of the parameters and this case has to be
ruled out.

If £ (Ai,) + m? >0, then

(n+1)s+ (A{m (<

) A(H))
iz
+6n (( eff ia Al))Q

aSef‘ (\1111 (mil)) 1
Oer B o) - L n,) 4m2 + Y

on n<N (n+ 3) (A, 4+ 0n) +m?,
is increasing for 7 close to 0 and decreasing for 7 large. Since BSer (¥ (#11)) — 1 (A;,))—=m?2 > 0 for large 1,
g for n g for 1 larg o 7 Ay i gen

then w |n=0> 0 is the condition for a solution n; # 0 to %ﬁ(ml)) = 0. In other words: If

n
(Ai )+m2 > 0

(<Yeff>w #)

)Am—i—m

DN | =

1
5 (i) +m“—|—5z < 0

n<N

then A (377 L(24))

is nul for a value 1 # 0, and this value correspond to the minimum of Sey. (¥4, (z4,))-
In that case, there is a phase transition (¥, (z;,)) # 0.

if, on the contrary

1)+ (), - #0)

>0
n+%)Ai2+mi2

(o)t 253

n<N (

N | =

the minimum is for (¥, (z;,)) = 0.

Effective action for the second field:

As explained in the core of the text, the integration of the action for the first agent yields the effective action
for the second one:

. 2
fdxlé (xi2 - ££;1)> \IJi2 (m’té) \I;;fz (wi2)
+ %) A+ mfl

(307)

Remark first that for § > 0 and (n+ ) A;, +m? <0ord <0and (n+ 3)A;, +m? > 0 one can find n > 0
N
such that, whatever [ du;, (mi2 - ig;”) U, (24,) \I/;rg (2;,) one has

. 2
fd$i2 (331'2 - a}g;l)) \I]i2 (3312) ‘I’j‘z (miz)

+
=0
1

50, +m?1

1416

Thus, being unbouded from below, the model breaks down (S (¥;, (xi,)) being unbouded, one cannot
define a probability exp (—Sey. (¥4, (24,))))-
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In other words, for 0 (3A;, + m%l) < 0, it is not possible to define an effective action for ¥;, (x;,).

For § > 0 and (n+ 3) A;, +m2 > 0, the first order condition for 7 is:

o i, (11, = 8) 0, (@) V1, (22)
S (\I,iz (xm)) + Z

s =0 (308)
n<N (n + %) Ai1 + mfl + ’I](Sfdl‘iz (.131'2 — i‘g;l)) \I/iQ (xh) \IJ;rz (xh)

If %Aiz + mi > 0, then

i 2
§ [ dx, (:% - 55521)) Uy, (21,) UL, (,)

. 2
n<N (n+g) Aiy +mi + 08 [ da, (9% - @(“)) Uy, (23,) U, ()

S (lI[’iQ (xlz)) +

There is no solution to

0
%Sef. (Wi, (zi5))

and this derivative is positive. As a consequence, the minimum for S.¢ (¥;, (x;,)) is reached at n = 0.

If 1A, +m? <0, (308) may have a solution, but in that case, the second derivative B%S‘ff- (U4, (miy))
is negative, the extremum is thus a maximum, and the minimum for Sey. (¥, (z;,)) is reached at n = 0.

The case § < 0 and (n + ) A;, +m? <0 is treated similarly: The first order condition can be written

(=0) [ da, (a: - gzgl))z W, (21,) U1, (3,)
S<\Ili2 (‘riz)) + Z - 5
n<N — ((n + %) A’il + mzzl) - 175fd$i2 ($i2 - j(11)) \Iin (1712) \I]-irz (1772)

iz

=0 (309)

and we come back to the case § > 0 and (n+ 1) A;, + mZ > 0 by the change of variable:

Then, as announced the only vacuum of Sey. (U4, (z,)) is n = 0.
To inspect the possibility of a non trivial vacuum, first remark that for

6>0

and 1
iAiz +m; >0

(??) is increasing with n and then the only minimum for Sey. (¥, (z;,)) is for n = 0, that is, the unnormalized
field satisfies W;, (z;,) = 0. Actually, even if (n+ 3)A;, + m? < 0 for some values of n < ng, one may
assume that the contributions n > ng compensate those for n < ng so that

das, (25 — 2 W, (2) 0 (a;
(3 f x’bz 3?12 x12 12 (xl2) 19 (3322)
o | 2o m |1+ : ;
In (n + §) Aiy + i,

n<N

>0

In fact this result generalizes for all the values of the parameters.
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Actually, write the first order condtion for (??) including a constraint [ dx;, ¥;, (2,) \IIL (25,) =1

. 2
) 277 (xiQ - ‘ig;)) \Ij;’rg (xi2)

