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A New Nonlinearity Test to Circumvent the Limitation of

Volterra Expansion with Application

Abstract:

In this paper, we propose a quick and efficient method to examine whether a time seriesXt

possesses any nonlinear feature by testing a kind of dependence remained in the residuals

after fitting Xt with a linear model. The advantage of our proposed nonlinearity test is

that it is not required to know the exact nonlinear features and the detailed nonlinear

forms of the variable being examined. Another advantage of our proposed test is that

there is no over-rejection problem which exists in some famous nonlinearity tests. Our

proposed test can also be used to test whether the hypothesized model, including linear

and nonlinear, to the variable being examined is appropriate as long as the residuals of

the model being used can be estimated. Our simulation study shows that our proposed

test is stable and powerful. We apply our proposed statistic to test whether there is any

nonlinear feature in the sunspot data. The conclusion drawn from our proposed test is

consistent with those from other well-established tests.

Keywords: Nonlinearity, Dependence, Nonlinear test, Dependent test, Volterra ex-

pansion, Sunspots

JEL Classification: C01, C12
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1 Introduction

It is well-known that nonlinearity always appear in many time series like natural data and

economic and financial time series, including some well-known datasets like the sunspots

(Moran, 1954), Canadian lynx (Tong, 1990), and inflation rate (Engle, 1982). In practice,

nonlinearity is common in both stationary or non-stationary time series. Nevertheless,

detecting nonlinearity in time series is very important because very often academics and

practitioners have to know this feature in the data before conducting their analysis. For

example, Fourier analysis assumes the time series to be linear and stationary while, on the

other hand, the wavelet analysis (Cheng, et al., 1996) is raised for linear but nonstationary.

Thus, before academics and practitioners apply Fourier analysis and/or wavelet analysis

in their work, they have to examine whether there is any nonlinearity in the time series.

There is a growing interest in the testing, estimation, specification, and developing

properties for nonlinearity for decades. There are many nonlinear features including

asymmetric cycles, nonlinear relationship among the variables being studied and their

lags, time irreversibility, sensitivity to initial conditions, and others. The early develop-

ment of nonlinear models include bilinear models (Granger and Andersen, 1978), threshold

autoregressive models (Tong, 1978), state-dependent model (Priestley, 1980), exponential

autoregressive model (Haggan and Ozaki, 1981), ARCH model (Engle, 1982), Markov

switching model (Hamilton, 1989), and nonlinear state-space model (Carlin, et al., 1992).

In addition, Chen and Tsay (1993a) use an arranged local regression procedure to con-

struct functional-coefficient autoregressive models while Chen and Tsay (1993b) develop

some new techniques for a class of nonlinear additive autoregressive models with ex-

ogenous variables. On the other hand, Tjφstheim (1994) uses nonparametric regression

techniques as an alternative nonlinear time series model. Tiao and Tsay (1994) discuss

the advances in non-linear modelling and in Bayesian inference via the Gibbs sampler.

On the other hand, Tjφstheim (1994) uses nonparametric regression techniques as an al-

ternative nonlinear time series model. Zhao (2011) shows that many popular nonlinear

time series models can be viewed as Hidden Markov models HMMs. There are also many

breakthroughs in limiting theory of nonlinear time series, such as Hsing and Wu (2004),
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Wu and Min (2005), Shao and Wu (2007).

Nonetheless, the most general form of a nonlinear stationary process is the Volterra

expansion. Using the idea of Volterra expansions, Keenan (1985) applies the one-degree-of

freedom test (Tukey, 1949) for nonadditivity to derive a time-domain statistic for discrimi-

nating nonlinear from linear models. Tsay (1986) extends the work of Keenan to establish

a more powerful test. Other nonlinear tests include a simple portmanteau test (Petruc-

celli and Davies, 1986), the quasi-likelihood ratio test (Chan and Tong, 1990), and the

Wald test (Hansen, 1996). In addition, Li and Li (2011) develop a quasi-likelihood ratio

test statistic for an autoregressive moving average model against its threshold extension.

