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Abstract

This paper develops the asymptotic theory for the estimation of smooth semiparametric general-

ized estimating equations models with weakly dependent data. The paper proposes new estimation

methods based on smoothed two-step versions of the Generalized Method of Moments and Gen-

eralized Empirical Likelihood methods. An important aspect of the paper is that it allows the

first step estimation to have an effect on the asymptotic variances of the second-step estimators

and explicitly characterizes this effect for the empirically relevant case of the so-called generated

regressors. The results of the paper are illustrated with a partially linear model that has not been

previously considered in the literature. The proofs of the results utilize a new uniform strong law

of large numbers and a new central limit theorem for U -statistics with varying kernels that are of

independent interest.
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1 Introduction

In this paper we consider estimation of semiparametric statistical models defined by a set of gener-

alized estimating equations. These models, often called over-identified moment conditions models in

the econometric literature, are very general and contain semiparametric extensions to generalized in-

strumental variable models used with economics and financial data and quadratic inference functions

models used with longitudinal data. We develop two-step semiparametric extensions to the generalized

method of moments (GMM) proposed by Hansen (1982), the generalized empirical likelihood (GEL)

estimator of Newey and Smith (2004) and the exponentially tilted empirical likelihood (ETEL) esti-

mator of Schennach (2007), where the first step is used to estimate an infinite dimensional nuisance

parameters and the second-step is used to estimate a finite dimensional parameter of interest. The

aforementioned methods have many desirable theoretical and practical properties. For example, GEL

is a quasi-likelihood alternative to GMM that includes Owen’s (1988) Empirical Likelihood (EL), and

Kitamura and Stutzer’s (1997) Exponential Tilting (ET) as special cases. It does not require estima-

tion of the efficient metric as in GMM estimation, and allows for the construction of classical-type

statistics such as likelihood ratio, and score for various hypotheses of interest. On the other hand

GMM is computationally simpler than GEL, whereas ETEL is known to be robust to possible global

misspecification of the estimating equations.

The theoretical properties of two-step semiparametric estimators have been considered both in the

statistical and econometric literature for both cross section and time series data, see e.g. Truong and

Stone (1994), Andrews (1994a), Newey (1994), Gao and Liang (1997), Chen and Shen (1998), Li and

Wooldridge (2002), Chen et al. (2003) to name just a few among many others. Li and Racine (2007) and

Gao (2007) provide further examples and references. The statistical model we consider includes all of

these models as special cases and in particular it allows for the possibility that the first-step estimation

can affect the asymptotic variance of the second step estimator (the so-called estimation effect). To

be specific we consider the case where the infinite dimensional parameter can depend on an estimated

finite dimensional random vector. This case is empirically relevant because it often arises in situations

where an estimated variable is used as a proxy for an unobservable variable of interest, such as for

example the risk term in finance, and it is also theoretically interesting because with weakly dependent

data the characterization of the estimation effect is more complicated. As far as we are aware of, this

is the first paper that fully considers the estimation effect in semiparametric generalized estimating

equations models with weakly dependent observations (see Mammen et al., 2015 and Escanciano et al.,

2014 for the case of just-identified semiparametric estimating equations models with independent and

identically distributed (i.i.d.) observations).

The main methodological contribution of this paper is to derive the asymptotic properties of semi-

parametric two-step GEL, GMM and ETEL estimators under the weakest form of dependency, namely

α (or strong) mixing (see for example Doukhan, 1994, for a review of statistical properties and ap-

plications of α-mixing processes) using the same kernel based smoothing1 proposed by Kitamura and

Stutzer (1997) for ET and generalized by Smith (1997) (see also Smith, 2011) to GEL. In our frame-

1For an asymptotically equivalent approach based on blocking techniques see for example Kitamura (1997).
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work, smoothing the estimating equations is useful whether there is an estimation effect or not. In

the latter case smoothing is necessary for both the GEL and ETEL estimators to achieve the same

asymptotic lower bound established by Chamberlain (1987) for efficient GMM estimators with i.i.d.

observations. In the former case smoothing is useful because it results in heteroskedasticity and au-

tocorrelation robust variance matrix estimators alternative to those typically used in both empirical

economics and finance, see for example Andrews (1991). In this situation we obtain explicit formulae

for the resulting asymptotic variance that are based on pathwise derivatives as in Newey (1994), and

rely on a linear representation of the first-step estimator. This linear representation is fairly general

and is satisfied, for example, in the important cases of non-parametric regression and non-parametric

density estimators.

This paper also contains a number of new technical contributions that are used in the proof of

the main results and are of independent interest. To be specific we establish a new strong uniform

law of large numbers (SULLN) for strictly stationary α-mixing processes with a sharp logarithmic

bound that depends on an exponential decay rate of the α-mixing coefficient, a weak condition on the

growth rate of the bracketing entropy of a polynomial class of functions (of which Vapnik-Červonenkis

(V-C) classes are a special case), see e.g., van der Vaart and Wellner (1996, p. 86), and the existence

of certain moments of the estimating equations. This result extends a number of ULLN available in

both the econometric and statistical literature including those obtained by Andrews (1987), Yu (1993,

1994), Doukhan et al. (1994) and Adams and Nobel (2010). We also introduce two new central limit

theorems (CLT) (see Appendix B in the supplemental material) for both degenerate and nondegenerate

second-order generalized U -statistics (that is U -statistics with varying kernels). The resulting CLTs

are important because they represent a nontrivial extension of the existing results that are valid for

either i.i.d. or β-mixing sequences – see for example, de Jong (1987), Powell et al. (1989) and Mikosch

(1993) for the i.i.d. case, and Yoshihara (1976, 1989) and Fan and Li (1999) for the β-mixing case. To

establish these theorems, we impose mild regularity conditions directly on the kernel of the U -statistic

and rely on Sun and Chiang’s (1997) conditional expectation bound for α-mixing sequences and on

Dvoretsky’s (1972) central limit theorem for double arrays of dependent random variables.2

The theoretical results of the paper are illustrated by deriving the asymptotic properties of an

estimator of a general partially linear regression model, where we allow for the unobservable error to

be correlated with the regressors and the infinite dimensional parameter to depend on an unknown

finite dimensional parameter. Other examples where the results of the paper can be used are the

weighted instrumental variable model that adapt for unknown heteroskedasticity of Robinson (1987),

the instrumental variable model of sample selection of Lee (1994), and the inverse-density-weighted

moment model of Chu and Jacho-Chávez (2012) and Chu et al. (2013).

The rest of the paper is organized as follows: The next section introduces the statistical model and

the estimators. Section 3 contains the asymptotic results. Sections 4 and 5, respectively, introduce

2We note that Yoshihara (1992) uses an alternative approach to the one we follow to obtain the CLTs (and more

generally invariance principles) for α-mixing sequences. His approach relies on the Karhunen–Loève expansion of the

kernel and is based on a set of regularity conditions that are not imposed directly on the kernel and thus could be very

hard to verify in practice.
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the new partially linear regression model and the results of the Monte Carlo simulations used to assess

the finite sample properties of the proposed estimators. Section 6 contains some concluding remarks.

The proofs of the theorems of Sections 3 and 4 are contained in the Appendix A. A supplement to this

paper contains the new CLT’s for second-order generalized U -statistics, a number of auxiliary technical

lemmas and related proofs, which should be of independent interest.

The following notation is used in the text: a ” ′ ” denotes a matrix or vector transpose; for any

finite dimensional possibly random vector v or square matrix M , ‖ · ‖ denotes the Euclidean norm and

‖v‖M := v′Mv; for any measurable possibly vector valued function f (·), let ‖f (·) ‖p denote the Lp

norm, i.e., (
∫
‖f(x)‖pP (dx))

1/p
, and more generally for a pseudo-metric space, say H, ‖ · ‖H denotes a

function norm, such as the sup norm.

2 The Model and Estimators

Let {zt, t = 1, 2, ...} be a sequence of Z-valued
(
Z ⊂ R

d
)
weakly dependent random vectors defined on

a probability space (Ω,B, P ). Let θ ∈ Θ ⊂ R
k denote the finite dimensional parameter of interest and

h ∈ H denote the infinite dimensional nuisance parameter where H is a pseudo-metric space.

We consider a smooth semiparametric statistical model defined by

E [g (zt, θ, h)] = 0 iff θ = θ0 ∈ int(Θ), and h = h0 ∈ H, (2.1)

where g (·) : Z × Θ × H → R
l (l ≥ k) is a vector-valued measurable known function, and θ0 ∈ int(Θ)

and h0 ∈ H are the true unknown parameters. As in Andrews (1994a), h is allowed to depend on zt

and possibly on a finite dimensional parameter α ⊂ A ⊂ R
p, so that h0 =: h0 (zt, α0) includes also the

case of estimated random variables.

Let gt(θ, h) := g(zt, θ, h); given a sample {zt}Tt=1 and a preliminary non-parametric estimator ĥ of

h0 a two-step GMM estimator θ̂ for θ0 is defined as

θ̂GMM = argmin
θ∈Θ

‖ ĝ(θ, ĥ) ‖
Ŵ

, (2.2)

where ĝ(θ, ĥ) := T−1
∑T

t=1 gt(θ, ĥ) and Ŵ is a positive semi-definite possibly random R
l × R

l-valued

matrix that may depend on θ, and ĥ. The consistency of θ̂ follows by the results of Andrews (1994a)

and Chen et al. (2003), whereas its asymptotic normality follows by the results of Andrews (1994a) with

weakly dependent observations under the assumption of asymptotic orthogonality - see Assumption 6

given below- and in full generality by the results of Chen et al. (2003) but only under the assumption

of i.i.d. observations.

