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Abstract

Newey, Steigerwald (1997) considered a univariate conditionally heteroscedastic model, with inde-
pendent and identically distributed errors. They showed that the parameters characterizing the
serial dependence are consistently estimated by any pseudo maximum likelihood approach, when-
ever two additional parameters, one for location, one for scale, are appropriately introduced in the
model. Our paper extends their result to a more general multivariate framework. We show the
consistency of any pseudo maximum likelihood method for multivariate models based on Lie groups
of (linear, affine) transformations when these groups commute, or at least satisfy a property of
closure under commutation. We explain how to introduce appropriately the additional parameters
which capture all the bias due to the misspecification of the error distribution. We also derive the
asymptotic distribution of the PML estimators.
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1 Introduction

A pseudo maximum likelihood
5

(PML) estimator is a maximum likelihood estimator based on a
misspecified parametric model. In general, a PML estimator does not converge to the true value
of the parameter of interest due to misspecification. However, in some cases, the convergence can
be satisfied. A well-known example is the estimation of a regression function by Gaussian PML
leading to the nonlinear least squares consistent method [see Bollerslev, Wooldridge (1992) for
the analogue in conditionally heteroscedastic models] and more generally the PML methods based
on linear exponential pseudo-families [Gouriéroux, Monfort, Trognon (1984)]. In such situations
the PML approaches are semi-parametric methods and are alternatives to other semi-parametric
methods, such as the methods of moments [Hansen (1982)].

Typically these PML approaches allow for consistent estimation of θ0 in a regression model
6
:

yt = a(xt; θ0) + ut, (1.1)

where the error is conditionally zero-mean:

E0(ut|xt) = 0.

However, other consistent PML approaches can be constructed for the regression model (1.1), when
the errors are independently, identically distributed (i.i.d.) with not necessarily a zero mean [Newey,
Steigerwald (1997)]. Under this alternative assumption on the error term, they prove the consistency
of the PML estimator of θ0, up to the intercept parameter, for any selected pseudo distribution of
ut, not necessarily a pseudo distribution in the linear exponential family.

The objective of our paper is to extend the Newey, Steigerwald consistency result to more

general econometric models, constructed from Lie groups
7

of linear transformations. In particular,
we explain how to introduce "intercept" parameters in order to capture all the misspecfication biases
and to obtain the consistency of the other parameters characterizing the sensitivities with respect
to the explanatory variables.

In Section 2 we introduce single index models, where the effect of the explanatory variables is
contained in a scalar parametric function of the explanatory variables. In Section 3 we consider
PML estimators of such models and we analyze their asymptotic properties. The case of multi-
index models is developed in Section 4. Transformation models for normalized data are introduced
in Section 5. Section 6 concludes. Proofs are gathered in appendices.

2 Single Index Model

2.1 The econometric model

We consider observations of a period-t n-dimensional random vector yt, t = 1, . . . , T , satisfying:

yt = exp[−{a(xt;β0) + α0}C]ut, (2.1)

5
or quasi-maximum likelihood (QML) estimator [see e.g. Newey, Steigerwald (1997)]. We avoid this terminol-

ogy, which could be source of misunderstanding, as it overlaps a slightly different alternative [Wedderburn (1974),
McCullagh (1983)].

6
Consistent PML approaches have also been developed for median and quantile regression models [see e.g.

Gouriéroux and Monfort (Chap. 8, 1995), Gouriéroux, Monfort and Renault (2016)].
7
A Lie group is a differentiable manifold with a group structure. Any group of square matrices is automatically a

Lie group [see Boothby (1975)].
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where the n-dimensional errors ut are i.i.d. with unknown common probability density function
(p.d.f.) g0 (with respect to a dominating measure), xt are period-t explanatory variables such
that xt and ut are independent, a is a known scalar index function, C a known (n, n) matrix,
α0,β0 are the true values of parameters, belonging to parameter sets Θα and Θβ, respectively, with

dimα0 = 1, dimβ0 = p.
8

In particular we assume that the index function is well-specified. The
exponential of a matrix C is defined by:

expC =
∞
∑

h=0

Ch

h!
,

where the absolute convergence holds for any multiplicative norm on the set of real (n, n) matrices.
The econometric model (2.1) is related to the family of transformations such that:

y = exp(−aC)u, say. (2.2)

The scalar parameter a in (2.2) has been replaced in (2.1) by a (nonlinear) regression (index)
function a(x;β), with an additive "intercept" α.

The family of transformations (2.2) parameterized by a can be interpreted as follows: we apply
to the (multivariate) shock u a linear transformation indexed by a. The set of linear transformations

from y to u: S = {exp(aC), a ∈ R} is a commutative Lie group.
9

These transformations are one-
to-one, commute and the function: a → exp(aC) is differentiable at a = 0. Its derivative at a = 0

is the infinitesimal generator of the Lie group and is equal to C.
10

The function a → exp(aC)
defines a curve called a geodesic (or orbit), for which the "velocity" a is constant. Regression (2.1)
corresponds to a situation with time varying velocity.

As seen in the examples below, depending of the model, this velocity can be interpreted as a
location, scale, or angle parameter.

2.2 Examples

(i) One-dimensional model

The variables: exp(−a)u define a family of transformations on R, with scale parameter a. This
family can be used to define conditionally heteroscedastic models:

yt = exp[−{a(xt;β) + α}]ut,

where xt can include exogenous variables as well as lagged endogenous variables.

(ii) Bidimensional model associated with the group of rotations

The most standard Lie group on R
2 is the group of rotations. The infinitesimal generator is

C =

(

0 −1
1 0

)

and exp(aC) =

(

cos a − sin a
sin a cos a

)

.

8
For clarity, we denote matrices by bold uppercase quantities and vectors by bold lowercase quantities.

9
or Abelian Lie group, since exp(aC) exp(bC) = exp{(a + b)C}, and {exp(aC)}−1 = exp(−aC). Any one-

dimensional Abelian group of (n, n) matrices has this exponential form. See for instance Godement (2004), Chapter
3, Theorem 2.

10
C is the generator of the tangent space at 0 of the Lie group, that is, of the associated Lie algebra.
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Thus the associated econometric model is:

yt =





cos[a(xt;β) + α] sin[a(xt;β) + α]

− sin[a(xt;β) + α] cos[a(xt;β) + α]



ut := R[a(xt;β) + α]ut, say.

It defines a bivariate conditionally heteroscedastic model with conditional volatility-covolatility
matrix given by:

V (yt|xt) = R[a(xt;β) + α]ΩR′[a(xt;β) + α],

with Ω = V (ut). If the components of yt are asset (excess) returns, we get a dynamic model
in which the maximum (resp. minimum) reachable risk measured by the largest (resp. smallest)
eigenvalue of Ω is path invariant, but the direction of the most (resp. least) risky portfolio allocation
is path dependent. This modelling is the opposite of standard multivariate ARCH models where
the directions are fixed whereas the eigenvalues are path dependent.

iii) Orthogonal transformations

The example above is easily extended to orthogonal transformations of any dimension n. The
transformations exp(aC), a varying, are orthogonal if and only if,

∀a, [exp(aC)]′ = [exp(aC)]−1 ⇐⇒ ∀a, exp(aC ′) = exp(−aC) ⇐⇒ C ′ = −C.

Thus we have just to select an antisymmetric infinitesimal generator C.

iv) Additive model

For special infinitesimal generators, parameter a can be interpreted as a location parameter. For
expository purpose let us assume n = 2 and consider the infinitesimal generator:

C =

(

0 −1
0 0

)

.

Matrix C is nilpotent: C2 = 0, and exp(−aC) = I2 − aC =

(

1 a
0 1

)

.

Let us also choose ut = (u1t, 1)
′, i.e. let us fix to 1 the second component of ut. Then we have:

(

y1t
y2t

)

= exp(−aC)

(

u1t
u2t

)

⇐⇒







y1t = u1t + au2t = u1t + a,

y2t = u2t = 1.

Thus a is the location parameter for the distribution of y1t. In this example the second component
y2t = 1 is not informative about parameter a.

v) Nilpotent infinitesimal generator

More generally, if the infinitesimal generator is such that Cq = 0, we have: exp(aC) =

q−1
∑

h=0

Chah

h!
.

The observations yt are linear combinations of the shocks ut, with coefficients that are polynomials
in parameter a.
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vi) Dynamics of probability distribution

Specifications (2.1), (2.2) can also be used to define dynamic models for probability distributions
on a finite state space. In this framework both the endogenous variable y and the vector of shocks
u define probability distributions, that is, they satisfy:

ui > 0, yi > 0, i = 1, . . . , n,

n
∑

i=1

ui = 1,

n
∑

i=1

yi = 1.

To pass from u to y, we can choose as generator C the infinitesimal generator matrix of a Markov
chain, that is a matrix such that:

cii < 0, i = 1, . . . , n, cij > 0, i 6= j, i, j = 1, . . . , n,

with
n
∑

j=1

cij = 0, i = 1, . . . , n.