Zhou (2012) proposes a distance correlation approach to measure nonlinear dependence

in time series.

Since the number of parameters of the nonlinearity part could be very large, this could

affect the performance of the existing nonlinear tests. In addition, nonlinearity may occur

in many ways. Brock, et al. (BDS, 1996) present a nonparametric method for testing a

kind of serial dependence and nonlinear structure in a time series. The advantage of

this test is that it is not required to know the exact nonlinear features and the detailed

nonlinear forms of a time series. But the level of BDS test is right bias; in other words,

this test has a over-rejection problem even when sample are very large in practice.

The objective in this paper is to circumvent the limitation of Volterra expansion or

other similar approaches by developing a new method to test the nonlinearity for a time

series that does not involve many parameters. Most importantly, our proposed test does

not have any over-rejection problem.

The remainder of the paper is organized as follows. In Section 2, we first discuss the

Volterra expansion and state the nonlinearity tests developed by Brock, et al. (1996) in

Subsection 2.1. Thereafter, we develop our proposed new nonlinearity test in Subsection

2.2. Section 3 displays the superiority of the nonlinearity test we developed in Subsection

2.2 by conducting a simulation to examine its performance over the tests developed by

Brock, et al. (1996). In Section 4, we illustrate the applicability of our proposed nonlinear-

ity test by applying it to examine whether there is any nonlinear feature in the sunspot
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data. Section 5 wraps up the paper by providing several well-grounded observations.

Readers may refer to Hui, et al. (2017) for the proof.

2 Theory

We suppose that Xt is stationary and follows a time series model of the current and past

independent and identically distributed (iid) shocks such that Xt = f(εt, εt−1, · · · ). If f(·)
is a linear function of the shocks, the model is linear; otherwise, it is nonlinear. One of

the most commonly used linear models is an ARMA process that could be presented as

an AR and/or MA representation (Box, et al., 1994). If the null hypothesis of linearity

is true, residuals of the hypothesized linear model are independent. This is the basic

idea used in the development of various nonlinearity tests. There are many approaches,

for example, parametric, semi-parametric, and nonparametric approaches, to identify the

nonlinear forms of the models. There are also several nonlinearity tests available. For

example, Fan and Yao (2003) establish a likelihood ratio test to test for a linear model

versus a TAR model with two regimes.

One of the most commonly used approaches is to apply the Volterra expansion (Wiener,

1958) to expand a nonlinear and stationary time series, say, Xt, to be in terms of the linear,

quadratic, cubic, etc. such that

Xt = µ+
∞
∑

−∞

auεt−u +
∞
∑

u,v=−∞

auvεt−uεt−v +
∞
∑

u,v,w=−∞

auvwεt−uεt−vεt−w + · · · , (1)

where εt (−∞ < t < ∞) is an iid innovation with zero mean.

There are several methods test for nonlinearity based on this expansion, such as Tsay

(1986). Cox (1981) suggests using quadratic or cubic regression to test for nonlinearity.

The major drawback of applying the Volterra expansion is that there are too many

parameters in the model. To circumvent the limitation, one could assume au, auv, and auvw

in equation (1) to be functions of small numbers of parameters. However, the problem

of this approach is that we do not know the forms of “functions” and, in fact, such

“functions” may not exist.
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2.1 BDS Test

Brock, et al. (1996) introduce an approach to circumvent the limitation of the Volterra

expansion of getting too many parameters. Follow the idea of Tsay (1986), Brock, et al.

(1996) use the following AR model to remove autocorrelation in the data:

Xt =

p
∑

i=1

φiXt−i + et , (2)

where et
iid
∼ WN(0, σ2) and WN stands for ‘white noise.’

