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This paper develops the asymptotic theory for the estimation of smooth semiparametric general-
ized estimating equations models with weakly dependent data. The paper proposes new estimation
methods based on smoothed two-step versions of the Generalized Method of Moments and Gen-
eralized Empirical Likelihood methods. An important aspect of the paper is that it allows the
first step estimation to have an effect on the asymptotic variances of the second-step estimators
and explicitly characterizes this effect for the empirically relevant case of the so-called generated
regressors. The results of the paper are illustrated with a partially linear model that has not been
previously considered in the literature. The proofs of the results utilize a new uniform strong law
of large numbers and a new central limit theorem for U-statistics with varying kernels that are of

independent interest.

Keywords: Alpha-Mixing; Empirical Processes; Generalised Empirical Likelihood; Kernel Smooth-

ing; Stochastic Equicontinuity; Uniform Law of Large Numbers.

*Department of Economics, University of York, Heslington, York YO10 5DD, UK. E-mail: francesco.bravo@york.ac.uk.
Web Page: https://sites.google.com/a/york.ac.uk/francescobravo/.

"Department of Economics, Carleton University, B-857 Loeb Building, 1125 Colonel By Drive, Ottawa, ON K1S 5B6,
Canada. E-mail: ba_chu@carleton.ca. Web Page: http://http-server.carleton.ca/ bchu/.

fCorresponding Author: Department of Economics, Emory University, Rich Building 306, 1602 Fishburne Dr., Atlanta,
GA 30322-2240, USA. E-mail: djachocha@emory.edu. Web Page: https://sites.google.com/site/djachocha/.



1 Introduction

In this paper we consider estimation of semiparametric statistical models defined by a set of gener-
alized estimating equations. These models, often called over-identified moment conditions models in
the econometric literature, are very general and contain semiparametric extensions to generalized in-
strumental variable models used with economics and financial data and quadratic inference functions
models used with longitudinal data. We develop two-step semiparametric extensions to the generalized
method of moments (GMM) proposed by Hansen (1982), the generalized empirical likelihood (GEL)
estimator of Newey and Smith (2004) and the exponentially tilted empirical likelihood (ETEL) esti-
mator of Schennach (2007), where the first step is used to estimate an infinite dimensional nuisance
parameters and the second-step is used to estimate a finite dimensional parameter of interest. The
aforementioned methods have many desirable theoretical and practical properties. For example, GEL
is a quasi-likelihood alternative to GMM that includes Owen’s (1988) Empirical Likelihood (EL), and
Kitamura and Stutzer’s (1997) Exponential Tilting (ET) as special cases. It does not require estima-
tion of the efficient metric as in GMM estimation, and allows for the construction of classical-type
statistics such as likelihood ratio, and score for various hypotheses of interest. On the other hand
GMM is computationally simpler than GEL, whereas ETEL is known to be robust to possible global
misspecification of the estimating equations.

The theoretical properties of two-step semiparametric estimators have been considered both in the
statistical and econometric literature for both cross section and time series data, see e.g. Truong and
Stone (1994), Andrews (1994a), Newey (1994), Gao and Liang (1997), Chen and Shen (1998), Li and
Wooldridge (2002), Chen et al. (2003) to name just a few among many others. Li and Racine (2007) and
Gao (2007) provide further examples and references. The statistical model we consider includes all of
these models as special cases and in particular it allows for the possibility that the first-step estimation
can affect the asymptotic variance of the second step estimator (the so-called estimation effect). To
be specific we consider the case where the infinite dimensional parameter can depend on an estimated
finite dimensional random vector. This case is empirically relevant because it often arises in situations
where an estimated variable is used as a proxy for an unobservable variable of interest, such as for
example the risk term in finance, and it is also theoretically interesting because with weakly dependent
data the characterization of the estimation effect is more complicated. As far as we are aware of, this
is the first paper that fully considers the estimation effect in semiparametric generalized estimating
equations models with weakly dependent observations (see Mammen et al., 2015 and Escanciano et al.,
2014 for the case of just-identified semiparametric estimating equations models with independent and
identically distributed (i.i.d.) observations).

The main methodological contribution of this paper is to derive the asymptotic properties of semi-
parametric two-step GEL, GMM and ETEL estimators under the weakest form of dependency, namely
a (or strong) mixing (see for example Doukhan, 1994, for a review of statistical properties and ap-
plications of a-mixing processes) using the same kernel based smoothing!' proposed by Kitamura and
Stutzer (1997) for ET and generalized by Smith (1997) (see also Smith, 2011) to GEL. In our frame-

For an asymptotically equivalent approach based on blocking techniques see for example Kitamura (1997).



work, smoothing the estimating equations is useful whether there is an estimation effect or not. In
the latter case smoothing is necessary for both the GEL and ETEL estimators to achieve the same
asymptotic lower bound established by Chamberlain (1987) for efficient GMM estimators with i.i.d.
observations. In the former case smoothing is useful because it results in heteroskedasticity and au-
tocorrelation robust variance matrix estimators alternative to those typically used in both empirical
economics and finance, see for example Andrews (1991). In this situation we obtain explicit formulae
for the resulting asymptotic variance that are based on pathwise derivatives as in Newey (1994), and
rely on a linear representation of the first-step estimator. This linear representation is fairly general
and is satisfied, for example, in the important cases of non-parametric regression and non-parametric
density estimators.

This paper also contains a number of new technical contributions that are used in the proof of
the main results and are of independent interest. To be specific we establish a new strong uniform
law of large numbers (SULLN) for strictly stationary a-mixing processes with a sharp logarithmic
bound that depends on an exponential decay rate of the a-mixing coefficient, a weak condition on the
growth rate of the bracketing entropy of a polynomial class of functions (of which Vapnik-Cervonenkis
(V-C) classes are a special case), see e.g., van der Vaart and Wellner (1996, p. 86), and the existence
of certain moments of the estimating equations. This result extends a number of ULLN available in
both the econometric and statistical literature including those obtained by Andrews (1987), Yu (1993,
1994), Doukhan et al. (1994) and Adams and Nobel (2010). We also introduce two new central limit
theorems (CLT) (see Appendix B in the supplemental material) for both degenerate and nondegenerate
second-order generalized U-statistics (that is U-statistics with varying kernels). The resulting CLT's
are important because they represent a nontrivial extension of the existing results that are valid for
either i.i.d. or S-mixing sequences — see for example, de Jong (1987), Powell et al. (1989) and Mikosch
(1993) for the i.i.d. case, and Yoshihara (1976, 1989) and Fan and Li (1999) for the S-mixing case. To
establish these theorems, we impose mild regularity conditions directly on the kernel of the U-statistic
and rely on Sun and Chiang’s (1997) conditional expectation bound for a-mixing sequences and on
Dvoretsky’s (1972) central limit theorem for double arrays of dependent random variables.?

The theoretical results of the paper are illustrated by deriving the asymptotic properties of an
estimator of a general partially linear regression model, where we allow for the unobservable error to
be correlated with the regressors and the infinite dimensional parameter to depend on an unknown
finite dimensional parameter. Other examples where the results of the paper can be used are the
weighted instrumental variable model that adapt for unknown heteroskedasticity of Robinson (1987),
the instrumental variable model of sample selection of Lee (1994), and the inverse-density-weighted
moment model of Chu and Jacho-Chévez (2012) and Chu et al. (2013).

The rest of the paper is organized as follows: The next section introduces the statistical model and

the estimators. Section 3 contains the asymptotic results. Sections 4 and 5, respectively, introduce

*We note that Yoshihara (1992) uses an alternative approach to the one we follow to obtain the CLTs (and more
generally invariance principles) for a-mixing sequences. His approach relies on the Karhunen—Loe¢ve expansion of the
kernel and is based on a set of regularity conditions that are not imposed directly on the kernel and thus could be very

hard to verify in practice.



the new partially linear regression model and the results of the Monte Carlo simulations used to assess
the finite sample properties of the proposed estimators. Section 6 contains some concluding remarks.
The proofs of the theorems of Sections 3 and 4 are contained in the Appendix A. A supplement to this
paper contains the new CLT’s for second-order generalized U-statistics, a number of auxiliary technical
lemmas and related proofs, which should be of independent interest.

The following notation is used in the text: a ” /7 denotes a matrix or vector transpose; for any
finite dimensional possibly random vector v or square matrix M, | - || denotes the Euclidean norm and
|lv]|; == v'Muv; for any measurable possibly vector valued function f(-), let ||f(-)||, denote the L,
norm, i.e., (f[lf(@)|?P(dx))"’”, and more generally for a pseudo-metric space, say H, || - ||z denotes a

function norm, such as the sup norm.

