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Abstract

This paper proposes a new method to estimate dynamic panel data models with spatially
dependent errors that allows for known/unknown group-specific patterns of slope heterogene-
ity. Analysis of this model is conducted in the framework of composite quasi-likelihood (CL)
maximization. The proposed CL estimator is robust against some misspecification of the un-
observed individual/group-specific fixed effects. Since our CL method is based on the idea
of doing regressions involving common-group stochastic trends, no endogeneity problem will
arise. Therefore, unlike existing methods the proposed estimator does not require the use of
intrumental variables nor bias correction/reduction. Clustering and estimation of the param-
eters of interest involve a large-scale non-convex mixed-integer programming problem, which
can then be solved via a new efficient approach developed based on DC (Difference-of-Convex
functions) programming and the DCA (DC algorithm). Suppose that the number of time peri-
ods and the size of spatial domain grow simultaneously, asymptotic theory is derived for both
cases where the covariates are stationary and nonstationary. An extensive Monte Carlo sim-
ulation is also provided to examine the finite-sample performance of the proposed estimator.
Our method is then applied to study the long-run relationship between saving and investment
rates. The empirical findings reconcile various empirical approaches to capital mobility in the
literature; and there exists substantial capital mobility in some countries while no conclusion
about capital mobility can be drawn in other countries. Applied economists can easily imple-

ment the method by using the companion software to this paper.

Keywords: Large dynamic panels, spatial data, group-specific heterogeneity, clustering, asymp-
totics, large-scale non-convex mixed-integer program, difference of convex (d.c.) functions,
DCA, Variable Neighborhood Search (VNS)

1 Introduction

This paper proposes a new method for estimation and inference of dynamic panel data models with
unobserved group-specific patterns of slope heterogeneity and spatially dependent errors. Unob-
served heterogeneity and spatial dependence across individuals/units have been the main focus of
many econometric papers in panel data, and been well motivated from empirical economic problems,
for example, in recent studies of empirical growth [see, e.g., Durlauf, Johnson, and Temple (2005),
Corrado, Martin, and Weeks (2005), Meliciani and Peracchi (2006), Alexiadis (2013), Durlauf and
Quah (1999), Phillips and Sul (2007, 2009)]

A panel model with grouped heterogeneity in the slopes represents a viable approach to sum-
marize grouped data as it is a compromise between a parsimonious model and one with too many

parameters. With data clustered in units, one can estimate three different models. In the first



model, one can ignore the grouped structure in the units and estimate a regression with the data
pooled. The estimates from this ‘pooled’ model will be biased if the units differ much, but with the
pooled data, the model will become the most parsimonious in terms of the number of parameters
estimated. At the other extreme, one could estimate one regression model for each unit, then take
the average of all the estimated slope parameters if these parameters vary randomly around a con-
stant - this approach is called the mean-group estimator [see Pesaran and Smith (1995); Pesaran,
Smith, and Im (1996) and Fotheringham, Charlton, and Brunsdon. (1997)]. Pesaran, Shin, and
Smith (1999) also propose the pooled mean group estimator for autoregressive distributed lag mod-
els (ARDL) that allow for both common parameters and heterogeneous parameters. However, this
option produces a way more parameters, and the estimates of the slope parameters will be highly
variable if there are not many observations for each unit. The grouped slope heterogeneity approach
represents a middle ground between these two extremes, thus it can be viewed as a compromise
between completely ignoring the structure of the data and fully taking this structure into account
by estimating many different models.

To be specific, a simple linear spatial-error specification with dynamic grouped patterns of
heterogeneity takes the following form as a special case of a general ARDL model defined by (2.2)

in Section 2:
Ayi,t = + ¢gi (yi,t_l — 9;;.’13@'715) -+ A;Ayivt_l -+ 6;_TA:132-¢_1 + €ity 7= 1, Cee N, t= 1, . ,T, (11)

where g¢; represents a group assignment that assigns each individual, 7, to some specific group, say
g; € {1,...,G}; here G is the number of groups to be specified a priori; u;, i = 1,..., N, are
individual-specific fixed effects; ¢y, 8,,, A;,, and &, ,
rameters; the explanatory variables x;, are contemporaneously independent of ¢;,; moreover, ¢4,

1 = 1,..., N, are common-group slope pa-

ie{l,...,N}and t € {1,...,T}, are identically distributed over space and time; for every given
ie{l,...,N}, ¢  are contemporaneously independent, and for every given ¢t € {1,...,T}, €;; are
spatially dependent [across locations|, which effectively implies that €;, and €; ,, t # s, are indepen-
dent if ¢ and j are associated with different locations - because if ¢;; and ¢; s are dependent, then
€js and €;, are also dependent as ¢;; are spatially dependent, this indeed leads to a contradiction.

As shown in Section 3 the proposed estimation procedure does not require any particular pattern
of spatial dependence to be specified for the error terms; it merely assumes that the innovation
terms €4, ¢ = 1,...,N and t = 1,...,7, behave in such a manner that \/Ne*,t ~ N(O,Ui]\,)
independently over time periods, where €, = + Zf\il e and o? y = +Var (Zf\il ei,t> <ooas N
becomes sufficiently large under some mixing assumption about the random field ¢;;, whence the
composite quasi-likelihood function can then be constructed. It is worth noting at this point that,

in this estimation procedure, the normalized variance, o2, of the spatial sum of errors and the



average fixed effect p, = % ZlNzl ltg, are treated as nuisance parameters. While p, is estimated by
the maximum composite likelihood, ‘752, v can also be estimated directly by using robust (‘clustered’)
standard errors formulas (see, e.g., Arellano (1987); Conley (1999); Driscoll and Kraay (1998);
Kelejian and Prucha (2007)).

Heuristics

Since the parameters are common within each group, say g, the y;,’s and x;,’s of units within the
group ¢ all have a common regression relationship, so are their common-group stochastic trends.
To estimate the common slope parameters within the group g, one could just regress the common-
group stochastic trend of all Ay;,’s in this group on its lags and the common-group stochastic
trend of all «;,’s in the same group and their lags. As in Pesaran (2006), these latent common-
group stochastic trends can be proxied by common-group cross-sectional averages. Importantly the
regressions involving common-group cross-sectional averages do not induce an endogeneity problem
which is often the consequence of doing the within-group or time-differencing transformations in
dynamic panel data models. Thus the estimates will be asymptotically unbiased even for T' is less
than N. This intuition will be elucidated in Section 3, and formalized in Section 4.

For latent underlying group structures, estimates of the group memberships and the associated
common-group slope parameters can be obtained in principle by running many regressions involving
common-group cross-sectional averages for each partitioning of the set [1,..., N] into G groups,
then choose the parameter values associated with the regression that achieves the minimum sum of
squared residuals amongst all the partitionings. However the number of regressions to run will be
very large if N is large (in fact, it is equal to a Sterling number of the second kind); this renders the
so-called ‘many-regressions’ method infeasible. However, this method of running many regressions
can be casted into a non-convex mixed integer programming problem as described in Section 5.
Relation to the Existing Works
Hahn and Moon (2010) and Bester and Hansen (2016) show that the bias of grouped fixed effects
(GFE) estimators asymptotically vanishes in nonlinear panel data models with finitely supported
fixed effects (i.e., individual-specific fixed effects are common with each group, and differ across
groups). The GFEs can be severely biased when individual specific heterogeneity is incorrectly as-
sumed to be constant within each group. Bonhomme, Lamadon, and Manresa’s (2016) method to
discretize unobserved fixed effects can only reduce the bias of GFE estimators when the number of
groups is allowed to grow with the number of individuals. Therefore, for the GFEs to be asymptot-
ically unbiased and normal, Bester and Hansen (2016) rely on the assumption that the maximum
discrepancy between two individuals within groups goes to zero as the number of cross-sections
becomes large.

In a typical dynamic linear panel, our proposed composite likelihood estimator does not suffer

from this type of bias arising due to misspecification of individual specific heterogeneity because -



unlike GFE estimators which require the individual /group-specific fixed effects to be concentrated
out prior to estimation of the parameters of interest - the current estimation paradigm involves
only the average fixed effect u, instead. Moreover, it is worth noting at this point that, since a
within-group transformation can cause endogeneity if lagged dependent variables are included, the
proposed estimator does not rely on within-group transformation, thus it also does not suffer from
an endogeneity bias. Therefore, instrumental variables (IV’s) or bias correction are not required to
implement our method. In a dynamic panel with long time horizon the IV estimation strategy may
not be feasible as the number of lagged variables that can be used as IV’s is large, thus another
issue related to choice of optimal IV’s needs to be dealt with. Bias correction/reduction methods
(see, e.g., Hahn and Kuersteiner (2002) and Dhaene and Jochmans (2015)) require preliminary
estimators of the fixed effects for estimates of the bias, thus a misspecification in the fixed effects
can deteriorate the quality of bias estimates.

Works on panel data models with unknown patterns of group heterogeneity are pretty recent.!
Su, Shi, and Phillips (2016) propose a new variant of Tibshirani’s (1996) LASSO, namely classifier-
LASSO, to perform group classification and estimation of regression slope coefficients simultaneously
in a single step. However, this estimator often induces non-negligible asymptotic bias when it is
applied to dynamic panels or panel regressions where some regressors are endogenous and the
time horizon 7T is smaller, thus bias corrections of Hahn and Kuersteiner’s (2002) type are needed.
Wang, Phillips, and Su (2016) propose a penalized least-squares criterion function using a new
hybrid Panel-CARDS penalty function for simultaneous classification and estimation, effectively
extending Ke, Fan, and Wu’s (2015) CARDS procedure for cross-sectional data to panel data.

Lin and Ng (2012) propose a conditional K-means procedure, which extends Forgy’s (1965)
K-means algorithm, to estimate linear panel data models, but asymptotic theory is not derived.
Bonhomme and Manresa (2015) propose two minimum sum-of-squares clustering algorithms based
on the K-means algorithm and Hansen and Mladenovié’s (1997) Variable Neighborhood Search
(VNS) algorithm to perform group classification and estimation in panels with time-variant grouped
patterns of heterogeneity. In their asymptotic theory the GFE estimators are not influenced by
the effect of group membership estimation because the probability of misclassifying at least one
individual unit decays very fast as long as both N and T go to infinity such that N/T° | 0 for
some 0 > 0. When a lagged dependent variable is included as a covariate in a model with additive
time-invariant individual fixed-effects in addition to the time-varying grouped effects the infeasible
fixed-effects estimator suffers from the incidental parameters problem (Nickell (1981)); IVs are

then needed to produce consistent estimates for the parameters of interest. They also demonstrate

'In a related thematic approach, finite mixture models can be employed to model the probability that an individual
belongs to a group. Thus, estimation of and inference on these membership probabilities can be performed via the
mixture parameters (see, e.g., Kalai, Moitra, and Valiant (2010); Kasahara and Shimotsu (2009); Sun (2005))



that their proposed algorithms can achieve approximately the same optimal solutions to the least-
squares clustering problem as other global optimizing algorithms (for example, the branch and bound
algorithm) in panel datasets with a small number of groups.

Ando and Bai (2016) deal with linear panel data models with grouped factor structure and a large
number of explanatory variables. The group membership of each individual can be estimated along
with other parameters of the model. A LASSO approach is applied to select significant explanatory
variables, and optimal group memberships can be found by using the K-means algorithm.

Nonlinear panel data models with discretized fixed effects are considered in Bonhomme, Lamadon,
and Manresa (2016). Druedahl, Jorgensen, and Kristensen (2016) consider a nonparametric GFE
estimator for nonlinear panel data models with finitely supported fixed effects. Vogt and Linton
(2017) develop methods to classify nonparametric regression functions into clusters based on the
premise that there are groups of individuals who share the same regression function.

It is worth mentioning at this point that, in most of earlier works on this topic, units are
often cross-sectionally independent - this is somehow a unrealistic assumption. Therefore, group
classification is done in a purely data-driven manner by minimizing some unpenalized/penalized
sum-of-squared-errors objective function. The proposed procedure is based on the premise that
units have common-group stochastic trends, thus it is natural to let the innovation terms of dynamic
panel data models have some weak cross-sectional dependence. Due to the presence of these cross-
sectionally dependent errors the growth rate of N relative to T that is required for asymptotic
normality and the ‘oracle’ property of group membership estimates will also depend on the degree
of weak cross-sectional dependence.

Computational Consideration

In the above-mentioned papers, various clustering techniques (such as K-means or classifier-LLASSO)
have been employed to partition panel data with latent group patterns while optimizing the asso-
ciated objective function for estimates of group-specific coefficients. A common feature of these
methods is that the problem is nonconvex and often nonsmooth (such as the K-means), thus falling
into one of the most difficult areas of the optimization field. The proposed criterion function is also
globally non-convex, and minimization of non-convex criterion functions of this type is a NP-hard
(Non-deterministic and Polynomial-time hard) problem with possibly many local minima (Garey
and Johnson, 1979). Existing methods including the VNS and the K-means algorithm can feasibly
search for ‘good’ local solution while exact solutions are often not known for large datasets with
many individuals clustered into many groups; and the K-means often performs poorly when there
are outliers in the data.

The proposed method is novel in the sense that the clustering and estimation procedure based on
the composite quasi-likelihood function can be formulated in terms of a non-convex mixed-integer

programming problem, which can then be efficiently solved by the DC (Difference-of-Convex func-



tions) programming and the DCA (DC Algorithms) as described in Section 5. The DC programming
and DCA were developed by Le Thi Hoai An and Pham Dinh Tao (2003); Pham Dinh and Souad
(1988); Pham Dinh Tao and Le Thi Hoai An (1998), and have been implemented to successfully
solve many large-scale (smooth or non-smooth) non-convex programming problems in various fields,
especially in Machine Learning where they often provide global optima and are demonstrated to be
more robust and efficient than the standard methods including the K-means algorithm (see, e.g.,
Le Thi Hoai An, Belghiti, and Pham Dinh Tao (2007); Le Thi Hoai An, Le Hoai Minh, and Pham
Dinh Tao (2014); Liu and Shen (2006) and references therein). Interested readers are referred to
Le Thi Hoai An (2014); Pham Dinh Tao and Le Thi Hoai An (1997) for some background and
rationale behind the DCA.

Outline

The remaining of this paper is organized as follows. Section 2 introduces the model and main
assumptions leading to the formulation of the maximum composite likelihood estimation. Section
3 explains the main CL estimation method for dynamic panel data models with group-specific
heterogeneity where the group structure can be left unspecified. The asymptotic properties of the
proposed estimator are presented in Section 4. It is worth noting at this point that the proof of
consistency for the estimators based on the VNS-DCA clustering relies on the properties of the
DC program with combinatorial constraints and the Karush-Kuhn-Tucker (KKT) conditions for
local optima. When the covariates are stationary the estimates of the true coefficients ¢g 4, and
0,,1=1,...,N, converge in distribution to normal random variables at rate V/NT; this rate of
convergence is the same as the rate that one could obtain when the parameters are homogenous,
which is not a surprise as the number of groups remains fixed for any sufficiently large N.

When the covariates are highly persistent the rate of the distributional convergence pertaining to
the long-run coefficient 8, is T (instead of Tv/N as one would expect), which is essentially similar to
the rate achieved with fixed N in Pesaran, Shin, and Smith (1999). This slow rate of convergence is
possibly the price that one has to pay for having an estimator free from any parametric specification
of the cross-sectional variance-covariance matrix. Derivation of the asymptotic theory is based on
the premise that the spatial domain Vi and time grow to infinity jointly such that |Vy|/T converges
at a rate depending on the polynomial decay rate of the mixing coefficient.

Section 5 provides a detailed description of the main VNS-DCA algorithm and the derivations
of the DC program used for clustering and estimation as a one-step procedure. Section 6 contains
some information-based criteria for selecting the optimal partitioning and the optimal number of
groups. A summary of the simulation study examining the performance of the proposed estimator in
finite samples is contained in Section 7. Overall, it was found that, as long as the stability condition
[cf. Assumption 4.2 in Section 2 below| holds, the estimator provides relatively small finite-sample

biases and mean squared errors for a variety of sample sizes and spatio-temporal error processes. An



empirical study of Feldstein and Horioka’s (1980) saving-investment puzzle is provided in Section &,
reconciling previous empirical findings about the long-run correlation of the saving and investment
rates. Interested practitioners can find the software package to implement the proposed algorithms
for clustering and estimation in Section 10. Finally, results of technical flavour but essential for the
theoretical justification of the proposed estimation procedure are given in two appendices at the
end of the paper.

Some following notations are commonly used: vectors/matrices are written in boldface; || - ||
denotes the Euclidean norm; I; represents the identity matrix of dimension d; A\yin(A) denotes the
minimum eigenvalue of A; ¢, is a n X 1 column vector of ones and I, is a n x n identity matrix; for
x,y € RY let < @,y > represent the scalar product of & and y; |V| is the cardinality of a set, V;
the Euclidean distance between two subsets, A and B, is defined as d(A, B) = min{||la — b|| : a €
A, b € B}, the diameter of a set, A, is denoted by diam(A) = max{|la — b|| : a,b € A}; A°
denotes the complement of a set, A; A\B = {s: s € Aand s ¢ B}; Cy represents a generic
constant that may vary from one equation to another; |z stands for the integer part of a (rational)
number; 1(A) denotes a characteristic function that takes value 1 if A is true and 0 otherwise;
i>, 5, and % in order signify the distributional convergence, the weak convergence, and the
convergence in probability; o,(-) and O,(-) are standard symbols for stochastic orders of magnitude;
1 X1, = (E[|X]"])"” denotes the Hélder norm; (a,b)™ = max(a,b) and (a,b)” = min(a,b); w.p.1

stands for “with probability approaching 17; vec(A) denotes the vectorization of a matrix, A;

2 Model and Assumptions

Consider the following autoregressive distributed lag model for a panel data observed on T time
periods, t = 1,...,T, and N individuals (units), i =1,..., N :

p q
Yit = Z )\ghjyi,t_j + Z 6;7jwi,t_j + i + € g, (21)

j=1 7=0

where the d, covariates (x;;) and the p lags of y;; (Viz. ¥ii—1,...,Yi1—p) are contemporaneously
uncorrelated with the errors €;;; Ay, j fori =1,...,Nand j =1,...,pand d8,,; fori =1,...,N
and j = 0,...,q are group-specific autoregression and regression coefficients respectively. Units
are divided into G mutually exclusive, exhaustive groups; and the group membership variables
g; € {1,...,G} are defined via an onto mapping g : {1,...,N} — {1,...,G}. To study the

potential long-run relationship between y,;; and @;; within each group, we rewrite (2.1) in the



following error-correction form:

p—1 q—1
Ayir = i + ¢g, (Yit—1 — 9;1'1',1&) + Z Agi i AYii—j + Z 5;:]'Awi,t—j + €t (2.2)
J=1 j=0
— p _ Zg:oégid * o p .
where ¢g, = — (1= > Agij ) 0, = =S Ao = = 2om=jt1 Agim forj=1,...,p—1, and
6, i =— Zn:j-{-légiym forj=1,...,q— 1.

