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Abstract 

The system integration of an increasing amount of electricity generation from decentralised 

renewable energy sources (RES-E) is a major challenge for the transition of the European 

power system. The feed-in profiles and the potential of RES-E vary along the geographical 

and temporal dimension and are also subject to technological choices and changes. To 

support power system planning in the context of RES-E expansion and allocation planning 

required for meeting RES-E targets, analyses are needed assessing where and which RES-

E capacities are likely to be expanded. This requires models that are able to consider the 

power grid capacity and topology including their changes over time. We therefore developed 

a model that meets these requirements and considers the assignment of RES-E potentials to 

grid nodes as variable. This is a major advancement in comparison to existing approaches 

based on a fixed and pre-defined assignment of RES-E potentials to a node. While our 

model is generic and includes data for all of Europe, we demonstrate the model in the 

context of a case study in the Republic of Ireland. We find wind onshore to be the dominating 

RES-E technology from a cost-efficient perspective. Since spatial wind onshore potentials 

are highest in the West and North of the country, this leads to a high capacity concentration 

in these areas. Should policy makers wish to diversify the RES-E portfolio, we find that a 

diversification mainly based on bioenergy and wind offshore is achievable at a moderate cost 

increase. Including solar photovoltaics into the portfolio, particularly rooftop installations, 

however, leads to a significant cost increase but also to a more scattered capacity installation 

over the country. 
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1 Introduction  

To combat climate change, greenhouse gas emissions need to be reduced globally. In order 

to achieve this target, the decarbonisation of the energy sector is an important prerequisite 

[1,2]. The European Union (EU) plans to reduce carbon emissions to 80–95% below 1990 

levels by 2050 and to realise the decarbonisation of the energy system mainly through 

energy efficiency and the expansion of renewable energy sources (RES). By 2030, the EU 

aims for a 27% share of RES in final energy consumption and by 2050, more than two-thirds 

of gross final European energy consumption shall be provided through RES, with a yet 

higher share for electricity [3].  

The integration of the resulting increasing electricity generation from RES (RES-E) into the 

grid is a major challenge for the European power system. In order to provide structured 

support for long-term planning of the power system and RES-E integration on a European 

level, models are needed which allow for an assessment of where RES-E will most likely be 

allocated. The main requirements for such models include the following: First, a high 

granularity of temporal and spatial input data is important [4]. Second, these models need to 

be able to take into account the power grid’s capacity and topology and its dynamic nature 

over the next decades according to national and European grid development plans [5]. The 

consideration of this dynamic nature is important because it has a major impact on where the 

RES-E generation will feed into the future transmission grid at a substation level which is 

highly relevant for long-term system planning. In short, the power grid can no longer be 

neglected in RES-E expansion and allocation planning as the mutual dependencies between 

RES-E and grid expansion planning need to be considered. Third, the models need to be 

able to consider technological changes and advances, which become manifest, for the 

example of wind power for instance, in repowering. This is important because, e.g. for wind, 

the same profile of wind velocities may result in a very different power generation profile 

which affects the way the grid will be used in future.  

The first requirement is mainly challenging in terms of data availability. While data availability 

has improved in the past, some gaps will always remain, particularly when considering power 

systems of an entire continent such as Europe. Amongst others, we therefore address the 

big data problem of parameterising the existing and potential RES-E generation units in 

Europe in this paper. From a modelling point of view, the integration of renewables into 

systems of such a size constitutes a dimensionality problem when considering all possible 

combinations of suitable locations of different RES-E technologies along with the temporal 

dimension leading to a large-scale optimal RES-E allocation or positioning problem which 

requires computational efficiency.  
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The optimal allocation of distributed generation in general, as well as the optimal allocation 

and positioning of renewable generation as a more specific application, has been a widely 

discussed topic in literature. From a methodological point of view, a large variety of 

approaches have been applied, which can be distinguished into the three categories 

conventional techniques, artificial intelligence techniques and hybrid intelligent system 

techniques [6]. The focus of the vast majority of these approaches lays, however, on the 

integration of RES-E on the distribution grid level [7] and thus on smaller system sizes which 

do not require methods which are able to deal with big data problems of pan-national spatial 

horizons. While the vast majority of RES-E is connected on the distribution grid level, the 

additional stress on the transmission grid level also needs to be considered when 

investigating national or pan-national allocation problems. Approaches which deal with large-

scale real-world applications of intermittent RES-E allocation require GIS-based data [8] and 

are today restricted to single energy sources such as solar [9], wind [10] or limited spatial 

scales when covering multiple RES types [11]. Overall, a number of real-world sized 

approaches are available that address the first requirement [12-14]. However, we are not 

aware of approaches combining all three requirements. While few existing approaches do 

consider the grid topology [15,16], they do not consider the restructuring of transmission 

grids, i.e. they assume a static assignment of RES-E generation sources to transmission grid 

busbars or substations. In order to address the expansion and dismantling of busbars within 

substations or even of entire substations over time as set out in many national grid 

development plans, however, a fixed assignment of RES-E generators to transmission grid 

buses is no longer adequate. On the contrary, an approach allowing for a variable grid 

connection of RES-E generators either connected directly to the transmission grid or 

indirectly through the distribution grid is required to assess how the future grid will be used 

and needs to be planned.  

We therefore developed an approach for the optimal allocation of RES-E on a pan-national 

scale with a high spatial resolution which addresses all of the above three requirements for 

the European power system. In the context of a movement from feed-in tariff (FIT) based 

RES-E support schemes to more market-based RES-E support on a European level [17-19], 

adequate tools are needed to support decision making of regulators, investors or 

transmission system operators (TSOs) in this new environment. Assuming a tender-based 

RES-E support scheme, our approach is therefore aimed at translating national, long-term 

RES-E targets negotiated and agreed between individual countries and the EU into specific 

expansion targets for different technologies in different regions on the timeline. Specifically, 

we focus on the challenge of deriving representative greenfield investment RES-E 

generators in combination with the repowering of generators by computing a merit order of 

RES-E investment options. 
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We demonstrate our approach in the context of a case study in which we pursue two main 

objectives: First, we seek to support regulators or governments that wish to achieve a 

national RES-E target determined as percent share of energy demand in different years in a 

cost minimal way but may wish to auction RES-E expansion in a technology-specific and 

capacity-based way, e.g. for practicality reasons. Second, we aim to support long-term 

planning of grid operators by providing insight into the regional distribution of generation and 

demand in future and find that especially the repowering has a very high impact on the 

structure of the future RES-E generation. 

The remainder of this paper is structured as follows. In section 2, we describe the data 

required for our approach and the essential sources. In section 3, we describe the large-

scale optimisation problem itself focussing on the efficient handling of the large-scale data 

set. In section 4, we present the context and results of the case study. We conclude the 

paper in section 5. 

2 Data handling 

For a grid integration of renewables, the allocation of existing generators and loads with their 

specific characteristics and of representative investment options is a great challenge, 

especially in power systems with a changing grid topology. In the following, we first present 

an approach for parameterising the set of existing renewable generators following a three-

step approach. Subsequently, we address the problem of deriving representative investment 

variables for the RES-E expansion planning problem with a variable grid topology.   