2 The Model and Estimators

Let {z,t =1,2,...} be a sequence of Z-valued (Z - ]Rd) weakly dependent random vectors defined on
a probability space (€, B, P). Let # € © C R* denote the finite dimensional parameter of interest and
h € H denote the infinite dimensional nuisance parameter where H is a pseudo-metric space.

We consider a smooth semiparametric statistical model defined by
Elg(z,0,h)] =0 iff 6 =0y € int(0©), and h = hy € H, (2.1)

where g(-) : 2 x © x H — R! (I > k) is a vector-valued measurable known function, and 6y € int(©)
and hg € H are the true unknown parameters. As in Andrews (1994a), h is allowed to depend on z
and possibly on a finite dimensional parameter o C A C RP, so that hg =: hg (2¢, ) includes also the
case of estimated random variables.

Let ¢¢(0,h) := g(z,0,h); given a sample {zt}thl and a preliminary non-parametric estimator h of
ho a two-step GMM estimator 9 for o is defined as

geMM _ in|| 5(6,h
arg{ggg\\ g(0,h)

I (2.2)
where §(9,E) =71 Zthl gt(H,ﬁ) and W is a positive semi-definite possibly random R! x Rl-valued
matrix that may depend on 6, and h. The consistency of 9 follows by the results of Andrews (1994a)
and Chen et al. (2003), whereas its asymptotic normality follows by the results of Andrews (1994a) with
weakly dependent observations under the assumption of asymptotic orthogonality - see Assumption 6
given below- and in full generality by the results of Chen et al. (2003) but only under the assumption
of i.i.d. observations.

An alternative method for estimating 6y is to use GEL and/or ETEL instead. To handle the
dependent structure of the estimating equation g; (6, h), we follow the same approach of Smith (1997)

and consider the following smoothed version

t—1

1 J
gts (0, h) = ; ‘Zt:Tw <§> gi—; (6,h), t=1,....T,
j=t—



where s7 is a bandwidth parameter and w (+) is a kernel function. Examples of possible kernel functions
include the Bartlett kernel wp () used for example by Kitamura and Stutzer (1997) and the quadratic
spectral kernel wgg () considered by Andrews (1991), given, respectively, by

1=z 5 Jo[<1
_ 2.3
wp (@) { 0 ;  otherwise, (2:3)
25  [sin (67z/5) 6rx
= — — - 24
wos () = 15702 [ 67/5 COS( 5 ﬂ 24)

Smith (2011) provides further examples and a detailed discussion of different choices of w (-).
Let p(-) : @ — R denote a twice continuously differentiable function that is concave in its domain
(@ - an open interval of the real line that contains 0. The smoothed two-step GEL criterion function

for the semiparametric estimating equation satisfying (2.1) is

9 h, /\ W)\ gts 0 h)) ( )]7

’ﬂ|l\3
Mﬂ

t:l

where w = wy/wy (w; == [w(q Y dg, j = 1,2,...) is a normalization that has no effect on the GEL
estimator for 6y but makes the scale of the estimator for A comparable for different choices of w (-) and
A is a vector of unknown auxiliary parameters.

The GEL estimator for 6y is defined as the minimizer of the (profile) smoothed two-step GEL

criterion function, that is

05 = argmin (0, 1, \), (2.5)
[USS)
where
X = arg max (6, h, \), (2.6)
AEAT

for some fixed § and Ap = {\: X gtS(H,ﬁ) € Q} is the restricted parameter space of A (see for example
Newey and Smith, 2004 and Smith, 2011).
We can also define the following two-step smoothed GMM estimator for 6,

é\s—GMM

_ il 5.(6.7) |~ 2.
argmin || gs(6, 1) lig , (2.7)

where §s(9,ﬁ) =T Zle gts(G,E), which is an extension of that proposed by Smith (2005) and, as

opposed to the standard GMM estimator, takes directly into account the weakly dependent structure

of the observations.?

3This implies that a consistent estimator of the efficient metric W = lil(m:rﬂoova,r(Tl/2§(907 ho)) is given by an appro-

priately standardized version of the outer product of the smoothed estimating equations gs (@ /f\L)7 viz.

Y e(d)

Jj=1

—1

T— o0

T
T D 9 (0. h)grs(8. 1) — lim var(T"/G(60, ho))
t=1

‘_OP(1)7

see the proof of Theorem 3.2 for more details.



The last estimator we consider is the two-step semiparametric ETEL estimator for 8, that is defined

as

T
1 P
gETEL — arg g‘éiél T g TlogTs(zt,0,h, A), (2.8)
t=1

where 7 (21,0, h, A) = p1(wN gis(6,h))/ Zthl p1(wNgus(0,h)), and A is as in (2.6) for p(-) = —exp (-).

3 Asymptotic Theory

3.1 Strong Uniform Law of Large Numbers

We begin this section by introducing some further notation: Let F := {f(0,h) : 0 € ©, h € H} denote
a class of functions indexed by an Euclidean parameter and an infinite dimensional parameter. Given
a probability distribution P and F in L,(P), let Ny, (e, P, F) and Hp, (¢, P, F) denote, respectively,
the bracketing number and the e-entropy with bracketing of F (see for example van der Vaart and
Wellner, 1996, Section 2.1, pp. 80-94)

Assumption 1 {z,t=1,2,...} is a sequence of Z-valued (Z - Rd) stationary a-mizing random vec-

tors with the mizing coefficient satisfying a(t) = O (exp(—atb)) for some positive a and b.

Assumption 2 The class of functions F satisfies

1
Hy,(e, P, F) <wvlog <E> for some v > 0, (3.1)
E sup || f:(6, h)||“] < 0o for some p > 4. (3.2)
(0,h)EOXH

Assumption 1 specifies the dependent structure of the observations as a-mixing. Examples of time
series models that are a-mixing can be found in Doukhan (1994). a-mixing dependency is considered
by Andrews (1994a) in the context of semiparametric models, and by Kitamura (1997) and Smith (2011)
in the context of EL and GEL estimation and inference for (finite dimensional) generalized estimating
equations models. Assumption 1 imposes an exponential decay rate on the a-mixing coefficient «/(t),
which could be satisfied by many m-dependent stochastic processes, such as ARMA, GARCH, and
bilinear processes; this same type of assumption has also been employed by Boente and Fraiman (1988)
and Bonhomme and Manresa (2015) for example. Assumption 2 imposes a restriction on the complexity
of the class of functions F and the existence of some moments of order greater than 4. Various types
of function classes such as Holder, Sobolev and many others can be shown to satisfy (3.1) (see, e.g.,
van der Vaart and Wellner, 1996, Section 2.7, pp. 154-165). Note that (3.2) is only used to establish

the strong convergence rate in the following theorem.*

“Note that condition (3.1) combined with (3.2) for u = 2 + ¢ for some ¢ > 0 would suffice to prove a weaker version

of the uniform law of large numbers given in Theorem 3.1.



Theorem 3.1 Under Assumptions 1 and 2

sup Z{ft (0,h) — E[f(0, h)]}‘ Og.s. <IOTLBT> for some (B € <0, %) .

(6,h)€OxH

Remark 3.1 The proposed ULLN complements that of Yu (1993, 1994) who established a rate of
convergence for a ULLN for strictly stationary 3 mizing (absolutely reqular) empirical processes indexed

by a general class of functions with its capacity measured via the empirical metric entropy.

The above result is used repeatedly in the proofs of the Theorems 3.2 and 3.3. Its proof can be

found in the supplemental material for this paper.

3.2 Asymptotic Normality
Let ©5 ={0 € ©: |0 — 0] <6}, Hs ={h € H:|h— holl; <} (possibly uniformly in o € A), where

h := h(z) for some positive generic constant §. Also let 0. denote a derivative operator with respect to
-, which corresponds to an ordinary partial derivative with respect to 0, and to the pathwise derivative
in the direction of A — hg, that is

8Q(Zt, 07 hO)
oh

99(2t,0,(1 — 1) ho + Th)
a |T:0
-

[h = ho] =
(see Newey, 1994 for some examples). Assume that:

Assumption 3 (a) sp — o0 as T — oo, and sp = O(T%_") = o(T?) for some n € (2.3) (cf
Smith, 2011); (b) w(:) : R —[-@,®] for some @ < oo, w(0) # 0, w1 # 0, w(x) is continuous at
0 and almost everywhere, (2m)~" 2 exp (—zu)w (z)dz > 0 for each w € R and all w € R, and
J2 oo 5Py | () dxl 4[5 supys, |w (y) da] < oc.

