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Abstract

For a class of standard and widely-used preferences, a one-shot money in-
jection in a standard matching model can induce a significant and persistent
output response by dispersing the distribution of wealth. Decentralized trade
matters for both persistence and significance. In the presence of government
bonds the injection has a liquidity effect and the inflation rate right following
the injection may be below the steady-state rate level. By dispersing the distri-
bution of wealth constantly, a repeated injection stimulates output in the long
run.
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1 Introduction

In an essay first published in 1752, Hume articulated a view of nonneutrality of money
that has been influential for centuries:

[B]y degrees the price rises, first of one commodity, then of another;
till the whole at last reaches a just proportion with the new quantity of
specie which is in the kingdom.... When any quantity of money is imported
into a nation, it is not at first dispersed into many hands; but is confined
to the coffers of a few persons, who immediately seek to employ it to
advantage....It is easy to trace the money in its progress through the whole
commonwealth; where we shall find, that it must first quicken the diligence
of every individual, before it encrease the price of labour.

..[TI]t is of no manner of consequence, with regard to the domestic
happiness of a state, whether money be in a greater or less quantity. The
good policy of the magistrate consists only in keeping it, if possible, still
increasing; because, by that means he keeps alive a spirit of industry in
the nation.

The first quoted passage (Hume [17, p 172]) seems to relate a stimulating effect of a
money injection to (a) a limited participation in the market from which money is in-
jected and (b) a dispersion (i.e., diffusion) process in the market from which injected
money gradually reaches all people in the economy; the second passage (Hume [17, p
173]) seems to assert a positive correlation between output and inflation in the long
run. By what mechanism, if there is any, may a limited participation and a dispersion
process make an injection stimulating? May such a mechanism be applicable if the
injection is repeated? Quantitative exercises in this paper demonstrate that a regres-
sive money injection, being one shot or repeated, may by dispersing (i.e., stretching)
the distribution of wealth stimulate output through decentralized trade.

Our background model is the familiar matching model of Trejos and Wright [27]
and Shi [24] with general individual money holdings.! This model accommodates a
limited participation (by nondegenerate wealth distributions) and a gradual disper-
sion process (by decentralized trade); it is parameterized in section 2 for quantitative
exercises.

The model has two salient features. First, aggregate output would increase in
a steady state if people’s incentives to trade were not changed but the distribution
of wealth were more dispersed. The main force behind is simple and intuitive: a
reduction in a poor seller’s wealth results in a much larger increment in production

!The canonical form of the model, one with divisible money and with no upper bound on the
individual holdings, has a central role in the New Monetarism literature (see Williamson and Wright
[30]) in that much of the literature is built on its tractable versions, e.g., Trejos and Wright [27]
and Shi [24] with indivisible money and a unit upper bound on the individual money holdings, and
Lagos and Wright [18] and Shi [25] with different new ingredients.



than the reduction in a rich seller’s. Secondly, people’s incentives along a transitional
path to the steady state are very close to their incentives in the steady state. These
two features imply that if a shock disperses (stretches) the steady-state distribution
of money, there is an immediate significant output response. Decentralized trade
adds persistence by slowing down the dispersion (diffusion) of redistributed money.
Decentralized trade is also critical for the immediate and subsequent significance: if a
competitive market substitutes for decentralized trade as in a Bewley model, market
clearing enforces nominal prices in the transitional path down below the steady-state
level, altering people’s incentives to trade. All these are demonstrated in section 3.

When a one-shot money injection is regressive, it disperses the steady-state dis-
tribution of money. We endogenize a limited participation to an injection and, hence,
regressiveness of the injection. With a unitary CRRA coefficient and a unitary Frisch
elasticity of labor supply, a 1% accumulative increase in the money stock can induce
a more than 3% accumulative increase in output over 20 periods (a period interpreted
as a quarter). We conduct related exercises in section 4.

When the model includes nominal government bonds (issued before pairwise meet-
ings), inflation in a steady state is driven by interest payments to these bonds. Be-
cause people carry a small portion of nominal wealth in money into pairwise meetings
in the steady state, most of injected money must go to the bond market (as implied
by the second salient feature of the model) so there is a liquidity effect. The output
response remains significant and persistent. The inflation rate may first drop below
the steady-state level (a phenomena analogous to what is referred to as the price puz-
zle in some VAR studies, see, e.g., Christiano, Eichenbaum, and Evans [8]); the key
is that the injection increases the value of money at the present period by reducing
interest payments and, hence, the money growth in the next period. In addition to
this initial fall in inflation, one may observe nominal rigidity in the usual sense. The
model with bonds is presented in section 5.

When the regressive injection becomes repeated, it causes persistent inflation,
dampening output by the familiar reasoning. But it also maintains the dispersing force
on the distribution. Offsetting this strong force by mixing the regressive injection with
a repeated lump-sum money transfer, we find a positive output-inflation correlation
when inflation is low and a negative correlation when inflation is high, a pattern
consistent with empirical findings for some economies including the U.S. (see, Ahmed
and Rogers [1], Bullard [4], and Bullard and Keating [5]). We study the repeated
injection in section 6.

In section 7, we offer some discussion of our model, findings, and future works.

2 The basic model

The model is the one formulated by Trejos and Wright [27] and Shi [24] with general
individual money holdings. Time is discrete, dated as ¢ > 0. There is a unit mass of
infinitely lived agents. At each period, each agent has the equal chance to be a buyer



or a seller. Each buyer is randomly matched with a seller. In each pairwise meeting,
the seller can produce a consumption good only consumed by the buyer. The good is
divisible and perishes at the end of the period. By exerting [ units of the labor input,

each seller can produce
1 -«
Al = [ 1
v=4(7) )

units of goods, where A > 0 and « € (0,1], and L is the aggregate labor input in
the economy.? If an agent consumes y units of goods and exerts [ units of labor in a
period, his period utility is

Uy, 1) =u(y) —c(l) = (2)

where o > 0, 7 > 0, and € is small but positive to make each agent’s reservation value
well defined in case ¢ > 1. Each agent maximizes his expected utility with a discount
factor 5 € (0,1). There exists a durable and intrinsically useless object, called money.
Money is indivisible and its smallest unit is A; the initial average holdings of money is
M:; and there is a finite but arbitrarily large upper bound B on the individual money
holdings.® The initial distribution of money, denoted my, is public information.

In each pairwise meeting, each agent can observe his meeting partner’s money
holdings, but not past trading histories, which rules out credits between the two
agents. Following a convention introduced by Berentsen, Molico and Wright [3] into
matching models with indivisible money, we allow stochastic trade so that a meeting
outcome is a lottery on the feasible transfers of goods and money. Because u (.) is
strictly concave and ¢ (.) is strictly convex, it is not optimal for agents to choose a
lottery which randomizes on the transfer of goods. So it is without loss of generality
to represent a generic meeting outcome by a pair (y, 1), where y > 0 is the transfer
of goods and p is a probability measure on {O, ..., min (mb, B - ms) }, meaning that
the probability for the buyer to transfer d units of money to the seller is u (d).

To define equilibrium, let v; be the value function and 7; be the distribution of
money at the start of period ¢; that is, for m € Ba = {0,A,..., B}, v;(m) is the
expected discounted utility for an agent holding m units of money and m; (m) is

(y + 6)170 . 6170 l1+%
R 1+ }]’

2S0 Y = AL® is the aggregate production function and on the aggregate level the marginal
product of labor is decreasing if @ < 1. At each pairwise meeting the marginal product of labor
is constant for a given L. As a rationale, one may think of a seller as a taxi driver; the driving
distance he serves for the buyer is proportional to his working time while the proportional coefficient
is affected by the number of occupied taxis on the road. This setting separates the influence of
the decreasing marginal product of labor (captured by «) from the influence of a seller’s preference
(captured by 7 in (2)) on his labor supply; see footnote 10 for a related discussion.