For the interconnected European power system, the parameterisation of a consistent dataset 

of the existing assets in the power system is a non-trivial task, as no common source 

comprising all generators and operating resources for all countries is available due to their 

mainly proprietary nature. We, therefore, developed an approach based on three steps (see 

Figure 1). Focussing on generators from RES-E, the first step of our approach comprises a 

match of publicly available and commercial European and national databases. In the second 

step, the missing attributes of the merged database are matched. In both cases, a 

hierarchical multidimensional clustering approach is applied. In the third step, historical 

regional data for the installed RES-E capacities, their average technical lifetime and a 

ranking of the plant site conditions are used to deduce potentially remaining missing 

information about the commissioning dates of the units, which are of great importance for the 

(dis-) investment decisions.  



- 5 - 

 

Figure 1: Conceptual structure of the proposed hierarchical, multidimensional clustering approach for 

parameterising the set of existing RES-E generators across Europe 

In the first step, our main goal is to create an adequate database of each RES-E source by 

merging European databases with generally good technical parameterisations, such as The 

Wind Power1  with generally good georeferenced databases such as OpenStreetMap (OSM)2 

for an exact regionalisation throughout all power ranges. For selected countries, additional 

national databases are used to improve the quality of the data. The main attributes for 

merging the data sets are the geo-coordinates, the plant, generator and operator names, the 

commissioning years as well as the installed power. Furthermore, turbine/module specific 

information, such as types, manufacturer names and its technical specifications, such as the 

hub heights, wind classes, etc. are utilised. While for some attributes, such as coordinates, 

commissioning years, and capacities the distance function is rather trivial we used a 

qualitative score function for other attributes such as names, which we analysed by specific 

string comparison functions. The varying importance of the attributes and the quality of their 

                                                
1
 www.thewindpower.net 

2
 www.openstreetmap.org 
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sources was taken into account by adjusting the attribute weights. By choosing a hierarchical 

approach, amongst others, varying geographical resolutions of the databases, ranging from 

exact generator coordinates, plant/ farm centroids to administrative areas (cities, postal 

codes etc.), can be taken into account by adjusting the minimum distance value 𝑏𝑚,𝑛 for the 

mapping in each round. 

In the second step, the missing parameters of the merged database, such as technical 

specifications are assigned, following the same hierarchical clustering approach as in step 1. 

The major idea for matching the parameters in step 2 is to start with units that are almost 

completely parameterised in order to maintain a high quality of the matching and to quickly 

increase the basis for parameterising the remaining ones. For instance, the missing 

information of the hub height of wind turbine might by easily found given the information of 

the site conditions (wind speed, roughness), the commissioning year and the turbine type 

etc. For the next unit, with a known hub height, but a missing further parameter, the 

previously parameterised unit might be taken as a reference and so on.  

In the third step, potentially missing commissioning information, which is crucial for a correct 

modelling of the future investment cost, are derived on the basis of the known historical 

ramp-up curve of a RES technology in a region and the technical lifetime. Assuming, that the 

RES potential is first exploited in areas with the best site conditions (high resource 

availability, low resource cost etc.), the best-placed units with missing commissioning 

information are taken first to fill the gap to the historical ramp-up curve. Vice versa, these 

units are also decommissioned first in order to fill the gap the projected decommissioning of 

units based on their technical lifetime and the maximum capacity deduced from the ramp-up 

curve.  

Finally, it might happen that the final set of parameterised existing units is insufficient to 

match the published cumulated capacities of historical years. In this case, the optimisation 

horizon for the RES expansion planning might be expanded to include historical years for 

calibrating the location of the RES generators and for fitting the age pattern.   

Besides a well-calibrated database of existing or planned renewable units, the analysis of 

RES-E potentials in the context of a dynamic topology is a great challenge. While the 

introduction of grid restrictions requires a discretisation of potentials, which are typically 

referenced to an area, to the buses of the electricity grid, a restructuring of the grid also 

requires a reallocation of this potential. Focussing on RES-E integration into a variable 

transmission grid topology, we developed an approach for a consistent regionalisation of 

decentralised loads and generators based on Voronoi polygons over the substations of the 

distribution grid [5]. Assuming a static graph-based representation of the distribution grid, the 
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solution of the shortest path problem over this graph to the next available substation with a 

transformation to the transmission grid allows a dynamic reallocation of demand and 

generation profiles and RES-E potentials. Furthermore, the Voronoi polygons define a 

consistent reference area, which might be overlaid with top-down and/or bottom-up modelled 

potentials and profiles. In this context, representative investment variables might be defined 

based on the overlay of polygons with equal conditions concerning the resource availability 

and suitability for specific RES-E technology options of a year with the Voronoi polygon of a 

substation. In Figure 2, the derivation of greenfield investment variables for the RES-E 

expansion planning is illustrated. 

 

Figure 2: Approach to derive nodal greenfield investment variables from spatial potential 

By intersecting the suitable area for an investment option 𝑖 of a certain RES technology 𝜏 

with the weather cells of the meteorological database and the Voronoi polygons over 

substations of the distribution grid (for decentralised investments) or the transmission grid for 

central units respectively, we gain a set of polygons which defines a layer for greenfield 

investment variables. Given a certain parameterisation of the investment option any top-

down or bottom-up potential modelled for a certain technology investment option of a certain 

period, independent of its initial reference system (NUTS3, municipality, postal area, etc.), 

can now be easily transformed to a greenfield investment variable. Due to the implicit 

equality of all equally parameterised units lying within a polygon with equal site conditions 

concerning the resource availability, resource cost and site cost, our approach fulfils the 

general modelling requirement of including unique variables with respect to the objective 
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function and constraint block. Furthermore, the information loss from the in-depth potential 

analysis of each RES-E technology to its modelling representation is kept at a minimum. 

Actually, the information loss might even reduce to zero, in case of a linear bottom-up 

potential analysis within the same reference system.     

For the current modelling of greenfield investment options, we choose a bottom-up approach 

for wind onshore turbines and compute the suitable area for each investment option of our 

turbine database by excluding areas based on the land cover information from the Corine 

Land Cover (CLC2006) database3, including minimum distance requirements to 

infrastructure derived from CLC2006 and excluding protected areas based on Natura 20004. 

In order to keep the model linear, to allow a direct transformation of the potentials without 

information losses, we compute the best-fit turbine configuration of each polygon 𝜗, based on 

a suitability factor for the land use and a linear space requirement per turbine [20], foregoing 

an integer turbine placement algorithm. For ground-mounted solar PV modules, a similar 

approach is chosen, with the addition of favouring or penalising specific sites based on the 

land use concurrence to agricultural usage. Rooftop PV potentials are modelled following [9] 

based on a statistical top-down approach on NUTS 3 level. For computing the intersection 

layer for greenfield investment the suitable areas are computed based on (CLC2006) and a 

statistical parameterisation of the module orientation is chosen. Biomass and biogas 

potentials are based on results of an external model (BioBoost5), which computed the 

potential for perennial, straw and forest residues on NUTS3 level. Due to the independency 

to short-term weather deviations, the layer for the weather cells is omitted and only a land 

use based redistribution is performed. For hydro and wind offshore, no greenfield investment 

variables are computed, restricting the capacity expansion to replacement decisions on 

existing plants or wind parks and to planned projects. The high specification and complexity 

of single large scale investment projects for this technologies as well as the large amount of 

announced project, at least for wind offshore, is the main reason for neglecting greenfield 

investment decisions in this case.   

