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1 Introduction

Matching estimators have been widely used for the estimation of treatment effects under a conditional

independence assumption (CIA).1 In many cases, matching estimators have been applied in settings where

(1) the interest is in the average treatment effect for the treated (ATET), and (2) there is a large reservoir

of potential controls (Imbens and Wooldridge (2009)). Abadie and Imbens (2006) study the theoretical

properties of matching estimators when the number of control observations grows at a higher rate than

the number of treated observations. However, their asymptotic results still depend on both the number of

treated and control observations going to infinity.

In this paper, we analyze the properties of matching estimators when the number of treated observations

is fixed while the number of control observations is large. We show that the nearest neighbor matching

estimator is asymptotically unbiased for the ATET under standard assumptions used in the literature on

estimation of treatment effects under selection on unobservables. This result is consistent with Abadie and

Imbens (2006), who show that the conditional bias of the matching estimator can be ignored, provided that

the number of control observations increases faster enough relative to the number of treated observations.

In their setting, the matching estimator would be consistent and asymptotically normal. Differently from

Abadie and Imbens (2006), since we consider the case in which the number of treated observations is fixed,

the variance of the matching estimator does not converge to zero and the estimator will not generally be

asymptotically normal in our setting. Our theoretical results should provide a better approximation to the

behavior of the matching estimator relative to Abadie and Imbens (2006) in settings where not only there

is a larger number of control observations relative to treated observations, but also the number of treated

observations are not large enough, so that we cannot rely on asymptotic results.2 When the dimensionality

of the covariates is low and we consider matching estimators with few nearest neighbors, our Monte Carlo

(MC) simulation results suggest that the bias of the matching estimator is close to zero even when the

number of control observations is not particularly large, regardless of the number of treated observations.

Increasing the dimensionality of the covariates and/or increasing the number of nearest neighbors implies

that we need an increasing number of controls so that our approximation remains reliable.

The fact that the matching estimator is not asymptotically normal in our setting poses important chal-

lenges when it comes to inference. Inference based on the asymptotic distribution of the matching estimator

1See Imbens (2004), Imbens and Wooldridge (2009), and Imbens (2014) for reviews.
2The finite sample properties of matching estimators have been evaluated in detail in simulations in Frolich (2004) and Busso

et al. (2014). Differently, we provide theoretical and simulation results holding the number of treated observations fixed, but
relying on the number of control observations going to infinity.
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derived in Abadie and Imbens (2006) would not be valid if the number of treated observations is small, even

if there are many control observations. In finite samples, Rosenbaum (1984) and Rosenbaum (2002) consider

permutation tests for observational studies under strong ignorability. However, these tests rely on strong

assumptions.3 We consider alternative inference methods in our setting. We first provide two inference pro-

cedures based on the theory of randomization tests under an approximate symmetry assumption developed

in Canay et al. (2017). One test relies on permutations while the other one relies on group transformations

given by sign changes. We show that these tests provide asymptotically valid hypothesis testing when the

number of control observations goes to infinity, even when the number of treated observations is fixed. We

also consider the approach suggested in Rothe (2017), which provides valid inference in finite samples when

the outcome is normally distributed, and a wild bootstrap procedure proposed in Otsu and Rai (2015).4,5

Our simulation results show that, with few treated observations, the test based on the asymptotic distri-

bution derived in Abadie and Imbens (2006) and the test based on wild bootstrap over-reject under the null.

We find over-rejection even when the number of treated observations is not particularly small, for example,

with 50 treated observations. In the absence of finite-sample bias, the two randomization inference methods

we propose and the method suggested in Rothe (2017) control well for size with few treated observations in

all scenarios, even when the number of control observations is not large. The randomization inference test

based on permutations is the most powerful among these three tests in most scenarios. However, it relies

on a sharper null hypothesis that, conditional on observables, the distribution of potential outcomes when

treated and untreated is the same. The randomization inference test based on sign changes and the test

based on Rothe (2017) rely on less stringent null hypotheses, but they have poor power in some scenarios.6

These tests remain with correct size even when we consider the bias of the matching estimator, as long as

the number of nearest neighbors used in the estimation and the dimension of the matching covariates are

relatively low. With matching estimators using many nearest neighbors and/or multidimensional covariates

we may need a large number of control observations so that we do not have over-rejection under the null.

Taken together, our MC results suggest that the alternatives we propose may be more reliable than tests

3Rosenbaum (1984) assumes that the propensity score follows a logit model, while Rosenbaum (2002) assumes that obser-
vations are matched in pairs such that the probability of treatment assignment is the same conditional on the pair.

4The approach suggested in Rothe (2017) is valid in finite samples if the bias of the matching estimator is negligible. If the
number of treated observations is small but the number of control observations is large, then we show that this will be the case.

5Otsu and Rai (2015) suggest a weighted bootstrap procedure in which the wild bootstrap is a particular case. We focus
on the wild bootstrap because, with few treated and many control observations, the non-parametric version of their weighted
bootstrap would have a potential problem that some bootstrap samples would not have any treated observation.

6The test based on sign changes has poor power when the number of nearest neighbors used for estimation is large relative
to the number of control observations, while the test based on Rothe (2017) has poor power when we use few nearest neighbors
in the estimation. Also, note that while these tests rely on less stringent null hypotheses, the test based on sign changes require
that errors are symmetric around zero and the test based on Rothe (2017) rely on normality (although, as explained in Rothe
(2017), this assumption is an “asymptotically irrelevant”).

3



that rely on large number of treated and control observations even when the number of treated observations

is not particularly small and when the number of control observations is not particularly large. For example,

our permutation test provided more reliable hypothesis testing relative to existing alternatives even when

we have 100 observations equally divided in two groups.

The remainder of this paper proceeds as follows. We present our theoretical setup in Section 2. The

intuition behind our main assumptions are exactly the same as in standard models under CIA, although they

are stated differently in order to consider our setting with fixed number of treated observations and many

control observations. In Section 3, we derive the asymptotic distribution of the matching estimator and

derive conditions under which it is asymptotically unbiased. In Section 4, we consider alternative inference

methods for our setting. In Section 5, we evaluate in MC simulations the properties of the matching estimator

and we contrast alternative inferential methods. Concluding remarks, including a discussion on potential

implications of our results for Synthetic Control applications, are presented in Section 6.

2 Setting and Notation

We observe a sample {Yi, Xi}N1
i=1 that receives treatment (Wi = 1) and a sample {Yi, Xi}Ni=N1+1 that does not

receive treatment (Wi = 0), where Yi is the observed outcome of observation i, and Xi is a set of covariates.

We assume that Xi is a continuous random vector of dimension k in R
k.7 Following Rubin (1973), let Yi(1)

denote the potential outcome if observation i received treatment and Yi(0) denote the potential outcome

if observation i did not receive treatment. Therefore, Yi = WiYi(1) + (1 − Wi)Yi(0). We consider the

case in which the number of treated observations, N1, is finite, while the number of control observations,

N0 = N −N1, is large. Let Iw denote the set of indexes for observations with Wi = w. We aim to estimate

the treatment effect on the treated, which we denote by:

τ =
1

N1

∑

i∈I1

E [Yi(1)− Yi(0)|Xi,Wi = 1] (1)

Note that we focus on the estimation of the treatment effect on the treated because, given our setting

with N1 finite and N0 large, there is no hope in constructing a counterfactual for the control observations

using only a finite set of treated observations. Also, for most of our results we will consider the properties

7We abstract from the case in which components of Xi is discrete because, as argued in Abadie and Imbens (2006), discrete
covariates with a finite number of support points can be easily dealt with by analyzing estimation of average treatment effects
within subsamples defined by their values.
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of the matching estimator conditional on the realization of {Xi}i∈I1
.8 We consider the unconditional case

in remark 2.

We present our main assumptions in a slightly different way relative to Abadie and Imbens (2006) in

order to consider the case in which the number of control observations goes to infinity while the number of

treated observations is fixed. The main intuition behind our assumptions, however, remain the same.

We assume that the sample we observe for the treated (control) observations consists of i.i.d. observations

of individuals with Wi = 1 (Wi = 0), and that treated and control observations are independent.

Assumption 1 (Sample) {Yi(0), Yi(1), Xi}i∈Iw
consists of Nw i.i.d. observations with Wi = w. Further-

more, we assume that individuals in the treated and control samples are independent.

The following assumption restricts the way in which the distributions of the treatment and control

observations may differ.

Assumption 2 (Conditional Independence Assumption) Conditional on Xi, the distribution of Yi(0)

is the same for i in the treated and in the control groups.

Assumption 2 is equivalent to the conditional independence assumption (CIA). While in assumption 1

we allow for different distributions of (Yi(0), Yi(1), Xi) whether i is treated or control, assumption 2 restricts

that the conditional distribution of Yi(0) given Xi is the same for both treatment and control observations.

However, the density f1(Xi) for i ∈ I1 can potentially be different from the density f0(Xi) for i ∈ I0. This is

what generates potential bias in a simple comparison of means between treated and control groups, without

taking into account that these groups might have different distributions of covariates Xi.

The next assumption states that possible values of Xi for the treated observations are in the support of

Xi for the control observations.

Assumption 3 (Overlap) X1 ⊂ X0, where Xw is the support of fw(Xi), for w ∈ {0, 1}

Assumption 3 replaces the standard assumption that Pr(W = 1|X = x) < 1 − η for some η > 0. This

assumption will guarantee that, for each i in the treated group, we will be able to find an observation j in

the control group with covariates Xj arbitrarily close to Xi when N0 → ∞.