An alternative method for estimating θ0 is to use GEL and/or ETEL instead. To handle the

dependent structure of the estimating equation gt (θ, h), we follow the same approach of Smith (1997)

and consider the following smoothed version

gts (θ, h) =
1

sT

t−1∑

j=t−T

ω

(
j

sT

)
gt−j (θ, h) , t = 1, . . . , T ,
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where sT is a bandwidth parameter and ω (·) is a kernel function. Examples of possible kernel functions

include the Bartlett kernel ωB (·) used for example by Kitamura and Stutzer (1997) and the quadratic

spectral kernel ωQS (·) considered by Andrews (1991), given, respectively, by

ωB (x) =

{
1− |x| ; |x| ≤ 1

0 ; otherwise,
(2.3)

ωQS (x) =
25

12π2x2

[
sin (6πx/5)

6π/5
− cos

(
6πx

5

)]
. (2.4)

Smith (2011) provides further examples and a detailed discussion of different choices of ω (·).
Let ρ (·) : Q → R denote a twice continuously differentiable function that is concave in its domain

Q - an open interval of the real line that contains 0. The smoothed two-step GEL criterion function

for the semiparametric estimating equation satisfying (2.1) is

Γ (θ, h, λ) =
2

T

T∑

t=1

[ρ(ωλ′gts(θ, ĥ))− ρ (0)],

where ω = ω1/ω2 (ωj :=
∫
ω (q)j dq, j = 1, 2, . . .) is a normalization that has no effect on the GEL

estimator for θ0 but makes the scale of the estimator for λ comparable for different choices of ω (·) and
λ is a vector of unknown auxiliary parameters.

The GEL estimator for θ0 is defined as the minimizer of the (profile) smoothed two-step GEL

criterion function, that is

θ̂GEL = argmin
θ∈Θ

Γ(θ, ĥ, λ̂), (2.5)

where

λ̂ := arg max
λ∈ΛT

Γ(θ, ĥ, λ), (2.6)

for some fixed θ and ΛT = {λ : λ′gts(θ, ĥ) ∈ Q} is the restricted parameter space of λ (see for example

Newey and Smith, 2004 and Smith, 2011).

We can also define the following two-step smoothed GMM estimator for θ0,

θ̂s-GMM = argmin
θ∈Θ

‖ ĝs(θ, ĥ) ‖Ŵ , (2.7)

where ĝs(θ, ĥ) := T−1
∑T

t=1 gts(θ, ĥ), which is an extension of that proposed by Smith (2005) and, as

opposed to the standard GMM estimator, takes directly into account the weakly dependent structure

of the observations.3

3This implies that a consistent estimator of the efficient metric W = limT→∞var(T 1/2ĝ(θ0, h0)) is given by an appro-

priately standardized version of the outer product of the smoothed estimating equations gts(θ̂, ĥ), viz.
∥∥∥∥∥∥

[
1

sT

T−1∑

j=1−T

ω

(
j

sT

)2
]−1

sT
T

T∑

t=1

gts(θ̂, ĥ)gts(θ̂, ĥ)
′ − lim

T→∞
var(T 1/2ĝ(θ0, h0))

∥∥∥∥∥∥
= op (1) ,

see the proof of Theorem 3.2 for more details.
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The last estimator we consider is the two-step semiparametric ETEL estimator for θ0, that is defined

as

θ̂ETEL = argmin
θ∈Θ

1

T

T∑

t=1

T log π̂s(zt, θ, ĥ, λ̂), (2.8)

where π̂s(zt, θ, ĥ, λ̂) = ρ1(ωλ̂
′gts(θ, ĥ))/

∑T
t=1 ρ1(ωλ̂

′gts(θ, ĥ)), and λ̂ is as in (2.6) for ρ (·) = − exp (·).

3 Asymptotic Theory

3.1 Strong Uniform Law of Large Numbers

We begin this section by introducing some further notation: Let F := {f(θ, h) : θ ∈ Θ, h ∈ H} denote

a class of functions indexed by an Euclidean parameter and an infinite dimensional parameter. Given

a probability distribution P and F in Lp(P ), let N[],p (ǫ, P,F) and H[],p (ǫ, P,F) denote, respectively,

the bracketing number and the ǫ-entropy with bracketing of F (see for example van der Vaart and

Wellner, 1996, Section 2.1, pp. 80-94)

Assumption 1 {zt, t = 1, 2, . . .} is a sequence of Z-valued
(
Z ⊂ R

d
)
stationary α-mixing random vec-

tors with the mixing coefficient satisfying α(t) = O
(
exp(−atb)

)
for some positive a and b.

Assumption 2 The class of functions F satisfies

H[],1(ǫ, P,F) ≤ υ log

(
1

ǫ

)
for some υ > 0, (3.1)

E

[
sup

(θ,h)∈Θ×H
‖ft(θ, h)‖µ

]
< ∞ for some µ ≥ 4. (3.2)

Assumption 1 specifies the dependent structure of the observations as α-mixing. Examples of time

series models that are α-mixing can be found in Doukhan (1994). α-mixing dependency is considered

by Andrews (1994a) in the context of semiparametric models, and by Kitamura (1997) and Smith (2011)

in the context of EL and GEL estimation and inference for (finite dimensional) generalized estimating

equations models. Assumption 1 imposes an exponential decay rate on the α-mixing coefficient α(t),

which could be satisfied by many m-dependent stochastic processes, such as ARMA, GARCH, and

bilinear processes; this same type of assumption has also been employed by Boente and Fraiman (1988)

and Bonhomme and Manresa (2015) for example. Assumption 2 imposes a restriction on the complexity

of the class of functions F and the existence of some moments of order greater than 4. Various types

of function classes such as Hölder, Sobolev and many others can be shown to satisfy (3.1) (see, e.g.,

van der Vaart and Wellner, 1996, Section 2.7, pp. 154-165). Note that (3.2) is only used to establish

the strong convergence rate in the following theorem.4

4Note that condition (3.1) combined with (3.2) for µ = 2 + ζ for some ζ > 0 would suffice to prove a weaker version

of the uniform law of large numbers given in Theorem 3.1.
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Theorem 3.1 Under Assumptions 1 and 2

sup
(θ,h)∈Θ×H

∣∣∣∣∣
1

T

T∑

t=1

{ft(θ, h)− E[ft(θ, h)]}
∣∣∣∣∣ = Oa.s.

(
log T

T β

)
for some β ∈

(
0,

1

4

)
.

Remark 3.1 The proposed ULLN complements that of Yu (1993, 1994) who established a rate of

convergence for a ULLN for strictly stationary β mixing (absolutely regular) empirical processes indexed

by a general class of functions with its capacity measured via the empirical metric entropy.

The above result is used repeatedly in the proofs of the Theorems 3.2 and 3.3. Its proof can be

found in the supplemental material for this paper.

3.2 Asymptotic Normality

Let Θδ = {θ ∈ Θ : ‖θ − θ0‖ ≤ δ}, Hδ = {h ∈ H : ‖h− h0‖H ≤ δ} (possibly uniformly in α ∈ A), where

h := h(zt) for some positive generic constant δ. Also let ∂· denote a derivative operator with respect to

·, which corresponds to an ordinary partial derivative with respect to θ, and to the pathwise derivative

in the direction of h− h0, that is

∂g(zt, θ, h0)

∂h
[h− h0] :=

∂g(zt, θ, (1− τ)h0 + τh)

∂τ
|τ=0

(see Newey, 1994 for some examples). Assume that:

Assumption 3 (a) sT → ∞ as T → ∞, and sT = O(T
1
2
−η) = o(T 1/2) for some η ∈

(
1
6 ,

1
2

)
(cf.

Smith, 2011); (b) ω (·) : R → [−ω, ω] for some ω < ∞, ω (0) 6= 0, ω1 6= 0, ω (x) is continuous at

0 and almost everywhere, (2π)−1 ∫∞
−∞ exp (−ιxu)ω (x) dx ≥ 0 for each ω ∈ R and all u ∈ R, and∫ 0

−∞ supy≤x |ω (y) dx|+
∫∞
0 supy≥x |ω (y) dx| < ∞.

Assumption 4 (a) The class of functions G1 := {gt(θ, h) : θ ∈ Θ, h ∈ H} satisfies conditions (3.1)

and (3.2) in Assumption 2; (b) E
[
supθ∈Θ,h∈Hδ

‖∂θgt(θ, h)‖α
]
< ∞ and E[supθ∈Θδ,h∈Hδ

‖∂hgt(θ, h)‖α] <
∞ for some α > 2; (c) the class of functions G2 := {∂θhgt(θ, h) : θ ∈ Θ, h ∈ H} satisfies conditions

(3.1) and (3.2) in Assumption 2, E[supθ∈Θδ,h∈Hδ

∥∥∂2
θθgt(θ, h)

∥∥] < ∞.

Assumption 5 (a) ‖ ĥ(zt)− h0(zt) ‖H = op
(
T−1/4

)
;

(b) v̂T (θ, h) := T−1/2
∑T

t=1 {gt (θ, h)− E [gt (θ, h)]} is stochastically equicontinuous at (θ0, h0) ∈ Θ×H.

Assumption 3 imposes some standard mild regularity conditions on the kernel function ω (·) used to

smooth the observations and on the rate of growth of the related smoothing parameter sT . Note that

the latter is allowed to grow at the rate O(T 1/3), which is known to be optimal (in terms of minimizing

the asymptotic mean squared error) for α-mixing processes for the Bartlett kernel. Examples of kernels

satisfying Assumption 3 include the Bartlett and the quadratic one given in (2.3), (2.4) respectively and

the Parzen kernel (see Andrews, 1991, for more details). Assumption 4 contains some mild moment

conditions and requires that the classes of functions G1 and G2 satisfy the conditions of Theorem

7



3.1. Assumptions 2, 3 and 4(a) can be used to show the consistency of the estimators described

above. Assumption 5(a) assumes uniform consistency (possibly also with respect to α) of the non-

parametric estimator used for h0. This is a standard assumption in the semiparametric literature of

two-step estimation procedures, see, e.g., Chen et al. (2003), Escanciano et al. (2014, 2016), Chen et al.

(2016), and Bravo et al. (2016). Similarly, Andrews (1995) provides sufficient conditions including

the case of estimated random variables for kernel smoothing estimators. Assumption 5(b) is a high

level assumption. It assumes stochastic equicontinuity of the empirical process v̂T (θ, h). Although,

sufficient conditions for Assumption 5(b) are provided for example in Andrews (1994a,b), Lemma C.3

in the Appendix C in the supplement provides a set of low level conditions that can be used to verify

Assumption 5(b).

Assumption 6 (a) ‖ E[gt(θ0, ĥ)] ‖ = op
(
T−1/2

)
; or (b) E[∂g(zt, θ, τ)/∂τ |τ=h0

h̃(zt)] = 0 ∀h̃ ∈ H and

z2t ⊂ zt.

