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Abstract

We develop a general theory of epistemic democracy in large societies, which
subsumes the classical Condorcet Jury Theorem, the Wisdom of Crowds, and other
similar results. We show that a suitably chosen voting rule will converge to the
correct answer in the large-population limit, even if there is significant correlation
amongst voters, as long as the average covariance between voters becomes small as
the population becomes large. Finally, we show that these hypotheses are consistent
with models where voters are correlated via a social network, or through the DeGroot
model of deliberation.
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1 Introduction

The epistemic approach to social choice theory originates with Condorcet (1785). Suppose
a group of people want to obtain the correct answer to some dichotomous (yes/no) question.
The question has an objectively correct answer, and everyone has an opinion, but nobody
has perfect information. The group could be, for example, a jury trying to determine the
guilt or innocence of a defendant in a criminal trial, or a committee of engineers trying
to determine whether a bridge is structurally safe. Condorcet’s insight was that such a
group could efficiently aggregate their private information by voting. He assumed that each
voter’s success rate at divining the truth was better than blind chance, and that the errors
of different voters were stochastically independent. The famous Condorcet Jury Theorem
(CJT) then consists of two statements:

• A decision made by a committee using majority vote will be more reliable than the
opinion of any single individual. Furthermore, larger committees are more reliable
than smaller committees.
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• Majority vote will converge in probability to the correct answer as the committee
size becomes arbitrarily large.

The first statement is sometimes called the nonasymptotic part of the CJT, while the second
statement is the asymptotic part. Although it was originally stated only for dichotomous
decisions made by majority vote, the CJT has been generalized to polychotomous decisions
made by the plurality rule (Lam and Suen, 1996; Ben-Yashar and Paroush, 2001; List and
Goodin, 2001), and even other voting rules such as the Kemeny rule and the Borda rule
(Young, 1986, 1988, 1995, 1997). Furthermore, in these contexts, the “nonasymptotic”
part of the CJT can be refined: under certain conditions, the output of the voting rule
is a maximum likelihood estimator of the correct answer (see Pivato (2013b) for a general
formulation of these results).

A closely related result is the “Wisdom of Crowds” (WoC) principle of Galton (1907): if
a large number of people independently estimate some numerical quantity, then the average
of their estimates will converge, in probability, to the true value. However, the WoC, the
CJT, and all of its polychotomous generalizations depend on the assumption that the errors
made by different voters are independent random variables. This is obviously unrealistic:
in reality, the opinions of different voters will be strongly correlated, both because they
rely on common sources of information and because they influence one another through
deliberation and discussion. The goal of this paper is to extend the asymptotic part of the
CJT, WoC, and similar theorems to an environment with correlated voters.

It has been understood for a long time that the “independence” assumption in the
CJT is problematic. Starting in the 1980s, a series of papers gauged the seriousness of this
problem and proposed possible solutions. Nitzan and Paroush (1984) demonstrated the
sensitivity of the CJT to the independence assumption, while Shapley and Grofman (1984)
showed that, with certain patterns of correlations, a nonmonotonic rule could actually be
more reliable than majority vote. Owen (1986) argued that, if the voters can be divided
into subgroups such that voters within each subgroup are correlated, then an “indirect”
majority vote (like an electoral college) could be more reliable than direct majority vote.
Meanwhile, Ladha (1992) showed that the asymptotic CJT remained true as long as the
“average” covariance between the voters was sufficiently small. (This is a special case of
Theorem 5.3 in the present paper.) Berend and Sapir (2007) found general conditions for
the nonasymptotic part of the CJT to hold in a committee of correlated voters. Kaniovski
(2009, 2010) modeled the joint probability distribution of a population of homogeneous
correlated voters using a representation by Bahadur, and studied the nonasymptotic part of
the CJT in this context. Building on this work, Kaniovski and Zaigraev (2011) showed that
a special case of the Bahadur representation admits a quota voting rule which neutralizes
the effect of the correlations. Finally, Peleg and Zamir (2012) gave a number of necessary
conditions and sufficient conditions for a population of correlated voters to satisfy the CJT.

One natural source of voter correlation is “contagion” of opinions (e.g. due to deliber-
ation). Berg (1993a,b) and Ladha (1995) supposed that the voters’ errors were correlated
according to hypergeometric or Pólya-Eggenberger urn processes, which are simple models
of such “contagion”. They showed that the asymptotic CJT holds for the former, but does
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not hold for the latter (although a group is still more reliable than an individual). See
Berg (1996) for a summary.

Another possible cause of voter correlation is a common source of information. For
example, in a criminal trial, all jurors observe exactly the same evidence (although they
may interpret it differently). In a committee of engineers, everyone reads the same technical
reports and has access to the same data. In other situations, the voters might all be
influenced by an “opinion leader”. Boland (1989) and Boland et al. (1989) developed a
version of the CJT with such an opinion leader. Later, Berg (1994) extended this to a
setting with weighted voting rules. Estlund (1994) also considered a model with opinion
leaders, but he showed that, under certain conditions, such opinion leaders could actually
improve the reliability of majority vote. Meanwhile, Ladha (1993, Proposition 1) proved a
version of the CJT when the voter errors are not independent, but are exchangeable random
variables. By a theorem of de Finetti, this is equivalent to a model where the voter opinions
are independent Bernoulli random variables with a common parameter α, which is itself
another random variable; thus, α can be interpreted as representing a common information
source. (The Pólya-Eggenberger distributions studied by Berg (1993a,b) and Ladha (1995)
are also examples of exchangeable distributions.) Peleg and Zamir (2012, Theorem 5) also
proved a version of the CJT for exchangeable random variables. Dietrich and List (2004)
demonstrated that if all voters draw only on a small set of (unreliable) information sources,
then the asymptotic part of the CJT fails: even a very large population of voters cannot
be any more reliable than the (small) set of information sources on which they all base
their opinions. Dietrich and List represented this situation as a Bayesian network; this
approach was further developed by Dietrich and Spiekermann (2013a,b), who showed that,
in the presence of common causes, the asymptotic reliability of a large committee can be
good, but less than perfect.

A third possible cause of correlation is strategic voting. Even if all voters want the
group to get the correct answer, they may have incentives to vote strategically (Austen-
Smith and Banks, 1996). To see this, recall that each voter’s optimal voting strategy is
based on the hypothesis that she is a pivotal voter. But this hypothesis has implications for
how other people must have voted, and thus, indirectly, about the state of the world itself.
So a voter who believes that she is pivotal has extra information beyond her private signal,
and this may change the way she votes; in some cases, she may actually vote against her
private information. But in a strategic setting, all voters will vote “as if” they are pivotal,
so such strategic dishonesty may be widespread (and correlated) in equilibrium.

However, the consequences of strategic voting are not as dire as one might imagine in
an epistemic context. McLennan (1998, Theorem 1) has shown that any profile of voting
strategies which maximizes the probability that the group gets the right answer will be a
Bayesian Nash equilibrium (BNE). This holds even if the voters’ types (i.e. their private
information) are correlated. As observed by Peleg and Zamir (2012), this means that we
only need to prove the existence of some pattern of voting behaviour which satisfies the
CJT; it then follows that the CJT will also hold in BNE. Thus, we do not need to explicitly
consider strategic behaviour in our analysis.
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Aside from voter correlation, another important issue in epistemic social choice theory
is the tradeoff between group size and average voter competency. Suppose we could arrange
the voters in order from most epistemically competent to least competent. We could then
consider various forms of “epistocracy”, where we delegate the decision to the N most
competent individuals, for some value of N . One extreme (N = 1) is rule by a “philosopher
king” —the single most competent individual. The opposite extreme (maximal N) is “mass
democracy”, where all voters participate equally. If all voters are equally competent, then
Condorcet’s theorem says that increasing N will alway leads to better decisions. But
we can easily imagine situations where competency is distributed so unequally amongst
the voters that increasing N will lead to worse decisions. The problem is exacerbated if
the competency of each individual voter is itself a decreasing function of the size of the
electorate in which she participates. This is plausible if, for example, there is a fixed
budget of resources to spend on educating and informing the voters (so that increasing
N necessarily decreases the educational resources available for each voter), or if voters
in a larger electorate are tempted to epistemically “free ride” on their colleagues. A
series of papers have considered this size/competency tradeoff (Boland, 1989; Kanazawa,
1998; Karotkin and Paroush, 2003; Berend and Sapir, 2007). Our results show that the
asymptotic results of the CJT and WoC remain true even if average voter competency
decreases as the population size increases —as long as it does not decay too quickly.

Almost all of the aforementioned papers deal only with dichotomous decision problems
and majority rule.1 In contrast, the asymptotic results of this paper are applicable to
polychotomous decisions and a large class of epistemic voting rules, including majority rule,
plurality rule, the Kemeny rule, the median rule (on a discrete metric space), the average
rule (for vector-valued decisions), Condorcet-consistent rules, and scoring rules such as the
Borda rule. To obtain this level of generality, we will introduce a single broad class of
voting rules which includes all of the aforementioned rules as special cases: the class of
mean partition rules. This class of rules yields a very general approach to epistemic social
choice theory, which subsumes all existing versions of the asymptotic CJT (dichotomous
and polychotomous) and the WoC principle, and also applies to many other epistemic
social choice models. We will show that these asymptotic results can remain valid even
when there is considerable correlation between voters, and even if the average competency
of voters decreases as the population increases. Furthermore, we will provide a concrete
illustration of the economic relevance of our general results, by connecting them with the
theory of social networks and with the DeGroot (1974) model of consensus formation.

The remainder of this paper is organized as follows. Section 2 introduces notation
and terminology which will be maintained throughout the paper. Section 3 defines the
class of mean partition rules and gives several examples, including majority rule, plurality
rule, the median rule, and other scoring rules. Section 4 describes a special case of our
model, which we call a populace: this is a family of probability distributions, describing
a society where voters make independent random errors. It contains two special cases of

1 Exceptions are Young (1986, 1988, 1995, 1997), Lam and Suen (1996), McLennan (1998), Ben-Yashar
and Paroush (2001), and List and Goodin (2001).
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our main result, which state that, if the populace satisfies certain mild conditions, then an
appropriate mean partition rule will select the correct answer with very high probability
in a large population (Propositions 4.1 and 4.3).

Section 5 describes the general model, which we call a culture: this is a family of
probability distributions, describing a society where the errors of the voters are correlated

random variables. It then states the general version of our main result (Theorem 5.3): if the
culture is sagacious (meaning that it satisfies certain mild conditions —in particular, the
“average covariance” between voters is not too large), then an appropriate mean partition
rule will select the correct answer with very high probability in a large population.

The rest of the paper explores applications. Section 6 considers cultures based on
social networks, and contains results (Propositions 6.2 and 6.5) stating that, as long as
the social network is not too richly connected, the resulting culture will be sagacious, so
that Theorem 5.3 applies. Finally, Section 7 considers the effects of deliberation on an
already sagacious culture, and contains a result (Proposition 7.1) saying that, as long as
no individuals are too “influential” in this deliberation, the culture will remain sagacious
after deliberation. All proofs are in the Appendix.

2 Notation and terminology

We now fix some notation which will be maintained throughout the paper. Let N :=
{1, 2, . . .} denote the set of natural numbers. Let R denote the set of real numbers, and
let R+ denote the set of nonnegative real numbers. Let I denote a finite set of voters,
and let I := |I|. (We will typically assume that I is very large; indeed, we will mainly be
interested in asymptotic properties as I→∞.)

A metric space is a set S together with a function d : S × S−→R+ such that, for any
r, s, t ∈ S: (1) d(s, t) = d(t, s); (2) d(s, t) = 0 if and only if s = t; and (3) d(r, t) ≤
d(r, s)+ d(s, t). We will assume throughout the paper that the set of possible states of the
world is a metric space (for example, a subset of some Euclidean space). If S is a finite
set, then we will just use the discrete metric, where d(s, t) = 1 for any s 6= t.

If V is a vector space, then a norm on V is a function ‖ ‖ : V−→R+ such that, for any
v,w ∈ V and r ∈ R: (1) ‖r v‖ = |r| · ‖v‖; (2) ‖v‖ = 0 if and only if v = 0; and (3)
‖v + w‖ ≤ ‖v‖ + ‖w‖. Such a norm defines a metric d on V by d(v,w) := ‖v − w‖.
An inner product on V is a function 〈 , 〉 : V × V−→R such that, for any v,w ∈ V: (1)
The functions 〈v, 〉 : V−→R and 〈 ,w〉 : V−→R are linear; (2) 〈v,w〉 = 〈w,v〉; and (3)
〈v,v〉 ≥ 0, and furthermore, 〈v,v〉 = 0 if and only if v = 0. For example, if V = R, then
we could simply take 〈r, s〉 := r s for any r, s ∈ R. If V = R

N , then we could use the
standard dot product: 〈v,w〉 = v1 w1 + · · ·+ vN wN for any v,w ∈ R

N . An inner product
defines a norm by setting ‖v‖ :=

√
〈v,v〉. For example, the Euclidean norm on R

N is

defined by ‖v‖ :=
√

v21 + · · ·+ v2N . An inner product space is a vector space equipped with
an inner product. We always endow such a space with the metric induced by the norm
induced by the inner product. We will assume throughout the paper that the set of votes
that can be sent by the voters is a subset of some inner product space.

Let ρ be a probability measure on a vector space V. The expected value of a ρ-random
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Figure 1: A mean partition rule. (a) V is a subset of the vector space V. (b) C is the convex hull of
V. (c) f−1{s} is a convex subset of C, for each s ∈ S. (d) The sets C′ and Cδ.

variable is defined E[ρ] :=
∫
V
v dρ[v]. If V has a norm ‖.‖, then the variance is defined

var[ρ] :=

∫

V

‖v − v‖2 dρ[v], where v := E[ρ].