Suppose that each unit ,i, is associated with a location, say s;, on a d,-dimensional Euclidean
space, Vi, equipped with an Euclidean metric, || - ||, measuring the distance between any two
locations in V. Here, for clarity of exposition, Vy is assumed to be a sublattice, of the standard
d,-dimensional integer lattice Z%, indexed by N; the other cases where Vy is some sublattice of
R% follow similarly as long as the distance between any two points in Vy is greater than or equal
to one (see, e.g., Jenish and Prucha (2012)).

The variables, (v; ., a:ZT .) | are spatially dependent at some point in time, ¢, if their measurements
at two different locations depend on each other, and this dependence is assumed to be weaker as
the distance between the locations becomes further. For the model to remain parsimonious and
tractable, we can allow for spatial dependence in the process (y; ., a:ZT O, t=1,...,T, by assuming
that, on a specific time period, the errors €4, ¢ = 1,...,N and t = 1,...,T, at two different
locations are dependent whilst they are independent at different points in time. First, we make the

following assumptions:

Assumption 2.1. The errors, ¢4 withi=1,...,N andt =1,...,T, defined by (2.2), are inde-
pendent across time and, at some given point in time, they are dependent across locations such that
Esi,t ~ N(O, O-si)'

It is important to note that the normality of cross-sectional error terms, €5, ., ¢ = 1,..., 1V, in
Assumption 2.1 could be relaxed when N is sufficiently large since the CLT for strongly mixing
random fields (see, e.g., Bulinski and Shashkin (2007)) warrants that \/—%Zf\il €5, converges in
distribution to a normal random variable, thus a good approximation to the composite likelihood

can be used instead.

Assumption 2.2. The model (2.1) is stable in that the roots of
p .
> N =1, i=1,...,N
j=1

lie outside the unit circle.

Assumption 2.2 is originally employed in Pesaran, Shin, and Smith (1999) to ensure that the or-

der of integration of y; ; is at most equal to the maximum of the orders of integration of the elements
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of the vector x;;. This condition also warrants the existence of a long-run relationship between

y;r and @;; within each group. Let w;; = (Ayit—1, ..., AYit—pi1, Ath, o Amzt_qH)T denote a
vector of d,, = p+ d,q — 1 auxiliary covariates, and let Xy, = (Ag1,- -5 Agip—1, 5;;, o 5;7q_1)T be

their coefficients. We can rewrite (2.2) as
Aysm = i + ¢gi£3i7t(09i> + A;—iwsz‘,t + €sits (23)

where &, 1(0y,) = Ys;1—1 — Ogmsi,t. Our objects for inference are the long-run coefficients 6,, and the
long-run adjustment speed parameter ¢, with i =1,... N.

It is important to note that, since the joint likelihood of the model is not the same as the product
of the likelihoods for each unit (or group), estimation will involve a large unknown variance-spatial
covariance matrix of €54, ¢ = 1,..., N, thus becomes infeasible. Moreover the expectations of
the score functions of the concentrated log-joint likelihood function are not zero due to the ab-
sence of the complete orthogonality between ey, and &, ;(6,,), thus resulting in biases that do
not disappear asymptotically. Therefore, we shall instead construct the composite log-likelihood
function. To simplify notations, we assume that the nuisance parameters are group-invariant (i.e.,
Ay = - Agy = A.) Note that this simplification does not much change our mathematical argu-
ments, thus our asymptotic results will still remain valid even when these nuisance parameters
vary over groups. To see this, notice that in the representation of the composite errors (3.2), the
projections of @, ;’s and &, ;’s on the span of {w.;: t =1,...,T} are of lower asymptotic orders
when T goes to infinity and the cluster sizes grow sufficiently large. In fact, in Section 7, simulation
results confirm that the algorithm for clustering and estimation based on the objective function
imposing group-invariant nuisance parameters performs well even when data are generated from a

d.g.p. with group-variant nuisance parameters.

3 Estimation with Known/Unknown Group Memberships

As discussed in the Introduction the panel data model is estimated by using a composite likelihood
method. The general principle of composite likelihood methods is to simplify complex dependence
relationships by computing marginal or conditional distributions associated with some subsets of
data, and multiplying these together to form an inference function. Employing composite likelihood
methods can reduce the computational complexity so that it is possible to deal with large datasets
and even very complex models where the use of standard likelihood or Bayesian methods is not
feasible. Composite likelihood estimators also have good theoretical properties, and behave well in
many complex applications (see, e.g., Reid (2013); Varin, Reid, and Firth (2011) for recent reviews
of this subject matter.) Following Lindsay (1988), let {f(y;0), y € V,0 € O}, where ) C R" and

10



© C R? with n > 1 and d > 1, be a parametric model. Consider a set, {A;,..., Ay, ..., Ax}, of
marginal or conditional events associated with likelihoods, £;(0;y) o< f(y € Ax; 0). A composite
likelihood is formally defined as a weighted product Hszl Lr(0;y)", where wg, k = 1,..., K,
represent some non-negative composite weights to be chosen.

We first present the main procedure based on composite likelihood to estimate Model (2.1) when
group memberships of individuals/units are given (i.e., each individual belongs to a specified group.)
By Assumption 2.1, V'Ne,, = VN SV € e N(0,02), where 02 = limytoo = Var (le\il esm> <
oo if the spatial dependence among €, ;, 7 = 1, ..., N, is weak. Therefore, all the likelihoods associ-
ated with conditional events, A;(z) = {(es,.r,...,€syi) € RT : /Ne,, = x} with t = 1,..., T, are
Gaussian.

Let Vi, represent a set of locations for units in group i € {1,...,G} so that Viy = U,G:1 VN,
Lyn; = |Vng|, and g.; = Lvi for i = 1,...,G. Define Ay, = % ZZN:1 Ay, 1, Wiy = % ZZN:1 W, 1,

N
My = Zszl Gxi i and f*,t(ei) = f*,t(ei) = ﬁ ZjevN,i gj,t(ei)a where f1; = Hg(Viv 2) and 0, = Bg(VN,i)a
i=1,...,G. Collecting all the unknown parameters into a vector, say @ = (7, ", AT, 11,), where
0=0],...,0,)" and ¢ = (¢1,...,0i,...,0c)" with ¢; = Gg(vy..)- Setting the composite weights
{w, t=1,...,T} to ones the composite log-likelihood function can then be written as

T T N
2\ 2 2
QnT(0, D, A, 11, 07) = 3 log 27 — 2 logo? — 207 ;ﬂm(@)a

where €,1(©) = Ay, — 1 — 3, guii6t(0;) — X w,.s.

Remark 3.1. Intuitively, while clustering with the least squares criterion function (as in Bonhomme
and Manresa (2015)) is based on the premise that - for given values of the parameters - an individual
is assigned to a group if its temporal summation of squared errors associated with that group is less
than its temporal summations of squared errors associated with all other groups, the CL criterion
assigns a subset of individuals, say €, to a group, say g, if the temporal summation of squared €-
mean errors (or centroids in the language of machine learning) associated with group g is less than

the temporal summations of squared €-mean errors associated with all other groups such that the
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mean errors of any pair of groups are as little correlated as possible. To see this point, notice that
T 1 G 1N 2
; 63,1&(@) -7 Z (Z N Z ui,c€i,t(00)>
G T | X 2
S (N zui,cei,twc))

J/

N =

-—
squared mean error of group c

CE 1T &1 L
Z Z T Z (N Z ui,cei,t(90)> (N Z ui7gei,t(09)> ;
=1 i=1 i=1

c=1 g#c

-—
correlation between the mean errors of two groups

+

where @ = (0] ,...,0L)". When groups are mutually independent, the CL criterion function is the
same as the summation of all the sums of squared errors obtained from G regressions of common-

group stochastic trends.

Concentrating out the nuisance parameters A and let 2 = (¢ ",02)" with ¥ = (07,07, u.)",

one obtains the concentrated composite log-likelihood function:

T
T T, N <&,
Qnr(82) = —5 log2m — 5 logo, — 207 > e2(), (3.1)

t=1

where

-1
Ext (1/) Ay* t <Z Ay* sW, s) <Z Wy W, 5) Wy ¢
T T -1
- Z Gx, z¢z 5* t (Z fﬁg ) (Z Wy sW, ) Wyt
s=1
T T -1
— e | 1— wa:s <Z w*,sw;ts) w.; | . (3.2)
s=1 s=1

To derive the first-order conditions of the log-likelihood maximization, we define the following vec-

-1 T T -1
: (2O T (ST T T (1) (G) T (5T T
tors: A; = (T, —w,, (DWW, ) Do W Tas .. T — W (D WL W,
~—
Gdyx1
T @' 0 _ 1 T
N e Wi T s ) , where @y = =370y, @, for i = e Bt(O) ((ZS LEN(0)w 7S>
G><1
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T
1 —1
(Zzzl w*,sw;r,s> Wyt — gi,lt) (01)7 R <ZZ:1 §£7G5) (eG)w;r,s> (EZ:l w*#“’ls) Wi — gﬂ(fi) (OG)) )

-1
and C; = ZT Lw/] (ZZ:l w*vsw;r,5> w,; — 1. Some algebraic manipulations yield

S= *,8

o) Q N <
vaa,ig() = —diag(g..ila,. ¢:1,...,G)a—3;e*¢(¢)At, (3.3)
T
OO g =1, G S et Bi(6), (5.4
8¢ Oc t=1
WQnr(2) = N

One can now obtain the estimates (5, @, and () of the true parameters (8, ¢o, and ji.0) by finding
the roots of (3.3)-(3.5).

Now we shall adapt the composite-likelihood-based procedure described above to the case when
group memberships of individuals are not specified a priori. Suppose that the number of groups (or
clusters) G is given. Let U = (u;.) € RN i=1,...,Nand ¢ =1,...,G, be a G x N matrix
whose elements are defined by w;. = 1 if individual ¢ € [1, N] belongs to group ¢ € [1,G], and
u; . = 0 otherwise. Because each individual can only be assigned to one group, we need to impose
the constraint 3.9 | u;, = 1 for every i = 1,..., N. Moreover, let Ag = {u € [0,1)%: 5 u, =1}
represent the (G — 1)-simplex in R and AY is the Cartesian product of N simplices Ag, thus
U € AYN{0,1}*¥. With this matrix of group membership variables, define the composite error

as

G N
1
€t(©.U) = Aysy — e — XN Wy — E N E Ui PeSip(0e). (3.6)
c=1 =1

The composite log-likelihood function is then given by

T
T T
Quir(8. ¢ A pe, 02, U) = = log 2w — S log o7 — = Z (3.7)
5 =1

By concentrating the nuisance parameters A out, one obtains that

(6, U) z zum@ (w2, —072ly)) = .

. -1
Z(w (Z Zt ) (Z w*vtw:’t> Wyt
t=1

13
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with Z; being either y;,_; or x;,, and

T T -1
lgw) =1 (Z w;) (Z w*7twlt> W, ¢
t=1

t=1

Moreover, notice that

¢ N
w 1 w w
Ayi,t) = Z N Z uO,i,c¢0,c£§,t)(00,c) + 015",
c=1 i=1

where all the subscripts ‘0’ signify the true [unknown| quantities as usual. The objective func-
tion Qnr defined by (3.7) is invariant with respect to all permutations of the group labels; let
o®) . [1,G] — P € P denote a permutation operator, which is a bijective mapping from the set,
[1, G, of the original group labels to some set, P, of permuted group labels, and P is the collection
of all the sets of permuted group labels. It then follows that the concentrated composite error

€«t(¥,U) can also be expressed as

G N
1 w
ei(P,U) = Z ¢U(P€")(c)(00(P€")(c) - 907c)ﬁ Z ui,a(f’”)(c)wg,t)
c=1 i=1

¢ N
1 w w
+ Z(%,c — QSJ(P‘”)(C))N Z Um(per)(c)fi(,t)(eo,c) + (po — 1) 14"
=1

c=1

G N
1 (w) (w)
+ ; Po.cy ;(Uo,i,c — U ey ())&is (Boe) + €0uys  (3.8)
where €.+ = €,4(0g, Up).

The CML estimates 'I,//)\, o2, and U of Yy, 05270, and Uj respectively are defined as the solutions

to the following large-scale non-convex mixed-integer programming problem:
min {QMT( 02, U): €0, CRUGIIN 52 co, R, and U € AY {0, 1}GxN} . (3.9)

Intuition behind the proposed CL estimator. Suppose that y;; and x;; share a common
relationship in Group ¢ € [1,...,G]. The common group stochastic trends that can be reasonably
proxied by the observable vector of groupwise cross-sectional averages (y,(ft) , wg), cell,...,G],also
obey the same relationship, i.e., Ayiﬁ? = ud—qﬁcfft) (06)+)\6T'w>(f2 +e>(f2. Since effz will be close to zero as
the group size is sufficiently large, one needs to blow it up by v/N so that VN 3¢ | effz ~ N(0,0?).
Therefore the CL estimator can be viewed as the minimizer of the temporal average of the squares of

the errors from regressions involving the common stochastic trends of y;; and @, ; in G groups. For

14



given N units, there are many ways to partition these N units into G' groups. The estimated group
memberships are associated with the group partition that minimizes the sum of squared residuals

obtained from G regressions involving common group stochastic trends.

4 Asymptotic Theory

4.1 Known Group Membership

First of all, it is important to note that the parameter spaces (Og, O4, ©,, and O,) of (8, , @g , [0, 06270)T
are compact throughout the paper. We study the asymptotic behaviour of '12; (= v:/; ~r) in two differ-
ent cases. In the first case, it is assumed that, for each ¢ € Vy, x;, is a stationary time series; and
in addition the spatio-temporal processes {x;,: j € Vy, and t € [1,T]},i=1,...,G, are mixing

and satisfy the following assumption:

Assumption 4.1. Within each group, i, the random variables {xj;: j € Vi, and t € [1,T]} are

wdentically distributed across time and space. Moreover,

(a) the mizing coefficient - as represented by a(-) in Definition 1 - for {(mgc)

€1) JE VN andt e
1,71}, ¢ = 1,...,G, where mgc) are the common-group stochastic trends of all the xj;’s in

group ¢, decays to zero at some rate such that (1) < Cor=% for some

p(dv + 1)777 dy+1 2p
0, > max +(dy + Vv, ———— = |
((P—Q)(%—2) 1—2"p—d
where the generic constants Cg > 0, v, > 2, p >4, ¢ = p%, d, 1s the dimension of Vi, and

v = 1 s given in Definition 1;
(b) max (El|@i [P, Bz, Ellzia|*) < oc;
c) max VM Tym+1—ba T (1=2/79) e=1/2 P(yar+0a—1)e—3 (Ba—var—1) M r
(c) max (|Vy| Vil : V| 1 0 for some € €
: 1 Oa—ym—1
(O’ min (5’ 2(4W+§i—1>>> :
nt

T T
Assumption 4.2. Let Xy r1+(0) = (wit ,...,:ci? ,—5&2(01), . —&E?(GG), —1) . The min-
imum eigenvalue of the non-stochastic limiting matriz, Q.., of % Zthl X (00)X(00)7" is strictly

positive.

A few remarks are now in order. Condition 4.1(a) imposes a specific degree of weak spatio-
temporal dependence on the covariates and the error term. Condition 4.1(b) is rather standard -

it requires some moments of the covariate being bounded. Condition 4.1(c) allows both 7" and N

15



go to infinity and the divergence speed of N relative to 1" depends on the structure of the spatial
processes and the decay rate of the mixing coefficient. This condition is weaker than the condition
[proposed in Hahn and Moon (2010)] that allows N to be some exponential function of 7" (as such,
N needs to be much greater than 7') under some common types of weak serial dependence.

We now present the consistency of 1}5 for the stationarity case:

Theorem 1 (Consistency). Suppose that Assumptions 2.1, 2.2, 4.1, and 4.2 hold. Then, |6%—0?| =
0p(1) and || — 3|l = 0, (N71/?).

Theorem 2 (Asymptotic Normality). Let the conditions for Theorem 1 hold. Then,

VNT (% —4p0) = 0N (0.[Ds,D,Q.. D, D] ).

where D, = diag(¢p ® Iy, ,Ig41); D, = diag(g ® 1y,,g,1) with
— —
(G(de+1)+1)x (G(de+1)+1) (G(dz+1)+1)x (G(dz+1)+1)

9= (gs1,-...9sc)" €(0,1)C.

Remark 4.1. Since the CL criterion function is nonlinear in the coefficients @ and ¢ of the error-
correction representation defined by Eq. (2.2), it is not obvious to see the \/ NT -consistency of the
CL estimators. To get some intuition about Theorem 2, we consider a linear panel data model with

fized effects and group heterogeneity in the slope coefficient: y;, = o, + 0,2, + €4 for all i in group

_ 1N = _ 1T (9 - _ 1T = _ 1T _(9)
g€ [l,2,...,qG] Deﬁne O‘* =N Doim1 Qiy Ty = TZt:1 Lats Y = 7T Dtm1 Ysty Zg = TZt:1 Tt Yt
- _ (o _ 1 N _ 1 N ¢ )
and Ty, = th 1:)3”3:”, where T,; = > iiq WieTie and Yoy = 7 D _imq Yix- The ‘oracle’ CL

estimate of Yo = (g, 001, -.,00.c)" is given by
1 7z Ta -1 I
72; 1 1 T1,9 [21 ]
1zZga TG,G zZg

L'z 3 |7 \/72 €
~ 1711 - Ty t=1&x,t
NT (d—wo) = || VAR | (4.1
i fé,l EG:,G B \/7215 1 x* ot 5* it
A

where €,; = % Zf\il €1 According to Pesaran (2006), cross-sectional means can well approzimate
stochastic trends. Therefore, by naively assuming x;; to have an additive structure: x;y = x4 + ;
with E[x;] = 0 for each unit i in group g, one can obtain from law of large numbers that x(g) ~
Zgt. Moreover, since €;; s a random error, we previously argued that VN Ne, s can be approximated

by a normal random variable, say N;. By applying a central limit theorem, it then follows that
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\/72,5 | € and \/72,5 1 ZL’* te* ,g=1,...,G, can be approximated by mean-zero normal random

variables as long as :z*t and €., are uncorrelated. Since the matriz A can converge to a finite,
positive definite matrix, one then obtains the v/ N'T-consistency. The same intuition can carry over

to general error-correction models.

In the second case when one assumes that, in each location, ¢ € Vi, ;, is an integrated process
of order 1; moreover the spatio-temporal processes {x;,: j € Vy,andt € [1,T]},i=1,...,G,

are heterogeneous across groups. To be precise, we state the following assumption:

Assumption 4.3. Let x;; = 22:1 Ni.s, Where m; 5 is a mizing centered spatio-temporal process and,
within each group, say i € [1, G] the random variables {n;, j € Vn,; and t € [1,T]} are identically

distributed across time and space. Moreover,

(a) the mizing coefficient (a(-)) for {(nji.€je) : 3 € Vniandt € [1,T]}, i =1,...,G, decays to

zero at some rate such that a(t) < Cor =% with some

0, > max +(dy+ Dy, ——,—— = |,
(( =3 1—% 1
where the generic constants Cp > 0, v, > 2, p > 4, ¢ = %5, d, is the dimension of Vy, and

Yu > 1 is given in Definition 1;
(b) max (E||nil|P, El|nil]>, Ellnsall*) < oo
(c) max ‘VN"YMT’YM-l-l—Ga’|VN"YM(1—2/%)TE—1/27T(’YM-I-Ga—l)e——(Ga Y —1) ‘VN"YM) 1 0 for some € €
(1 Ba—ym—1
(O’ min <§’ 2(7M1]52—1>>> :

Assumption 4.4. Let Xy1.(00) be the same as in Assumption 4.2. The minimum eigenvalue of

the stochastic limiting matriz:

T
) . _ _ N , _ _ T
Q.. = plimy 110 {dmg (T L 4,, N™V21g41) (TZXMTJXX,,TJ) diag (T g4, N~ 154 }
t=1

18 positive.