In the continuous time Markov chain interpretation, the generator matrix defines the intensities
of jumping from one state to another one (for i 6= j), and the exponential transform exp(aC) is the
transition matrix at horizon a, a > 0 [see e.g. Norris (1997), Karlin and Taylor (1998)].

3 Pseudo Maximum Likelihood Estimator

We start this section with general asymptotic results which can be applied when an econometric
model (such as Model (2.1)) is related to a generic model (such as Model (2.2)).

3.1 General asymptotic results for PML estimators

We assume that there exists:
λ∗
0 = arg max

λ∈Λ
E0l(λ;ut), (3.1)

a maximizer of the asymptotic pseudo log-likelihood of some generic model, where λ is a parameter
belonging to a compact set Λ ⊂ R

s, (ut) is an i.i.d. sequence of random vectors belonging to R
n,

and l denotes the log-likelihood for one observation. We also assume that there exists a maximizer
of the asymptotic pseudo log-likelihood of the econometric model,

θ∗
0 = arg max

θ∈Θ
E0l{λt(θ);ut}, (3.2)

where θ is a parameter belonging to a compact set Θ ⊂ R
r, and that λt : Rr 7→ R

s is a twice
differentiable random function. In these expressions, and in the sequel, E0 denotes the expectation
w.r.t. the true distribution of the variables involved (ut in (3.1), λt(θ) and ut in (3.2)).

Assumption A0 [Fundamental assumption] The function λt is such that:

i) λt(θ
∗
0) = λ∗

0,

ii) the matrices
∂λ′

t(θ
∗
0)

∂θ
,

∂2λ′
t(θ

∗
0)

∂θ∂θj
, for j = 1, . . . , r, are independent of ut.
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Usually, a log-likelihood function is written as a function of parameters and observed endogenous
and exogenous variables. The quantity l(λt(θ);ut) is the expression of the log-likelihood for the
t−th observation, after expressing the endogenous variables yt in terms of exogenous variables
xt and innovations ut. The stochastic function λt(θ) only depends on the explanatory variables
xt. Therefore, Assumption A0 ii) will be satisfied when the innovations are independent from the
explanatory variables. Assumption A0 i), which relates the pseudo-true values of the parameters in
the generic and econometric models, is crucial for studying the convergence of the PML estimator
of θ. We will show that this condition is satisfied in all our examples.

Let us also assume that (λt(θ),ut) is a strictly stationary sequence, for any θ ∈ Θ, that l is
second-order differentiable with respect to λ, and that the following s× s matrices exist:

I0 = Var0

{

∂l

∂λ
(λ∗

0;ut)

}

, J0 = E0

{

− ∂2l

∂λ∂λ′ {λ∗
0;ut}

}

.

Our first result relates matrices involved in the asymptotic distribution of the PML estimators in
the econometric and generic models. Let ℓt(θ) = l{λt(θ);ut}.

Proposition 3.1 Under Assumption A0, and assuming that the vectors
∂λt(θ

∗

0
)

∂θj
(j = 1, . . . , r) have

a finite variance-covariance matrix, we have

I := Var0

{

∂ℓt(θ
∗
0)

∂θ

}

= E0

{

∂λ′
t(θ

∗
0)

∂θ
I0∂λt(θ

∗
0)

∂θ′

}

, (3.3)

and

J := E0

{

−∂2ℓt(θ
∗
0)

∂θ∂θ′

}

= E0

{

∂λ′
t(θ

∗
0)

∂θ
J0∂λt(θ

∗
0)

∂θ′

}

. (3.4)

Moreover, I and J are nonsingular whenever I0 and J0 are nonsingular and the matrix

(

∂λ′
t(θ

∗
0)

∂θ

)

is full row rank, a.s. (3.5)

Proof: See Appendix B.1.

Our next result gives sufficient conditions for the existence of θ∗
0 satisfying (3.2).

Proposition 3.2 Suppose that:

1) for any θ ∈ Θ, we have λt(θ) ∈ Λ, a.s.

2) there exists θ∗
0 such that λt(θ

∗
0) = λ∗

0, where λ∗
0 satisfies (3.1),

3) for any θ ∈ Θ, the random vectors λt(θ) and ut are independent.

Then θ∗
0 satisfies (3.2).

Proof: We have

E0l{λt(θ);ut} = E0(E0[l{λt(θ);ut}|λt(θ)])

≤ E0[E0{l(λ∗
0;ut)|λt(θ)}] = E0l(λ

∗
0;ut) = E0l{λt(θ

∗
0);ut},
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by the independence between λt(θ) and ut for any θ, and by the definition of λ∗
0. Thus, the property

is established. ✷

We now turn to the asymptotic properties of a PML estimator of the form

θ̂T = argmax
θ∈Θ

T
∑

t=1

l{λt(θ);ut}.

Proposition 3.3 Under Assumption A0, the assumptions of Propositions 3.1 and 3.2, and other
regularity conditions (see Appendix A.1), the PML estimator θ̂T converges a.s. to θ∗

0 and is asymp-
totically normal: √

T
(

θ̂T − θ∗
0

)

d→ N
(

0,J−1IJ−1
)

.

Proof: See Appendix B.2.

It should be noted that θ∗
0 does not necessarily coincide with the "true value" of the econometric

model. This will be illustrated in the forthcoming sections.

3.2 The generic model

Let us first consider observations ỹt, t = 1, . . . , T, satisfying the generic model (2.2) with a true
value a0 ∈ Θα, a true error distribution g0, and a pseudo distribution g for the errors ut. The
pseudo log-likelihood for one observation is:

l(a, ỹ) = log g[exp(aC)ỹ] + log det[exp(aC)] = log g[exp(aC)ỹ] + aTr(C), (3.6)

since:

log det[exp(aC)] = log
n
∏

i=1

exp(aλi) = a
n
∑

i=1

λi = aTr(C),

where λi, i = 1, . . . , n, are the eigenvalues of C [see Arsigny et al. (2007), Prop. 2.4].

The pseudo maximum likelihood estimator of a in the generic model is solution of:

âT = arg max
a∈Θα

1

T

T
∑

t=1

l(a; ỹt).

Under standard regularity conditions, it converges to a pseudo true value a∗0 solution of the
asymptotic optimization problem:

a∗0 = arg max
a∈Θα

E0l(a; ỹ) = arg max
a∈Θα

E0l(a− a0;u), (3.7)

where E0 is the expectation w.r.t. the true distribution of ỹ (resp. u).

This pseudo true value
11

depends on the true value a0, and on the pseudo and true distributions
of u. Note that:

a0 := a∗0 − a0

11
This pseudo true value is a notion of mean on the manifold for the cost function corresponding to the pseudo

log-likelihood [Karcher (1977)].
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maximizes E0l(a;u) and only depends on the true distribution of u. We introduce an identification
condition in this generic pseudo-model.

Assumption A1 [Identification of the pseudo-true value in the generic model]: There is a
unique solution a∗0 to the asymptotic optimization (3.7), where ỹ satisfies (2.2) with true distribution
g0 for error u and true value a0.

3.3 The pseudo-likelihood and the pseudo-true values

Let us now consider observations (xt,yt), t = 1, . . . , T, satisfying the econometric model (2.1) and
a pseudo-distribution g for the errors. The pseudo log-likelihood function is:

LT (β, α) =
T
∑

t=1

{log g[exp[(a(xt;β) + α)C]yt] + [a(xt;β) + α]Tr(C)} :=
T
∑

t=1

l{a(xt,β) + α;yt}.

The pseudo maximum likelihood estimator of (β0, α0) in Model (2.1) is solution of:

(β̂T , α̂T ) = argmax
β,α

LT (β, α).

Under standard regularity conditions to be detailed below, the standardized pseudo log-likelihood
function tends almost surely (a.s.) to its asymptotic theoretical counterpart:

1

T
LT (β, α) −−−−→

T→∞
L̃∞(β, α) := E0l[a(x;β) + α, y].

Then we introduce a second identification condition.

Assumption A2 [Identification of the pseudo-true value in the econometric model]:
There exists a unique solution to the asymptotic optimization problem:

(β∗
0, α

∗
0) = arg max

β∈Θβ,α∈Θα

L̃∞(β, α).

This assumption can be replaced by the following more primitive identification condition:

Assumption A2’: for any β 6= β0, there exists no constant K such that:

a(xt;β0)− a(xt;β) = K, a.s.

We also introduce the following standard assumption.

Assumption A3 [Stationarity and independence]: The process (ut,xt) is a strictly stationary
and ergodic process. The sequence (ut) is i.i.d., and ut is independent of xt.

In particular, xt may be equal to the past (yt−1,yt−2, . . .) of yt.
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3.4 Consistency of the PML estimator

We have the following result:

Proposition 3.4 Under Assumptions A1-A3 (or A1-A2’-A3), and other regularity conditions
(see Appendix A.2), the PML estimator of β converges (a.s.) to the true value β∗

0 = β0, whereas
the PML estimator of α converges (a.s) to α∗

0 = α0 + a0.