3If (A, B) = (0,00), that is, money is divisible and there is no upper bound on money holdings,
then the choice of M only affects prices. But numerical analysis still needs some B’ < oo to
approximate B = oo; and the grid method needs some positive A’ to approximate A = 0. In this
regard, the present model saves us from a few layers of approximation. Analytically, Zhu [33] gives
a sense that A’ > 0 approximates A = 0 when B < oo and M are fixed. In our numerical analysis
below, computed equilibria seem to converge as B increases when A and M are fixed.

4



the proportion of agents holding m at the start of period ¢. Consider a seller with
m® € Ba meets a buyer with m® € Ba at period t. To preserve concavity of value
functions, we follow some recent treatment in matching models of money to let the
outcome in the meeting be determined by the weighted egalitarian solution of Kalai
[14];* that is, the equilibrium meeting outcome is

(y (mb7 m87 Vt41,s Lt) ) (mb7 mS’ UVtt1, Lt)) = arg H;EZX Sb (y7 My mb7 m87 Vt41, Lt) (3)

subject to
0.S° (y7 2 mba msa Ut+1, Lt) = (1 - e) Sb (y: 22 mb7 m87 V41, Lt) ) (4)
where

S° (y7 22 m’, m’, Ut+1, Lt) =u(y)+p ZM Ut+1 mb - d) — U1 (mb)} (5)

is the buyer’s surplus from trading (y, i),
S* (ya ey mb7 m®, Vg1, Lt) = —C (yLi_a/A) + 62# (d) [Ut+1 (ms + d) — Vg1 (ms)]
d
(6)

is the seller’s surplus, and @ is the buyer’s share of surplus. Let f° (mb, m®, vy, Lt)
and f* (mb , M Vg, Lt), respectively, denote the buyer’s surplus and the seller’s sur-
plus implied by the equilibrium meeting outcome. Then given (v41, ), vy satisfies

vy (m) = Pugyq (m) + 0. 52# fb (m,m',veg1, L) + f2 (m',m Ut+1,Lt)} ; (7)

Tey1 satisfies

rpr (m) = Y A (mym, v, Ly) m () (8)

where X\ (m’,m,viyq, L;) is the proportion of agents with m’ units of money leav-
ing with m after pairwise meetings in period ¢ implied by money transfer lotteries
{,u( mb, m*, vy, Lt) : (mb,ms) € Ba X BA} and is explicitly described in the ap-

pendix; and L, satisfies

AL} =05 Z y (m,m' v, Ly) mp (m) m (m') . (9)

Definition 1 Given my, a sequence {vy, my1}52y s an equilibrium in the economy if
it satisfies (3)-(9). An equilibrium is a monetary equilibrium if v, (B) > 0 for some
t. A pair (v, ) is a steady state if {v, i1 }52 with vy = v and T, = 7 for all t is an
equilibrium.

1See, e.g., Aruoba, Rocheteau, and Waller [2], Lester, Postlewaite and Wright [19] and
Venkateswaran and Wright [28]. In Trejos and Wright [27] and Shi [24], the trade in the meet-
ing is determined by the generalized Nash bargaining solution, treated as the limit of equilibria from
an alternating-offer game in the meeting. This Nash solution does not guarantee concavity of value
functions in equilibrium; in numerical analysis it certainly does not preserve concavity in iterations.



Given parameter values, numerical analysis in the next two sections pertain to
the output and price responses to an unanticipated shock. The analysis involves two
steps.

Step 1. We first compute a steady state (v, 7) such that v is strictly increasing and
strictly concave; a function v on By is concave if 2v(m) > v(m + A) +v(m — A) for
B — A >m > A. When 0 is sufficiently close to one, we can adapt the proof in Zhu
[32] to show existence of such a steady state if € is sufficiently small; we cannot extend
that proof for a general 6. Nonetheless, existence holds if we perturb the model so
that money yields arbitrarily small direct utility. When perturbation goes to zero, a
limit of steady states in perturbed models is a steady state in the (original) model
and it is a desired steady state if the limit value function is not a zero function. We
test whether a computed steady state (v, 7) is an object that truly exists by testing
whether it is approximated by steady states in perturbed models.

After we obtain numerical values of (v, 7) we also check its local stability as follows.
First, we obtain a dynamic system (vyy1,m41) = ® (vy, m) in a neighborhood of (v, )
from the definition of equilibrium. For this system, we need that v, is solvable from
the equilibrium condition (7), treating (v, m;) as parameters; this is up to checking
whether the relevant Jacobian is of full rank. Next we compute eigenvalues of the
Jacobian of @ (-, -) evaluated at (v, 7). Based on the number of eigenvalues inside the
unit circle, we are able to determine whether the steady state is locally stable. We
leave details of the procedure into the online appendix.®

Step 2. Here we let the economy reach (v, ) at period 0 and let it be hit by an
unanticipated shock so that before period-1 pairwise meetings it has a distribution
of money different than w. Next we compute a transitional equilibrium {vy, w11},
starting from that period-1 distribution and approaching a post-shock steady state
(W', 7" (i.e., (v, m) — (v, 7') as t — oo). If the post-shock average money holdings
M’ are equal to M then (v',7") = (v, 7); otherwise we seek (v/,7) so that neutrality
applies to (v/,7') and (v, 7). Because of indivisibility of money, neutrality means
that I’ (m) = >, @ (x) ~ Il (mM/M') and v' (m) ~ o (mM/M'), where II(.) is
the linear interpolation of the mapping m + II(m) = Y _ (x) and 0(.) is the
linear interpolation of the mapping m ~ v(m); we choose sufficiently large M /A and
B/A (as detailed below) so that neutrality applies well, i.e., these approximations
are sufficiently accurate.

Between a buyer with m® and a seller with m?*, let (yt (m ,ms) s M (.;mb,ms))
be the meeting outcome at period ¢ in the transitional equilibrium, d; mb,ms) =
gl (d; mb, ms) d, and p; (mb, ms) =d, (mb,ms) e (mb,ms); then aggregate out-
put at ¢ is

b

Y; =05 Z e (mb) m (m®)y (mb, ms) (10)

mb7ms

>The website is http://ihome.ust.hk/ taozhu/nonneutrality.htm.



and the average price at t is

P = Z T (m®) m (m®) p (m®,m?) . (11)

mb,ms

Let (y(.),p(5.), d(.), p(.), Y, and P be counterparts at the steady state (v,m).
For the output and price responses, we compare Y; and P, along the transitional
equilibrium with Y and P, respectively; specifically, the output response at period t
is measured by the output increase Y;/Y — 1 and the price response at period t is
measured by the price increase P,/ P — 1.

In the two-step analysis, our algorithm to find a steady state is essentially an
iteration on the mappings implied by (3)-(8). The algorithm is standard and, as all
other algorithms, details and related codes are given in the online appendix.® Our
algorithm to find a transitional equilibrium uses an approximation treatment; that
is, (v/,7') is reached after T" periods for a sufficiently large T". This algorithm makes
sense only if (v/, ') is locally stable so it is applied only after we confirm local stability
of (v, 7").

Regarding parameter values, we set 5 = 1/ (1 + 0.01), implying an annual discount
rate of 4% when a period is treated as a quarter. The term A in (1) is a free
parameter and we simply set A = 1. Because the term € in (2) is to make each agent’s
reservation value well defined when o > 1, we set € = 10™* (by various experiments,
making it smaller has negligible influence on computation results). In nominal objects
(A, M, B), M/A and B/A should be sufficiently large so that when M is changed to
some nearby M’, neutrality applies well to pre-change and post-change steady states;
by various experiments, we find that M /A = 30 and B/A = 90 serve the purpose
well and we maintain (A, M, B) = (1,30, 90) throughout.