A few remarks are in order. Assumption 4.3(a) requires that the mixing coefficient should vanish
at a rate depending on the orders of the moments specified in Assumption 4.3(b). Assumption 4.3(c)
refers to the growth rates of Viy and T, which also depend on the dimension and structure of Vy
as well as the decay rate of the mixing coefficient. Assumption 4.4 bears some congruence with the
standard assumption [employed in the OLS regression| about the positive-definiteness of the square

matrix involving regressors
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Theorem 3 (Consistency). Suppose that Assumptions 2.1, 2.2, 4.3, and 4.4 hold. Then, |5€2—062,0 =
0p(1), |0 — 6ol| = 0, (T7'?) , | — oll = 0, (N"'?) , and [fi. — piep| = 0, (N7'/2).

To derive the limiting distribution of QZ, we define some further notations.

R,_/
G.d:xG

o | . N2 & |
7-[( b) () = diag(gly,)diag(@ly,) {T3/2 ZAtBt 6)" }dlag(g),

1/2

(ac) _ N 3

HN,T(¢) - dla’g(g]ld )dla‘g ¢)]Idac {T3/2 Atct}
G.dzyx1

#) = diag(g B,(60,)C,
NT Z
Gx1

Hi (@) = diag(gly,)diag(ely,) {T2 > AA, }dlag(gﬂdﬁ)dlag(qbﬂd)

N——
G.dy xG.dy

Hyg = diaglg { ZBt 60)B,(6,)" }diag<g>.
GxG

HS\(;ZE(@)) HS\(;Z)«(@)) HS\‘,‘Z{(@))
Let Hyr(¢o) = Hg\?,bT)(‘bO)T LG . Lemma 25 effectively implies that
Hedpo) HELT 1

lim Hy T(¢0) (d’o),

N, Ttoo
where H(¢y) is a positive-definite stochastic matrix.

Theorem 4 (Asymptotic Normality). Let Assumptions 2.1, 2.2, /.3, and 4./ hold. Then,

T(6 — 6,)
VNT (¢ — ¢o) | —= MN (0, H(epo) '),
\/W(ﬁ* - ,U*,o)

where MN(-,-) stands for a mized-normal random variable.

4.2 Unknown Group Membership

We start by defining some common notations that will be used for the rest of this section. Let u. =

(U1, une) ' bea N x 1 vector of group membership indicators associated with group labelled
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w . w N w N w w er
‘i & *’t<uc> = 60 (B00 ) = T wetly (O o (o) = 3 T, wenls €000 00) -
w wT w)T
(€9 (o )+ ED Wen ) T3 (U, 0Py = (28 (wger 1)), - -0 2L (Ugren ) T

7

:
F(U.Uy) = (21 (0,500, (0,5%0), 11, €8 (U, o) — €7 (0,57 )

0T

er : . orer)y .
Dy (o v ): diag( E(Per)(l)v’”7¢5(1’”)(G))7 6" = (OT O-(Per-)(G))T7

alper)(1)7 "
O_( er)
¢)( per)y (QSJ(per)(l), e ¢a(per-)(G))T;

Therefore, in view of (3.8), one obtains that
F(per) o(per) O—(Pef) o.(per) oper)T
a9, U) — e = (077 = 07" )T (5" = 6T g — 6T
diag (Dy (%), Tog11) FL (U, Uy).

In addition, let

o(Per) €0(P) G(rer) € (P)

| G X +
IIlaX mln N E E ‘ui’g(per)(c) - uO’i’o.(per)(c)|

rer) eo(P) orer) €a(P)

+
= <~ mln Z Z |/LLZ o.(pe'r) u07i7c| mln Z Z |UZ c UO i, o.(pe'r) (C) ‘)

(per) o(per)
g €o(P c=1 =1 €o(P c=1 i=1

G
. ) 1 ~
H(U7 UO) — ( max min N Z Z ‘ui’g(per) (C) - uO’i’o.(per) (C)|7

where o(P) is the set of all permutation operators operating on P, denote the optimal matching

1
2 2
)

G
max HHH ( E Hw&(per) (C) - 77[)0,0'(7)67') (C)
c=1

Grer) o (P) orer) co(P)

distance between U and Uy, and

oper) eo(P) 7(rer) €a(P)

G
H('I,/), 77[;0) - max min (Z vabE(per)(c) - wo,o(pef')(c)
c=1

1\ +
2)2

1

2\ ? G o~
; . min E vabc_@/)oﬂ(per-)(c)
a(rer) eq(P) 1

1\ +
2) ?
where 'l/b\c = (é;r, 50, )" and . = (H(IC, Bo.c, ftx0) ", be the optimal matching distance between ’l//)\

and 1.

For the stationary case, we first need to state the following assumption:

G
| somesm (; H%W)(c) — Yo
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Assumption 4.5. Suppose that lim n1oo rroc I 517, U) >0 Amin (% Ethl F,(U,U,)F,(U, UO)T> > 0.

(1) (w)T ~(per) (w)T ~(per) (w) T
Moreover, let F, " (U) = (ac*,t (U,an), & (U, a%), 1, ) C F,(U,U,), assume that

T
. . 1 1) T
lim inf Ao (=Y FPO)ENT(U) ) >o0.
Ntoo,T+oo H(U,Uo)<nu (T ; (U)F(U)

Assumption 4.5 states that groups must be well-separated in the sense that, if the two matrices of
group-indicating variables U and Uy are mismatched, then the square matrix containing differences
ff:t’)T(Uo, o(per)) —£>(:£)T(U, oPer)) will be a positive-definite matrix. The second part of Assumption

4.5 is similar to the standard assumption employed in the OLS regression.

Theorem 5. Under Assumptions 4.1, /.2 and 4.5, it holds that \/NH(?,Z, o) == 0, H(IAI, U, =
0, and |62 — 02| ~50.

Theorem 6 below gives the expected bias [in terms of the optimal matching distance| of the
estimates ﬁ(w) uniformly over all @) in a neighborhood of 1)y. The rate at which the expected bias

goes to zero depends on the decay rate of the mixing coefficient.

Theorem 6. Let {(x;¢, €)1 ¢ € Vi, t € [1,T]} represent a mizing vector-valued spatio-temporal
process and U () = argming ey n{o,l}cxw¥ ST €, (¢, U). Suppose that (a) within each group,
€ [L,G], {xis €ir}, 2 € Vi and t € [1,T] are identically distributed over time and space; (b) the
3 0 1-2/d,
Elexp(l|est|)] < Cp and Elexp({ ||zs4]|)] < Cy for a constant Cy > 0 and £ > 0 small enough. Then,
it holds that

+
mizing coefficient a(t) < Cor % 0, > (‘”—M 2d”—+1) for some 6, > 2; (c) ||@i€irlls, < o005 (d)

R T1/4
sup H <U(1/J), UO)] < G {T‘Ca + N2 log2(T)TW_%9“ + exp (—CM7> } ,

E
WeB(thoy) log(T)

where By, ny) is an open ball centered at 1o with an arbitrarily small radius, 1y, in terms of the

optimal matching distance.

Remark 4.2. It is important to note that most conditions in Theorem 6 above are standard bounded
moment and mizing decay rate conditions except Condition (d). The sub-exponential tails of €,
and s, assumed there are needed to apply the truncation technique that yields the first term T
in the decay rate. The same condition is employed in Mammen, Rothe, and Schienle (2012). This

condition can be satisfied if the stationary density functions of €5y and xs,; have compact supports.

In light of Theorem 6, we readily derive the decay rate of the optimal matching distance between

the parameter estimates 7,5 and the oracle estimates (i.e. the estimates constructed by maximizing
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the CL function using the true unknown groups) v:/; The main result is stated in Theorem 7. Again,

this decay rate depends on the decay rate of the mixing coefficient.

Theorem 7. Let all the conditions in Theorem 6 hold. Under Assumptions /.1, 4.2 and 4.5, it
holds that

~ ~ ~y T1/4
H <¢, ¢> =0, (NT_C“ + N+ log(T)T%_gea + N exp <_CM710g2(T))> ,

where C, and Cy; are some sufficiently large constants.

For the nonstationary case, let

T
R N 1 . N
Ayxr(U,Uy) = diag (\/ Floa., H2G+1> 0 ; F,(U,Uy)F,(U,Uy) " diag <\/ ?H%,Hmﬂ) :

It then follows from Lemma 25 that
Anr(U,Up) = AU, Uy),

where the limit A(U, U,) is a stochastic matrix. We first state a variant of Assumption 4.5 about

group well-separability in Assumption 4.6.
Assumption 4.6. liminfy @ yy)sn, AU, Uy) > 0 for every n, > 0.

Theorem 8. Let iy = >\ SN mis and {(Mig, €i0) = 4 € Vy, t € [1,T]} is a mizing vector-
valued spatio-temporal process Suppose that (a) within each group, ¢ € [1,G], {ni+, €}, © € Vi
and t € [1,T] are identically distributed over time and space; (b) the mizing coefficient a(1) <

+
Cor %, 6, > (MTM>12—d§—7£1) for some 0o > 2; (c) |Mis€islls, < oo; (d) (sub-exponential tails)
Elexp(llest|)] < Cp and Elexp(£||nst|)] < Cp for a constant Cy > 0 and ¢ > 0 small enough; (e)

N/T — const. Then, under Assumptions 2.1, 2.2, 4.3, and 4.6 it holds that /T H (5, 00> = 0,(1),
VNH ($.60) = 0,(1), VNl = progl = 0,(1), [52 = 02| = 0,(1).

Theorems 9 and 10 below present the decay rates for the expected uniform bias of the estimates
of the true group-indicating variables, and for the optimal matching distance between the parameter

estimates QZ and the oracle estimates QZ of 1.

Theorem 9. Let U()) = argming e Ay A(0.1)G*N T ST €2, (¥, U). Suppose that the conditions of
Theorem 8 hold. Then,

~ T1/4
sup H (U(’l/)), U())] < CO {N—Ca + T_Ca + N2 log2(T>T’yM—§€a + exp <_Ce o+

FE
PYENN, T (o,my) ! IOgQ(T)
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for every positive C,, and C.,, where Ny r(vo,1m4) = [\ ng>0my>0m.>0 Br(00,m9) x By (o, 1) %

(770+77¢+77H) 1 =My
By (b0, n) with Br(6o,me) = {60 € O : VTH(0,0,) <1}, By(do,m5) = {¢ € Oy : VNH(, po) <
7]¢}7 and BN(M*,O;W) - {:u* € ®,u . \/_|,U/* - ,u*,0| < Uu}

Theorem 10. Let all the conditions stipulated in Theorem 9 hold. Then, it holds under Assumption
4./ that

H (diag <\/THG><dza \/NI[GH) 12, diag (ﬁHGxdza \/NHGH) ‘Z)

: . TV
=0, (N %log(T)TW%_%Ga + N2 exp (—C 7)) )

“21log*(T)
where Cy, and C., are some positive constant.

5 Computation: A New VNS-DCA Algorithm

Some background material on the gist of the DC programming and DCA is provided in Appendix G.

-1
First, recall the notations defined earlier: Ay*t = Ay, — (Zt L Ayw, t) (Zt LWy twL) W, ¢,
—1

-1
yﬁtll =Yit—-1— (Zt:l Yi t> (Zt:l Wy ;Wi t) Wy ¢, wg,t) =T (Zt 1 T W, t> (Zt 1 W tw;rt> Wy ¢,

and 1\") = (Zt | w ) (Zt LW w] t) w, ;. The concentrated composite innovations were
defined as

et (¥, U) Z Zuw@ <yzt 1 OT Lt ) _N*lgm- (5.1)

For a given U € AY, local minimum values, zb( ), of Enr(P,U) = 230, €,(,U) satisfy the
Karush-Kuhn-Tucker (KKT) conditions. Since e*t(zb U)= —1{") it then follows that

ﬁ*=<21§”’2> {ZAy*t Z ;Zum(z)c (ny@“ 1 =61 ath )} (5.2)

=1 t=1

gNT 7) Ze*t 77 (53)
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where

1
6*t('7> U) At_;N;ui,cQSc {th_ec Czt}
with
T -1l
s An= A (z 1§w>2) {z Aysz>1§w>} 1
t=1 t=1
-1
Biv = BNt =Y;11 (Z 1§w)2> {Z yl(fﬁllgw)} 1§w)
t=1 t=1
T Lo
Cz,t = Cy Tit =T t) . (Z 1§w)2) {Z ng)liw)} 1§w)
t=1 t=1
Let
Einr(1,U) = Ag + — Z Z (2 G2 AL+ u? 920] By 0. — 2u? 620 Cr i — 2Nu; 6. Dy ;

c=1 i=1

+2Nu; 40, Fi;i}, (5.4)

_ 1 T 2. N _ 1 T 2. - _ T

where Ay = 7>, A} A = Ainri = 7221 Biv Bri = Bingi = th 1CiiCy; Cry =
1 T . 1 T .

Cingi = 2 3o BivCivi D1y = Dingi = = > AiBiy and Fri = Fyri = =5, ACiy.

T 2nT
82 SN, T 77 - Uj cUj c¢ A2,2, — Uj,cUj c¢ 0 B2,i,' + Ui, U ',c¢cec C2,i, 'ec ; (55)
N2 J, J j, J j J
c=1 i#j
. 1 T . o 1 T .

where As;; = Aonrij = 702 BitBjs; Boij = Banrij = 72 - (BirCji + B;Ciy); and

- 1 T T
Coij = Dontij = 7 D1z CinC

G N
1
53,N,T(’Y, U) = m Z Z (ui,cuj,z¢c¢z«42,i,j - ui,cuj,f¢c¢50;|—83,i,j - ui,cuj,f¢c¢fez—c3,i,j

e<l i#j

+Ui,cuj,£¢c¢£0;rc2,i,j0€) ) (5-6)

where B = + >, Bj:Cis; and Cs; = Csn1ij = Boij — Baij-
Using the relation 2¢192 = (g1 + ¢2)® — (g7 + ¢3), we can immediately verify that & yr(vy,U),
Eonr(v,U), and & yr(7,U) defined in (5.4)-(5.6) are d.c. functions.

Assumption 5.1. For ease of exposition, let the parameters v take values in symmetric boxes,

¢ € [15[~loer o) and
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0 enlenj [ g@cz Sezc_gecz]

Let

HN,T(’Y’ U) = Hp,N,T(’Ya U) = N? (HI,N,T(77 U) + Hz,N,T(% U) + 7'[3,N,T(’Y, U)) )

Fnr(v,U) = N*{Enr(v,U) — Ao} = N* {E s nr (v, U) + Eana (v, U) + Esnr (v, U) — Ao}
= gN,T(’Y, U) - HN,T(% U)v

where

QNT (v, U _—pZZulc—FQquﬁz—l—szeTe

=1 i=1

Note that the following equivalence between mixed-integer sets and polyhedral sets (see, e.g., Hoang
(1995)): {U € AYN{0, 135N} = {U € AY : g(U) <0}, where g(U) = X5 o7 wio(1 — ui)
is finite concave on R¥*Y and nonnegative on AY. In view of Le Thi Hoai An, Huynh Van Ngai,
and Pham Dinh Tao (2012, Theorem 1), we immediately obtain that

G , min Fyr(v,U)
UeAg N{0,1}6x DET L1 [—Lg,eolp,c]
06“?:1 H;,iil [_ZQ,c,ivge,c,i]

= min min {fN,T(’Y, U)=Fnr(v,U) + 79(U)}
UeAl  ¢ell% [~Ls.eilo.c]
06“5:1 Hi‘lil[_ZQ,c,inG,c,i]

for some 3 > 0. The function Hy (v, U) = Hy (v, U) —Fg(U) is convex for some appropriately
chosen p, which is stipulated by Lemmas 8-10. The gradient V?T[N,T('y, U) of ﬁN,T('y, U) is given
by

o ~ 1 & N
Hnr(v,U) = 5pytic+ 2N¢c? Z et(7,U) (Biy — 6. Ciy) +7(2us. — 1),

8Ui7c =1

a " N N T
a¢cHN,T(7a U) = 4p¢¢c + 2? Z Uj, ¢ Z 6*,t('7> U) (Bi,t - e;rcz,t) s

880 H (77 U) = 4p€0 _2¢c Zzuzc‘f*t 77

i=1 t=1

foralli=1,...,Nandc=1,...,G.
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This then leads to the following d.c. programming problem:

min {Xnil 1%, b o b o XTI [t ot 0y (V2 U) + Onr (7, U) = Hyr (7, U) - U € RMY,
v =(6,¢) € R"=>CL - (5.7)

Remark 5.1. The above DC decomposition uses the concentrated composite errors. This DC' de-
composition has some merits in terms of the execution speed as the objective function has fewer
parameters to be optimized than the full composite likelihood function. To minimize the full com-
posite likelihood function the problem (5.7) then needs the convex functions §N7T and ﬁMT provided
in Appendiz F. instead. All the algorithms described below can effectively be employed to minimize
the sum of squared composite errors; and the computer program provided is specifically written for

this minimization problem using the DC representation derived in Appendiz F.

The DCA applied to the problem (5.7) is described in Algorithm 1 below.

Algorithm 1 DCA
1: procedure DC—-A

2: Choose an initial point to start recursion, say {U®, 0© ¢}, and an error tolerance level, ¢
3: Set £+ 0

4: repeat

5: {)‘(Z)a 7(Z)> V(Z)} € v/7qNT(0(£)a ¢(Z)a U(Z))

o min {G.r(8,6,U)— < {8,6, U}, {AO, 0, VO} > {8,6,U} € [T, T [~ o Coe]

G
7 XTI [~ o] x AY }
. - . v® B . A0

5 (., set Ul = Pro‘]Ag (W) L0 = PIOJHc-G:l [T, [~ Lo ,c.i60,c.i] (H) ’
. (£)

9: and QZ')(Z—i-l) = PIOJHCG:1[—Z¢,C75¢,C] (Zﬂ))

10: {7, U} = {8, o) D}

11: {v. U} ={6Y,0", U}

12: C—0+1

13: until [{v*, U} — {75, U"}|| <€
14: return {8+ p(HD UL}

15: end procedure

Proj AN (v) denotes the projection of v onto the Cartesian product of standard unit G-dimensional simplices; there
and many efficient algorithms to compute this projection, for example, the spectral projected gradient algorithm
(Judice, Raydan, Rosa, and Santos, 2008). Other projections onto rectangles can be straight-forwardly computed.