Assumption 7 (a) ĥ(w)−h0(w) = T−1
∑T

t=1 ΦT (z2t, w)⊙φ (zt)+rT (w), where “⊙” is the Hadamard

product, ΦT (z2t, ·) is some weighting function, ‖rT (w)‖H = op
(
T−1/2

)
(possibly uniformly in α ∈ A);

(b) E [φ (zt) |Ft,z2t ] = 0, where Ft,z2t is the minimum σ-algebra generated by z2t; E
[
φ (zt)φ (zt)

′] < ∞;

and limT→∞ supwvar(T
−( 1

2
+δ)∑T

t=1ΦT (z2t, w)⊙ φ (zt)) < ∞ for some δ ∈ (0, 1/2);

(c) the class of functions G3 := {∂2
hhg(zt, θ0, h) : h ∈ H} satisfies conditions (3.1) and (3.2) Assumption

in 2.

Assumptions 6 and 7 account for the potential estimation effect from the first-step. When there

is none, Assumption 6 implies the asymptotic orthogonality between the finite dimensional and the

infinite dimensional parameter. In such case, it is not necessary to account for the presence of ĥ in

the asymptotic distribution of θ̂, which greatly simplifies the calculation of the asymptotic variance.

Condition 6(a) is directly assumed by Andrews (1994a), while Assumption 6(b) is assumed by Newey

(1994). Note that for h = h (z2t) sufficient conditions for condition 6(a) are Assumptions 6(b) and 5(a).

On the other hand, when there is estimation effect, Assumption 7 provides a generic way to account

for it. For example, when h0 represents a conditional mean function, Assumption 7(a) requires that

the first-step estimator admits a certain asymptotic expansion which can be shown to hold when ĥ

represents some kernel-based non-parametric regression estimator of h0 (see for example Masry, 1996

and Kong, Linton, and Xia, 2010); or ĥ := h(·, α̂) when h0(·) = h(·, α0) is known up to some vector

of parameters α0. For instance, when ĥ is the Nadaraya-Watson estimator of h0 in a non-parametric

regression model, say z1t = h0(z2t) + ξt, then one can immediately show that Assumption 7(a) holds

under some regularity conditions with φ(zt) = z1t − h0(z2t) and ΦT (z2t, wt) = fz2t(wt)KbT (z2t − wt),

where fz2t(·) is the pdf of z2t and KbT (·) is a kernel function with bandwidth bT = b (T ) that goes to

zero as T diverges to infinity.

The following two theorems establish the asymptotic normality for the smoothed two-step GEL,

both two-step efficient s-GMM, and smoothed two-step ETEL estimators under the asymptotic or-

thogonality Assumption 6, and under the presence of an estimation effect that can be characterized by

Assumption 7, respectively.
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Let Ω (θ0, h0) = limT→∞var
(
T 1/2ĝ (zt, θ0, h0)

)
, G (θ0, h0) = E [∂θg (zt, θ0, h0)] and Σ (θ0, h0) =

G (θ0, h0)
′Ω (θ0, h0)

−1G (θ0, h0).

Theorem 3.2 Assume that (a) θ0 ∈int(Θ), (b) Ω (θ0, h0) is positive definite, (c) rank(G (θ0, h0)) = k,

(d) Σ (θ0, h0) is nonsingular, (e) ‖ Ŵ − Ω (θ0, h0)
−1 ‖ = op (1) for the GMM defined in (2.2) and s-

GMM estimator defined in (2.7). Then under Assumptions 1-6 for θ̂ defined as in (2.2), (2.5), (2.7)

and (2.8)

T 1/2(θ̂ − θ0)
d→ N(0,Σ (θ0, h0)

−1).

The following theorem establishes the asymptotic normality of the above estimator in the presence

of estimation effect. Let

Ωe
d (θ0, h0) = lim

T→∞
var

[
1

T 1/2

T∑

t=2

(
gt (θ0, h0) +

1

(T − 1)

t−1∑

s=1

Ψ(zs, zt, θ0, h0)

)]
, (3.3)

Ωe
nd (θ0, h0) = lim

T→∞
var

[
1

T 1/2

(
T∑

t=2

gt (θ0, h0) + h
(1)
T (zt, θ0, h0)

)]
,

where

Ψ (zs, zt, θ0, h0) = ∂hg (zt, θ0, h0)
′ΦT (z2s, z2t)⊙ φ (zs) + ∂hg (zs, θ0, h0)

′ΦT (z2t, z2s)⊙ φ (zt) ,

h
(1)
T (·, θ0, h0) = E [Ψ (·, zt, θ0, h0)] =

∫
Ψ(·, u, θ0, h0(u)) fzt(u)du.

Theorem 3.3 Assume that (a) θ0 ∈int(Θ), (b) Ω (θ0, h0), Ωe
d (θ0, h0) and Ωe

nd (θ0, h0) are positive

definite, (c) rank(G (θ0, h0)) = k, (d) Σ (θ0, h0) is nonsingular. Then under Assumptions 1-5, and 7

for θ̂ defined in (2.5) or in (2.8)

T 1/2(θ̂ − θ0)
d→ N(0,Σ (θ0, h0)

−1Σv
∗ (θ0, h0)Σ (θ0, h0)

−1),

where

Σv
∗ (θ0, h0) = G (θ0, h0)

′Ω (θ0, h0)
−1Ωe

∗ (θ0, h0) Ω (θ0, h0)
−1G (θ0, h0) ,

and Ωe
∗ (θ0, h0) is either Ωe

d (θ0, h0) or Ωe
nd (θ0, h0) given in (3.3).

For the two-step GMM estimator and its smoothed version, say θ̂ℓ for ℓ ∈ {GMM,s-GMM}, defined in

(2.2) and in (2.7) under (a)-(c) above, (d) Σe (θ0, h0) is nonsingular and Assumptions 2-5, 7 and (e)

‖ Ŵ − Ωe
∗ (θ0, h0)

−1 ‖ = op (1),

T 1/2(θ̂ℓ − θ0)
d→ N(0,Σe

∗ (θ0, h0)
−1),

where

Σe
∗ (θ0, h0) = G (θ0, h0)

′ Ωe
∗ (θ0, h0)

−1G (θ0, h0) .
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Remark 3.2 It is important to note that

Σe
∗ (θ0, h0)

−1 ≤ Σ (θ0, h0)
−1Σv

∗ (θ0, h0) Σ (θ0, h0)
−1

in the matrix sense,5 implying that in the presence of an estimation effect, as long as condition (e)

of Theorem 3.3 is satisfied, the two-step GMM estimator is more efficient than the smoothed two-step

GEL or ETEL estimators. On the other hand, because of the explicit estimation of the efficient metric

Ωe
∗ (θ0, h0)

−1 both GMM estimators θ̂ℓ for ℓ ∈ {GMM,s-GMM} might be more prone to bias. The Monte

Carlo evidence of Section 5 based on the model considered in Section 4 seems to provide some support

to both points.

4 Example: Partially Linear Instrumental Variable model

We consider a generalization of the partial linear model considered by Li and Wooldridge (2002)

yt = x′1tθ0 +m0 (x2t) + εt t = 1, . . . , T , (4.1)

where θ0 is an R
k-valued vector of unknown parameters, m0 (·) is an unknown real valued function,

and the unobservable weakly dependent errors εt’s are such that E[εt|xt] 6= 0, where xt = [x′1t, x
′
2t]

′.

Suppose that there exists an R
l-valued (l ≥ k) vector wt of instruments such that E (εt|x2t, wt) = 0;

then the estimation of the parameter of interest θ0 can be based on

gt (θ0, h0) = wt

[
yt − E (yt|x2t)− (x1t − E (x1t|x2t))′ θ0

]
, (4.2)

where h0 := h0(x2t) = [E (yt|x2t) , E (x1t|x2t)′]′.
For vt = yt or x1t let Ê (vt|x2t) =

∑T
s 6=t=1 vtKbT ((x2s − x2t) /bT ) /

∑T
s 6=t=1KbT ((x2s − x2t) /bT ),

where KbT (·) = K (·) /bT denotes a kernel estimator of the conditional expectation E[vt|x2t] with
bandwidth bT and let

gt(θ, ĥ) = wt

(
ỹt − x̃′1tθ

)
,

where ỹt = yt − Ê (yt|x2t), x̃1t = x1t − Ê (x1t|x2t) denote the plug-in version of (4.2).

The following proposition establishes the asymptotic distribution of the two-step GMM, two-step

GEL and two-step ETEL estimators when there is an estimation effect. To this end note that by the

results of Andrews (1994a) and Newey (1994), an estimation effect in (4.2) is only possible in the case

of a generated regressor. So we assume that x2t is generated as a residual from the following linear

regression model st = v′tα0 + x2t where α0 is a vector of unknown parameters and vt is a vector of

exogenous regressors so that E[x2t|vt] = 0. We also note that because the model is linear in both the

finite and infinite dimensional parameters some of the regularity conditions (including a polynomial

rate for the mixing coefficient α (t)) are weaker than those assumed in the theorems of the previous

section.