The main identification problem arises from the fact that we observe either Yi(1) or Yi(0) for each

observation i. Note that, if we had two observations, i ∈ I1 and j ∈ I0, with Xi = Xj = x, then, under

8Note that our analysis is a mixture of finite sample (N1 is finite) and large sample (N0 → ∞), which is similar to the setting
considered in Ferman and Pinto (2015) for the differences-in-differences estimator. We consider our results conditional on the
realization of the treated covariates in an analogy to what is usually done in the study of finite sample properties of estimators.
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assumption 2, E[Yi|Wi = 1, Xi = x] − E[Yj |Wj = 0, Xj = x] = E[Yi(1) − Yi(0)|Xi = x,Wi = 1]. That is,

we would be able estimate the average treatment effect conditional on each value of the covariates Xi = x.

Then we would be able to aggregate these effects to construct the ATET. The main challenge is that, with

a continuous random variable Xi, the probability of finding observations with exactly the same Xi is zero.

The idea of the nearest neighbor matching estimator is to input the missing potential outcomes of a treated

observation i ∈ I1 with observations in the control group j ∈ I0 that are as close as possible in terms of

covariates Xi. More specifically, for a given metric d(a, b) in R
k, let JM (i) be the set of M nearest neighbors

in the control group of observation i ∈ I1. Then the matching estimator is given by:

τ̂ =
1

N1

∑

i∈I1


Yi −

1

M

∑

j∈JM (i)

Yj


 (2)

3 Asymptotic Unbiasedness

For w ∈ {0, 1}, we define µ(x,w) = E[Y |X = x,W = w] and ǫi = Yi−µ(Xi,Wi). Since we are focusing on the

ATET, we also define µw(x) = E[Y (w)|X = x,Wi = 1].9 Under assumption 2, we have that µ(x, 0) = µ0(x).

Using this notation, note that the parameter of interest (ATET) is given by:

τ =
1

N1

∑

i∈I1

[µ1(Xi)− µ0(Xi)] (3)

and:

τ̂ =
1

N1

∑

i∈I1




µ1(Xi)−

1

M

∑

j∈JM (i)

µ0(Xj)


+


ǫi −

1

M

∑

j∈JM (i)

ǫj




 (4)

We show that τ̂ is an asymptotically unbiased estimator for the ATET when the number of treated

observations is fixed and the number of control observations grows, and we derive its asymptotic distribution

in this setting.

Proposition 1 Under assumptions 1, 2, and 3:

1. If µ0(x) is continuous and bounded, then E[τ̂ |{Xi}i∈I1
] → 1

N1

∑
i∈I1

[µ1(Xi)− µ0(Xi)]

2. If f̃(x) = E[f(Y (0))|X = x] is continuous and bounded for any f(y) continuous and bounded, then,

9Note that Abadie and Imbens (2006) define µw(x) = E[Y (w)|X = x]. We use a slightly different definition because we are
focusing on the ATET.
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conditional on {Xi}i∈I1
:

τ̂
d→ 1

N1

∑

i∈I1

(µ1(Xi)− µ0(Xi)) +
1

N1

∑

i∈I1

(
ǫi −

1

M

M∑

m=1

ǫm(Xi)

)
(5)

where ǫm(Xi)
d
= Yi(0)|Xi − µ0(Xi) for i ∈ I1, and ǫm(Xi) is independent across m and i.

Proof. Let Xi
(m) be the covariate value of the m-closest match to observation i. The main intuition for the

results in Proposition 1 is that, for a fixed Xi = x̄, Xi
(m)

p→ x̄ when N0 → ∞, because we will always be able

to find M observations in the control group that are arbitrarily close to x̄. Independence of ǫm(Xi) across m

and i follows from the fact that the probability of two treated observations sharing the same nearest neighbor

converges to zero. See details in Appendix A.1.

Proposition 1 shows that, conditional on the realization of {Xi}i∈I1
, the expected value of the matching

estimator converges to τ = 1
N1

∑
i∈I1

(µ1(Xi)− µ0(Xi)), which is the ATET. We also derive the asymptotic

distribution of the matching estimator, which is centered on τ . This result is important for the construction

of the inference methods we propose in Section 4.

Remark 1 The condition that µ0(x) is continuous and bounded would be satisfied if we assume that µ0(x)

is continuous and X0 is compact, as is assumed in Abadie and Imbens (2006). The assumption used in part

2 of Proposition 1 implies that the conditional distribution of Y (0) given X = x changes smoothly with

x. This guarantees that the outcome of the m-closest match to treated observation i, Y i
(m), converges in

distribution to Yi(0)|Xi = x̄ when Xi
(m)

p→ x̄.

Remark 2 We focus on the properties of the matching estimator conditional on {Xi}i∈I1
. We might be

interested, however, on the unconditional properties of the matching estimator. For example, we may think

that {Yi, Xi}i∈I1
is a finite sample from a super population.10 Under the assumptions from part 1 of

Proposition 1, we also have that E[τ̂ ] = E {E[τ̂ |{Xi}i∈I1 ]} converges to E[µ1(Xi)− µ0(Xi)|i ∈ I1], which is

the average treatment effect on the treated population. Alternatively, we may think that there is indeed a

finite N1 population of treated individuals, but these individuals were selected to receive treatment from a

larger population. See details in Appendix A.1.

Remark 3 With N1 fixed, the estimator is not consistent. This happens because, with a fixed number

of treated observations, we cannot apply a law of large numbers to the average of the error of the treated

10See Imbens and Wooldridge (2009) and Abadie et al. (2014) for a discussion on defining the estimand of interest as the
treatment effect on the finite population at hand versus on a super population.
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observations. Also, the matching estimator will not be asymptotically normal, unless we assume that the

error ǫi is normal.

Remark 4 The nearest-neighbor matching estimator is not, in general, unbiased for a fixed N0. This

happens because, for a fixed N0, it is not possible to guarantee a perfect match in terms of covariates. As

shown in Abadie and Imbens (2006) and Abadie and Imbens (2011), in a setting in which the number of

treated and control observations grow (even if the number of control observations grows at a faster rate),

nearest-neighbor matching estimators include a conditional bias term that converges to zero at a rate that

may be slower than N1/2. In our setting, however, since the variance of the estimator does not go to zero

when N0 → ∞, this bias will always be of a lower order relative to the variance of the estimator. For

this reason, we are also able to consider slightly less restrictive assumptions when we derive the asymptotic

properties of the estimator in our setting.

Remark 5 With additional assumptions, we can also guarantee that the bias-corrected matching estimator

has the same asymptotic distribution as the matching estimator without bias correction. The intuition again

is that µ̂0(Xi)− µ̂0(X
i
(m)) converge to zero when N0 → ∞ because Xi

(m)

p→ Xi. See details in Appendix A.1.

4 Inference

The fact that the matching estimator is not asymptotically normal in our setting poses an important chal-

lenge when it comes to inference. In particular, the analytic asymptotic variance estimator derived in Abadie

and Imbens (2006) should not provide a good approximation in our setting. We therefore consider alternative

inference methods in this setting. We propose two tests based on the theory of randomization tests under

an approximate symmetry assumption developed in Canay et al. (2017), and we show that they are asymp-

totically valid when N0 → ∞, even with fixed N1. The first test is based on group transformations given

by permutations, while the second test is based on group transformations given by sign changes.11 Then

we consider a test based on Rothe (2017) confidence intervals for treatment effects under limited overlap

and a test based on wild bootstrap derived in Otsu and Rai (2015). These tests differ in their underlying

assumptions and null hypotheses. Moreover, the size and power of these tests depends crucially on the

number of observations in the treatment and control groups, and also on the number of nearest neighbors

11A test based on permutations has been studied in the context of an approximate symmetry assumption in Canay and
Kamat (2016) for regression discontinuity designs, while a test based on sign changes has been studied in the context of an
approximate symmetry assumption in Canay et al. (2017) for a series of applications.
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used in the estimation. In Section 5 we consider the finite sample properties of these tests, and we analyze

in detail the conditions under which these tests provide valid size and non-trivial power.

4.1 Randomization Inference Test Based on Permutations

Consider a function of the data given by:

S̃N0
=
(
S̃0
N0,1, S̃

1
N0,1, ..., S̃

M
N0,1, ..., S̃

0
N0,N1

, S̃1
N0,N1

, ..., S̃M
N0,N1

)′
(6)

where S̃0
N0,i

= Yi and S̃m
N0,i

= Y i
(m) for m = 1, ...,M . That is, S̃N0

is a vector containing the outcomes of

the treated observations and of their M -nearest neighbors. Note that the distribution of S̃N0 depends on

N0 because the quality of the matches will depend on the number of control observations. Note that the

matching estimator is given by:

τ̂ =
1

N1

N1∑

i=1


S̃0

N0,i −
1

M

M∑

j=1

S̃
j
N0,i


 (7)

Let G̃i be the set of all permutations πi = (πi(0), ..., πi(M)) of {0, 1, ...,M} and let π = ⊗N1
i=1πi and

G̃ = ⊗N1
i=1G̃i. Therefore, S̃π

N0
=
(
S̃
π1(0)
N0,1

, S̃
π1(1)
N0,1

, ..., S̃
π1(M)
N0,1

, ..., S̃
πN1

(0)

N0,N1
, S̃

πN1
(1)

N0,N1
, ..., S̃

πN1
(M)

N0,N1

)′
. Note that G̃

is the set of all permutations that reassign the treatment status conditional on having exactly one treated

observation for each group of treated observation i and its M nearest neighbors.