The modelling of the generation profiles is based on a bottom-up modelling from physical 

models for wind onshore and offshore as well as for ground-mounted and rooftop PV. Taking 

historical weather years from our database (ANEMOS), the generation profiles for each 

greenfield investment variable are computed with a 10-minute resolution. The same holds for 

all existing, planned, approved and constructed wind and photovoltaic generators, although 

the profile for generators lying within the same weather cell and sharing the same 

parameters is just computed once. For bioenergy and hydro profiles the specific national 

                                                
3
 http://www.eea.europa.eu/data-and-maps/data/clc-2006-raster-4 

4
 http://ec.europa.eu/environment/nature/natura2000/index_en.htm 

5
 http://bioboost.eu/home.php 
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historical generation published by EEX6 or ENTSOE7 or from national sources is taken as far 

as available, while dynamic type profiles based on the profiles of available years for a 

country are taken for historical years without any information.  

The regionalisation of demand profiles as well as the regionalisation of conventional power 

plants, which are not part of this paper, follows the same approach as published in [5]. The 

graph of the distribution grid is based on OSM data, while the transmission grid of selected 

European countries is modelled similarly to the approach published in [21]. 

3 Modelling and implementation  

This section deals with the optimal allocation planning problem of RES-E with a focus on the 

efficient modelling of inter- and intra-technological dependencies of (dis-) investment 

decisions with respect to regional and (inter-) national capacity and energy targets and 

bounds. Being modelled as a linear problem with perfect foresight, the following equations 

might be used for a stand-alone analysis of RES expansion targets under grid restrictions, 

given an a priori known expansion plan of the transmission grid. Alternatively, the following 

problem might be included within a combined generation and transmission network 

expansion planning problem (GEP + TNEP) of a power system.  

Analogously to the previously defined derivation of the potential for greenfield investments, 

we will first derive the brownfield potential for replacing existing or already planned 

renewable units within the polygon 𝜗 which lies within the Voronoi polygone of a substation 

node n and has equal conditions concerning the resource availability and suitability for 

specific investment option i of a RES-E technology 𝜏 for a period p. Let S𝑒 define the set of all 

existing units, which in the base year 𝑡0 (current year of the database), are operated, under 

construction or already decommissioned without a replacement. Let furthermore S𝑐 define 

the set of all already known investment candidate units, which are currently in a planning 

state. The brownfield potential 𝑥̅𝑏𝑒 for the replacement of existing and of candidate units 𝑥̅𝑏𝑐 

is defined as follows: 

𝑥̅𝑛,𝜗,𝜏,𝑖,𝑝𝑏𝑒 = ∑ max⁡(𝑝′∈𝑃 1𝛼𝑝′,𝑝 ∗ 𝑥̃𝑛,𝜗,𝜏,𝑝′,𝑠𝑒𝑠∈𝑆𝑒 ) ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝 ∈ 𝑃 (1) 

𝑥̅𝑛,𝜗,𝜏,𝑖,𝑝𝑏𝑐 = ∑ max⁡(𝑝′∈𝑃 1𝛼𝑛,𝜗,𝜏,𝑝′,𝑝 ∗ 𝑥̃𝑛,𝜗,𝜏,𝑝′,𝑠𝑐𝑠∈𝑆𝑒 ) ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝 ∈ 𝑃 (2) 

 

                                                
6
 https://www.eex-transparency.com/ 

7
 https://transparency.entsoe.eu/ 
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where 𝑥̃𝑛,𝜗,𝜏,𝑝′,𝑠𝑒  defines the maximum capacity of existing unit s of technology 𝜏 in period p’ 

which is allocated within a polygon 𝜗, lying within the Voronoi polygone of the grid node n. 

The possibility of a capacity increase on the same area between investment options of 

different periods, or the existing units and their replacement options is taken into account by 

introducing⁡𝛼. This parameter measures the average capacity increase of a technology within 

a certain polygon 𝜗 between the periods. For instance, 𝛼 has a value of two in case that six 

500 kW wind power turbines might be replaced by two 3000 kW turbines within the same 

polygon. Due to the definition of the replacement potentials as the absolute upper bound for 

a period, independent of the actual disinvestment decisions of the underlying units, the 

remaining greenfield potential 𝑥̅𝑔,𝑟 might be expresses as follows: 𝑥̅𝑛,𝜗,𝜏,𝑖,𝑝𝑔,𝑟 = 𝑥̅𝑛,𝜗,𝜏,𝑖,𝑝𝑔 − 𝑥̅𝑛,𝜗,𝜏,𝑖,𝑝𝑏𝑒 − 𝑥̅𝑛,𝜗,𝜏,𝑖𝑝𝑏𝑐  ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝 ∈ 𝑃 (3) 

 

It should be noted that for each period p only one investment option is considered within a 

polygon 𝜚 for a certain technology as older technology options are assumed to be strictly 

dominated with regards to efficiency, and relative investment and variable cost etc.  

Defining the level of a capacity as 𝑥𝑙𝑒𝑣 and its expansion/dismantling as 𝑥𝑒𝑥𝑝/ 𝑥𝑑𝑖𝑠, the 

following restrictions apply to the expansion, dismantling and the level of a capacity variable: 

0 ≤ 𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑙𝑒𝑣,𝑦 ≤ 𝑥̅𝑛,𝜗,𝜏,𝑖,𝑝𝑦
 ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝∈ 𝑃, 𝑦 ∈ {𝑔𝑟, 𝑏𝑒. 𝑏𝑐} (4) 

0 ≤ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑙𝑒𝑣,𝑦 ≤ 𝑥̅𝑛,𝜗,𝜏,𝑠,𝑝𝑦
 ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑠 ∈(𝑆𝑒⋁𝑆𝑐), 𝑝 ∈ 𝑃, 𝑦 ∈ {𝑒, 𝑐}    (5) 

𝑥̅𝑛,𝜗,𝜏,𝑠,𝑝𝑒 ≤ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑙𝑒𝑣,𝑒  ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑠 ∈ 𝑆𝑒 , 𝑝 ∈𝑃|⁡𝑜𝑟𝑑(𝑝) ≤ 𝑜𝑟𝑑(𝑝̃)⁡     (6) 

𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑒𝑥𝑝,𝑒 ≤ 0 ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑠 ∈ 𝑆𝑒 , 𝑝 ∈𝑃|𝑜𝑟𝑑(𝑝) > 𝑜𝑟𝑑(𝑝̃)⁡     (7) 

𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑙𝑒𝑣,𝑦 = 𝑥𝑛,𝜗,𝜏,𝑖,𝑝−1𝑙𝑒𝑣,𝑦 + 𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑒𝑥𝑝,𝑦 − 𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑑𝑖𝑠,𝑦
 ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝∈ 𝑃|𝑜𝑟𝑑(𝑝) > 1, 𝑦∈ {𝑔𝑟, 𝑏𝑒. 𝑏𝑐}⁡⁡ 

(8) 

𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑙𝑒𝑣,𝑦 = 𝑥𝑛,𝜗,𝜏,𝑠,𝑝−1𝑙𝑒𝑣,𝑦 + 𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑒𝑥𝑝,𝑦 − 𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑑𝑖𝑠,𝑦
 ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑠 ∈ (𝑆𝑒⋁𝑆𝑐),∈ 𝑃|𝑜𝑟𝑑(𝑝) > 1, 𝑦∈ {𝑒, 𝑐} 