In Algorithm 1, there are two important implementation issues that warrant discussion. The

first issue is how to choose p as small as possible so that the function Hy 1 (7, U) is still convex and
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the concave part —ﬁMT(% U) of the d.c. decomposition becomes less important so as to enhance
the efficiency of the DCA. Algorithm 2 to update p is suggested by Le Thi Hoai An, Le Hoai
Minh, and Pham Dinh Tao (2014). The second issue is to choose a ‘good’ starting point. For the
DCA to work, a starting point must not be a local optimal point as the DCA is stationary at that
point. The variable neighbourhood search (VNS) algorithm proposed by Hansen and Mladenovié
(1997) can potentially generate good starting points for the DCA. The VNS is an effective heuristic
scheme for combinatorial and global optimization, which can easily implemented using any local
search algorithm as a subroutine. The main principle of the VNS is to explore pre-determined
distant neighborhoods of the current incumbent solution, and jump from there to a new one if there
is an improvement found through a local search routine. A typical VNS routine requires a set of
neighborhoods to be specified.

The structure of all non-intersecting neighborhoods [of 4] in the hyper-rectangle [T, T1% [~ p.c.i> £o.c.]
XTI, [~Coer £o.e) can be defined by Hy(v) = Hi(v)/He_1(7), where Hy(v) = 1%, TI%, [ggk“, wit) %
1,165 W8] k=1, oy, with

B = 00,000 = bes = e+ L),
B = ) 0n) = it o = 02)
() = 10000 = b= (00 + (o)
o) = o) = bet T—loe— 60)

Let x(U,U’) denote the Hamming distance between U and U’ (i.e., the number of pairwise different
columns of these G x N matrices) The system of all neighborhoods [of U] induced by this metric
in AY is then given by A (U {U’ e AY: k(U U) = 6} A =1,... loax, lmax = N. Therefore,
one can choose Ny ¢(v,U) = Hy(v) x No(U), Yk =1,...  kmax; £ =1,...,lmax, as a structure of
neighborhoods [of v x U] in TT%, TT1% [~ Co.cir o.ci] X TIS1[~loer Lo X AY.

The VNS using the defined neighborhood system is reminiscent of the divide-and-conquer strat-
egy used in a branch-and-bound optimization algorithm - breaking the search space into smaller
pieces, then optimizing the objective function on these pieces. Unlike branch-and-bound algorithms
the VNS also allows the system of neighborhoods to vary at each iteration. The basic VNS pro-
cedure is described in Algorithm 3 below. In this algorithm, local searches can be performed by
using Simulated Annealing (SA) (see, e.g., Guyon (1995, p. 212)) instead of the K-means algorithm.
The K-means - despite of its appealing computational efficiency - has certain shortcomings, such as
it is very sensitive to outliers so that the computed clusters are different from actual ones, and it

does not often reach global optimum even when being ignited by different initial values (see, e.g.,
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Algorithm 2 Update p = (pu, ps, po)
Initialize the routine using {U®,0© ¢} and choose a step size, 7, € (0,1).
Set £ < 0 and p{® < py, where p, satisfies Lemmas 8-10.
repeat
pttD) = 7,0 )
{)\(4)77(4)7 V(f)} c erp(“l),N,T(e(Z)u oY, U(f))
Set U = ProjAg (52‘—(?”) L QUHD) = Projl‘[? T1%  [—lp.c.0lo.c.0 (4:;—?10 )

—1

~(0)
] —4/);“1)

{v*, U} = {90+ oD Ut+D)}
{~*, U*} = {8V O UOY
C—0+1
p « p+D)
until Fx (v, U*) > Fyr(v*,U")
if / > 1 then
return p p(f) and {U(O)’ 0 ¢(0)} — {U(Z)’ 108 ¢(£)}
else
return p® and {U©, 00 4O
end if

and ¢(z+1) — Projl‘lil[—%,m

Tan, Steinbach, and Kumar (2005); Wu (2012)). A properly designed SA-based algorithm can be
more efficient than the K-means algorithm in obtaining a globally optimal solution to the clustering
problem (Brown and Huntley (1992); Klein and Dubes (1989); Selim and Alsultan (1991)). The an-
nealing process, as implemented via the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller (1953)), always allows for some possibility of moving out of a local optimum by
probably accepting a ‘worse’ local value of the objective function. Therefore the SA can eventually
generate near global optimum after a number of runs required to first “melt” the system being
optimized at a high effective temperature, then to lower the temperature gradually until the sys-
tem “freezes” and no further changes to the system can be found. In fact the DCA merely needs
a ‘good’ starting point, which must not be a local optimum, to proceed; and ideally, this ‘good’

starting point is a near global optimum. The SA procedure is given in Algorithm 4.
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Algorithm 3 VNS
: procedure VARIABLE NEIGHBORHOOD SEARCH (VNS) PROCEDURE

1

2: Choose initial values, {7®), U}, and an error tolerance level, e

3: 0«0

4: k+0

5: do

6: loop:

7 Randomly generate a point {7'), U0} € N, (v9,UW) = Hi(v) x My(UW)

8 Do a local search starting at {4/), U"®} in Nt ('y(é), U(Z)) and obtain a local optimum,
9 {,.),(£+1)7 U(Z—i—l)}

10: if Fyr(yD, UY) < Fyp(v©,UY) then
11: (O, UO} « {40 Uy

12: goto loop

13: else

14: C+—(+1

15: kE+—k+1

16: end if

17 while (£ < lpax AND k < kpay) OR |[{7O, U0} — (4D UEDY| < e
18: return {y¥ U®}

19: end procedure

The algorithm proposed by Selim and Alsultan (1991) is employed for randomly generating a neighboring group
assignment, U"Y) | of U’.

6 Empirical Choice of the Number of Groups

In the present maximum likelihood paradigm the optimal selection of the number of groups can be

implemented by the following analogues of AIC and BIC:

- Ny o)L @
AIC(®,U) = 1 <— e, (eu >+—,
S\ T ;6 t( ) T
R N Z R ’@’logT
S\ T ;6 t( ) T

where U consists of estimates for the group membership indicators, and © is the vector containing

estimates for the model parameters associated with the group classification provided by IAI; and
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Algorithm 4 SA

1: procedure SIMULATED ANNEALING (SA) PROCEDURE

2: Initialize the algorithm using {v©, U©®}

3: set an initial temperature, T'e, a temperature length, 7L, and a cooling speed, «

4: £+ 0

5: repeat

6: for i =1to |TL/a| do

7 apply Selim and Alsultan’s (1991) algorithm to randomly draw a neighboring point,
{v*,U"}, of {+©,U®}

8: compute AFN,T = FN,T(7*a U*) — FN,T(')’(Z)a U(Z))

9: if AFN,T S 0 then

10: ~O

11: U + U~

12: else

13: randomly draw ¢ = Uniform(0, 1)

14: if ¢ < exp(—AFyr/Te) then

15: ~O

16: UY « U~

17: end if

18: end if

19: end for

20: C—0+1

21: set a new ‘cooling’ temperature, Te = Te X «

22: until a stopping criterion is met

23: return the solution corresponding to the minimum function
24: end procedure

?it (@, ﬁ) ,t=1,...,T, denote the estimated residuals associated with €,,(®,Uy), t =1,...,T.

7 Monte Carlo Study

7.1 Monte Carlo Design

This simulation study provides some evidence on the small-sample performance of the proposed
estimator. The design is based on an ARDL(1,1) model, where the covariate can be I(0) or (1),
with errors being generated using linear/nonlinear SAR processes. Suppose that the covariate is
1(0), for a given error-generating process, two different sets of parameters are imposed on the ARDL
model in order to examine the impact of the stability condition on the finite-sample performance of

the estimator; the same experiment is also replicated for the case where the covariate is I(1). To be
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specific, we consider the following data generating process (d.g.p.) with four heterogeneous groups:
Aygit = Gi(Ysii—1 — Uity t) + NilDYg, i1 + Vildg, s 4 i +€5,4, 0 =1,...,4, (7.1)

where s; = (s;1, 5;2) indicates a location on a rectangular lattice, say V;; the covariate x,; takes

either

o . 0.6z5,,t—1+7s;,t if lzs,;,t—1]<1, (7 2)
. t _— . .
81 _0-6msi,t71+775i,t lf ‘wsi,t71|21

or the unit-root process

Tt = Tsyt—1 + Ns; t- (73>

In the first scenario, it is assumed that the errors are generated by linear SAR processes. To

specify the error-generating processes, note that the lattice V; has a lexicographical order, thus

there exists a bijection between the elements of V; and the counting set {1,2,...,|V;|}. The errors
€s;ts 8i € Vi, t =1,...,T, are generated by a linear SAR process, which can then be represented
as
[Vil
Efi,t = pPi w&,hiEhi,t—i_efi,ta 62 S {17277“/2‘}7 1= 17"'747 (74)
hi=1,h;#;

where ey, ; v N(0,0?) with o? v Uniform(0.5,1.5) and W; = {wy, .}, 6 € {1,2,...,|Vi|]}, hi €

{1,2,...,|Vi]}, is a spatial weight matrix; similarly, the d.g.p. for ns,;, s; € Vi, t = 1,...,T, is
given by
[Vil
néi,t = —pPi Z wéi,hilrlhi,t_‘_g&,t) EZ S {1>2aa|‘/2|}a 1= ]-7"'a47 (75)
hi=1,h;#Al;

where &, , "~ N(0, 02) with 62 "% Uniform(0.5,1).
In the second scenario, it is assumed that the errors are generated by nonlinear spatial autore-

gressions; the following d.g.p.’s are similar to the one used by Hallin, Lu, and Tran (2004):

€s;1,85,2,t — Sl (ESi,l—LSi,zJ + €s;1,85,0—1,t + €s;,1+1,8i 2, + 68i,178i,2+17t) + €si,1,8i,2,L (76)

Nsir,si0,t — Sl (7781',1—1,&,2,t + Msij,si2—1t + Msi1+1,8:2,t + /’75i,175i,2+17t) + gsi,l,si,mb (77)

i.4.d. i.4.d. . i.4.d.
where, for every s; = (Si,lv 3i,2) € Vi, Csinsiot ™ N<Ov Ui)a Os; ™ Un1form(0.5, 1) and 581',1,81',2715 ~

N(0,02), 0, e Uniform(0.5, 1.5), are independently generated.

With the d.g.p.’s defined above in mind, we conduct the following Monte Carlo experiments:
Experiment 1: Data are generated according to (7.1), (7.2), (7.4) and (7.5). The spatial weight
matrices W;, i = 1,...,4, are of rook-contiguity (or queen-contiguity) type, constructed from actual

maps of counties in the four U.S. states: Georga (i = 1), Kansas (i = 2), Missouri (i = 3), and
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Texas (i = 4). In this experiment the numbers of ‘neighbouring’ counties in these states are set to
Ny = |Vi| = 45, Ny = |Va| = 30, N3 = |V5] = 30, and Ny = |V,| = 70 respectively, and the following

sets of parameters will be used:

{¢17 ¢27 ¢37 ¢4} = {_097 _057 _027 _07}7

{61,05,05,0,} = {—2.,—1.,1.,8.},
Aoy Agy b = {1, —0.05,0.05, 1.},
{7,72,73, 74} = {—1.,—0.04,0.04, 1.},
{11, p2, pr3s pra} = {—0.05,0.05, —1., 1.},

{pl, P2, P3, p4} = {04, 005, 06, 01}

This experiment illustrates the situation whereby the stability condition nearly breaks down.
Experiment 2: This experiment is similar to Experiment 1 except that the numbers of ‘neighbour-
ing’ counties in the above-mentioned states are now set equal to |Vi| = 100, |V3| = 60, |V3] = 65,
and |Vy| = 150. The experiment demonstrates how the proposed estimator performs as the cross-
sectional dimension grows relative to the number of time periods.

Experiment 3: This experiment is similar to Experiment 1 except for the set of parameters
{1, A2, A3, A} = {—0.5,-0.05,0.05,0.5}. This experiment illustrates the situation whereby the
stability condition certainly holds true.

Experiment 4: This experiment is the same as Experiment 3 except that the numbers of ‘neigh-
bouring’ counties specified in Experiment 2 are being used.

Experiment 5: Data are generated according to (7.1), (7.2), (7.6) and (7.7). The same sets
of parameters specified in Experiments 1 and 2 are being used. This experiment illustrates the
robustness of the proposed estimator when the error-generating d.g.p.’s change. It is important to
note at this point that simulating sample paths from a nonlinear SAR, such as (7.6) or (7.7), is not
a straight-forward task. Since the principle of contraction mapping warrants that the trigonometric
sine function has a fixed point, one could simulate the processes (7.6) and (7.7) using the fixed-point
iteration method. We shall briefly describe the algorithm to simulate (7.6) as (7.7) can be simulated
in the same way. For each i € {1,2,3,4} and ¢t € {1,...,T}, to generate m; x n; observations of

€s,+ ON a rectangular region, one can perform the following steps.

Step 1: Set all the initial values of €, to zero and generate an array, {€s, , s, ».t}si1=1,...,1004m;, Of
T si2=1,...,1004n;
mixed-normal random variables.

Step 2: Start from the values generated in Step 1 the process is iterated, say 30 times, for example,
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(k+1) . (k) (k) (k) (k) _
€5i,175i,27t = 81 €5i,1_175i,27t + 651’,1752',2_17t + €5i,1+175i,27t + €5i,175i,2+17t + €si1,81,2,t) k= 1’ T 29.
Step 3: Take {¢*” the simulated le (and discard {¢®” t
ep 3: Take {€,; ;,,}si1=75....,744m, as the simulated sample (and discard {e,; ;, , +}si1=1,...74 to

si,2:75,...,74+n2- Si,2:1,...,
allow for a warming-up zone.

Experiment 6: We repeat all the above experiments with (7.2) being replaced by (7.3) to examine

the finite-sample performance of the estimator when the covariate is nonstationary.

7.2 Monte Carlo Results

7.2.1 Known group memberships

In this case, group memberships of individuals are known, thus no group classification is needed.
Stationary Covariate: The vector of true parameters defined in Experiment 1 indicates that the
stability condition does not hold in Group ¢ = 4. Both the simulated biases and MSEs of the
estimates shrink to zero slowly even for a large number of time periods in both small and large
spatial groups; and the estimates in Groups ¢ = 2 and 3 seem to be much less biased than in
Groups @ = 1 and 4 where the stability condition does not strictly hold. This pattern still persists
for a variety of d.g.p.’s generating errors (cf. the first two panels in Tables 1-6).

For the true parameters defined in Experiment 3, both the simulated biases and MSEs are small
for relatively large numbers of time periods in both small and large groups. However, comparing
the last two panels of Tables 4 and 5 the biases are clearly less severe for the case with nonlinear
SAR errors than the case with linear SAR errors, especially when the group sizes are large.
Nonstationary Covariate: The simulated biases and MSEs of the estimates of the long-run slope
coefficients in Groups 7 = 1,2 and 3 seem not much affected by the failure of the stability condition
in Group ¢ = 4. This is particularly true for the case with nonlinear SAR errors (cf. Tables 7-12).
When the d.g.p.’s for all the groups are stable the simulated biases and MSEs become infinitesimal

when the errors follow nonlinear SAR processes.

7.2.2 Unknown group memberships

We implement the VNS-DCA procedure to minimize the criterion function. To measure the per-
formance of the VNS-DCA as a clustering algorithm, we report the Rand index in Table 13. The
Rank index (named after William M. Rand) measures the number of pairwise agreements. For
every unit, say x;, ¢ = 1,..., N, let G;(x;) represent its initial group label, and G¢(x;) represent

its group label obtained from a clustering algorithm. According to Rand (1971) the Rand index is
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defined, in mathematical terms, as

a+d
Randl = ~=————7
where
a = [{i,jell,N]: Gi(z;) = Gi(x;) and Ge(x) = Ge(x;)}H
b = Hi,je[l,N]: Gi(z;) = Gi(x;) and Ge(x;) # Ge(x)}H
= [i,j € [I,N]: Gi(z;) # Gi(x;) and Ge(v) = Geo(x)}
d = |{i,j € [L,N]: Gi(;) # Gi(x;) and Ge(x;) # Ge(x))}

Note that RandI € [0, 1], where ‘0’ indicates that the two clusters of data do not agree on any pair
of points, and ‘1’ indicates that the two clusters bearing possibly different labels are exactly the
same.

Suppose data are generated by the d.g.p. defined by (7.1) and (7.2) with SAR errors using queen-
contiguity weights. Table 13 reports improved simulated RandI’s as the number of sampled locations
increases. Therefore the VNS-DCA performs clustering computations efficiently in Experiments 3
and 4. The number of repetitions in each simulation is 500; and most of the computational time
is spent on finding ‘good’ starting points through implementing the VNS algorithm while the DCA
performs quite efficiently (usually converges to an optimum after about 800 to 1500 iterations). The
computational time increases polynomially with the number of time periods. According to Tables
13 and 14, the proposed estimators perform well in terms of both biases and mean squared errors.

In addition, Tables 17 and 18 report the finite-sample performance of the proposed procedure
when data are generated by (7.1) with the covariate following a unit-root process (7.3) and SAR
errors using queen-continuity weights. The Rand index clearly improves as the number of time
periods increases in comparison with the case when the covariate follows a stationary process (cf.
Tables 15 and 16). The empirical biases and MSE’s also have much faster decay rates in this case,
especially for big clusters. Therefore the method could perform really well when covariates are
nonstationary. The same simulations using SAR errors with rook-continuity weights are repeated
for data generated from the d.g.p. (7.1) and (7.3); Results in Tables 19 and 20 show even smaller
biases and mean squared errors, confirming that the rates of convergence significantly depend on

patterns of weak spatio-temporal dependence as conjectured by the main theorems.
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8 Empirical Application

An open economy can effectively finance its investment by borrowing abroad since domestic sav-
ing [as the main source of funds for investment| flow to wherever there are profitable investment
projects. Therefore, high correlation between domestic saving and investment - both measured
as percentages of gross domestic product (GDP) - empirically established in a regression model
for open economies is well known as the Feldstein-Horioka puzzle (henceforth FHP). This puzzle
started when Feldstein and Horioka (1980) (FH) showed, by using the cross-section data of 16 Orga-
nization for Economic Cooperation and Development (OECD) economies for the period 1960-1974,
that temporally averaged national saving and domestic investment were highly correlated. They
interpreted this high long-run correlation as an evidence of low international capital mobility. The
FHP - which Obstfeld and Rogoff (2001) view as one of the six major puzzles in international
macroeconomics - still persists as estimates of the saving-investment (SI) association for small open
economies have remained quite high despite ongoing financial market integration and globalization
over recent decades (see, e.g., Chang and Smith (2014)). The question as to whether the apparently
high capital mobility is a chimera or an elusive reality is still attracting much attention because
capital mobility is critical both for the efficient allocation of capital to the most productive locations
and for consumption smoothing. It is also relevant for policy issues such as large current account
deficits or the role of net overseas balances.