Assumption 4 (a) The class of functions Gy := {g:(0,h) : 6 € O, h € H} satisfies conditions (3.1)
and (3.2) in Assumption 2; (b) E [supgeg ne, 1069:(0, h)||*] < oo and Elsupgee, new, 10n9:(0,h)[|*] <
oo for some a > 2; (c) the class of functions Go := {Ogngt(0,h) : 6 € ©, h € H} satisfies conditions
(3.1) and (3.2) in Assumption 2, E[supgce, new, ||0559:(0,h)||]] < oo.

Assumption 5 (a) || ﬁ(zt) —ho(zt) |l3 = op (T—1/4)7-
(b) or (0, h) :=T1/? Z;jr:l {9t (6,h) — E[g: (6, h)]} is stochastically equicontinuous at (g, ho) € O X H.

Assumption 3 imposes some standard mild regularity conditions on the kernel function w (-) used to
smooth the observations and on the rate of growth of the related smoothing parameter sy. Note that
the latter is allowed to grow at the rate O(T"/3), which is known to be optimal (in terms of minimizing
the asymptotic mean squared error) for a-mixing processes for the Bartlett kernel. Examples of kernels
satisfying Assumption 3 include the Bartlett and the quadratic one given in (2.3), (2.4) respectively and
the Parzen kernel (see Andrews, 1991, for more details). Assumption 4 contains some mild moment

conditions and requires that the classes of functions G; and Gy satisfy the conditions of Theorem



3.1. Assumptions 2, 3 and 4(a) can be used to show the consistency of the estimators described
above. Assumption 5(a) assumes uniform consistency (possibly also with respect to a) of the non-
parametric estimator used for hg. This is a standard assumption in the semiparametric literature of
two-step estimation procedures, see, e.g., Chen et al. (2003), Escanciano et al. (2014, 2016), Chen et al.
(2016), and Bravo et al. (2016). Similarly, Andrews (1995) provides sufficient conditions including
the case of estimated random variables for kernel smoothing estimators. Assumption 5(b) is a high
level assumption. It assumes stochastic equicontinuity of the empirical process vp (6, h). Although,
sufficient conditions for Assumption 5(b) are provided for example in Andrews (1994a,b), Lemma C.3
in the Appendix C in the supplement provides a set of low level conditions that can be used to verify

Assumption 5(b).

Assumption 6 (a) || E[g:(6,h)] || = op (T7Y2); or (b) E[0g(2,0,7) /07| r—noh(2)] = 0 Vh € H and

2ot C Z¢.

Assumption 7 (a) ﬁ(w)—ho(w) =71 Zle Op (291, w) O (2¢)+rp (W), where “©7” is the Hadamard
product, 7 (za,-) is some weighting function, ||rr (w)||,, = op (T_1/2) (possibly uniformly in o € A);
(b) E ¢ () |Fp,25,) = 0, where Fy ., is the minimum o-algebra generated by zoe; E [¢ () ¢ (2¢)] < 00;
and limp_, supwvar(T_(%M) S B (201, w) @ ¢ (2)) < 00 for some § € (0,1/2);

(c) the class of functions Gy := {02, (21,00, h) : h € H} satisfies conditions (3.1) and (3.2) Assumption

mn 2.

Assumptions 6 and 7 account for the potential estimation effect from the first-step. When there
is none, Assumption 6 implies the asymptotic orthogonality between the finite dimensional and the
infinite dimensional parameter. In such case, it is not necessary to account for the presence of h in
the asymptotic distribution of 5, which greatly simplifies the calculation of the asymptotic variance.
Condition 6(a) is directly assumed by Andrews (1994a), while Assumption 6(b) is assumed by Newey
(1994). Note that for h = h (z9;) sufficient conditions for condition 6(a) are Assumptions 6(b) and 5(a).
On the other hand, when there is estimation effect, Assumption 7 provides a generic way to account
for it. For example, when hg represents a conditional mean function, Assumption 7(a) requires that
the first-step estimator admits a certain asymptotic expansion which can be shown to hold when h
represents some kernel-based non-parametric regression estimator of hg (see for example Masry, 1996
and Kong, Linton, and Xia, 2010); or & := h(-,@) when ho(-) = h(-, ) is known up to some vector
of parameters «g. For instance, when h is the Nadaraya-Watson estimator of hg in a non-parametric
regression model, say z1; = ho(za9t) + &, then one can immediately show that Assumption 7(a) holds
under some regularity conditions with ¢(z;) = 211 — ho(22¢) and P (2o, wi) = fay, (wi) Kp, (221 — wy),
where f.,,(-) is the pdf of z3; and K3, (-) is a kernel function with bandwidth by = b(T) that goes to
zero as 1" diverges to infinity.

The following two theorems establish the asymptotic normality for the smoothed two-step GEL,
both two-step efficient s-GMM, and smoothed two-step ETEL estimators under the asymptotic or-
thogonality Assumption 6, and under the presence of an estimation effect that can be characterized by

Assumption 7, respectively.



Let Q(@Q,ho) = limTﬁoovar(Tlpﬁ(zt,90,h0)), G(@Q,ho) = E[agg (Zt,e(),ho)] and 2(90,}10) =
G (0o, ho)' 2 (60, ho) ™" G (B0, ho).

Theorem 3.2 Assume that (a) 0y €int(©), (b) Q (0o, ho) is positive definite, (c) rank(G (6o, ho)) = k,
(d) X (09, ho) is nonsingular, (e) || W — Q (6o, ho) " || = 0, (1) for the GMM defined in (2.2) and s-
GMM estimator defined in (2.7). Then under Assumptions 1-6 for 8 defined as in (2.2), (2.5), (2.7)
and (2.8)

TY2(§ — 65) % N(0,% (69, ho) ).

The following theorem establishes the asymptotic normality of the above estimator in the presence

of estimation effect. Let

T t—1
T}/2 Z (gt (60’ h()) + (T 1_ 1) Z 4 (257 2, 0o, hO))] s (33)

s=1

T
1

T1/2 > 9¢ (80, ho) +h) (Zn@o,ho))] :

where

U (25, 21,00, ho) = Ong (21,00, ho) P (225, 220) © ¢ (25) + Ong (25,00, ho) @1 (224, 225) © 6 (1) ,
Y (100 h0) = B W (21,60, 0)) = [0 (o, o(w) Fo ()i
Theorem 3.3 Assume that (a) 0y €int(©), (b) Q(0y, ho), Q5 (6o, ho) and QS , (8o, ho) are positive

definite, (c) rank(G (0o, ho)) = k, (d) X (0o, ho) is nonsingular. Then under Assumptions 1-5, and 7
for 0 defined in (2.5) or in (2.8)

TY2(8 — 6g) % N(0, % (Bg, ho) ™" £ (80, ho) = (B0, ho) ™),
where
Ezk) (007 hO) =G (907 hO), Q (907 ho)_l Qi (007 hO) Q (907 hO)_l G (907 hO) )

and QS (6o, ho) is either QF (0y, ho) or Q2 ; (0o, ho) given in (3.3).

For the two-step GMM estimator and its smoothed version, say ot for £ € {GMM,s-GMM}, defined in
(2.2) and in (2.7) under (a)-(c) above, (d) 3¢ (09, hy) is nonsingular and Assumptions 2-5, 7 and (e)
I W = Q< (60, ho) ™" || = 0, (1).

TYV2(@0" — 69) % N(0,%¢ (89, ho) ™),

where
¢ (B0, ho) = G (8o, ho)' QS (60, ho) ™" G (6o, ho) -



Remark 3.2 [t is important to note that
Ei (907 hO)_l <X (907 ho)_l E: (907 hO) )Y (007 h(])_l

in the matriz sense,” implying that in the presence of an estimation effect, as long as condition (e)
of Theorem 3.3 is satisfied, the two-step GMM estimator is more efficient than the smoothed two-step
GEL or ETEL estimators. On the other hand, because of the explicit estimation of the efficient metric
Q¢ (6, ho) ™" both GMM estimators 6° for ¢ € { GMM,s-GMM} might be more prone to bias. The Monte
Carlo evidence of Section 5 based on the model considered in Section J seems to provide some support

to both points.