Proof: We will show that Assumption A0 is satisfied, allowing us to derive the consistency result.
By the ergodic theorem, the pseudo log-likelihood converges almost surely to the limit criterion.
We are looking for the solution of:

arg max
β∈Θβ,α∈Θα

E0l[a(xt;β) + α;yt] = arg max
β∈Θβ,α∈Θα

E0l[a(xt;β)− a(xt;β0) + α− α0;ut], (3.8)

where l(·) is defined in (3.6). Using the notations of Section 3.1, we thus have

λt(θ) = λ(xt;θ) = a(xt;β)− a(xt;β0) + α− α0, (3.9)

where θ = (β′, α)′. We also have λ∗
0 = a0 = a∗0 − a0, by (3.7). Thus

λ(xt;θ
∗
0) = λ∗

0 for β∗
0 = β0 and α∗

0 = α0 + a0.

By Proposition 3.2, the limit criterion in (3.8) is maximized at θ∗
0 = (β∗′

0 , α
∗
0)

′. To prove the
uniqueness of the argmax, suppose there exists θ such that

a(xt;β)− a(xt;β0) + α− α0 = a0, a.s.

By A2’, this entails β = β0, and thus α = α∗
0. The consistency of the PML estimator follows by

applying Proposition 3.3. ✷

Proposition 3.4 shows that the asymptotic bias due to the misspecification of the error distribu-
tion is fully captured by the velocity "intercept" parameter α, and this result is valid for any selected
pseudo-distribution g. This proposition extends the similar results derived in Newey, Steigerwald
(1997). In the context of GARCH models, Fan, Qi, Xiu (2014) proposed a three-step procedure for
correcting the bias due to the use of a non-Gaussian pseudo-likelihood function. Alternatively, the
asymptotic bias in the PML estimation of GARCH models can be removed by imposing appropriate
identifiability assumptions on the innovations distribution [see Berkes and Horváth (2004), Francq,
Lepage and Zakoian (2011)].

Proposition 3.4 applies to the econometric model (2.1) with a velocity intercept parameter α.
When such a velocity intercept parameter is not in the initial model, an additional intercept has
to be artificially introduced to capture the asymptotic bias and allow for consistent estimation of
parameter β.

Since the consistency result for β̂T is valid for any pseudo distribution, we still have consistency
if the pseudo-distribution is chosen in a parametric family g(u; ν), say, and the pseudo-likelihood
is maximized with respect to α,β, and ν. This allows for choosing pseudo-families of distributions
with special features expected on the innovations, such as asymmetries [see e.g. Calzolari et al.
(2000), Harvey, Siddique (1999) for the use of Student-t family in ARCH type models].
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Example 2.2.i) (continued). Let us consider the two following univariate ARCH(1)-type models:

yt = exp[−(βyt−1 + α)]ut,

and yt =
(

γ1y
2
t−1 + γ2

)1/2
ut, γ1 > 0, γ2 > 0.

In the first ARCH type specification, the model is directly written under the form (2.1) with a
velocity intercept and Proposition 3.4 directly applies. The second ARCH specification, which is a
standard ARCH(1), can be rewritten as:

yt = γ
1/2
2

{

(γ1/γ2)y
2
t−1 + 1

}1/2
ut = exp

[

1

2
log{(γ1/γ2)y2t−1 + 1}+ 1

2
log γ2

]

ut.

This second specification involves a velocity intercept α = −1

2
log γ2 and a parameter β = γ1/γ2.

Proposition 3.4 can be applied after an appropriate change of parameters. Therefore, γ2, γ1 are
consistently estimated by PML up to a multiplicative factor.

To understand the consistency result of Proposition 3.4, let us consider the asymptotic first-order
conditions (FOC) for a differentiable pseudo p.d.f. g. Let us denote:

γ(x,y;β, α) =
∂ log g

∂u′
{exp([a(x;β) + α]C)y}C exp([a(x;β) + α]C)y + Tr(C), (3.10)

γ̃0(ut; a0) = γ(xt,yt;β0, α
∗
0) =

∂ log g

∂u′
[exp[a0C]ut]C exp[a0C]ut + Tr(C), (3.11)

noting that a0 = α∗
0 − α0.

Corollary 3.1 Under the assumptions of Proposition 1, and if the pseudo density g is differentiable,
the asymptotic FOC for β0 can be written as

Cov0[γ̃0(ut; a0),
∂a

∂β
(xt;β0)] = 0. (3.12)

Moreover,

α∗
0 = α0 ⇐⇒ Tr

{

C

(

In + E0

[

ut
∂ log g

∂u′
(ut)

])}

= 0,

where In is the n-dimensional identity matrix.

Proof: See Appendix B.3.

When g is the standard Gaussian density (Gaussian PML), the latter equality reduces to
Tr {C [E0 (utu

′
t)− In]} = 0.

The asymptotic FOC for β0 implies that the PML estimator β̂T is a covariance estimator based
on covariance restrictions of the type (3.12) between functions of u to be estimated and known
functions of x. Such an estimator is called a covariance estimator [see e.g. Gouriéroux and Jasiak
(2016)].
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3.5 Asymptotic distribution of the PML estimator

The asymptotic theory for PML estimators was initially developed in the i.i.d. setting (see e.g.
White (1994), Gouriéroux, Monfort (1995), chap. 24). In our framework, by assuming independence
between ut and the past of xt, the asymptotic distribution of the PML estimator follows from the
property of martingale difference of the pseudo score.

Proposition 3.5 Under the assumptions of Proposition 3.4 and other regularity conditions (see
Appendix A.3), the PML estimator is asymptotically normal:

√
T





β̂T − β0

α̂T − α∗
0





d→ N

(

0,
i∗

(j∗)2
Σ

−1

)

,

where:

Σ = E0









∂a(xt;β0)

∂β
1









∂a(xt;β0)

∂β
1





′

 , i∗ = V0[γ̃0(ut; a0)],

j∗ = E0

{

−
(

∂ log g

∂u′
[exp{a0C}ut]

)

C2 exp{a0C}ut

− u′
t exp{a0C ′}C ′

(

∂2 log g

∂u∂u′
[exp{a0C}ut]

)

C exp{a0C}ut

}

.

In particular,
√
T (β̂T − β0)

d→ N

(

0,
i∗

(j∗)2

(

V0

[

∂a(xt;β0)

∂β

])−1
)

.

Proof: See Appendix B.4.

It is easily seen from the expressions of i∗ and j∗ that the ratio i∗/j∗2 only depends on the
true distribution g0 of u and on the choice of the pseudo-distribution g (neither on the explanatory
variables, nor on the pattern of index function a, nor on the true intercept value α0). This ratio is
the asymptotic variance of the PML estimator of a0 in the generic model. It depends on moments
of the adjusted error terms:

vt = exp[a0C]ut.

These adjusted error terms are consistently estimated by the adjusted residuals:

v̂t = exp([a(xt; β̂T ) + α̂T ]C)yt,

and i∗, j∗ by their sample counterparts after substituting the residuals to the errors.
One extension of the present framework would consist in parameterizing the pseudo-density

g by some parameter vector γ, say. The asymptotic variances of the PML estimators, corre-
sponding to different values of γ, would all be proportional to Σ

−1, with proportionality constants
i∗(γ)/{j∗(γ)}2, and obvious notation. The next step would consist in minimizing the later ratio
with respect to γ, as it was done in Francq, Lepage and Zakoian (2011) in the context of GARCH
models estimated via non-Gaussian QML.
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4 Multi-index model

The econometric model in Section 2 depends on a single index a(x;β). We discuss in this section
the extensions to multi-index models. We consider the case of commuting Lie groups of linear
transformations and a semi-parametric transformation model, where the transformation is parame-
terized, but the error distribution is unconstrained. Then we discuss a case where the commutativity
property is not satisfied, but where the Lie group satisfies a closure under commutation property.
12

4.1 Multi-index model

The approach of Section 2 can be extended to models such as:

yt = exp







−
J
∑

j=1

[aj(xt,β0) + α0j ]Cj







ut, (4.1)

with several indexes aj and commuting generators Cj , j = 1, . . . , J . In particular J is the dimension

of the Lie group, equal to the dimension of the associated differentiable manifold
13

.
The generic model is:

ỹt = exp



−
J
∑

j=1

a0jCj



ut,

and the pseudo log-likelihood for one observation is:

l(a, ỹ) = log g



exp





J
∑

j=1

ajCj



 ỹ



+
J
∑

j=1

ajTr(Cj), (4.2)

where a = (a1, . . . , aJ)
′. Let a0 = (a01, . . . , a0J)

′. We still denote by Θα the parameter set for a.
The identification conditions become:

Assumption A1*: There is a unique solution a∗
0 = (a∗0j)j=1,...,J to the asymptotic optimization:

a∗
0 = arg max

a∈Θα

E0l(a; ỹ) = arg max
a∈Θα

E0l(a− a0;u),

with true distribution g0 for the error u.