Another plausible interpretation of the close long-run relationship between the investment and
saving ratios [first established by Feldstein and Horioka (1980)] is provided by Coakley, Kulasi, and
Smith (1996); Jansen (1996). They argued that, since saving and investment behave like unit-root
processes, the long-run SI correlation should reflect the intertemporal budget constraint or solvency
constraint, which essentially requires that the current account (saving minus investment) must be a
stationary process as debt cannot explode. This solvency constraint in turn implies that saving and
investment are cointegrated with a unit cointegrating vector. As a result the long-run SI correlation
in a cross-section regression should be equal to one. Thus, it may well be that the FH coefficient
is not a puzzle, but merely a consequence of the solvency constraint. Jansen (1998) deems that
the long-run correlation can provide a test of the relevance of the intertemporal budget constraint,
which is one of the cornerstones of modern open-economy macroeconomics. Non-binding of the
intertemporal budget constraint implies that the saving and investment rates are not cointegrated
(i.e., saving and investment are not correlated in the long-run). This constitutes evidence in favour
of international capital mobility by the Feldstein-Horioka criterion.

A variety of econometric specifications has been employed to estimate the SI-correlation . Jansen
(1996) applies a vector error-correction model (ECM) - which is consistent with intertemporal

general equilibrium models - to the OECD countries, and find that saving and investment are
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cointegrated across countries. However the degrees of long-run Sl-correlation display some variety
across countries when including more recent observations into the sample. This heterogeneity [in the
SI relationship] between countries can be explained by differences in their economic structures, sizes,
cyclical positions, government policies, and macroeconomic openness. To control for the potentially
important effects of heterogeneity in saving and investment ratios, panel estimation techniques
(such as the dynamic fixed-effects estimator, Pesaran and Smith’s (1995) mean-group estimator,
and Pesaran, Shin, and Smith’s (1999) pooled mean-group estimator) are commonly employed (see,
e.g., Coakley, Fuertes, and Spagnolo (2004); Pelgrin and Schich (2008)).

This empirical study revisits the long-run Sl-relationship by applying the proposed CL esti-
mation approach to a quarterly dataset consisting of 27 OECD countries (Australia , Belgium,
Canada, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Israel,
Italy, Japan, South Korea, Mexico, Netherlands, New Zealand, Norway, Portugal, Slovak Republic,
Slovenia, Spain, Sweden, Switzerland, UK, USA) and four non-OECD countries and organizations
(South Africa, the European Union (EU-28), Latvia, Costa Rica) from 1995 Q1 to 2015 Q2.> The
period covered in this dataset is associated with the era when international capital movements and
deregulation of domestic financial markets become more and more popular. Thus, one can expect
that, for the countries under our study, the long-run relationship between saving and investment
rates has been rather deteriorated.

In view of Jansen (1996) and Pelgrin and Schich (2008), we shall consider the following group-

wise ECM with a maximum lag of one:

G G
Al =o; + Z Gettic (Lir—1 — 0:5:4) + Z Vet cAS; 1 + €1, (8.1)
c=1

c=1

where [;; and S;; represent the investment rate and the saving rate of country ¢ in period ¢;
and €, ~ N(0,02); o; is the country-specific fixed effect; ¢, is the error-correction coefficient
associated with group ¢; 6. is the long-run Sl-correlation coefficient associated with group c¢; 7.
is the short-run Sl-correlation coefficient associated with group ¢; and w;., ¢ = 1,...,31 and ¢ =
1,...,G, are indicators of group memberships. The model (8.1) takes into consideration possible
heterogeneity between groups of countries with common characteristics, economic policies, and
structures by allowing for group variations in the SI-correlation coefficients, whereas, in many other
studies, these coefficients are assumed to be either equal across countries when temporally pooling
observations together (Feldstein and Horioka, 1980; Jansen, 1998), or completely different across
countries (Coakley, Fuertes, and Spagnolo, 2004; Pelgrin and Schich, 2008). Other types of country-

specific heterogeneity can also be accounted for by including fixed effects and error variances that

2All the data wused for this empirical study are downloaded from the OECD data bank at
http://www.oecd-ilibrary.org.
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differ across countries.

We start by examining the persistence property of I; ; and 5; ;. Table 21 presents the augmented
Dickey-Fuller (ADF) test results. The p-values reported are greater than the 5 percent level for vir-
tually all series. These findings are consistent with the existing evidence that saving and investment
ratios have their dynamics indistinguishable from unit-root processes.

Next, we conduct estimation and inference of the error-correction model (8.1). The VNS-DCA
procedure searches for globally optimal points of the CL criterion function over the domains [—2, 2]
of 0’s, [—2,—0.001] of ¢’s, and [—1, 1] of a’s and «’s. The estimation results are reported in Tables
22 and 23. Since the composite error attains its minimum value when the number of groups G
is 4, we shall then consider the case where there are 4 optimal groups. The estimate of the EC
coefficient QAS4 ~ 0 means that, in the fourth group of countries the saving and investment rates
are not cointegrated in the long-run, this implies high international capital mobility by the initial
interpretation of Feldstein and Horioka (1980). Since QAS4 is very close to zero the estimate of the
true 6, then becomes irrelevant; thus, this results in a wide confidence interval, [—435.43,444.79]
(cf. Table 22). The estimates of the other EC coefficients ¢y, ¢o, and ¢3 are significantly different
from zero, there exists a long-run relationship between the saving rate and investment rate. In the
second group the estimate of the cointegrating vector is not much different from (1, —1) the current
account is stationary in the long-run. Therefore, according to Coakley, Kulasi, and Smith (1996)
and Jansen (1996) the close long-run relationship between the saving and investment rates should
be viewed as a solvency condition that must be satisfied rather than as evidence against capital
immobility, thus no conclusion about capital mobility can be drawn for the countries in this group.
In the first and third groups the estimates of the cointegrating vectors are significantly different
from (1, —1) the current account is non-stationary in the long-run. This result is evidence in favour
of international capital mobility. Moreover, we can conclude - by inspecting the estimates for the
short-run correlation coefficients v; and 3 - that low short-run correlations imply that capital is
sufficiently mobile in the countries belonging to the first and third groups. However the degree of
capital mobility in these groups is less than in the fourth group.

In addition the geographical sketch of countries on the world map (cf. Figure 1) shows that there
is a little neighborhood effect in the long-run Sl-relationship. Nowadays, many countries can have
common economic structure or fiscal policy due to trade linkages or globalization, not necessarily
due to geographical closeness. As noticed in Figure 2, countries in the fourth group have the lowest
capital control - this is consistent with our finding that there is no long-run relationship between
the investment and saving ratios, thus one could expect high capital mobility in this group. In the
first and second groups the capital control indices became rather high after the year of 2004, which
provides moderate evidence in favour of capital mobility. Therefore, high average capital control

indices for the first and second groups suggest that there are long-run Sl-relationships, which is
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consistent with our finding reported earlier that capital is mobile to a certain degree in the first

group whilst it remains inconclusive in the second group.

9 Conclusion

A common problem potentially arising when panel data are spatially dependent is that parameters
are not homogeneous over space, but instead vary over different locations where an economic activity
takes place. The present paper deals with this type of issue by estimating an error-correction
form of an ARDL model that allows for group-specific patterns of unobserved heterogeneity. The
inference procedure is based on maximum composite likelihood, thus can bypass full specification
of the variance-covariance matrix for the error term, which is often required in the traditional
maximum [joint] likelihood paradigm. It is demonstrated [through asymptotic theory and Monte
Carlo simulation| that the proposed estimator is asymptotically valid and has good finite-sample
performance. The compelling issue of choosing the optimal number of groups and the optimal
way of grouping can also be dealt with by using the analogues - based on the composite likelihood
function - of the AIC and the BIC. Group-specific time patterns of heterogeneity can of course be

allowed, but this complication is not discussed in this current study.

10 Software

A GUI software package to implement the method proposed in this paper can be downloaded from

http://http-server.carleton.ca/~bchu/ecmg.htm (source code available upon request).
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Table 1: Simulated Biases of Estimates for the D.G.P. with Known Group Memberships: Stationary Covariate
and Linear SAR Errors with Rook-Contiguity Weights

T Bias(éy) Bias(¢s) Bias(¢y) Bias(¢s) Bias(6y) Bias(6,) Bias(05) Bias(0y) Bias(i.)
Experiment 1 (N = 45, N = 30, N3 = 30, and N, = 70)
50  -0.86109 -0.106376 0.068128 -0.212314 -0.06528  0.040126  0.013735 0.333403 0.207969
150  -0.72167 -0.088056 0.045632 -0.218835 -0.05005  0.042901 -0.017278 0.309425 0.197628
250 -0.65316 -0.077994 0.001431 -0.191006 -0.02688  0.045023  0.001188  0.294455 0.188259
350  -0.64158 -0.044944 0.065820 -0.216888 -0.00593  0.042386  0.011435 0.299321 0.178516
450  -0.66119 -0.080777 0.038246 -0.214588 -0.03850  0.048995  0.019717 0.332659 0.143224
550 -0.78069 -0.103053 -0.004172 -0.199955 -0.00401 0.061558 -0.010862 0.318524  0.217725
650 -0.60281 -0.077536 -0.008501 -0.176315 -0.04533  0.046447 0.019646  0.292884  0.178645
750 -0.56149 -0.023177 0.036038 -0.196446 -0.03419  0.074197 -0.039323 0.314156 0.138525
Experiment 2 (N; = 100, N, = 60, N3 = 65, and N, = 150)
50  -0.943347 0.523168 0.234133 -0.223378 -1.54787  0.046866 -0.029766 -0.70695  0.35397
150 -0.673831 -0.111102 0.057198 -0.213776 -0.06720  0.034929 -0.011663  0.32481 0.16215
250 -0.564914 -0.101189 0.079891 -0.218222 -0.01697  0.052751  0.033071 0.32475 0.16525
350 -0.620736 -0.073731 0.024378 -0.221785 -0.05171  0.023342 -0.014370  0.31309 0.15915
450 -0.688307 -0.095300 0.016818 -0.245358  0.02800 0.021830 -0.000344  0.31039 0.19924
550 -0.670902 -0.093836 0.068862 -0.245341 -0.04130  0.044821 -0.035420 0.32380 0.18687
650 -0.690446 -0.093473 0.012114 -0.195285 -0.05326  0.038125 -0.004501  0.30867 0.20244
750 -0.731355 -0.075748 0.033510 -0.193993 -0.07986 0.0449219 -0.029733  0.32392 0.17823
Experiment 3 (N = 45, Ny = 30, N3 = 30, and N, = 70)
50 -0.110187 -0.067890 -0.078441 -0.001113 -0.250219 -0.535216 0.082166 0.060488 0.015810
150 -0.045497 -0.023332 -0.024274 -0.001698 0.006884 -0.194721 0.052197 -0.015488 0.020460
250 -0.019351 -0.013274 -0.016588 -0.001520 -0.028486 -0.158752 0.038874 -0.026079 0.021075
350 -0.013855 -0.009533 -0.012156 -0.000485 -0.016486 -0.087744 0.042756 -0.004560 0.021392
450  -0.009807 -0.009852 -0.010282 -0.001130 -0.028529 -0.047788 0.039635 -0.002043 0.021594
550 -0.004898 -0.005949 -0.007844 -0.000706 -0.031241 -0.039467 0.039654  0.004700 0.021781
650 -0.002667 -0.001809 -0.006196 -0.000637 -0.041310 -0.065682 0.037479 0.015756 0.021915
750 -0.001270 -0.003121 -0.006111 -0.000585 -0.043350 -0.022452 0.035340 0.022582 0.021924
Experiment 4 (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50  -0.092588 -0.078116 -0.077676 -0.004888 -0.544623 -0.098329 0.060390 0.106963 0.015661
150 -0.033139 -0.021422 -0.027837 -0.000733 -0.059642 -0.035168 0.040841 -0.005210 0.019703
250 -0.016082 -0.011987 -0.017922 0.000818 -0.049598 0.009395 0.033612 0.020992  0.020504
350 -0.008162 -0.005361 -0.012352 0.000812 -0.066102 -0.003925 0.031797 0.026391 0.020996
450  -0.000513 -0.004085 -0.009919 0.000457 -0.082942 0.042681  0.030141 0.027726 0.021239
550 0.003646 -0.004057 -0.008363 0.000633 -0.084011 0.045922  0.025307 0.044636 0.021374
650 0.006919 -0.003900 -0.007256 0.000152 -0.094483 0.066114  0.026684 0.035941 0.021503
750  0.006309 -0.001032 -0.005382 7.27E-05 -0.091688 0.040157  0.029304  0.043090 0.021661
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Table 2: Simulated MSE’s of Estimates for the D.G.P. with Known Group Memberships: Stationary Covariate and Linear SAR Errors with
Rook-Contiguity Weights

T MSE($)) MSE(¢s) MSE(¢s) MSE(¢y) MSE() MSE(,) MSE(®;) MSE(®,) MSE(7) Temp. Ave. Error”
Experiment 1 (N; = 45, Ny = 30, N3 = 30, and N, = 70)

50  2.061030  0.238045  0.226894  0.339639 0.192405 0.161238  0.216442  0.248103  0.228033 7488.58
150 2.099090  0.261776  0.150218  0.246824 0.187279 0.168096  0.230186  0.202591  0.162543 1.71E+41
250  2.256810 0.226814 0.179554  0.226734 0.198282 0.159402  0.205081 0.230600 0.243666 T.44E+78
350  2.156730 0.256681 0.173522  0.261128 0.196061 0.149078  0.220355 0.219168 0.192356 4.04E4+116
450  1.839240 0.278468 0.169363  0.291816 0.200510 0.173884  0.216671 0.252268 0.171778 2.73E+154
550  2.198300 0.239358 0.216220  0.223929 0.186552 0.185950  0.252353 0.243869 0.209425 1.24E+192
650  2.132060 0.254277 0.205297  0.206942 0.179464 0.196177  0.222694 0.194514 0.192571 8.36E+4229
750  1.860390  0.197142  0.172236  0.209194 0.180146 0.174973  0.214772  0.219093  0.178035 5.53E+267
Experiment 2 (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50  2.384320 212.738000 13.758200 0.269305 1152.860000 0.160198  0.351016  549.327000 10.862600 6559.82
150  1.982950 0.253339 0.145084  0.214627 0.182533 0.142790  0.205465 0.222483 0.169886 1.56E+41
250 2.426260 0.271670 0.238700  0.238971 0.200262 0.154655  0.256025 0.233882 0.160257 6.49E+78
350  2.000270  0.223061  0.162757  0.241096 0.201454 0.140084  0.237468  0.210311  0.163328 3.63E+116
450  2.582510  0.252512  0.202008  0.275982 0.256633 0.189170  0.317486  0.239224  0.218675 2.19E+154
550  2.426350  0.238815  0.185976  0.265754 0.200350 0.139763  0.222850  0.226840  0.166296 1.23E4192
650  2.100940 0.273460 0.159649  0.206538 0.211218 0.186339  0.200136 0.211990 0.205575 8.83E+4229
750  2.182040 0.256051 0.181827  0.217218 0.189705 0.187588  0.249155 0.228272 0.189553 5.08E+4-267
Experiment 3 (N; = 45, Ny = 30, N3 = 30, and Ny = 70)
50  0.368280 0.463023 0.049834  0.007872 6.653660 49.719200 66.073800  2.199690 0.059562 0.010184
150 0.081101 0.100259 0.008181 0.001855 0.542767 2.508030  6.304430 0.468265 0.048007 0.013849
250 0.044113  0.052732  0.004153  0.001073 0.277699 1.387700  2.670080  0.246744  0.047652 0.014541
350 0.029081  0.040395  0.002893  0.000740 0.175204 0.778334  1.813750  0.156959  0.048048 0.014838
450 0.022085  0.030767  0.002141  0.000578 0.133426 0.450826  1.246650  0.106520  0.048363 0.014997
550 0.017186 0.024377 0.001691 0.000491 0.103069 0.396044  0.961720 0.091526 0.048825 0.01509
650 0.014513 0.019639 0.001408  0.000424 0.083507 0.269695  0.741135 0.071040 0.049166 0.015162
750 0.011942  0.016315  0.001262  0.000364 0.075899 0.203642  0.674555  0.061651  0.049069 0.015225
Experiment 4 (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50  0.336490  0.499184  0.045415  0.008392  29.993100  38.285400 73.256500  1.995760  0.057128 0.004828
150  0.066222 0.111923 0.008543  0.002018 0.487734 3.733990  5.550900 0.415036 0.045350 0.006514
250  0.037101 0.060085 0.004390  0.001123 0.226384 1.019560  2.447260 0.204707 0.045568 0.006854
350  0.027267 0.039802 0.003075  0.000786 0.150483 0.665346  1.417690 0.129436 0.046570 0.006975
450  0.020279 0.031139 0.002171 0.000599 0.117064 0.431270  1.045770 0.103245 0.046913 0.007063
550  0.016296 0.023378 0.001734  0.000485 0.092761 0.320943  0.708957 0.077289 0.047121 0.007114
650 0.013217  0.019180  0.001400  0.000396 0.080031 0.235476  0.679439  0.061645  0.047398 0.007150
750  0.011669  0.016570  0.001143  0.000354 0.070570 0.234721  0.565636  0.054522  0.047895 0.007168

“ abbrev. for the temporal average error defined as N % Zthl e*,t(ﬁ).
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Table 3: Simulated Biases of Estimates for the D.G.P. with Known Group Memberships:

and Linear SAR Errors with Queen-Contiguity Weights

Stationary Covariate

T

Bias(¢1)

Bias(¢s)

Bias(¢s)

Bias(¢s)

Bias ()

Bias(8)

Bias(8s)

—~

Bias(8,)

Bias(fi,)

50
150
250
350
450
550
650
750

50
150
250
350
450
550
650
750

50
150
250
350
450
550
650
750

50
150
250
350
450
550
650
750

-0.858399
-0.701195
-0.663698
-0.698057
-0.612329
-0.699745
-0.623609
-0.626769

-0.763373
-0.703738
-0.703967
-0.670058
-0.715018
-0.671723
-0.662065
-0.647779

-0.087895
-0.035869
-0.013167
-0.006550
0.000266
0.002312
0.003062
0.004951

-0.089830
-0.018141
-0.014801
-0.006422
-0.000105
-0.002778
0.000942
0.004076

Experiment 1 (N = 45, Ny = 30, N3 = 30, and N, = 70)

-0.088697
-0.076070
-0.041974
-0.087288
-0.089999
-0.069692
-0.042775
-0.071302

0.051561
0.037866
0.044686
0.028046
0.027263
0.029242
0.055336
0.021131

-0.251999
-0.228812
-0.213368
-0.225867
-0.213758
-0.201872
-0.213672
-0.195425

-0.073639
-0.043758
-0.019480
-0.065472
-0.035901
-0.074569
-0.055918
-0.063051

0.033987
0.053390
0.040885
0.054591
0.031392
0.058946
0.053703
0.041090

-0.002832
0.016597
-0.004228
0.005902
0.006506
-0.011789
0.005600
0.016664

Experiment 2 (N; = 100, Ny = 60, N3 = 65, and N, = 150)