4 Example: Partially Linear Instrumental Variable model

We consider a generalization of the partial linear model considered by Li and Wooldridge (2002)

yr = 21,00 + mo (woy) +e¢ t=1,...,T, (4.1)

where 6 is an RF-valued vector of unknown parameters, mg (-) is an unknown real valued function,
and the unobservable weakly dependent errors &;’s are such that Eles|z;] # 0, where z; = [, h,]".
Suppose that there exists an Rl-valued (I > k) vector wy of instruments such that E (g¢|zo, wy) = 0;

then the estimation of the parameter of interest fy can be based on

gt (00, ho) = wy [yr — E (yelwar) — (w11 — E (w1]221)) o] , (4.2)

where hg = ho(z2) = [E (yi|z2:) , E (214]m2:)")".

For v, = yy or @ let B (vlwa) = S04y vk (220 = w20) /07) | Y6 gy Ko (w25 — w22) /1),
where K, (-) = K (-) /br denotes a kernel estimator of the conditional expectation E[vi|xy:] with
bandwidth by and let

9:(0,h) = w; (7 — T,0) ,

where y; = y; — E (yt|xar), T1e = 11 — E (1¢|x2¢) denote the plug-in version of (4.2).

The following proposition establishes the asymptotic distribution of the two-step GMM, two-step
GEL and two-step ETEL estimators when there is an estimation effect. To this end note that by the
results of Andrews (1994a) and Newey (1994), an estimation effect in (4.2) is only possible in the case
of a generated regressor. So we assume that x9; is generated as a residual from the following linear
regression model s; = vjag + T where aq is a vector of unknown parameters and v; is a vector of
exogenous regressors so that E[ze|vy] = 0. We also note that because the model is linear in both the
finite and infinite dimensional parameters some of the regularity conditions (including a polynomial
rate for the mixing coefficient «(¢)) are weaker than those assumed in the theorems of the previous

section.

5This follows since X° (eo,ho) — Z(eo,ho) Z}: (eo,ho)ilz(eo,ho) = XO,[I — Z() (ZéZ())il Z(I)]Xo 2 O, for Xo =
QS (6o, ko)~ ? G (60, ho) and Zo = QS (00, ho)™* Q (80, ho) ™ G (6o, ho).
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Proposition 4.1 Let z; = [y;, @), xo, w)), and assume that: (a) {2}, is a sequence of a-mizing
random vectors with o (t) = o (t722%7)); (b) the joint density f (z;) of z and the marginal density
f (xar) of wor are twice continuously differentiable with bounded derivatives and infy,,ex; f(zar) > 0,
where X3 is an open bounded subset of R%2 (c) hg(xo) is twice continuously differentiable and
SUDg,, e x5 (j)(xgt) | < oo (j=0,1,2) uniformly in A where h(()j) () is the jth derivative of hg (-);
(d) E|| wi(ys — E (ye|zar) — (z1, — E (z14|2z20)) 00) |77 < 00; (e) rank (E [w; (z1, — E (z14|lz2))']) = k,
the matrices Q2 (6g, ho) and Q° (0y, ho) defined in (4.3) are positive definite; (f) the function K (-) is
a nonnegative second-order kernel with second order continuous bounded derivatives, and bp satis-
fies TY2b2. — oo, TY/?b% — 0. Moreover K (- +u) — K (u) — KM (Ju| < K(-)u* where KM ()
is the first derivative of the kernel function and K (-) is a bounded function, (f) T*/?*(@ — ag) =
Zler(vt)/$2t/T1/2 + 0, (1). Then the two-step GMM, GEL and ETEL estimators have the same

distribution as that given in Theorem 3.3 with

G (90, h()) =F [w (a;lt —F (xlt\xgt(ao)))'] (43)
Q (6o, ho) = i var(T~'/? Zwt Yt — E (yilva(ao)) — (210 — B (21e]w2e(c0))) Oo]),

wt

Q° (6o, ho) = plm var {ﬁ ; (tht +E [ Flom (o)) 2 Oalf (w2)ho (w2t (a0), 00)]—

wy[ho (22 (a0), 60)] ,
(th (040)) 8af(x2t(a0)):| T(Ut) xgt(a0)> } ,

where h(x,0) := Ely, — x1,0|xo; = z] and xoi(a) = 51 — vjayg.

Proposition 4.1 generalizes some of the results of Li and Wooldridge (2002) to the possibly over-
identified partial linear models with a-mixing errors. Note that in case of martingale difference errors,

the above result simplifies to

Q (0o, ho) = E [wthlt (ye — B (yelwar(a0)) — (210 — E (z1¢]z2e(c0))) 60)° |

f(z2¢())
E [r(on) ()3 (00)] E{

Q° (90, ho) =0 (90, h(]) + FE { 8a[f(x2t(a0))h0(x2t(ao), 90) - h(:l?gt(oéo), eo)aaf(iﬂgt(oéo)]} X

Wt

f(zat(ao))

Let 7 (zot(a)) := I (zar(ag) € X3) denote a fixed trimming function that equals one whenever zo(ap) €

Oalf (z2t(0))ho(z2t(0), 00) — ho(z2t(c), 90)5af($2t(040)]} :

X5 and zero otherwise; then given the results of Proposition (4.1) the proposed two-step semiparametric
GEL, GMM, s-GMM and ETEL estimators can be based on the following trimmed smoothed criterion
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functions

T
TR0, 7, 0) =Y 7 (F21) [p(w)N gis(8, 1)) — p (0)],
t=1

TN, B, N) = || 7 (@26) §(0: 1) llge 5y

FS_GMM(H, h7 )\) = ” T (22,‘,) 95(67 h) ”ﬁ‘%&ﬁ)fl

T
- 1 N SN
[P (67 h,A) = log { T Z T (th) eXp[)‘/gts(ea h)]} )

where Tg; = x9¢(@) and Q°(8, h) is a consistent estimator of Q°(6y, hq).

5 Monte Carlo Results

In this section we present results for the partial linear regression model with endogenous covariates in

its parametric component discussed in Section 4. Specifically, we focus on

Y = x11t010 + 212020 + mo(x2r) + ¢,

T11¢ = T10V1: + T20V2¢ + Uy,

where viy = p1v13—1 + €14, V2r = Pav2—1 + €3¢, €t = PeEt—1 + €ct, U = Pulii—1 + €y and

B ]) [ (L))

Let wyy ~ N (0,1) (I =2,3,4) independent of vy and vey, and set w19 = vap + way, Tor = V1t + Vo + W3t
such that s; = wyag+x9¢. For p1 = pa = 0.5, p- = py, = 0.95, and mg (v) = @ (v) (P (+) is the CDF of a
standard normal), we generate 2000 samples, {y;, T11¢, T12¢, St, Wat, V1it, U2t}$:1, with 7" € {200, 400,800},

two different scenarios pe, € {0.1,0.9} representing an increasing degree of endogeneity and 6y = [1, 1],
Ty — [1, —1]/, o) = 1.

Let 2z := [y, T11¢, T126, Tot, Ve, Ve, Wy i= [T126, Tog, vig, e, ho (26) = [Ue, T11es Tioe)'s Ut o= Yo —
Elye|Tad), F11e = 211 — El116Tot], Froe = w19t — Elw12¢|Ta] and Ty := 8¢ — wy@, so that

90(0, 1) = wi(F — Tr1ebh — T12102),

where % is the Nadaraya-Watson estimator with bandwidths chosen as ¢ € {0.5,1,1.5} times the
Silverman’s rule-of-thumb bandwidth, and @ is an estimator of g obtained from regressing s; on wy;
by ordinary least squares.

The GEL estimators we consider are the Empirical Likelihood (EL), Exponential Tilting (ET) and

12



Continuous Updated (CU) estimators; for the GMM estimators we use the following estimator

T-1 j -1 < T R o
|: Z ) (?T) T(./Z'\Qt) th8(97 h)gts(eah),7 (51)
]=1 =T t=1
R 1 t—1 N 1 T w, S B
gt8(97 h) - _Tth:Tw < > { wer + T tZ:; f(EQt)aaf(x%)h(x%, 9) -
IC)) PP P
f(fﬁ%) C'lf( 2 )] ( 4 ) 2 } )

where &, = 33 — flltgl - flgtgg, 51 and 52 are preliminary consistent estimators of 61y and 6o, f(fgt) is
a kernel estimator of the marginal density of Zo; and 7(way) = way/ (Zthl w3,/T > In the Monte Carlo
we use a Bartlett smoothing kernel with bandwidth parameter sp chosen by the method suggested
in Andrews (1991). The same bandwidths and kernels are used to estimate the asymptotic standard
errors based on (4.3) and to compute the estimator Q¢(6, k) given in (5.1).