3 Mean partition rules

This section introducesmean partition rules: voting rules where the outcome is functionally
determined by the average of the signals sent by the voters. After formally defining this
class of rules, we provide a series of examples, showing that many common voting rules
fall into this class.

Let I be a set of individuals. Let S be a metric space, whose elements represent social
alternatives. An (anonymous) mean partition rule on S is a voting rule defined by a data
structure F := (V,V , f) with four properties:

(M1) V is an inner product space, and V ⊆ V (as shown in Figure 1(a)).
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(M2) Let C be the closed convex hull of V (as in Figure 1(b)).2 Then f : C−→S is a
surjective function (as shown in Figure 1(c)).

(M3) There exists a subset C ′ ⊆ C and δ > 0 such that, if we define Cδ := {c ∈ C;
d(c, C ′) < δ}, then f is uniformly continuous and surjective when restricted to Cδ.

(M4) For any s ∈ S, the set f−1{s} ∩ C ′ is convex (as in Figure 1(d)).

In this model, V is the set of possible votes which could be sent by each individual. Given
any finite set I of individuals, and any profile V = (vi)i∈I of votes (where vi ∈ V for all
i ∈ I), the output of the rule F is obtained by applying f to the average of the vectors
{vi}i∈I . Formally,

F (V) := f

(
1

|I|

∑

i∈I

vi

)
, for all V = (vi)i∈I ∈ VI . (1)

A few remarks are in order. First, if V is a finite-dimensional vector space, then it always
has an inner product, and furthermore all inner products on V are uniformly equivalent;
thus, the requirement that V be an inner product space in (M1) involves absolutely no loss
of generality. Second, from property (M2) and equation (1), it is clear that the voting rule
F is anonymous by construction (i.e. the outcome is invariant under permutation of the
voters). Third, (M3) does not require f to be continuous everywhere on C. (Indeed, if S
were a discrete set, this would be impossible.) However, if f is injective (so that f−1{s} is
a singleton for all s ∈ S), then the surjectivity part of (M3) implies that Cδ = C, so that
f is a uniformly continuous function on C. (In this case, the convexity condition (M4) is
automatically satisfied.) At the other extreme, if S is finite, then (M2) says that f defines
an S-labelled partition of C —in other words, C =

⋃
s∈S Cs, where Cs := f−1{s} for all

s ∈ S. Meanwhile, (M4) says that C ′ =
⋃

s∈S C
′
s, where C

′
s is a convex subset of Cs, for each

s ∈ S. Figure 1(c) suggests that Cs is also convex for each s ∈ S, and indeed, this is the
case in many of our examples. But it is not true in general. Since f is single-valued, it must
use some “tie-breaker” rules for points along the boundaries between the preimage sets Cs
(for s ∈ S), and the sets Cs would be convex only if these tie-breaker rules were carefully
chosen. Fortunately, this doesn’t matter; the sets Cs need not be convex, as long as (M4)
is satisfied. (See Example 3.3(a) below for an illustration.) Indeed, it is for precisely this
reason that (M3) introduced C ′.3

Example 3.1. (a) (Simple majority rule) Let S := {±1}. Let Vmaj := R. Let Vmaj :=
{±1}, so that C = [−1, 1], as shown in Figure 2(a). Define fmaj : C−→S by setting
fmaj(r) := sign(r) for all nonzero r ∈ [−1, 1], while fmaj(0) := 1 (an arbitrary tie-breaking
rule). Then Fmaj = (Vmaj,Vmaj, fmaj) is the simple majority rule. Now, fix ǫ > 0, and let
C ′ := C ′

−1 ⊔ C ′
+1, where C ′

−1 := [−1,−ǫ) and C ′
+1 := (ǫ, 1], as shown in Figure 2(b). Then

(M3) and (M4) are satisfied (set δ := ǫ/2).

2 That is: C is the smallest closed, convex subset of V that contains V. Equivalently, C is the intersection
of all closed convex sets containing V. If V is finite, then its convex hull is automatically closed, so in this
case we could just define C to be its convex hull.

3 I thank the referee for calling my attention to this issue.
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Figure 2: (Example 3.1(a)) Simple majority vote as a mean partition rule.
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Figure 3: (Example 3.1(b)) The plurality rule as a mean partition rule.

Throughout the remaining examples, let ℘(S) be the power set of S, and let τ : ℘(S)−→S
be a function such that τ(Q) ∈ Q for all nonempty Q ⊆ S. (Thus, in particular, τ{s} = s
for all s ∈ S.) We will use τ as a “tie-breaker” in the definition of the following rules.

(b) (Plurality rule) Let N ≥ 2, and let S := {1, 2, . . . N} (a set of N alternatives). Let
Vplu := R

N . For all n ∈ [1 . . . N ], let vn := (0, . . . , 0, 1, 0, . . . , 0), where the 1 appears in
the nth coordinate. Let Vplu := {v1, . . . ,vN} (a subset of RN). If C is the convex hull of V ,
then C is the unit simplex in R

N , as shown in Figure 3(a). For any c ∈ C, let Sc := {s ∈ S;
cs ≥ ct for all t ∈ S} be the set of maximal coordinates. Define fplu : C−→S by setting
fplu(c) := τ(Sc), for all c ∈ C. Then Fplu = (Vplu,Vplu, fplu) is the plurality rule. Fix
ǫ ∈ (0, 1), and for all s ∈ S, define the convex set C ′

s := {c ∈ C; cs > ct + ǫ for all t 6= s},
as shown in Figure 3(b). (Note that C ′

s 6= ∅ because ǫ < 1.) Let C ′ := C ′
1 ⊔ C ′

2 ⊔ · · · ⊔ C ′
N ;

then (M3) and (M4) are satisfied (set δ := ǫ/2).

(c) (The median rule) Let S be a finite subset of R. Let Vmed := R
S . For all s ∈ S, define

vs := (vst )t∈S ∈ V, by setting vst := |s − t| for all t ∈ S. Let Vmed := {vs}s∈S (a subset of
Vmed), and let C be the convex hull of V . For any c ∈ C, let Sc := {s ∈ S; cs ≤ ct for
all t ∈ S} be the set of minimal coordinates of c —in effect, these are the element(s) of S
which minimize the average distance to the points chosen by the voters. It is easy to see
that Sc is always an interval inside S. Define fmed : C−→S by setting fmed(c) := τ(Sc),
for all c ∈ C. In other words, each voter chooses a point s in S (represented by vs), and
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Fmed chooses a point in S which minimizes the average distance to the points chosen by
the voters (using τ to break ties). As is well-known, this point will be a median of the
points chosen by the voters. (This is a special case of the next example.)

(d) (The generalized median rule) Let (S, d) be a finite metric space (for example, a
connected graph with the geodesic metric). Let Vmed := R

S . For all s ∈ S, define
vs := (vst )t∈S ∈ V, by setting vst := d(s, t) for all t ∈ S. Let Vmed := {vs}s∈S (a subset of
Vmed), and let C be the convex hull of Vmed. For any c ∈ C, let Sc := {s ∈ S; cs ≤ ct
for all t ∈ S}, as in example (d). Define fmed : C−→S by setting fmed(c) := τ(Sc), for
all c ∈ C. As in example (d), each voter chooses a point s in S (represented by vs), and
Fmed selects a point in S which minimizes the average distance to the points chosen by the
voters (using τ to break ties). To see that this is a mean partition rule, let ǫ > 0, and for
all s ∈ S, let C ′

s := {c ∈ C; cs < ct − ǫ for all t ∈ S \ {s}}. If ǫ is small enough, then these
sets are nonempty for all s ∈ S, convex, and disjoint, and if we define C ′ :=

⊔
s∈S C

′
s and

δ := ǫ/2, then fmed is uniformly continuous on C ′; thus, (M3) and (M4) are satisfied.

(e) (The Kemeny rule) Let A be a finite set of social alternatives. Let S be the set of
all linear orders over A. The Kendall metric on S is defined by declaring d(s, r) to be
the number of pairwise comparisons where the orders s and r disagree. In this case, the
generalized median rule from example (d) is the Kemeny rule for preference aggregation.

(f) (Scoring rules) Let S be a finite set of alternatives, and let Vscr := R
S . Let V be any

subset of V. Intuitively, an element v = (vs)s∈S in V represents a vote which assigns a
“score” of vs to each alternative in S. Let C be the convex hull of V . For any c ∈ C, let
Sc := {s ∈ S; cs ≥ ct for all t ∈ S} be the set of maximizers of c. Define fscr : C−→S
by setting fscr(c) := τ(Sc), for all c ∈ C. Then Fscr = (Vscr,V , fscr) is called a scoring

rule. All of the examples above are special cases of scoring rules. Other well-known scoring
rules include the Borda rule and the Approval Voting rule. (The proof that this is a mean
partition rule is similar to example (d).)

(g) (Mean proximity rules) Let S be a finite set of alternatives, and for each s ∈ S, let
rs ∈ R

N . Let V be another finite subset of RN . Let C be the convex hull of V . For
any c ∈ C, let Sc := {s ∈ S; ‖rs − c‖ is minimal}. Define fmpr : C−→S by setting
fmpr(c) := τ(Sc), for all c ∈ C. Then Fmpr = (Vscr,V , fmpr) is called a mean proximity rule.
♦

The median rule in Example 3.1(c) might seem more like a statistical construct than a
bona fide voting rule. But if all voters have single-peaked preferences on a linearly ordered
set S, then the median alternative is the Condorcet winner, so it will be the outcome of any
Condorcet-consistent voting rule (Black, 1958). Medians also arise in another important
voting rule. Let A be a set of alternatives, let S be a linearly ordered set of “rankings”,
and suppose each voter assigns an ranking in S to each alternative in A. The majority

judgement rule selects the alternative in A which receives the highest median ranking from
the voters. This rule has many nice properties (Balinski and Laraki, 2011). Meanwhile,
the generalized median voting rule of Example 3.1(d) has been studied and axiomatically
characterized for finite metric spaces (Barthélémy and Janowitz, 1991), graphs and lattices
(McMorris et al., 2000), and judgement aggregation (Nehring and Pivato, 2017).
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Figure 4: (Example 3.2) A (convex) mean partition rule that is not a scoring rule.

The scoring rules of Example 3.1(f) are related to the generalized scoring rules of Xia
and Conitzer (2008). The difference is that Xia and Conitzer identify the elements of V
with preference orders over S; on the other hand, they do not necessarily use the maximizer
as the winner. Xia (2015) introduced a further generalization he called generalized decision

scoring rules, and proved a CJT-type result similar to Proposition 4.1 below. When V and
S are both finite, Zwicker (2008, Theorem 4.2.1) has shown that an anonymous voting rule
is a scoring rule (as in Example 3.1(f)) if and only if it is a mean proximity rule (as in
Example 3.1(g)).4 So these two classes are equivalent. But not every mean partition rule
is a scoring rule, even when V and S are finite, as shown by the next example.

Example 3.2. (Not a scoring rule) Let S = {1, 2, 3}, let V = R
3, and let V = {v1,v2,v3},

as in the Plurality rule of Example 3.1(b). Thus, C is the unit simplex in R
3. Define

f : C−→S as follows (see Figure 4(a)):

for all c = (c1, c2, c3) ∈ C, f(c) :=





3 if c3 >
1
2
;

1 if c3 ≤
1
2
and c1 ≥ c2;

2 if c3 ≤
1
2
and c1 < c2.

Thus, alternative 3 wins if it is supported by a strict majority of the voters; otherwise either
1 or 2 wins, depending on which of them is supported by more voters (with ties broken in
favour of alternative 1). For example, f(0.3, 0.25, 0.45) = 1. Figure 4(b) illustrates how
this is a mean partition rule. But it is not a scoring rule (Pivato, 2013a, Example 2).5

Such a rule would make sense in a scenario where alternative 3 was seen as prima facie

less desirable than alternatives 1 or 3, so that it needs a higher level of popular support

4Zwicker’s model is slightly different: instead of using a tiebreaker rule, he allows voting rules to be
multivalued in the case of a tie.

5Cervone and Zwicker (2009) contains a similar example, but their focus is on convex partitions rather
than scoring rules.
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to be adopted. In an epistemic context, alternative 3 might be regarded as less plausible
than alternatives 1 or 2, and thus demanding a higher standard of evidence. ♦

In all the mean partition rules in Examples 3.1 and 3.2, the function f defines a convex,
S-labelled partition of the convex hull C; the continuity set C ′ in condition (M3) is then
obtained by “ǫ-shrinking” the convex cells of this partition. In the terminology of Pivato
(2013a), rules like this are called balance rules.6 However, mean partition rules do not
necessarily involve convex partitions, as the next examples show.

f
- -1 {3}

v
3

v
2

v
1

f
- -1 {2}

(b)

v
3

v
2

v
1

(c)

C
 /

2

C
 /

3

3 3

C
 /

1f
- -1 {1}

v
3

v
2

v
1

(a)

3

C2

C3

C1

Figure 5: (Example 3.3(a)) Any majoritarian rule is a mean partition rule.

Example 3.3. (a) (Majoritarian rules) Let S = {1, 2, . . . , N}, let V := R
N , and define

V := {v1, . . . ,vN} as in Example 3.1(b). Let C be the convex hull of V , and for all s ∈ S,
let Cs := {c ∈ C; cs >

1
2
}, as shown in Figure 5(a) Let f : C−→S be any function such that

Cs ⊆ f−1{s} for all s ∈ S. Thus, if we define the rule F as in formula (1), then F (V) = s
whenever more than half of all the voters support s; in other words, F is a majoritarian

rule. If no alternative receives a clear majority, then the decision is determined by the
structure of f in the part of C not covered by C1 ⊔ · · · ⊔ CN ; in particular, note that the set
f−1{s} need not be convex for any s ∈ S. Figure 5(b) shows one possible example. To see
that any majoritarian rule is a mean partition rule, let ǫ > 0, and let C ′ := C ′

1 ⊔ · · · ⊔ C ′
N ,

where for all s ∈ S, we define C ′
s := {c ∈ C; cs >

1
2
+ ǫ}, as shown in Figure 5(c).