-0.110235
-0.084416
-0.093266
-0.114683
-0.068980
-0.076533
-0.117619
-0.063958

0.081199
0.015175
0.062224
0.024481
0.058923
0.050059
0.062229
0.049050

-0.227623
-0.227624
-0.196770
-0.205503
-0.223209
-0.234680
-0.226658
-0.221746

-0.075237
-0.048532
-0.033552
-0.021432
-0.040791
-0.044193
-0.056909
-0.032152

0.037752
0.039578
0.062668
0.044461
0.056332
0.044087
0.030790
0.012884

0.025481
-0.000360
0.021123
0.020606
-0.010557
0.021208
0.003325
-0.015911

Experiment 3 (N = 45, Ny = 30, N3 = 30, and N, = 70)

-0.073020
-0.029701
-0.015026
-0.005223
-0.002780
0.001495
0.000076
0.005124

-0.074460
-0.026189
-0.016090
-0.010406
-0.006648
-0.005860
-0.004954
-0.004059

-0.001997
0.000696
0.001048
0.000806
0.000274
0.000100
0.000158

-0.000061

-0.241938
-0.024583
-0.034377
-0.047235
-0.065099
-0.068602
-0.056065
-0.070581

-0.643001
-0.075703
-0.187792
-0.131618
-0.081072
-0.061908
-0.041058
-0.039654

0.032662
0.038675
0.036391
0.040012
0.030614
0.030486
0.034975
0.035146

Experiment 4 (N7 = 100, Ny = 60, N3 = 65, and N, = 150)

-0.101346
-0.042031
-0.024221
-0.016582
-0.018953
-0.014857
-0.009095
-0.004472

-0.078642
-0.023972
-0.011953
-0.006240
-0.005170
-0.003442
-0.003085
-0.003347

-0.006556
-0.002195
-0.001133
-0.000029
-0.000627
0.000424
0.000752
0.000480

-0.297800
-0.075558
-0.046614
-0.050570
-0.066211
-0.072256
-0.067760
-0.092348

-0.486428
0.048009
0.011725
0.038305
0.063712
0.047690
0.054388
0.063148

0.032444
0.031493
0.030177
0.038714
0.030313
0.030318
0.030497
0.027805

0.316786
0.309517
0.316052
0.300461
0.314442
0.298964
0.299446
0.300204

0.324663
0.300304
0.329863
0.317632
0.321255
0.301685
0.327446
0.323810

0.025829
0.020277
0.029213
0.008716
0.033891
0.031070
0.029493
0.043064

0.107005
0.015916
0.008297
0.025374
0.029299
0.035364
0.033301
0.039053

0.173743
0.168948
0.177749
0.165818
0.171976
0.176924
0.156117
0.162929

0.185544
0.163391
0.175616
0.176906
0.172536
0.164421
0.181650
0.177286

0.016142
0.020158
0.021046
0.021520
0.021862
0.021907
0.021987
0.022064

0.015765
0.020249
0.021163
0.021597
0.021733
0.021815
0.021825
0.021818
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Table 4: Simulated MSE’s of Estimates for the D.G.P. with Known Group Memberships: Stationary Covariate and Linear SAR Errors
with Queen-Contiguity Weights

T MSE(¢) MSE(dy) MSE(ds) MSE(ds) MSE(6,) MSE(8,) MSE(G;) MSE(6,) MSE(ji,) Temp. Ave. Error®
Experiment 1 (N; = 45, Ny = 30, N3 = 30, and N, = 70)

50  1.874520  0.295715  0.543656  0.491988  0.233785  0.283593  0.249145  0.313727  0.247791 7329.74
150  2.117680  0.269733  0.183599  0.228730  0.186245  0.183630  0.235978  0.228160  0.184288 1.62E+41
250 2.001020  0.218764  0.175765  0.242151  0.180947  0.148920  0.198553  0.226997  0.184359 6.98E+78
350  1.957610  0.261443  0.181741  0.233389  0.197940 0.170263  0.251513  0.209617  0.175732 3.6TE+116
450  1.946160  0.237436  0.173029  0.232767  0.176523  0.154068  0.224669  0.209865  0.179699 2.17TE+154
550  2.210790  0.272458  0.179004  0.249963  0.211208  0.177857  0.214837  0.224487  0.232034 1.35E+192
650 1.853950  0.249563  0.196796  0.253207  0.177171  0.168365  0.235829  0.205364  0.184621 7.57TE+229
750  1.784650  0.241543  0.179591  0.231717  0.187445  0.154874  0.214978  0.205378  0.183574 5.62E+267
Experiment 2 (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50  1.898220  0.545762  0.331516  0.836769  0.231477  0.328107  0.274496  0.303754  0.266136 5646.86
150  2.000690  0.230504  0.169907  0.229354  0.178778  0.156767  0.217029 0.212232  0.168470 1.39E+41
250  2.360900  0.274960  0.179689  0.229213  0.201960 0.167710  0.242299  0.241965  0.191065 6.53E+78
350  2.139580  0.272874  0.174808  0.208555  0.190818  0.172576  0.217213  0.227648  0.190945 3.30E+116
450  2.308180  0.243625  0.202452  0.249083  0.236306  0.206432  0.214332  0.241470  0.173112 1.90E+154
550  2.224590  0.282695  0.192194  0.250986  0.203446  0.176593  0.270079  0.216051  0.182502 1.27E4+192
650 2.356580  0.293268  0.185516  0.240022  0.207784  0.154649  0.290928  0.227304  0.176041 8.12E+229
750  2.223230  0.253720  0.161511  0.243489  0.184041 0.161936  0.246289  0.230593  0.192008 4.80E+267
Experiment 3 (N = 45, N = 30, N3 = 30, and N, = 70)
50  0.317611  0.447992  0.047439  0.007840  7.398800 64.397500 60.899000 2.283360  0.059775 0.010255
150 0.071471  0.100726  0.008547  0.001971  0.500439  4.236710  7.406730  0.440798  0.047415 0.013861
250 0.040180  0.057286  0.004354  0.001186  0.251307  3.611480  4.024490  0.243155  0.047813 0.014503
350 0.026722  0.037043  0.003065  0.000835 0.173618  1.210100  1.870260  0.152877  0.048825 0.014841
450  0.020104  0.028302  0.002069  0.000626  0.127250  0.559407  1.210540  0.110200  0.049576 0.015015
550 0.017489  0.022834  0.001696  0.000486  0.103609  0.349531  0.887500  0.084307  0.049425 0.015122
650 0.014373  0.019724  0.001510  0.000403  0.087617  0.267190  0.742428  0.070074  0.049601 0.015187
750 0.012802  0.016847  0.001254  0.000355  0.077922  0.221034 0.716152  0.057015  0.049738 0.015233
Experiment 4 (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50  0.312760  0.470171  0.044835  0.007728  6.387040 33.734000 40.105900 2.292450  0.056954 0.004917
150 0.066093  0.101020  0.008108  0.001746  0.495119  2.529910  4.829530  0.428887  0.047303 0.006548
250 0.037576  0.058946  0.003914  0.001070  0.225720  1.263170  2.471900  0.215994  0.048016 0.006895
350 0.024298  0.041783  0.002741  0.000780  0.135799  0.712740  1.624060  0.140107  0.048951 0.007018
450  0.019969  0.031458  0.002101  0.000592  0.105571  0.353870  0.986849  0.109316  0.049040 0.007092
550  0.015469  0.025272  0.001708  0.000501  0.091352  0.343692  0.874810  0.085894  0.049069 0.007128
650 0.013166  0.021070  0.001394  0.000429  0.078976  0.236987  0.667492  0.061006  0.048838 0.007163
750 0.011296  0.017499  0.001201  0.000370  0.071569  0.211944  0.526128  0.055434  0.048630 0.007188

“ abbrev. for the temporal average error defined as N + Zthl 6*7t(12;).
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Table 5: Simulated Biases of Estimates for the D.G.P. with Known Group Memberships: Stationary Covariate
and Nonlinear SAR Errors

T DBias(¢)) DBias(¢,) DBias(¢s) DBias(¢y) Bias(d,) Bias(fy) Bias(f3) DBias(fy) Bias(ii)
True Parameters defined in Experiment 1 (m; =n; =5,i=1,...,4)
50  -0.970693 -0.069464 0.085820 -0.229508 -0.094959 0.049079 0.018548 0.307814 0.172932
150 -0.782395 -0.145234 0.006716 -0.257922 -0.012191 0.040787 0.036339 0.322878 0.142735
250 -0.598178 -0.029355 0.014677 -0.195009 -0.034324 0.082560 0.070225 0.255610 0.185074
350 -0.552613 -0.049905 0.016743 -0.179277 -0.039556 0.042632 0.072894 0.296988 0.149054
450 -0.655592 -0.033425 0.019777 -0.158854 -0.075098 0.044455 0.007561 0.302537 0.185796
550 -0.698142 -0.031075 0.045309 -0.167126 -0.004099 0.058869 0.019851 0.295063 0.187364
650 -0.708413 -0.047610 0.001637 -0.172818 -0.053839 0.073108 0.022735 0.320742 0.141764
750 -0.556860 0.007222 0.035597 -0.243045 -0.022273 0.014504 0.031651 0.263577 0.154588
True Parameters defined in Experiment 1 (m; = 10 and n; =20, i =1,...,4)
50 -0.732286 -0.096945 0.057881 -0.132431 -0.057375 0.051464 -0.024427 0.360652 0.197779
150 -0.722716 -0.072764 0.061557 -0.235562 -0.056656 0.043586 -0.035096 0.321864 0.176154
250 -0.723979 -0.110542 0.051729 -0.232778 -0.036237 0.039303 -0.026582 0.337413 0.165967
350 -0.732472 -0.078580 0.024620 -0.190927 -0.044191 0.035718  0.028698 0.305701 0.204090
450 -0.766140 -0.089992 0.072140 -0.253662 -0.029252 0.025863 0.008322 0.334413 0.193960
True Parameters defined in Experiment 3 (m; =n; =5,i=1,...,4)
50 -0.088561 -0.072839 -0.078064 -0.001684 -0.207593 -0.623717 0.697244 0.094563 -0.097617
150 -0.032329 -0.028899 -0.026174 0.000246 -0.080181 -0.024025 0.013967 0.009645 -0.032925
250 -0.024551 -0.010698 -0.015302 0.000484 -0.040640 -0.025790 -0.002152 0.026099 -0.019623
350 -0.012196 -0.007457 -0.009191 -0.000175 -0.038071 -0.004878 -0.000862 0.016825 -0.011662
450 -0.009700 -0.008063 -0.005909 0.000290 -0.027451 0.000672  0.004944 0.004925 -0.007727
550 -0.009402 -0.007019 -0.006708 -0.000145 -0.021847 0.022580 0.017967 0.004376 -0.008769
True Parameters defined in Experiment 3 (m; = 10 and n; =20, i =1,...,4)
50 -0.110275 -0.103319 -0.018277 0.005745 -0.192519 -0.119767 0.190836 0.096212 -0.025917
150 -0.006048 -0.019684 -0.017021 0.003994 -0.068541 -0.110964 0.042790 0.080071 -0.022804
250 -0.001276 -0.004757 -0.011416 -0.000747 -0.051512 0.007802 0.004713 0.028922 -0.014156
350 -0.004430 -0.001101 -0.010341 0.000670 -0.017297 -0.039598 0.000488 0.037260 -0.013522
450 -0.005908 -0.001769 -0.006414 0.001687 -0.002752 -0.013991 -0.026319 0.029580 -0.009105
550 -0.004151 -0.003921 -0.005579 0.002284 -0.008911 -0.019388 -0.011917 0.020173 -0.007925
650 -0.006022 -0.002770 -0.004142 0.002318 -0.010583 -0.016669 -0.000291 0.019550 -0.006171
750  0.003963 -0.005300 -0.004837 0.002129 -0.014054 -0.006079 -0.012081 0.011144 -0.006637




Table 6: Simulated MSE’s of Estimates for the D.G.P. with Known Group Memberships: Stationary Covariate and Nonlinear SAR
Errors

T MSE(¢) MSE(¢s) MSE(¢s) MSE(¢y) MSE(,) MSE(@®,) MSE(#;) MSE(6,) MSE(i) Temp. Ave. Error”

ev

True Parameters defined in Experiment 1 (m; =n; =5,i=1,...,4)
50  1.728210  0.288209  0.217136  0.212903  0.196828  0.155598  0.253231  0.251616  0.247764 16178.8
150  1.876970  0.293202  0.213753  0.264166  0.255835  0.176938  0.262756  0.216224  0.166469 2.63E+41
250  1.219210  0.193416  0.149974  0.181570  0.175572  0.131969  0.222332  0.159459  0.173545 1.42E+79
350 1.038330  0.212277  0.171436  0.142657  0.150073  0.160658  0.173758  0.166489  0.153584 5.59E+116
450  1.552950  0.209377  0.222323  0.235925  0.203917  0.153663  0.248256  0.207164  0.176115 3.65E+154
550  1.568460  0.222412  0.153130  0.173305  0.171814  0.124806  0.182638  0.207226  0.172342 1.97TE+192
650 1.402050  0.219868  0.155079  0.202297  0.161028  0.147972  0.200994  0.216402  0.166047 1.19E+230
750  1.438890  0.208126  0.162966  0.260664  0.194095  0.118434  0.202310  0.188357  0.155805 8.89E+267
True Parameters defined in Experiment 1 (m; = 10 and n; =20, i =1,...,4)
50  2.059520  0.257048  0.419943  2.839950  0.181442  0.390532  0.206021  0.893595  0.626746 6026.54
150  2.424370  0.276616  0.237308  0.267437  0.237295 0.186378  0.228351  0.232332  0.177481 1.53E+41
250  2.397670  0.297403  0.186172  0.268930  0.226620  0.168849  0.205104  0.227012  0.213569 6.64E478
350 2210270  0.240743  0.190967  0.212326  0.204623  0.151513  0.244701  0.234525  0.195267 4.00E+116
450  2.507860  0.228128  0.185655  0.301912  0.208411  0.174457  0.251623  0.227277  0.189432 1.99E+154
True Parameters defined in Experiment 3 (m; =n; =5,i=1,...,4)
50  0.342224  0.136916  0.074713  0.006490 10.158500 35.619900 39.783300 1.884670  0.116173 0.011404
150  0.077128  0.032491  0.013254  0.001734  0.246708  1.200690  1.790750  0.323320  0.021248 0.015315
250 0.042963  0.016458  0.007537  0.001077  0.106464  0.604857  0.859245  0.183681  0.011936 0.016017
350 0.031918  0.011499  0.004946  0.000766  0.079473  0.239812  0.456663  0.122209  0.007954 0.016400
450  0.022800  0.008894  0.003639  0.000549  0.051940  0.179322 0.333514  0.081298  0.005781 0.016608
550  0.018347  0.006511  0.002975  0.000426  0.041856  0.126314  0.270491  0.058633  0.004719 0.016721
True Parameters defined in Experiment 3 (m; = 10 and n; =20, i =1,...,4)
50  0.317147  0.131605  0.081244  0.006806  2.113940  7.739370  6.942440 1.338710  0.126109 0.001646
150  0.068957  0.031286  0.014025  0.001967  0.310101  2.115000  1.132980  0.278899  0.021727 0.002117
250  0.038976  0.016930  0.006883  0.001231  0.132943  0.186328  0.320449  0.124286  0.010899 0.002215
350  0.026769  0.010255  0.004615  0.000771  0.068841  0.132879  0.122417  0.071972  0.007242 0.002262
450  0.017107  0.007680  0.003376  0.000661  0.044838  0.084980  0.070107  0.041733  0.005256 0.002272
550 0.014116  0.005378  0.002433  0.000584  0.038652  0.064570  0.054273  0.028143  0.003817 0.002292
650 0.010824  0.004359  0.002240  0.000450  0.028168  0.051994  0.034113  0.027418  0.003422 0.002303
750 0.008219  0.004140  0.001906  0.000373  0.024981  0.039532  0.029416  0.017862  0.002869 0.002312

" abbrev. for the temporal average error defined as N4 Zthl e*yt(zz).
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Table 7: Simulated Biases of Estimates for the D.G.P. with Known Group Memberships: Nonstationary Co-
variate and Linear SAR Errors with Rook-Contiguity Weights

T Bias(¢)) Bias(¢,) Bias(¢s) Bias(¢s) Bias(fy) Bias(y) Bias(fs) Bias(6s) Bias(ji.)
Experiment 1 using (7.3) instead of (7.2) (N} =45, Ny = 30, N3 = 30, and N, = 70)
50  -0.772388 -0.060366 0.006447 -0.208354 -0.061439 0.020733 -0.032845 0.291188 0.199183
150 -0.695992 -0.045514 0.033029 -0.210665 -0.031436 0.032953 -0.004965 0.298536 0.183180
250 -0.692131 -0.067166 0.029266 -0.227474 -0.022225 0.028950 0.007652 0.314914 0.172948
350 -0.636684 -0.043484 0.044083 -0.218829 -0.049687 0.050792  0.030509 0.299835 0.167369
450 -0.667085 -0.030590 0.036145 -0.239834 -0.020722 0.028993  0.007589 0.304018 0.134115
550 -0.587248 -0.060256 0.031286 -0.217165 -0.046386 0.047504 0.015816 0.302195 0.159778
650 -0.595764 -0.088938 0.031584 -0.184563 -0.044686 0.044455 -0.000281 0.309229 0.184283
750 -0.642338 -0.058718 0.019819 -0.217283 -0.020445 0.043001 -0.009625 0.314011 0.174190
Experiment 2 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and Ny = 150)
50 -0.771287 -0.078598 0.044942 -0.217584 -0.040968 0.036464 0.005318 0.314548 0.214595
150 -0.734493 -0.123720 0.044498 -0.216069 -0.036558 0.070029  0.005018 0.328518 0.167745
250 -0.676299 -0.086576 0.049178 -0.219873 -0.026853 0.044533 0.001522 0.314691 0.195681
350 -0.735008 -0.079657 0.026759 -0.204788 -0.034029 0.047367 -0.015848 0.325943 0.154354
450 -0.722427 -0.085812 0.069341 -0.227772 -0.012065 0.042268 0.004839 0.336346 0.176720
550 -0.639320 -0.092204 0.029024 -0.201654 -0.031049 0.033382 0.016458 0.325093 0.175283
650 -0.683882 -0.083747 0.039014 -0.221795 -0.055973 0.059398  0.009081 0.300366 0.173214
750 -0.699532 -0.049467 0.066042 -0.237147 -0.031839 0.035950 -0.020321 0.322232 0.167899
Experiment 3 using (7.3) instead of (7.2) (N; = 45, Ny = 30, N3 = 30, and N, = 70)
50  -0.332934 -0.210182 -0.223219 -0.014492 -0.018860 -0.046950 0.027803 0.038687 0.038045
150 -0.104285 -0.027839 -0.067039 -0.004716 -0.002632 -0.000147 0.014571 0.011013 0.017579
250 -0.050399 0.004364 -0.039018 -0.003676 -0.002315 -0.006227 0.012071 0.005766 0.019321
350 -0.038685 0.024155 -0.026150 -0.003899 -0.000554 -0.006146 0.012713 0.006737 0.020357
450 -0.024770 0.030836 -0.018862 -0.003175 -0.000566 0.004119 0.012062 0.004538 0.020958
550 -0.018543 0.045704 -0.013415 -0.003161 -0.000945 0.004160 0.013147 0.003598 0.021392
650 -0.012275 0.047291 -0.010133 -0.002574 -0.000921 0.004339 0.013060 0.003299 0.021638
750 -0.008899 0.047146 -0.008516 -0.001723 -0.000799 0.003394 0.011159 0.002749 0.021715
Experiment 4 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50 -0.298269 -0.134550 -0.227004 -0.013736 -0.053053 0.106922 0.069731 0.041179 0.040849
150 -0.092834 0.003013 -0.063940 -0.004222 -0.006221 -0.013396 0.012909 0.022191 0.016723
250 -0.055191 0.029356 -0.038036 -0.002323 -0.007987 -0.016554 0.014924 0.007958 0.018890
350 -0.031210 0.044964 -0.024452 -0.001811 -0.007258 -0.012448 0.014602 0.004280 0.020000
450 -0.024181 0.062836 -0.016313 -0.001518 -0.007952 -0.006682 0.014126 0.003975 0.020657
550 -0.011440 0.072551 -0.010962 -0.001491 -0.006364 -0.006231 0.013984 0.004238 0.021086
650 -0.004967 0.072511 -0.008052 -0.001503 -0.005792 -0.002295 0.014154 0.003852 0.021364
750 -0.002973 0.085185 -0.006110 -0.001287 -0.006178 0.000491 0.012504 0.004934 0.021547
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Table 8: Simulated MSE’s of Estimates for the D.G.P. with Known Group Memberships: Nonstationary Covariate and Linear SAR
Errors with Rook-Contiguity Weights