The Monte Carlo Bias (Bias), Standard Deviation (Std. Dev.), Average Ratios of Standard Errors
(Ratio) with respect to that of a standard GMM and Coverage Probability (Cov. Prob.) are reported
in Tables 1-2 for the estimator of the endogenous regressor parameter #15. We use the standard GMM
partly because of its efficiency property discussed in Remark (3.2) and partly because it would probably

be the most popular estimator given its (relatively) computational simplicity.
Tables 1 and 2 approx. here

We first consider the bias reported for the estimator of the endogenous regressor parameter and
note that the bandwidth choice has some finite sample effect especially for 7" = 200 and 400, but it is
also important to note that the magnitude of the bias of all of the proposed estimators is statistically
insignificant. As expected, the degree of endogeneity has some negative effect on the bias for the smaller
sample sizes. Second the standard and smoothed efficient GMM estimators are characterized by the
largest bias but smallest standard deviations, whereas the EL estimator has the smallest bias, especially
in the case of low endogeneity. Turning to the Monte Carlo standard deviation, we first note that in
this case the degree of endogeneity have a less significant finite sample effect. Second the standard
and smoothed GMM estimators seem to have an edge compared to the other estimators especially for
T = 200 and 400. Third, as pointed out in Remark 3.2, the standard and smoothed GMM estimators
have the smallest standard errors. Finally we note that the asymptotic approximation of all estimators
seem appropriate for small samples as measured by the Monte Carlo coverage probability.

Figures 1-2 report the Q-Q plots that are used to illustrate the quality of the asymptotic normal

approximation for the estimator of the exogenous regressor parameter 6.
Figures 1 and 2 approx. here

The figures show that the asymptotic approximation is good across models especially for samples

T = 400 and 800 for all estimators across low and high degrees of endogeneity. The approximation
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improves with the sample size and seems to be robust to bandwidth choice for the first step estimator.
Taking these results together, they suggest that the smoothed two-step estimators we are proposing

seem to be characterized by good finite sample properties.

6 Conclusions

In this paper we consider the problem of estimating parameters of interest in semiparametric moment
condition models with dependent data. We propose two-step GMM, GEL and ETEL estimators for
the finite dimensional parameter and use smoothing to take the dependency into consideration. We
show that as long as there is no estimation effect from the first step estimation all of the proposed esti-
mators are asymptotically equivalent to the efficient GMM estimator of Hansen (1982). On the other
hand, when there is estimation effect, this equivalence does not hold any longer for GEL and ETEL
estimators, which become less efficient. Our proofs rely on a new uniform law of large numbers that
generalizes that of Andrews’ (1987) and use two new CLT’s for both degenerate and non-degenerate
second-order U-statistics with varying kernels. These results are of independent interest. We illus-
trate the results with an instrumental variable partial linear model with a nonparametric generated
regressor and use simulations to assess the finite sample properties of some of the proposed estima-
tors. The results of the simulations suggest that overall all of the proposed estimators have good
finite sample properties. Finally, we would like to mention that the results of this paper could be
readily used in the context of quadratic inference functions for certain type of longitudinal data struc-
tures {zi,,i =1,..n, t; = 1,...,T}. In particular, under the additional assumption that the data are
independent and identically distributed across i for fixed t;, and are a-mixing with the same mixing
coefficient as that given in Assumption 1 for a fixed 4, it can be shown that the conclusion of Theorem
3.2 is still valid for an appropriately smoothed version of the quadratic inference function g (zj,, 6, h).

The case for Theorem 3.3 is considerably more complicated and we leave it for future research.
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Appendix A Main Proofs

Throughout this section “FOC” and “CMT” stand for, respectively, First Order Conditions and
Continuous Mapping Theorem; unless otherwise stated “CLT” denotes a Central Limit Theorem for
a-mixing sequences (see for example Doukhan, 1994, Chapter 1.5). C and C'(-) represent generic

constants that may depend on additional quantities and may be different from line to line.

Proof of Theorem 3.1: See the supplemental material to this paper. m

Proof of Theorem 3.2: We first show the consistency of 6 and \ for the GEL criterion function.
Without loss of generality we normalize the first two derivatives p; (0) = —1 (j = 1,2) of p(-), where
pj (0) :== & p(q) /0¢ |q=0. Let A = {\: ||\ < Ry} where Ry = O, (sp/T)* for € < 1/2; as in Smith
(2011) it suffices to show that

sup| Gis(0, 1) — w1 E g (0, ho)] || = 0, (1), (A-1)

V 0 ’H _ 1 A-2
12&3}%5&%228” 9ts(0,h) || = 0, (1), (A-2)
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= VA N A
(— > w(—)) S 000 g @B — 260, h0)| | = 0 (1). (A3)
t=1

S S
Ty 7 T

To verify (A-1) note that by triangle inequality, Theorem 3.1 and dominated convergence

T—1 1 ] 1 T
wup 1366, — Bl 0.l < | 35 (—) sup |1 =3 g0 (6,h) — Bl (6, 1)
=T t=1

j= ST ) | 0cO,hcH;
T—1 .
1 J
> <—)—le sup [lge (6, 1)+
= T 0cO,hcHs
+wr sup HE[gtw, M) = E g0 (0 ho)]|| = 0, (1),
6cO

since ZJT:_11_T splw (j/sT) — wl‘ — 0. To show (A-2) note that by triangle inequality and the (func-

tional) mean value theorem one has

T—1 )
1 J
max sup sup || N 9h — )| x
1<t<XT,\eA13 eegH es( By FZ;TS < )

DR sup [Hgt (0, ho)| + Sup 18hge (0, W[ 1| B — ho HH] =0, (1),

by Assumptions 4(a0-(b) and 5(a) since maxj<¢<7 Supgeg |9t (8, ho)|| = 0a.s (Tl/“) and

Ohgr (6, 1)] = o0 (T'?)
(2825 508 i, v (OO0 = e

by the Borel-Cantelli lemma. Finally, to show (A-3), it follows from the triangle inequality

T

S ~ o~ ~ o~

T 0 9650, h)gis (8, 1) — w2 (60, ho)
t=1

T
S
TT > " gts (80, ho) gis (B0, ho)' — w2 (B, ho)

T
s ~ o~
+ 2 ?T ths (907 hO) [gts(07 h) — Ots (907 hO)]/H
t=1 t=1
P ~~ ~~
I S 010 .5) — o (80,0l (B.5) — g (0, ho>]" ST T
t=1

T7 = 0p (1) by Lemma A.3 of Smith (2011). Calculations along the lines of Lemma A.3 of Smith (2011)
and Cauchy-Schwarz inequality yield

Ly w<t_s>w<£>‘ 130, 1 3.5) =3 60t 1, +0 (1)

S S
T s=1-T T

and by the functional mean value theorem, Assumptions 4 and 5(a)

1 T
ZH@hgt @, h)] '—Op 1),

t 1

T

1 o 2 ~

= o6 = ge 0. h0)|[ < I h—ho I3 sup
i—1 0cOs,heHs
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hence T35 = o, (1) since

lim

T—o00

1 = si—s ¢
— Z T w({—]|=0
st 5= sT sT

by Lemma C.1 of Smith (2011). Similar arguments yield T5 = o, (1). Clearly Pr (A} € Ar) — 1 and
note that by (A-2) and CMT

o~

sup max‘ (Ngis(0,h)) — -0‘:0 1),7=12 A4
S [0 0.10) = s 0] = 0p (1 (A-4)
Given (A-1)-(A-4), the consistency of the GEL estimator § follows by the same arguments of Newey
and Smith (2004) and Smith (2011). First note that
1 ~
sup — (0, 5, \) < |G (60, ho)II + o D005, 0) =T (60,7, )] (A-5)
XEAn, ST

and that by a Taylor expansion along the continuous connected path h* (¢) = hg + e(ﬁ — ho) such that
h* (e) € Hs, Ye € [0,1] we have

T(6y,h, A) =T (6o, ho, \) + w (1 —€) =

T (wX'gts (B0, b (€))) N Ongrs (00, " (@) (b — ho),

IIMH

where € € (0,1). Then by triangle inequality

T
(1= 2o S Xhgis (B0, (@) (F — ho) | +

t=1

[T(B0. . 2) =T (B0, ho, V)| <

T
1 ~
(1-8w Z p1 (WX ges (0, h* (€))) — p1 (0)] NOkges (6o, h* (€)) (h — ho)| <
t:l
Ry || b= ho [, sup —lef?hgts 0o, h H' S |1 (WX gs (00, 1)) — p1(0)| = 0, (1)
T’ €Hs

by Assumptions 4 and 5(a). Let Ap = —§(9 h)ﬁT/ I §(9 ﬁ) | where |£7| < Rr, so that Pr (Ar € A) —
1. A Taylor expansion of F(H h, A1) with respect to Mpgis (9,%) about 0 gives

D0, h, A1) > —wNpgs(0, h) — CwNpdr = wér || §(0, 1) || — Cw?e?.