In our benchmark, we set a = 2/3, implying a curvature of the aggregate pro-
duction function commonly used in the business cycle literature; o = 1 (u(y) =
In(y + €) —Ine); n =1 (the unitary Frisch elasticity of labor supply); and 6 = 1.
Without indicated otherwise, these are benchmark values for (o, 7, a, 8) used in com-
putation.

3 Ciritical roles of a steady state property and de-
centralized trade

In this section we illustrate critical roles of a steady-state property and decentralized
trade in determining the output response after a shock hits the economy. Along this
line, we illustrate how the output response may be affected by certain parameters.
For our purpose, let (v, ) be the steady state reached by the economy at period 0
and suppose that some imaginary shock does not change the stock of money but hits
the economy to one of two distributions before period-1 pairwise meetings, denoted

71 (7) and 73 (7).

SFor iterations in all algorithms, we stop when the two-round difference is less than 10~8.



The following construction of 7} (7) and 7% (7) is borrowed from Wallace [29].
Provided that the initial distribution of money is m, first assign each agent some
additional money. An agent with m units of money is assigned min{[a (m)]|—1, B—m}
with probability p (m) = [a (m)] — a (m) and min{[a (m)], B —m} with probability
1 —p(m), where C' > 0 and Cj are fixed numbers, a(m) = max{0,Cy + C - m},
and [a (m)] is the smallest integer not less than a (m). Next, given that M’ — M is
the total amount of assigned money, remove each unit of money independently from
the economy with probability 1 — M/M’. We associate 7 (7) and 73 () with some
Cy < 0 and Cy > 0, respectively; that is, the imaginary shock hits the economy to
71 (7) by dispersing (stretching) the distribution 7 and to 73 (7) by squeezing 7. For
exercises below, we set (Cp, C) = (—2,0.1) for 7 (7) and (Cy, C) = (2,0) for 73 ().

We first present computed results for (o,7,«,0) = (1,1,1,1) (« = 1 is not our
benchmark value). In Figure 1, the first row displays the steady-state value func-
tion v and the steady-state distribution 7.” The second row displays the output
responses along the transitional equilibria starting from 7} (7) and from 7% (), re-

spectively. Starting from =} (7), the output response is positive, significant, and

persistent. Starting from 77 (), the output response is negative and much less sig-
nificant.

Now we note an important observation: substituting v for v,,; one gets a good
approximation to y; = {y (mb,ms) : 0 < ml,m* < B}, d; = {d, (mb,ms) 0 <
mb,m* < B}, and p; = {p; (m*,m*) : 0 < m’,m*® < B} because vy is very close
to v. In other words, people’s incentives to trade in the transitional equilibrium are
very close to their incentives to trade in the steady state. In fact, when a = 1, yy,
d;, and p; (calculated when the future value of money is given by v;,1) are all well
approximated by their steady-state counterparts, denoted y, d, and p (calculated
when the future value of money is given by v). In the present exercise, for example,
the largest deviation of pairwise output (mb, ms) from y (mb, ms) is around 0.004%;
a deviation of z; from z is defined as |z;/z — 1|.® Hence, the output responses in
Figure 1 are essentially driven by the differences between post-shock distributions
and 7.

To see why a distribution different from 7 may drive a significant output response,
we display the set y in Figure 2. The top graph shows y in the three-dimension space.
The two graphs at the bottom show two sorts of output curves that help to better
visualize y: the left graph consists of curves of the first sort each of which tells how
Y (mb, ms) varies with m® for a fixed m®; the right graph consists of curves of the
second sort each of which tells how y (mb, ms) varies with m® for a fixed m*. Each
curve of the first sort exhibits strong convexity, saying that when there is a marginal
reduction in the seller’s wealth, the increment in consumption received by a buyer is

"There is no result for uniqueness of a steady state. However, even though we choose many
different initial values, our algorithm always converges to the same steady state.

8The largest deviations of the pairwise payment d; (mb, m? ) from d (mb, ms) and of the pairwise
price py (mb, ms) from p (mb, ms) are 0.008% and 0.004%, respectively.
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much larger if the seller is poorer. Because 7 (7) is obtained from dispersing 7, it fol-
lows that Y (m?, 7} (7)) > Y (mP, ) all m*, where Y (m®, h) = 3" h (m®) y (m®, m?)
is the average consumption for a buyer holding m® under the distribution A provided
that pairwise output is determined by y. This need not imply Y (7 (7)) > Y (7),
where Y (h) = 0.5% h (m?) Y (m®, h) is the aggregate consumption or output under
the distribution h. Indeed, the buyer’s average consumption is largely concave in his
money holdings for a given h, ie., Y (m®—1,h) +Y (m?+1,h) < 2Y (mb, h), as
suggested by curves of the second sort.” But strong convexity is the dominant factor
because of asymmetry in curvatures of two sorts of curves. That is, aggregate output
would increase in the steady state if people’s incentives to trade were not changed but
m were dispersed to some h. This is the critical steady-state property that dictates
the output-response patterns in display.

Next we conduct two exercises: (a) vary n in {1,2,4} but maintain (o, a,6) =
(1,1,1); and (b) vary a in {1,5/6,2/3} but maintain {o,n,0} = (1,1,1). Figure 3
displays output responses starting from 71'% (m) for these two exercises; responses from
72 (7) remain negative and are skipped.

In exercise (a), a smaller 7 gives rise to a weaker output response. This finding
may be explained by the observation that a smaller 1 reduces asymmetry between
curvatures of two sorts of output curves, as shown in Figure 4 (but one should keep
in mind that the output curves might not capture all the structure of the set y). In
terms of the global structure, a smaller n would imply that there is a smaller degree
of variation in y because it is more costly for a seller to increase his labor supply in
a meeting.

In exercise (b), a smaller « gives rise to a weaker output response. As noted above,
substituting v for v,y gives a good approximation to y;, d;, and p;. When o < 1,
y: and y, viewed as surfaces in the three-dimension space, share similar shapes but

9Although shapes of two sorts of curves are quite intuitive, they are formed by many general-
equilibrium forces. We cannot prove why one curve is convex and another is concave.

11
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because the aggregate labor input L, is greater than the steady-state aggregate labor
input, the individual-level productivity AL~ is below the steady-state productivity,
shifting y; down from y. Conceivably, a smaller « is accompanied with a larger
systematic shifting-down effect. At o = 2/3, y; deviates from y by 0.05% universally
on all positive points.!°

Findings in exercises (a) and (b) seem robust. Indeed, we observe the same mono-
tonic patterns when we use other values of (o,6) and vary the way to construct 7 ().
Most importantly, we can obtain a stronger output response by a money injection in
the next section if we choose a larger 1 or a. The same does not apply to parameters
0 and o.

Regarding @, we find two forces in play when changing its value. A smaller 6 leads
to a less curvature in an output curve of the first sort displayed in the left graph of
Figure 5 (this tends to dampen the output response), and a more dispersed steady-
state distribution as displayed in the right graph of Figure 5 (this tends to amplify
the output response). The interaction of these two forces makes the output response
sensitive to how the underlying shock disperses the distribution of money. Varying
0 from 1 to 0.8 and holding (0,7, «) at (1,1,1), we find that a smaller § leads to a
stronger output response; at § = 0.8, the peak output increase reaches 1.3% (it is
0.16% at @ = 1). But with a 7 () constructed differently,!! a smaller 6 leads to a

10The largest deviation of d; (mb,ms) from d (mb,ms) is no greater than 0.005% at a = 2/3,
indicating that p; rises above p by 0.05% universally on all positive points.

If we replace the seller’s production in (1) with y = Al®, then all externality caused by the
aggregate labor input disappears. Also in (6) the argument inside ¢(.) becomes y/®; we may
transform this argument into y (so, in particular, it is linear in y as in the original setting) and
accordingly transform the coefficient 7 for ¢(.) into %g“ So if n = 1 and o = 2/3, setting
y = Al® certainly amplifies the output response.