0=n—" S (U, (x;,)+ 200! (2,)
6\:[}Z s 2 2 (i 2 19 2
2 (:L‘ 2) n<N (n + %) Ail + mfl + nfd$i2 <$i2 — 935-21)) \I/i2 (:E7;2) \IJL (.1?i2)
(focps)
and multiply by ¥, (z;,):
N2
0 o 1) S (T n (miz - i'g;)) \I/iz (3722) \I/'irQ (xiz)
= 0V, (zi,) 5, (v1) (Wi, (zi,)) +

. 2
n<N (77, + %) A,’1 + mfl + ﬁfdl‘iz (.’Eiz — .72‘5;1)) \Ijig (3312) \I’L (3:12)
FAT, (2,) U, (i)

Integrating over x;, and using both the constraint, as well as that S (U;, (x;,)) is quadratic in ¥;, (x;,), so
that 5

dxiijlé (mlz) 75 (\Ijiz (‘TZ2)) =25 (\1112 (:Ulz))
6Wi, (4,)

leads to:

. 2
nfdxzz (xm - ‘%521)) \IJW (1.12) \I}jz (x”)

A= 08 (U, (21)) - 1 — : (310)
n<N (n + 5) Ai1 + m?l + ?’]fdibiz (.’L‘iz — CI?Z-; ) \Iliz (.’L‘w) \DQ (J,'lz)
On the other side, the first order condition for 7 is:
N2
(5[(11‘12 (xw - jgzl)) \Plz (5012) \I/L (xlz)

N2
n<N (TL + %) Ail + m?l + T](sfdl’m (.’biz — i‘£21)) \I}iz ($Z2) \I/L (xw)
and the comparison of the two last equations yields:

A=0
(i) i
5fdx12 (‘riz - 'fi"igl ) \Di2 (xlz) \Iliz (‘Ti2)

. 2
n<N (n + %) Ai1 + mfl + U(Sfdl‘iz (.131'2 — i‘(“)) \I’iQ (%Zz) \Ifz»rz (.131'2)

12

S(W;, (25,)) +

If £A;, +m? > 0and $A;, +m? >0 for all n, then

S (\Piz (xm)) +

. 2
6 [ doiy (i —307) W (002) W, (@)

. 2
n<N (77, + %) Ail + m?l + 7)§fdx12 (I‘i2 — .’2521)) \Ifi2 (1722) \I’L (51712)
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N2
is unbounded below, one can find values of 7 such that, whatever [ dz;, (a:iz - ig;l)) U, (24,) \IIZ2 (24,),

1 i) 2 _
<7”L + 2> Ai1 + mfl + Ud/dl‘b (ZUIL'Q — i‘l(»zl)) \IfiQ (%2) \If;rz ($i2) — 0

Being unbouded from below, the model breaks down (Sey. (U4, (z,)) being unbouded, one cannot define a
probability exp (—Ses. (¥4, (24,))))-
In other words, for $A;, +m2 <0, it is not possible to define an effective action for W;, (z4,).
For § >0 and (n+ 3) A;, +m2 > 0, the first order condition for 7 is:
NGO f
6fdx’i2 (xiz — T, ) \I/iz (xlz) \Iliz (ng)
=0 (scndedt)

i 2
nN (n+ 5) iy 2, 6 [ da, (s, — 200 ) W, (1) O, (22,)

S (\I/iz (miz)) +

If %Aiz + mi > 0, then
0
L)) 2 t
(5/dl‘12 (miz — L, ) \Ili2 (xiz)\ljiz ('Ti2) =z 0
5 [das, (2, — 35 Wy, (20,) O (a1
f Liy \ Tiy — Ly, ir (Tiy) ia (ziy) 0
>

. 2
nN (nt 3) iy md, 0 [ daiy (@i, — 200) W, (i) O, (22,)

S (\I[iz (xw)) +

There is no solution to 9
8775” (Wi, (2i,))
and this derivative is positive. As a consequence, the minimum for Sey. (¥, (z;,)) is reached at n = 0.

If 1A;, +m? < 0, 308 may have a solution, but in that case, the second derivative C%Sef, (U, (mi,)) is
negative, the extremum is thus a maximum, and the minimum for S.¢ (¥, (z;,)) is reached at n = 0.

The case § < 0 and (n + %) A+ m?l < 0 is treated similarly: The first order condition can be written

(i))?
(_6) fdmiz (xiQ — ;) ) \I’iz (3712) \pT (3712)
= =0  (scndedt)

S (W, (#1,)) + —
nN = (n+ ) iy +m2) =m0 [ dai, (i, =300 ) W, (1) O, (a1,)

and we come back to the case 6 > 0 and (n + %) A+ m?l > 0 by the change of variable: § — —4,

(4 3) A+, = — (0 1) b, )
Then, as announced the only vacuum of Sey. (¥, (z;,)) is 7 =0.
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