5This follows since Σe (θ0, h0) − Σ(θ0, h0) Σ
v
∗ (θ0, h0)

−1 Σ(θ0, h0) = X0
′[I − Z0 (Z

′
0Z0)

−1
Z′

0]X0 ≥ 0, for X0 =

Ωe
∗ (θ0, h0)

−1/2 G (θ0, h0) and Z0 = Ωe
∗ (θ0, h0)

1/2 Ω(θ0, h0)
−1 G (θ0, h0).
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Proposition 4.1 Let zt := [yt, x
′
1t, x2t, w

′
t]
′, and assume that: (a) {zt}Tt=1 is a sequence of α-mixing

random vectors with α (t) = o
(
t−2(2+γ)

)
; (b) the joint density f (zt) of zt and the marginal density

f (x2t) of x2t are twice continuously differentiable with bounded derivatives and infx2t∈X ∗
2
f (x2t) > 0,

where X ∗
2 is an open bounded subset of R

dx2 (c) h0 (x2t) is twice continuously differentiable and

supx2t∈X ∗
2
‖ h

(j)
0 (x2t) ‖ < ∞ (j = 0, 1, 2) uniformly in A where h

(j)
0 (·) is the jth derivative of h0 (·);

(d) E ‖ wt(yt−E (yt|x2t)− (x1t − E (x1t|x2t))′ θ0) ‖4+γ < ∞; (e) rank
(
E
[
wt (x1t − E (x1t|x2t))′

])
= k,

the matrices Ω (θ0, h0) and Ωe (θ0, h0) defined in (4.3) are positive definite; (f) the function K (·) is

a nonnegative second-order kernel with second order continuous bounded derivatives, and bT satis-

fies T 1/2b2T → ∞, T 1/2b4T → 0. Moreover
∣∣K (·+ u)−K (u)−K(1) (·)u

∣∣ ≤ K (·) u2 where K(1) (·)
is the first derivative of the kernel function and K (·) is a bounded function, (f) T 1/2(α̂ − α0) =∑T

t=1 r (vt)
′ x2t/T

1/2 + op (1). Then the two-step GMM, GEL and ETEL estimators have the same

distribution as that given in Theorem 3.3 with

G (θ0, h0) = E
[
wt (x1t −E (x1t|x2t(α0)))

′] , (4.3)

Ω (θ0, h0) = lim
T→∞

var(T−1/2
T∑

t=1

wt [yt − E (yt|x2t(α0))− (x1t − E (x1t|x2t(α0))) θ0]),

Ωe (θ0, h0) = lim
T−→∞

var

{
1

T 1/2

T∑

t=1

(
wtεt + E

[
wt

f(x2t (α0))
∂α[f(x2t)h0(x2t(α0), θ0)]−

wt[h0(x2t(α0), θ0)]

f(x2t (α0))
∂αf(x2t(α0))

]
r(vt)

′x2t(α0)

)}
,

where h(x, θ) := E[yt − x′1tθ|x2t = x] and x2t(α0) = st − v′tα0.

Proposition 4.1 generalizes some of the results of Li and Wooldridge (2002) to the possibly over-

identified partial linear models with α-mixing errors. Note that in case of martingale difference errors,

the above result simplifies to

Ω (θ0, h0) = E
[
wtw

′
t (yt − E (yt|x2t(α0))− (x1t − E (x1t|x2t(α0))) θ0)

2
]
,

Ωe (θ0, h0) = Ω (θ0, h0) + E

{
wt

f(x2t(α0))
∂α[f(x2t(α0))h0(x2t(α0), θ0)− h(x2t(α0), θ0)∂αf(x2t(α0)]

}
×

E
[
r(vt)

′r(vt)x
2
2t(α0)

]
E

{
wt

f(x2t(α0))
∂α[f(x2t(α0))h0(x2t(α0), θ0)− h0(x2t(α0), θ0)∂αf(x2t(α0)]

}′

.

Let τ (x2t(α0)) := I (x2t(α0) ∈ X ∗
2 ) denote a fixed trimming function that equals one whenever x2t(α0) ∈

X ∗
2 and zero otherwise; then given the results of Proposition (4.1) the proposed two-step semiparametric

GEL, GMM, s-GMM and ETEL estimators can be based on the following trimmed smoothed criterion
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functions

ΓGEL(θ, ĥ, λ) =

T∑

t=1

τ (x̂2t) [ρ(ωλ
′gts(θ, ĥ))− ρ (0)],

ΓGMM(θ, ĥ, λ) = ‖ τ (x̂2t) ĝ(θ, ĥ) ‖Ω̂e(θ̃,ĥ)−1 ,

Γs-GMM(θ, ĥ, λ) = ‖ τ (x̂2t) ĝs(θ, ĥ) ‖Ω̂e(θ̃,ĥ)−1 ,

ΓETEL(θ, ĥ, λ) = log

{
1

T

T∑

t=1

τ (x̂2t) exp[λ
′gcts(θ, ĥ)]

}
,

where x̂2t = x2t(α̂) and Ω̂e(θ̃, ĥ) is a consistent estimator of Ωe(θ0, h0).

5 Monte Carlo Results

In this section we present results for the partial linear regression model with endogenous covariates in

its parametric component discussed in Section 4. Specifically, we focus on

yt = x11tθ10 + x12tθ20 +m0(x2t) + εt,

x11t = π10v1t + π20v2t + ut,

where v1t = ρ1v1t−1 + ǫ1t, v2t = ρ2v2t−1 + ǫ2t, εt = ρεεt−1 + ǫεt, ut = ρuut−1 + ǫut and

[
ǫ1t

ǫ2t

]
∼ N

([
0

0

]
,

[
1 0

0 1

])
,

[
ǫεt

ǫut

]
∼ N

([
0

0

]
,

[
1 ρεu

ρεu 1

])
.

Let ωlt ∼ N (0, 1) (l = 2, 3, 4) independent of v1t and v2t, and set x12t = v2t + ω2t, x2t = v1t + v2t +ω3t

such that st = ω4tα0+x2t. For ρ1 = ρ2 = 0.5, ρε = ρu = 0.95, and m0 (v) = Φ (v) (Φ (·) is the CDF of a

standard normal), we generate 2000 samples, {yt, x11t, x12t, st, ω4t, v1t, v2t}Tt=1, with T ∈ {200, 400, 800},
two different scenarios ρεu ∈ {0.1, 0.9} representing an increasing degree of endogeneity and θ0 = [1, 1]′,

π0 = [1,−1]′, α0 = 1.

Let zt := [yt, x11t, x12t, x̂2t, v1t, v2t]
′, wt := [x12t, x̂2t, v1t, v2t]

′, h0 (zt) := [ỹt, x̃11t, x̃12t]
′, ỹt := yt −

Ê[yt|x̂2t], x̃11t := x1t − Ê[x11t|x̂2t], x̃12t := x12t − Ê[x12t|x̂2t] and x̂2t := st − ω4tα̂, so that

gt(θ, ĥ) = wt(ỹt − x̃11tθ1 − x̃12tθ2),

where ĥ is the Nadaraya-Watson estimator with bandwidths chosen as c ∈ {0.5, 1, 1.5} times the

Silverman’s rule-of-thumb bandwidth, and α̂ is an estimator of α0 obtained from regressing st on ω4t

by ordinary least squares.

The GEL estimators we consider are the Empirical Likelihood (EL), Exponential Tilting (ET) and
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Continuous Updated (CU) estimators; for the GMM estimators we use the following estimator

Ω̂e(θ̃, ĥ) =


 1

sT

T−1∑

j=1−T

ω2

(
j

sT

)

−1 (sT

T

)
τ (x̂2t)

T∑

t=1

gts(θ̃, ĥ)gts(θ̃, ĥ)
′, (5.1)

gts(θ̃, ĥ) =
1

sT

t−1∑

j=t−T

ω

(
j

sT

){
wtε̃t +

1

T

T∑

t=1

[
wt

f̂(x̂2t)
∂αf̂(x̂2t)ĥ(x̂2t, θ̃) −

wt[ĥ(x̂2t, θ̃)]

f̂(x̂2t)
∂αf(x̂2t)

]
r̂(ω4t)x̂2t

}
,

where ε̃t = ỹt− x̃11tθ̃1− x̃12tθ̃2, θ̃1 and θ̃2 are preliminary consistent estimators of θ10 and θ20, f̂(x̂2t) is

a kernel estimator of the marginal density of x̂2t and r̂(ω4t) = ω4t/
(∑T

t=1 ω
2
4t/T

)
. In the Monte Carlo

we use a Bartlett smoothing kernel with bandwidth parameter sT chosen by the method suggested

in Andrews (1991). The same bandwidths and kernels are used to estimate the asymptotic standard

errors based on (4.3) and to compute the estimator Ω̂e(θ̃, ĥ) given in (5.1).

The Monte Carlo Bias (Bias), Standard Deviation (Std. Dev.), Average Ratios of Standard Errors

(Ratio) with respect to that of a standard GMM and Coverage Probability (Cov. Prob.) are reported

in Tables 1-2 for the estimator of the endogenous regressor parameter θ10. We use the standard GMM

partly because of its efficiency property discussed in Remark (3.2) and partly because it would probably

be the most popular estimator given its (relatively) computational simplicity.

Tables 1 and 2 approx. here

We first consider the bias reported for the estimator of the endogenous regressor parameter and

note that the bandwidth choice has some finite sample effect especially for T = 200 and 400, but it is

also important to note that the magnitude of the bias of all of the proposed estimators is statistically

insignificant. As expected, the degree of endogeneity has some negative effect on the bias for the smaller

sample sizes. Second the standard and smoothed efficient GMM estimators are characterized by the

largest bias but smallest standard deviations, whereas the EL estimator has the smallest bias, especially

in the case of low endogeneity. Turning to the Monte Carlo standard deviation, we first note that in

this case the degree of endogeneity have a less significant finite sample effect. Second the standard

and smoothed GMM estimators seem to have an edge compared to the other estimators especially for

T = 200 and 400. Third, as pointed out in Remark 3.2, the standard and smoothed GMM estimators

have the smallest standard errors. Finally we note that the asymptotic approximation of all estimators

seem appropriate for small samples as measured by the Monte Carlo coverage probability.

Figures 1-2 report the Q-Q plots that are used to illustrate the quality of the asymptotic normal

approximation for the estimator of the exogenous regressor parameter θ20.

Figures 1 and 2 approx. here

The figures show that the asymptotic approximation is good across models especially for samples

T = 400 and 800 for all estimators across low and high degrees of endogeneity. The approximation
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improves with the sample size and seems to be robust to bandwidth choice for the first step estimator.

Taking these results together, they suggest that the smoothed two-step estimators we are proposing

seem to be characterized by good finite sample properties.

6 Conclusions

In this paper we consider the problem of estimating parameters of interest in semiparametric moment

condition models with dependent data. We propose two-step GMM, GEL and ETEL estimators for

the finite dimensional parameter and use smoothing to take the dependency into consideration. We

show that as long as there is no estimation effect from the first step estimation all of the proposed esti-

mators are asymptotically equivalent to the efficient GMM estimator of Hansen (1982). On the other

hand, when there is estimation effect, this equivalence does not hold any longer for GEL and ETEL

estimators, which become less efficient. Our proofs rely on a new uniform law of large numbers that

generalizes that of Andrews’ (1987) and use two new CLT’s for both degenerate and non-degenerate

second-order U -statistics with varying kernels. These results are of independent interest. We illus-

trate the results with an instrumental variable partial linear model with a nonparametric generated

regressor and use simulations to assess the finite sample properties of some of the proposed estima-

tors. The results of the simulations suggest that overall all of the proposed estimators have good

finite sample properties. Finally, we would like to mention that the results of this paper could be

readily used in the context of quadratic inference functions for certain type of longitudinal data struc-

tures {ziti , i = 1, ...n, ti = 1, ..., T}. In particular, under the additional assumption that the data are

independent and identically distributed across i for fixed ti, and are α-mixing with the same mixing

coefficient as that given in Assumption 1 for a fixed i, it can be shown that the conclusion of Theorem

3.2 is still valid for an appropriately smoothed version of the quadratic inference function g (ziti , θ, h).