UFor this 7i (), let each agent with m units of money be hit by a shock: with probability
1 — 19, the agent keeps m; with probability ¢, he draws ¢ (m) from a discrete uniform distribution
on {—gq,...,0,...q}, where ¢ = min (m, B — m), and his money holdings become m +¢ (m). We use
¥ = 0.02 in construction.

12
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weaker response; the peak output increase is 1.1% at 6 = 1 and 0.4% at 6 = 0.8. For
the former 7 (7), var (7 (7)) —var (7) increases from 4.6 to 39.1 when 6 falls from 1
to 0.8; for the latter 7r{ (7), var (7} (7)) — var (7) ranges from 6 to 7 under various 6.
That is, when 7 itself is more dispersed, the imaginary shock underlying the former

71 (7) induces a much stronger dispersing effect than the shock underlying the latter
1

m ().

A change in ¢ may also involve two offsetting forces.!? Given 7 is in the range
from 1 to 2, the overall effect of increasing o around unity is to amplify the output
response. But this effect is almost ignorable under the money injection in the next
section.

Now we turn to the role of decentralized trade. Decentralized trade certainly
matters for persistence of the output response because it slows down the dispersion
(diffusion) of money redistributed by the shock. For its contribution to significance
of the output response, we modify the basic model by replacing pairwise meetings
with a centralized meeting. In this modified version, each agent has the equal chance
to be a buyer or a seller in a competitive market. Each agent takes the price of
money ¢; as given. He trades with the market a lottery p for monetary payments
and a quantity y for goods such that the expected monetary payment implied by the
lottery u is y/¢;. Let v, and 7 be the same as in the basic model. Given 7, an
equilibrium is a sequence {v, ¢y, m11}52, satisfying standard conditions on the law
of motion, the recursive relation between value functions, and the market clearing;
details of these conditions are given in the appendix. A triple (v, ¢, ) is a steady
state if {ve, p, T 152 With (vg, @1, mev1) = (v, ¢, ) all ¢ is an equilibrium.

2Increasing o toward unity is equivalent to two combined effects: decreasing 1 (which tends to
decrease output) and a convex transformation of y in u(.) (which tends to increase output). Similarly,
increasing o away from unity is equivalent to two combined effects: increasing n (which tends to
increase output) and a concave transformation of y in u(.) (which tends to decrease output).

13



Aggregate Qut put Buyer’s Consunption Seller’s Production

0.02% 15

0%
—W— ;
-0.02% 05

20 40 3 w2z m 1ow o 8 w2z m 1om om
Period (Quarter) Buyer's Money Holdings Seller's Money Holdings

Figure 6: Left: centralized market’s output response from 7{ (7); middle and right:
buyer’s consumption curve and seller’s production curve.

As for the basic model, we compute a steady state (v,¢,7) and a transitional
equilibrium from 7} (7). From the left graph in Figure 6, we see a transient, negative
and insignificant output response. To understand this pattern, we refer to the middle
and right graphs in the figure obtained from (v, ¢, 7): the middle graph has a buyer’s
consumption curve that tells how the buyer’s consumption varies with his money
holdings and the right graph has a seller’s production curve that tells how the seller’s
production varies with his money holdings. According to curvatures of these two
curves, if ¢ is the same as ¢, then dispersing 7 to 7{ (7) tends to raise the period-1
aggregate production above the steady-state level and reduce the period-1 aggregate
consumption below the steady-state level; the influence from agents with holdings
greater than 2M may be ignored because the proportion of these agents is very small.
To clear the market, ¢; must rise above ¢ (the goods price must fall) so that the
period-1 buyer’s consumption curve is shifted up and the period-1 seller’s production
curve is shifted down. Examining either curve, the dispersing effect and the shifting
effect offset each other, leading to an insignificant output effect. Starting from 73 (7),
the output response is insignificant by the same reason (while it turns to be positive).

4 One-shot regressive money injection

As in the last section, the economy reaches a monetary steady state (v, ) at period
0; but here we replace the imaginary shock with a monetary shock. Specifically, the
government injects money from period 1 to NN, raising the stock of money from M
to M'. As noted above, we look for the post-injection steady state (v, ) such that
neutrality applies to (v,7) and (v',7"). Given this neutrality, aggregate output Y’
and the average price P’ at the steady state (v/, ') are very close to Y and PM'/M,
respectively.!® As in the last section, one gets a good approximation to y,, d;, and
p: by substituting the post-shock steady state value function, namely v, for v;q.
So if the injection induces a distribution before period-1 pairwise meetings more

13For exercises in this section, M’ = 1.01M, the deviation of Y’ from Y is no greater 0.007%, and
the deviation of P’ from PM’/M is no greater than 0.09%.
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dispersed than 7/, then Y] increases relative to Y’ and, hence, relative to Y. Recall
that II' (m) ~ II(mM/M’), implying that we should consider a regressive money
injection.

We endogenize regressiveness of the injection by way of an endogenized limited
participation as follow. At period ¢t € {1,..., N}, agents are entitled to buy lotteries
with money: if an agent pays x units of money, then he receives 2z units of money
with probability x; € (0.5, 1] that is set by the government; otherwise he receives no
money. Given yi,

(Xe41 = 0.5) / (xe = 0.5) = pr € (0, 1)

fort € {1,...,N =1} if N > 1. We choose N € {1,5}: N =1 is the benchmark
while N = 5 may mimic the familiar AR(1) process of monetary shocks. Recall that
there is an upper bound B on the individual holdings. This bound affects the lottery-
purchasing decision for agents whose holdings are close to the bound (an agent with
holdings B does not buy any lottery). But these effects have little influence on the
output response because the measure of agents with such holdings are very small.**

Because the injection takes only N periods, the equilibrium conditions at period
t > N+1 are the same as those in section 2. At period ¢t € {1,..., N}, the equilibrium
conditions involve (v, ;) as usual and the distribution 7; of money after the injection
but before pairwise meetings; details of these conditions are given in the appendix.

To compute the transitional equilibrium from 7 to the steady state (v/, 7"), when
N =1 we seek a suitable lottery-winning probability x; to meet M’ = 1.01M; when
N =5, we set p, = p = 0.65 and again we seek a x; to meet M’ = 1.01M (p = 0.65
turns out to imply that the amount of money injected at ¢t +1 < N is around half of
the amount of money injected at ¢ > 1).

Figure 7 displays the output and price responses along the transitional equilibrium
for benchmark parameter values (o,7n,«,0) = (1,1,2/3,1). The output response
for N = 1 conforms to the pattern of the output response along the transitional
equilibrium starting from 7{ (7) in the last section. For N = 5, output expands with
a declining rate as the total money stock increases; the reason is simple—the injection
at t 4+ 1 reinforces the dispersion on the distribution of money made by the injection
at t but the reinforcing effect declines as the injection rate declines.

In Figure 7, the price responses are rapid and slightly less than proportional to
the change in the money supply. But the price response may be more sluggish for
other parameters. Figure 8 displays the output and price responses when (0,7, ) =
(0.5,4,1) (holding # = 1 and N = 1). We observe a much stronger output response,
which may be attributed to @« = 1 and n = 4 (as explained in the last section).
We also observe a more sluggish price response. Recalling that one gets a good

4Tn the basic model with benchmark parameter values, for example, 7 (B) = 1.63 x 107! and
7 (B —1) =3.05x 10717 in the steady state. In general, we need a finite B for numerical exercises.
In this model, if B has any influence on our result, the influence is to dampen the output response;
for, the upper bound being relaxed, the money injection would only disperse the distribution of
money further.
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Figure 7: Output and price responses after a 1% money injection. Top row: N = 1;
bottom row: N = 5.
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Figure 8: Output and price responses under (o,n, «,0) = (0.5,4,1,1).
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Figure 9: Steady-state price curves p (mb, ms).

approximation to p; by substituting v" for v;,1, we display in Figure 9 two sorts of
price curves obtained from the post-injection steady state when (0,7, ) = (0.5,4,1)
and from the post-injection steady state when (o, 7, ) = (1,1,2/3).