Let K̃ = |G̃| and denote by:

T̃ (1)(S̃N0
) ≤ T̃ (2)(S̃N0

) ≤ ... ≤ T̃ (K̃)(S̃N0
) (8)

the ordered values of {T̃ (S̃π
N0

) : π ∈ G̃}, where:

T̃ (S̃π
N0

) =


 1

N1

N1∑

i=1


S̃

πi(0)
N0,i

− 1

M

M∑

j=1

S̃
πi(j)
N0,i





2

(9)

We set k̃ = ⌈K̃(1− α)⌉, where α is the significance level of the test, and define:

K̃+(S̃N0
) = |{1 ≤ j ≤ K̃ : T̃ (j)(S̃N0

) > T̃ (k)(S̃N0
)}|

K̃0(S̃N0
) = |{1 ≤ j ≤ K̃ : T̃ (j)(S̃N0

) = T̃ (k)(S̃N0
)}| (10)
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The randomization test is given by:

φ̃(SN0
) =





1 if T̃ (S̃N1
) > T̃ (k)(S̃N1

)

a(S̃N0
) if T̃ (S̃N1

) = T̃ (k)(S̃N1
)

0 if T̃ (S̃N1
) < T̃ (k)(S̃N1

)

(11)

where:

ã(S̃N0
) =

K̃α− K̃+(S̃N1
)

K̃0(S̃N1
)

Proposition 2 Under the same assumptions used in part 2 of Proposition 1, testing a null hypothesis that

Yi(0)|Xi
d
= Yi(1)|Xi for all i ∈ I1 using the decision rule defined in 11 satisfies, under the null, E[φ̃(S̃N1

)] → α

for any α ∈ (0, 1).

Proof.

We apply Theorem 3.1 from Canay et al. (2017). We only need to show that, when N0 → ∞, the

limiting distribution of S̃N0
under the null is invariant to the transformations in G̃. From the proof of

Proposition 1, note that Y i
(m)

d→ Yi(0)|Xi. Therefore, under the null that Yi(0)|Xi
d
= Yi(1)|Xi, we have

that S̃
j
N0,i

d→ Yi(0)|Xi for all j = 0, ...,M . Moreover, asymptotically, S̃j
N0,i

is independent across i and j.

Therefore, the asymptotic distribution of S̃N0
is invariant to the transformations in G̃.

Remark 6 Rosenbaum (2002) considers Fisher exact tests in observational studies with matched pairs.

They show that, if the probability of treatment assignment is the same for both observations in each pair,

then a permutation test conditional on the pair is valid even in finite samples. With a finiteN0 and continuous

X, however, it is not possible to guarantee this condition even under assumption 2, since we will not have, in

general, a perfect match in terms of covariates. We show that this condition can be approximately satisfied

when N0 → ∞ using the theory of randomization inference under approximate symmetry developed in Canay

et al. (2017).

Remark 7 The randomization induced by ã(S̃N0
) when T̃ (S̃N1

) = T (k)(S̃N1
) guarantees an asymptotic

rejection rate of α despite the discreteness of the randomization distribution. As stated in Canay et al.

(2017), a non-randomized test that rejects if T̃ (S̃N1) > T̃ (k)(S̃N1) is level α and, unless N1 is very small, this

should not lead to severe under-rejection.

Remark 8 This test is also asymptotically valid for biased-corrected matching estimators. In this case, we
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define S̃0
N0,i

= Yi − µ̂0(Xi) and S̃m
N0,i

= Y i
(m) − µ̂0(X

i
(m)).

4.2 Randomization Inference Test Based on Sign Changes

We consider now an alternative function of the data given by:

SN0 = (τ̂1, ..., τ̂N1)
′

(12)

where τ̂i = Yi − 1
M

∑
j∈JM (i) Yj . Note that each τ̂i depends on the M nearest neighbors of observation i, so

it implicitly depends on N0.

Following Canay et al. (2017), we consider a test statistic given by:

T (SN0) =
|τ̂ |√

1
N1−1

∑N1

i=1(τ̂i − τ̂)2
(13)

where τ̂ = 1
N1

∑
i∈I1

τ̂i is the matching estimator for the treatment effects on the treated.

We consider group of transformations given by G = {−1, 1}N1 , where gSN0 = (g1τ̂1, ..., gN1 τ̂N1)
′
. Let

K = |G| and denote by:

T (1)(SN0
) ≤ T (2)(SN0

) ≤ ... ≤ T (K)(SN0
) (14)

the ordered values of {T (gSN0
) : g ∈ G}. Let k = ⌈K(1 − α)⌉, where α is the significance level of the test,

and define:

K+(SN0) = |{1 ≤ j ≤ K : T (j)(SN0) > T (k)(SN0)}|

K0(SN0) = |{1 ≤ j ≤ K : T (j)(SN0) = T (k)(SN0)}| (15)

The test is given by:

φ(SN0) =





1 if T (SN1) > T (k)(SN1)

a(SN0
) if T (SN1

) = T (k)(SN1
)

0 if T (SN1
) < T (k)(SN1

)

(16)
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where:

a(SN0) =
Kα−K+(SN1

)

K0(SN1)

In words, we calculate the test statistic T (gSN0) for all possible gSN0 = (g1τ̂1, ..., gN1 τ̂N1)
′
, and then we

compare the actual test statistic T (SN0
) with the distribution {T (gSN0

) : g ∈ G}.

Proposition 3 Under the same assumptions used in part 2 of Proposition 1, if we further assume that ǫi

is symmetric around zero for all i = 1, ..., N1, then testing a null hypothesis that µ1(Xi) = µ0(Xi) for all

i ∈ I1 using the decision rule defined in 16 satisfies, under the null, E[φ(SN1
)] → α for any α ∈ (0, 1).

Proof.

Again, we apply Theorem 3.1 from Canay et al. (2017). We only need to show that, when N0 → ∞, the

limiting distribution of SN0 under the null is invariant to sign changes. This will be true if, asymptotically,

τ̂i and τ̂j are independent for i 6= j, and the distribution of τ̂i is symmetric around zero. Note that it is not

required that τ̂i has the same distribution across i.

From the results in Proposition 1, we know that, under the null, the asymptotic distribution of τ̂i condi-

tional on {X}i∈I1
is given by ǫi − 1

M

∑M
m=1 ǫm(Xi), which is symmetric around zero given the assumption

that ǫi is symmetric around zero for all i = 1, ..., N1. Moreover, we also know from Proposition 1 that τ̂i are

independent across i. Therefore, the assumptions for Theorem 3.1 from Canay et al. (2017) are satisfied.

Remark 9 In the case M = 1 the randomization test based on permutation tests are equivalent to the test

based on sign changes. In this case, τ̂i = Yi − Y i
(1) so a sign transformation −τ̂i = Y i

(1) − Yi is equivalent to

permute the treatment assignment within each pair.

Remark 10 Note that we can test the null hypothesis that the average treatment effect is equal to zero

conditional on each covariate value in {Xi}i∈I1 . This null hypothesis is implied by more narrowly defined

null hypotheses that are usually considered in Fisher-type tests, such as Yi(0)|Xi
d
= Yi(1)|Xi or Yi(0) = Yi(1)

with probability one.

Remark 11 Remark 7 also applies to this test.

4.3 Test based on Rothe (2017)

Rothe (2017) constructs robust confidence intervals for treatment effects estimators under limited overlap.

The main idea of his approach is that, under limited overlap, “local sample sizes” can be effectively very

12



small in applications, so that approximations based on asymptotic theory would not be reliable. Instead,

he constructs confidence intervals based on classical approaches to small sample inference. He shows that

inference for the matching estimator can be considered as a generalized version of the Behrens-Fisher problem,

where the test statistic is a studentized version of a linear combination of independent means. In the case in

which X is discrete and can take J different values, the matching estimator for the ATET would be a linear

combination of J + 1 sample means.12 Under the assumption that outcomes are normally distributed, he

constructs a confidence interval that guarantees coverage greater or equal than 1−α (Proposition 2 in Rothe

(2017)). With continuous covariates, Rothe (2017) considers a partition of the data based on an estimated

propensity score. He shows that, if the bias is negligible, then the conclusion based on discrete covariates is

still valid.

We consider a slightly different way to partition the data, based on the nearest neighbors of the treated

observations. More specifically, we consider a partition in which a treated observation i is joint with its M

nearest neighbors. Therefore, if treated observations i and i′ share at least one nearest neighbor, then they

belong to the same partition. Suppose we end up with J partitions, and let Sj(i) = 1 if observation i belongs

to partition j. Then the estimator for the ATET would be given by:

τ̂ ′ = µ̂1 −
J∑

j=1

µ̂0(j)f̂1(j) (17)

where µ̂1 = 1
N1

∑
i∈I1

Yi is the average of the treated observations, µ̂0(j) =
1

∑

i∈I0
Sj(i)

∑
i∈I0

Sj(i)Yi is the

average of the control observations in partition j, and f̂1(j) =
∑

i∈I1
Sj(i)

N1
is the proportion of the treated

observations that belong to partition j. Since the probability that two treated observations share the same

nearest neighbor goes to zero when N1 is fixed and N0 → ∞, note that, for a fixed M , the estimators τ̂ and

τ̂ ′ are asymptotically equivalent. Importantly, this estimator is a linear combination of independent sample

means, so the results from Rothe (2017) apply to this case, and, if we assume that the finite sample bias

of the matching estimator is negligible, then we can construct a test statistic and calculate a critical value

that guarantees a rejection rate of at most α for an α-level test if Yi|X is normally distributed, even in finite

samples.

Remark 12 The calculation of the critical values requires at lest two control observations for each partition

of the data.

12 One for the treated observations, and J for the control observations with each X = x.
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Remark 13 Differently from the tests presented in Sections 4.2 and 4.1, the null hypothesis in this case is

that the average treated effect on the treated is equal to zero.