(b) (Condorcet consistent rules) Let S be a finite set of alternatives, let N be a set
containing exactly one of the pairs (s, t) or (t, s), for each s, t ∈ S, and let V := R

N . For
any v ∈ V, we define vs≻t := vs,t if (s, t) ∈ N , whereas vs≻t := 1 − vt,s if (t, s) ∈ N . For
any strict preference order ≻ on S, let v≻ ∈ V be the unique vector such that v≻s≻t = 1 for
all s, t ∈ S. (In other words, for all (s, t) ∈ N , we have v≻s,t := 1 if s ≻ t, whereas v≻s,t := 0
if t ≻ s.) Let V := {v≻; ≻ is a strict preference order on S}. This is the basis for a voting
rule where each voter expresses a strict preference order over S, and we keep track of the
total support for each pairwise comparison. Let C be the convex hull of V ; see Figure 6(i)
for the case S = {a, b, c}. For each s ∈ S, let Cs := {c ∈ C; cs≻t > 1

2
for all t 6= s},

as shown in Figures 6(ii-iv). Let f : C−→S be a function such that Cs ⊆ f−1{s} for all

6See Pivato (2013a) for the precise definition of balance rules and their axiomatic characterization.
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c

C
 /

a
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 /
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Figure 6: (Example 3.3(b)) Any Condorcet-consistent rule is a mean partition rule.

s ∈ S. Thus, if we define F as in formula (1), then F (V) = s whenever s is the Condorcet

winner, meaning that more than half of all the voters prefer s to each other alternative
in S. In other words, F is a Condorcet-consistent rule. If no alternative is a Condorcet
winner, then the decision is determined by the structure of f in the part of C not covered by⊔

s∈S Cs. Many popular voting rules are Condorcet consistent, including Copeland rule, the
Simpson-Kramer (“minimax”) rule, the Tideman (“ranked pairs”) rule, and the Schulze
rule. For most of these rules, the set f−1{s} is not convex for any s ∈ S. To see that any
Condorcet-consistent rule is a mean partition rule, let ǫ > 0, and let C ′ :=

⊔
s∈S C

′
s, where

for all s ∈ S, we define C ′
s := {c ∈ C; cs≻t >

1
2
+ ǫ for all t 6= s}. ♦

As Example 3.3 shows, the set C ′ which appears in (M3) and (M4) could actually be
a rather small subset of C. However, the smaller C ′ becomes, the more difficult it will be
to satisfy the Identification condition we will introduce in Sections 4 and 5. In contrast,
if a mean partition rule is based on a convex partition, then C ′ can be a very large subset
of C. Thus, while we do not require mean partition rules to use convex partitions, the
Identification condition of Sections 4 and 5 is more easily satisfied for such rules.
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All of the previous examples have assumed that S is finite. But there are also mean
partition rules where S is infinite, or even a continuum, as shown by the next example.

Example 3.4. (The average rule) Let V be an inner product space (e.g. V = R
N), and let

S be a convex subset of V. Let C = V = S, and let fave : C−→S be the identity function.
This represents the rule where each voter declares an “ideal point” in S, and the outcome
is the arithmetic average of these ideal points. Note that (M2) and (M3) are satisfied (with
C ′ := S and δ arbitrary), because the identity function is uniformly continuous, and the
preimage of each point is a singleton. ♦

4 Epistemic social choice with independent voters

The main focus of this paper is correlated voters. But for ease of reading, we will first
introduce the main ideas in an environment with independent voters. Each voter is repre-
sented using a behaviour model: a function that maps each possible state of the world to
a probability distribution over votes. A wide variety of behaviour models are mathemat-
ically possible, but most of these will not occur in an actual electorate of human voters,
whose behaviour presumably conforms to certain psychological regularities and/or cultural
norms. We will not explicitly model these psychological and cultural factors; instead, we
will represent them implicitly by singling out a subset of possible behaviour models we call
a populace. We will suppose that any actual electorate is constructed by sampling from this
populace. The results of this section (Propositions 4.1 and 4.3) show that, if the populace
satisfies certain conditions, then the mean partition rule applied to a large electorate of
independent voters is highly likely to get the correct answer. By applying these results to
some of the mean partition rules introduced in Examples 3.1 and 3.3, we rederive the most
general versions of the Condorcet Jury Theorem which have appeared in previous litera-
ture (Example 4.2). We are also obtain a very general version of the Wisdom of Crowds
principle (Example 4.4) and a CJT-type result for log-likelihood scoring rules, a class of
voting rules which play a prominent role in “maximum-likelihood estimator” approaches
to epistemic social choice theory (Example 4.5).

Let S be the metric space of the possible states of the world (the true state being
unknown). Let (V,V , F ) be a mean partition rule taking outcomes in S. Let I be a finite
set of individuals, and let I := |I|. We suppose that each individual’s vote is a random
variable, which is dependent on the true state of nature. The idea is that each individual
obtains some information about the state of nature (possibly incomplete and/or incorrect),
combines it with her own pre-existing beliefs, and formulates a belief about the state of
nature, which she expresses using her vote. Our goal is to use the pattern of these votes
to estimate the true state of nature.

Formally, for each individual i ∈ I, we posit a behaviour model ρi : S−→∆(V); if the
true state is s ∈ S, then the probability distribution of individual i’s vote will be ρi(s). For
any v ∈ V , we will write ρi(v|s) for the value of ρi(s) evaluated at v —i.e. the probability
that individual i votes for v, given that the true state is s. Let E[ρ(s)] denotes the expected
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value of a ρ(s)-random variable —in other words, the mean value of the distribution ρ(s).
If C is the closed convex hull of V , then E[ρ(s)] ∈ C.7

Different voters may have different behaviour models (due to differing competency,
different prior beliefs, or access to different information sources). Furthermore, it is not
realistic to suppose that we have precise knowledge of the behaviour model of every voter
(or even of any voter); in general, we only know some broad qualitative properties of their
behaviour models. Thus, we will suppose that there is some set P of possible behaviour
models (i.e. functions from S into ∆(V)), and all we know is that ρi ∈ P for all i ∈ I. We
will refer to P as a populace on V . Let F = (V,V , f) be a mean partition rule, and let C
be the closed convex hull of V . We will say that a populace P is sagacious for F if there is
some set C ′ ⊆ C satisfying conditions (M3) and (M4) such that P satisfies two conditions:

Identification. For any ρ ∈ P and any s ∈ S, the expected value of a ρ(s)-random variable
lies in the f -preimage of s inside C ′. That is: E[ρ(s)] ∈ C ′ and f (E[ρ(s)]) = s.

Minimal Determinacy. There is some M ≥ 0 such that var[ρ(s)] ≤ M for all ρ ∈ P
and s ∈ S.

The Identification condition says that, while an individual’s actual vote may be incorrect,
the expected value of her vote indicates the true state of nature —at least once it has
been “interpreted” using the function f . The variance of an individual’s vote distribution
is a measure of “ randomness”: if the variance is large, then this person’s vote is quite
unpredictable, and likely to be far from its expected value. Minimal Determinacy places a
limit on the randomness of each voter.

Note that the epistemic reliability of a voter is determined both by the mean and the
variance of her behaviour model —if ρi(s) has a small variance, but its expected value is
very close to the boundary of f−1{s}, while ρj(s) has a larger variance, but its expected
value is much farther from the boundary of f−1{s}, then it may turn out that voter j’s
opinion is a more reliable indicator of the true state of nature than voter i, even though voter
j’s opinion is also more random. It is for this reason that we use the term “determinacy”
rather than “reliability” to describe the bound on variance.8 Also note that, if the set V is
bounded (in particular, if V is finite), then Minimal Determinacy is automatically satisfied
(because there will be some M such that var(ρ) ≤ M for any ρ ∈ ∆(V)).

Our first result concerns the case when S is finite. It says that if a large number
of voters are drawn from a sagacious populace, and their votes are independent random
variables, then the output of the voting rule will be the true state of nature, with very
high probability.

Proposition 4.1 Let F be a mean partition rule ranging over a finite set S, and let P
be a populace which is sagacious for F . For all i ∈ N, let ρi ∈ P. Fix s ∈ S, and

7Formally, E[ρ(s)] :=
∫
V
v dρ(s)[v]. This V-valued integral is defined by taking a limit in V; this is

why we defined C to be the closed convex hull of V in (M2), and not merely its convex hull. If V is
finite-dimensional, then this integral is defined in the obvious way. But if V is infinite-dimensional, then
it is a Bochner integral; for details, see Remark A.3 in the Appendix.

8I thank the referee for emphasizing the importance of this distinction.
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suppose {vi}
∞
i=1 are all independent random variables, where, for all i ∈ N, vi is drawn

from distribution ρi(s). Then lim
I→∞

Prob [F (v1,v2, . . . ,vI) = s] = 1.

Example 4.2. (a) (Condorcet Jury Theorem) Let S = V := {±1} and let Fmaj be as in
Example 3.1(a). Let P be the set of all behaviour models ρ : {±1}−→∆{±1} such that
ρ(s|s) > 1

2
+ ǫ (and thus, ρ(−s|s) < 1

2
− ǫ) for both s ∈ {±1}. Let C ′

−1 := [−1,−ǫ) and
C ′
1 := (ǫ, 1]. Then E[ρ(s)] ∈ C ′

s for any ρ ∈ P and s ∈ {±1} . Thus, Fmaj (E[ρ(s)]) = s,
so Identification is satisfied. Furthermore, var(ρ) < 4 for any ρ ∈ ∆{±1}, so Minimal

Determinacy is always satisfied. Thus, Proposition 4.1 yields an extension of the Condorcet
Jury Theorem to heterogenous voters, originally stated by Paroush (1998): If the voter’s
opinions about some dichotomous choice are independent random variables, and each voter
satisfies some minimal level of competency (i.e. her probability of identifying the correct
answer is ǫ-better than a coin flip), then the outcome of a simple majority vote will converge
in probability to the correct answer as the voting population becomes large.

(b) (Plurality CJT) Let N ≥ 2, and let S := {1, 2, . . . N}. Define (V,V , Fplu) as in
Example 3.1(b). Let P be the set of all behaviour models ρ : S−→∆(V) such that ρ(vs|s) >
ρ(vt|s) + ǫ, for all s, t ∈ S with s 6= t. For all s ∈ S, define Cs as in Example 3.1(b). Then
E[ρ(s)] = (ρi(1|s), ρi(2|s), . . . , ρi(N |s)) ∈ Cs for all ρ ∈ P and s ∈ S; thus, Identification is
satisfied. Furthermore, var(ρ) < N for any ρ ∈ ∆(V), so Minimal Determinacy is always
satisfied. Thus, Proposition 4.1 yields a “polychotomous” extension of the CJT, originally
stated by Goodin and List (2001; Proposition 2): if each voter has some minimal level of
competency (i.e. is ǫ-better than a random guess), then the outcome of the plurality rule
will converge in probability to the correct answer as the voting population becomes large.

By applying a similar argument to Examples 3.3(a,b), we could also develop polychoto-
mous versions of the CJT for majoritarian and Condorcet-consistent voting rules. ♦

In fact, Proposition 4.1 is a special case of the next result, which also applies when S
is infinite. This result says that, if a large number of voters are drawn from a sagacious
populace, and their votes are independent random variables, then the output of the voting
rule will be very close to the true state of nature, with very high probability.

Proposition 4.3 Let F be a mean partition rule ranging over an arbitrary set S, and

let P be a populace which is sagacious for F . For all i ∈ N, let ρi ∈ P. Fix s ∈ S,
and suppose {vi}

∞
i=1 are all independent random variables, where, for all i ∈ N, vi is

drawn from distribution ρi(s). Then for any open subset U ⊂ S containing s, we have

lim
I→∞

Prob [F (v1,v2, . . . ,vI) ∈ U ] = 1.

Example 4.4. (The Wisdom of Crowds) Let V be an inner product space (e.g. V = R
N),

let V = S be a convex subset of V, and let Fave be the average rule, as in Example 3.4.
Fix M > 0, and let P be the set of all behaviour models ρ : S−→∆(V) such that, for all
s ∈ S, E[ρ(s)] = s and var[ρ(s)] ≤ M . Then Identification and Minimal Determinacy are
satisfied. Thus, Proposition 4.3 yields the Wisdom of Crowds principle for the estimation
of some real-valued (or, more generally, vector-valued) quantity: if each voter estimates
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the quantity, and their estimates are independent, unbiased, and have finite variance, then
the average of their estimates will converge in probability to the correct answer. ♦

The classic examples of the Wisdom of Crowds involve a numerical quantity (e.g. the
weight of an ox). But Example 4.4 also applies when V is a vector space —even an infinite-
dimensional vector space. For example, let V be the space of all continuous real-valued
functions on an interval [a, b], equipped with the inner product 〈v, w〉 :=

∫ b

a
v(r)w(r) dr

for all v, w ∈ V. Many decision problems involve estimating such functions. For example,
an oligopolistic firm must estimate the shape of the demand curve to determine its optimal
pricing strategy. A central bank must estimate the functional relationship between the
Consumer Price Index and other macroeconomic variables, to determine whether it should
intervene in the money supply. And the IPCC must estimate the functional relationship
between atmospheric CO2 levels and other meteorological variables. Each expert might
have her own opinion, and the committee must aggregate these opinions to obtain a group
estimate. Example 4.4 says that, under certain conditions, a large enough committee can
obtain a good estimate by averaging the opinions of the committee members.