The case for Theorem 3.3 is considerably more complicated and we leave it for future research.
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Appendix A Main Proofs

Throughout this section “FOC” and “CMT” stand for, respectively, First Order Conditions and

Continuous Mapping Theorem; unless otherwise stated “CLT” denotes a Central Limit Theorem for

α-mixing sequences (see for example Doukhan, 1994, Chapter 1.5). C and C (·) represent generic

constants that may depend on additional quantities and may be different from line to line.

Proof of Theorem 3.1: See the supplemental material to this paper.

Proof of Theorem 3.2: We first show the consistency of θ̂ and λ̂ for the GEL criterion function.

Without loss of generality we normalize the first two derivatives ρj (0) = −1 (j = 1, 2) of ρ (·), where
ρj (0) := ∂jρ (q) /∂qj |q=0. Let Λr

T = {λ : ‖λ‖ ≤ RT } where RT = Op (sT/T )
ξ for ξ < 1/2; as in Smith

(2011) it suffices to show that

sup
θ∈Θ

‖ ĝts(θ, ĥ)− ω1E [gt (θ, h0)] ‖ = op (1) , (A-1)

max
1≤t≤T

sup
λ∈Λr

T

sup
θ∈Θ

‖ λ′gts(θ, ĥ) ‖ = op (1) , (A-2)
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∥∥∥∥∥∥

(
1

sT

T−1∑

t=1−T

ω

(
t

sT

)2
)−1

sT
T

T∑

t=1

gts(θ̂, ĥ)gts(θ̂, ĥ)
′ − Ω (θ0, h0)

∥∥∥∥∥∥
= op (1) . (A-3)

To verify (A-1) note that by triangle inequality, Theorem 3.1 and dominated convergence

sup
θ∈Θ

‖ ĝs(θ, ĥ)− ω1E [gt (θ, h0)] ‖ ≤

∣∣∣∣∣∣

T−1∑

j=1−T

1

sT
ω

(
j

sT

)∣∣∣∣∣∣
sup

θ∈Θ,h∈Hδ

∥∥∥∥∥
1

T

T∑

t=1

gt (θ, h)− E [gt (θ, h)]

∥∥∥∥∥+
∣∣∣∣∣∣

T−1∑

j=1−T

1

sT
ω

(
j

sT

)
− ω1

∣∣∣∣∣∣
E sup

θ∈Θ,h∈Hδ

‖gt (θ, h)‖+

+ ω1 sup
θ∈Θ

∥∥∥E[gt(θ, ĥ)]− E [gt (θ, h0)]
∥∥∥ = op (1) ,

since
∣∣∣
∑T−1

j=1−T s−1
T ω (j/sT )− ω1

∣∣∣ → 0. To show (A-2) note that by triangle inequality and the (func-

tional) mean value theorem one has

max
1≤t≤T

sup
λ∈Λr

T

sup
θ∈Θ

‖ λ′gts(θ, ĥ) ‖ ≤ RT

∣∣∣∣∣∣

T−1∑

j=1−T

1

sT
ω

(
j

sT

)∣∣∣∣∣∣
×

max
1≤t≤T

sup
θ∈Θ

[
‖gt (θ, h0)‖+ sup

h∈Hδ

‖∂hgt (θ, h)‖ ‖ ĥ− h0 ‖H

]
= op (1) ,

by Assumptions 4(a0-(b) and 5(a) since max1≤t≤T supθ∈Θ ‖gt (θ, h0)‖ = oa.s
(
T 1/µ

)
and

max
1≤t≤T

sup
θ∈Θ

sup
h∈Hδ

‖∂hgt (θ, h)‖ = oa.s

(
T 1/2

)

by the Borel-Cantelli lemma. Finally, to show (A-3), it follows from the triangle inequality

∥∥∥∥∥
sT
T

T∑

t=1

gts(θ̂, ĥ)gts(θ̂, ĥ)
′ − ω2Ω (θ0, h0)

∥∥∥∥∥

≤
∥∥∥∥∥
sT
T

T∑

t=1

gts (θ0, h0) gts (θ0, h0)
′ − ω2Ω (θ0, h0)

∥∥∥∥∥+ 2

∥∥∥∥∥
sT
T

T∑

t=1

gts (θ0, h0) [gts(θ̂, ĥ)− gts (θ0, h0)]
′

∥∥∥∥∥

+

∥∥∥∥∥
sT
T

T∑

t=1

[gts(θ̂, ĥ)− gts (θ0, h0)][gts(θ̂, ĥ)− gts (θ0, h0)]
′

∥∥∥∥∥ = T
∗
1 + T

∗
2 + T

∗
3.

T∗
1 = op (1) by Lemma A.3 of Smith (2011). Calculations along the lines of Lemma A.3 of Smith (2011)

and Cauchy-Schwarz inequality yield

T
∗
2 ≤

∣∣∣∣∣
1

sT

T−1∑

s=1−T

ω

(
t− s

sT

)
ω

(
t

sT

)∣∣∣∣∣

[
‖ĝ (θ0, h0)‖2 ‖ ĝ(θ̂, ĥ)− ĝ (θ0, h0) ‖2 +O

(
t

T

)]
,

and by the functional mean value theorem, Assumptions 4 and 5(a)

1

T

T∑

t=1

∥∥∥gt(θ̂, ĥ)− gt (θ0, h0)
∥∥∥
2
≤ ‖ ĥ− h0 ‖2H sup

θ∈Θδ,h∈Hδ

∣∣∣∣∣
1

T

T∑

t=1

‖∂hgt (θ, h)‖2
∣∣∣∣∣ = op (1) ,
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hence T∗
2 = op (1) since

lim
T→∞

∣∣∣∣∣
1

sT

T−1∑

t=1−T

t

T
ω

(
t− s

sT

)
ω

(
t

sT

)∣∣∣∣∣ = 0

by Lemma C.1 of Smith (2011). Similar arguments yield T∗
3 = op (1). Clearly Pr (Λr

T ∈ ΛT ) → 1 and

note that by (A-2) and CMT

sup
θ∈Θ, λ∈Λr

T

max
1≤t≤T

∣∣∣ρj(λ′gts(θ, ĥ))− ρj (0)
∣∣∣ = op (1) , j = 1, 2. (A-4)

Given (A-1)-(A-4), the consistency of the GEL estimator θ̂ follows by the same arguments of Newey

and Smith (2004) and Smith (2011). First note that

sup
λ∈Λr

T

1

sT
Γ(θ0, ĥ, λ) ≤ ‖ĝs (θ0, h0)‖2 +

1

sT

[
Γ(θ0, ĥ, λ)− Γ (θ0, h0, λ)

]
, (A-5)

and that by a Taylor expansion along the continuous connected path h∗ (ǫ) = h0 + ǫ(ĥ− h0) such that

h∗ (ǫ) ∈ Hδ, ∀ǫ ∈ [0, 1] we have

Γ(θ0, ĥ, λ) = Γ (θ0, h0, λ) + ω (1− ǫ)
1

T

T∑

t=1

ρ1
(
ωλ′gts (θ0, h

∗ (ǫ))
)
λ′∂hgts (θ0, h

∗ (ǫ)) (ĥ− h0),

where ǫ ∈ (0, 1). Then by triangle inequality

∣∣∣Γ(θ0, ĥ, λ)− Γ (θ0, h0, λ)
∣∣∣ ≤

∣∣∣∣∣(1− ǫ)ω
1

T

T∑

t=1

λ′∂hgts (θ0, h
∗ (ǫ)) (ĥ− h0)

∣∣∣∣∣+
∣∣∣∣∣(1− ǫ)ω

1

T

T∑

t=1

[
ρ1
(
ωλ′gts (θ0, h

∗ (ǫ))
)
− ρ1 (0)

]
λ′∂hgts (θ0, h

∗ (ǫ)) (ĥ− h0)

∣∣∣∣∣ ≤

RT ‖ ĥ− h0 ‖H sup
h∈Hδ

1

T

T∑

t=1

‖∂hgts (θ0, h)‖
∣∣∣∣∣ sup
λ∈Λr

T , h∈Hδ

∣∣ρ1
(
ωλ′gts (θ0, h)

)
− ρ1 (0)

∣∣
∣∣∣∣∣ = op (1)

by Assumptions 4 and 5(a). Let λT = −ĝ(θ̂, ĥ)ξT / ‖ ĝ(θ̂, ĥ) ‖ where |ξT | < RT , so that Pr (λT ∈ Λr
T ) →

1. A Taylor expansion of Γ(θ̂, ĥ, λT ) with respect to λ′
T gts(θ̂, ĥ) about 0 gives

Γ(θ̂, ĥ, λT ) ≥ −ωλ′
T ĝs(θ̂, ĥ)− Cω2λ′

TλT = ωξT ‖ ĝ(θ̂, ĥ) ‖ − Cω2ξ2T .

Since

Γ(θ̂, ĥ, λT ) ≤ sup
λ∈Λr

T

Γ(θ̂, ĥ, λ) ≤ sup
λ∈Λr

T

Γ(θ0, ĥ, λ),

we have by (A-5), the CLT and some algebra yield

‖ ĝ(θ̂, ĥ) ‖ ≤ sT
ξT

‖ĝ (θ0, h0)‖2 + op (1) = o
(
T 1/2

)
Op

(
T−1

)
,

‖ ĝ(θ̂, ĥ) ‖ = op (1). The consistency of θ̂ follows now by Lemma C.1 and the identification condition

(2.1). A similar expansion can be used to show that ‖ λ̂ ‖ = Op

(
sT /T

1/2
)
where λ̂ = argmaxλ∈Λr

T
Γτ (θ̂, ĥ, λ).