4.4 Test based on wild bootstrap

We also consider a bootstrap procedure based on Otsu and Rai (2015). As explained in Abadie and Imbens

(2008), naive bootstrap procedures are not valid for matching estimators because they fail to reproduce the

distribution of the number of times each observation is used as a match. Otsu and Rai (2015) overcome this

problem by considering bootstrap procedures that treat the number of times an observation is used for a

match as one of the characteristics of the sample. More specifically, let τ̃ be a bias corrected estimator for

the ATET using µ̂0(x) as an estimator for µ0(x). Otsu and Rai (2015) note that:13

τ̃ =
1

N1

N∑

i=1

[
Wi(Yi − µ̂0(Xi))− (1−Wi)

KM (i)

M
(Yi − µ̂0(Xi))

]

=
1

N1

N∑

i=1

τ̃i (18)

where KM (i) is the number of times a control observation i is used as a match and τ̃i = Wi(Yi − µ̂0(Xi))−

(1−Wi)
KM (i)

M (Yi − µ̂0(Xi)). The weighted bootstrap counterpart for
√
N1(τ̃ − τ) is obtained as:

√
N1T

∗ =

N∑

i=1

e∗i (τ̃i −Wiτ̃) (19)

where e∗i are random variables satisfying specific conditions explained in Otsu and Rai (2015). Two particular

cases that are encompassed in this model are nonparametric bootstrap (Efron (1979)) and wild bootstrap

(Mammen (1993)). Since we are focusing on the case with few treated observations, a nonparametric

bootstrap would likely generate bootstrap samples with no treated observations. Therefore, we focus on

the wild bootstrap case.

An important disadvantage of this method relative to the randomization inference methods we propose

is that this weighted bootstrap relies on the estimation of a conditional expectation function. Since, µ̂0(.)

is chosen to fit Yi for the treated observations, we expect that the observed (Yi − µ̂0(Xi)) should have a

lower variance when compared to (Yi − µ0(Xi)). Therefore, we expect that the bootstrap distribution will

underestimate the variance of the estimator, leading to over-rejection in finite samples. Note that this is less

13We use a different notation compared to Otsu and Rai (2015).
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of a problem in our inference method based on sign changes, even if we consider a bias-corrected estimator,

because we would apply the sign change transformation on τ̂i = (Yi − µ̂0(Xi))− 1
M

∑
j∈JM (i)(Yj − µ̂0(Xj)).

5 Monte Carlo Simulations

We use a data generating process (DGP) similar to the one used in Frolich (2004) and Busso et al. (2014)

in our Monte Carlo (MC) simulations. Following Busso et al. (2014), these DGPs can be expressed as:

Yi(0) = m(Zi) + σǫi

W ∗
i = α+ βZi − Ui (20)

where Zi = Λ(
√
2Xi), and Xi is a normal covariate; the error term Ui is i.i.d. standard uniform and is

independent of ǫi and Xi; W
∗
i is the latent variable corresponding to treatment (Wi = 1 if W ∗

i > 0). Since

we want to consider the case in which N1 is finite while N0 is large, we generate a large population based on

this DGP, and then we sampled a small number N1 of treated observations and a large number N0 of control

observations.14 Frolich (2004) considers five combinations of (α, β). For ease of exposition, we focus on the

combination of (α, β) used in design 1 of Frolich (2004), which sets α = 0 and β = 1. This is the design that

induces the highest correlation between treatment assignment and covariate X among the parameters they

consider.

We start presenting in Section 5.1 a simpler case in which m(.) = 0 and ǫi is normally distributed and

independent of X, so that there is no selection on observables. This way we are able to focus on the size and

power performance of the different inferential procedures in the absence of the finite sample bias of matching

estimators. Note that, in this case, all assumptions in Rothe (2017) are satisfied. In Section 5.2, we consider

a functional form m(.) from Frolich (2004), so that the matching estimator is biased in finite samples.15 This

way, we can analyze how different specifications affect the finite sample bias of the matching estimator and

the rejection rates for the different test procedures. For each scenario, we drew 10,000 samples for our MC

simulations.

14We use the program avaliable at the supplemental appendix of Busso et al. (2014).
15For ease of exposition, we focus on specification 1 from 5.2. Results using alternative specifications are qualitatively the

same. Results available upon request.
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5.1 Simulations with no selection on observables

Test size

We start presenting results in a simpler case in which Yi(0)|Xi ∼ N(0, 1) and Yi(0) = Yi(1). Note that, in

this case, the matching estimator is unbiased even in finite samples. We present in Table 1 rejection rates

for 5% tests using different inference methods for combinations of (N1, N0) where N1 ∈ {5, 10, 25, 50} and

N0 ∈ {20, 50, 500}. For ease of exposition, we include a superscript “+” when rejection rate is greater than

6% and a superscript “−” when rejection rate is lower than 4%.

We present in Panel A of Table 1 rejection rates using the test based on Abadie and Imbens (2006)

for different matching estimators, varying the number of nearest neighbors, M ∈ {1, 2, 4, 10}. Note that

rejection rates for a 5% test are higher than 12.4% when N1 = 5 for all values of N0 and M . This happens

because the asymptotic distribution derived in Abadie and Imbens (2006) relies on N1 → ∞, even though

they allow that N0 grows at a faster rate than N1. When N1 increases, rejection rates go down. However,

except for the case in which N1 = 500, rejection rates do not become close to 5% when we increase N1. For

example, even with N0 = N1 = 50 we still find a rejection rate of greater than 7.3% for most specifications.

The results above suggest that rejection rates computed using the asymptotic variance derived in Abadie

and Imbens (2006) may not be reliable when the number of treated observations is not large. We consider

instead in Panel B of Table 1 rejection rates using the randomization inference test based on permutations.

From Section 4.1, we know that this test is asymptotically valid whenN0 → ∞ in part because the probability

that different treated observations share the same nearest neighbor goes to zero. In finite samples, however,

this may not be the case. In order to take that into account, we consider permutations of treatment status

in partitions of the sample as discussed in Section 4.3.16 Note that the probability that this finite sample

adjustment is relevant goes to zero when N0 → ∞.17 Rejection rates are remarkably close to 5% in all

cases. The only exception is when N1 = 5 and M = 1, because in this case there are relatively few possible

permutations.18

In Panel C of Table 1 we present rejection rates using the randomization inference test based on sign

changes, presented in Section 4.2. A key feature of the test based on sign changes is that τ̂i become

16We also consider the estimator τ̂ ′ described in 4.3. Note that τ̂ and τ̂ ′ are asymptotically equivalent. In our simulations,
the correlation between these two estimators is around 0.95.

17Another alternative would be to consider a matching estimator without replacement. However, this would generate lower
quality matches, which implies in more bias (Abadie and Imbens (2006)). Moreover, matching without replacement has the
disadvantage that the estimator is not invariant to different sorting of the data.

18We use the non-randomized version of the test in which we do not reject in case of equality. Note that we could guarantee
the correct size if we used a randomized version of the test. See details in Canay et al. (2017).
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asymptotically independent, because the probability that two treated observations share the same nearest

neighbor converges to zero. Note, however, that for finiteN0 there is a positive probability that τ̂i is correlated

across i, as different treated observations may share the same nearest neighbor. For this reasons, we consider

a slight modification on our test where we restrict to sign changes such that gi = gj if i and j share the

same nearest neighbor. Similar to the finite sample adjustment used in the test based on permutations,

note that the probability that this modification is relevant converges to zero when N0 → ∞. When we

consider the nearest-neighbor matching estimator with M = 1, rejection rates using this test are close to 5%,

except when N1 = 5. In this case, there are not many different group transformations, which explains why

the test is conservative.19 When we consider matching estimators with M > 1, then the test under-rejects

even for larger N1. This happens because increasing M increases the probability that different treated

observations share the same nearest neighbors, which in turn reduces the number of group transformations.

When N0 = 500, this problem becomes less relevant, and rejection rates become close to 5%.20

We present in Panel D of Table 1 rejection rates for the test based on Rothe (2017), described in in

Section 4.3. As explained in remark 12, this test is not well defined for the case with M = 1. While the test

is well defined for M = 2, note that rejection rates are virtually equal to zero in this case. Therefore, while

it is possible to guarantee that this test is level α even in finite samples, it is over-conservative for the case in

which we use very few nearest neighbors. When we use more nearest neighbors, then rejection rates become

closer to 5%. Finally, we present rejection rate using the wild bootstrap test in Panel E of Table 1. Following

Otsu and Rai (2015), we estimate µ0(x) using a linear regression with all control observations and we use

the two point distribution suggested in Mammen (1993).21 Note that this test over-rejects, except when we

have N0 = 500, in which case the estimation of µ̂0(x) does not underestimate the variance of Yi − µ0(x) for

the control observations.22

Test power

Given that the two randomization inference tests and the test based on Rothe (2017) have correct test sizes

(although, in some cases, they may be conservative), we consider the power of these tests. We present in Table

19Similar to the case of permutations, this happens because we use the non-randomized version of the test in which we do
not reject in case of equality. Note that we could guarantee the correct size if we used a randomized version of the test.

20If we do not use the restriction of considering only sign changes such that gi = gj if i and j share the same nearest neighbor,
then rejection rates explode when we N1 increases for a fixed N0. This happens because the distribution generated by the
sign change transformations will have a lower variance as it will not take into account that τ̂i are correlated across i. Results
available upon request.

21That is, we assign e∗i = (
√
5− 1)/2 with probability (

√
5 + 1)/2

√
5 and e∗i = (

√
5 + 1)/2 with probability (

√
5− 1)/2

√
5.