(9) 
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𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑑𝑖𝑠,𝑦 ≥ ∑ 𝑥𝑛,𝜗,𝜏,𝑖,𝑝′𝑒𝑥𝑝,𝑦𝑝′|𝑑(𝑝′,𝑝)>𝑙𝜏,𝑖− ∑ 𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑑𝑖𝑠,𝑦𝑝′|𝑜𝑟𝑑(𝑝′)≤𝑜𝑟𝑑(𝑝)  

∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝∈ 𝑃, 𝑦 ∈ {𝑔𝑟, 𝑏𝑒. 𝑏𝑐} (10) 

𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑑𝑖𝑠,𝑦 ≥ ∑ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝′𝑒𝑥𝑝,𝑦𝑝′|𝑑(𝑝′,𝑝)>𝑙𝜏,𝑖− ∑ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑑𝑖𝑠,𝑦𝑝′|𝑜𝑟𝑑(𝑝′)≤𝑜𝑟𝑑(𝑝) ⁡
+ ∑ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝′𝑙𝑒𝑣,𝑦𝑝′|𝑜𝑟𝑑(𝑝′)=1⋀𝑑(𝑝′,𝑝)>𝑙𝜏,𝑖  

∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝 ∈𝑃, 𝑦 ∈ {𝑒. 𝑐}⁡   (11) 

𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑙𝑒𝑣,𝑏𝑒 ≤ ∑ ∑ 1𝛼𝑛,𝜗,𝜏,𝑝′,𝑝 ∗ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝′𝑑𝑖𝑠,𝑒𝑠∈𝑆𝑒𝑝′|𝑜𝑟𝑑(𝑝′)≤𝑜𝑟𝑑(𝑝)  
𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝 ∈ 𝑃 (12) 

𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑙𝑒𝑣,𝑏𝑐 ≤ ∑ ∑ 1𝛼𝑛,𝜗,𝜏,𝑝′,𝑝 ∗ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝′𝑑𝑖𝑠,𝑐𝑠∈𝑆𝑐𝑝′|𝑜𝑟𝑑(𝑝′)≤𝑜𝑟𝑑(𝑝)  
∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝 ∈ 𝑃 (13) 

∑ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝′𝑑𝑖𝑠,𝑦 ≤ 𝑥̅𝑛,𝜗,𝜏,𝑠,𝑝𝑦 ⁡,𝑝′|𝑜𝑟𝑑(𝑝′)≤𝑜𝑟𝑑(𝑝)  ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝∈ 𝑃, 𝑦 ∈ {𝑒. 𝑐} (14) 

∑ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑒𝑥𝑝,𝑦𝑝′|𝑜𝑟𝑑(𝑝′)≤𝑜𝑟𝑑(𝑝)⋀𝑜𝑟𝑑(𝑝)>1 ⁡
+ ∑ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝′𝑙𝑒𝑣,𝑦𝑝′|𝑜𝑟𝑑(𝑝′)=1⋀𝑑(𝑝′,𝑝)>𝑙𝜏,𝑖≤ 𝑥̅𝑛,𝜗,𝜏,𝑠,𝑝𝑦

 

𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝 ∈ 𝑃, 𝑦∈ {𝑒. 𝑐} (15) 

 

While restriction (4) and (5) define the potential bounds for the capacity of green and 

brownfield investment variables and the set of existing and candidate RES-E units, restriction 

(6) fixes the level of existing units prior to a reference period 𝑝̃. In this context, the reference 

period denotes the period including the base years of the underlying power plant database. 

By forbidding a capacity expansion for the set of existing RES units after the reference year 

(7), their possible replacement is shifted to the corresponding brownfield investment variable. 

The usual definition of a variable’s level of a period as the sum of the previous level and the 

increase minus the decrease within the period is guaranteed by eq. (8) and (9).  The 

dismantling restrictions (10) and (11) ensure that capacities are decommissioned if the 

difference between the period in which the capacity was expanded and the current period 𝑑(𝑝′, 𝑝) exceeds their technical lifetime 𝑙𝜏,𝑖⁡unless they where decommissioned in previous 

periods. The logical restriction that the capacity of replacement variables is limited by the 

dismantling of the underlying existing or candidate units adjusted by a factor for the 

technology development is set in eq. 12 and 13. Once existing and candidate units were fully 
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expanded and afterwards dismantled, eq. (14) and (15) prevent any later replacement of 

existing/candidate units within the same variable. 

Due to the large number of existing RES units, going into millions, and their highly diverse 

parameterisation, which increases the number of generation profiles, it might be of interest to 

reduce the number of variables. By decommissioning existing units at the end of their 

technical lifetime, or if the information is available, at their known decommissioning date, they 

can be handled as a parameter and added to the right-hand side. 

Further restrictions on the capacity level, such as regional or national/international lower and 

upper bounds or targets can be easily added for each technology or any combination of 

technologies by a multiplication with the corresponding incidence matrix Π: Π ∗ 𝑥 ≤ 𝑏 (16) 

 

Due to the nodal indices of all capacity variables starting at the distribution grid level and 

including selected pure transmission grid substations, introducing capacity constraints of the 

grid is an easy task, knowing the assignment of nodes to a topology of the transmission grid 

following the dynamic assignment approach presented in [5]. A quite rough but simple 

estimation of the upper bound of the grid capacity is to use the thermal limit of the adjacent 

lines of a bus m∈ 𝑀 of the transmission grid of a period p. Summing up all variables which 

are either directly connected to this bus or indirectly based on the solution of the shortest 

path on the transmission grid is an easy task: 

∑ ∑ ∑(∑𝑥𝑛,𝜗,𝜏,𝑠,𝑝𝑙𝑒𝑣𝑠∈𝑆 + ∑⁡𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑙𝑒𝑣𝑖∈𝐼𝜏 ) ≤ 𝐶𝑚𝜏∈Τ𝜗∈Θ𝑛𝑛∈𝑁𝑚  

∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃 (17) 

 

Here, 𝑁𝑚 denotes the set of nodes of the distribution/transmission grid, which are assigned 

to bus m, and 𝐶𝑚 denotes the capacity of the adjacent lines. 

Modelling restrictions for RES-E generation is straightforward if, given the same site 

conditions, units of a technology are equally parameterised along the time axis.  For 

generation variables 𝑔 with an inter-period resolution ℎ ∈ 𝐻𝑝, the a priory modelled profile 

vector  𝜈, when multiplied with the corresponding level of the capacity variable, defines an 

upper bound. 