The asymptotic distribution is obtained by a standard mean value expansion of the FOC

0 =
[
∂θΓ(θ̂, ĥ, λ), ∂λΓ(θ̂, ĥ, λ)

]′
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that hold with probability → 1 by (a), and gives

T 1/2[(θ̂ − θ0)
′, λ̂/sT ]

′ =
1

ω1
M̂(λ, θ, ĥ)−1[0′,−T 1/2ĝs(θ0, ĥ)

′]′ + op (1) ,

where

M̂(λ, θ, ĥ) =

[
0 1

T

∑T
t=1 ρ1(ωλ

′
gts(θ, ĥ))∂θgts(θ, ĥ)

1
T

∑T
t=1 ρ1(ωλ

′
gts(θ, ĥ))∂θgts(θ, ĥ)

sT
T

∑
t ρ2(ωλ

′
gts(θ, ĥ))gts(θ, ĥ)g

′
ts(θ, ĥ)

]
.

Note that

1

T

T∑

t=1

[
ρ1(ωλ

′
gts(θ, ĥ))− ρ1 (0)

]
∂θgts(θ, ĥ) + ρ1 (0)

1

T

T∑

t=1

∂θgts(θ, ĥ) ≤

sup
λ∈Λr

T , h∈Hδ

∣∣ρ1
(
ωλ′gts (θ0, h)

)
− ρ1 (0)

∣∣
∥∥∥∥∥
1

T

T∑

t=1

∂θgts(θ, ĥ)

∥∥∥∥∥+
∥∥∥∥∥
1

T

T∑

t=1

∂θgts(θ, ĥ)−
1

T

T∑

t=1

∂θgts
(
θ, h0

)
∥∥∥∥∥ ,

and
∥∥∥∥∥
1

T

T∑

t=1

∂θgts(θ, ĥ)−
1

T

T∑

t=1

∂θgts
(
θ, h0

)
∥∥∥∥∥ ≤ ‖ ĥ− h0 ‖H sup

θ∈Θδ,h∈Hδ

1

T

T∑

t=1

∥∥∂2
θhgts (θ, h)

∥∥ = op (1) .

Thus by (A-5), Theorem 3.1, condition 5(a) and the CMT

1

T

T∑

t=1

ρ1(ωλ
′
gts(θ, ĥ))∂θgts(θ, ĥ)

p→ ω1E [∂θgt (θ0, h0)] .

Similarly note that

sup
λ∈Λr

T ,h∈Hδ

∣∣ρ2
(
ωλ′gts (θ0, h)

)
− ρ2 (0)

∣∣ = op (1) , (A-6)

and
∥∥∥∥∥
sT
T

T∑

t=1

ρ2(ωλ
′
gts(θ, ĥ))gts(θ, ĥ)gts(θ, ĥ)

′ − sT
T

T∑

t=1

ρ2 (0) gts (θ0, h0) gts (θ0, h0)
′

∥∥∥∥∥ (A-7)

≤
∥∥θ − θ0

∥∥
[
1

T
sup

θ∈Θδ, h∈Hδ

T∑

t=1

‖gt (θ, h)‖2
]1/2 [

1

T
sup

θ∈Θδ, h∈Hδ

T∑

t=1

‖∂θgt (θ, h)‖2
]1/2

+

‖ ĥ− h0 ‖H

[
1

T
sup

θ∈Θδ, h∈Hδ

T∑

t=1

‖gt (θ, h)‖2
]1/2 [

1

T
sup

θ∈Θδ, h∈Hδ

T∑

t=1

‖∂θgt (θ, h)‖2
]1/2

p→ 0,

so that by (A-3), ‖ sTT
−1
∑

t ρ2(ωλ
′
gts(θ, ĥ))gts(θ, ĥ)gts(θ, ĥ)

′ −Ω (θ0, h0) ‖ = op (1). Thus by triangle

inequality and the CMT

M̂ (λ, θ, ĥ)−1 p→
[

Σ (θ0, h0) H (θ0, h0)

H (θ0, h0)
′ P (θ0, h0)

]
=: M (θ0, h0)

−1 ,
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where

H (θ0, h0) = Σ (θ0, h0)G (θ0, h0)
′Ω (θ0, h0)

−1

P (θ0, h0) = Ω (θ0, h0)
−1
[
I −G (θ0, h0) Σ (θ0, h0)G (θ0, h0)

′ Ω (θ0, h0)
−1
]
.

Then by Assumptions 5(b) and 6(a) we have

T 1/2[(θ̂ − θ0)
′, λ̂′/sT ]

′ =
1

ω1
M (θ0, h0)

−1
[
0′,−T 1/2ω1ĝ (θ0, h0)

′
]′
+ op (1) (A-8)

and by CLT and CMT

T 1/2[(θ̂ − θ0)
′, λ̂′/sT ]

′ d→ N (0,diag [Σ (θ0, h0) , P (θ0, h0)]) .

The consistency of the two step smoothed semiparametric GMM based estimator θ̂, in (2.7), follows

by the identification condition (2.1), and the uniform convergence of ‖ ĝs(θ, ĥ) ‖Ŵ , which follows by

(A-1), ‖ Ŵ −W ‖ = op (1) for any positive definite matrix W , and
∣∣∣‖ ĝs(θ, ĥ) ‖Ŵ − ‖ω1E [gt (θ, h0)]‖W

∣∣∣ ≤ ‖ ĝs(θ, ĥ)− ω1E [gt (θ, h0)] ‖2 ‖ Ŵ ‖+

‖ω1E [gt (θ, h0)]‖ ‖ Ŵ −W ‖+ 2 ‖ω1E [gt (θ, h0)]‖×
‖ ĝs(θ, ĥ)− ω1E [gt (θ, h0)] ‖ ‖ Ŵ ‖ = op (1) ,

by the triangle inequality. The asymptotic normality follows by a standard Taylor expansion about θ0

of the FOC

0 = T 1/2[∂θ ĝs(θ̂, ĥ)]Ŵ ĝs(θ̂, ĥ)

that hold with probability → 1 by assumption (a). The conclusion follows by (2.1) (applied to

∂θĝs(zt, θ, ĥ)), assumption 5(b), CLT and CMT. The consistency of the two-step smoothed semipara-

metric ETEL estimator θ̂ follows by a two step argument: First, for any λ such that Pr
(
λ ∈ Λr

T

)
→ 1,

the same arguments as those used to show the consistency of the GEL estimator show that the ETEL

estimator

θ̂ = argmin
θ∈Θ

sup
λ∈Λr

T

log

{
1

T

T∑

t=1

exp{ωλ′[gts(θ, ĥ)− ĝs(θ, ĥ)]}
}

(A-9)

is consistent. Next the consistency of λ̂ defined as

λ̂ := arg max
λ∈Λr

T

1

T

T∑

t=1

− exp{ωλ̂′gts(θ, ĥ)}

follows noting that by a second order Taylor expansion about 0, (A-4) and (A-6) we have

0 ≤ 1− 1

T

T∑

t=1

exp{ωλ̂′gts(θ̂, ĥ)} ≤ 1− 1

T

T∑

t=1

exp{ωλ̂′gts(θ0, ĥ)} =

ωλ̂′ĝs(θ0, ĥ) +
ω2

2
λ̂′ sup

h∈Hδ

T∑

t=1

ρ2
(
ωλ̌′gts (θ0, h)

)
gts (θ0, h) gts (θ0, h)

′ λ̂ ≤

‖ ωλ̂ ‖ ‖ ĝs(θ0, ĥ) ‖ − sT ‖ ωλ̂ ‖2 C,
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where the last inequality follows by the triangle inequality, a similar argument as that used in (A-7)

and T−1
∑T

t=1 ρ2(ωλ̌
′gts (θ0, h))gts (θ0, h0) gts (θ0, h0) ≤ −CI (Smith, 2011, p. 1224). By condition 5(b)

and the CLT ‖ ĝs(θ0, ĥ) ‖ = O
(
T−1/2

)
hence ‖ λ̂ ‖ = Op

(
sTT

−1/2
)
. Thus Pr(λ̂ ∈ Λr

T ) → 1, which in

turn implies the consistency of θ̂ given in (A-9) with λ̂ = λ. The asymptotic normality follows using

the same Taylor expansion and the same arguments as those used to obtain (A-8) (see also Schennach,

2007).

Proof of Theorem 3.3: The consistency of θ̂ and λ̂ follows by the same arguments as those used in the

proof of Theorem 3.2, so we assume consistency and derive the asymptotic distribution of T 1/2(θ̂− θ0).

By a Taylor expansion with Cauchy remainder

gt(θ0, ĥ) = gt (θ0, h0) + ∂hgt (θ0, h0) (ĥ− h0) +
1

2

∫ 1

0
∂2
hhg

h
t (θ0, h0 + ξ(ĥ− h0))dξ,

where ∂2
hhg

h
t (·) =

∑lh
j=1(ĥ− h0)j∂

2
hhj

gt (·) (ĥ− h0)
′, so that by Assumption 7 it follows that

T 1/2ĝs(θ0, ĥ) = T 1/2ĝ (θ0, h0) +
1

T 3/2

T∑

t=1

1

sT

t−1∑

s=1−T

ω

(
s

sT

)
∂hgt−s (θ0, h0)×

T∑

τ=1,τ 6=t

ΦT (z2t, z2t−τ )⊙ φ (zt) +
1

T 3/2

T∑

t=1

1

sT

t−1∑

s=1−T

ω

(
s

sT

)
rT (z2t−s)+

1

T 3/2

T∑

t=1

1

sT

t−1∑

s=1−T

ω

(
s

sT

)∫ 1

0
∂2
hhg

h
t (θ0, h0 + ξ(ĥ− h0))dξ

:= T
∗
4 + T

∗
5 + T

∗
6 + T

∗
7.

By CLT T∗
4

d→ N
(
0, ω2

1Ω (θ0, h0)
)
whereas by Assumption 7(a) and Lemma C.1 of Smith (2011)

lim
T→∞

1

sT

T−1∑

s=1−T

∣∣∣∣ω
(

s

sT

)∣∣∣∣
‖rT (z2t−s)‖H

T 1/2
= op(1).