22Consistent with this explanation, we find less over-rejection when we estimate µ0(x) using only a constant. Results available
upon request.
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2 rejection rates when Yi(1) = Yi(0)+0.4 for these three tests. In most scenarios, the randomization inference

test based on permutations have the highest power among these three alternatives. The randomization

inference test based on sign changes has good power when we use few nearest neighbors relative to the

number of control observations, but it has poor power otherwise. This is not surprising, given that this test

is over-conservative when there are not many control observations relative to the number of nearest neighbors

used in the estimation. Finally, the test based on Rothe (2017) has good power when we use many nearest

neighbors, but it has poor power otherwise. Again, this is consistent with our previous finding that the test

based on Rothe (2017) is over-conservative when we use a matching estimator with few nearest neighbors.

5.2 Simulations with selection on observables

In Section 5.1 we considered a simplified DGP such that potential outcomes are unrelated with covariates

that determine treatment assignment. This allowed us to analyze the size and power properties of different

inference methods in the absence of finite N0 bias of the matching estimator. Now we consider a case in

which potential outcomes are correlated with X, so the matching estimator is biased when N0 is finite. We

consider the first conditional expectation function m(.) used in Frolich (2004), and we set σ =
√
0.1.23

We present in Panel A of Table 3 the average bias of the nearest-neighbor matching estimator. In

columns 1 to 3 we consider the case with M = 1. For N0 = 20, the matching estimator for the treatment

effect on the treated has a bias of around 0.02 regardless of the number of observations in the treated group,

which reflects the fact that, with a finite N0, it is not possible to guarantee a perfect match in X for the

treated observations and their nearest neighbors. This bias is equivalent to around 10% of the bias of a

naive comparison between treated and control observations. Consistent with Proposition 1, the average bias

goes down to zero when we increase the number of control observations, regardless of the number of treated

observations. In particular, when we consider N0 = 500, we cannot reject that the average bias is equal to

zero with 10,000 simulations even when we consider as few as five treated observations. When we consider

the matching estimator with more nearest neighbors, the bias gets significantly higher for any combination

of (N1, N0), except for the case with N0 = 500. This happens because we end up with poorer matches when

we consider an estimator with more nearest neighbors. This loss in match quality is less relevant when we

have many control observations, which explains why there is little increase in bias when we consider the case

with N0 = 500.

In Panel B of Table 3 we present the mean square error (MSE) of the matching estimators. While the

23Results using the other specifications are qualitatively the same. Results available upon request.
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MSE is always decreasing in N1 and N0, there are two competing forces when we consider increases in M .

On the one hand, using more nearest neighbors reduces the variance of the matching estimator. On the

other hand, this increases the bias of the estimator. With N0 = 500, since increasing M from one to ten

has little impact on the bias, using more nearest neighbors - in this range - always reduces the MSE of the

matching estimator. However, with smaller N0 there are some cases in which increasing M actually increases

the MSE, exposing the trade-off between bias and variance for the matching estimator.

We consider the implications of the finite N0 bias of the matching estimator for our inference methods

in Panels C-E of Table 3. With M ∈ {1, 2}, the test based on permutations still controls well for size. This

happens because the finite N0 bias of the matching estimator is negligible relative to the variance of the

matching estimator, so it does not generate strong size distortions. When we consider M ∈ {4, 10}, however,

we observe strong size distortions when N0 is not large. This happens because both the bias increases and the

variance of the estimator decreases, so the finite N0 bias of the matching estimator becomes more relevant

and generates larger size distortions.24 The test based on sign changes never over-rejects. However, it is

over-conservative (and has poor power) in the settings in which the bias would be largest. On the other

extreme, the test based on Rothe (2017) only has good size and non-trivial power in specific scenarios when

we use many nearest neighbors and there are many control observations.

5.3 Multidimensional covariates

The MC results in Section 5.2 are based on simulations in which the covariate Xi is unidimensional. As

stressed in Abadie and Imbens (2006), the bias of the matching estimator converges to zero at a lower

rate when Xi is multidimensional. While this does not affect our theoretical result in Proposition 1, this

can have important effects on the finite N0 behavioral of the matching estimator. In order to evaluate the

implications of having a multidimensional Xi on our results while keeping our simulations comparable to

the ones in Section 5.2, we include a marginal modification in the DGP by generating k − 1 new random

variables X̃2i, ..., X̃ki with the same distribution as Xi that are independent of all other random variables in

the model. Then we estimate the matching estimator using X̃i = (Xi, X̃2i, ..., X̃ki)
′ as covariates. Note that

a mismatch in X̃k′i for k′ = 2, ..., k would not directly generate bias in the matching estimator. However,

the addition of these variables makes it more difficult to find a good match in terms of Xi, which might lead

to higher bias.

24The over-rejection is more relevant if we set σ =
√
0.01 instead of σ =

√
0.1. This was expected, because decreasing the

variance of ǫi reduces the variance of the matching estimator, but it does not affect the average finite N0 bias. Still, rejection
rates for the permutation test are close to 5% when we use M = 1 or when N0 = 500. Results available upon request.

19



We present the MC results for the case with k = 2 in Table 4. Note that, for a given (N1, N0), the

average bias of the matching estimator is higher when compared to the case with k = 1. Still, we find that

the average bias goes to zero with N0 for any given N1, which is consistent with our Proposition 1. Rejection

rates using our randomization inference test based on permutations remain close to 5% when we consider

the matching estimator with M = 1. When we use more nearest neighbors, then we can still have rejection

rates close to 5%, provided that we have a large number of control observations. The results in Table 5

show that we would require even larger N0 to maintain the bias under control and rejection rates close to

5% when k = 4.

Overall, these results suggest that our permutation test can still be reliable with multidimensional co-

variates. However, one should be careful that our asymptotic approximations would require an increasing

number of control observations to be reliable when one increases the number of covariates.

5.4 Bias-corrected matching estimator

The over-rejection we find in the DGP with selection on observables comes from the finite N0 bias of the

matching estimator. Following Abadie and Imbens (2011), we consider a bias-corrected matching estimator

in which we estimate µ̂0(x) using a linear regression on X using only the control observations used as a

match, with weights given by the number of times each observation was used. Then the bias corrected

matching estimator is given by:

τ̃ =
1

N1

∑

i∈I1


(Yi − µ̂0(Xi))−

1

M

∑

j∈JM (i)

(Yj − µ̂0(Xj))


 (21)

We present results using this bias-corrected matching estimator in Table 6. While the average bias is

reduced using this procedure, it generally comes at a cost of a higher MSE. The MSE is significantly higher

when N1 is very small, because in this case µ̂0(x) is estimated using very few observations. Note that this

is the bias-corrected matching estimator one would estimate using the teffects command in Stata, so one

should be careful when using this bias correction with few treated observations. Another interesting result

is that there are some cases in which rejection rates using the randomization tests are higher when we use

the bias-adjusted estimator, despite the fact that the average bias is lower. This happens because the bias

adjustment µ̂0(Xi) is chosen to fit Yi for the control observations, so in finite samples we under-estimate

the variation generated by the control observations. Note that this is less problematic in our tests when

compared to the wild bootstrap, but this still leads to some over-rejection. We also consider another bias-
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adjustment in which we estimate µ̂0(Xi) using all control observations. In this case, we do not have the

severe increase in MSE when N1 is small. However, we still have that the bias adjustment induces some

over-rejection when N0 is not large. Moreover, misspecification of the conditional expectation function can

severely reduce the bias-reduction gains in this case.25

Overall, it might be possible to construct a bias-corrected matching estimator if we have a large number

of control observations. In this case, we would be able to use, for example, non-parametric estimation and

have a good approximation to µ0(0). However, with a fixed number of treated observations, in this case the

matching estimator without correction would also work well in terms of bias and the randomization inference

tests would provide good size and power, so it is unclear whether such bias correction would be warranted.

When N0 is not large, then one should be careful, as the bias correction can potentially do more harm than

good.

6 Conclusion

We consider the asymptotic properties of matching estimators when the number of control observations is

large, but the number of treated observations is fixed. We show that, in this setting, the nearest neighbor

matching estimator is asymptotically unbiased for the ATET under standard assumptions used in the liter-

ature on estimation of treatment effects under selection on unobservables. Moreover, we provide tests based

on the theory of randomization tests under approximate symmetry that are asymptotically valid when the

number of control observations goes to infinity. Our theoretical results should provide a better approxima-

tion to the behavior of the matching estimator and more reliable hypothesis testing relative to Abadie and

Imbens (2006) in settings in which not only there is a much larger number of control observations relative

to treated observations, but also that the number of treated observations are not large enough, so that

we cannot rely on asymptotic results. The results from our Monte Carlo (MC) suggest that our inference

methods may be more reliable and more powerful than existing inference methods even when the number of

control observations is not particularly large.

Finally, note that our setting is also related to the Synthetic Control (SC) method, which is an alternative

to estimate treatment effects in comparative case studies (Abadie and Gardeazabal (2003), Abadie et al.

(2010), and Abadie et al. (2015)). Dı́az et al. (2015) explore the idea of a matching estimator that considers

convex combinations of the characteristics of the individuals in the corresponding counterfactual. In this

25Results available upon request.
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sense, the SC estimator would be a matching estimator as in Dı́az et al. (2015) using the pre-treatment

outcomes as covariates. The only difference is that the procedure used in Dı́az et al. (2015) minimizes

the sum of the distances between the characteristics of the treated observation and those of the control

observations used in the convex combination. Our results indicate that, if treatment assignment is “as good

as random” conditional on the pre-treatment outcomes, then a SC estimator that assigns weights using Dı́az

et al. (2015) procedure should be asymptotically unbiased when the number of control units goes to infinity

and the number of pre-treatment periods is fixed.26 Moreover, we provide tests that are asymptotically valid

when the number of control units goes to infinity.27 Our test could be a valid alternative to the placebo

tests proposed in Abadie et al. (2010) for the SC estimator when there are multiple treated units and a large

number of control units.28 The main challenge to apply our results to the SC setting, however, is that one

would need a very large number of control observations when the number of pre-treatment periods is large,

so that our approximations become reliable, which may be infeasible in many SC applications.