𝑔𝑛,𝜗,𝜏,𝑖,𝑝,ℎ ≤ 𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑙𝑒𝑣,𝑦 ∗ 𝜈𝑛,𝜗,𝜏,𝑖,𝑝,ℎ ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖 ∈ 𝐼𝜏, 𝑝 ∈ 𝑃, ℎ ∈ 𝐻𝑝, 𝑦∈ {𝑔𝑟, 𝑏𝑒. 𝑏𝑐} (18) 
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𝑔𝑛,𝜗,𝜏,𝑠,𝑝,ℎ ≤ 𝑥𝑛,𝜗,𝜏,𝑖,𝑝𝑙𝑒𝑣,𝑦 ∗ 𝜈𝑛,𝜗,𝜏,𝑠,𝑝,ℎ ∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑠 ∈ 𝑠 ∈ (𝑆𝑒⋁𝑆𝑐), 𝑝 ∈ 𝑃, ℎ ∈ 𝐻𝑝, 𝑦∈ {𝑒, 𝑐} (19) 

 

In the event that the curtailment of RES is not allowed, eq. (18) and (19) are formulated as 

equality constraints. Imposing restrictions on the generation variables, such as the common 

minimal RES-E share constraint and lower and upper regional and national bounds, follow 

the same scheme as eq (15).  From a computational point of view, it should be noted that in 

the case of missing generation restrictions with an inter-period time resolution, the number of 

variables might be highly reduced by summing up the profile parameter of a period to a 

capacity factor in advance and define the generation by variables with a period time 

resolution. Taking into account that technological changes influence the profiles of RES-E 

technologies along the time horizon, as well as degradation effects, might reduce the 

efficiency over time, modelling the generation becomes more complex. Given the 

comprehensive definition of capacity level variables as the combination of (dis-) investment 

of former periods with possible different profiles, the definition of the generation variable 

changes as follows: 

𝑔𝑛,𝜗,𝜏,𝑖,𝑝,ℎ ≤ ∑ 𝑥𝑛,𝜗,𝜏,𝑖,𝑝′𝑒𝑥𝑝,𝑦 ∗ 𝜈𝑛,𝜗,𝜏,𝑖,𝑝′,𝑝,ℎ𝑝′|𝑑(𝑝′,𝑝)≤𝑙𝜏,𝑖−⁡ ∑ 𝑥𝑛,𝜗,𝜏,𝑖,𝑝′𝑑𝑖𝑠,𝑦 ∗ 𝜈𝑛,𝜗,𝜏,𝑖,𝑝′,𝑝,ℎ𝑝′|𝑜𝑟𝑑(𝑝′)≤𝑜𝑟𝑑(𝑝)  

∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑖∈ 𝐼𝜏, 𝑝 ∈ 𝑃, ℎ∈ 𝐻𝑝, 𝑦∈ {𝑔𝑟, 𝑏𝑒. 𝑏𝑐} 
(20) 

𝑔𝑛,𝜗,𝜏,𝑠,𝑝,ℎ ≤ ∑ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝′𝑙𝑒𝑣,𝑦 ∗ 𝜈𝑛,𝜗,𝜏,𝑠,𝑝′,𝑝,ℎ𝑝′|𝑜𝑟𝑑(𝑝′)=1+ ∑ 𝑥𝑛,𝜗,𝜏,𝑠,𝑝′𝑒𝑥𝑝,𝑦𝑝′|𝑑(𝑝′,𝑝)≤𝑙𝜏,𝑖⋀𝑜𝑟𝑑(𝑝′>1)∗ 𝜈𝑛,𝜗,𝜏,𝑠,𝑝′,𝑝,ℎ−⁡ ∑ 𝑥𝑛,𝜗,𝜏,𝑖,𝑝′𝑑𝑖𝑠,𝑦𝑝′|𝑜𝑟𝑑(𝑝′)≤𝑜𝑟𝑑(𝑝)⋀𝑜𝑟𝑑(𝑝′>1)∗ 𝜈𝑛,𝜗,𝜏,𝑖,𝑝′,𝑝,ℎ 

∀𝑛 ∈ 𝑁, 𝜗 ∈ Θ𝑛, 𝜏 ∈ Τ, 𝑠 ∈ 𝑠∈ (𝑆𝑒⋁𝑆𝑐), 𝑝∈ 𝑃, ℎ ∈ 𝐻𝑝, 𝑦∈ {𝑒, 𝑐} 
(21) 

 

Here, 𝜈𝑛,𝜗,𝜏,𝑖,𝑝′,𝑝,ℎ /𝜈𝑛,𝜗,𝜏,𝑠,𝑝′,𝑝,ℎ defines the profile of existing units or investment options in 

period p with a commissioning in period 𝑝′. Forbidding RES curtailment analogously leads to 

fulfilling restrictions (19) and (20) to equality. 

Finally, we define the objective function based on a minimisation of the discounted 

investment and variable cost: 
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𝑚𝑖𝑛 ∑
[  
   
   
   
 𝑑̃(p) ∗ ∑ ∑ ∑ ∑ 𝜆𝜏,𝑝 ∗ ( 

 ∑ 𝑔𝑛,𝜗,𝜏,𝑠,𝑝,ℎ𝑙𝑒𝑣,𝑒 ∗ 𝑐𝑛,𝜗,𝜏,𝑠,𝑝𝑣𝑎𝑟𝑠∈𝑆𝑒 + ∑ 𝑔𝑛,𝜗,𝜏,𝑠,𝑝,ℎ𝑙𝑒𝑣,𝑐 ∗ 𝑐𝑛,𝜗,𝜏,𝑠,𝑝𝑣𝑎𝑟𝑠∈𝑆𝑐 +
∑(⁡𝑔𝑛,𝜗,𝜏,𝑖,𝑝,ℎ𝑙𝑒𝑣,𝑔𝑟 + ⁡𝑔𝑛,𝜗,𝜏,𝑖,𝑝,ℎ𝑙𝑒𝑣,𝑔𝑒 + ⁡𝑔𝑛,𝜗,𝜏,𝑖,𝑝ℎ𝑙𝑒𝑣,𝑔𝑐 )𝑖∈𝐼𝜏 ∗ 𝑐𝑛,𝜗,𝜏,𝑖,𝑝𝑣𝑎𝑟 ) 

 ℎ∈𝐻𝑝 +𝜏∈Τ𝜗∈Θ𝑛𝑛∈𝑁

∑ ∑ ∑𝜆𝜏,𝑝 ∗ 𝜅𝜏
( 
   
 ∑ ∑ min(𝑑(𝑝′, 𝑝) − 𝑙𝜏,𝑖,𝑒𝑐 , 𝑑̃(p)) ∗ 𝑥𝑛,𝜗,𝜏,𝑖,𝑝′𝑒𝑥𝑝,𝑐 ∗ 𝑐𝑛,𝜗,𝜏,𝑠,𝑝′𝑖𝑛𝑣,𝑐𝑝′|𝑑(𝑝′,𝑝)≤𝑙𝜏,𝑖,𝑒𝑐𝑠∈𝑆𝑐 +

∑ ∑ min(𝑑(𝑝′, 𝑝) − 𝑙𝜏,𝑖,𝑒𝑐 , 𝑑̃(p))𝑝′|𝑑(𝑝′,𝑝)≤𝑙𝜏,𝑖,𝑒𝑐 ∗ ( 
 ⁡𝑥𝑛,𝜗,𝜏,𝑖,𝑝′𝑒𝑥𝑝,𝑔𝑟 ∗ 𝑐𝑛,𝜗,𝜏,𝑠,𝑝′𝑖𝑛𝑣,𝑔𝑟+⁡𝑥𝑛,𝜗,𝜏,𝑖,𝑝′𝑒𝑥𝑝,𝑔𝑒 ∗ 𝑐𝑛,𝜗,𝜏,𝑠,𝑝′𝑖𝑛𝑣,𝑔𝑒+⁡𝑥𝑛,𝜗,𝜏,𝑖,𝑝′𝑒𝑥𝑝,𝑔𝑐 ∗ 𝑐𝑛,𝜗,𝜏,𝑠,𝑝′𝑖𝑛𝑣.𝑔𝑐 ) 

 𝑖∈𝐼𝜏 ) 
   
 

𝜏∈Τ𝜗∈Θ𝑛𝑛∈𝑁 ]  
   
   
   
 

𝑝∈𝑃 (22)

where 𝜆𝜏,𝑝 denotes the discount factor of period p and a duration of 𝑑̃(p) and 𝜅𝜏 the annuity 

factor for a technology 𝜏 with an economic lifetime of an investment of 𝑙𝜏,𝑖,𝑒𝑐.  