In the left graph, a price curve from a steady state tells how the pairwise price
P (mb, ms) varies with m? for the fixed m® = M; in the right graph, a price curve from
a steady state tells how p (mb , ms) varies with m? for the fixed m* = M. For compar-
ison, price curves in each graph are rescaled so that the highest prices appear to be
the same. Price curves from the former steady state are more concave,'® contributing
to a larger fall in P, from P’ and, hence, a less responsive price pattern following a
regressive money injection; in addition, as noted in the last section, a = 1 contributes
to a stronger output response (by eliminating externality from the aggregate labor
input), further dampening the price response.

Next we turn to other surplus shares of buyers. When we vary 6 from 1 to 0.8
(holding o, 7, @ and N at benchmark values), the degree of output response first
increases as # decreases from unity and reaches the maximum at 8 = 0.95; then it
falls as 6 falls. When @ slightly departs from 1, there is a rapid and more-than-
proportional price response, i.e., price overshooting; the degree of price overshooting
increases as ¢ decreases. The upper row in Figure 10 displays the output and price
responses for 6 € {1,0.95,0.8}; it is worth noting that there is not any monotonic
relationship between the degree of output response and the degree of price response
when @ is varied.

Regarding the output-response patterns for § < 1, we refer to the two accom-

15 At the left figure, a more concave price curve implies a lower ratio of the increment in the price
paid by a buyer caused by a rich seller’s marginal increase in wealth to the increment caused by a
poor seller’s. This seems plausible for a larger n: a smaller price increment may give the rich seller
sufficient incentive. At the right figure, a more concave price curve implies a higher ratio of the
increment in the price received by a seller caused by a poor buyer’s marginal increase in wealth to
the increment caused by a richer buyer’s. This seems plausible for a smaller ¢: a poor buyer is more
aggressive in spending money.
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panying forces when 6 decreases indicated in the last section. Here an informative
statistic is the lottery winning probability y: x = 0.5520, 0.5608 and 0.5585 at 6 =1,
0.95, and 0.8, respectively; a smaller y implies a larger proportion of agents who buy
lotteries, making the injection less regressive.

Regarding price overshooting, we draw price curves from post-injection steady
states for 8 € {1,0.95} in the bottom row of Figure 10 and, again, rescale curves
in each graph so that the highest prices appear to be the same. At each graph, the
curve for # = 0.95 is much different from the curve for # = 1. When 6 = 0.95, the
curve is convex at the left graph; at the right graph, it is convex over a wide range
and buyers with small holdings pay much higher prices.! These differences conform
to the different price-responding patterns for the two values of 6.

Next we briefly comment on changing parameter values of n and o. If we raise 7
to 2 (holding other parameters constant), the peak output increase is 1.7 to 1.8 times
the value for n = 1; the output and price response patterns remain the same. Varying
o from 0.75 to 1.25 (holding other parameters constant), we observe little changes
in degrees and patterns of the output and price responses except that there is more
persistence as ¢ increases.

Finally, we note a short-run Phillips curve in our model. That is, if the injection
increases the money stock by a% and a is not very large (say, a < 5), then the output
and price responses are about a times values for the corresponding 1%-increase case.

5 Bonds and liquidity effect

In this section we modify the basic model by adding one-period government bonds
as follows. Each period t consists of two stages, 1 and 2. At stage 1, the government
issues D; amount of bonds on a competitive market. An agent entering the bond
market with m units of money can choose a probability measure /i (a lottery) defined
on the set = = {( = (m,w) € Ba X Ba : w > m} that satisfies

Yo Al (m +pf (' —m)) <m, (12)

¢'= ()
where /1 (¢") is the probability for the agent to leave the bond market with m’ units of
money and w’ — m/ units of bonds and pZ, interpreted as the price of bonds, is taken

16Convexity at the left figure says that when there is a marginal increase in the seller’s wealth,
the increment in the price paid by a buyer is much higher if the seller is richer. This seems sensible
because given the decreasing marginal value of money, a higher price increment is necessary to
maintain a positive share of surplus to the seller. For the the right graph, we note that a buyer
with small holdings spend very little when 6§ = 1, largely contributed by that the marginal value of
money at zero is very high. A smaller 6 lowers the marginal value of money at zero, so the a higher
price (with reference to @ = 1) may be a better means for the buyer with small holdings to give a
positive share of surplus to the seller; but the advantage of a higher price may decline rapidly when
the buyer’s money holdings increase because the buyer’s marginal value of money gets closer to his
marginal value of money under 6 = 1.
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as given by the agent. In equilibrium, p? clears the bond market. Each unit of bonds
automatically turns into one unit of money at the start of period ¢t + 1. At stage 2,
agents are matched in pairs as in the basic model; bonds are illiquid and money is
the unique payment method in pairwise meetings.

In this modified model, the total money stock would increase over time because
of interest payments. If money were divisible, then we would simply normalize the
state of an agent at period ¢ right before issuance of new bonds as mM,;/M,", where
m is the agent’s money holdings at that time, M," is the average money holdings
at that time, and M, is the difference between M," and period-t interest payments
Dy_1 (1 —pP,). Because mM,/M;" need not be an integer for indivisible assets, we
follow Deviatov and Wallace [10] by assuming that right before new bonds are issued,
each unit of money automatically disintegrates with the probability 6, = 1 — M, /M,
so that the total money stock returns to M;.!" Setting My = M, we have M, = M,
all t.

Here we let v; and m; be the value function and the distribution of money after
disintegration but before bonds issuance at period t (so ) m (m)m = M) and let 7
be the distribution of portfolios right before pairwise meetings. Given 7y and {D;}$2,,,
an equilibrium is a sequence {v;, Ty, T 41, pP 122, satisfying standard conditions on the
laws of motion, the recursive relations between value functions, and the bond market
clearing; details of these conditions are given in the appendix. A tuple (v, T, pB)
is a steady state if {vy, 7y, 1, P 1520 With (vy, 7y, 7, pP) = (v, 7,7, p") all ¢ is an
equilibrium. In a steady state, it is necessary to have D; = D for some D.

We interpret the product of the period-t gross growth rate in the price level and
M;" /M (the period-t gross growth rate in the money stock if there is no disintegration)
as the gross inflation rate at t > 1, denoted 1 + ¢, i.e.,

t
PRI R
We interpret i; = 1/p? — 1 as the nominal interest rate and, hence, i; — ¢; as the
real interest rate at ¢t. The real interest rate at steady state is nearly zero because
interests are financed by inflation.

We apply to this modified model the same one-shot money injection as in the
last section. Again the economy reaches a steady state at period 0. At period t €
{1,...N}, money is injected before issuance of new bonds. Now M,' is the period-
t average money holdings after injection but before issuance of new bonds and, as
above, M; = M;* — D,y (1 —pP ) and 6, = 1 — M,/M,". Starting from period 1 the
supply of bonds follows the process

Dy=D"—1p- (D' — D;_1), (14)
where D; = D, D' is the supply of bonds at the post-injection steady state, and the
sequence {1} governs how quickly the bonds-money ratio returns to the steady-state
level.

(13)

ITf we apply this disintegration to divisible money, an agent with m units of money before
disintegration holds mM;/M," after disintegration, exactly equivalent to the normalization without
disintegration.
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Figure 11: Transitional paths following a 1% money injection, under different ).

In exercises below, we follow the two-step procedure described in section 2. Here
we choose D close to M so that the nominal interest rate at the pre-injection steady
state is around 1.5%. We choose D' ~ DM’/M so that neutrality applies well to
pre-injection and post-injection steady states, where M’ — M is the total amount
of money injected over the N injection periods. Other parameter values, including
benchmark values for (0,7, «, ), are the same as in the basic model.