26If however, treatment assignment is only “as good as random” conditional on common factors (which allows for some
correlation between treatment assignment and post-treatment potential outcomes), then this would not be necessarily true.
Gobillon and Magnac (2016) show that the SC estimator can be asymptotically unbiased if the number of control units and
the number of pre-treatment periods go to infinity, while Abadie et al. (2010) show that, conditional on a perfect pre-treatment
match, the bias of the SC estimator is bounded by a function that goes to zero when the number of pre-treatment periods
increases, even if the number of control units is fixed. See also Ferman and Pinto (2016) for a discussion on the conditions for
asymptotic unbiasedness for the SC estimator when the number of control units is fixed.

27Note that this test should only be asymptotically valid if we use Dı́az et al. (2015) procedure to calculate the SC weights.
Their procedure will guarantee that the SC unit for each treated unit will assign positive weights to only few donors that are
very close in terms of pre-treatment outcomes as the corresponding treated unit, which will imply that the treatment effect
estimators for each treated unit will be independent. If we use Abadie et al. (2010) original procedure, it is not clear that this
will be the case.

28Ferman and Pinto (2017) show that the placebo tests proposed in Abadie et al. (2010) will not, in general, satisfy the
approximate symmetry property required in Canay et al. (2017). See also Firpo and Possebom (2016) and Hahn and Shi (2016)
for considerations on the placebo tests proposed in Abadie et al. (2010).
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A Supplemental Appendix for “Matching Estimators with Few

Treated and Many Control Observations

A.1 Proof of main results

Proposition 1

For a given realization of Xi = x̄ for an observation in the treated group and for a given ǫ > 0, consider

the probability that the M -closest realizations of {Xj}j∈I0 are such that d(Xj , x̄) < ǫ. Let Xi
(M) be the

M -closest match of observation i. Then:

Pr
(
d(Xi

(M), x̄) > ǫ
)

=
M−1∑

m=0

Pr (d(Xj , x̄) < ǫ for exactly m observations)

=

M−1∑

m=0




N0

m


 [Pr(d(Xj , x̄) < ǫ)]m[Pr(d(Xj , x̄) > ǫ)]N0−m (22)

Since x̄ ∈ X0, we have that Pr(d(Xj , x̄) < ǫ) > 0, which implies that Pr(d(Xj , x̄) > ǫ) < 1. Therefore, we

have that Pr
(
d(Xi

(M), x̄) > ǫ
)
→ 0. By analogy, the m-nearest neighbor of i for m < M will also converge

in probability to x̄.

Now consider:

E[τ̂ |{Xi}i∈I1 ] =
1

N1

∑

i∈I1

(
µ1(Xi)− E

[
1

M

M∑

m=1

µ0(X
i
(m))

])
(23)

Since µ0(x) is continuous and bounded and Xi
(m)

p→ Xi, then we have that E[µ0(X
i
(m))|Xi] → µ0(Xi),

which proves of proposition 1.
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For part 2, assume that f̃(x) = E[f(Y (0))|X = x] is continuous and bounded for any f : R → R

continuous and bounded. Let Y i
(m) be the outcome of the m-nearest neighbor of treated observation i.

Therefore, for any f(y) continuous and bounded, and for a given Xi = x̄, we have that:

E[f(Y i
(m))] = E

{
E[f(Y i

(m))|Xi
(m)]

}
= E

{
f̃(Xi

(m))
}
→ f̃(x̄) = E[f(Y (0))|X = x̄] (24)

By the Portmanteau Lemma, we have that Y i
(m)

d→ Y (0)|{X = x̄}. Under assumption 2, Y i
(m)

d→

µ0(Xi) + em(Xi), where em(Xi)
d
= Yi(0)|Xi − µ0(Xi). Therefore, conditional on {Xi}i∈I1 :

τ̂ =
1

N1

∑

i∈I1

[
Yi −

1

M

M∑

m=1

Y i
(m)

]
d→ 1

N1

∑

i∈I1

[
(µ1(Xi)− µ0(Xi)) +

(
ǫi −

1

M

M∑

m=1

ǫm(Xi)

)]
(25)

Now we just have to show that ǫm(Xi) is independent across m and i. Since Xi is a continuous random

variable, then Xi 6= Xj with probability one for i 6= j with i, j ∈ I1. Since there is a finite number of treated

observations, then it must be that, conditional on {Xi}N1
i=1, there is an η > 0 such that d(Xi, Xj) > η for

all i, j ∈ I1 with i 6= j. However, we know that Pr(d(Xi, X
i
(m)) > ǫ) → 0 for all ǫ > 0. Therefore, the

probability that k ∈ I0 belongs to JM (i) and JM (j) converges to zero. Therefore, under the assumption

that the errors ǫi are independent across i (which is guaranteed from assumption 1), we have that ǫm(Xi) is

independent across m and i.

Unconditional Expectation

Now we consider the unconditional expectation of τ̂ :

E[τ̂ ] = E{E[τ̂ |{Xi}i∈I1 ]} =
1

N1

∑

i∈I1

E

[
µ1(Xi)−

1

M

M∑

m=1

µ0(X
i
(m))

]
(26)

We need that E[µ0(X
i
(m))] → E[µ0(Xi)]. We know that E[µ0(X

i
(m))|Xi] → µ0(Xi) for all Xi. Again using

the fact that µ0(x) is continuous and bounded, we have that E[µ0(X
i
(m))] = E{E[µ0(X

i
(m))|Xi]} → E[µ0(Xi)].

Therefore:

E[τ̂ ] → E [µ1(Xi)− µ0(Xi)] (27)

where this expectation is taken according to f1(x), the density function of the treated units.
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Bias-corrected Matching Estimator

We consider the bias-corrected matching estimator using linear least squares on the nearest neighbors to

estimate µ0(x). This is the model used in Abadie and Imbens (2011). Considering, for simplicity, the case

with k = 1, note that:

τ̂biasadj = τ̂ + β̂
(
Xi

(m) −Xi

)
(28)

where β̂ =
∑

i∈I1
(Xi

(m)−X̄1)Y i
(m)

∑

i∈I1

(

Xi
(m)

−X̄1

)2 and X̄ = 1
N1

∑
i∈I1

Xi
(m). We assume that Yi(0)|Xi = x is uniformly bounded

for almost all x ∈ X0 and that Xi is bounded.29 Define X =
∑

i∈I1
(Xi

(m) − X̄1)
2. If we have at least two

treated observations, then note that ∃C1 > 0 such that Pr (X < C1) → 0. Therefore:

Pr
(
|β̂| ≥ c

)
= Pr




∣∣∣∣∣∣

∑
i∈I1

(
Xi

(m) − X̄1

)
Y i
(m)

X

∣∣∣∣∣∣
≥ c


 ≤ Pr



∑

i∈I1

∣∣∣Xi
(m) − X̄1

∣∣∣
∣∣∣Y i

(m)

∣∣∣
X ≥ c


 (29)

≤ Pr



C2

∑
i∈I1

∣∣∣Y i
(m)

∣∣∣
X ≥ c | X < C1


Pr (X < C1) + Pr



C2

∑
i∈I1

∣∣∣Y i
(m)

∣∣∣
C1

≥ c | X > C1


Pr (X > C1)

Since Pr (X < C1) → 0, the first term converges to zero. Since we assume that Yi(0)|Xi = x is uniformly

bounded for almost all x ∈ X0, we can always find c such that the second term is lower than any η > 0,

which implies that β̂ = Op(1). Therefore, β̂(X
i
(m) −Xi) = op(1), so |τ̂biasadj − τ̂ | = op(1).

30

29Note that these assumptions are weaker than the assumptions in Abadie and Imbens (2011).
30Note that the proof would be easier if we used all control observations to estimate µ0(x) using linear least squares. In this

case, β̂ would converge to the population OLS coefficients.
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Table 1: Test Sizes - no selection on observable
M = 1 M = 2 M = 4 M = 10

N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500
(1) (2) (3) (4) (5) (6)

Panel A: test based on AI (2006)
N1 = 5 0.139+ 0.144+ 0.156+ 0.129+ 0.136+ 0.154+ 0.124+ 0.127+ 0.148+ - - -
N1 = 10 0.097+ 0.097+ 0.099+ 0.089+ 0.090+ 0.091+ 0.088+ 0.087+ 0.092+ 0.082+ 0.080+ 0.088+

N1 = 25 0.086+ 0.073+ 0.064+ 0.090+ 0.076+ 0.065+ 0.084+ 0.068+ 0.064+ 0.066+ 0.069+ 0.065+

N1 = 50 0.093+ 0.072+ 0.056 0.100+ 0.075+ 0.057 0.093+ 0.079+ 0.058 0.072+ 0.066+ 0.060

Panel B: test based on RI, permutation
N1 = 5 0.020− 0.020− 0.017− 0.045 0.046 0.048 0.049 0.047 0.046 - - -
N1 = 10 0.048 0.051 0.052 0.048 0.048 0.050 0.048 0.050 0.048 0.047 0.048 0.049
N1 = 25 0.050 0.049 0.047 0.049 0.049 0.048 0.048 0.045 0.049 0.050 0.051 0.047
N1 = 50 0.048 0.049 0.049 0.052 0.048 0.049 0.050 0.052 0.050 0.052 0.048 0.052