Again, a0 := a∗
0 − a0 only depends on the true distribution of u.

Assumption A2*: There is a unique solution to the optimization problem:

(β∗
0,α

∗
0) = arg max

β∈Θβ,α∈Θα

L̃∞(β,α),

where L̃∞ is the asymptotic pseudo-likelihood of Model (4.1), and α = (αj)j=1,...,J .

12
See Gelfand et al. (1962), Boothby (1975), Hull (2015) for introductory courses on continuous Lie groups and

closure under commutation.
13

when the generators Cj are linearly independent

11



4.2 Consistency of the PML estimator

The pseudo log-likelihood function for Model (4.1) is:

LT (β,α) =
T
∑

t=1

l{a(xt,β) +α;yt},

where l(·) is defined in (4.2) and a(x;β) = [a1(x;β), . . . , aJ(x;β)]
′. The pseudo maximum likelihood

estimator of (β0,α0) is solution of:

(β̂T , α̂T ) = argmax
β,α

LT (β,α).

Proposition 4.1 Under Assumptions A1*, A2* (or A2’) and the regularity conditions of Propo-
sition 3.4, when the generators Cj , j = 1, . . . , J commute in Model (4.1), the PML estimator of
β0 converges (a.s.) to the true value β∗

0 = β0 whereas the PML estimator of α converges (a.s) to
α∗

0 = α0 + a0.

Proof: See Appendix B.5.

When the initial econometric model does not include "intercept" parameters, the "initial model":

yt = exp







−
J
∑

j=1

aj(xt;β0)Cj







ut,

is extended by substituting for ut the transformation of the generic model to get:

yt = exp







−
J
∑

j=1

aj(xt;β0)Cj







exp







−
J
∑

j=1

α0jCj







ut = exp







−
J
∑

j=1

(aj(xt;β0) + α0j)Cj







ut,

since the Cj , j = 1, . . . , J commute.
14

As in the single index model, the PML estimator of β has the interpretation of a covariance
estimator. Indeed the pseudo-true value β∗

0 satisfies the condition:

J
∑

j=1

Cov0

[

γj(x,y;β
∗
0, α

∗
0),

∂aj(x;β
∗
0)

∂β

]

= 0, (4.3)

where:

γj(x,y;β
∗
0, α

∗
0) =

∂ log g

∂u′

[

exp

{

J
∑

k=1

(ak(x;β
∗
0) + α∗

0k)Ck

}

y

]

Cj exp

{

J
∑

k=1

(ak(x;β
∗
0) + α∗

0k)Ck

}

y.

When β∗
0 = β0, we get by using (4.1):

γj(x,y;β0, α
∗
0) =

∂ log g

∂u′

[

exp

{

J
∑

k=1

(α∗
0k − α0k)Ck

}

u

]

Cj exp

{

J
∑

k=1

(α∗
0k − α0k)Ck

}

u,

which depends on u only. Therefore the covariance restrictions (5.2) are automatically satisfied by
the independence between x and u.

14
Indeed, if two matrices A and B commute, exp(A) exp(B) = exp(A+B).
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Proposition 4.2 Under the assumptions of Proposition 4.1 and other regularity conditions (see
Appendix A.4), the PML estimator is asymptotically normal:

√
T





β̂T − β0

α̂T −α∗
0





d→ N
(

0,A−1BA−1
)

,

where:

B = E0

[(

∂a′(xt;β0)
∂β

IJ

)

K

(

∂a′(xt;β0)
∂β

IJ

)′]

, A = E0

[(

∂a′(xt;β0)
∂β

IJ

)

L

(

∂a′(xt;β0)
∂β

IJ

)′]

,

where the J × J matrices K and L only depend on the true and pseudo densities of ut and are
displayed in the proof.

Proof: See Appendix B.6.

4.3 Examples

i) Multivariate regression model and CCC model
Consistent PML approaches can be applied to multivariate regression models:

y∗
t = a(xt;β0) +α0 + u∗

t , (4.4)

where y∗,u∗,a,α0 have dimension J and the u∗′

t s are i.i.d. Indeed this model can equivalently be
written as:

yt = exp{diag[−(a(xt;β0) +α0)]}ut, (4.5)

where yj,t = exp(−y∗j,t), uj,t = exp(−u∗j,t), and the diagonal matrix has entries exp[−{aj(xt;β0) +
α0j}] on the diagonal. Model (4.5) is a special case of multi-index model (4.1) with Cj =
diag(ej), j = 1, . . . , J , and ej is the canonical vector with jth component equal to 1, and zero
components, otherwise. Propositions 4.1-4.2 can be applied to (4.4), since the errors ut are i.i.d. as
are the errors u∗

t , and since the pseudo-likelihoods written on (4.4) and (4.5), respectively, differ by
a Jacobian, which is independent of the parameters.

Model (4.5) can also be directly considered as a multivariate model with conditional het-
eroscedasticity. Since the variance-covariance matrix of u is not constrained, we get a pure Constant
Conditional Correlation (CCC) model [Bollerslev (1990), Tse (2000)]. Thus the PML approach is
consistent for any pseudo joint distribution of u, once J scale parameters σj = expαj , j = 1, . . . , J ,
are added.

ii) A mix rotation/homothety

In the bidimensional case n = 2 the only generators which commute with the rotation generator
(

0 −1
1 0

)

are of the form

(

a −b
b a

)

, that are linear combinations of the rotation generator and

the identity. This leads to an econometric model with two index functions a1, a2 such that:

yt ≡





cos[a1(xt; θ)] sin[a1(xt; θ)]

− sin[a1(xt; θ)] cos[a1(xt; θ)]



 exp[−a2(xt; θ)]ut. (4.6)

13



4.4 A Multivariate Extension of Newey-Steigerwald

Two characteristics of the multi-index model (4.1) explain the consistency of the PML estimator of
the β coefficient: i) the Lie group property of each component, that provides the simple form of
the Jacobian in the expression of the pseudo-likelihood, and ii) the fact that these groups commute.
By considering a multivariate extension of Newey-Steigerwald, we will see that the commutativity
property can be weakened. The bias adjustment in Newey, Steigerwald (1997) is written for a one-
dimensional model and involves two Lie groups, that are the group of homotheties and the group
of translations, respectively. These operators are:

S1(u;m) = u+m, S2(u;σ) = σu. (4.7)

We immediately note that:
S1oS2(u;m,σ) = σu+m (4.8)

differs from:
S2oS1(u;m,σ) = σ(u+m). (4.9)

Thus, these two operators do not commute. The group of translations is not a group of linear
transformations, but has no effect on the Jacobian of any pseudo-likelihood.

Let us now describe the different models underlying the Newey-Steigerwald framework.

i) The initial econometric model

is defined, for m(xt;β0) ∈ R
n, by:

yt = m(xt;β0) + exp[−a(xt;β0)C]ut. (4.10)

This is a multi-index model, with indexes m(xt;β0) and a(xt;β0).

ii) The enlarged econometric model

is defined by:
yt = m(xt;β0) + exp[−a(xt;β0)C][µ0 + exp(−α0C)ut], (4.11)

µ0 ∈ R
n and α0 ∈ R are the parameters introduced to capture the bias on β0 ∈ R

p.

iii) The generic pseudo-model

is defined by:
ỹt = m0 + exp(−a0C)ut. (4.12)

The pseudo log-likelihood for one observation in the generic model is:

l(a,m; ỹ) = log g{exp(aC)(ỹ −m)}+ aTr(C)

= log g[exp{(a− a0)C}u+ exp(aC)(m0 −m)] + aTr(C). (4.13)

For parameter sets Θα ⊂ R and Θm ⊂ R
n let

(a∗0,m
∗
0) = arg max

a∈Θα,m∈Θm

E0l(a,m; ỹ) = arg max
a∈Θα,m∈Θm

E0l{a− a0, exp(a0C)(m−m0);u}. (4.14)

14



Note that a0 := a∗0 − a0,m0 := m∗
0 −m0 only depend on the true distribution of u.

Assumption A1** [Identification of the pseudo-true value in the generic model]: There
is a unique solution (a∗0,m

∗
0) to the asymptotic optimization (4.14), where ỹ satisfies (4.12) with

the true distribution g0 for error u.

The pseudo log-likelihood function for Model (4.11) is:

LT (β, α,µ) =
T
∑

t=1

l{a(xt,β) + α,m(xt;β) + exp[−a(xt;β)C]µ;yt},

where l(·) is defined in (4.13). The PML estimator of (β0, α0,µ0) is solution of:

(β̂T , α̂T , µ̂T ) = arg max
β,α,µ

LT (β, α,µ).