Since

F(é\,/ﬁ,/\T) < sup F(@E A) < sup F(Go,h A),
AEA, AEAT,

we have by (A-5), the CLT and some algebra yield

56,5 | < 2 13 (60, ho) | + 0, (1) = 0 (T17) 0, (T7).

I §(§, ﬁ) || = op(1). The consistency of § follows now by Lemma C.1 and the identification condition
(2.1). A similar expansion can be used to show that || h) | =0, (sT/T1/2) where A = arg maxyear, I‘T(g,ﬁ, A).

The asymptotic distribution is obtained by a standard mean value expansion of the FOC

o~ o~ o~ o~ /
0= |98, 7, \), 0\ (8, I, )\)]
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that hold with probability — 1 by (a), and gives

~ ~ 1 o~
TY2((0 — 60)', N sr) = w—lM(Aﬁ, R) MO, =TG4 (00, h)') + 0p (1)

where

0 7 X2y p1(wX 915 (8, 1)) Dy g1s (8

( ,h)
S (WX 965 (0. 1))Dpges (0, 1) 5 32, p2(wX g1 (8, 1)) 15 (0, 1) g} (B

A [ 5

Note that

—_

Z [pl W)\ gts 9 )) - P1 (0)} a@gts(g ﬁ + p1 Zaﬁgts 5 E

t:l
Z aGQts g

sup | p1 (wNgis (B0, 1)) — p1 (
XeAT, heMts

ZaGQts g ZaGQts 9 hO

and

< | h—holly sup TZ 109t5 (0, B)|| = 0, (1)

0€Os,heEHs

T Zaﬁgts g ﬁ T Zaﬁgts 0 h(])

Thus by (A-5), Theorem 3.1, condition 5(a) and the CMT

= Z P1(@X 915(8,12))09 5150, 1) B w1 B [0ygs (8, ho)]

Similarly note that

sup  |pa (wN'ges (6o, h)) = p2 (0)] = 0, (1), (A-6)
AEAT heHs

and

(A-7)

T T
S — — o~ — o~ _ o~
H =D 02(wX g1 (8 1))gia (B 1) gus (8. 1) ?T p2 (0) 915 (80, ) ges (B0, o)’

1/2

1
sup leaegt @.mI* +

T geos, hes =

1/2
1
—  sup Z 1009t (6, h)| 20,

T peos, hers =

sué—eoul Lo o 0, )
5’€5t1

1/2
17— ho | sup llge (0, 1)
H 0€0Os, heHs ; !
so that by (A-3), || spT~1Y, p2(WX 915 (0, 1)) g1 (0, 1) g1 (8, h) — (6o, ho) || = 0p (1). Thus by triangle
inequality and the CMT

Y (0o, ho) H (6o, ho) ] =: M (69, ho) "

M(X,8,h)t 5 ,
H (6o, ho)" P (6o, ho)
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where
H (60, ho) = 3 (60, ho) G (6o, ho)' 2 (60, ho) ™"
P (6, ho) = 2 (00, h0) ™" [T = G (60, h0) = (0, ho) G (60, ho)' 2 (B0, ho) "]
Then by Assumptions 5(b) and 6(a) we have
TV2[(0 - 60)', X /s1) = wilM (B0, ho) ™! [0/7 —T"2uw1G (6o, ho)'], +0p (1) (A-8)
and by CLT and CMT
TV2((6 — 60)', N /7]’ % N (0, diag [ (6o, ho) , P (60, ho)]) -

The consistency of the two step smoothed semiparametric GMM based estimator é\, in (2.7), follows
by the identification condition (2.1), and the uniform convergence of || §s(9,ﬁ) which follows by

(A-1), | wW-w | = op (1) for any positive definite matrix W, and

775

1556, 1) Il = lsn B gt (8, ho)]llyr| < 1| (6, 7) = w1 E [ge (6, ho)] 1| W ||+
w1 g2 8, ho)l[l 1| W = W || + 2|1 E [g5 (8, ho)] |
195(0, 1) —wiE[ge (0, ho)] [ [| W[ = 0p (1),

by the triangle inequality. The asymptotic normality follows by a standard Taylor expansion about 6
of the FOC
0 = T"/%[95g.(0, h)]Wga (0, h)

that hold with probability — 1 by assumption (a). The conclusion follows by (2.1) (applied to
09 9s(zt, 9,%)), assumption 5(b), CLT and CMT. The consistency of the two-step smoothed semipara-
metric ETEL estimator 6 follows by a two step argument: First, for any A such that Pr (X € A?p) — 1,
the same arguments as those used to show the consistency of the GEL estimator show that the ETEL
estimator

T
~ 1 ~ ~
f = argmin sup log { — exp{w\[gs(0,h) — Gs(6, h A-9
geeeke& g{T;:l p{wA[ges(6, h) — Gs( )]}} (A-9)

is consistent. Next the consistency of \ defined as
1 I
A= arg max = | —exp{wXgrs(0, )}

T ¢=1

follows noting that by a second order Taylor expansion about 0, (A-4) and (A-6) we have

T T
1 ~ ~ o~ 1 ~ N
<1-—= ! <1-—— E ! =
0<1 7 ;exp{w/\ gs(0,h)} <1 T 2 exp{w\'gs(0o, h)}
2 T
T/~ ™ w V] </ ;>
wA'gs (o, 1) + 7>‘ hsu}i’ E :p2 (WX gts (B0, 1)) gs (B0, h) ges (B0, h)' X <
€75 4—1

I I Gs(80,2) || = sz || wX [I* C,
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where the last inequality follows by the triangle inequality, a similar argument as that used in (A-7)
and T~V ST pa(wNgts (B0, b)) gts (B0, ho) gss (Bo, ho) < —CT (Smith, 2011, p. 1224). By condition 5(b)
and the CLT || 5(6o, 1) || = O (T~/2) hence || A || = O, (s7T~"/?). Thus Pr(A € A) — 1, which in
turn implies the consistency of ) given in (A-9) with X =\ The asymptotic normality follows using
the same Taylor expansion and the same arguments as those used to obtain (A-8) (see also Schennach,
2007). ]
Proof of Theorem 3.3: The consistency of 8 and \ follows by the same arguments as those used in the
proof of Theorem 3.2, so we assume consistency and derive the asymptotic distribution of 7/2 (5 —6o).

By a Taylor expansion with Cauchy remainder
91(00,) = g1 (60, ho) + Ongs (B0, ho) (R — ho) + / Rl (Bo. o + €(h — ho))de.

where 92, g (-) = Zl” (h ho); ahh gt (-) (h = hg)’, so that by Assumption 7 it follows that

T t—1
1 1
TY2G,(60, h) = T2 (B, ho) + 225 Z w< )ahgt s (B0, ho) X
t=1 s=1-T
T 1 T -1 s
> Br (2 22-r) © 6 (21) e Z o w (5) 7 (22t—s) +
T=1,7#t t=1 s=1—
1 1 & s\ [y h ~
WZQ > W(;)/g Iingt (0o, ho + &(h — ho))dE

t=1 s=1-T
=T+ T + T+ 25

By CLT ¥} 4N (0,w?2 (6o, ho)) whereas by Assumption 7(a) and Lemma C.1 of Smith (2011)

llrr (z2e-s)ll3
“’(ST)‘ e ool

min(7,7—s) T

T-1
1
= > w <i> T3 > > Ongi-s (B0, o) Pr (220, 2207) © & (1)