It is important to mention that we differentiate the investment cost of candidate investment 

options based on the planning state (approved, proposed) and set different cost for 

greenfield and brownfield investments. For optimisation runs with restrictions addressing 

solely capacity variables, such as national capacity targets for RES-E technologies, all cost 

parameters are divided by the capacity factor of the corresponding variables, in order to run 

an optimisation based on the levelised cost of electricity (LCOE). This way, investments at 

preferable sites are incentivised. For technical reasons, we also include slack variables for 

certain restrictions and penalise them within the objective function. In the case of equality 

restrictions, the slack variable is furthermore split into its positive and negative part in order 

to penalise deviations in both directions. Common reasons for active slack variables are 

nationally defined combined capacity and generation targets for certain RES-E technologies 

which are either inconsistent to the short or long-term availability of RES-E potentials. Such 

inconsistency of the input data often occurs in the case of a linear scaling of generation per 

capacity values, ignoring profile changes due to technological evolutions, degradations 

effects, spatial potential exploitations by existing units or their actual age pattern.  

The model is implemented in Matlab and solved using CPLEX. For typical applications such 

as the translation of national RES-E share targets up to 2050 with a yearly resolution the 

problem size lies in the range of 1e6 to 1e7 variables and constraints and is solved within a 

few minutes. In the event that inter-period resolved constraints are applied, such as the 

consideration of load flow constraints based on a direct current optimal power flow (DC-OPF) 

formulation, the problem size and complexity rapidly increases. Although the DC-OPF 

approach itself is a linear relaxation of the complex alternating current (AC) OPF, expressing 

the branch flow through the product of the bus injection vector and the power transfer 

distribution factor (PTDF) matrix, solving the RES-E allocation planning based on an hourly 

resolution for every year might lead to computational issues for large systems. A switch from 
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yearly resolutions to periods representing multiple years and the choice of an adequate 

reduction of the time structure with respect to the constraint matrix [4] are possible strategies 

to keep the model computationally feasible.   

4 Case study 

We now demonstrate our approach in the context of a case study on RES-E expansion. 

While our approach is designed for the entire European continent, we focus on the island of 

Ireland in the case study for illustrative purposes. Ireland is well-suited as a case study 

because of its high RES-E targets. The case study is aimed at providing support to the 

regulatory authority and the government in achieving national RES-E targets in different 

years in a cost minimal way. Moreover, we study the regional distribution of future generation 

and demand to provide support to the transmission grid operator for its long-term planning 

processes. While our analysis below focuses on the Republic of Ireland, it is important to 

bear in mind that the Single Electricity Market (SEM), which will be replaced by the 

Integrated Single Electricity Market (I-SEM) in future, is the marketplace for trading electricity 

in the Republic of Ireland and Northern Ireland [22]. At the same time, however, renewables 

targets are negotiated and agreed with each member state, i.e. Northern Ireland contributes 

towards the UK target. In this context, the fact that Northern Ireland pursues the same 

relative renewable electricity target for 2020 has helped to minimise potential market 

distortions to date. While especially wind generation both onshore and offshore has been a 

subject of previous studies on the meteorological side [23], as well as on the generation side 

[24,25], no study covering the overall renewable targets of Ireland in the long-term (2050) 

including spatially differentiated generation or dynamic grid constraints has been performed 

yet. 

4.1 Targets and assumptions 

As is the case for many other European countries, the development of electricity generation 

capacities from renewable sources was based on a FIT scheme in Ireland. The Irish 

Renewable Energy Feed-in Tariff (REFIT) scheme is funded by the Public Service Obligation 

(PSO), i.e. it is paid for by all electricity consumers. The main purpose of REFIT was to 

ensure that Ireland meets its 2020 target of 40% of electricity coming from renewable 

sources. In 2015, the generation of RES-E increased to 27.3% of gross electricity 

consumption with wind onshore alone accounting for 22.8% (i.e. accounting for more than 

80% of all RES-E) [26].  

Unlike FIT schemes in many other countries, the Irish REFIT does not provide support for 

solar energy so far. However, REFIT closed as of the end of 2015 and the subsequent 

scheme is currently being prepared and discussed. While the exact details of the new 
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scheme have not yet been decided, the Irish government in their energy white paper 

released in December 2015 [27] state that they envisage a diversification of renewable 

energy sources. While onshore wind is planned to continue to make a significant 

contribution, it is debated whether the new scheme should also support solar PV and further 

technologies including offshore wind and others. Moreover, the government envisages a 

more market-based support of RES-E.  

At the same time, the Irish government negotiates the 2030 targets for RES-E with the EU. 

Together with the uncertain demand development, the yet unknown outcome of these 

negotiations creates a high uncertainty around the overall amount of RES-E required. In this 

uncertain context, our case study addresses the following two problems:  

1. Provision of support to the regulatory authority and government in achieving their national 

RES-E target determined as % share of energy demand in different years in a cost 

minimal way. For practicality reasons, they may wish to auction RES-E expansion 

tranches in a technology-specific and capacity-based way. This procedure constitutes a 

major challenge and risk in terms of achieving a cost minimal solution. They will, 

therefore, require structured support as to how much capacity of which technology at 

what point in time should be auctioned. 

2. Provision of support to the Irish TSO for long-term planning by providing insight into the 

future regional distribution of generation and demand for different scenarios. 

In order to address the uncertainty in the demand development (from today’s perspective 

driven to a large extent by the growth and connection of data centres according to the Irish 

TSO EirGrid) and in the 2030 targets, we consider two different demand development cases 

[28,29] and three different 2030 target scenarios for RES-E in Ireland (45%, 50%, 60%). By 

2050, the corresponding target values for RES-E are assumed to increase to levels of 70% 

(for the 45% scenario in 2030), 80% (for the 50% scenario in 2030) and 90% (for the 60% 

scenario in 2030) respectively. As one of the demand cases is based on the EU Reference 

Scenario 2016 [28] using the PRIMES model and the other demand case is based on the 

Generation Capacity Statement by the Irish TSO EirGrid [29], we refer to the corresponding 

scenarios by PRIMES 45 – EirGrid 60 (see Figure 3). Note that our EirGrid demand case is 

based on EirGrid’s ‘Median’ demand projection assuming the connection of 100% of data 

centres that are already in the connection process but no connection of additional data 

centres. Moreover, note that while this demand case only covers the period until 2025, we 

assume the same relative growth rates as in the PRIMES demand case for the period 2025-

2050. In our analysis, the results of which are presented in the subsequent section 4.2, we 

further explore for each of these scenarios how the results differ between a pure cost 

minimal solution (Least Cost), a solution that assumes a predefined minimum level of 
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diversification of RES-E sources (Diversify) and a solution that assumes a predefined 

minimum level of rooftop PV in addition (Diversify+PV). Thus, we consider a total of 18 

scenarios. The assumptions for the Diversify scenario are that a minimum of 15% of the 

RES-E generation must come from sources other than wind onshore by 2030 increasing to 

30% by 2050. In the Diversify+PV scenario we assume that, in addition to this, a minimum of 

5% of the RES-E generation must come from rooftop PV by 2030 increasing to 10% by 2050.   