Proposition 4.3 Under Assumptions A1**, A2’, A3 and other regularity conditions (see Ap-
pendix A.5), the PML estimator of β converges (a.s.) to the true value β∗

0 = β0 in Model
(4.11), whereas the PML estimator of α and µ converge (a.s) to α∗

0 = α0 + a∗0 − a0 and
µ∗
0 = µ0 + exp[(a0 − α0)C](m∗

0 −m0), respectively.

Proof: See Appendix B.7.

Proposition 4.4 Under the assumptions of Proposition 4.3 and other regularity conditions (see
Appendix A.6), the PML estimator is asymptotically normal:

√
T
(

θ̂T − θ∗
0

)

d→ N
(

0,J−1IJ−1
)

,

where θ̂T = (β̂
′

T , α̂T , µ̂T )
′, θ∗

0 = (β′
0, α

∗
0,µ

∗′

0 )
′ and the (n + p + 1) × (n + p + 1) matrices I and J

are as in Proposition 3.3.
15

Proof: See Appendix B.8.

As noted in Newey and Steigerwald (1997) in the univariate case :
i) two parameters have to be introduced to capture the misspecification bias, µ for the "location"

effect, and α for the "scale" effect.
ii) to properly adjust for the location regression m(xt;β), the adjustment +exp[−a(xt;β)C]µ,

has to account for the scale in an appropriate way.

As seen in the next subsection, the consistency of the PML still holds, since the translation
group and the homothety group satisfy a closure under commutation property. Typically from the
multivariate extension of (4.7)-(4.8), namely,

S1(u;m) = u+m, S2(u; a) = exp(−aC)u. (4.15)

we get:
S2oS1(u;m, a) = S1oS2(u; exp(−aC)m, a).

Even if the two Lie groups do not commute, it is easy to commute the operators after applying an
appropriate change of parameters.

15
The expressions for λt(θ), l(λ,u) and their derivatives is provided in the proof.
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5 Transformation Models for Normalized Data

The consistency of the PML estimator of β in the model of Section 3 is due to the simple expression
of the pseudo log-likelihood function:

log g[exp(aC)y] + aTrC,

to the possibility to (partly) commute the Lie groups within the log g(.) and to apply the Jacobian
formula. This Jacobian formula is valid for a transformation of Lie groups, whenever the transfor-
mation is a diffeomorphism. It is valid when the set of values of u (and y) is R

n, but also in more
complicated cases when u and y are taking values in a same affine subspace [see examples iv) and
vi)] or, as in Section 5.2 below, on the unit sphere [see Chirikjian (2011), Vol 2, Chap 11, for the
differential geometry of Lie groups]. This is a consequence of the locally Euclidian structure of a
manifold.

The consistency results will apply to normalized data with different normalizations.
16

Such
normalizations are standard in computer vision, where the images using cameras induce observations
obeying mathematical constraints. This arises when the variability due to the viewing angle of the
camera has to be taken into account, e.g. when the pose of a human head is parameterized by three
angles. Such appropriate normalizations are also required for the gait-bared activity recognition

[see e.g. Liu and Sarkar (2006)].
17

We provide below examples of normalized data in Economics
and Finance.

5.1 Budget shares

Let us denote y∗
t = (y∗t1, . . . , y

∗
tn)

′ the expenses of a given household at period t, and yt =

(yt1, . . . ,ytn)
′, with yti = y∗ti/

n
∑

i=1

y∗ti the corresponding budget shares. For such data the trans-

formation model, on M = {y : yi ≥ 0, ∀i,
n
∑

i=1

yi = 1}, is:

yt = exp[a∗(xt; θ)C]ut,

where the matrix generator C is such that:

cij ≥ 0, ∀i 6= j, cii = −Σj 6=icij .

Then, the exponential matrix exp(aC) is a stochastic matrix (see also Section 2.2, vi)).

5.2 Zero-cost portfolio allocation

The structure of household expenses is generally analyzed by means of the budget shares instead of
the expenses in order to eliminate the size effect. This standardization practice cannot be followed

16
A part of the statistical literature studies regression models, where the conditional mean belongs to a submanifold,

not the observations themselves [see Cheng and Wu (2013)]
17

from a mathematical point of view, the normalization is defined from an equivalence relationship and the normal-
ized data are elements in the quotient group of a Lie group by the equivalence class [see e.g. Befelgor and Werman
(2006)].
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in Finance when analyzing the portfolio allocations. Indeed the possibility of short sell allows for

negative allocations and, typically, in zero-investment portfolios
18

the total budget is equal to zero.
Therefore another normalization is usually considered to eliminate the size effect. If y∗i denotes the
investment in asset i, i = 1, . . . , n, possibly negative, it is usual to define the standardized allocation
as:

yi = y∗i /||y∗||,

where
19

: ||y∗||2 =

n
∑

i=1

y∗2i . In such a framework the observations yi, i = 1, . . . , n take values on

the unit sphere: {y :
n
∑

i=1

y2i = ||y||2 = 1}. Transformation models on the unit sphere (or unit

hyper-spherical manifold on R
n) are appropriate to study such data and are based on Lie subgroups

of orthogonal transformations, the so-called special orthogonal group SO(n). Such transformation
models on the unit sphere are frequently used in more general shape analyses [see e.g. Bhattacharya
and Bhattacharya (2011)].

5.3 Observations of volatility matrices

The set of symmetric positive definite (SPD) matrices is also a Riemannian manifold denoted
Sym+(n) and our approach can be applied to SPD matrix values data such as observed volatility
matrices [see Arsigny et al. (2007), Yuan et al. (2012), Huang et al. (2014), and the references
therein for other SPD matrix valued data in the medical imaging literature].

Let us consider a SPD matrix U of size (n, n), another (n, n) matrix B, and the application:

U 7→ exp(aB)U exp(aB′) := Y .

This defines a Lie group of linear transformations on Sym+(n). To link this Lie group with our

general specification, let us apply the vec operator.
20

We have:

vec(Y ) = vec{exp(aB)U exp(aB′)} = {exp(aB)⊗ exp(aB)}vec(U), (5.1)

where ⊗ denotes the Kronecker product [see e.g. Henderson and Searle (1979)]. Let us now consider
the behaviour of this transformation when a is close to zero. We get:

{exp(aB)⊗exp(aB)}vec(U) ∼ {(I+aB)⊗(I+aB)}vec(U) ∼ vec(U)+a{B⊗I+I⊗B}vec(U).

Therefore, the infinitesimal generator is:

C = B ⊗ I + I ⊗B, (5.2)

and the transformation (5.1) can be equivalently written as

vec(Y ) = exp{a(B ⊗ I + I ⊗B)}vec(U). (5.3)

18
Zero investment strategies are balancing short and long investments and are the basis of arbitrage. Indeed a zero-

investment (or zero-cost) portfolio with positive gains is an arbitrage portfolio [see e.g. Alexander (2000) and the
references therein]. Such strategies are typically followed by hedge funds reporting the management style Long/Short
Equity (hedge).

19
For a zero-investment portfolio ||y∗|| measures the magnitude of the leverage.

20
or its analogue vech for symmetric matrices.
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Therefore, the bias adjustment methodology of our paper will apply to Lie groups of such transfor-
mations, applied to observed realized volatility matrices, or to observed implied volatility matrices
derived from observed derivative prices. Note that the transformation (5.3) for different B1,B2,
say, can be combined if the condition of closure under commutation is satisfied. The approach can
also be directly extended to observed 3-dimensional (resp. 4-dimensional) matrices gathering all
3-order cross moments (resp. 4-order cross moments).

6 Concluding Remarks

The objective of our paper was to extend the consistency result of the PML estimator by Newey and
Steigerwald to a multivariate framework and to more complex linear transformations. We highlight
the key role of Lie groups of linear transformations. At least three research developments seem to
be promising.

i) We get a large number of consistent estimators of the sensitivity parameters by changing the
pseudo-distributions of the error. Their comparison can be the basis of specification tests on the
pattern of the index functions.

ii) The methodology, i.e. the choice of a pseudo-distribution and the introduction of the ad-
ditional parameters for bias adjustment, is valid for any type of index function and any known
transformation of the endogenous variables. Thus, it is valid for models of the type:

yt = H[a(xt;β)ut],

where H is a known one-to-one transformation and the distribution of ut is left unspecified. By
increasing the number of parameters in the index functions, we can approach nonparametric trans-
formations of the x variables; therefore the bias adjustment by a fixed number of additional parame-
ters, equal to the number of index functions, is likely to be also valid in the following situation : T is
known, a(xt) is unspecified (but constrained by the Lie group structure) as well as the distribution
of the error [see e.g. Chiappori, Komunjer, Kristensen (2015), for the nonparametric estimation of
transformation models, when H is also unknown, in the one-dimensional single index framework].

iii) Our paper deals with semi-parametric inference on manifolds. It differs from the statistical
literature on manifold-valued observations, which is mainly static [see e.g. Bhattacharya and Bhat-
tacharya (2015)], by the structural introduction of exogenous or lagged endogenous variables and
by the focus on robust estimation methods. It might be fruitful to extend the literature in these
directions, not only for applications to Finance and Economics, but also to improve the statistical
analysis on manifolds currently performed in video analysis or neuroscience [see e.g. Turaga et al.
(2010) for a recent survey]. Such applications involve a large number of data y and possibly also
a rather large number of parameters θ. However, the number of additional intercept parameters
introduced for bias adjustment is equal to the number of index functions, which is usually small.
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Appendices

A Regularity conditions

A.1 For Proposition 3.3

Together with the assumptions of Propositions 3.1 and 3.2, we require:

Assumption A01: There is a unique λ∗
0 satisfying (3.1).