T s r 5T t=max(1,1—s) T=1,7#t
1 s

= — w|— | Urs, A-10
5T s:zlzT <ST> ) ( )

and note that the difference between Ur and Ur := Zle Ur/ T3/2 consists of s terms. The Markov
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inequality yields

s T
1
P\ e Z; 27& OnGi—s (0o, ho) Pr (221, 220—7) © @ (21)| = €
t=1 7=1,7#t

IN

Tg/QZ Z E[0ngt—s (00, ho) @1 (221, 220—7) © & (21)] <
t=1 7=1,7%#t

1
Tg/zzﬂahgt Qoaho)HzSUP Z‘PT (221, 22t—7) © ¢ (2t)

T=1

|s|
SO <T1_5 9

2
where the last equality follows from Assumptions 7(b)-(c). It then follows that

1 = s 11 s
P < — w <—> {UT,s — UT} > 6> < -—— Z w <—> E ’UT75 — UT‘ (A—ll)
ST ST € ST ST
s=1-T s=1-T
1 = |s] s
<CT— 2w <—>‘ = O(T* "2y = o(1),
- SZZIET T - ( ) =o(1)

where the last equality follows from Lemma C.1 of Smith (2011).° Thus by (A-10) and (A-11)
T = (w1 + o(V))VTUF + O(T°771/2),

Where Uj*w = Zthl Zle,s;ﬁt (ET (2’28, th) /T (T — 1) and (T)T (225, th) = 8hgt (90, ho) (I)T (225, th) ®
¢ (z). Since UJ. can be represented as a U-statistic with a varying symmetric kernel, that is

1

Uikw = m Z Vr (2257 Z2t) s
1<s<t<T

where Uy (294, 29¢) 1= o (225, 29t) + r (221, 725 ), the asymptotic normality of 7'/ QU} follows by ei-
ther Lemma B.1 or B.2, so that the asymptotic normality of T/ 2gs(eo,h) follows by the CMT as
long as [|T%|| = o, (1). Note that Theorem 3.1 and AT7(c) yield supjey; ST 92, gt (0o, h) /T “3
El[suppey, 02,9¢ (00, h)], which implies that

)0ingt (60, (b — ho)) d€| = Oq.s.(1).

Thus ||T5|| = o, (1) follows by Assumption 5(a) and the CMT. The asymptotic equivalence between
the GEL estimator 8 defined in (2.5), and the ETEL estimator 6 defined in (2.8) implies that the latter
has the same asymptotic covariance as that of the former. Finally for the GMM estimator 0 defined
n (2.7), the result follows by the above arguments and those used in the proof of Theorem 3.2 using
the metric Q¢(6, h)~*, Assumption (e) and the CMT. m

%In fact Lemma C.1 in Smith (2011) states that lim7—cc s5." ZtT;f,T [t|T" |w (t/s7)| = 0. However, an examination
of the proof reveals that, actually, s7* 7", [t|T 7" |w (t/s7)] = O (T/sr)™).
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Proof of Proposition 4.1: Note that by the consistency of &

TY2G5(00, h(Far))7(Tar) = TG (00, h(@ar)) (7(Far) — 7(w2r)) + TG (B0, h(Far))7 (1)
= TY2G,(00, h(Tor))7(22) + 0, (1)

and
T1/2§S(007 E(iﬂ))T(th) = T1/2W1§(00, h(mgt, 00)) th T1/2 Z wt xgt, 90 h(.ﬁl’gt, 90)]T(x2t)—

T
Z [h(Za¢, 00) h(tha 00)] 7 (w2t)
= Tg1 + Tg2 + Tgs3,

where h (+) is a kernel estimator for h (-), To; = s; — v,a is the regression residual and, for notational
simplicity, for g () = st — vy, @t () := 9 The asymptotic normality of T, follows by CLT;
furthermore 7g.2 = 0p(1) by an application of the Cauchy-Schwartz inequality, a covariance inequality

for o mixing processes (see e.g., Truong and Stone, 1992), a standard law of large numbers and results
of Liebscher (1998), which show that

~ w
var (Ty) < sup B (17, 00) = hlazr, 00) Pr ()] = > i
t=1
> 2 2wy d /
+sup 2| [Bar,00) = h(azr, 00) Pr(a) | T D | Blusu]
s#t

0 (SlipE [m(:cgt,eo) - h(xgt,90)|27'(x2t)]> 50

For 7,3 since xg; is estimated parametrically we have the following linear representation:

1
(1 - Dy (@, 00)[Dr(Fas, 00) — Drp(ay, 0
DT($2t,90)( 7(Zat, 00)[Dr(Zat, 0o) (22, 00)])
Nr(@at, 00)
DT(QZ‘%,QQ)

h(ZTar, 00) — R (war, o) =

0 B0) — N (oo O) - [Dr (@2, 00) — Dr (21, 00)]

where Dp(xg,6) : =T * Zf# Ky, (w25 — w2;), Np(29,0) @ =T Z;t(ys — 21,0) Ky, (w25 — w2t),
Ky, (x2s — w2t) = K ((w2s — xt) /br) /br , K (+) is a kernel function and by is the bandwidth. Then
again by the results of Liebscher (1998) we have

h(@at,00) — I (w21, 00) = m(ﬂr%(l))

Nr(z2at,00)

N7 (Zat, 00) — Nr(zat, o) — D (o, 6p)

(D7(Zat,00) — Dr(x24,00))

uniformly in zg; € X5. Since Tos — Toy = o5 — T2 + (v — vs) (@ — ap), a Taylor expansion and the
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same argument as in Li and Wooldridge (2002) yield

T /
~ 1 Ut — Vs \
Nr(Zat, 00) — Nr(zat, 00) = T=1) D (e — wisﬁo)K;f;) (w25 — w2t) < th > (@ —ag) + op(1),
;ﬁt
. v — v\~
Dr (72, 00) — Dr(z21,00) = (w25 — w2t) - (@ — ap) + op(1).
Thus 74,3 can be represented as
T T /
wi wi(l+0p(1)) 1 , ) <Ut —vs> _
To3 = —= T(x s — 2100) Ky T (225 — a—«
3 o) G g LS e ) (972 (6
=y 2) 7 T2, 0o 2s — Tot) | — —
1/2 p ¢ DT(x2t,90) ¢ (T — 1) pot br t bT
= Tg3:a — Ty
An application of the triangle inequality yields
e wi(l +0p(1)) e
Tg;3:a { T ; 7(22t) Dr (o, 00) Aalf (2t)ho(wat), b0)] p T°/7 (& — a)
T T /
w1 wi(1 + 0p(1)) 1 / (1) T3t — T3s
< — —_ 5 — K s — R
<7 ; Do (e Oo) 7(22¢) | max T-1) gﬁ;(y 1500) K, (s = wou) | —

TY2(@ — ag).

— f(x2t)Oalf(x2¢)ho (221, 00)]

The uniform convergence results of Andrews (1995) and the extended Continuous Mapping Theorem
(CMT) (see, e.g., van der Vaart and Wellner, 1996) imply that

T

1 — 235\
) Z(ys - 113/1390)[(15? (z2s — w2t) <%> — f(@2t)Oah(w2t), 60)

max | T
s#t

t

T

O {(Tll) ;(ys — 2,00) K (225) — !Ezt))} = Oalf (w20)ho (w21, 00)]

— Imax
t

T
=0 (mtax { (Tl— 1) ;(ys — 21,00) Kby (225 — xzt))} — [f(z2)ho(z2e, 00)]| | = 0p(1),
and therefore
_ ey mlito,0 W20 )00l o 0]  TV2(@ — 0) 4 0p(1). (A12)
T — [(@2t) + 0p(1) AT T i o
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Similarly, we can verify that

T = flza)+0p(1)

T
7;];3;17 _ {ﬂ Z wt[h0($2t, 90) + Op(l)]T(th)aaf(th))} T1/2(a o 040) + Op(l). (A—13)

Equations (A-12) and (A-13) then imply that

T
_Jw wi(1 + 0p(1))
T 7 3 (Tl e oten) -

_wt[h0($2t,90)+op(1)]7_ x T 125 — a 0
Fxar) + 0,(1) (21)0a f ( 2t))>}T ( o) + 0p(1),

which is the Bahadur representation of the degenerate U-statistic Tf in the Taylor expansion involv-
ing gi5(0o, h) in the proof of Theorem 3.3. Note that to apply Theorem B.1 in Appendix B in the

supplement, one can define

w

Ur(zs,2t) == T(x2t)W;t){aa{f($2t)h0 (w2¢),00)} — ho (221, 00) Oa f(2:) }r(vs)T2s+
(e20) 5y 100 225 o (220, 80)} = o (226, 00) D f 2 r(wn)e + 0p (T712)