Another interesting application is probabilistic opinion pooling (Genest and Zidek, 1986;
Clemen and Winkler, 1999). Let X be a finite set, and let ∆(X ) be the probability
simplex in R

X . We interpret X as the space of possible resolutions of some uncertainty
(e.g. the weather or the stock market next Tuesday). Each voter has an opinion about
this uncertainty, in the form of a probability vector in ∆(X ). We wish to aggregate
these opinions to construct the best “collective opinion” in S. If we define V := R

X and
V := S := ∆(X ), then the average rule of Example 4.4 is called the linear pooling rule:
the collective opinion is the average of the opinions of the voters.

There is another approach to probabilistic opinion pooling. Let ∆+(X ) denote the
set of probability vectors with full support on X . For any p = (px)x∈X in ∆+(X ), let
log(p) := [log(px)]x∈X , an element of RX . Let Vlog := {log(p); p ∈ ∆+(X )}, and let
Clog be the closed convex hull of Vlog in R

X . Define flog : Clog−→∆+(X ) as follows: for
any c = (cx)x∈X in Clog, we define flog(c) := (ecx/K)x∈X , where K :=

∑
x∈X ecx . The

resulting mean partition rule Flog = (RX ,Vlog, flog) is called the logarithmic pooling rule.9

In effect, this rule takes the geometric average of the opinions of the individual voters, and
renormalizes it to obtain a probability vector.

Proposition 4.3 can be invoked to obtain Wisdom of Crowds justifications for both the
linear and logarithmic pooling rules, by specifying a suitable populace P . In the interests
of brevity, we will suppress the details. The next example shows an entirely different way
that logarithmic probabilities can arise.

Example 4.5. (Log-likelihood scoring rules) Let S be a finite set. Let p : S−→∆(S) be
a function (called an error model). For any s, t ∈ S, we interpret p(t|s) be the probability
that a voter will believe that the true state is t, when it is actually s. Let V := R

S , and
for all r ∈ S, define vr := (vrs)s∈S ∈ V by setting vrs := log[p(r|s)], for all s ∈ S. Let

9Flog is a mean partition rule because flog is uniformly continuous on Clog. To see this, note that flog
is differentiable, and for any c ∈ Clog, if flog(c) = p, then ∂x flog(c)x = px − p2x for all x ∈ X , while
∂y flog(c)x = −px py for all x 6= y ∈ X . Thus, |∂y flog(c)x| < 1 for all x, y ∈ X ; uniform continuity follows.
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V := {vr}r∈S , let C be the convex hull of V , and let f p
log := fscr : C−→S be the scoring rule

defined in Example 3.1(f). We will refer to this as a log-likelihood scoring rule.

Assume the votes of the different voters are independent random variables (conditional
on the true state of nature). Any error model p′ induces a behaviour model ρ′ by setting
ρ′(vr|s) := p′(r|s) for all r, s ∈ S. For any η > 0, let Pp,η be the populace consisting
of all behaviour models ρ′ induced by an error model p′ such that |p′(t|s)− p(t|s)| < η
for all t, s ∈ S. If p(t|s) > 0 for all t, s ∈ S, then the populace Pp,η satisfies Minimal

Determinacy (see Proposition A.2(a) in the Appendix). Now fix ǫ > 0, and for all s ∈ S,
define Cǫ

s := {c ∈ C; cs > ct + ǫ for all t 6= s}. If C ′
ǫ :=

⋃
s∈S C

ǫ
s, then f p

log satisfies (M3)
when restricted to C ′. If ǫ and η are small enough, then Pp,η satisfies Identification with
respect to f p

log and C ′
ǫ (see Proposition A.2(b) in the Appendix).

Thus, Proposition 4.1 yields an extension of the Condorcet Jury Theorem to any log-
likelihood scoring rule. If a sufficiently large number of independent random voters are
drawn from the populace Pp,η, then the log-likelihood scoring rule F p

log will select the true
state of nature, with probability arbitrarily close to 1. For example, if S is the space of
preference orders on some set of alternatives, then this conclusion holds for the Kemeny
rule, given the error model proposed by Young (1986, 1988, 1995, 1997). ♦

For any error model p, the outcome of the rule F p
log defined in Example 4.5 will be

the maximum likelihood estimator (MLE) of the true state.10 Conversely, any scoring
rule can be interpreted as a log-likelihood scoring rule for some error model, and in many
cases, these are in fact maximum likelihood estimators (Pivato, 2013b, Theorem 2.2(a,b)).
For example, the Kemeny rule (Example 3.1(e)) is the MLE for a natural error model on
the space of preference orders (Young, 1986, 1988, 1995, 1997). More generally, on any
metric space (S, d) which is “sufficiently symmetric”, the generalized median rule (Example
3.1(d)) is the MLE for any exponential error model, where p(s|t) = C exp[−α d(s, t)], for
some constants α,C > 0 (Pivato, 2013b, Corollary 3.2).11 For example, the median rule
has been proposed as an MLE for equivalence relations and other binary relations (Régnier,
1977; Barthélémy and Monjardet, 1981, 1988). Example 4.5 is a complementary result: not
only is F p

log an MLE, but it is highly likely to identify the true state, in the large-population
limit. (For a similar result, see Xia (2015, Theorem 1 and Example 3).)

Examples 4.2 and 4.4 are well-known results from epistemic social choice theory. But
Example 4.5 is new, as is the next and last example of this section.

Example 4.6. (The wisdom of the median voter) Let S be a finite subset of R, and
let F be the median voting rule from Example 3.1(c). Let ǫ > 0, and let P be the set
of all behaviour models ρ : S−→∆(V) such that, for all s ∈ S,

∑
r<s ρs(v

r) < 1
2
− ǫ and∑

r≤s ρs(v
r) > 1

2
+ ǫ (and hence, ρs(v

s) > 2ǫ). If C ′
s is the set defined Example 3.1(d),

then it is easily verified that this error model satisfies Identification. Meanwhile, Minimal

10 This follows from Theorem 2.2(b) of Pivato (2013b). Note that F
p
log is “balanced” scoring rule (in

the terminology of Pivato (2013b)) because the way f
p
log is defined from the error model p.

11 In particular, this is the case if (S, d) has a transitive group of isometries. For example, a sphere has
this degree of symmetry. But in fact, a weaker (but more technical) condition is sufficient.
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Determinacy is automatically satisfied because V is finite. Thus, Proposition 4.3 says that
the median estimate of a large group of voters will be close to the correct value, with high
probability. ♦

The error model in Example 4.6 may seem somewhat unrealistic, since each voter must have
a positive probability of exactly identifying the correct value. But ǫ could be extremely
small, so this is not as restrictive as it seems. Also, the median error of each voter must
be zero. This would be plausible if we had reason to believe that the error distribution
of each voter was symmetric around zero (e.g. a normal distribution). But it might be
implausible in other scenarios.

5 Correlated Voters

The problem with the model in Section 4 is its assumption that the errors of the voters
are stochastically independent. We will now extend this model to allow for correlated
errors. To model such correlations, we introduce a collective behaviour model: a function
that maps each possible state of the world to a probability distribution over profiles. A
wide variety of collective behaviour models are mathematically possible, but most of these
will not occur in reality because the collective behaviour of an actual electorate is a partly
determined by sociological, political and economic factors, the educational system and the
communications infrastructure, among other things. We will not explicitly model these
factors; instead, we will represent them implicitly by focusing on a subset of possible
collective behaviour models, which we call a culture. We will suppose that any actual
electorate is drawn from this culture. In particular, any populace from Section 4 yields
such a culture (see Example 5.1). For any culture, we define two functions, σ and κ; the
former measures the indeterminacy of the average voter, while the latter measures the
correlation between voters. The main results of this section (Proposition 5.2 and Theorem
5.3) say that, if σ is constant and κ decays as the population grows, then the mean partition
rule applied to a large electorate will get the correct answer with very high probability.

Culture. If the voters are correlated, then we can no longer consider their vote distribu-
tions separately. Instead, we must consider the joint distribution of all the voters. Given
a set I of individuals and a set V of votes, a profile is an element V = (vi)i∈I of VI ,
which assigns a vote vi to each individual i in I. A collective behaviour model on V is a
function ρ : S−→∆(VI), which determines a probability distribution ρ(s) over the set of
possible profiles, for each possible state s ∈ S. We cannot assume that we have detailed
knowledge of the collective behaviour model of a society. We will only suppose that it
arises from some family of collective behaviour models with certain statistical properties.
For this reason, we define a culture on V to be a sequence R = (RI)

∞
I=1 where, for all

I ∈ N, RI is a set of collective behaviour models on V , for a population of size I. Note
that a culture is not intended as a description of a single society facing a single epistemic
problem. It describes an infinite family of possible societies, of all possible sizes, facing a
family of possible decision problems.
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Correlation. We will need to quantify the correlation between voters arising from a
culture. Let I ∈ N and let I := [1 . . . I]. Fix a collective behaviour model ρ : S−→∆(VI),
and some state s ∈ S. For all i ∈ I, let

v̂i :=

∫

V

vi dρ[V|s]

be the expected value of individual i’s vote, given the state s.
Let 〈 , 〉 be an inner product on V. Fix s ∈ S, and let V = (vi)i∈I be a ρ(s)-random

profile. For any i ∈ I, the random vector (vi−v̂i) measures the amount by which individual
i’s vote deviates from its expected value (if the voters satisfy Identification, then we can
think of this as the “error” in i’s vote). The inner product 〈vi − v̂i, vj − v̂j〉 measures the
extent to which the errors of voters i and j are “aligned” with respect to the geometry of
V. The covariance of voters i and j is the expected value of this inner product:

cov(vi,vj) := E[〈vi − v̂i, vj − v̂j〉].

This measures the amount, on average, by which we can expect the errors of i and j to
align in same direction in V. Note that var[vi] = cov(vi,vi). We then define the covariance
matrix of ρ(s) to be the I × I matrix cov[ρ(s)] := [bi,j]

I
i,j=1, where, for all i, j ∈ [1 . . . I],

bi,j := cov(vi,vj).
It is important to note that bi,j measures the covariance of errors, not the covariance

of votes. For example, suppose that i and j were not only perfectly reliable, but that there
was some v ∈ V with F (v) = s such that vi = vj = v with probability 1. Then their votes
would be perfectly correlated, but we would have bi,j = 0, since their error terms would
both be zero. Likewise, if bi,j < 0, this means that the errors of i and j are anticorrelated
—it does not mean their votes are anticorrelated.

Since we do not know the true collective behaviour model of society, and we don’t know
the true state of nature, we also do not know the true covariance matrix of the voters.
We can only assume that it comes from some family satisfying certain broad qualitative
properties. For this reason, we define a covariance structure to be a sequence B = (BI)

∞
I=1,

where, for all I ∈ N, BI is a collection of I × I symmetric, positive semidefinite matrices.
The elements of BI are the possible covariance matrices that we could see in a society of
size I. We say that B is the covariance structure of the culture R if, for every I ∈ N, BI

is the set of all covariance matrices cov[ρ(s)], for any ρ ∈ RI and s ∈ S.
For any collective behaviour model ρ ∈ RI , and any state s ∈ S, the covariance

matrix B = cov[ρ(s)] combines two sorts of information: the diagonal entries encode the “
randomness” of individual voters, whereas the off-diagonal entries encode the correlations
between voters. To be precise, for any i ∈ [1 . . . I], the diagonal entry bi,i is the variance
of individual i’s vote in a ρ(s)-random profile. For any distinct i, j ∈ [1 . . . I], the off-
diagonal entry bi,j is the covariance between the error of individual i’s vote and the error
of individual j’s vote, in a ρ(s)-random profile. (Note that bi,j could be negative, reflecting
anticorrelation between the errors of i and j.) For this reason, we will associate two distinct
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numerical values with each covariance matrix B ∈ BI . We define

σ(B) :=
1

I

I∑

i=1

bi,i, and κ(B) :=
1

I(I − 1)

I∑

i,j=1
i 6=j

bi,j. (2)

In other words, σ(B) is the average of the diagonal entries (i.e., the average variance of
the voters’ errors), while κ(B) is the average of the off-diagonal entries (i.e., the average
covariance between the voters’ errors).

Let F = (V,V , f) be a mean partition rule, and let C be the closed convex hull of V .
Let R = (RI)

∞
I=1 be a culture on V , with covariance structure (BI)

∞
I=1. We will say that

R is sagacious with respect to F if there exists some set C ′ ⊆ C satisfying conditions (M3)
and (M4), such that R satisfies the following three properties relative to C ′ and 〈 , 〉.

Identification. For any I ∈ N, any ρ ∈ RI , and any s ∈ S, if (vi)i∈I is a ρ(s)-random
profile, then for all i ∈ [1 . . . I], the expected value of vi is in the f -preimage of s
inside C ′ —i.e. Eρ(s)[vi] ∈ f−1{s} ∩ C ′.

Asymptotic Determinacy. For any I ∈ N, let σ(I) := sup
B∈BI

σ(B). Then lim
I→∞

σ(I)

I
= 0.

Asymptotically Weak Average Covariance. For any I ∈ N, let κ(I) := sup
B∈BI

κ(B).

Then lim
I→∞

κ(I) = 0.

Here, the key condition is Asymptotically Weak Average Covariance. This says that voters’
errors can be correlated, but as the society grows large, the average covariance between
the errors of different voters must become small. Identification has exactly the same
interpretation as in Section 4. The condition of Asymptotic Determinacy is a very weak
form of the Minimal Determinacy condition from Section 4. To see, this, first note that
Minimal Determinacy could be weakened to the following condition:

Average Determinacy. There is some constant M > 0 such that, for any I ∈ N, and
any B ∈ BI , σ(B) < M .