Assumption A02: For any θ ∈ Θ, the process (λt(θ),ut) is strictly stationary and ergodic.

Assumption A03: E0|l{{λt(θ);ut}}| < ∞, for any θ ∈ Θ.

Assumption A04: λt(θ
∗
0) = λt(θ), a.s. ⇒ θ = θ∗

0.

Assumption A05: ut is independent from the
∂λ′

t−i(θ
∗

0
)

∂θ , for i ≥ 0. Moreover, the process
(

∂λ′

t(θ
∗

0
)

∂θ

)

is strictly stationary and ergodic.

Assumption A06: θ∗
0 belongs to the interior of Θ.

Assumption A07: For any x, the random function θ → λt(θ) has continuous third-order deriva-
tives. The function l(·;u) has continuous third-order derivatives, for any u ∈ R

n.

Assumption A08: I0 and J0 are nonsingular and rank
(

∂λ′

t(θ
∗

0
)

∂θ

)

= r, a.s.

Assumption A09: There exists a neighborhood V (θ∗
0) of θ∗

0 such that, for i, j = 1, . . . , r,

for all θ ∈ V (θ∗
0), the process

{

∂

∂θ′

(

∂2

∂θi∂θj
ℓt(θ)

)}

is strictly stationary and ergodic, and,

E0 sup
θ∈V (θ∗

0
)

∥

∥

∥

∥

∂

∂θ′

(

∂2

∂θi∂θj
ℓt(θ)

)∥

∥

∥

∥

< ∞.

A.2 For Proposition 3.4

Assumption A4: E0|l{a(xt,β) + α;yt}| < ∞, for any (α,β) ∈ Θα ×Θβ.

Assumption A5: β0 ∈ Θβ and α0 + a0 ∈ Θα. Moreover, Θβ and Θα are compact parameter sets.

A.3 For Proposition 3.5

Let θ = (β′, α)′ = (θj)1≤j≤p+1 and ℓt(θ) = l[a(xt;β)+α;yt]. Together with Assumptions A09 and
A1-A5, the proposition requires the following assumptions:

Assumption A6: ut is independent from the xt−i, for i ≥ 0.

Assumption A7: (α∗
0,β0) belongs to the interior of Θα ×Θβ.
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Assumption A8: For any x, the function β → a(x;β) has continuous third-order derivatives. The
pseudo-density function g is three times continuously differentiable.

Assumption A9: i∗ and j∗ exist, and j∗ 6= 0.

Assumption A10: The matrix V0

(

∂a

∂β
(xt,β0)

)

is positive definite.

A.4 For Proposition 4.2

The Assumptions for Proposition 3.5 are maintained, except A9-A10 which are replaced by

Assumption A9*: The matrices K and L are positive definite.

Assumption A10*: For at least one j ∈ {1, . . . , J}, the matrix V0

(

∂aj
∂β

(xt,β0)

)

is positive

definite.

A.5 For Proposition 4.3

Assumption A11: E0|l{a(xt;β)+α,m(xt;β)+exp{−a(xt;β)C}µ;yt}| < ∞, for any (α,β,µ) ∈
Θα ×Θβ ×Θm.

Assumption A12: β0 ∈ Θβ, α0 + a0 ∈ Θα,µ0 + exp[(a0 − α0)C](m∗
0 − m0) ∈ Θm. Moreover,

Θβ,Θα and Θm are compact parameter sets.

A.6 For Proposition 4.4

Together with Assumptions A4-A6, A11 and A12, the proposition requires the following assump-
tions:

Assumption A13: (α∗
0,β0,µ

∗
0) belongs to the interior of Θα ×Θβ ×Θµ.

Assumption A14: For any x, the functions β → a(x;β) and β → m(x;β) have continuous third-
order derivatives. The pseudo-density function g is three times continuously differentiable.

Assumption A15: the matrices I and J exist, and J is positive definite.

B Proofs

B.1 Proof of Proposition 3.1

By assumption (3.1), λ∗
0 satisfies the first-order condition:

E0

{

∂l

∂λ
(λ∗

0;ut)

}

= 0. (B.1)

We have
∂ℓt(θ)

∂θ
=

∂λ′
t(θ)

∂θ

∂l

∂λ
{λt(θ);ut}. (B.2)
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It follows that, using Assumption A0 and (B.1),

E0

{

∂ℓt(θ
∗
0)

∂θ

}

= E0

{

∂λ′
t(θ

∗
0)

∂θ

}

E0

{

∂l

∂λ
{λ∗

0;ut}
}

= 0, (B.3)

which is the first-order condition for the enlarged model. We also have

Var0

{

∂ℓt(θ
∗
0)

∂θ

}

= E0

{

∂λ′
t(θ

∗
0)

∂θ
I0∂λt(θ

∗
0)

∂θ′

}

.

Turning to the second-order derivatives, we have, for j = 1, . . . , r,

∂2ℓt(θ)

∂θ∂θj
=

∂2λ′
t(θ)

∂θ∂θj

∂l

∂λ
{λt(θ);ut}+

∂λ′
t(θ)

∂θ

∂2l

∂λ∂λ′ {λt(θ);ut}
∂λt(θ)

∂θj
.

Thus, by taking the expectation of both sides at θ = θ∗
0, it follows that

E0

{

∂2ℓt(θ
∗
0)

∂θ∂θ′

}

= E0

{

∂λ′
t(θ

∗
0)

∂θ
J0∂λt(θ

∗
0)

∂θ′

}

.

Now suppose I0 is nonsingular and (3.5) holds. If I were nonsingular, there would exist x ∈ R
r,

x 6= 0 such that

x′E0

{

∂λ′
t(θ

∗
0)

∂θ
I0∂λt(θ

∗
0)

∂θ′

}

x = 0.

Because I0 is positive-definite by assumption, we would have x′ ∂λ
′

t(θ
∗

0
)

∂θ = 0, in contradiction with
(3.5). The same arguments apply to show the nonsingularity of J .

B.2 Proof of Proposition 3.3

By Assumption A02 and the ergodic theorem, the pseudo log-likelihood converges almost surely to
the limit criterion. By the proof of Proposition 3.2 and Assumptions A01 and A04, the asymptotic
criterion is uniquely maximized at θ∗

0. The a.s. consistency of the PML estimator follows by a
standard compactness argument.

Now we turn to the asymptotic normality. Since θ̂T converges to θ∗
0, which stands in the interior

of the parameter space by A06, the derivative of the criterion is equal to zero at θ̂T . We thus have:

0 = T−1/2
T
∑

t=1

∂

∂θ
ℓt(θ̂T )

= T−1/2
T
∑

t=1

∂

∂θ
ℓt(θ

∗
0) +

(

1

T

T
∑

t=1

∂2

∂θi∂θj
ℓt(θ

∗
ij)

)

√
T
(

θ̂T − θ∗
0

)

:= sT − JT

√
T
(

θ̂T − θ∗
0

)

,

where the θ∗
ij ’s are between θ̂T and θ∗

0. The proof is divided in several steps.

i) Asymptotic normality of sT .
We have

∂ℓt(θ
∗
0)

∂θ
=

∂λ′
t(θ

∗
0)

∂θ

∂l

∂λ
{λ∗

0;ut}. (B.4)
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It follows from (B.1) and Assumption A05 that ∂
∂θ ℓt(θ

∗
0) is a martingale difference sequence with

respect to the filtration Ft = σ
({

ut−i,
∂λ′

t−i(θ
∗

0
)

∂θ , i ≥ 0
})

. Applying a central limit theorem for

square integrable, ergodic and stationary martingale difference (see Billingsley, 1961), it follows
that:

T−1/2
T
∑

t=1

∂

∂θ
ℓt(θ

∗
0)

d→ N (0, I) .

ii) Convergence of JT to J .
Denote by θi the i-th component of θ. By a Taylor expansion around θ∗

0 we have, for all i and j,

1

T

T
∑

t=1

∂2

∂θi∂θj
ℓt(θ

∗
ij) =

1

T

T
∑

t=1

∂2

∂θi∂θj
ℓt(θ

∗
0) +

1

T

T
∑

t=1

∂

∂θ′

(

∂2

∂θi∂θj
ℓt(θ̃ij)

)

(θ∗
ij − θ∗

0),

where θ̃ij is between θ̃
∗

ij and θ̃
∗

0. The ergodic theorem shows that the first term in the right-hand
side converges to −J a.s. The second term converges to 0 a.s. by Assumption A09. Indeed, by the
ergodic theorem

lim sup
T→∞

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∂

∂θ′

(

∂2

∂θi∂θj
ℓt(θ̃ij)

)

∥

∥

∥

∥

∥

≤ lim sup
T→∞

1

T

T
∑

t=1

sup
θ∈V (θ∗

0
)

∥

∥

∥

∥

∂

∂θ′

(

∂2

∂θi∂θj
ℓt(θ)

)∥

∥

∥

∥

= E0 sup
θ∈V (θ∗

0
)

∥

∥

∥

∥

∂

∂θ′

(

∂2

∂θi∂θj
ℓt(θ)

)∥

∥

∥

∥

< ∞.

iii) Invertibility of J .
Follows straightforwardly from Assumption A08 and Proposition 3.1.

iv) asymptotic distribution of
√
T
(

θ̂T − θ∗
0

)

.