Figure 11 presents transition paths when D = 29.45 N = 1, M’ = 1.01M (as
in the basic model, we seek a suitable y; to meet this target), D' = 29.76, and
Py = 1 € {0.0,0.5} all t."® To facilitate the discussion, let Z;,; be the average
nominal wealth at the start of period ¢ + 1 in the transitional equilibrium; let Z be
the average nominal wealth at the start of a period after the post-injection steady
state is reached. As in the basic model, one gets a good approximation to period-¢

18Because of indivisibility of nominal assets, some D’ # DM’/M may bring output and the
nominal interest rate in (v', 7’) closer to those in (v, ) than D’ = DM'/M. In the present exercise,
deviations of Y’ from Y, P'/M’ from P/M, and p? from p® are 0.001%, 0.004%, and 0.02%,
respectively. If we instead choose D' = DM’/M, the corresponding numbers are 0.1%, 1.3%, and
0.03%.

21



pairwise meeting outcomes in the transitional equilibrium by substituting the value
of holding 27/Z;, 1 at the start of a period at the post-injection steady state for the
value of holding z at the start of period ¢ 4 1.1

From Figure 11, we observe a liquidity effect for each : 4 is around 0.5% while the
nominal interest rate 7 in the pre-injection steady state is around 1.5%. This may be
explained as follows. If an agent carries j units of money into pairwise meetings in the
post-injection steady state, then he receives a close service from carrying j, = jZy1/2Z
units of money into period-t pairwise meetings in the transitional equilibrium. So
Jy = kJZ1/Z for some k not far from one, where J; and J are the average money
holdings carried into period-t and steady-state pairwise meetings, respectively. But
J is slightly greater than 1 and because Z;,1/Z is around 1, J, — J = (kZy.1/Z —1)J
is too small to absorb most of injected money.?® As implied by this explanation and
also observed from Figure 11, the speed of the nominal interest rate returning to the
steady-state level depends on the speed of the bonds-money ratio returning to the
steady-state level.

The big surprise in Figure 11 is that the injection drives down inflation: the
inflation rate is down to 1.4% when ¢ = 0 and to 0.9% when ¢ = 0.5, while the
inflation rate ¢ in the pre-injection steady state is around 1.5%. To understand this,
it suffices to consider ¢y = 0. One unit of money in pairwise meetings at period 1
is worth of, in the approximation sense, Z/Z;,; units in pairwise meetings at the
post-injection steady state. So P, = k1P’ Zy/Z = k1 P(M'/M)(Zy/Z) for some k.
The term k; reflects the effect on P; caused by the difference between 7/ and the
distribution of nominal wealth following the injection; in the corresponding situation
in the basic model, it is less than but close to 1. By definition Zy = M’ + Di;
and Z = M' + D'i’', where i’ ~ i is the nominal interest rate in the post-injection
steady state. The difference in interest payments D'i’ — Di; is around 0.3, implying
Z/Zy =~ 1.013; that is, the effect on P; from the increase in the nominal stock is
dominated by the effect on P, from the increase in the real value of money. Because
01 is equal to the disintegration rate ¢ in the pre-injection steady state, it follows that
¢y is below . Similarly, P, = koP(M'/M)(Z3/Z) for some ko (playing the same
role as k1). Because the difference in interest payments D'i’ — Dis is nearly zero,
Py is close to ko P(M'/M) and, hence, P»/P; is close to 1.01. But (s is still below
¢ because o is much smaller than 9, a consequence of the substantial difference in
interest payments D’i’ — Di;.

To emphasize, the reduction in interest payments D’i’ — Di; at period 2 has a

19Tn the basic model, if the stock of money M;,; at period ¢+ 1 in the transitional equilibrium is
not equal to the stock of money M’ in the post-injection steady state (e.g., t = 2 when N = 5), the
value of holding m at ¢+ 1 is approximated by the value of holding mM’/M,; at the post-injection
steady state. If mM’' /M1 or 2Z/Z;,1 is not an integer, the steady state value is taken from the
linear interpolation of the relevant steady-state value function.

20Tn models of limited participation (see, e.g., Grossman and Weiss [13], Rotemberg [23], and Lucas
[20]), a liquidity effect arises because some money in circulation cannot reach the bond market when
money is injected.
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direct effect on d5 and an indirect effect on P; through d, so that it affects inflation
rates at periods 1 and 2. The general point is that if the steady-state inflation is driven
by interest payments to government bonds, then the liquidity effect of an injection
may easily drive down the inflation.

There are richer and more interesting dynamics in real and nominal variables with
a large N. To stay close to the basic model, we let N =5 and p; = p = 0.65. We
seek a suitable x; so that M'/M — 1 = 1.667% and money injected at period 1 is
around 0.01M (the nominal interest at period 1 then is down by the same magnitude
as above). We set D’ = 29.966 and choose {wt}thl so that Dy/M; 1 = D;_1/M,_5 for
t <3 and D, = D’ for t > 3; in this process, D,;/M; exceeds the steady-state level
at t = 3. Transitional paths are in Figure 12. The output response peaks at the last
period of the injection (which is the same as in the basic model).

The nominal interest rate falls by 1% initially and next rises up; it exceeds the
steady-state level at ¢ = 3 and then slowly falls back, which makes sense because
Dy /M, exceeds the steady-state level at ¢ = 3 and then falls back to the steady-state
level. The inflation rate first falls below the steady state level, as in the exercise with
N = 1. Then it exceeds the steady state level at ¢t = 3 and then falls back. Notice
that D,/M, > D/M for t > 3 leads to d;41 > § (by affecting interest payments at
period t + 1), which, in turn, leads to ¢;1 > ¢; D3/M3 > D /M also leads to @3 > ¢
(by affecting P3 through d4 > 9).

Because the individual state is normalized, the price response does not directly
reveal the money-price relationship in the usual sense. This motivates us to introduce
two variables, I'¥ = (1 + ¢;)/(1 + @(t)) — 1 and M = M,/M(t) — 1. Here, 1 +
O = (14 ¢1) X ... X (14 ) is the gross inflation rate from period 0 to t in the
transitional equilibrium and 1 + @(t) = (1 4 ¢)" is the t-period gross inflation rate
in the pre-injection steady state. Also, M(t) = M/(1 — &), M, = M,y + M +
Dyy (1-pf )]/ — &), ¥M is the amount of money injected at period ¢, 1 — 8, =
(1 —6y) x ... x (1 =46,), and My = M. We interpret 1 + @(t) and M(t), respectively,
as the price level and the stock of money at period ¢ if there were neither injection
nor disintegration from period 1 to ¢ in the pre-injection steady state. We interpret
1 + ¢, and M, respectively, as the price level and the stock of money at period ¢ if
there were no disintegration from period 1 to ¢ in the transitional equilibrium.

Hence I'Y and T'M | respectively, represent departures of the non-normalized price
and of the non-normalized stock of money at period ¢ from steady-state trends. As
shown in the upper-right corner of Figure 12, the non-normalized price first falls
below the trend and next rises above it and gradually reaches a constant position
relative to the trend. The non-normalized stock of money stays above the steady
state trend and gradually reaches a constant position relative to the trend. After the
non-normalized price rises above the steady state trend, its departure from the trend
is still less than the departure of the non-normalized stock of money from the trend.
An outside observer may view this as an evidence of nominal rigidity.

The response patterns in Figure 12 are overall consistent with responses to mon-
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Figure 12: Transitional paths following a 1.667% money injection, N = 5.
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etary policy shocks found by VAR studies (e.g., Christiano, Eichenbaum, and Evans
[8]). Note in particular that some VAR studies find a fall in the inflation rate right
after an expansionary policy shock, referred to as the price puzzle; such a fall in in-
flation is an equilibrium outcome in our model. Moreover, it seems possible for our
model to mimic more closely some responses in VAR studies; for example, with a
larger N and suitable x; and p;, the output response may move up more smoothly
and peak before the inflation response peaks.