 

Figure 3: RES-E target scenarios for the Republic of Ireland 

Concerning the parameterisation of RES-E investment cost, average 2015 investment values 

of 1560 €/kW for wind onshore, 4650 €/kW for wind offshore and 1810 €/kW for PV are taken 

from [30]. For biomass and biogas investments we assume 2250 €/kW and 3000 €/kW 

respectively on the basis of [31]. Based on this reference basis, investment cost for individual 

regional investment options are adjusted within a certain range in order to account for site 

and generator-type specific conditions such as the varying land-usage or turbine (module) 

specifications of different manufacturers. Furthermore, varying project costs for greenfield 

and brownfield investment options depending on their current project state are taken into 

account. For the future, cost reduction rates from 2015 to 2025 are taken from [30] and a 

moderate further reduction of 5% from 2025 to 2050 is assumed for all technologies except 

wind offshore, where we assumed a reduction of 15%. Moreover, we generally assume an 

interest rate of 6% for most technology investments with the exception of rooftop PV, where 

we assume a lower rate of 3% due to the main contribution of private households to the 

expansion of this technology. For an estimation of the upper bound of the grid capacity 

based on eq. (17) and a dynamic grid assignment approach following [5], we added up the 

thermal line limits of the existing or projected extra high voltage branches of the transmission 

grid substation for each year. The corresponding grid model is based on data from the All-

Island Transmission Forecast Statement [32] by EirGrid8.   

                                                
8
 See: http://www.eirgridgroup.com/ 
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4.2 Results and discussion  

We now turn to the results of our model for the case study. We first describe the relevant 

results on a national level (section 4.2.1) before describing the results on a regional level 

(section 4.2.2).  

4.2.1 RES-E expansion on a national level  

Figure 4 shows the development of installed RES-E capacity until 2050 for the three 

scenarios ‘Least Cost’, ‘Diversify’ and ‘Diversify+PV’ for the highest (Eirgrid 60, left) and 

lowest (PRIMES 45, right) demand development case respectively. Figure 4 reveals that, 

unsurprisingly, in the Least Cost scenario, RES-E expansion basically happens through wind 

onshore only – regardless of the demand case. In the Diversify scenario, until 2030, the two 

preferred technologies beyond wind onshore are Wind Offshore and Bioenergy. After 2040, 

Figure 4 also shows expansion in ground-mounted solar PV for the Diversify scenario. 

Interestingly, however, this does only happen for the high demand case. For the 

Diversify+PV scenario, Figure 4 shows significant capacity expansion in Rooftop PV from 

2030 onwards. In this scenario, however, there is no additional expansion in ground-mounted 

PV as in the Diversify scenario. By and large, the technology types that are expanded are the 

same for both demand cases, with the exception of ground-mounted PV. The amount of 

installed capacity by technology type, however, varies significantly between the two demand 

cases. For wind onshore, for instance, more than 12 GW will need to be installed by 2050 in 

the Least Cost scenario for the EirGrid 60 demand case while less than 9 GW will need to be 

installed in the PRIMES 45 demand case for the same scenario. 

 

Figure 4: RES-E capacity expansion for 2 selected demand cases 

Comparing capacity (Figure 4) and generation (Figure 5) by technology type, it can be 

observed that the three times higher capacity expansion in PV rooftop as compared to Wind 
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Offshore in the Diversify+PV scenario in 2050 yields lower RES-E generation levels. Of 

course, this is a direct consequence of the large differences in full load hours.  

 

Figure 5: RES-E generation for 2 selected demand cases 

Figure 6 shows the discounted costs for the same scenarios and demand cases. The figure 

reveals that the increase in discounted costs for the Diversify scenario (compared to the 

Least Cost scenario) is rather moderate varying between 7-9% in 2030 and around 6% in 

2050 for both demand cases. The increase for the Diversify+PV scenario (again compared to 

the Least Cost scenario), however, varies between 60-70% in 2030 and around 20% in 2050.  

 

Figure 6: Discounted costs for capacity expansion for 2 selected demand cases 

Overall, the above results show that the uncertain demand development, in the long run, 

creates enormous challenges for policy and planning in terms of compliance with RES-E 

policy targets defined as % shares of the overall electricity demand. This challenge has also 

been discussed by [33] in the context of climate variability. Moreover, our results show that, 
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unsurprisingly, wind onshore proves to be the dominant technology across all scenarios. 

However, bearing the extremely high values of installed capacity in wind onshore in mind 

which are required to comply with EU targets in the long run, it should be noted that these 

imply enormous space requirements and will almost inevitably lead to problems in relation to 

public acceptance [34] but also in relation land-use planning in general.  

It is interesting to see that, while the 10% minimum share for rooftop PV only comes into play 

for the Diversify+PV scenario in 2050, the capacity required to fulfil this requirement is 

already expanded in 2030. This can be explained as follows. Around 2030, a large cohort of 

installed wind onshore turbines reaches the end of its lifetime and needs to be repowered or 

decommissioned. Consequently, there is a large need for RES-E generation capacity in the 

2030’s. Moreover, please note that our model is a perfect foresight model as mentioned in 

section 3, i.e. it knows in 2030 already that the 10% solar share needs to be fulfilled by 2050. 

And expanding the PV capacity right away allows reducing investments into wind onshore 

(including repowering investments) and thus helps reduce the overall costs.  

Another interesting result is that the (country-wide) average full load hours of wind onshore 

(which can be obtained by dividing the generation by the installed capacity) increase over 

time from approx. 3,000 h/y in 2020 to approx. 3,200 h/y in 2050, while at the same time the 

installed wind onshore capacity is expanded strongly. One would typically expect that the 

average full load hours decrease with increasing installed capacity on the basis of the 

assumption that the ‘best’ locations are usually exploited first. However, this trend is 

overcompensated by an increase in full load hours resulting from the repowering over time.  

Finally, our results shed light on the tradeoff between different political targets, namely cost 

minimisation and diversification. While RES-E diversification may be desirable from a political 

perspective and may implicitly contribute to reducing concerns in relation to acceptance and 

land-use planning, it doesn’t come for free. While diversification on the basis of solar PV 

leads to a significant cost increase, our results reveal that diversification per se (including 

wind offshore and bioenergy) only leads to a moderate cost increase. In particular, bioenergy 

seems to be often forgotten in the discussion concerning the future energy system while our 

results show that this technology can play an important role in diversifying RES-E generation. 

Moreover, biomass is synchronous electricity generation which brings further advantages in 

relation to grid operation which is not considered in this paper.    