T MSE($)) MSE(¢)) MSE(ds) MSE(¢s) MSE(8) MSE(6,) MSE(;) MSE(6;) MSE(7) Temp. Ave. Error”
Experiment 1 using (7.3) instead of (7.2) (N; = 45, Ny = 30, N3 = 30, and N, = 70)

50  1.784080  0.314256  0.226271  0.395060  0.262656  0.214268  0.342757  0.247709  0.233542 1563.1
150 1.801640  0.221993  0.167259  0.232390  0.178434  0.138025  0.222561  0.198050  0.190342 3.73E440
250 1921630  0.256821  0.177929  0.251787  0.203761  0.170792  0.249554  0.216414  0.186497 1.66E+78
350  1.979670  0.231476  0.177982  0.247388  0.195132  0.168977  0.204435 0.212569  0.185672 8. 73E+115
450 1.797290  0.240577  0.177953  0.246300  0.166291  0.162179  0.217141  0.206922  0.155120 4.81E+153
550  1.763160  0.256588  0.165858  0.216826  0.180196  0.158660  0.233045  0.194648  0.165821 3.30E+191
650 1.917760  0.258593  0.164770  0.215954  0.190036  0.161094  0.232589  0.206317  0.182574 1.98E+229
750  1.760470  0.215243  0.168880  0.256738  0.195297  0.168007  0.245497  0.236121  0.188579 1.23E+267
Experiment 2 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50  2.060190  0.260103  0.188610  0.342972  0.215741  0.185969  0.247222  0.244404  0.238971 1351.6
150 2.229940  0.333464  0.185489  0.241789  0.187628  0.183464  0.266003  0.230014  0.178057 3.34E+40
250  2.047340  0.276874  0.188172  0.234435 0.177164 0.160468  0.240272  0.216724  0.187430 1.42E+478
350 2.333000  0.257242  0.187210  0.256265  0.201816  0.170270  0.257236  0.245844  0.189163 8.06E+115
450  2.449120  0.311398  0.189733  0.233707  0.212801  0.167307  0.271557 0.231721  0.184160 4.69E+153
550 2223170  0.288348  0.177577  0.235175  0.185694  0.160029  0.229321  0.239951  0.162904 2.82E+191
650 2.074080  0.253916  0.191666  0.260881  0.199513  0.157434  0.236659  0.218112  0.170691 1.92E4-229
750  2.313200  0.253062  0.203446  0.253871  0.197592  0.180396  0.256337  0.235891  0.197359 1.23E4-267
Experiment 3 using (7.3) instead of (7.2) (Ny = 45, Ny = 30, N3 = 30, and Ny = 70)
50  0.487350  0.509373  0.127937  0.011103  0.770408  2.077960  4.046830  0.366759  0.129155 0.009921
150  0.086940  0.091094  0.015924  0.002578  0.031488  0.179751  0.498726  0.023236  0.044953 0.013760
250  0.041659  0.044711  0.006429  0.001435  0.010799  0.052716  0.203904  0.007836  0.043367 0.014498
350 0.029621  0.033607  0.003995  0.000937  0.005415 0.061210 0.121219  0.003504  0.045357 0.014830
450  0.021292  0.027919  0.002729  0.000738  0.003162 0.015406  0.086194  0.001971  0.046745 0.015003
550 0.016762  0.025046  0.002198  0.000598  0.002186  0.012389  0.080681  0.001397  0.048044 0.015107
650 0.013687  0.024275  0.001781  0.000505  0.001604  0.010502  0.066370  0.000999  0.048626 0.015178
750 0.011976  0.021099  0.001556  0.000440  0.001261  0.007577  0.055808  0.000799  0.048803 0.015244
Experiment 4 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and Ny = 150)

50  0.466390  0.493153  0.125493  0.009900  0.703763  3.563340  5.650820  0.356213  0.097226 0.004687
150 0.076306  0.095829  0.014659  0.002358  0.030725  0.194170  0.450985 0.021062  0.040098 0.006487
250  0.041382  0.055485  0.006637  0.001367  0.010460 0.063261  0.226598  0.007430  0.041107 0.006835
350 0.027891  0.041468  0.004253  0.000944  0.005526  0.030095  0.137587  0.003463  0.043630 0.006970
450  0.021156  0.035793  0.002829  0.000695  0.003293  0.019807  0.097577  0.001978  0.045199 0.007068
550 0.017492  0.032296  0.002248  0.000580  0.002296  0.014443  0.080739  0.001393  0.046578 0.007122
650 0.014244  0.028863  0.001800  0.000505  0.001757  0.022080  0.071459  0.000963  0.047348 0.007159
750 0.013783  0.030813  0.001533  0.000438  0.001446  0.012177  0.059306  0.000820  0.047936 0.007181

“ abbrev. for the temporal average error defined as N + Zthl 6*7t(12;).



9¥

Table 9: Simulated Biases of Estimates for the D.G.P. with Known Group Memberships: Nonstationary Covari-
ate and Linear SAR Errors with Queen-Contiguity Weights

T Bias(¢)) Bias(¢,) Bias(¢s) Bias(¢s) Bias(fy) Bias(,) Bias(s) Bias(6s) Bias(ji.)
Experiment 1 using (7.3) instead of (7.2) (N} = 45, Ny = 30, N3 = 30, and N, = 70)
50 -0.750374 -0.059340 0.036238 -0.189004 -0.030481 0.049368  0.015927 0.296970 0.213682
150 -0.596223 -0.037154 0.045307 -0.205836 -0.033283 0.036377 -0.004280 0.314710 0.173781
250 -0.666517 -0.062015 0.025652 -0.214916 -0.041981 0.031282 0.013327 0.303673 0.181018
350 -0.739513 -0.085616 0.019156 -0.220549 -0.031562 0.067190  0.024533  0.295508 0.181225
450 -0.623897 -0.041777 0.007002 -0.187998 -0.021524 0.030250  0.021204  0.294637 0.178217
550 -0.550194 -0.045520 0.013775 -0.188376 -0.026025 0.038938  0.021005 0.286747 0.179588
650 -0.648418 -0.047359 0.023947 -0.214107 -0.031769 0.048818 -0.005876 0.288040  0.193557
750 -0.610700 -0.046447 0.030282 -0.216796 -0.018638 0.029702 0.000064 0.302119 0.177816
Experiment 2 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and Ny = 150)
50 -0.767932 -0.102504 0.038142 -0.208172 -0.038660 0.025830 -0.001000 0.321977  0.188069
150 -0.658856 -0.064264 0.042636 -0.228541 -0.034421 0.038988  0.006874  0.297403  0.190425
250 -0.677868 -0.082119 0.052670 -0.228813 -0.043217 0.035842 -0.011712 0.323002 0.178721
350 -0.652315 -0.086769 0.058895 -0.231834 -0.049911 0.056498 0.015868 0.308270  0.169527
450 -0.618034 -0.073036 0.025667 -0.208497 -0.043298 0.063612 0.008473  0.304012 0.165474
550 -0.721412 -0.094638 0.032878 -0.216123 -0.036784 0.039188 0.007039  0.313777 0.187874
650 -0.676821 -0.085765 0.046754 -0.218858 -0.030699 0.070698  0.003455 0.315766  0.175367
750 -0.607330 -0.077979 0.028573 -0.248658 -0.013803 0.048530 -0.011977 0.295002 0.200063
Experiment 3 using (7.3) instead of (7.2) (N; = 45, Ny = 30, N3 = 30, and N, = 70)
50  -0.323332 -0.204390 -0.226941 -0.016450 -0.060166 -0.058117 0.044352 -0.028006 0.032992
150 -0.109502 -0.035118 -0.066658 -0.006866 -0.006436 0.005972 0.014114 0.000664 0.017515
250 -0.058141 0.002419 -0.039037 -0.003599 -0.007875 -0.005268 0.015267 0.002809 0.019248
350 -0.040712  0.025539 -0.024888 -0.002955 -0.007934 0.004258 0.013338 0.001258  0.020657
450 -0.035537 0.039735 -0.016089 -0.002164 -0.005481 0.000834 0.013660 -0.001043 0.021317
550 -0.022099 0.042947 -0.012499 -0.001763 -0.005539 -0.000117 0.013132 -0.001356 0.021581
650 -0.018917 0.052485 -0.009119 -0.001709 -0.002015 -0.002426 0.012180 0.000197  0.021749
750 -0.011633 0.057715 -0.006167 -0.001530 -0.002465 0.000526 0.011310 0.001421 0.022037
Experiment 4 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50 -0.319205 -0.188288 -0.207703 -0.013701 -0.093781 -0.016124 0.019829 0.043420 0.048372
150 -0.092007 -0.023151 -0.060868 -0.003592 -0.020264 -0.015444 0.021437 0.001367 0.016895
250 -0.059914 0.020700 -0.032654 -0.003162 -0.008259 -0.008314 0.017653 0.004542 0.019453
350 -0.041768 0.032592 -0.018330 -0.002506 -0.005846 -0.003991 0.016698 0.005212  0.020809
450 -0.027339 0.041132 -0.012858 -0.001658 -0.006438 -0.000128 0.015659  0.003810 0.021062
550 -0.021883 0.053394 -0.006908 -0.001972 -0.005404 -0.003963 0.0156852  0.004001 0.021596
650 -0.011323 0.062252 -0.005209 -0.001362 -0.006420 -0.006080 0.014775 0.002116 0.021697
750 -0.010509 0.069957 -0.003996 -0.001468 -0.004755 0.000844 0.012591 0.002868 0.021810
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Table 10: Simulated MSE’s of Estimates for the D.G.P. with Known Group Memberships: Nonstationary Covariate and Linear SAR
Errors with Queen-Contiguity Weights

T MSE($)) MSE(¢)) MSE(ds) MSE(¢s) MSE(8) MSE(6,) MSE(;) MSE(6;) MSE(7) Temp. Ave. Error”
Experiment 1 using (7.3) instead of (7.2) (N; = 45, Ny = 30, N3 = 30, and N, = 70)

50  1.718020  0.230223  0.157970  0.255591  0.161161  0.165465  0.221358  0.194128  0.219575 1554.32
150 1.690030  0.208471  0.179957  0.224608  0.180050  0.172149  0.214264  0.221890  0.172904 3.92E440
250  1.969860  0.231707  0.179631  0.248554  0.174893  0.156223  0.222335  0.229651  0.189242 1.57TE+78
350 2181670  0.287893  0.180237  0.249106  0.180368  0.163994  0.237818  0.219436  0.194289 9.04E+115
450 1.797500  0.234302  0.178447  0.228286  0.202433  0.170167  0.211633  0.207135  0.193975 5.01E+4153
550  1.631810  0.216623  0.164009  0.203291  0.180200  0.139823  0.223747  0.197282  0.198348 3.02E+191
650 1.827440  0.252081  0.189178  0.238634  0.185416  0.163750  0.199683  0.208002  0.194197 1.87E+229
750  1.829510  0.266355  0.152826  0.226327  0.180630  0.141238  0.243661  0.220539  0.175255 1.39E+267
Experiment 2 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50  2.131960  0.297478  0.204748  0.390080  0.230395  0.192362  0.270955  0.254558  0.251135 1372.99
150 2.096920  0.230272  0.163723  0.238251  0.197437  0.150039  0.234048  0.195598  0.188017 3.31E+40
250 2448480  0.254388  0.215078  0.267266  0.176388  0.167501  0.225804  0.221680  0.187835 1.31E+78
350 2.318060  0.303061  0.184964  0.258281  0.209987  0.192934  0.254420 0.231384  0.179608 7.71E+115
450  2.281800  0.240938  0.180969  0.241780  0.192493  0.164916  0.263411  0.211147  0.206284 4.88E+153
550  2.192640  0.268200  0.178558  0.234374  0.186121  0.174338  0.220539  0.232863  0.209650 2.87E+191
650 2.277900  0.290470  0.185857  0.238317  0.191953  0.206126  0.239182  0.236510  0.215025 1.87E+229
750 2.109920  0.252035  0.173455  0.270233  0.213992  0.153196  0.254738  0.211144  0.198459 1.24E4-267
Experiment 3 using (7.3) instead of (7.2) (Ny = 45, Ny = 30, N3 = 30, and Ny = 70)
50  0.506027  0.534659  0.131719  0.009732  0.677963  4.108360  7.510570  0.348094  0.124931 0.009888
150  0.083221  0.093116  0.014714  0.002372  0.029124  0.151607  0.465938  0.021103  0.044092 0.013779
250 0.042952  0.047258  0.006762  0.001407  0.011193  0.059394 0.196051  0.007124  0.043693 0.014464
350 0.028293  0.036062  0.004128  0.000883  0.005820  0.026954  0.120033  0.003488  0.046846 0.014821
450  0.020880  0.028838  0.002777  0.000688  0.003125 0.022463  0.090966  0.002083  0.048189 0.014999
550 0.017342  0.026122  0.002104  0.000571  0.002267 0.012420 0.072812  0.001328  0.048817 0.015113
650 0.014288  0.025499  0.001816  0.000464  0.001538  0.010051  0.066007  0.001003  0.049295 0.015195
750 0.012921  0.024114  0.001527  0.000422  0.001229  0.008266  0.053374  0.000779  0.050256 0.015242
Experiment 4 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and Ny = 150)
50  0.461307  0.600062  0.118638  0.010954  0.681219  2.745920  3.940910  0.315828  0.096580 0.004778
150 0.080414  0.093677  0.014393  0.002354  0.034382  0.163862 0.476128  0.021043  0.040775 0.006508
250 0.041367  0.052245  0.006153  0.001340  0.010378  0.056904  0.215778  0.006877  0.043299 0.006879
350 0.027448  0.038426  0.003902  0.000906  0.005080  0.029174  0.139556  0.003564  0.046774 0.007011
450  0.022047  0.033594  0.002730  0.000715  0.003139  0.019925 0.104372  0.002089  0.046995 0.007090
550  0.017144  0.031196  0.002123  0.000597  0.002233  0.016444 0.089748  0.001429  0.048887 0.007135
650 0.015520  0.028337  0.001844  0.000517  0.001610 0.012396 0.074753  0.001063  0.048936 0.007172
750  0.013649  0.026350  0.001485  0.000440  0.001458  0.009525 0.060045 0.000891  0.049124 0.007200

“ abbrev. for the temporal average error defined as N + Zthl 6*7t(12;).
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Table 11: Simulated Biases of Estimates for the D.G.P. with Known Group Memberships: Nonstationary Co-
variate and Nonlinear SAR Errors

T Bias(¢y) Bias(¢,) Bias(¢s) Bias(¢s) DBias(fy) Bias(,) Bias(6s) Bias(6s) DBias(ii.)
True Parameters defined in Experiment 1 (m; =n; =5,i=1,...,4)
50 -0.723526 -0.040998 0.046629 -0.104300 -0.062130 0.077459 0.043379 0.356527  0.132647
150 -0.567370 -0.046924 -0.006174 -0.191241 -0.051944 0.082715 0.001029 0.307892  0.139970
250 -0.441991 -0.040921 0.007777 -0.163293 -0.078092 0.080684 0.091359 0.254318 0.133108
350 -0.707159 -0.031938 0.041027 -0.212994 -0.040094 0.111859 0.042953  0.255755  0.188774
450 -0.648502 -0.053715 -0.015168 -0.242682 -0.069870 0.039701 0.030075 0.273338 0.134138
550 -0.609942 0.030887 0.009425 -0.175573 -0.039331 0.033564 -0.081273 0.250582  0.193532
650 -0.581432 -0.065585 0.019990 -0.218107 -0.039708 0.031023 0.036678 0.322678  0.147192
750 -0.619435 -0.022735 -0.002821 -0.192225 -0.000853 -0.000329 0.010283 0.329151  0.130911
True Parameters defined in Experiment 1 (m; = 10 and n; =20,i=1,...,4)
50 -0.646916 -0.038591 -0.001939 -0.157836 -0.059178 0.037025 0.040185 0.229984  0.231449
150 -0.812449 -0.154695 0.067059 -0.255797 -0.038682 0.030016 0.033121  0.340511  0.157837
250 -0.551709 -0.088185 0.062548 -0.161069 -0.008340 0.020018 -0.010888 0.366303 0.156433
350 -0.548448 -0.089430 0.030634 -0.246120 -0.019109 0.098373  0.042833  0.291950  0.173772
450 -0.604822 -0.035208 0.045075 -0.236033 -0.046778 0.030309 -0.038611 0.306416 0.160123
550 -0.708774 -0.117796 0.027318 -0.199916 -0.076301 -0.000482 -0.004988 0.322035 0.176691
650 -0.655900 -0.091911 0.073396 -0.232343 -0.054881 0.036292 0.027440 0.305545 0.155581
750 -1.004600 -0.127519 0.101725 -0.201340 -0.074953 0.079328 0.033038 0.370229  0.165211
True Parameters defined in Experiment 3 (m; = 10 and n; =20, i =1,...,4)
50 -0.226658 -0.243265 -0.133711 -0.009333 0.003264 0.064979 -0.153564 -0.026662 -0.163471
150 -0.019068 -0.036048 -0.038491 0.003547 -0.008931 0.018213 -0.005528 -0.003632 -0.049383
250  0.003083 -0.004560 -0.005731 0.004262 -0.001570 0.001037 -0.000855 -0.002406 -0.008321
350  0.002159 -0.002231 -0.002147 0.002171 -0.000544 -0.000048 0.002856 -0.002007 -0.002323
450  0.003258 -0.000438 -0.000672 0.002132 0.000877 -0.000191 0.001962 -0.002340 -0.001419
550  0.001636 -0.000787 0.001204 0.001808 -0.000415 0.001482  0.000774 -0.001102 0.000293
650 0.001966 -0.000620 -0.000689 0.000789 -0.001484 0.002071 -0.002052 0.000816 -0.001454
750  0.001076 -0.000369 -0.000588 0.001306 -0.002092 0.002496 -0.001924 0.001331 -0.001331
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Table 12: Simulated MSE’s of Estimates for the D.G.P. with Known Group Memberships: Nonstationary Covariate and Nonlinear SAR
Errors