After removing the linear components in {Xt} by introducing the linear model in (2),

the residual êt is denoted to be Yt. Brock, et al. (1996) examine the iid assumption on

{Yt}. In other words, the null hypothesis of BDS test is:

H0 : {Yt} is iid. (3)

The basic idea of the BDS test is to use the concept of a “correlation integral”. Let

Y k
t ≡

(

Yt, Yt+1, · · · , Yt+k−1

)

, define

Cl(δ, T ) ≡
2

Tk(Tk − 1)

∑

i<j

Iδ
(

Y ∗

i , Y
∗

j

)

, l = 1, k, (4)

where T is the length of {Yt}, Tk = T − k + 1, Y ∗

i = Yi if l = 1, Y ∗

i = Y k
i if l = k. Under

the null hypothesis that Yt are iid with a nondegenerated distribution function F (·), for
any fixed k and δ, the statistic

√
T{Ck(δ, T ) − [C1(δ, T )]

k} is asymptotically distributed

as normal with mean zero and variance

σ2
k(δ) = 4(Nk + 2

k−1
∑

j=1

Nk−jC2j + (k − 1)2C2k − k2NC2k−2) ,

where C =
∫

[F (z + δ) − F (z − δ)]dF (z) and N =
∫

[F (z + δ) − F (z − δ)]2dF (z). Since

C1(δ, T ) is a consistent estimate of C and N(δ, T ) = 6
Tk(Tk−1)(Tk−2)

∑

t<s<u

Iδ(Yt, Ys)Iδ(Ys, Yu)

is a consistent estimate of N , replacing C and N by C1(δ, T ) and N(δ, T ), respectively,

in σ2
k(δ) will yield a consistent estimate σ2

k(δ, T ).

The BDS test statistic is Dk(δ, T ) =
√
T{Ck(δ, T )− [C1(δ, T )]

k}/σk(δ, T ), the hypoth-

esis H0 defined in (3) is rejected at level α if
∣

∣

∣
Dk(δ, T )

∣

∣

∣
> zα/2, where zα/2 is the upper
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α/2 quantile of the standard normal distribution N
(

0, 1
)

, and the original sequence Xt

is concluded to possess nonlinearity.

Readers may refer to Brock, et al. (1996) for more details of the BDS test.

2.2 New Non-Linearity Test

From our simulation, we find that the BDS test has a very serious over-rejection problem

which discounts its applicability in practice. To circumvent the limitation, in this paper

we develop a new independence test to test for independence for any residual series {Yt}.
We first state the following definition:

Definition 2.1 Let {Yt} be the residuals series as discussed in the above, series {Xt}
does not possess any nonlinearity if and only if for any t the law of corresponding

residuals {Yt} satisfies

L (Yt | Yt−1) = L (Yt) . (5)

In addition, we define

C1

(

η
)

≡ Pr (Yt−1 < η, Yt < η) ,

C2

(

η
)

≡ Pr (Yt−1 < η) , (6)

C3

(

η
)

≡ Pr (Yt < η) .

Since

Pr (Yt < η | Yt−1 < η) =
C1

(

η
)

C2

(

η
) ,

when one tests the existence of the nonlinearity of a sequence {Xt}, we suggest to test

the following hypothesis:

H0 :
C1

(

η
)

C2

(

η
) − C3

(

η
)

= 0 . (7)

The series {Xt} is said to possess nonlinearity if the hypothesis H0 in (7) is rejected.1

1We note that we should pay attention to the estimation effect by using two-step method in our
proposed test. This approach is commonly used in econometrics and is used in some other nonlinearity
tests like the BDS test. In practice, one needs to ensure zero autocorrelation in residuals {Yt}.
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For a residual sequence {yt}, the dependence test statistic is given by

Tn =
√
n

(

C1

(

η, n
)

C2

(

η, n
) − C3

(

η, n
)

)

, (8)

where

C1

(

η, n
)

≡ 1

n

T
∑

t=2

I(yt−1<η) · I(yt<η) ,

C2

(

η, n
)

≡ 1

n

T
∑

t=2

I(yt−1<η) ,

C3

(

η, n
)

≡ 1

n

T
∑

t=2

I(yt<η) ,

n = T − 1, and T is the length of residual {yt}.