Follows from
√
T
(

θ̂T − θ∗
0

)

= J−1
T sT .

B.3 Proof of Corollary 3.1

The asymptotic FOC corresponds to the maximization of:

L̃∞(β, α) = E0l[a(x;β) + α;y],

where l(·) is defined in (3.6). By using the expression of the first-order derivative:

∂l(a;y)

∂a
=

∂ log g

∂u′
{exp(aC)y}C exp(aC)y + Tr(C),

these FOC are:

E0







γ(x,y;β∗
0, α

∗
0)





∂a(x;β∗
0)

∂β
1











= 0,

where γ(x,y;β, α) is given by (3.10) and (β∗
0, α

∗
0) denote the pseudo true values. These FOC are

equivalently written as:

Cov0[γ(x,y;β
∗
0, α

∗
0),

∂a(x;β∗
0)

∂β
] = 0, E0[γ(x,y;β

∗
0, α

∗
0)] = 0.
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In view of (3.11), the FOC (3.12) is automatically satisfied by the independence of x and u. Let us
now look at the second equation for β∗

0 = β0 :

E0γ(x,y;β0, α
∗
0) = 0. (B.5)

This is the FOC in the generic pseudo-model:

ỹt = exp[a(xt;β0)C]yt = exp(−aC)ut.

Therefore α∗
0 = α0 + a0 − a∗0. The equivalence in the second part of the Corollary follows from:

γ(x,y;β0, α0) =
∂ log g

∂u′
(u)Cu− Tr(C).

B.4 Proof of Proposition 3.5

The proposition is a direct consequence of Proposition 3.3, with λt(θ) defined in (3.9) and

∂λt(θ)

∂θ
=





∂a(xt;β0)

∂β
1



 . (B.6)

Thus, (3.5) is satisfied under A10. With l(λ;ut) = log g[exp(λC)ut] + λTr(C), λ ∈ R we have:

∂l

∂λ
(λ;ut) =

∂ log g

∂u′
{exp(λC)ut}C exp(λC)ut + Tr(C),

∂2l

∂λ2
(λ;ut) =

(

∂ log g

∂u′
[exp{λC}ut]

)

C2 exp{λC}ut

+u′
t exp{λC ′}C ′

(

∂2 log g

∂u∂u′
[exp{λC}ut]

)

C exp{λC}ut,

from which the expressions for I0 = i∗ and J0 = j∗ follow.

B.5 Proof of Proposition 4.1

The proof is analogous to the proof of Proposition 3.4. The asymptotic pseudo log-likelihood is

E0



log g



exp







J
∑

j=1

[aj(xt;β) + αj ]Cj







yt



+
J
∑

j=1

[aj(xt;β) + αj ]Tr(Cj)



 .

Replacing yt by exp
{

−∑J
j=1[aj(xt;β0) + α0j ]Cj

}

ut, and using the assumption of commutative

Lie group, we get

E0



log g



exp







J
∑

j=1

[aj(xt;β)− aj(xt;β0) + αj − α0j ]Cj







ut



+

J
∑

j=1

[aj(xt;β) + αj ]Tr(Cj)



 .

Therefore, with l[a;y] defined in (4.2),

(β∗
0,α

∗
0) = arg maxβ∈Θβ,α∈Θα

E0l[a(xt;β)− a(xt;β0) +α−α0;ut].

As in the proof of Proposition 3.4, we get E0l[a(xt;β)−a(xt;β0)+α−α0;ut] ≤ E0l(a
∗
0−a0;ut),

and the upper bound is reached for β∗
0 = β0 and α∗

0 = α0 + a∗
0 − a0.
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B.6 Proof of Proposition 4.2

Because the proof is analogous to that of Proposition 3.5, we only develop the derivation of the
asymptotic covariance matrix of the PML estimator.

For γ = (Tr(C1), . . . ,Tr(CJ))
′, and lt(α,β) = l[a(xt;β) +α,yt) we have:

lt(α,β) = log g



exp







J
∑

j=1

[aj(xt;β) + αj ]Cj







yt



+
J
∑

j=1

[aj(xt;β) + αj ]Tr(Cj),

:= log g{zt(β)}+ γ ′{a(xt;β) +α}.

Using the computations of Appendix C.3, it follows that:

∂

∂β′ lt(α,β) =
∂ log g

∂u′
{zt(α,β)} ∂zt(α,β)

∂β′ + γ ′{a(xt;β) +α},

=

(

∂ log g

∂u′
{zt(α,β)}C[IJ ⊗ zt(α,β)] + γ ′

)

∂a(xt;β)

∂β′

:= h′t(α,β)
∂a(xt;β)

∂β′ .

Proceeding similarly with parameter α, we find that:

( ∂
∂β lt(α,β)
∂
∂α lt(α,β)

)

=

(

∂a′(xt;β)
∂β

IJ

)

ht(α,β).

We have zt(α
∗
0,β0) = exp

{

∑J
j=1(α

∗
0j − α0j)Cj

}

ut := Γ
∗
0ut. Thus,

( ∂
∂β lt(α

∗
0,β0)

∂
∂α lt(α

∗
0,β0)

)

=

(

∂a′(xt;β0)
∂β

IJ

)

k(ut), k(ut) = [IJ ⊗ (Γ∗
0ut)

′]C ′∂ log g

∂u
{Γ∗

0ut}+ γ,

and, with θ = (β′,α′)′,

B = V0

[

∂

∂θ
lt(α

∗
0,β0)

]

= E0

[(

∂a′(xt;β0)
∂β

IJ

)

K

(

∂a′(xt;β0)
∂β

IJ

)′]

, K = V0 [k(ut)] .

Now,

∂2

∂β∂β′ lt(β,α) =
∂h′t(α,β)

∂β

∂a(xt;β)

∂β′ + {h′t(α,β)⊗ Ip}A(xt;β),

where A(xt;β) is the Jp× p matrix:

A(xt;β) =









∂2a1(xt;β)
∂β∂β′

...
∂2aJ (xt;β)

∂β∂β′









.

24



Noting that:

h′t(α,β) =

[

∂ log g

∂u′
{zt(α,β)}C1zt(α,β), . . . ,

∂ log g

∂u′
{zt(α,β)}CJzt(α,β)

]

+ γ ′,

we compute:

∂

∂β

{

∂ log g

∂u′
{zt(α,β)}Cjzt(α,β)

}

=
∂

∂β

{

∂ log g

∂u′
{zt(α,β)}

}

Cjzt(α,β) +

[

∂

∂β
{Cjzt(α,β)}′

]{

∂ log g

∂u′
{zt(α,β)}

}′

=
∂z′t(α,β)

∂β

∂2 log g

∂u∂u′
{zt(α,β)}Cjzt(α,β)

+
∂a′(xt;β)

∂β
[IJ ⊗ zt(α,β)]′C ′C ′

j

∂ log g

∂u
{zt(α,β)}

=
∂a′(xt;β)

∂β
[IJ ⊗ zt(α,β)]′C ′

×
{

∂2 log g

∂u∂u′
{zt(α,β)}Cjzt(α,β) +C ′

j

∂ log g

∂u
{zt(α,β)}

}

.

It follows that:

∂2

∂β∂β′ lt(β,α)

=
∂a′(xt;β)

∂β
[IJ ⊗ zt(α,β)]′C ′

×
J
∑

j=1

{

∂2 log g

∂u∂u′
{zt(α,β)}Cjzt(α,β) +C ′

j

∂ log g

∂u
{zt(α,β)}

}

∂aj(xt;β)

∂β′

+{h′t(α,β)⊗ Ip}A(xt;β)

=
∂a′(xt;β)

∂β
[IJ ⊗ zt(α,β)]′C ′∂

2 log g

∂u∂u′
{zt(α,β)}C[IJ ⊗ zt(α,β)]

∂a(xt;β)

∂β′

+
∂a′(xt;β)

∂β
[IJ ⊗ zt(α,β)]′C ′G[zt(α,β)]

∂a(xt;β)

∂β′ + {h′t(α,β)⊗ Ip}A(xt;β),

where G(u) is the n× J matrix:

G(u) =

[

C ′
1

∂ log g

∂u
(u) C ′

2

∂ log g

∂u
(u) . . . C ′

J

∂ log g

∂u
(u)

]

.