4.2.2 RES-E expansion on a regional level 

Figure 7 shows the spatial distribution of the total installed RES capacities in Ireland under 

application of the energy constraints given by PRIMES 45 for the three investigated 

scenarios Least Cost, Diversify and Diversify+PV in the final year of the optimisation 2050. 
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The regional areas are consisting of the feed-in areas of the individual substations of the 

distribution and transmission grid level as described in the previous section. In all three 

cases, the results show a rather heterogeneous distribution of the installed capacities, which 

mainly stem from wind onshore (cf. Figure 4). In the Least Cost scenario, the most 

favourable locations of wind generation on the west coast and in the very North of the island 

are subject to the strongest expansion. These capacity hotspots change in both Diversify 

scenarios, as the introduction of wind offshore leads to new clustered generation on the 

landfall of the grid connection. Rooftop solar PV has its most preferable conditions in the 

South of Ireland and requires a sufficient amount of population in order to have the required 

roofs available, thus generation shifts southwards in the Diversify+PV case.  

 

Figure 7: PRIMES 45 - Regional distribution in 2050 of installed RES-E capacities in Least Cost (left), 

Diversify (middle) and Diversify+PV (right) scenario in the Republic of Ireland 

Figure 8 shows the spatial distribution of the total installed RES-E capacities in Ireland under 

application of the energy constraints given by the EirGrid60 scenario in 2050. The 

comparison to the installed capacities when applying the moderate RES-E energy goals in 

the PRIMES 45 scenario reveal a much stronger clustering of capacities. In the Least Cost 

scenario, the trend of clustered onshore wind generation in the west and north is intensified, 

with a single region reaching over 1,500 MW installed RES-E capacity. As in Figure 7, this 

effect is softened in the Diversify scenarios, as offshore wind and solar show a different 

spatial concentration. The introduction of larger amounts of ground-based solar capacities in 

the Diversify scenario is reflected in high capacity concentrations in locations in the 

southeast with the highest amount of solar irradiation available. As generation from solar 

shifts towards rooftop solar in the Diversify-PV case, the metropolitan area of Dublin 

becomes a major concentration of generation, as the overall available amount of rooftops in 

the more southern areas is too limited to ensure the required energy constraints given in this 

case. Overall, the Diversify scenarios lead, expectedly, to a more scattered generation due to 

the more diverse mix of technology types. Furthermore, the maximum capacity allocated to a 
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single substation is decreasing, indicating that the additional constraints in the Diversify 

scenarios might result in less stress on the transmission grid, which might put the additional 

costs into perspective to the potential savings on the grid side (the quantification of which is 

outside the scope of this paper). 

 

Figure 8: EirGrid 60 - Regional distribution in 2050 of installed RES-E capacities in Least Cost (left), 

Diversify (middle) and Diversify+PV (right) scenario in the Republic of Ireland 

In addition to Figure 8, Figure 9 shows the resulting residual load curves for three illustrative 

Voronoi polygons under the three EirGrid 60 scenarios in 2050. The chosen Voronoi 

polygons include the polygon in the North with the highest wind onshore concentration 

across all scenarios, the polygon in the Southeast with the highest concentration of ground-

mounted PV in the Diversify scenario and the polygon in Dublin with the highest rooftop PV 

concentration in the Diversify+PV scenario.  

The residual load curves reveal that the area in the North of the republic will have a residual 

load of zero or below zero throughout the year across all scenarios because of the high wind 

onshore concentration across all scenarios. This implies that the area will be a net exporter 

of electricity throughout the year. Further grid analyses will need to be carried out to explore 

whether the existing grid capacities will be sufficient to transport these amounts of electricity 

to the demand centres. Moreover, Figure 9 shows that for Dublin, the residual load can be 

expected to remain positive throughout the year with the exception of the Diversify+PV 

scenario which involves the installation of a large amount of rooftop PV modules until 2050. 

However, even in the Diversify+PV scenario, the residual load is only expected to be 

negative in approximately 1,500 hours per year and the absolute level of negative residual 

load is much lower than for the area in the North. Finally, Figure 9 reveals that for the 

polygon in the Southeast, a residual load of approximately zero can be expected throughout 

the year with the exception of the Diversify scenario which involves the installation of ground-

mounted PV in this area. Firstly, the residual load of around zero for two of the three 
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scenarios implies that this is a rural area with very low electricity demand. Secondly, for the 

Diversify scenario, the curves show that the residual load can be expected to be negative in 

roughly 3,000 hours per year. Again, further grid analyses will be required to explore whether 

the grid capacities will allow for the resulting net export of electricity during these 3,000 

hours. 

 

 

Figure 9: Residual load curves for 3 illustrative Voronoi polygons 

5 Conclusions and outlook 

In order to provide support in the context of long-term expansion and allocation planning of 

renewable electricity generation (RES-E) capacities, models are needed which enable an 

estimation of where RES-E capacities are likely to be allocated. To assess where the RES-E 

generation will feed into the transmission grid, these models need to be able to consider the 
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capacity and topology of the power grid including their dynamic nature according to 

published grid development plans. Moreover, such models should be able to take 

technological advances into account.  

In this paper, we therefore developed a model that meets these requirements. Different 

models existed before, which were targeted at a nodal RES-E expansion planning, mostly 

based on a fixed and given assignment of RES-E potentials to a node. However, our model 

goes beyond existing models by considering the assignment of RES-E potentials to grid 

nodes as a variable.  

We demonstrated the model in the context of a case study on RES-E expansion planning in 

the Republic of Ireland. As part of the case study, we analyse a set of different scenarios, 

including a Least Cost scenario, a (RES-E) Diversify scenario and a Diversify+PV scenario 

requiring a predefined minimum amount of solar PV capacity to be expanded. Wind onshore 

proves to be the dominating technology across all scenarios and the Least Cost scenario is 

almost exclusively based on this technology. We also find that the Diversify scenario only 

leads to a moderate cost increase with bioenergy and wind offshore as the most preferred 

technologies after wind onshore. In contrast, the Diversify+PV scenario leads to a significant 

cost increase. We wish to emphasise, however, that our model does not include costs for 

grid expansion. In terms of the regional distribution of the RES-E generation, wind onshore 

potentials are highest in the West and North of the country leading to a high concentration of 

wind onshore capacities in these areas, particularly in the Least Cost scenario. In the 

Diversify scenarios, the RES-E generation is more scattered over the country, particularly in 

the Diversify+PV scenario, which requires a large amount of rooftop surface. However, since 

the rooftop PV capacities will mostly be installed in areas of high demand, the higher costs 

for PV are likely to be at least partially compensated by lower grid expansion costs. 

The main limitation of our approach is the assumption of a perfect foresight for a problem 

with mainly stochastic weather driven variables. Furthermore, cross-sectoral 

interdependencies to related systems such as the gas, the thermal heating or the 

transportation sectors are neglected by focussing on the power system. Concerning the case 

study, our focus was to demonstrate our ability to combine GIS-based approaches for 

potential analysis of multiple RES-E technologies with the nodal representation of individual 

generators for solving the optimal allocation problem of RES-E in grid models. To allow for a 

comparison of different RES-E technologies under consideration of the grid-related cost 

components, an integration of the approach presented in this paper into a combined 

generation and transmission network expansion planning problem (GEP + TNEP) would be 

needed. Besides simply expanding the combined TNEP and GEP formulation to include the 

introduced constraints, the handling of the resulting problem complexity will be the major 
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challenge for the next steps. While some approaches for an efficient handling of variables 

were presented within this paper, further problem reduction techniques such as 

decomposition approaches will be needed in order to solve such problems for large power 

systems. Finally, considerations of acceptance and opposition, as well as land use planning 

more generally should be given consideration in future research. 
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