Panel C: test based on RI, sign changes
N1 = 5 0.002− 0.008− 0.015− 0.001− 0.003− 0.012− 0.000− 0.001− 0.009− - - -
N1 = 10 0.025− 0.042 0.050 0.006− 0.024− 0.046 0.000− 0.006− 0.042 0.000− 0.000− 0.033−

N1 = 25 0.044 0.052 0.049 0.018− 0.046 0.051 0.000− 0.024− 0.052 0.000− 0.000− 0.049
N1 = 50 0.049 0.049 0.048 0.030− 0.056 0.049 0.000− 0.033− 0.050 0.000− 0.000− 0.051

Panel D: test based on Rothe (2017)
N1 = 5 - - - 0.006− 0.001− 0.000− 0.025− 0.024− 0.021− - - -
N1 = 10 - - - 0.004− 0.001− 0.000− 0.029− 0.026− 0.024− 0.038− 0.039− 0.043
N1 = 25 - - - 0.005− 0.001− 0.000− 0.032− 0.027− 0.025− 0.043 0.046 0.043
N1 = 50 - - - 0.009− 0.001− 0.000− 0.039− 0.032− 0.025− 0.046 0.043 0.047

Panel E: test based on wild bootstrap
N1 = 5 0.095+ 0.074+ 0.061+ 0.110+ 0.085+ 0.079+ 0.116+ 0.101+ 0.098+ - - -
N1 = 10 0.098+ 0.062+ 0.051 0.105+ 0.068+ 0.058 0.108+ 0.075+ 0.072+ 0.121+ 0.086+ 0.078+

N1 = 25 0.125+ 0.072+ 0.050 0.124+ 0.077+ 0.056 0.122+ 0.076+ 0.058 0.146+ 0.084+ 0.062+

N1 = 50 0.145+ 0.084+ 0.051 0.141+ 0.082+ 0.053 0.138+ 0.088+ 0.054 0.155+ 0.094+ 0.057
Note: This Table presents simulation results using design 1 from Frolich (2004) and Busso et al. (2014). Potential outcomes are normally distributed with mean zero and variance
one. Panel A presents rejection rates under the null based on the asymptotic distribution of the matching estimator derived in Abadie and Imbens (2006) (AI). Panel B presents
rejection rates under the null for the randomization inference test based on permutations, proposed in Section 4.2 (RI, permutation). Panel C presents rejection rates under the null
for the randomization inference test based on sign changes, proposed in Section 4.1 (RI, sign changes). Panel D presents rejection rates under the null for the test based on the robust
confidence intervals derived in Rothe (2017). Finally, Panel E presents rejection rates under the null for the test based on wild bootstrap. We include a superscript “+” when rejection
rate is greater than 6% and a superscript “−” when rejection rate is lower than 4%. For each combination (N1, N0), we run 10,000 simulations.
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Table 2: Test Power - no selection on observable
M = 1 M = 2 M = 4 M = 10

N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500
(1) (2) (3) (4) (5) (6)

Panel A: test based on RI, permutation
N1 = 5 0.031− 0.030− 0.024− 0.075+ 0.085+ 0.089+ 0.095+ 0.098+ 0.112+ - - -
N1 = 10 0.088+ 0.106+ 0.118+ 0.116+ 0.133+ 0.149+ 0.133+ 0.148+ 0.181+ 0.155+ 0.169+ 0.208+

N1 = 25 0.122+ 0.164+ 0.242+ 0.151+ 0.197+ 0.316+ 0.171+ 0.243+ 0.361+ 0.235+ 0.284+ 0.418+

N1 = 50 0.144+ 0.203+ 0.396+ 0.175+ 0.264+ 0.515+ 0.217+ 0.304+ 0.590+ 0.298+ 0.375+ 0.651+

Panel B: test based on RI, sign changes
N1 = 5 0.004− 0.011− 0.020− 0.001− 0.005− 0.020− 0.000− 0.001− 0.021− - - -
N1 = 10 0.045 0.085+ 0.116+ 0.010− 0.053 0.125+ 0.000− 0.014− 0.141+ 0.000− 0.000− 0.113+

N1 = 25 0.117+ 0.164+ 0.245+ 0.047 0.169+ 0.300+ 0.000− 0.076+ 0.327+ 0.000− 0.000− 0.333+

N1 = 50 0.159+ 0.226+ 0.407+ 0.097+ 0.252+ 0.503+ 0.000− 0.153+ 0.547+ 0.000− 0.000− 0.547+

Panel C: test based on Rothe (2017)
N1 = 5 - - - 0.008− 0.004− 0.000− 0.053 0.052 0.055 - - -
N1 = 10 - - - 0.010− 0.004− 0.000− 0.084+ 0.095+ 0.113+ 0.133+ 0.144+ 0.178+

N1 = 25 - - - 0.016− 0.008− 0.000− 0.128+ 0.173+ 0.265+ 0.220+ 0.268+ 0.401+

N1 = 50 - - - 0.026− 0.011− 0.001− 0.156+ 0.211+ 0.484+ 0.285+ 0.361+ 0.641+

Note: This Table presents simulation results using design 1 from Frolich (2004) and Busso et al. (2014). Potential outcomes are normally distributed with mean zero and variance one.
For the treated observations, we add a treatment effect of 0.4. Panel A presents rejection rates for the randomization inference test based on permutations, proposed in Section 4.2
(RI, permutation). Panel B presents rejection rates for the randomization inference test based on sign changes, proposed in Section 4.1 (RI, sign changes). Panel D presents rejection
rates for the test based on the robust confidence intervals derived in Rothe (2017), We include a superscript “+” when rejection rate is greater than 6% and a superscript “−” when
rejection rate is lower than 4%. For each combination (N1, N0), we run 10,000 simulations.

29



Table 3: MC results with selection on observable
M = 1 M = 2 M = 4 M = 10

N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500
(1) (2) (3) (4) (5) (6)

Panel A: average |bias× 1000|
N1 = 5 25.85 4.82 3.94 32.63 12.43 2.06 57.02 26.10 3.06 - - -
N1 = 10 26.49 10.28 0.90 33.82 14.10 0.02 53.66 25.77 2.76 111.40 50.21 4.48
N1 = 25 23.20 8.53 0.92 31.57 14.42 1.32 53.54 22.46 2.65 111.08 48.94 4.52
N1 = 50 24.17 8.91 1.71 35.00 12.89 1.17 54.66 23.15 2.89 112.50 49.98 4.58

Panel B: mean squared error (×1000)
N1 = 5 57.85 48.31 41.84 43.83 35.51 30.70 38.62 30.98 24.91 - - -
N1 = 10 39.38 28.73 20.90 29.49 22.14 15.76 26.97 18.50 13.18 32.76 18.47 11.71
N1 = 25 28.69 17.29 8.99 22.08 13.69 6.93 19.97 11.29 5.86 25.73 11.44 5.13
N1 = 50 24.60 13.35 5.23 19.02 10.49 4.04 17.32 8.90 3.31 23.64 9.56 2.96

Panel C: test based on RI, permutation
N1 = 5 0.018− 0.021− 0.014− 0.041 0.048 0.047 0.050 0.049 0.046 - - -
N1 = 10 0.047 0.047 0.045 0.049 0.049 0.050 0.063+ 0.050 0.050 0.157+ 0.075+ 0.049
N1 = 25 0.051 0.048 0.044 0.057 0.053 0.048 0.087+ 0.059 0.051 0.311+ 0.122+ 0.050
N1 = 50 0.050 0.052 0.049 0.056 0.052 0.048 0.104+ 0.061+ 0.049 0.446+ 0.173+ 0.051

Panel D: test based on RI, sign changes
N1 = 5 0.002− 0.006− 0.011− 0.001− 0.002− 0.013− 0.000− 0.001− 0.008− - - -
N1 = 10 0.024− 0.040− 0.045 0.006− 0.025− 0.049 0.000− 0.007− 0.043 0.000− 0.000− 0.035−

N1 = 25 0.042 0.048 0.044 0.017− 0.047 0.047 0.000− 0.023− 0.049 0.000− 0.000− 0.050
N1 = 50 0.047 0.050 0.052 0.031− 0.050 0.052 0.000− 0.036− 0.053 0.000− 0.000− 0.051

Panel E: test based on Rothe (2017)
N1 = 5 - - - 0.006− 0.002− 0.000− 0.025− 0.024− 0.023− - - -
N1 = 10 - - - 0.006− 0.001− 0.000− 0.035− 0.026− 0.020− 0.134+ 0.054 0.031−

N1 = 25 - - - 0.011− 0.002− 0.000− 0.064+ 0.033− 0.019− 0.298+ 0.102+ 0.031−

N1 = 50 - - - 0.016− 0.003− 0.000− 0.085+ 0.041 0.018− 0.435+ 0.159+ 0.032−

Note: This Table presents simulation results using design 1 the conditional expectation function 1 from Frolich (2004) and Busso et al. (2014). Panel A reports the average bias
(multiplied by 1000), while Panel B reports the mean squared error (multiplied by 1000) of the matching estimator. Panel C presents rejection rates for the randomization inference
test based on permutations, proposed in Section 4.2 (RI, permutation). Panel D presents rejection rates for the randomization inference test based on sign changes, proposed in Section
4.1 (RI, sign changes). Panel E presents rejection rates for the test based on the robust confidence intervals derived in Rothe (2017), We include a superscript “+” when rejection rate
is greater than 6% and a superscript “−” when rejection rate is lower than 4%. For each combination (N1, N0), we run 10,000 simulations.