6 Repeated regressive money injection

In this section, we explore the long-run effects of a regressive money injection. For
this purpose, we modify the basic model by making the regressive money injection
scheme in section 4 permanent. In this modified model, we also introduce a lump-sum
money injection which occurs every period after people buy lotteries pertaining to the
regressive money injection scheme but before they meet by pairs. Specifically, we let
w < 1 be the proportion of the amount of money injected by the lump-sum manner
in the total amount of money injected in each period.

Because the injection is repeated, we normalize the individual state by disinte-
gration as in section 5. Here, the timing of disintegration in a period is after the
lump-sum transfer is made but before pairwise meetings start; the disintegration
probability is 6; = 1 — M;/M,", where M; and M, are the average money holdings
before and after injection at ¢, respectively; and the total money stock returns to M,
after disintegration. Setting My = M, we have M, = M all ¢.

At period t, let v; and 7; be the value function and the distribution of money at
the beginning of the period as in the basic model and let 7; be the distribution of
money after the injection by lotteries but before the lump-sum injection. Given g, w,
and {x.}, an equilibrium is a sequence {vy, 7, 41 }72, satisfying standard conditions
on the laws of motion and the recursive relations between value functions; details
of these conditions are given in the appendix. A triple (v,7,7) is a steady state if
{ve, T, M1 122 with (v, T, 1) = (v, 7, 7) all ¢ is an equilibrium. In a steady state,
it is necessary to have y; = x for some Yy.

We focus on the steady-state output-inflation relationship; the inflation rate is
given by (13). With or without the lump-sum transfer, a higher inflation tends to
reduce the value of money and hence output between every buyer-seller pair. On the
other hand, the regressive injection keeps the dispersing force on the distribution of
money forever so that this effect may be very powerful—one may think of a one-shot
injection when N is large and the injected amount does not decline in these N periods.

When w = 0, i.e., there is no lump-sum transfer at all, we find that the constant
dispersing on the distribution of money is the dominant factor. Specifically, when
we vary the inflation rate from zero to 20% by varying the lottery-wining probability
X, aggregate output keeps increasing. Motivated by empirical findings (e.g. Bullard
and Keating [5]), we choose w such that the output-maximizing money growth rate is
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Per-period Money Growth 0% 0.25% 0.5% 1% 2%

Annual Inflation 0% 1% 2% 4% 8%
Aggregate Output 100% 100.78% 100.82% 100.51% 99.61%

Table 1: Steady states under repeated injection when w = 0.5.

around 0.5% per period, translating to a 2% annual inflation rate. It turns out that
the suitable w is 0.5; results are summarized in Table 1.

7 Discussion

Here we begin with a few detailed settings in our model. The first pertains to the
lottery-purchasing scheme that endogenizes a limited participation in the money in-
jection. Admittedly this scheme, as many modelling devices in economics, may not
be directly observed in reality. But if we start from a realistic point, that is, the
distribution of wealth is not degenerate, then in a realistic sense an injection is likely
either to disperse or to squeeze the distribution of wealth. The lottery-purchasing
scheme disciplines us in choosing the dispersion degree and it may be regarded as a
parsimonious way to capture the dispersion of wealth induced by a money injection
through channels not existing in the present model. In a more sophisticated model
with such a channel but without that scheme, our finding would suggest that the
injection may lead to a strong output response.

The second setting pertains to our parameterization of preferences. We concen-
trate on a class of preferences that are widely used in recent monetary economics
(see, e.g., Gali [11], Woodford [31], and Christiano, Eichenbaum, and Evans [9]).
With such a preference, the set of steady-state pairwise output y takes the shape as
in Figure 2, which is critical to our findings. While this shape is quite robust when
we vary underlying parameters (o and n), it need not be so under another class of
preferences. For example, the set y is almost concave if one adopts the disutility
function of labor supply in Molico [22]. Our stand is that if the present class describe
people’s short-run behaviors well, then there is a whole new source for nonneutrality
of money in the short run.

The third setting pertains to the buyer’s surplus share. We have little knowledge
about what may be a better value for this parameter. We vary it from 1 to 0.8
(moving to a lower value would imply an incredible level of price overshooting). In
this range, the output response for # < 1 is at least as strong as the output response
for € = 1 but there is nominal rigidity only for € close to 1. For readers who believe
that a lower buyer’s share may be more realistic but also anticipate nominal rigidity,
there is a simple reconciliation; that is, we may let the buyer and seller in a meeting
be chosen by nature with probabilities ¢ and 1 — ¢, respectively, to make a take-it-
or-leave-it offer. Then the output and price responses are insensitive to the choice of
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Next we turn to exploitability of nonneutrality. In our model money may be
nonneutral in the short run and in the long run and both sorts of nonneutrality
are related. But there is a constraint for a central bank to exploit nonneutrality.
As not reported above, in the one-shot case, a regressive injection always reduces
average welfare in that > v (m)m(m) > > vy (m)m (m), where (v, 7) is the pre-
injection steady state; in the repeated case, a regressive injection always reduces
average welfare in that Y v (m)7(m) > > v (m)x' (m), where (v,7) is the zero-
inflation steady state and (v’,7’) is the steady state with the injection (w < 0.5).
That is, less equality is a cost for higher output.

Now we discuss two extensions that may be taken in the future. The first extension
is to make monetary shocks recurrent. Obviously numerical analysis for this extension
is much more challenging and may rely on some version of the method of Krusell and
Smith [15]. For the second extension, we note that the output response in our model
is essentially driven by people who are made poorer by an injection. There is no
substantial role for people who are made richer by the injection. The latter group of
people may have a much larger role if job creation is costly. The second extension
therefore is to make the labor market distinguishable from the goods market and
make it costly to create job in the labor market. Perceivably this is a demanding
work, too.

Finally comes our last point. Nonneutrality of money in the short run has been
at the heart of monetary economics since Hume [17].2! Nominal rigidity is a popular
answer to the question of what causes nonneutrality and, in particular, significant
and persistent output responses. There is always criticism of the assumption that
people cannot change prices when they want.?? From an off-the-shelf model that ac-
commodates some brilliant thoughts of Hume, we find that with decentralized trade,
the price being flexible need not be inconsistent with significant and persistent output
responses or even with observed nominal rigidity. While the model may not be con-
venient for policy evaluation, it reminds us that policy evaluation may be misleading
with assumed nominal rigidity.

21See Lucas [21] for a good reference.

22A defense to nominal rigidity is that there may be some costs to changing prices, e.g., menu
costs (Mankiw [16]) or nominal contracts. It is a nontrivial task to deal with such a defense; one
may refer to critics of Chari, Kehoe, and McGrattan [7] and Golosov and Lucas [12] to sticky price
models built on the Calvo [6] pricing in the New Keynesian literature.
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Appendix A: Complete description of equilibria
A.1 The basic model

In section 2, A (m,m’,vey1, Ly) is defined as follow. For d* € {1,...,B—m} and
d- e {1,..m},

Tt (mb) 2 (d+7 mb7 m, V41, Lt) ’ (15)

M=

)\ (m, m + d+,Ut+1, Lt) = 05

b

3
1§

o

A (m, m—d V1, Lt) =05 e (m®) p (d_; m,m® Vg1, Lt) ,
0

s

3

A (m7 m, Vi1, Lt) =0.5 Tt (mb) 12 (Oa mb7 m, Utyn, Lt)

M=

b

I
—_

+0.5 e (m®) p (0;m, m® veq, Ly)