By Holder’s and Minkowski’s inequalities, one can readily verify that Conditions (B-1)-(B-4) are satis-

fied. Therefore, we obtain that gs(0g, h(To))T(z2t) /w1 4N (0,94) and the conclusion follows by the

same arguments as those used in the proof of Theorem 3.3. [
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Table 1: Monte Carlo Results - Endogenous Variable - pg,, = 0.1

c=20.5 c=1 c=15

Estimator T Bias Std. Dev. Ratio  Cov. Prob. Bias Std. Dev. Ratio  Cov. Prob. Bias Std. Dev. Ratio  Cov. Prob.
GMM 200 -0.0199 0.2518 1 0.955 -0.0191 0.2491 1 0.950 -0.0286 0.2455 1 0.950
400  0.0159 0.1740 1 0.949 0.0165 0.1734 1 0.949 0.0188 0.1729 1 0.949
800  0.0138 0.1240 1 0.944 0.0135 0.1237 1 0.949 0.0130 0.1236 1 0.948
s-GMM 200 -0.0187 0.2490 0.9961 0.953 -0.0078 0.2469 0.9965 0.951 -0.0174 0.2424 0.9976 0.949
400  0.0151 0.1738 1.0020 0.950 0.0058 0.1731 1.0019 0.949 0.0155 0.1726 1.0023 0.947
800  0.0128 0.1238 1.0006 0.943 0.0032 0.1236 1.0005 0.944 0.0128 0.1235 1.0005 0.945
EL 200 0.0069 0.2520 1.0034 0.947 0.0059 0.2602 1.0025 0.946 0.0053 0.2554 1.0036 0.949
400  0.0060 0.1785 1.0030 0.943 0.0050 0.1795 1.0032 0.945 0.0051 0.1789 1.0037 0.946
800  0.0035 0.1258 1.0012 0.941 0.0031 0.1254 1.0009 0.944 0.0035 0.1250 1.0007 0.941
ET 200 -0.0094 0.2495 1.0038 0.954 -0.0081 0.2503 1.0029 0.954 -0.0084 0.2731 1.0032 0.951
400  0.0058 0.1846 1.0014 0.949 0.0053 0.1835 1.0017 0.949 0.0058 0.1835 1.0024 0.948
800 -0.0037 0.1267 1.0013 0.942 -0.0036 0.1259 1.0003 0.946 0.0035 0.1263 1.0010 0.945
CUE 200 -0.0161 0.2406 1.0019 0.959 -0.0151 0.2469 0.9924 0.952 -0.0111 0.2732 1.0201 0.948
400  0.0089 0.1887 1.0015 0.955 0.0074 0.1903 1.0037 0.944 0.0104 0.1758 1.0190 0.951
800 -0.0064 0.1261 1.0002 0.939 -0.0042 0.1256 1.0001 0.942 0.0042 0.1256 1.0001 0.943
ETEL 200 0.0201 0.2591 1.0145 0.950 0.0212 0.2492 1.0155 0.953 0.0296 0.2459 1.0147 0.954
400  0.0112 0.1749 1.0155 0.948 0.0143 0.1773 1.0150 0.946 0.0188 0.1754 1.0143 0.941
800  0.0128 0.1266 1.0153 0.950 0.0133 0.1254 1.0145 0.944 0.0136 0.1589 1.0132 0.948

Note: Table displays Monte Carlo Bias (bias), Standard Deviation (Std. Dev.), Average Standard Errors Ratios (Ratio) and Coverage Probability (Cov. Prob.)
for the Generalized Method of Moments (GMM), its smoothed version (s-GMM), Empirical Likelihood (EL), Exponential Tilting (ET), Continuous Updated
(CU) and Exponentially Tilted Empirical Likelihood (ETEL) estimator of 6,1 = 1.
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Table 2: Monte Carlo Results - Endogenous Variable - p.,, = 0.9

c=20.5 c=1 c=15

Estimator T Bias Std. Dev. Ratio  Cov. Prob. Bias Std. Dev. Ratio  Cov. Prob. Bias Std. Dev. Ratio  Cov. Prob.
GMM 200  0.0267 0.2812 1 0.967 0.0234 0.2714 1 0.967 0.0262 0.2613 1 0.965
400  0.0159 0.1757 1 0.948 0.0185 0.1748 1 0.949 0.0201 0.1738 1 0.949
800  0.0088 0.1267 1 0.952 0.0086 0.1264 1 0.951 0.0185 0.1260 1 0.950
s-GMM 200 0.0204 0.2775 0.9979 0.965 0.0228 0.2667 1.0012 0.966 0.0215 0.2570 1.0007 0.963
400  0.0181 0.1761 1.0035 0.946 0.0156 0.1749 1.0033 0.947 0.0185 0.1739 1.0037 0.949
800  0.0145 0.1268 1.0017 0.952 0.0131 0.1265 1.0016 0.952 0.0132 0.1261 1.0016 0.950
EL 200 -0.0202 0.2921 1.0117 0.965 -0.0213 0.2825 1.0113 0.960 -0.0211 0.2749 1.0088 0.957
400 -0.0150 0.1825 1.0076 0.951 -0.0143 0.1780 1.0072 0.950 -0.0142 0.1804 1.0072 0.950
800 -0.0101 0.1296 1.0051 0.948 -0.0113 0.1316 1.0057 0.953 -0.0101 0.1280 1.0051 0.951
ET 200 -0.0231 0.3042 1.0492 0.979 -0.0252 0.2994 1.0343 0.977 -0.0235 0.2749 1.0498 0.979
400 -0.0150 0.1909 1.0102 0.948 -0.0195 0.1897 1.0099 0.946 -0.0186 0.1894 1.0094 0.945
800 -0.0107 0.1320 1.0054 0.956 -0.0108 0.1317 1.0054 0.956 -0.0108 0.1312 1.0054 0.955
CUE 200 -0.0241 0.3115 1.0287 0.966 -0.0221 0.5250 1.0325 0.988 -0.0206 0.5634 1.0301 0.991
400 -0.0111 0.1994 1.0107 0.956 -0.0198 0.1908 1.0101 0.952 -0.0188 0.1895 1.0095 0.950
800  -0.0094 0.1314 1.0052 0.955 -0.0105 0.1310 1.0053 0.956 -0.0085 0.1307 1.0053 0.955
ETEL 200  0.0276 0.3515 1.0186 0.960 0.0240 0.3307 1.0168 0.950 0.0231 0.3328 1.0213 0.951
400  0.0152 0.2047 1.0150 0.947 0.0199 0.2047 1.0148 0.950 0.0171 0.2033 1.0154 0.945
800  0.0104 0.1868 1.0146 0.949 0.0137 0.1852 1.0147 0.945 0.0143 0.1869 1.0140 0.943

Note: Table displays Monte Carlo Bias (bias), Standard Deviation (Std. Dev.), Average Standard Errors Ratios (Ratio) and Coverage Probability (Cov. Prob.)
for the Generalized Method of Moments (GMM), its smoothed version (s-GMM), Empirical Likelihood (EL), Exponential Tilting (ET), Continuous Updated
(CU) and Exponentially Tilted Empirical Likelihood (ETEL) estimator of 6,1 = 1.
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Figure 1: Q-Q Plots of standardized Monte Carlo sample versus the theoretical quantiles of a standard normal distribution, with a 45-degrees
(dashed) line. Results are based on 2000 Monte Carlo replications of the Generalized Method of Moments (GMM), its smoothed version (s-GMM),
Empirical Likelihood (EL), Exponential Tilting (ET), Continuous Updated (CU) and Exponentially Tilted Empirical Likelihood (ETEL) estimator
of 8p;2 =1 when p¢, = 0.1.
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Figure 2: Q-Q Plots of standardized Monte Carlo sample versus the theoretical quantiles of a standard normal distribution, with a 45-degrees
(dahsed) line. Results are based on 2000 Monte Carlo replications of the Generalized Method of Moments (GMM), its smoothed version (s-GMM),
Empirical Likelihood (EL), Exponential Tilting (ET), Continuous Updated (CU) and Exponentially Tilted Empirical Likelihood (ETEL) estimator
of 8p;2 =1 when pe,, = 0.9.



	Introduction
	The Model and Estimators
	Asymptotic Theory
	Strong Uniform Law of Large Numbers
	Asymptotic Normality

	Example: Partially Linear Instrumental Variable model
	Monte Carlo Results
	Conclusions
	Main Proofs