We establish the following property for our proposed test statistic Tn defined in (8).

Theorem 2.1 If the residual {Yt} is iid, then the test statistic defined in (8) is dis-

tributed as N
(

0, σ2(η)
)

asymptotically.

The asymptotic variance σ2(η) with its consistent estimator σ̂2(η) and the proof of

theorem 2.1 are given in Hui, et al. (2017). The hypothesis H0 defined in (7) is rejected

at level α if

|Tn|/σ̂2(η) > zα/2 ,

where Tn is defined in (8) and zα/2 is the upper α/2 quantile of the standard normal

distribution N
(

0, 1
)

. In this situation, {Xt} is concluded to possess nonlinearity.

3 Simulation

In this section, we illustrate the applicability and superiority of our proposed nonlinearity

test we developed in Subsection 2.2. For simplicity, we call the test developed by Brock, et

al. (1996) “BDS test” and our new test “HWBZ test”. Let R be the times of rejecting the
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null hypothesis that {Yt} is iid in the 10,000 replications at α level, and thus, the rejection

frequency is R/10, 000. The length of testing sequences are chosen to be T = 200 and 400.

In BDS test, the parameters δ and k are the same as Brock, et al. (1996): δ = 0.5
√

Var(Yt),

and k = 2, 3. In HWBZ test, we first standardize the residual sequence {Yt} and choose

the parameter η = 1 and 1.5.

Since the type 1 error should be controlled first in practice, we begin our simulation

study by presenting empirical sizes of both BDS and HWBZ tests displayed in Table

1. From Table 1, readers can find that the BDS test has a very serious over-rejection

problem. For example, in the first panel of Table 1, when test level α = 0.05, the

frequency of rejection is 0.1654 (0.1049) for sample size of 200 (400), this is unacceptably

high. We note that sample size of 400 is very high in many practical issues. We also

note that even 200 observations could also be too high in many practical studies. For

example, financial economists usually deal with weekly reruns of an asset or an index

and 200 observations means to get return observations in four years in the analysis which

could be too long for many studies because the economy condition could be completely

different after four years and thus using four years to analyze the property of the returns

in the same economic situation could be too long. Moreover, most economists could only

obtain annual data to analyze. In this situation, getting 200 observations means to get

200 years data. The world has changed too much, not to mention in 200 years but in 20

years. So, getting 200 observations to analyze is nearly impossible to many economists to

analyze economic problems.

Table 1: Empirical sizes of BDS test and HWBZ test.

α = 0.05 BDS HWBZ

Yt

iid
∼ N(0, 1) k = 2 k = 3 η = 1 η = 1.5
T = 200 0.1654 0.1683 0.0517 0.05
T = 400 0.1049 0.1062 0.0513 0.0459

α = 0.1 BDS HWBZ

Yt

iid
∼ N(0, 1) k = 2 k = 3 η = 1 η = 1.5
T = 200 0.2440 0.2452 0.1058 0.1013
T = 400 0.1803 0.1789 0.1023 0.0953

Note: Simulation times is 10000. T is the length of testing sequences. In BDS test, the
parameters δ and k are the same as Brock, et al. (1996): δ = 0.5

√

Var(Yt), and k = 2, 3. In
HWBZ test, we first standardize the residual sequence {Yt} and choose the parameter
η = 1 and 1.5.
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Now we check the empirical power of the HWBZ test when {Xt} are generated from

the following three most representative models:

Model A : Xt = εt + 0.5εt−1εt−1 + 0.5εt−1εt−2 ,

Model B : Xt =

{

0.5Xt−1 + εt Xt−1 ≥ 0

−0.5Xt−1 + εt Xt−1 < 0
, (9)

Model C : Xt = htεt , where ht =
√

1 + 0.8X2
t−1 + 0.1h2

t−1 .