30



Table 4: MC results with selection on observable, k = 2

M = 1 M = 2 M = 4 M = 10
N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500

(1) (2) (3) (4) (5) (6)

Panel A: average |bias× 1000|
N1 = 5 46.94 24.22 5.02 58.06 36.19 6.07 82.35 51.28 8.69 - - -
N1 = 10 45.88 24.42 4.32 63.39 33.73 5.39 87.35 48.20 10.16 133.41 80.30 17.11
N1 = 25 46.75 27.57 3.49 61.31 35.78 7.20 85.74 49.10 8.74 132.30 81.45 17.17
N1 = 50 47.23 27.02 5.62 61.20 35.83 6.54 85.54 50.19 9.21 133.16 81.74 17.83

Panel B: mean squared error (×1000)
N1 = 5 53.91 46.00 40.80 43.34 36.12 30.13 41.06 32.55 25.42 - - -
N1 = 10 35.31 26.68 20.69 30.12 21.14 15.72 29.69 19.33 13.41 37.66 21.81 11.97
N1 = 25 23.66 15.51 8.74 21.27 12.74 6.79 21.78 11.93 5.74 30.42 15.06 5.16
N1 = 50 19.75 10.96 4.85 18.04 9.61 3.80 19.82 9.70 3.25 28.16 12.87 3.05

Panel C: test based on RI, permutation
N1 = 5 0.023− 0.023− 0.016− 0.051 0.050 0.045 0.069+ 0.058 0.048 - - -
N1 = 10 0.051 0.053 0.045 0.069+ 0.055 0.050 0.112+ 0.068+ 0.050 0.204+ 0.144+ 0.054
N1 = 25 0.063+ 0.057 0.047 0.102+ 0.074+ 0.048 0.212+ 0.126+ 0.048 0.363+ 0.350+ 0.061+

N1 = 50 0.061+ 0.054 0.049 0.135+ 0.089+ 0.054 0.323+ 0.219+ 0.057 0.482+ 0.570+ 0.097+

Panel D: test based on RI, sign changes
N1 = 5 0.003− 0.009− 0.017− 0.000− 0.003− 0.012− 0.000− 0.001− 0.012− - - -
N1 = 10 0.030− 0.045 0.045 0.005− 0.024− 0.045 0.000− 0.004− 0.047 0.000− 0.000− 0.028−

N1 = 25 0.055 0.054 0.046 0.016− 0.053 0.050 0.000− 0.009− 0.051 0.000− 0.000− 0.046
N1 = 50 0.058 0.051 0.049 0.022− 0.066+ 0.054 0.000− 0.015− 0.054 0.000− 0.000− 0.049

Panel E: test based on Rothe (2017)
N1 = 5 - - - 0.007− 0.003− 0.001− 0.039− 0.031− 0.024− - - -
N1 = 10 - - - 0.010− 0.002− 0.000− 0.082+ 0.041 0.022− 0.176+ 0.117+ 0.037−

N1 = 25 - - - 0.023− 0.003− 0.000− 0.184+ 0.094+ 0.022− 0.355+ 0.337+ 0.044
N1 = 50 - - - 0.039− 0.008− 0.000− 0.281+ 0.181+ 0.029− 0.469+ 0.571+ 0.073+

Note: This Table replicates the simulations presented in Table 3 with the difference that it considers a matching estimator on X and X̃2, where X̃2 is a random variable independent
of all other random variables in the model.
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Table 5: MC results with selection on observable, k = 4

M = 1 M = 2 M = 4 M = 10
N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500

(1) (2) (3) (4) (5) (6)

Panel A: average |bias× 1000|
N1 = 5 82.61 55.64 24.32 97.64 67.89 27.27 115.26 80.56 30.66 - - -
N1 = 10 84.43 58.95 21.21 100.01 72.87 26.57 119.87 83.75 30.97 152.37 112.08 46.03
N1 = 25 86.12 60.29 23.10 99.67 70.75 26.91 117.22 87.20 33.27 151.47 112.19 44.97
N1 = 50 81.55 61.42 22.95 97.00 71.69 27.08 114.23 87.78 34.24 149.99 113.39 46.73

Panel B: mean squared error (×1000)
N1 = 5 59.36 49.46 41.05 50.67 40.66 31.96 48.91 36.49 26.68 - - -
N1 = 10 39.22 28.39 21.24 35.44 25.03 16.31 36.94 23.99 14.21 43.23 27.83 13.70
N1 = 25 26.54 16.71 9.21 26.16 15.53 7.35 28.12 17.04 6.64 35.82 21.06 6.91
N1 = 50 21.87 12.47 5.07 22.62 12.55 4.31 24.96 14.40 4.27 32.56 18.90 4.91

Panel C: test based on RI, permutation
N1 = 5 0.025− 0.022− 0.016− 0.069+ 0.057 0.048 0.093+ 0.069+ 0.052 - - -
N1 = 10 0.069+ 0.055 0.050 0.098+ 0.080+ 0.051 0.160+ 0.109+ 0.058 0.233+ 0.199+ 0.067+

N1 = 25 0.087+ 0.078+ 0.054 0.184+ 0.133+ 0.061+ 0.301+ 0.261+ 0.076+ 0.387+ 0.448+ 0.125+

N1 = 50 0.101+ 0.095+ 0.060+ 0.262+ 0.227+ 0.077+ 0.413+ 0.473+ 0.124+ 0.493+ 0.682+ 0.319+

Panel D: test based on RI, sign changes
N1 = 5 0.009− 0.011− 0.014− 0.001− 0.004− 0.013− 0.000− 0.000− 0.010− - - -
N1 = 10 0.049 0.055 0.050 0.005− 0.039− 0.050 0.000− 0.001− 0.049 0.000− 0.000− 0.023−

N1 = 25 0.089+ 0.080+ 0.057 0.014− 0.085+ 0.060+ 0.000− 0.003− 0.065+ 0.000− 0.000− 0.043
N1 = 50 0.100+ 0.094+ 0.061+ 0.023− 0.124+ 0.072+ 0.000− 0.006− 0.088+ 0.000− 0.000− 0.067+

Panel E: test based on Rothe (2017)
N1 = 5 - - - 0.009− 0.002− 0.000− 0.062+ 0.043 0.027− - - -
N1 = 10 - - - 0.017− 0.003− 0.000− 0.131+ 0.077+ 0.026− 0.206+ 0.166+ 0.051
N1 = 25 - - - 0.053 0.008− 0.000− 0.275+ 0.230+ 0.039− 0.381+ 0.437+ 0.098+

N1 = 50 - - - 0.093+ 0.031− 0.000− 0.381+ 0.441+ 0.079+ 0.484+ 0.690+ 0.289+

Note: This Table replicates the simulations presented in Table 3 with the difference that it considers a matching estimator on X, X̃2, X̃3 and X̃4.

32



Table 6: MC results with selection on observable, bias-corrected estimator

M = 1 M = 2 M = 4 M = 10
N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500 N0 = 20 N0 = 50 N0 = 500

(1) (2) (3) (4) (5) (6)

Panel A: average |bias× 1000|
N1 = 5 16.42 72.55 6.74 58.15 12.61 4.20 13.63 15.07 6.34 - - -
N1 = 10 13.07 9.64 3.38 16.12 14.39 4.34 16.15 15.45 3.02 13.87 15.54 6.12
N1 = 25 12.94 8.22 3.80 13.56 12.04 2.34 15.70 15.78 4.49 12.35 15.48 6.58
N1 = 50 15.19 10.61 2.35 14.12 12.93 3.32 18.46 14.64 4.82 11.83 15.45 6.79

Panel B: mean squared error (×1000)
N1 = 5 >100 >100 42.02 >100 >100 30.84 98.57 44.42 26.43 - - -
N1 = 10 76.28 33.95 21.31 >100 29.83 16.26 45.08 22.02 13.32 33.72 19.61 12.00
N1 = 25 42.55 20.35 9.37 32.71 15.98 7.12 27.39 13.47 5.86 23.35 12.17 5.39
N1 = 50 38.32 16.73 5.17 27.80 12.77 4.06 23.29 10.90 3.36 20.65 9.52 3.05

Panel C: test based on RI, permutation
N1 = 5 0.018− 0.020− 0.015− 0.052 0.052 0.046 0.085+ 0.059 0.053 - - -
N1 = 10 0.052 0.048 0.048 0.066+ 0.056 0.051 0.094+ 0.061+ 0.050 0.142+ 0.080+ 0.053
N1 = 25 0.062+ 0.056 0.047 0.082+ 0.064+ 0.050 0.111+ 0.068+ 0.051 0.205+ 0.097+ 0.053
N1 = 50 0.074+ 0.059 0.049 0.082+ 0.064+ 0.054 0.116+ 0.076+ 0.047 0.256+ 0.110+ 0.054

Panel D: test based on RI, sign changes
N1 = 5 0.002− 0.007− 0.015− 0.001− 0.003− 0.013− 0.000− 0.000− 0.009− - - -
N1 = 10 0.025− 0.032− 0.047 0.005− 0.027− 0.047 0.000− 0.006− 0.046 0.000− 0.000− 0.037−

N1 = 25 0.043 0.049 0.051 0.018− 0.047 0.050 0.000− 0.019− 0.046 0.000− 0.000− 0.048
N1 = 50 0.044 0.048 0.046 0.027− 0.052 0.054 0.000− 0.029− 0.048 0.000− 0.000− 0.049

Note: This Table replicates the simulations presented in Table 3 with the difference that it considers a bias-corrected matching estimator suggested in Abadie and Imbens (2011).
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