This condition allows some voters to be very unpredictable, as long as the average variance
of the voters is bounded.12 Clearly, Minimal Determinacy implies Average Determinacy.
But Asymptotic Determinacy is even weaker than Average Determinacy: it says that even
the average variance of the voters can grow with population size, as long as it does not
grow too quickly. (To be precise: its growth rate must be sublinear.)

Example 5.1. Let F be a mean partition rule, and let P be a sagacious populace for F ,
as defined in Section 4. Given any behaviour models ρ1, . . . , ρI ∈ P , and any s ∈ S, let
ρ1 ⊗ · · · ⊗ ρI(s) be the product probability measure on VI —that is, the distribution of a

12For a version of the CJT assuming Average Determinacy, see Grofman (1989, Theorem II). For a
version of the CJT with a condition similar to Asymptotic Determinacy, see Boland (1989, Theorem 3).

20



random profile where v1, . . . ,vI are are independent random variables, with vi distributed
according to ρi(s) for all i ∈ [1 . . . I]. This yields a collective behaviour model ρ1⊗· · ·⊗ρI :
S−→∆(VI). For all I ∈ N, define RI := {ρ1 ⊗ · · · ⊗ ρI ; ρ1, . . . , ρI ∈ P}, and then let
R := (RI)

∞
I=1. Then R is a sagacious culture for F . ♦

The next result says that, if S is finite, and a random profile of votes is drawn from a
sagacious culture, and the population is sufficiently large, then with very high probability,
the outcome of the voting rule will be the true state of nature.

Proposition 5.2 Let F be a mean partition rule ranging over a finite set S, and let

(RI)
∞
I=1 be a sagacious culture for F . For all I ∈ N, let ρI ∈ RI . Then for any s ∈ S,

Prob
(
F (v1,v2, . . . ,vI) = s

∣∣∣ (vi)
I
i=1 is a ρI-random profile

)
−−−−

I→∞
−→ 1.

In fact, Proposition 5.2 is a special case of our main result, which also applies when
S is infinite. It says that, if a random profile of votes is drawn from a sagacious culture,
and the population is sufficiently large, then with very high probability, the outcome of
the voting rule will be very close to the true state of nature.

Theorem 5.3 Let F be a mean partition rule ranging over a set S, and let (RI)
∞
I=1 be a

sagacious culture for F . For all I ∈ N, let ρI ∈ RI . Then for any s ∈ S, and any open

set U ⊂ S containing s,

Prob
(
F (v1,v2, . . . ,vI) ∈ U

∣∣∣ (vi)
I
i=1 is a ρI-random profile

)
−−−−

I→∞
−→ 1.

In the case of dichotomous choice (i.e. the classical Condorcet Jury Theorem), this
result is very similar to a result proved by Ladha (1992)13. Theorem 5.3 extends this
result to a much larger family of epistemic social choice rules, and also weakens Minimal

Determinacy to Asymptotic Determinacy. Using Theorem 5.3, it is straightforward to
extend Examples 4.2, 4.4, 4.5 and 4.6 to a setting with correlated voters; we leave the
details to the reader.

To obtain a sagacious culture —in particular, to satisfy Asymptotically Weak Average

Correlation —we need to make κ(I) small. To this end, we could try to reduce the positive
correlation between voters —i.e. reduce the number and magnitude of positive entries
in the covariance matrices in B. But we could also increase the anticorrelation between
voters —i.e. increase the number and magnitude of negative entries in these covariance
matrices. One could cultivate such anticorrelation by maximizing the cognitive diversity of
the voter population (Page 2008, Chapter 8; Landemore 2013, Section 6.3).14 One could
also maximize the diversity of information and opposing opinions to which voters are
exposed; this is a strong argument for maximal freedom of the press in democratic polities

13See Ladha (1992, Corollary, p.628) and Ladha (1995, Proposition 1).
14Another argument for cognitive diversity treats collective decisions as creative problem-solving pro-

cesses, akin to massively multidimensional nonlinear optimization problems (Page, 2008; Landemore, 2013).
But this is totally unrelated to the “anticorrelation” argument presented here.
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(Ladha, 1992). It is also the basis for the adversarial legal system favoured in common-law
jury trials. Finally, such anticorrelation can arise when voters split into opposing factions
or political parties, as occurs in parliamentary debates.15 Indeed, Theorem 5.3 remains
true if we replace Asymptotically Weak Average Correlation with the weaker condition
that lim supI→∞ κ(I) ≤ 0 —in particular, κ(I) could be negative. Thus, for epistemic
democracy, there is no such thing as “too much” anticorrelation between voters.

In general, a culture might be sagacious with respect to some voting rules, and not
sagacious with respect to others. But in some cases, a culture can be sagacious in a way
that is independent of the choice of voting rule. Let S be a finite set, let V be an inner
product space, and let R = (RI)

∞
I=1 be a culture on V. We will say that R is identifiable

if, for all s ∈ S, there is a compact, convex subset Ks ⊂ V such that, for any I ∈ N and
ρ ∈ RI , if (vi)i∈I is a ρ(s)-random profile, then for all i ∈ [1 . . . I], the expected value
of vi is in Ks. We also require Ks and Kt to be disjoint for any distinct s, t ∈ S; this
is a minimal condition for any possibility of epistemic social choice. We will say that a
covariance structure B = (BI)

∞
I=1 is sagacious if it satisfies Asymptotic Determinacy and

Asymptotically Weak Average Covariance.

Proposition 5.4 If R is an identifiable culture, with covariance structure B, and B is

sagacious, then there is a mean partition rule F on V such that R is sagacious for F .

So, what sort of covariance structures are sagacious? We now turn to this question.

6 Social networks

This section explores covariance structures arising from social networks; our goal is derive
sagacity of the covariance structure from the geometry of the network. We will not work
with a specific social network, but rather, with an entire family of social networks, of all
possible sizes —we call this a social web. We first consider a scenario where each voter
is only correlated with her nearest neighbours in the network. In this case, the resulting
covariance structure will be sagacious as long as the average voter does not acquire new
neighbours “too quickly” as the population increases (Proposition 6.2). In particular, this
result applies to social networks with power law degree distributions, which arise frequently
in applications (Example 6.1). We then consider a more general model, where voters can
be correlated even if they are not neighbours. In this case, there is a tradeoff between
two asymptotics: the asymptotic decay rate of the covariance between voters as a function
of their distance in the social network, and the asymptotic growth rate of the “sphere of
radius r” around a typical voter, as r becomes large —roughly speaking, this measures
the “dimension” of the network. In this case, the resulting covariance structure will be
sagacious as long as the correlations decay quickly enough to balance the sphere-growth
rate (Proposition 6.5). In particular, for a finite-dimensional network, it is sufficient for
the voters to have an exponential covariance decay rate (Example 6.4(a)).

15However, the epistemic deficiencies due to correlation within each faction might outweigh the epistemic
benefits of anticorrelation between factions.
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Social webs. A graph is a set I equipped with a symmetric, reflexive binary relation
∼. If I is a set of voters, then we can interpret a graph as a social network: if i ∼ j, we
interpret this to mean that voters i and j are somehow “socially connected” (e.g. friends,
family, neighbours, colleagues, classmates, etc.).

We cannot assume that we have exact knowledge of the social network topology; we can
only assume that belongs to some family of graphs satisfying broad qualitative properties.
For this reason, we define a social web to be a sequence N = (NI)

∞
I=1, where, for all I ∈ N,

NI is a set of possible graphs of size I. Thus, our hypotheses will be formulated in terms
of the asymptotic properties of the graphs in NI , as I→∞. But before we can formulate
these hypotheses, we need some basic concepts from graph theory.

Sublinear average degree growth. For any i ∈ I, the degree of i is the number of
links i has in the graph (I,∼). Formally, deg(i,∼) := #{j ∈ I; i ∼ j}. If |I| = I, then
the average degree of the graph (I,∼) is defined:

avedeg(I,∼) :=
1

I

∑

i∈I

deg(i,∼).

This is the average number of social links of a voter in the social network described by
(I,∼). We then define avedeg(NI) := sup(I,∼)∈NI

avedeg(I,∼). We will say that a social
web (NI)

∞
I=1 exhibits sublinear average degree growth if

lim
I→∞

1

I
avedeg(NI) = 0. (3)

For instance, if avedeg(NI) remains bounded as I→∞, then the limit (3) is obviously
satisfied. However, the limit (3) even allows avedeg(NI) to grow as I→∞, as long as it
grows more slowly than a linear function.

Example 6.1. (Asymptotic degree distributions) Let (I,∼) be a graph. For all n ∈ N,
let

µ(I,∼)(n) :=
1

I
#{i ∈ I ; deg(i,∼) = n}.

This defines a probability distribution µ(I,∼) ∈ ∆(N), called the the degree distribution

of (I,∼). If µ ∈ ∆(N) is another probability distribution, then we define the distance
between µ and µ(I,∼) by

d(µ, µ(I,∼)) :=
∞∑

n=1

n ·
∣∣µ(I,∼)(n)− µ(n)

∣∣ .

We will say that a social web N has asymptotic degree distribution µ if

lim
I→∞

sup
(I,∼)∈NI

d(µ, µ(I,∼)) = 0.
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Let avedeg(µ) :=
∞∑

n=1

µ(n)n. If this value is finite, and N has asymptotic degree distribu-

tion µ, then it is easy to check that avedeg(NI) will converge to avedeg(µ) as I→∞; thus,
N will have sublinear average degree growth.

For example, many social networks seem to exhibit a “power law” degree distribution of
the form µ(n) ≈ K/nα, for all n ∈ N, where α > 1, and where K > 0 is a normalization
constant (Barabási and Albert, 1999; Albert et al., 1999). This is a well-defined probability
distribution on N, as long as α > 1. (Typically, 2 < α < 3.) Networks with power
law distributions often contain a surprisingly large number of “superconnected” or “hub”
individuals, whose degrees are much larger than that of the typical person. Thus, in such
networks, some individuals can be correlated with a very large number of other individuals.
However, avedeg(µ) is still finite, as long as α > 2. Thus, if a social web has a power law
asymptotic degree distribution with α > 2, then it will have sublinear average degree
growth. ♦

Not all social webs have sublinear average degree growth. For example, if α < 2
in Example 6.1, then avedeg(NI) will grow at a superlinear rate as I→∞. For another
example, suppose NI is generated by sampling the Erdös-Renyi “random graph” model,
where there is a constant probability p that any two randomly chosen agents are linked.
Then avedeg(NI) ≈ p I, which grows linearly as I→∞. However, these are not considered
realistic models for social networks in most situations, because the (Poisson) asymptotic
degree distribution of the Erdös-Renyi model is a poor fit to the empirical data (Albert
et al., 1999; Newman et al., 2002).

Nearest-neighbour covariance structures. Let B = (BI)
∞
I=1 be a covariance struc-

ture, and let N = (NI)
∞
I=1 be a social web. We will say that B is a nearest-neighbour

covariance structure for N if:

• For any I ∈ N and B ∈ BI , there is some graph (I,∼) in NI and some identification
of I with [1 . . . I] such that, for all i, j ∈ [1 . . . I], we have bi,j 6= 0 only if i ∼ j,

• There is some constant M > 0 such that, for any I ∈ N and B ∈ BI , we have
|bi,j| ≤ M for all i, j ∈ [1 . . . I].

We now come to the first result of this section.

Proposition 6.2 If a social web N has sublinear average degree growth, then any nearest-

neighbour covariance structure for N is sagacious.

In fact, Proposition 6.2 is only a special case of the main result of this section. But before
we can state this result, we need more terminology.
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Generalized degrees. Let (I,∼) be a connected graph. A path in (I,∼) is a sequence
of vertices i0, i1, . . . , iL ∈ I such that i0 ∼ i1 ∼ · · · ∼ iL; we say this path has length L, and
that it connects i0 to iL. For any i, j ∈ I, let d∼(i, j) be the length of the shortest path
connecting i to j in (I,∼). For completeness, we also define d∼(i, i) := 0 for all i ∈ I.
Observe that d∼ is a metric on I. (It is called the geodesic metric of the graph.) For any
r ∈ N and i ∈ I, we define the r-degree of i as degr(i,∼) := #{j ∈ I; d∼(i, j) = r}. Thus,
deg1(i,∼) is just the degree of i, as defined above. Now let γ : N−→[0,∞] be a function
(typically, increasing). For any i ∈ I, we define the γ-degree of i by

degγ(i,∼) := sup
r∈N

degr(i,∼)

γ(r)
. (4)

We then define

avedegγ(I,∼) :=
1

I

∑

i∈I

degγ(i,∼), (5)

and avedeg
γ
(NI) := sup

(I,∼)∈NI

avedegγ(I,∼). (6)

We will say that a social web (NI)
∞
I=1 exhibits sublinear average γ-degree growth if

lim
I→∞

1

I
avedeg

γ
(NI) = 0. (7)

For instance, suppose we define γ1 : N−→{1,∞} by

γ1(r) :=

{
1 if r = 1;

∞ if r ≥ 2.
(8)

Then clearly, degγ1(i,∼) = deg(i,∼) for all i ∈ I and all (I,∼) ∈ NI . Thus, formula (7) is
equivalent to formula (3); thus, a social web will have sublinear average γ1-degree growth
if and only if it has sublinear average degree growth.

Example 6.3. (Social networks from infinite graphs) Let J be an infinite set of vertices,
and let ∼ be a graph structure on J ; this is called an infinite graph. If γ : N−→[0,∞]
is some function, then (J ,∼) has γ-bounded growth if we have degr(j,∼) ≤ γ(r), for all
j ∈ I and all r ∈ N. In other words, degγ(j) ≤ 1 for all j ∈ J .