Model A is a typical example of Volterra expansion, Model B is a threshold autoregressive

model which is another popular method in nonlinear analysis, and Model C is a GARCH

model which plays an especially important role in modeling financial data. The error

term εt in all the models are all assumed to be iid N (0, 1).

Brock, et al. (1996) point out that the above three models exhibit zero autocorrelation.

For simplicity, we take {Xt} as {Yt} in (5) directly in our simulation. Table 2 displays

the empirical power of the HWBZ test as well as the rejecting frequency of the BDS test.

It may not be proper to call the rejecting frequency of the BDS test to be power when

T = 200 and 400 because the BDS test possesses very serious over-rejection problem as

shown in Table 1. From Table 2, we can see that our test possesses decent power especially

when {Xt} are generated from Model B.

Table 2: Empirical power of the BDS and HWBZ tests.

α = 0.05 BDS HWBZ
Model A m = 2 m = 3 η = 1 η = 1.5
T = 200 0.9400 0.9348 0.6195 0.6344
T = 400 0.9994 0.9994 0.8726 0.8367

α = 0.05 BDS HWBZ
Model B m = 2 m = 3 η = 1 η = 1.5
T = 200 0.5791 0.5758 0.7044 0.6650
T = 400 0.8101 0.8084 0.9310 0.9026

α = 0.05 BDS HWBZ
Model C m = 2 m = 3 η = 1 η = 1.5
T = 200 0.9983 0.9982 0.5625 0.6153
T = 400 1 1 0.8153 0.8400

Note: Simulation times is 10000. T is the length of testing sequences. In BDS test, the
parameters δ and k are the same as Brock, et al. (1996): δ = 0.5

√

Var(Yt), and k = 2, 3. In
HWBZ test, we first standardize the residual sequence {Yt} and choose the parameter
η = 1 and 1.5.

Our proposed HWBZ test can detect not only nonlinearity but also can be used as a

test for model specification as Brock, et al. (1996) claim for their BDS test. For instance,
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after regressing one time series variable on another time series variable with a selected

model, one important step is to check whether the residuals are dependent, including to

test whether there is any nonlinear and linear dependence in the residuals. In our previous

simulation, we have addressed the nonlinear issue. To test for any linear dependence, in

this example, we examine the performance of our proposed test on the following MA(1)

model:

Model D : Yt = 0.3εt−1 + εt . (10)

We exhibit our simulation results in Table 3. The table shows that our proposed HWBZ

test can detect linear dependence very well and is more powerful than the BDS test.

From our discussion in the above, we can claim that our proposed HWBZ test pos-

sesses good size and decent power. And we suggest academics and practitioners not to

underestimate the importance of the over-rejection problem for the BDS test.

Table 3: Empirical power of BDS and HWBZ tests.

α = 0.05 BDS HWBZ
Model D m = 2 m = 3 η = 1 η = 1.5
T = 200 0.3958 0.3962 0.4653 0.4384
T = 400 0.6083 0.6049 0.7418 0.6117

Note: Simulation times is 10000. T is the length of testing sequences. In BDS test, the
parameters δ and k are the same as Brock, et al. (1996): δ = 0.5

√

Var(Yt), and k = 2, 3. In
HWBZ test, we first standardize the residual sequence {Yt} and choose the parameter
η = 1 and 1.5.

4 Illustration

In this section, we illustrate the applicability of the nonlinearity test we have developed

in Subsection 2.2 by applying our proposed nonlinearity test and the BDS test.