The term T∗
5 can be written as

T
∗
5 =

1

sT

T−1∑

s=1−T

ω

(
s

sT

)
1

T 3/2

min(T,T−s)∑

t=max(1,1−s)

T∑

τ=1,τ 6=t

∂hgt−s (θ0, h0) ΦT (z2t, z2t−τ )⊙ φ (zt)

:=
1

sT

T−1∑

s=1−T

ω

(
s

sT

)
UT,s, (A-10)

and note that the difference between UT,s and UT :=
∑T

t=1 UT /T
3/2 consists of s terms. The Markov
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inequality yields

P


 1

T 3/2

∣∣∣∣∣∣

s∑

t=1

T∑

τ=1,τ 6=t

∂hgt−s (θ0, h0) ΦT (z2t, z2t−τ )⊙ φ (zt)

∣∣∣∣∣∣
≥ ǫ


 ≤

1

ǫT 3/2

s∑

t=1

T∑

τ=1,τ 6=t

E |∂hgt−s (θ0, h0)ΦT (z2t, z2t−τ )⊙ φ (zt)| ≤

1

ǫT 3/2

s∑

t=1

‖∂hgt (θ0, h0)‖2 sup
z2t

∥∥∥∥∥
T∑

τ=1

ΦT (z2t, z2t−τ )⊙ φ (zt)

∥∥∥∥∥
2

≤ O

( |s|
T 1−δ

)
,

where the last equality follows from Assumptions 7(b)-(c). It then follows that

P

(∣∣∣∣∣
1

sT

T−1∑

s=1−T

ω

(
s

sT

)
{UT,s − UT }

∣∣∣∣∣ > ǫ

)
≤ 1

ǫ

1

sT

T−1∑

s=1−T

ω

(
s

sT

)
E |UT,s − UT | (A-11)

≤ CT δ 1

sT

T−1∑

s=1−T

|s|
T

∣∣∣∣ω
(

s

sT

)∣∣∣∣ = O(T δ−η−1/2) = o(1),

where the last equality follows from Lemma C.1 of Smith (2011).6 Thus by (A-10) and (A-11)

T
∗
5 = (ω1 + o(1))

√
TU∗

T +O(T δ−η−1/2),

where U∗
T :=

∑T
t=1

∑T
s=1,s 6=t Φ̃T (z2s, z2t) /T (T − 1) and Φ̃T (z2s, z2t) = ∂hgt (θ0, h0) ΦT (z2s, z2t) ⊙

φ (zs). Since U∗
T can be represented as a U -statistic with a varying symmetric kernel, that is

U∗
T =

1

T (T − 1)

∑

1≤s<t≤T

ΨT (z2s, z2t) ,

where ΨT (z2s, z2t) := Φ̃T (z2s, z2t) + Φ̃T (z2t, z2s), the asymptotic normality of T 1/2U∗
T follows by ei-

ther Lemma B.1 or B.2, so that the asymptotic normality of T 1/2ĝs(θ0, ĥ) follows by the CMT as

long as ‖T∗
7‖ = op (1). Note that Theorem 3.1 and A7(c) yield suph∈Hδ

∑T
t=1 ∂

2
hhgt (θ0, h) /T

a.s.→
E[suph∈Hδ

∂2
hhgt (θ0, h)], which implies that

1

T

T∑

t=1

∣∣∣∣
∫ 1

0
(1− ξ)∂2

hhgt (θ0, ξ (h− h0)) dξ

∣∣∣∣ = Oa.s.(1).

Thus ‖T∗
7‖ = op (1) follows by Assumption 5(a) and the CMT. The asymptotic equivalence between

the GEL estimator θ̂ defined in (2.5), and the ETEL estimator θ̂ defined in (2.8) implies that the latter

has the same asymptotic covariance as that of the former. Finally for the GMM estimator θ̂ defined

in (2.7), the result follows by the above arguments and those used in the proof of Theorem 3.2 using

the metric Ω̂e(θ̃, ĥ)−1, Assumption (e) and the CMT.

6In fact Lemma C.1 in Smith (2011) states that limT→∞ s−1
T

∑T−1

t=1−T |t|T−1 |ω (t/sT )| = 0. However, an examination

of the proof reveals that, actually, s−1
T

∑T−1

t=1−T |t|T−1 |ω (t/sT )| = O
(
(T/sT )

−1
)
.
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Proof of Proposition 4.1: Note that by the consistency of α̂

T 1/2ĝs(θ0, ĥ(x̂2t))τ(x̂2t) = T 1/2ĝs(θ0, ĥ(x̂2t)) (τ(x̂2t)− τ(x2t)) + T 1/2ĝs(θ0, ĥ(x̂2t))τ(x2t)

= T 1/2ĝs(θ0, ĥ(x̂2t))τ(x2t) + op (1)

and

T 1/2ĝs(θ0, ĥ(x̂2t))τ(x2t) = T 1/2ω1ĝ(θ0, h(x2t, θ0))τ(x2t)−
ω1

T 1/2

T∑

t=1

wt[ĥ(x2t, θ0)− h(x2t, θ0)]τ(x2t)−

ω1

T 1/2

T∑

t=1

wt[ĥ(x̂2t, θ0)− ĥ(x2t, θ0)]τ(x2t)

:= Tg;1 + Tg;2 + Tg;3,

where ĥ (·) is a kernel estimator for h (·), x̂2t = st − v′tα̂ is the regression residual and, for notational

simplicity, for x2t (α0) = st − v′tα0, x2t (α0) := x2t The asymptotic normality of Tg;1 follows by CLT;

furthermore Tg;2 = op(1) by an application of the Cauchy-Schwartz inequality, a covariance inequality

for α mixing processes (see e.g., Truong and Stone, 1992), a standard law of large numbers and results

of Liebscher (1998), which show that

var (Tg;2) ≤ sup
t

E
[
|ĥ(x2t, θ0)− h(x2t, θ0)|2τ(x2t)

] ω1

T

T∑

t=1

wtw
′
t

+ sup
t

E
[
|ĥ(x2t, θ0)− h(x2t, θ0)|2τ(x2t)

]2 ω1

T

T∑

s 6=t

∣∣E[wsw
′
t]
∣∣

= O

(
sup
t

E
[
|ĥ(x2t, θ0)− h(x2t, θ0)|2τ(x2t)

])
→ 0

For Tg;3 since x2t is estimated parametrically we have the following linear representation:

ĥ(x̂2t, θ0)− ĥ (x2t, θ0) =
1

DT (x2t, θ0)
(1−DT (x̂2t, θ0)[DT (x̂2t, θ0)−DT (x2t, θ0)])

[
NT (x̂2t, θ0)−NT (x2t, θ0)−

NT (x2t, θ0)

DT (x2t, θ0)
[DT (x̂2t, θ0)−DT (x2t, θ0)]

]
,

where DT (x2t, θ) : = T−1∑T
s 6=tKbT (x2s − x2t), NT (x2t, θ) : = T−1∑T

s 6=t(ys − x′1tθ)KbT (x2s − x2t),

KbT (x2s − x2t) := K ((x2s − x2t) /bT ) /bT , K (·) is a kernel function and bT is the bandwidth. Then

again by the results of Liebscher (1998) we have

ĥ(x̂2t, θ0)− ĥ (x2t, θ0) =
1

DT (x2t, θ0)
(1 + op(1))

×
[
NT (x̂2t, θ0)−NT (x2t, θ0)−

NT (x2t, θ0)

DT (x2t, θ0)
(DT (x̂2t, θ0)−DT (x2t, θ0))

]

uniformly in x2t ∈ X ∗
2 . Since x̂2s − x̂2t = x2s − x2t + (vt − vs)

′(α̂ − α0), a Taylor expansion and the
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same argument as in Li and Wooldridge (2002) yield

NT (x̂2t, θ0)−NT (x2t, θ0) =
1

(T − 1)

T∑

s 6=t

(ys − x′1sθ0)K
(1)
bT

(x2s − x2t)

(
vt − vs
bT

)′

(α̂− α0) + op(1),

DT (x̂2t, θ0)−DT (x2t, θ0) =
1

(T − 1)

T∑

s 6=t

K
(1)
bT

(x2s − x2t)

(
vt − vs
bT

)′

(α̂− α0) + op(1).

Thus Tg;3 can be represented as

Tg;3 =
ω1

T 1/2

T∑

t=1

τ (x2t)
wt(1 + op(1))

DT (x2t, θ0)

1

(T − 1)

T∑

s 6=t

(ys − x′1sθ0)K
(1)
bT

(x2s − x2t)

(
vt − vs
bT

)′

(α̂− α0)

− ω1

T 1/2

T∑

t=1

τ(x2t)
wt(1 + op(1))

DT (x2t, θ0)
ĥ(x2t, θ0)

1

(T − 1)

T∑

s 6=t

K
(1)
bT

(x2s − x2t)

(
x3t − x3s

bT

)′

(α̂− α0)

= Tg;3;a − Tg;3;b.

An application of the triangle inequality yields

∣∣∣∣∣Tg;3;a −
{
ω1

T

T∑

t=1

τ(x2t)
wt(1 + op(1))

DT (x2t, θ0)
∂α[f(x2t)h0(x2t), θ0)]

}
T 1/2(α̂− α0)

∣∣∣∣∣

≤ ω1

T

T∑

t=1

∣∣∣∣
wt(1 + op(1))

DT (x2t, θ0)
τ(x2t)

∣∣∣∣max
t

∣∣∣∣∣∣
1

(T − 1)

T∑

s 6=t

(ys − x′1sθ0)K
(1)
bT

(x2s − x2t)

(
x3t − x3s

bT

)′

− f(x2t)∂α[f(x2t)h0(x2t, θ0)]

∣∣∣∣∣∣
T 1/2(α̂− α0).