For example, if (J ,∼) is the infinite two-dimensional grid shown in Figure 7(a), then
degr(i) = 4 r for all r ∈ N; thus, (J ,∼) has growth bounded by the function γ(r) := 4 r.
More generally, if (J ,∼) is an infinite subgraph of a two-dimensonal grid, like the one shown
in Figure 7(b), then its growth bounded by the function γ(r) := 4 r. Likewise, if (J ,∼)
was an infinite subgraph of a D-dimensional grid, then it would have growth bounded by a
polynomial function γ(r) := K rD−1 (for some constant K > 0). As these examples show,
a graph with a “D-dimensional” geometry has polynomially bounded growth of degree
D − 1.
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(a) (b)

Figure 7: (Example 6.3) (a) An infinite, two-dimensional grid has growth bounded by γ(r) = 4 r. For
example, if i is the black node, then deg5(i,∼) = 20 (the number of grey nodes). (b) If (J ,∼) is an
infinite subgraph of a two-dimensional grid, then its growth is also bounded by γ(r) = 4 r. In this case, if
i is the black node, then deg5(i,∼) = 9.

In contrast, suppose (J ,∼) is an infinite tree where every node has degree 3, as shown
in Figure 8(a). Then (J ,∼) has growth bounded by γ(r) = 3 (2r−1). More generally, if
M ∈ N, and (J ,∼) is any graph where every vertex has degree (M+1) or less, then (J ,∼)
has growth bounded by the exponential function γ(r) := M r.

For all I ∈ N, let NI be a collection of connected subgraphs of (J ,∼) with exactly I
vertices; then the sequence N = (NI)

∞
I=1 is a social web, which we will say is subordinate to

(J ,∼). Heuristically, the vertices in the graph (J ,∼) represent the set of all “potential”
people who could exist, and the links in (J ,∼) are all “potential” social connections
between them. Thus, any actual social network will be some finite subgraph of (J ,∼);
these are the graphs which appear in N. If (J ,∼) has growth bounded by the function γ,
then it is easy to see that avedeg

γ
(NI) ≤ 1 for all I ∈ N; thus, the asymptotic condition

(7) is trivially satisfied, so that N has sublinear average γ-degree growth. ♦

Correlation decay. Let (I,∼) be a graph, and let B ∈ R
I×I be an I × I matrix (e.g.

a covariance matrix). Let β : N−→R+ be a function (typically, decreasing). We will
say that the matrix B exhibits β-decay relative to (I,∼) if (after bijectively identifying
I with [1 . . . I] in some way), we have bi,j ≤ β[d∼(i, j)] for all i, j ∈ I. In particular, B
exhibits exponential decay if there are some constants λ ∈ (0, 1) and K ≥ 0 such that
bi,j ≤ K λd∼(i,j) for all i, j ∈ I. Exponential correlation decay is a typical phenomenon in
the spatially distributed stochastic processes studied in statistical physics, such as Ising
models of ferromagnetism (Penrose and Lebowitz, 1974; Procacci and Scoppola, 2001; Bach
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(a) (b)

o i
j

Figure 8: (Example 6.3) (a) If (J ,∼) is an infinite tree where all nodes have 3 edges, then its growth
is bounded by γ(r) = 3 (2r−1). (b) If (J ,∼) is eight infinite binary trees around a hub, then its growth
is bounded by γ(r) = 8 (2r−1).

and Møller, 2003). The opinions of the voters in a social network can be seen as such a
spatially distributed stochastic process.

We will say that a covariance structureB = (BI)
∞
I=1 exhibits β- covariance decay relative

to social web N = (NI)
∞
I=1 if, for every I ∈ N, and every matrix B ∈ BI , there is some

graph (I,∼) inNI such that B exhibits β-decay relative to (I,∼). For example, letM > 0,
and define β(1) := M while β(r) := 0 for all r ≥ 2. Then B exhibits β- covariance decay
relative to N if and only if B is a nearest-neighbour covariance structure for N.

Subordinate covariance structures. We will say that a covariance structure B is
subordinate to a social web N if there exist functions β : N−→R

+ and γ : N−→[0,∞] such
that N has sublinear average γ-degree growth, B exhibits β- covariance decay relative to
N, and also

∞∑

r=0

γ(r) β(r) < ∞. (9)

(Here, we adopt the convention that ∞· 0 = 0.) Note that the faster γ(r) grows as r→∞,
the faster β must decay to zero in order for inequality (9) to be satisfied.

Example 6.4. (a) Let M,D ∈ N and suppose that N is subordinate to an infinite, D-
dimensional grid or an M -ary tree, as described in Example 6.3. Let γ(r) := M r for all
r ∈ N; then N has sublinear average γ-degree growth. Let λ < 1/M , let β(r) := λr for all
r ∈ N; and suppose that every matrix in B exhibits β-exponential covariance decay with
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respect to some graph in N. Let c := M λ; then 0 < c < 1, and

∞∑

r=0

γ(r) β(r) =
∞∑

r=0

M r λr =
∞∑

r=0

cr =
1

1− c
< ∞.

Thus, inequality (9) is satisfied, so B is subordinate to N.

(b) Suppose N has sublinear average degree growth, and B is a nearest-neighbour covari-
ance structure for some social web N. As we have seen, this means there is some constant
M > 0 such that β(r) := M if r = 1 and β(r) := 0 for all r > 0, and B exhibits β- covari-
ance decay relative to N. Now define γ1 : N−→{1,∞} by formula (8). Then inequality (9)
is automatically satisfied. By comparing formulae (3) and (7), we see that N has sublinear
average γ1-degree growth. Thus, B is subordinate to N. ♦

We now come to the main result of this section.

Proposition 6.5 Let N be a social web. Then any covariance structure which is subordi-

nate to N is sagacious.

For example, Proposition 6.2 follows by applying Proposition 6.5 to Example 6.4(b).

7 Deliberation

A growing literature argues that deliberation can improve the epistemic efficacy of demo-
cratic decision-making (Elster, 1998; Fishkin and Laslett, 2003; Landemore and Elster,
2012; Landemore, 2013). Deliberation can edify voters, so that they hold more informed,
objective, and nuanced opinions. But it can also increases correlation between voters,
perhaps leading to “groupthink”. It is possible that the groupthink effect outweighs the
edification effect, so that on the balance, deliberation leads to worse decisions. However,
this section offers some evidence that this need not occur: we will show that, under certain
hypotheses, the sagacity of a culture is preserved under a simple model of deliberation.
This does not prove that deliberation makes groups smarter (our simple model ignores
edification effects). But at least deliberation doesn’t necessarily make groups stupider.

We will adapt a well-known model of deliberation proposed by DeGroot (1974):16 we
represent a deliberative institution as a family of linear transformations which can be ap-
plied to the profile of (vector-valued) opinions of the voters; in effect, these transformations
replace each voter’s opinion with a weighted average of her own opinion and those of her
peers. We call such institutions local if no single voter has too strong an influence over
other voters in this averaging processs. We show that local deliberative institutions cannot
convert a sagacious culture into a non-sagacious culture (Proposition 7.1)

Let I be a set of voters. For all distinct i, j ∈ I, let di,j ≥ 0 be the “influence” of
voter j on voter i. This could be determined by the level of respect or trust which i has

16For an interesting recent application of the DeGroot model, see Golub and Jackson (2010).
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for j. Note that influence is not symmetric: we may have di,j 6= dj,i. The diagonal entry
di,i measures i’s confidence in her own opinions. Let D := [dij]i,j∈I . We will assume that

D is a stochastic matrix —that is,
∑

j∈I

di,j = 1, for all i ∈ I. We will refer to D as an

influence matrix. We cannot assume exact knowledge of the pattern of social influences
in the society. Thus, instead of fixing a single influence matrix D, we will consider an
entire family of such influence matrices. Formally, we define a deliberative institution to be
a sequence D = (DI)

∞
I=1, where for all I ∈ N, DI is a family of I × I influence matrices.

A deliberative institution is not a culture. It is a transformation, which can be applied
to a culture to obtain another culture, as we now explain. For the rest of this section,
suppose that V is a convex subset of a vector space V. Let V = (vi)

I
i=1 be an I-voter

profile in VI . Given an I × I stochastic matrix D (e.g. an element of DI), we define D ·V
to be the profile V′ = (v′

i)
I
i=1, where, for all i ∈ I,

v′
i :=

I∑

j=1

di,j vj.

For all i ∈ I, vi represents the opinion of voter i before deliberation, while v′
i represents

her opinion after deliberation —it is a weighted average of her own opinion and those of
her peers, with the weights reflecting their degree of “influence” over her.

Let ρ : S−→∆(VI) be a collective behaviour model on V , fix s ∈ S, and suppose
V = (vi)

I
i=1 is a ρ(s)-random profile. Then D · V is another random profile. We denote

the probability distribution of D · V by D ⊙ ρ(s). If we do this for all s ∈ S, then we
obtain a collective behaviour model D⊙ ρ : S−→∆(VI).

Now, let R = (RI)
∞
I=1 be a culture on V , and let D = (DI)

∞
I=1 be a deliberative

institution. For all I ∈ N, we define

DI ⊙RI := {D⊙ ρ ; D ∈ DI and ρ ∈ RI}.

This is a collection of collective behaviour models on a population of I voters. Heuristically,
it has the following interpretation:

• RI is the set of collective behaviour models which could exist before deliberation.

• DI is the set of the possible deliberations which could occur.

• DI⊙RI is the set of the collective behaviour models which can exist after deliberation.

We then define the culture D⊙R := (R′
I)

∞
I=1, where, for each I ∈ N, R′

I := DI ⊙RI . We
interpret this as the culture which arises when voters drawn from the culture R deliberate
according to D.

For any j ∈ I, we define dj :=
∑

i∈I di,j. This measures the “total influence” of voter j
on other voters. A deliberative institution D is local if there exists a constant D > 0 (which
we will call the modulus of D) such that, for all I ∈ N and all D ∈ DI we have dj ≤ D
for all j ∈ I. In other words, the total influence of each voter in any society is bounded;
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she can have a significant influence over at most a small number of individuals (although
she might also have a very small influence over a much larger number of individuals). In
particular, there are no “demagogues” who can strongly influence a large number of people.

Proposition 7.1 Let F = (V,V , f) be a mean partition voting rule, where V is a convex

subset of V. If D is a local deliberative institution, and the culture R is sagacious for F ,

then the culture D⊙R is also sagacious for F .

To illustrate the scope of this result, we will now construct some examples of local
deliberative institutions. Given two deliberative institutions D and E, we define D · E :=
(CI)

∞
I=1, where for all I ∈ N, CI := {DE; D ∈ DI and E ∈ EI}. Informally, D·E represents

a deliberative institution where the voters first deliberate according to an influence matrix
drawn from E, and then deliberate further using a matrix drawn from D.

Given any q ∈ [0, 1], we define qD + (1 − q)E := (CI)
∞
I=1, where for all I ∈ N, CI :=

{qD+(1−q)E; D ∈ DI and E ∈ EI}. Informally, this represents a deliberative institution
where the influence of one voter on another is a weighted average of two forms of influence;
one described by D and the other by E. (For example, D might describe influences arising
from personal affection, while E describes influences arising from professional respect and
admiration.)

Proposition 7.2 Let D and E be two local deliberative institutions. Then D · E is also

local, and qD+ (1− q)E is local for any q ∈ [0, 1].

For any deliberative institution D and any n ∈ N, we define D
n := (Dn

I )
∞
I=1, where for

all I ∈ N, Dn
I := {D1 · · ·Dn; D1, . . .Dn ∈ DI}. Informally, Dn represents a deliberative

institution where the voters deliberate n times, using n influence matrices drawn from D.
Let D

0 := {I}, where I is the identity matrix (this represents no deliberation). Finally,
given any sequence q = (qn)

∞
n=0 in [0, 1] with

∑∞
n=0 qn = 1, we can define the institution∑∞

n=0 qnD
n in the obvious way; informally, this is an institution where voters have delib-

erated a very large number of times, and the total influence of one voter on another is a
weighted average of more direct, short-term effects (corresponding to small values of n)
and more indirect, longer-terms effects (corresponding to larger values of n).

Corollary 7.3 If D is a local deliberative institution with modulus D, then
∑∞

n=0 qnD
n is

local as long as
∑∞

n=0 qn D
n < ∞.

As a simple example, suppose DI contains only one matrix, D, and furthermore, sup-
pose that most of the entries in D are zero. For any i, j ∈ I, write “j ❀ i” if di,j > 0.
Informally, this means “j has some direct influence on i”. The relation ❀ defines a directed
graph, which we might call the “influence network”. Now let Dn = [d

(n)
i,j ]; Thus, d

(n)
i,j > 0

if and only if there is at least one directed path of length n from j to i in the influence
network; in this case, d

(n)
i,j measures the total indirect influence which j has on i via such

chains of intermediaries. Finally, if
∑∞

n=1 qnD
n = [ei,j]i,j∈I , then ei,j measures the total

influence which j has on i over all possible chains of all possible lengths (weighted by the
vector q).
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An interesting special case is when ❀ is an acyclic digraph on I (that is: a binary re-
lation which is irreflexive, antisymmetric, and whose transitive closure contains no cycles).
In this case, the society has a hierarchical structure: there are “opinion leaders” (who
are further upstream with respect to ❀) and “followers” (who are downstream from the
opinion leaders). Informally, “opinion leaders” correspond to pundits, politicians, public
intellectuals, and religious authorities, who can influence a large audience of “followers”.
The deliberative institution will be local as long as the opinion leaders do not have too
strong an influence on their followers.