Sunspots refer to dark spots on the surface of the sun related to the motion of the solar

dynamo. Johann Rudolf Wolf introduces a formula for calculating the sunspot numbers:

R = k(10g + f), where g is the number of groups of sunspots, f is the total number

of individual spots, and k is a constant for the observations. To honor the contribution
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by Johann Rudolf Wolf, it is common to call sunspot number “Wolf’s sunspot number”

(Izenman, 1983)

Figure 1: Wolf’s Sunspots Numbers
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Note: Quarterly Wolf’s sunspot numbers from first quarter of 1749 to first quarter of 2012.

The earliest linear model built for the sunspot data is probably done by Yule (1927)

who introduces the class of linear autoregressive models to analyze the data. Since then,

the literature, see, for example, Moran (1954), of linear time series analysis of the sunspot

data has been growing exponentially. However, some works, see, for example, Tong and

Lim (1980) point out that linear model is not adequate for fitting the data and forecasting.

In this paper we illustrate the applicability of our proposed HWBZ test and the DBS

test to examine the nonlinearity in the quarterly Wolf’s sunspot numbers from the first

quarter of 1749 to the first quarter of 2012. Let Xt be Wolf’s quarterly sunspot numbers

from the first quarter of 1749 to the first quarter of 2012. We exhibit the time series plot

of the sunspot data in Figure 1. We first discuss how to use our test statistic to examine

whether there is any nonlinearity in {Xt}. To do so, as discussed in Section 2, we first fit

the data by using the following AR(p) model:
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Xt =

p
∑

i=1

φiXt−i + et, et
iid
∼ WN(0, σ2) (11)

to the sunspot data. We find that the “best” linear model for the sunspot data is

Xt = 19.8849− 0.7051Xt−1 − 0.1549Xt−2 − 0.1873Xt−3 − 0.0834Xt−4 .

+0.1055Xt−6 + 0.0712Xt−7 + 0.0810Xt−9 + êt . (12)

We exhibit the results in Table 4. Thereafter, we apply the Ljung-Box test to test the

hypothesis of no autocorrelations up to lag k for the residuals and display the results in

Table 5. In addition, we display the autocorrelations of the residuals in Figure 2. The

results from Table 5 and Figure 2 show that the autocorrelations of the residuals are not

significantly different from zero for any lag up to 30,2 and thus, one may conclude that

the AR model in (12) is adequate and there is no other linear relationship remained in

the residuals.

Table 4: The Results of the Linear AR Model

Parameter Estimate Standard Error t Value
intercept 19.8849 2.2872 8.694***
Xt−1 0.7029 0.0305 23.004***
Xt−2 0.1545 0.0375 4.114***
Xt−3 0.1872 0.0378 4.948***
Xt−4 0.0883 0.0353 2.497**
Xt−6 -0.1049 0.0353 -2.965***
Xt−7 -0.0722 0.0346 -2.083**
Xt−9 -0.0830 0.0247 -3.355***

Note: This table exhibits the results of the linear AR model as shown in (12).

*, **, and *** mean significant at levels 10%, 5%, and 1%, respectively.

One may believe that the linear model in (12) fits the sunspot data well. To check

whether this is true, we apply the test we developed in Subsection 2.2 and the DBS test

to examine whether there is sequential dependence within the standardized residuals,
(

êt −mean(êt)
)/
√

Var(êt), obtained from fitting the linear model in (11). The p values

2Readers may consider to apply the approach developed by Li (1992) to correct the residual autocor-
relations for nonlinear time series models.
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Table 5: Autocorrelation Check: The Result of Ljung-Box Test

Check for Sunspots Numbers Check for Residuals
Lag (k) df χ2(k) Lag (k) df χ2(k)

4 4 3160.750*** 12 5 6.632
6 6 4075.119*** 18 11 13.377
7 7 4353.965*** 24 17 18.366
9 9 4645.693*** 30 23 25.434

Note: The null hypothesis of Ljung-Box test is that the autocorrelations up to lag k in the
population from which the sample is taken are 0. χ2(k) is the test statistic with k degrees of
freedom. Readers may refer to Ljung and Box (1978) for more details of the test. The left
panel displays the values of χ2(k) for the Sunspots numbers while the right panel shows the
values for the residuals after fitting the linear AR model as shown in (12).