Note that the first-order conditions imply Eh′t(α
∗
0,β0) = 0. Therefore

A = E0

[

− ∂2

∂θ∂θ′ lt(α
∗
0,β0)

]

= E0

[(

∂a′(xt;β0)
∂β

IJ

)

L

(

∂a′(xt;β0)
∂β

IJ

)′]

where:

L = −E0

{

[IJ ⊗ Γ
∗
0ut]

′C ′∂
2 log g

∂u∂u′
{Γ∗

0ut}C[IJ ⊗ Γ
∗
0ut] + [IJ ⊗ Γ

∗
0ut]

′C ′G (Γ∗
0ut)

}

.
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Now we prove that A is nonsingular. Let z ∈ R
p+J such that z′Az = 0. In view of A9*, it follows

that

z′

(

∂a′(xt;β0)
∂β

IJ

)

= 0.

Writing z = (z′
1, z

′
2)

′, where z1 ∈ R
p, z2 ∈ R

J , we thus have:

z′
1

∂aj(xt;β0)

∂β
= z′

2ej , j = 1, . . . , J.

Finally,

Vas

[√
T

(

β̂T − β0

α̂T −α∗
0

)]

= A−1BA−1.

B.7 Proof of Proposition 4.3

The maximizer of the asymptotic PML of Model (4.11) is defined by:

(β∗
0,µ

∗
0, α

∗
0)

= arg max
β,µ,α

E0l[a(xt;β) + α,m(xt;β) + exp{−a(xt;β)C}µ;yt]

= arg max
β,µ,α

E0l[∆a(xt;β) + α− α0, exp[{a(xt;β0) + α0}C]∆m(xt;β)

+ exp[{−∆a(xt;β) + α0}C]µ− exp(α0C)µ0;ut],

where ∆a(xt;β) = a(xt;β) − a(xt;β0), ∆m(xt;β) = m(xt;β) −m(xt;β0), and the argmax are
taken over Θβ ×Θm ×Θα and l(·) is defined in (4.13).

Using the notations of Section 3.1, we have, with θ = (β′, α,µ′)′,

λt(θ) =

(

∆a(xt;β) + α− α0

exp[{a(xt;β0) + α0}C]∆m(xt;β) + exp[{−∆a(xt;β) + α0}C]µ− exp(α0C)µ0

)

.

In view of (4.14), and using the same argument as in the proof of Proposition 3.4, we thus have:

β∗
0 = β0, α∗

0 = α0 + a∗0 − a0, µ∗
0 = µ0 + exp[(a0 − α0)C](m∗

0 −m0).

B.8 Proof of Proposition 4.4

It suffices to verify the conditions required for Proposition 3.3. First note that Assumption A0 is
satisfied, with

λ∗
0 =

(

α∗
0 − α0

exp(α0C)(µ∗
0 − µ0)

)

.

We have:

∂λ′
t(θ)

∂θ
=







∂a(xt;β)
∂β

∂m′(xt;β)
∂β exp[{a(xt;β0) + α0}C ′]− ∂a(xt;β)

∂β µ′ exp[{−∆a(xt;β) + α0}C ′]C ′

1 01×n

0n×1 exp[{−∆a(xt;β) + α0}C].






.
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Hence,

∂λ′
t(θ

∗
0)

∂θ
=







∂a(xt;β0)
∂β

∂m′(xt;β0)
∂β exp[{a(xt;β0) + α0}C ′]− ∂a(xt;β0)

∂β µ′ exp[α0C
′]C ′

1 01×n

0n×1 exp[α0C].






.

It is easy to see that, under A10, this matrix has full row rank with probability 1. Thus (3.5) is
satisfied.

We also have, with λ ∈ R, λ2 ∈ R
n and λ = (λ1,λ

′
2)

′,

l(λ;ut) = log g[exp(λ1C){ut + exp(a0C)λ2}] + λ1Tr(C).
21

Thus

∂l

∂λ
(λ;ut) =

( ∂ log g
∂u′ [exp(λ1C){ut + exp(a0C)λ2}]C exp(λ1C){ut + exp(a0C)λ2}+ Tr(C)

exp[(a0 + λ1)C
′]∂ log g

∂u [exp(λ1C){ut + exp(a0C)λ2}]

)

.

Since λ∗
0 = (a∗0 − a0,m

′
0 −m∗′

0 )
′, we have

∂l

∂λ∗
0

(λ;ut) =

( ∂ log g
∂u′ [exp{a0C}{ut − exp(a0C)m0}]C exp{a0C}{ut − exp(a0C)m0}+ Tr(C)

exp[a∗0C
′]∂ log g

∂u [exp{a0C}{ut − exp(a0C)m0}]

)

where a0 = a∗0 − a0, m0 = m∗
0 −m0.

The second-order derivative of l(λ;ut) can be similarly evaluated at λ∗
0.

C Derivatives for the index and multi-index models

C.1 Derivatives of a → log g(eaCy)

For a ∈ R, y ∈ R
n, C a n× n matrix, g : Rn → R

+ a function,

∂

∂a
(eaCy) = CeaCy,

∂2

∂a2
(eaCy) = C2eaCy

∂

∂a
log g(eaCy) =

[

∂ log g

∂u′
(eaCy)

]

CeaCy,

∂2

∂a2
log g(eaCy) =

(

CeaCy
)′
[

∂2 log g

∂u∂u′
(eaCy)

]

CeaCy +
(

C2eaCy
)′
[

∂ log g

∂u
(eaCy)

]

.

21
This corresponds to a reparameterization of (4.13) but, to avoid new notations, we still denote by l the criterion

function.
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C.2 Derivatives of β → e
a(β)Cy and β → log g(ea(β)Cy)

For a : Rp → R and β ∈ R
p,

∂

∂β′

{

ea(β)Cy
}

= Cea(β)Cy
∂a(β)

∂β′ ,

∂

∂β
log g

{

ea(β)Cy
}

=
∂

∂a
log g

{

ea(β)Cy
}

· ∂a(β)
∂β

=

{[

∂ log g

∂u′

{

ea(β)Cy
}

]

Cea(β)Cy

}

· ∂a(β)
∂β

,

∂2

∂β∂β′ log g
{

ea(β)Cy
}

=
∂

∂a
log g

{

ea(β)Cy
}

· ∂
2a(β)

∂β∂β′ +
∂2

∂a2
log g(eaCy) · ∂a(β)

∂β

∂a(β)

∂β′

=

{[

∂ log g

∂u′

{

ea(β)Cy
}

]

Cea(β)Cy

}

· ∂
2a(β)

∂β∂β′ +

{

(

Cea(β)Cy
)′
[

∂2 log g

∂u∂u′
(ea(β)Cy)

]

Cea(β)Cy

+
(

C2ea(β)Cy
)′
[

∂ log g

∂u
(ea(β)Cy)

]}

· ∂a(β)
∂β

∂a(β)

∂β′ .

In these equalities, "·" indicates the multiplication of a matrix by a scalar.

C.3 Derivatives of β → exp
{

∑J
j=1[aj(xt;β) + αj]Cj

}

yt

Let zt(α,β) = exp
{

∑J
j=1[aj(xt;β) + αj ]Cj

}

yt, where α = (α1, . . . , αJ)
′ ∈ R

J , aj(·) are

real valued functions with β ∈ R
p , yt ∈ R

n, Cj are n × n matrices. Let a(xt;β) =
(a1(xt;β), . . . , aJ(xt;β))

′. For i = 1, . . . , J , let the n× 1 vectors

z
(i)
t (α,β) = exp







i−1
∑

j=1

[aj(xt;β) + αj ]Cj







Ci exp {[ai(xt;β) + αi]Ci}

× exp







J
∑

j=i+1

[aj(xt;β) + αj ]Cj







yt,

where the first and last sums are replaced by 0 when i = 1 and i = J , respectively. Let the n × J
block-matrix

Zt(α,β) = [z
(1)
t (α,β)| . . . |z(J)

t (α,β)].

We have
∂zt(α,β)

∂β′ = Zt(α,β)
∂a(xt;β)

∂β′ .

When the matrices Cj commute, we have z
(i)
t (α,β) = Cizt(α,β) and

Zt(α,β) = [C1zt(α,β)| . . . |CJzt(α,β)] = C[IJ ⊗ zt(α,β)],
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where C = [C1| . . . |CJ ]. Thus, when the Cj commute,

∂zt(α,β)

∂β′ = C[IJ ⊗ zt(α,β)]
∂a(xt;β)

∂β′ .
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