Conclusion

We have shown that a large class of voting rules will converge to the correct solution in
a large enough population, even if there is considerable correlation between voters. This
suggests, for example, that a large committee of experts can often provide accurate answers
to technical questions in science, medicine, or engineering. It also seems to suggest that,
under some conditions, modern mass democracies could exhibit a high level of collective
epistemic competence. However, before drawing such a conclusion, it is important to rec-
ognize that some of our modelling assumptions may be overly optimistic. For example,
perhaps the hypotheses of Identification and Asymptotic Determinacy impute an unreal-
istically high level of epistemic competence to the average voter. There is now abundant
empirical evidence that human beings are subject to systematic cognitive biases, particu-
larly in tasks which involve logical or probabilistic reasoning (Kahneman, 2011). They also
overestimate small but spectacular risks (e.g. terrorism), while neglecting threats which
are less visible but far more pervasive and hazardous (e.g. antibiotic resistant bacteria).
They gravitate towards simple solutions, based on simplistic moral narratives. A more
sophisticated theory of epistemic democracy should account for such cognitive biases.

Ironically, the purported epistemic competency of large groups may be self-refuting.
By combining the strategic analysis of Austen-Smith and Banks (1996) with the “rational
ignorance” of Downs (1957), a voter might decide that there is no reason for her to become
informed at all, because the group is going to get the right answer anyways. If enough
voters behave this way, then the epistemic competency of the group may be undermined.17

To counteract such “epistemic free-riding”, perhaps we must offer each voter an individual
incentive to get the right answer. It is notable that Galton’s (1907) original inspiration
was a betting pool, not a referendum.

We might also question our assumption that the set S of social alternatives can be
identified one-for-one with the possible states of the world. In reality, the alternatives in S
are generated by some murky and epistemically dubious political process, and it is possible
that none of these alternatives correctly describes the actual state of the world. Suppose
S = {f, t1, t2, t3, t4}, where f is a completely false theory, while the theories t1, t2, t3, t4
are each somewhat flawed but “mostly true”. Then even in a society of highly competent
voters, where 75% select one of the “mostly true” theories, the false theory f might win

17But see Martinelli (2006) for a counterargument.
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a plurality vote through vote-splitting, contradicting the predictions of Example 4.2(b).
And this assumes that S consists of clear descriptions of possible worlds at all; in some
cases, the statements in S may be ambiguous or even meaningless.

Furthermore, in many collective decisions, epistemic questions are inextricable inter-
twined with questions of ethical values and/or individual preferences. In real life, elections
and referenda rarely boil down to objective, “purely factual” questions of the kind con-
sidered in this paper. Even when it is possible to isolate such “purely factual” questions
in policy debates, many voters cling to the position which they find the most ideologi-
cally congenial, rather than the position which is best supported by the available scientific
evidence.

It is also possible that modern mass democracies actually exhibit a much higher degree
of voter correlation than we allowed in our models. The hypothesis of Asymptotically Weak

Average Correlation is consistent with a world where most correlations arise from “local”
interactions —e.g. through links in a social network, or via person-to-person deliberation.
It is even consistent with an Internet-saturated world, where voters are influenced by blog-
gers and other social media celebrities whose audiences follow a power law distribution
(Example 6.1). However, these models assume that the process which generates the so-
cial network topology is entirely independent of the process which generates the voters’
opinions. In practice, these two processes are highly interdependent, because people prefer-
entially affiliate with other people who share their opinions. This can lead to the formation
of “echo chambers”, within which deliberation actually reduces epistemic competency, by
reinforcing voters’ ideological biases and cultivating manichean extremism (Sunstein, 2003,
2009). A properly functioning epistemic democracy needs mechanisms to prevent the for-
mation of such echo chambers. Thus, many proposals for deliberative democracy emphasize
randomly selected juries or deliberative assemblies (Leib, 2004; Fishkin, 2009).

Finally, the growing concentration of media ownership in modern societies means that
most voters get most of their information about the world from a very small number of
genuinely independent sources. If we take the epistemic view of democracy seriously, then
one possible policy implication is that governments should be much more aggressive in
preventing the burgeoning oligopolization of radio, television and print media.
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A Appendix

The following result will be used in our analysis of Example 4.5 below. The proof is
well-known, but it is short, so we include it for completeness.

Lemma A.1 Fix p ∈ ∆(S). Define Fp : ∆(S)−→R by Fp(q) :=
∑

s∈S ps log[qs].
18 Then

argmax(F ) = p.

Proof: We use the method of Lagrange multipliers. Let 1 ∈ R
S be the constant 1 vector

Note that ∆(S) := {r ∈ R
S
+; 1 • r = 1}. Thus, if an interior maximum q∗ exists, it

must satisfy the first-order condition that ∇Fp(q
∗) = c1 for some constant c ∈ R.

Now, for all s ∈ S, we have ∂s F (q) = ps/qs. Thus, ∇Fp(q) = c1 if and only if
ps = c qs for all s ∈ S. Since p and q are both probability vectors, this can happen only
if c = 1 and p = q. Thus, the unique critical point of Fp is at p itself.

Finally, observe that Fp is concave (indeed, ∂t∂s Fp = 0 if s 6= t, whereas ∂2
s Fp(q) =

−ps/q
2
s < 0, so the Hessian is a negative diagonal matrix, hence negative-definite ever-

where). Thus, this critical point is a maximum. ✷

The next result deals with the unproved assertions in Example 4.5.

Proposition A.2 Let S be finite, let p : S−→∆(S) be any error model, let η > 0, and
define F p

log and Pp,η as in Example 4.5.

(a) If p(t|s) > 0 for all t, s ∈ S, and η < min{p(t|s); s, t ∈ S}, then Pp,η satisfies

Minimal Determinacy.

(b) Let ǫ > 0, and define C ′
ǫ as in Example 4.5. If ǫ and η are small enough, then

Pp,η satisfies Identification with respect to F p
log and C ′

ǫ.

Proof: (a) Let M := min{p(t|s); t, s ∈ S}; then M > 0, because S is finite, and p(t|s) > 0
for all t, s ∈ S. Let L := | log(M)|. Then L < ∞, and we have |vts| ≤ L for all s, t ∈ S.
Thus, ‖vt‖2 ≤ L2 |S| for all t ∈ S. Thus, var[ρ(t)] ≤ L2 |S| for all t ∈ S. Thus, Minimal

Determinacy is satisfied.

(b) For all s ∈ S, recall that Cǫ
s := {c ∈ C; cs ≥ ct + ǫ for all t 6= s}. Suppose p is

the error model of a voter. Then for any s, t ∈ S, we have ρ(vt|s) = p(t|s). Thus,
E[ρ(s)] =

∑
t∈S p(t|s)v

t = (wr(s))r∈S , where, for all r ∈ S, wr(s) =
∑

t∈S p(t|s)v
t
r =∑

t∈S p(t|s) log[p(t|r)].

We will first construct some ǫ0 > 0 such that E[ρ(s)] ∈ Cǫ0
s . To do this, we must show

that
∑

t∈S

p(t|s) log[p(t|s)] ≥ ǫ0 +
∑

t∈S

p(t|s) log[p(t|r)], for all r 6= s. (A1)

18The function −Fp(q) is sometimes called the cross-entropy of p and q.
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Now, for any s ∈ S, define ps by setting pst := p(t|s) for all t ∈ S. Then Lemma A.1
says that Fps(ps) > Fps(q) for all q ∈ ∆(S) \ {ps}. In particular, this implies that
Fps(ps) > Fps(pt) for all t 6= s. Let ǫ0 := Fps(ps) − max{Fps(pt); t ∈ S \ {s}}. Then
ǫ0 > 0, because S is finite. We have Fps(ps) ≥ Fps(pt) + ǫ0 for all t 6= s. This implies
condition (A1).

Now, let 0 < ǫ < ǫ0. If η > 0 is small enough, then by continuity we will have

∑

t∈S

p′(t|s) log[p′(t|s)] ≥ ǫ+
∑

t∈S

p′(t|s) log[p′(t|r)], for all r 6= s. (A2)

for all error models p′ such that |p′(t|s)− p(t|s)| < η for all s, t ∈ S. Thus implies that
Pp,η satisfies Identification with respect to F p

log and C ′
ǫ. ✷

Proposition 5.2 is just a special case of Theorem 5.3 when S is a finite set with the discrete
topology. Likewise, Proposition 4.1 is just a special case of Proposition 4.3 when S is a
finite set with the discrete topology. It remains to prove Theorem 5.3.

Proof of Theorem 5.3. Let F = (V,V , f) be a mean partition rule. Let C be the closed
convex hull of V , let C ′ ⊆ C and δ > 0 be as in (M3), and let f0 be the (uniformly
continuous) restriction of f to Cδ. Fix s ∈ S, and let U ⊂ S be an open set containing
s. For all I ∈ N, let ρ ∈ RI , let VI := (vi)i∈I be a ρ(s)-random profile of votes (where

|I| = I), and let vI :=
1

I

∑

i∈I

vi be their average. We claim lim
I→∞

Prob[f(vI) ∈ U ] = 1.

Claim 1: Let v̂I := E[vI ]. Then v̂I ∈ f−1
0 {s}.

Proof: E(vI) = E
(
1
I

∑
i∈I vi

)
= 1

I

∑
i∈I E (vi). By Identification, we have E (vi) ∈

f−1
0 {s} for all i. But f−1

0 {s} is convex by (M4). The claim follows. ✸ Claim 1

Claim 2: var(vI) ≤
1

I
σ(I) +

1(I − 1)

I
κ(I).

Proof: For any i ∈ I, let v̂i := E[vi]. Then as we saw in the proof of Claim 1,

v̂I =
1

I

∑

i∈I

v̂i. Thus,

vI − v̂I =
1

I

∑

i∈I

vi −
1

I

∑

i∈I

v̂i =
1

I

∑

i∈I

(vi − v̂i) =
1

I

∑

i∈I

ei,

where, for all i ∈ I, we define ei := vi − v̂i. Thus,

‖vI − v̂I‖
2 =

〈
1

I

∑

i∈I

ei,
1

I

∑

j∈I

ej

〉
=

1

I2

∑

i,j∈I

〈ei, ej〉,
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Thus, if B is the covariance matrix of ρ(s), then

var(vI) = E
[
‖vI − v̂I‖

2
]

=
1

I2

∑

i,j∈I

E [〈ei, ej〉]

=
1

I2

∑

i,j∈I

cov(vi,vj) =
1

I2

∑

i∈I

var(vi) +
1

I2

∑

i,j∈I
i 6=j

cov(vi,vj)

(∗)

1

I
σ(B) +

1(I − 1)

I
κ(B) ≤

(†)

1

I
σ(I) +

1(I − 1)

I
κ(I),

as claimed. Here, (∗) is by the defining equations (2), and (†) is by definition of σ(I)
and κ(I). ✸ Claim 2

Now, f0 is uniformly continuous on Cδ, by (M3). Thus, there exists η > 0 with the
following property:

For all ĉ ∈ f−1
0 {s} and all c ∈ Cδ, if ‖c− ĉ‖ < η, then f0(c) ∈ U . (A3)

Meanwhile, Claim 1 says that v̂I ∈ f−1
0 {s}; thus, v̂I ∈ C ′. Thus, if c ∈ C, and ‖c− v̂I‖ <

δ, then c ∈ Cδ. Let ǫ := min{δ, η}; then ǫ > 0, and for any c ∈ C, if ‖c− v̂I‖ < ǫ, then
property (A3) implies that f(c) ∈ U . In particular, this holds if c = vI . Thus,

Prob [f(vI) 6∈ U ] ≤ Prob [‖v̂I − vI‖ > ǫ] ≤
(∗)

var(vI)

ǫ2

≤
(†)

1

ǫ2

(
1

I
σ(I) +

I − 1

I
κ(I)

)
−−−−(⋄)

I→∞
−→ 0,

as desired. Here (∗) is by the normed vector space version of Chebyshev’s inequality, and
(†) is by Claim 2. Finally, (⋄) is because Asymptotically Minimal Determinacy says that
1
I
σ(I)−−−−

I→∞
−→0, while Asymptotically Weak Average Covariance says that κ(I)−−−−

I→∞
−→0.

✷

Remark A.3. Fix s ∈ S, and write ρs for ρ(s). We have defined E[ρ(s)] to be the
expected value of a ρs-random variable. Formally, this is the following V-valued integral:

E[ρ(s)] :=

∫

V

v dρs[v]. (A4)

If V is a finite-dimensional vector space, then the integral in (A4) is defined in the standard
way, by simply computing the Lebesgue integral of each coordinate. More generally, when
V is possibly infinite-dimensional, we interpret (A4) as the Bochner integral of the identity
function I : V−→V with respect to the measure ρs. (This agrees with the coordinatewise
Lebesgue integral when V is finite-dimensional.) To be precise, suppose ρs is defined on
a sigma-algebra B of subsets of V. A B-measurable function f : V−→V is B-simple if it
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takes only finitely many values. If f takes the values v1,v2, . . .vN on the B-measurable
sets B1, . . . ,BN respectively, then we define

∫

V

f dρs :=
N∑

n=1

ρs[Bn]vn. (A5)

Now let {fn}
∞
n=1 be a sequence of B-simple functions from V to itself, such that

lim
n→∞

fn(v) = v for ρs-almost all v ∈ V, (A6)

and

lim
n→∞

∫

V

‖I − fn‖ dρs = 0. (A7)

Then the Bochner integral is defined as the limit
∫

V

v dρs[v] := lim
n→∞

∫

V

fn dρs, (A8)

where each of the integrals on the right hand side of (A8) is defined as in (A5). If the limit
(A8) exists, then it is independent of the particular sequence of simple functions we use to
approximate the identity function (Aliprantis and Border, 2006, Lemma 11.41, p.425).