*, **, and *** mean significant at levels 10%, 5%, and 1%, respectively.

Figure 2: Plots of the Autocorrelation Functions
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Note: The left panel exhibits the ACF for Sunspots numbers whereas the right panel displays
the ACF for the residuals after fitting the linear AR model as shown in (12).

of the HWBZ tests which are present in Table 6 strongly reveals dependence within the

residuals. Thus, applying our test, one could realize that there still exists nonlinearity

component in the sunspot data. This result is consistent with the findings by Tong and

Lim (1980), Tong (1983), and many others. In addition, results of the BDS test also show

the nonlinearity in the Wolf’s Sunspots numbers.

Readers should be aware of the limitation when using two-step method in both BDS

test and our proposed test that the estimation effect could exist in practice. If one wants
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to test whether the series are independent, or test whether there is any linear and/or

nonlinear dependence in the series, then one could apply our test direct to the series. In

this situation, there is no estimation effect in the test. However, if one wants to separate

the nonlinear dependence from the linear dependence, then one has to fit the linear model

first, then apply our proposed test to the corresponding residuals as we do in the above

sunspot data analysis. In this situation, the estimation effect cannot be avoided. We

suggest practitioners to find linear models to ensure zero autocorrelation in the residuals

before applying our proposed test or BDS test.

Table 6: p value of BDS test and HWBZ test.

p value of BDS p value of HWBZ

Yt =
[

êt −mean(êt)
]/

√

Var(êt) m = 2 m = 3 η = 1 η = 1.5
T = 3160 5.24 ∗ 10−20 1.82 ∗ 10−19 2.91 ∗ 10−3 6.78 ∗ 10−5

Note: T is the length of Sunspots numbers sequence. In BDS test, the parameters δ and k are
the same as Brock, et al. (1996): δ = 0.5

√

Var(Yt), and k = 2, 3. In HWBZ test the
parameters η = 1 and 1.5.

5 Conclusion

There are many works in the development of nonlinearity tests. A nonlinearity test could

be parametric, semi-parametric, or nonparametric. However in general nonlinearity may

occur in many and could be infinite ways. Thus, it is not our intention to develop a single

test that outperforms all other tests in examining nonlinearity.

As nonlinear features are in general more complex and more difficult to model than

a linear and independent one, it is not reasonable to restrict the form of the nonlinearity

at the stage of detecting them within a sequence. Our HWBZ test as well as the BDS

test satisfy this criterion and circumvent the limitation of using too many parameters like

those using the Volterra expansion.

There are many criticisms on the BDS test in literature as Tsay (2010) points out that

there is serious over-rejection problem in the BDS test. Our simulation studies confirm

this and find that rejection frequencies are over 3 times and 2 times of test level 0.05,
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respectively, when sample sizes are 200 and 400 which could be very large in practice as

discussed in Section 4. Our proposed test overcomes this weakness and possesses decent

power. In addition, our proposed test is stable on different choice of the pre-chosen

parameter and is easy to use since there is only one parameter η. Testing for nonlinear

features in the sunspot data displays the applicability of our proposed HWBZ test. Both

our proposed test and the BDS test draw the same conclusion which is consistent with

findings in the literature that there exists nonlinearity in the Wolf’s sunspots numbers.

At last, we note that our test could not only be used to detect any nonlinearity for the

variable being examined. If a selected model is fitted to {Xt} and its residuals {Yt} could

be estimated, the HWBZ test developed in this paper could also be used to examine the

appropriation of the model being used. If the null hypothesis of independence on residuals

{Yt} is rejected, then one could conclude that the chosen model is not appropriate and

need to model the residuals further.
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