The uniform convergence results of Andrews (1995) and the extended Continuous Mapping Theorem

(CMT) (see, e.g., van der Vaart and Wellner, 1996) imply that

max
t

∣∣∣∣∣∣
1

(T − 1)

T∑

s 6=t

(ys − x′1sθ0)K
(1)
bT

(x2s − x2t)

(
x3t − x3s

bT

)′

− f(x2t)∂αh(x2t), θ0)

∣∣∣∣∣∣

= max
t

∣∣∣∣∣∣
∂α





1

(T − 1)

T∑

s 6=t

(ys − x′1sθ0)KbT ((x2s)− x2t))



 − ∂α[f(x2t)h0(x2t, θ0)]

∣∣∣∣∣∣

= O


max

t

∣∣∣∣∣∣





1

(T − 1)

T∑

s 6=t

(ys − x′1sθ0)KbT (x2s − x2t))



− [f(x2t)h0(x2t, θ0)]

∣∣∣∣∣∣


 = op(1),

and therefore

Tg;3;a =

{
ω1

T

T∑

t=1

wt(1 + op(1))

f(x2t) + op(1)
τ(x2t)∂α[f(x2t)h0(x2t, θ0)]

}
T 1/2(α̂− α0) + op(1). (A-12)
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Similarly, we can verify that

Tg;3;b =
{
ω1

T

T∑

t=1

wt[h0(x2t, θ0) + op(1)]

f(x2t) + op(1)
τ(x2t)∂αf(x2t))

}
T 1/2(α̂− α0) + op(1). (A-13)

Equations (A-12) and (A-13) then imply that

Tg;3 =
{
ω1

T

T∑

t=1

(
wt(1 + op(1))

f(x2t) + op(1)
τ(x2t)∂α[f(x2t)h0(x2t), θ0)]−

−wt[h0(x2t, θ0) + op(1)]

f(x2t) + op(1)
τ(x2t)∂αf(x2t))

)}
T 1/2(α̂− α0) + op(1),

which is the Bahadur representation of the degenerate U -statistic T∗
5 in the Taylor expansion involv-

ing ĝts(θ0, h) in the proof of Theorem 3.3. Note that to apply Theorem B.1 in Appendix B in the

supplement, one can define

ΨT (zs, zt) := τ(x2t)
wt

f(x2t)
{∂α{f(x2t)h0 (x2t), θ0)} − h0 (x2t, θ0) ∂αf(x2t)}r(vs)x2s+

τ(x2s)
ws

f(x2s)
{∂α{f(x2s)h0 (x2s, θ0)} − h0 (x2s, θ0) ∂αf(x2s)}r(vt)x2t + op

(
T−1/2

)
.

By Hölder’s and Minkowski’s inequalities, one can readily verify that Conditions (B-1)-(B-4) are satis-

fied. Therefore, we obtain that ĝts(θ0, ĥ(x̂2t))τ(x2t)/ω1
d→ N(0,Ωe

d) and the conclusion follows by the

same arguments as those used in the proof of Theorem 3.3.
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Table 1: Monte Carlo Results - Endogenous Variable - ρeu = 0.1

c = 0.5 c = 1 c = 1.5

Estimator T Bias Std. Dev. Ratio Cov. Prob. Bias Std. Dev. Ratio Cov. Prob. Bias Std. Dev. Ratio Cov. Prob.

GMM 200 -0.0199 0.2518 1 0.955 -0.0191 0.2491 1 0.950 -0.0286 0.2455 1 0.950

400 0.0159 0.1740 1 0.949 0.0165 0.1734 1 0.949 0.0188 0.1729 1 0.949

800 0.0138 0.1240 1 0.944 0.0135 0.1237 1 0.949 0.0130 0.1236 1 0.948

s-GMM 200 -0.0187 0.2490 0.9961 0.953 -0.0078 0.2469 0.9965 0.951 -0.0174 0.2424 0.9976 0.949

400 0.0151 0.1738 1.0020 0.950 0.0058 0.1731 1.0019 0.949 0.0155 0.1726 1.0023 0.947

800 0.0128 0.1238 1.0006 0.943 0.0032 0.1236 1.0005 0.944 0.0128 0.1235 1.0005 0.945

EL 200 0.0069 0.2520 1.0034 0.947 0.0059 0.2602 1.0025 0.946 0.0053 0.2554 1.0036 0.949

400 0.0060 0.1785 1.0030 0.943 0.0050 0.1795 1.0032 0.945 0.0051 0.1789 1.0037 0.946

800 0.0035 0.1258 1.0012 0.941 0.0031 0.1254 1.0009 0.944 0.0035 0.1250 1.0007 0.941

ET 200 -0.0094 0.2495 1.0038 0.954 -0.0081 0.2503 1.0029 0.954 -0.0084 0.2731 1.0032 0.951

400 0.0058 0.1846 1.0014 0.949 0.0053 0.1835 1.0017 0.949 0.0058 0.1835 1.0024 0.948

800 -0.0037 0.1267 1.0013 0.942 -0.0036 0.1259 1.0003 0.946 0.0035 0.1263 1.0010 0.945

CUE 200 -0.0161 0.2406 1.0019 0.959 -0.0151 0.2469 0.9924 0.952 -0.0111 0.2732 1.0201 0.948

400 0.0089 0.1887 1.0015 0.955 0.0074 0.1903 1.0037 0.944 0.0104 0.1758 1.0190 0.951

800 -0.0064 0.1261 1.0002 0.939 -0.0042 0.1256 1.0001 0.942 0.0042 0.1256 1.0001 0.943

ETEL 200 0.0201 0.2591 1.0145 0.950 0.0212 0.2492 1.0155 0.953 0.0296 0.2459 1.0147 0.954

400 0.0112 0.1749 1.0155 0.948 0.0143 0.1773 1.0150 0.946 0.0188 0.1754 1.0143 0.941

800 0.0128 0.1266 1.0153 0.950 0.0133 0.1254 1.0145 0.944 0.0136 0.1589 1.0132 0.948

Note: Table displays Monte Carlo Bias (bias), Standard Deviation (Std. Dev.), Average Standard Errors Ratios (Ratio) and Coverage Probability (Cov. Prob.)

for the Generalized Method of Moments (GMM), its smoothed version (s-GMM), Empirical Likelihood (EL), Exponential Tilting (ET), Continuous Updated

(CU) and Exponentially Tilted Empirical Likelihood (ETEL) estimator of θ0;1 = 1.
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Table 2: Monte Carlo Results - Endogenous Variable - ρeu = 0.9

c = 0.5 c = 1 c = 1.5

Estimator T Bias Std. Dev. Ratio Cov. Prob. Bias Std. Dev. Ratio Cov. Prob. Bias Std. Dev. Ratio Cov. Prob.

GMM 200 0.0267 0.2812 1 0.967 0.0234 0.2714 1 0.967 0.0262 0.2613 1 0.965

400 0.0159 0.1757 1 0.948 0.0185 0.1748 1 0.949 0.0201 0.1738 1 0.949

800 0.0088 0.1267 1 0.952 0.0086 0.1264 1 0.951 0.0185 0.1260 1 0.950

s-GMM 200 0.0204 0.2775 0.9979 0.965 0.0228 0.2667 1.0012 0.966 0.0215 0.2570 1.0007 0.963

400 0.0181 0.1761 1.0035 0.946 0.0156 0.1749 1.0033 0.947 0.0185 0.1739 1.0037 0.949

800 0.0145 0.1268 1.0017 0.952 0.0131 0.1265 1.0016 0.952 0.0132 0.1261 1.0016 0.950

EL 200 -0.0202 0.2921 1.0117 0.965 -0.0213 0.2825 1.0113 0.960 -0.0211 0.2749 1.0088 0.957

400 -0.0150 0.1825 1.0076 0.951 -0.0143 0.1780 1.0072 0.950 -0.0142 0.1804 1.0072 0.950

800 -0.0101 0.1296 1.0051 0.948 -0.0113 0.1316 1.0057 0.953 -0.0101 0.1280 1.0051 0.951

ET 200 -0.0231 0.3042 1.0492 0.979 -0.0252 0.2994 1.0343 0.977 -0.0235 0.2749 1.0498 0.979

400 -0.0150 0.1909 1.0102 0.948 -0.0195 0.1897 1.0099 0.946 -0.0186 0.1894 1.0094 0.945

800 -0.0107 0.1320 1.0054 0.956 -0.0108 0.1317 1.0054 0.956 -0.0108 0.1312 1.0054 0.955

CUE 200 -0.0241 0.3115 1.0287 0.966 -0.0221 0.5250 1.0325 0.988 -0.0206 0.5634 1.0301 0.991

400 -0.0111 0.1994 1.0107 0.956 -0.0198 0.1908 1.0101 0.952 -0.0188 0.1895 1.0095 0.950

800 -0.0094 0.1314 1.0052 0.955 -0.0105 0.1310 1.0053 0.956 -0.0085 0.1307 1.0053 0.955

ETEL 200 0.0276 0.3515 1.0186 0.960 0.0240 0.3307 1.0168 0.950 0.0231 0.3328 1.0213 0.951

400 0.0152 0.2047 1.0150 0.947 0.0199 0.2047 1.0148 0.950 0.0171 0.2033 1.0154 0.945

800 0.0104 0.1868 1.0146 0.949 0.0137 0.1852 1.0147 0.945 0.0143 0.1869 1.0140 0.943

Note: Table displays Monte Carlo Bias (bias), Standard Deviation (Std. Dev.), Average Standard Errors Ratios (Ratio) and Coverage Probability (Cov. Prob.)

for the Generalized Method of Moments (GMM), its smoothed version (s-GMM), Empirical Likelihood (EL), Exponential Tilting (ET), Continuous Updated

(CU) and Exponentially Tilted Empirical Likelihood (ETEL) estimator of θ0;1 = 1.
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Figure 1: Q-Q Plots of standardized Monte Carlo sample versus the theoretical quantiles of a standard normal distribution, with a 45-degrees

(dashed) line. Results are based on 2000 Monte Carlo replications of the Generalized Method of Moments (GMM), its smoothed version (s-GMM),

Empirical Likelihood (EL), Exponential Tilting (ET), Continuous Updated (CU) and Exponentially Tilted Empirical Likelihood (ETEL) estimator

of θ0;2 = 1 when ρeu = 0.1.
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Figure 2: Q-Q Plots of standardized Monte Carlo sample versus the theoretical quantiles of a standard normal distribution, with a 45-degrees

(dahsed) line. Results are based on 2000 Monte Carlo replications of the Generalized Method of Moments (GMM), its smoothed version (s-GMM),

Empirical Likelihood (EL), Exponential Tilting (ET), Continuous Updated (CU) and Exponentially Tilted Empirical Likelihood (ETEL) estimator

of θ0;2 = 1 when ρeu = 0.9.
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