Thus, for the expected value (A4) to be well-defined as a Bochner integral, two condi-
tions must be satisfied. First, we need a sequence {fn}

∞
n=1 of B-simple functions satisfying

convergence conditions (A6) and (A7). Second, we need the limit (A8) to exist.
There is a sequence {fn}

∞
n=1 satisfying (A6) if and only there is a separable closed sub-

space V0 of V such that ρ[V0] = 1 (Aliprantis and Border, 2006, Lemma 11.37). (Clearly,
this holds if V itself is separable.) Suppose B is the Borel sigma-algebra induced by the
norm topology on V. Then we can obtain a sequence that also satisfies (A7) if, for any
ǫ > 0, there is some compact subset K ⊂ V0 such that

∫
K∁ ‖v‖ dρs[v] < ǫ. (This is easy

to verify.) In particular, this holds if ρs is “almost-compactly supported”, meaning that
there is a norm-bounded subset B ⊂ V0 with ρs[B] = 1, and for any ǫ > 0, there is some
compact subset K ⊆ B such that ρs[K] > 1 − ǫ. Finally, the limit (A8) is guaranteed to
exist if V is a Hilbert space —i.e. the inner product metric is Cauchy-complete (Aliprantis
and Border, 2006, Lemma 11.41). But the limit (A8) could exist even when V is not a
Hilbert space. For example, suppose ρs is a finite sum of point masses. Let f be a simple
function such that f(v) = v for all v where ρs has a point mass. If we define fn := f for
all n ∈ N, then the sequence {fn}

∞
n=1 trivially satisfies (A6) and (A7), and the limit (A8)

trivially exists. A Hilbert space structure is not required for any of our main results. So
we have not assumed that V is a Hilbert space in condition (M1).

Proof of Proposition 5.4. Let V be a vector space with inner product 〈 , 〉, and suppose
that R is an identifiable culture on V. For all s ∈ S and j ∈ I, let Vs,j ⊆ V be a subset
such that, if (vi)i∈I is a ρ(s)-random profile, then Prob[vj ∈ Vs,j] = 1. Then let

V :=
⋃

s∈S

⋃

i∈I

Vi,s.
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Figure 9: The proof of Proposition 5.4. (In this example, S = {r, s, t} and V = R
2.)

Let C be the closed, convex hull of V . Let {Ks}s∈S be the compact, convex subsets of V
in the definition of identifiability. Without loss of generality, we can suppose that these
are subsets of C (otherwise, replace each Ks with Ks ∩ C, which is also compact and
convex.)

For any distinct r, s ∈ S, let ǫr,s be the minimum distance between Kr and Ks; then
ǫr,s > 0 because Kr and Ks are compact and disjoint. Let

ǫ :=
1

4
min
r,s∈S
r 6=s

ǫr,s.

Then ǫ > 0 because S is finite. For any distinct r, s ∈ S, the convex sets Ks and Kr are
disjoint, so there is a hyperplane Hr,s which passes between them. Furthermore, we can
arrange for this hyperplane to have distance ǫr,s/2 from each of Kr and Ks, as shown
in Figure 9. For any s ∈ S, let As ⊆ V be the closed, convex set supported by all the
hyperplanes {Hr,s; r ∈ S \ {s}}. (Thus, Ar ∩ As ⊆ Hr,s, for any distinct r, s ∈ S.)
These convex sets may not cover all of V. (For example, the small central triangle in
Figure 9 is not covered by any As.) So we construct the sets Bs (for all s ∈ S) by
attaching any uncovered part of V to As, for some arbitrary s ∈ S, so that V =

⋃
s∈S Bs.

Let C ′
s := {c ∈ C; d(v,Ks) < ǫ}, as shown in Figure 9; then C ′

s is contained in the
interior of As, and thus, in the interior of Bs.

Suppose S = {s1, s2, . . . , sN}. For all n ∈ [1 . . . N ], define B∗
sn

:= Bsn\(Bs1∪· · ·∪Bsn−1).
Thus, the sets B∗

s1
, . . . ,B∗

sN
form a partition of V. Thus, if we define Cs := B∗

s ∩ C for
all s ∈ S, then the sets Cs1 , . . . , CsN form a partition of C. For each s ∈ S, C ′

s is in the
interior of B∗

s , by construction; thus, C ′
s is in the interior of Cs. Indeed, every point of
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C ′
s is at least ǫ-distant from Hr,s (for all r ∈ S), and thus, is at least ǫ-distant from the

boundary of Cs. Now define the function f : C−→S by setting f(c) := s for all c ∈ Cs,
for all s ∈ S. Then let F := (V,V , f). To see that F is a mean partition rule, let
C ′ :=

⋃
s∈S C

′
s and let δ := ǫ/2. Then C ′ and δ satisfy properties (M3) and (M4) (because

C ′ ∩ Cs = C ′
s for all s ∈ S). Finally, by construction, F satisfies the axiom Identification

with respect to R. ✷

Proof of Proposition 6.5. Let β : N−→R
+ and γ : N−→[0,∞] be functions satisfying

the inequality (9), such that B exhibits β- covariance decay relative to N, and N has
sublinear average γ-degree growth. Let I ∈ N, let B ∈ BI , and let (I,∼) be a graph in
NI such that BI exhibits β-decay for (I,∼). Let M := β(0); then Minimal Determi-

nacy is automatically satisfied, because |bi,i| ≤ β(0) for all i ∈ I. It remains to prove
Asymptotically weak average covariance . Let C :=

∑∞
n=1 γ(n) β(n); then C is finite by

inequality (9). We have:

κ(B) =
1

I(I − 1)

I∑

i,j∈I
i 6=j

bi,j =
1

I(I − 1)

∑

i∈I

∞∑

r=1

∑

j∈I
d(i,j)=r

bi,j

≤
(a)

1

I(I − 1)

∑

i∈I

∞∑

r=1

∑

j∈I
d(i,j)=r

β(r) =
1

I(I − 1)

∑

i∈I

∞∑

r=1

β(r) degr(i,∼)

≤
(b)

1

I(I − 1)

∑

i∈I

∞∑

r=1

β(r) γ(r) degγ(i,∼)

=
1

I(I − 1)

∑

i∈I

degγ(i,∼)

(
∞∑

r=1

β(r) γ(r)

)

(c)

1

I(I − 1)

∑

i∈I

degγ(i,∼) · C

(d)

C

(I − 1)
avedegγ(I,∼) ≤

(e)

C

(I − 1)
avedeg

γ
(NI).

Here, inequality (a) is because B exhibits β-decay for (I,∼), while inequality (b) is by
defining formula (4). Equality (c) is by definition of C, and equality (d) is by defining
formula (5). Inequality (e) is by defining formula (6).

This inequality holds for all matrices B ∈ BI . It follows that

κ(I) ≤
C

(I − 1)
avedeg

γ
(NI) −−−−

I→∞
−→ 0,

as desired, where the last step is by the limit equation (7). ✷

Proof of Proposition 7.1. Let R′ := D⊙R. We must verify the three conditions for R′ to
be sagacious. First, we will show that R′ satisfies Identification. Suppose the true state
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of nature is s. Fix I ∈ N, and let I := [1 . . . I]. Let R′
I = DI ⊙RI , let ρ

′ ∈ R′
I , and let

V′ = (v′
i)
I
i=1 be a ρ′(s)-random profile. Then there exists a collective behaviour model

ρ ∈ RI , and an influence matrix D ∈ DI such that ρ′ = D⊙ ρ. Suppose D = [di,j]i,j∈I .
Thus, for all i ∈ I, we have

v′
i :=

I∑

j=1

di,j vj,

where V = (vi)
I
i=1 is a ρ(s)-random profile. Now, RI is sagacious, so it satisfies Iden-

tification; thus, for all k ∈ I, we have E[vk] ∈ F−1{s} ∩ C ′. Thus, for all i ∈ I, we
have

E[v′
i] = E

[
∑

k∈I

di,k vk

]
=
∑

k∈I

di,k E[vk] ∈ F−1{s} ∩ C ′,

because F−1{s} ∩ C ′ is convex by (M4), and
∑

k∈I di,k = 1 (because D is a stochastic
matrix). Thus, Identification is satisfied.

It remains to show that R′ satisfies Asymptotically weak average covariance and Asymp-

totic Determinacy. Since the culture R is sagacious, it already satisfies these properties.
For all I ∈ N, let σ(I) and κ(I) be as defined in the statements of these conditions. Let
s ∈ S, D ∈ DI , ρ ∈ RI , ρ

′ = D⊙ρ, V′, V, etc. be as defined in the proof of Identification
above. Let B′ = [b′i,j]

I
i,j=1 be the covariance matrix of ρ′(s). That is: b′i,j := cov(v′

i,v
′
j),

for all i, j ∈ I. Let D be the modulus of D (this is finite because D is local).

Claim 1:
1

I2

∑

i,j∈I

b′i,j ≤ D2

(
1

I
σ(I) +

I − 1

I
κ(I)

)
.

Proof: Let B = [bi,j]
I
i,j=1 be the covariance matrix of ρ(s). Then for all i, j ∈ I, we have

b′i,j = cov(v′
i,v

′
j) = cov

(
∑

k∈I

di,k vk,
∑

ℓ∈I

dj,ℓ vℓ

)

=
∑

k∈I

∑

ℓ∈I

di,k dj,ℓ cov(vk,vℓ) =
∑

k,ℓ∈I

di,k dj,ℓ bk,ℓ, (A9)
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where the last step is because cov(vk,vℓ) = bk,ℓ. For all k ∈ I, let dk :=
∑

i∈I

di,k. Then

1

I2

∑

i,j∈I

b′i,j (a)

1

I2

∑

i,j,k,ℓ∈I

di,k dj,ℓ bk,ℓ =
1

I2

∑

k,ℓ∈I

(
∑

i∈I

di,k

)(
∑

j∈I

dj,ℓ

)
bk,ℓ

=
1

I2

∑

k,ℓ∈I

dk dℓ bk,ℓ ≤
(b)

1

I2

∑

k,ℓ∈I

D2 bk,ℓ

= D2




1

I2

∑

k∈I

bk,ℓ +
1

I2

∑

k,ℓ∈I
k 6=ℓ

bk,ℓ


 = D2

(
1

I
σ(B) +

I − 1

I
κ(B)

)

≤
(c)

D2

(
1

I
σ(I) +

I − 1

I
κ(I)

)
.

as claimed. Here, (a) is by equation (A9), while (b) is by definition of “modulus”. (c)
is by the definitions of σ(I) and κ(I). ✸ Claim 1

Now, let B
′ = (B′

I)
∞
I=1 be the covariance structure for the culture R

′. Then for any
I ∈ N and B′ ∈ B′

I , we can find some ρ′ ∈ R′
I and s ∈ S such that B′ = cov[ρ′(s)], and

thus, Claim 1 applies to B′. However,

1

I2

∑

i,j∈I

b′i,j =
I − 1

I
κ(B′) +

1

I
σ(B′).

Thus, Claim 1 implies that

I − 1

I
κ(I) +

1

I
σ(I) ≤ D2

(
1

I
σ(I) +

I − 1

I
κ(I)

)
−−−−

I→∞
−→ 0,

where the last step because R satisfies Asymptotically weak average covariance and
Asymptotic Determinacy. Thus, the culture R

′ is sagacious. ✷

Proof of Proposition 7.2. Let I := [1 . . . I]. For any I × I matrix D, let ‖D‖ :=

max
j∈I

(
∑

i∈I

di,j

)
. Thus, a deliberative institution C = (CI)

∞
I=1 is local if there is some

constant C > 0 such that ‖C‖ ≤ C for all C ∈ CI and all I ∈ N. In particular, if D and
E are local, then there are constants D and E such that ‖D‖ ≤ D and and ‖E‖ ≤ E
for all D ∈ DI , all E ∈ EI , and all I ∈ N.

Claim 1: For any I × I matrices D and E, we have ‖D · E‖ ≤ ‖D‖ · ‖E‖.
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Proof: Let C = D ·E. Thus, for all i, k ∈ I, ci,k =
∑

j∈I di,j ej,k. Thus, for all k ∈ I, we
have

∑

i∈I

ci,k =
∑

i∈I

∑

j∈I

di,j ej,k =
∑

j∈I

(
∑

i∈I

di,j

)
ej,k

≤
∑

j∈I

‖D‖ej,k = ‖D‖
∑

j∈I

ej,k ≤ ‖D‖ · ‖E‖.

Thus, ‖D · E‖ ≤ ‖D‖ · ‖E‖, as claimed. ✸ Claim 1

Let CI := {D · E; D ∈ DI and E ∈ EI}. It is well-known that the product of two
stochastic matrices is a stochastic matrix. (The proof is very similar to Claim 1.) Thus,
every element of CI is a stochastic matrix. Meanwhile, it follows from Claim 1 that
‖C‖ ≤ DE for all C ∈ CI and all I ∈ N. Thus, D · E is also local.

Now let q, q′ ∈ [0, 1] such that q + q′ = 1.

Claim 2: For any I × I matrices D and E, we have ‖qD+ q′E‖ ≤ q‖D‖ + q′‖E‖.

Proof: Let C = qD+ q′E. Thus, for all i, j ∈ I, ci,j = q di,j + q′ ei,j. Thus, for all j ∈ I,
we have

∑

i∈I

ci,j =
∑

i∈I

(q di,j + q′ ei,j) = q
∑

i∈I

di,j + q′
∑

i∈I

ei,j ≤ q ‖D‖ + q′‖E‖.

Thus, ‖qD+ q′E‖ ≤ q‖D‖ + q′‖E‖, as claimed. ✸ Claim 2

Let CI := {qD+q′ E; D ∈ DI and E ∈ EI}. It is well-known that the convex combination
of two stochastic matrices is a stochastic matrix. (The proof is very similar to Claim
2.) Thus, every element of CI is a stochastic matrix. Meanwhile, it follows from Claim
2 that ‖C‖ ≤ q D + q′ E for all C ∈ CI and all I ∈ N. Thus, qD+ q′E is also local. ✷
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