S

w 3

3
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o

A.2 The model with centralized market

Consider the version of the model with a centralized market in the last part of section
3. The problem for a buyer with money holdings m is

max S° (Y, pts M, g, Vg1, Le) sty = @y ZM (d)d, (16)
Yol y

where S° (Y, psm, b, g1, Le) = u(y) + 852 p(d) [vigr (m — d) — vp1 (m)]; and the
problem for a seller with m is

max S° (Y, ptym, dp,vesr, Le) sty =y Y p(d)d, (17)
' d

Y

where 5° (y, 1, m, 1, vy1, L) = —c (thlia/A) + B2 p(d) [verr (m + d) — v (m)].
Let (g% (m, ¢y, viy1, Ly) , A% (m, ¢y, ve41, Ly)) be the solution to the problem in (16) if
a = b and to the problem in (17) if a = s; then

Ut (m> = ﬁvt—i-l (m) +0.5 |:.fb <m7 ¢t7 Vt41, Lt) + f~s (m7 qbt? V41, Lt) ) (18)

where f? and f*, respectively, are the buyer’s surplus and the seller’s surplus implied
by (g%, i*). Also,

i1 (m) = Z X(m',m, ¢y, v, L) m (m) (19)
where \ (m/,m, ¢y, vi41, Ly) is the proportion of agents with m’ units of money leaving
with m after trading that is implied by (ﬂb, [ﬁ); that is, for d* € {1,..., B—m} and

d- € {1,..m},
A (m7 m + d, ¢y, vy, Lt) = 0-5/117 (dJr; m, G, Vit 1, Lt) )

5\ (ma m — d_7 ¢t7 Ut-i—la Lt) = 05/15 (d_7 m, ¢t> Ut—i—la Lt) )
2\ (m, M, Pr, Vg1, Lt) = ﬂb (Oé M, r, Vg1, Lt) +p° (0§ m, Gr, Vig, Lt) .
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Market clearing requires

Som (m) 5 (m, 60, ven, L) = 3w (m) 3 (m, 6,011, L) (20)

Given 7y, a sequence {vg, Tip1, i}y 1S an equilibrium if it satisfies (18)-(20) and
AL? =0.5 st Tt (ms) ].75 (ms, ¢t; Ut+1, Lt)

A.3 The basic model with one-shot injection

Turning to section 4, consider ¢ € {1, ..., N}. Let 7; be as given in the main text and
let f°(.), f5(.), and A(.) be the same as in section 2 and A.1. Then we have

i (m) = A (m',m, v, L) 7 (m')) (21)
and the value of holding m units of money right before pairwise meetings is

Uy (m) = Pugyr (m) +0.5 Zﬁt (m) [f° (m,m v, Le) + 5 (m/,m, v, Le)] - (22)

At the money injection stage, the problem for an agent with m units of money is
ve(m) = max X0 (m+x)+ (1 —x:) 0 (m— )5 (23)

z<min(m,B—m

let « (m, x¢, 0¢) be the solution to the problem in (23). Then
i (m) = Z X(m/ m, xe, 0) i (m') (24)

where A (m’,m, x¢,0¢) is the proportion of agents with m’ units of money leaving
money injection stage with m; that is, A\(m, m+x, x;, %) = X and A(m, m—z, x¢, 0;) =
1 — x, for all m with z = 2 (m, x;, %) > 0, and A (m,m, x¢,¥) = 1 for all m with
r=x(m,xs,0) = 0. Given {x;}, and m; = 7, a sequence {v;, 7,1}, together
with {#;}¥, is an equilibrium if ALY = 0.5 y(m, m’, vy 1, L) 7 (m) % (m’) and (21)-
(24) hold for all ¢ € {1,..., N} and (3)-(9) hold for all ¢ > N.

A.4 The model with bonds

For the model with bonds in section 5, let v;, m;, and 7, be as given in the main
text. At period ¢ + 1, each unit of money disintegrates with probability § (7;) =

1—M/ (ZC 7 (€) w). Therefore the value of holding m units of nominal wealth at
the start of ¢t + 1 is

i lm) = 37 () 08GOy S v )29

At stage 2 of t, between a buyer with portfolio ¢ = (mb,wb) and a seller with

¢* = (m*,w*), the equilibrium meeting outcome (y(C*,¢*, vyq1, Le), (C*, €%, Dppa, L))
is determined by (3), where we replace (mb,ms,th) with (g”,gS,i)tH) and treat p

29



as a probability measure on {O, ..., min (mb, B — ws) } It follows that the value of
holding portfolio £ € = before pairwise meetings is

bt (€) = Bl (w) + 0.5 Zﬁt (") [£2 (¢, ¢ trgns L) + £2 (¢ Gt Lo)] s (26)
g

where f? and f* are the buyer’s surplus and the seller’s surplus from the equilibrium
meeting outcome, respectively, and A (¢, m, U441, L) is the proportion of agents car-
rying portfolio ¢’ into pairwise meetings and leaving with m units of nominal wealth
(its description is similar to the one in (15) and skipped here). Also, we have

m/ AN A M/ —m o
T (m) = ,z; (m) (1 =08 (m))" 6 (7) o1 (M), (27)
where 7,41 (m) = Zc/ A({',m, 01, Ly) T (¢') is the proportion of agents who hold m
units of nominal wealth at the start of ¢ + 1. At the bond market of ¢, the problem
for an agent with m units of money is

v (m) = max y_ju(¢') - 0 (¢') (28)
R

subject to (12); let f (.; m,ptB,f)t) be the solution to the problem in (28). Then the
distribution 7; must satisfy

() =Y a(Gm,pp o) m (m), (29)

and clearing the bond market requires

Y Smm) | > @ =m)p(impf0)| p =D (30)
m ¢r=tm )
Given 7y and {D;};>0, a sequence {vy, 7, Ty 1, P }iso is an equilibrium if it satisfies
(25)-(30) and AL = 0.5 0o y (€% ¢%, By, Le) 7 (C°) 7 (¢). If there is a money
injection, then we can introduce 7, as in A.3 for t € {1,..., N}.

A.5 The model with repeated injection

For the model with a repeated injection in section 6, let v;, 7, and 7; be as given
in the main text. In period ¢, the total amount of money injected is k(7;)/w =
(>, T (m)m— M) /(1 —w) and the amount of money injected in the lump-sum
manner is k(7). The proportion of agents holding m units of money after the lump-
sum transfer but before disintegration is

i (m) =Y A(m/,m, &) & (), (31)
where \ (m',m, 7;) is the proportion of agents entering the lump-sum transfer stage
with m' units of money but leaving with m: A(m+[k(7;)| —1,m, %) = [k(7:)] —k(7t)
and AN(m—+[k(7;)] ,m, &) = 14+k(7) — [k(7;)] for all m. After the lump-sum transfer,
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each unit of money disintegrates with probability ¢ (77;) = 1 — M/(M + k(7)) /w);
therefore the proportion of agents holding m units of money after disintegration is

~ m/ L \\™ . \m/—m ~

7 (m) = /2; <m) (1 =6 (7)™ 6 () 7 (m') . (32)

Letting f°(.), f(.), y(.) and A(.) be the same as in section 2 and A.1, the value of
holding m units of money after disintegration but before pairwise meetings is

U (m) = Bvggr (m) + 0. 5Z7rt N (v, Le) + 5 (m/,my v, Le)] - (33)

Also, we have
a1 ( Z)\ m',m, v, L) 1 (). (34)

The value of holding m units of money after the injection by lotteries but before the
lump-sum transfer at period ¢ is

=" XN(m,m/ 7)o (), (35)

where

/ /

B, (m) = 2 (ﬂ”;‘) (1= 6 (7)™ 6 (7)™ ™ & (m). (36)

For the injection by lotteries, (23) and (24) must hold (as in the one-shot injection).
So given m, w, and {x:}:2,, a sequence {vy, 7, 4152, is an equilibrium if it satisfies

(23), (24), (31)—(36), and ALy = 0.5y (m,m/, viq, Ly) T (m) 7 (M),
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