T MSE(¢)) MSE(¢s) MSE(¢s) MSE(¢,) MSE(6,) MSE(,) MSE(f;) MSE(6,) MSE(Z,) Temp. Ave. Error’

True Parameters defined in Experiment 1 (m; =n; =5,i=1,...,4)
50  1.466860  0.295354  0.269690  0.291832  0.215242  0.975649 0.270796  0.524737  1.061990 2701.36
150 1.563000  0.167259  0.161158  0.201019  0.183243  0.154263 0.193984  0.210872  0.185222 5.61E+40
250  1.442620 0.315143  0.116822  0.246616  0.191720  0.190472  0.190428 0.161411  0.191952 2.87TE+78
350  1.713420  0.201995  0.127012  0.210029  0.143973  0.141357  0.205595  0.144391  0.164993 1.27E+4116
450  1.548100  0.245364  0.166674  0.243103  0.147247  0.123204  0.203177  0.214479  0.141302 7.39E+153
550  1.520010 0.162698  0.162997  0.207051  0.206016  0.187106  0.214274  0.168558  0.195972 6.10E+191
650 1.725780  0.234293  0.153574  0.228572  0.165952  0.139216  0.176861  0.222916  0.197904 2.98E+229
750  1.693850  0.227462  0.174560  0.241774  0.154371  0.165789  0.200635  0.232889  0.149284 2.16E+267
True Parameters defined in Experiment 1 (m; = 10 and n; =20, i =1,...,4)
50  1.511030  0.362425  0.210047  0.627462 0.214376  0.247412  0.351005 0.196661  0.401426 1052.45
150  2.957730  0.325895  0.191065  0.283897  0.286984  0.159210 0.266135  0.283765  0.183317 2.67E+40
250 1.994570  0.264033  0.188677  0.248677  0.153454  0.136016  0.210630  0.257604  0.190057 1.28E+78
350  2.368800  0.270339  0.163505  0.189996  0.173890  0.191413 0.171048  0.227594  0.155334 7.53E+115
450  2.118350  0.200034  0.164534  0.242241  0.167970  0.169146  0.183241  0.235458  0.200467 3.70E+153
550  2.182980  0.239595  0.189539  0.233886  0.193546  0.143679  0.194847  0.230771  0.168508 2.75E+191
650 2.935830  0.307808  0.195729  0.213703  0.201561  0.234406  0.299095 0.205404  0.187226 1.81E4-229
750  2.777710  0.361537  0.230852  0.237976  0.233104  0.216640 0.211317  0.276054  0.196220 1.21E4-267
True Parameters defined in Experiment 3 (m; = 10 and n; =20, i =1,...,4)
50  0.349936  0.212711  0.094793  0.009885  0.142102 0.271360  0.745268  0.156800  0.179689 0.001583
150  0.041027  0.015733  0.012396  0.002354  0.007646  0.017754  0.047755  0.013066  0.022906 0.002115
250 0.007670  0.004515  0.002664  0.001338  0.001880  0.004710  0.009541  0.003138  0.005075 0.002226
350  0.003799  0.001789  0.001367  0.000715  0.000735  0.002058  0.003784  0.001082  0.002577 0.002274
450  0.000668  0.000459  0.000445  0.000384  0.000442  0.000901  0.000978  0.000587  0.000996 0.002285
550  0.000221  0.000148  0.000188  0.000205  0.000264  0.000451  0.000347  0.000226  0.000374 0.002304
650 0.000188  0.000083  0.000173  0.000094  0.000161  0.000259  0.000200  0.000132  0.000321 0.002314
750  0.000074  0.000045  0.000055  0.000064  0.000107  0.000162  0.000130  0.000082  0.000101 0.002322

* abbrev. for the temporal average error defined as N 1 Ethl e*,t('(Z).
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Table 13: Simulated Biases of Estimates for the D.G.P. with Unknown Group Memberships: Stationary Covariate and

Linear SAR Errors with Queen-Contiguity Weights

T  Randl Bias(¢y) DBias(ds) Bias(¢s) Bias(¢s) Bias(B,) Bias(,) Bias(fs)

—— ~

Bias(fy) Bias(U)

Experiment 3 (N; = 45, Ny = 30, N3 = 30, and N, = 70)

50 0.836711 -0.200000 0.095032 0.020655 0.148046 0.009603 0.011330 -0.009128 -0.014196 1.16E-18
150 0.836693 -0.199999 0.089935 0.019214 0.110930 0.009278 0.005221 -0.008646 -0.014399 1.10E-18
250 0.836689 -0.299999 0.083727 0.017611 0.104466 0.008208 0.009424 -0.007622 -0.013958 1.09E-18
350 0.836687 -0.199999 0.067225 0.016771 0.136913 0.007224 0.013576 -0.006649 -0.013525 1.18E-18
450  0.836686 -0.080000 0.011006  0.015864 0.089830 0.006397 0.007531 -0.005702 -0.013107 1.18E-18
550 0.836684 -0.060000 0.012274  0.015444 0.035880 0.005543 0.003146 -0.004791 -0.012700 1.19E-18
650 0.836684 -0.070000 0.013526 0.015076 0.041917 0.004674 0.002536 -0.003875 -0.012295 1.24E-18

Experiment 4 (N7 = 100, Ny = 60, N3 = 65, and N, = 150)

50 0.925562 -0.099428 0.339384 -0.003816 0.008937 0.004996 0.004546 -0.004841 -0.086793 4.09E-19
150 0.924752 -0.199423 0.092875 -0.001761 0.005797 0.004227 0.004346 -0.005541 -0.037867 1.05E-19
250 0.924410 -0.099419 0.087759 -0.002013 0.004822 0.002850 0.001880 -0.002841 -0.021134 1.08E-19
350 0.929492 -0.002970 -0.003031 -0.005825 0.002198 0.025807 0.001741 -0.001121 -0.018386 4.77E-21

* abbrev. for the optimal matching biases of estimates of the group indicators
. 1 G N (~
mlIlo.(pc'r'>€o-(7j) N Zc:l Zizl{uw@w-)(c) — uO,i,c}

Uy, measured by

Table 14: Simulated MSE of Estimates for the D.G.P. with Unknown Group Memberships: Stationary Covariate

and Linear SAR Errors with Queen-Contiguity Weights

T MSE(¢) MSE(¢y) MSE(¢s) MSE(¢y) MSE(0) MSE(,) MSE(@®;) MSE(@®,) MSEDU)"

Experiment 3 (N; =45, Ny = 30, N3 = 30, and N, = 70)

50  0.150000  0.026653  0.011333  0.084379  0.005106  0.000850  0.002475  0.504371  0.000214
150  0.120000  0.027223  0.011497  0.013927  0.005343  0.000902  0.002644  0.427144  5.93E-06
250 0.051000  0.017473  0.006156  0.019005  0.005351  0.000924  0.002145  0.427167 1.20E-06
350 0.049000  0.017699  0.006138  0.023703  0.005357  0.000946  0.002047  0.527188  7.86E-07
450 0.037000  0.008900  0.003650  0.008162  0.004606  0.000964 0.001948  0.327207  5.57E-07
550  0.024000  0.002809  0.001677  0.003390  0.004364 0.000982  0.001649 0.127225 4.31E-07
650  0.020000  0.002627  0.001698  0.003149  0.003266  0.000999  0.001650  0.127243  3.55E-07

Experiment 4 (N; = 100, Ny = 60, N3 = 65, and N, = 150)

50  0.089949  0.040047  0.004028  0.008898  0.009925 0.002190 0.011651  0.009422  0.000143
150 0.074986  0.033616  0.003405  0.007984  0.008924  0.001507  0.008281  0.005682  1.19E-05
250 0.056772  0.016365  0.001779  0.004932  0.002923  0.000677  0.002310  0.001174  4.99E-06
350 0.001103  0.001148  0.004241  0.000604 0.001251  0.017232  0.005461  0.000723  5.01E-06

* abbrev. for the optimal matching MSE of estimates of the group indicators Uy,

: G N [~ 2
N, (per) e () % Doy Diy (ui,g@ar) () — UO,i,c)

measured by
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Table 15: Simulated Biases of Estimates for the D.G.P. with Unknown Group Memberships: Stationary Covariate and

Linear SAR Errors with Rook-Contiguity Weights

o~

— ~

T  Randl Bias(¢)) DBias(¢s) Bias(¢s) Bias(¢s) DBias(y) Bias(d,) DBias(@;) Bias(fy) Bias(O)
Experiment 3 (N; = 45, Ny = 30, N3 = 30, and N, = 70)
50 0.836716 -0.099100 0.054333 0.014412 0.510008 0.011888 0.015607 -0.010132 -0.014834 1.07E-18
150 0.836694 -0.090900 0.069532 0.013345 0.114049 0.011624 0.014626 -0.009505 -0.015013 1.11E-18
250 0.836689 -0.071100 0.053505 0.011841 0.106889 0.010447 0.008930 -0.008493 -0.014565 1.17E-18
350 0.837688 -0.070900 0.047049 0.011199 0.129387 0.009519 0.007094 -0.007537 -0.014129 1.17E-18
450 0.837696 -0.069100 0.040171 0.010565 0.090897 0.008602 0.007043 -0.006593 -0.013708 1.21E-18
550 0.839185 -0.058700 0.032759 0.009754 0.061515 0.007703 0.005036 -0.005651 -0.010292 1.12E-18
650 0.839885 -0.053000 0.023551 0.009078 0.042456 0.006716 0.004967 -0.004720 -0.009883 1.18E-18
750 0.840684 -0.049200 0.014789 0.008342 0.041850 0.005821 0.003774 -0.003812 -0.004781 1.18E-18
Experiment 4 (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50 0.838567 -0.094636 0.029774 0.008948 0.087649 0.029731 -0.003346 -0.005173 -0.021587 8.27E-19
150 0.834924 -0.094514 0.039710 0.009719 0.075975 0.023436 -0.001940 -0.004988 -0.020252 &.37E-19
250 0.839924 -0.059450 0.048313 0.010082 0.064472 0.024444 -0.000148 -0.004727 -0.019214 8.41E-19
350 0.843923 -0.039450 0.045543 0.009858 0.054150 0.024203 0.002094 -0.004170 -0.009798 8.67E-19
450 0.893273 -0.039449 0.012743 0.009267 0.044112 0.013975 0.001310 -0.003606 -0.003746 8.82E-19
550 0.910910 -0.018448 0.007001 0.008746 0.023409 0.013712 0.001569 -0.003054 -0.002511 8.89E-19
650 0.910780 -0.009447 0.007723 0.008356 0.021432 0.013477 0.001806 -0.002501 -0.002792 &.53E-19
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Table 16: Simulated MSE of Estimates for the D.G.P. with Unknown Group Memberships: Stationary Covariate and
Linear SAR Errors with Rook-Contiguity Weights

T MSE(¢) MSE(¢y) MSE(¢s) MSE(¢y) MSE(6) MSE(0,) MSE(;) MSE(@®,) MSE(U)
Experiment 3 (N; = 45, Ny = 30, N3 = 30, and N, = 70)
50  0.099010  0.025183  0.008270  0.007523  0.006102  0.000871  0.002963 0.513780 0.000197647
150 0.048120  0.025772  0.008439  0.020195  0.006379  0.000830  0.003854  0.535010 5.99E-06
250  0.028970  0.016027  0.008515  0.018185  0.006388  0.000854  0.003955  0.235030 1.21E-06
350  0.030110  0.015255  0.008564  0.012916  0.006394 0.000875  0.004057 0.215060  7.84E-07
450 0.029790  0.006465  0.008597  0.017394  0.006398  0.000895  0.004058 0.135080  5.65E-07
550 0.025080  0.005650  0.008624  0.009631  0.006401  0.000813  0.003059  0.105090  4.32E-07
650 0.020310  0.004836  0.008644  0.005818  0.006404  0.000730  0.002060  0.085110 3.61E-07
750  0.018930  0.001006  0.008662  0.002746  0.006406  0.000747  0.001061  0.055130 2.94E-07
Experiment 4 (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50 0.019387  0.008612  0.001449  0.004357  0.007006  0.000478  0.001206 0.700020  3.32E-05
150 0.019366  0.009711  0.001643  0.006349  0.008043  0.000559  0.001390  0.685560  4.27E-06
250  0.009364  0.010319  0.001762  0.008105 0.008393 0.000603  0.001416  0.405013 2.16E-06
350  0.003936  0.009037  0.001775  0.009838  0.008394  0.000608  0.001416  0.205020 1.23E-07
450 0.004936  0.009043  0.001785  0.011560  0.008395 0.000613  0.001416 0.201026  9.53E-08
550 0.002936  0.010484  0.001792  0.003265  0.008395 0.000619  0.001417 0.055032  7.66E-08
650 0.000269  0.009054  0.001799  0.004965 0.008396 0.000624  0.001417  0.009038  6.45E-08




Table 17: Simulated Biases of Estimates for the D.G.P. with Unknown Group Memberships: Nonstationary Covariate and
Linear SAR Errors with Queen-Contiguity Weights

—— ~

T  Randl Bias(¢) Bias(¢s) Bias(ds) Bias(¢s) DBias(f,) DBias(y) DBias(@;) Bias(y) DBias(U)
Experiment 3 using (7.3) instead of (7.2) (N; =45, Ny = 30, N3 = 30, and N, = 70)
50  0.895825 -0.399503 0.129798 -0.040096 -0.163200 0.091291  0.243564 -0.152902 0.150471 6.60E-19
150 0.931093 -0.299501 0.097043 -0.052502 -0.111101 0.070058  0.143022 -0.136157 0.085895 5.07E-19
250 0.940236 -0.199501 0.066033 -0.040046 -0.050991 0.077410 0.123526 -0.128520 0.038520 3.76E-19
350 0.951340 -0.187501 0.052012 -0.038449 -0.043039 0.069474 0.120338 -0.107952 0.030947 3.63E-19
450  0.946767 -0.099500 0.020433 -0.030807 -0.021219 0.031004 0.112045 -0.095472 0.020290 3.37E-19
Experiment 4 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50 0.864367 -0.117727 0.007791 -0.536374 -0.167275 1.007590  0.558425 -0.530089 -3.907340 2.73E-18
150 0.918841 0.005550  0.000560 -0.001022 0.005762  0.000117 1.15E-08 2.12E-09 -0.000561 6.69E-21
250 0.919706 -2.30E-07 5.52E-09 2.37E-08 0.000647 1.60E-08 -5.07E-09 -5.93E-06 -4.11E-08 1.64E-21
350 0917975 -3.82E-07 3.21E-09 1.12E-08 -1.35E-07 3.63E-08 1.82E-08 -7.53E-09 4.16E-08 6.80E-21
450 0.938044 -8.16E-07 -6.26E-09 5.39E-08 -4.12E-08 -1.27E-07 -3.33E-08 -7.72E-09 5.64E-08 4.77E-20

Table 18: Simulated MSE of Estimates for the D.G.P. with Unknown Group Memberships: Nonstationary Covariate
and Linear SAR Errors with Queen-Contiguity Weights

€g

T MSE(¢) MSE(¢y) MSE(¢s) MSE(¢y) MSE(0) MSE(,) MSE(@®;) MSE(@®,) MSEU)

50
150
250
350
450

50
150
250
350
450

Experiment 3 using (7.3) instead of (7.2) (N; = 45, N, = 30, N3 = 30, and N, = 70)

0.037714  0.132322  0.021985  0.085987  0.099318 0.079034  0.009677  0.069538
0.048762  0.095269  0.074415  0.084054  0.019932  0.048921  0.007974  0.010090
0.046392  0.072235  0.018656  0.080438  0.029932  0.039696  0.009325  0.012185
0.036971  0.062368  0.022342  0.077061  0.019731  0.032408  0.009740  0.010455
0.027732  0.055562  0.027623  0.047778  0.011731  0.026706  0.001011  0.008597

Experiment 4 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and N, = 150)
0.226348  0.043843  0.662631  0.221120  0.207491  2.686050  0.854394  0.822771
0.002578  2.64E-05  3.32E-13  0.002771  0.000405  3.50E-05 1.14E-06  4.34E-09
1.55E-11  5.07E-15  8.73E-05 2.83E-13 7.88E-10 249E-09 1.37E-13  9.92E-15
3.36E-11  7.78E-15  1.02E-13  1.03E-12  4.86E-09 3.01E-13 1.31E-13 4.48E-14
8.82E-12  9.83E-15  9.34E-14 1.99E-12 4.27E-14 3.47E-13 4.29E-15 8.27E-15

9.29E-05
7.96E-05
6.50E-05
1.45E-05
2.53E-05

0.369873
2.63E-05
2.81E-13
4.79E-13
9.58E-13




Table 19: Simulated Biases of Estimates for the D.G.P. with Unknown Group Memberships: Nonstationary Covariate and
Linear SAR Errors with Rook-Contiguity Weights

—

—~ —— ~

T  Randl Bias(¢) Bias(ds) Bias(ds) Bias(ds) DBias(f,) DBias(f,) DBias(f;) DBias(fy) DBias(U)
Experiment 3 using (7.3) instead of (7.2) (N} = 45, Ny = 30, N3 = 30, and N, = 70)
50 0.803562 -0.092262 -0.001256 -0.078915 -0.036258 -0.000337 -0.000559 0.000022 0.028714 1.06E-18
150 0.836695 -0.091908 -0.002776 -0.011379 -0.062262 -0.000204 -0.000654 -0.000048 0.029758 1.07E-18
250 0.836792 -0.021837 -0.004199 -0.013775 -0.053089 0.000071 -0.000548 -0.000013 0.019577 1.14E-18
350 0.846890 -0.030215 -0.001547 -0.011620 -0.010785 0.000224 -0.000101 -0.000019 0.014932 1.14E-18
450  0.856910 -0.011811 -0.000888 -0.010174 -0.011118 0.000394 -0.000129 -0.000027 0.009076 1.11E-18
Experiment 4 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and N, = 150)
50 0.765065 -0.183985 0.027641 -0.920037 -0.325931 2.055080  0.965660 -0.868013 -6.436870 3.32E-18
150 0.823150 0.010192  0.002008 -0.022168 0.011088 0.046714 0.029226 -0.023231 -0.142422 7.51E-20
250  0.909706 -0.000787 0.000979 -0.001818 -0.001416 0.001221 0.000216 -7.71E-09 -0.001042 6.12E-20
350 0.957973 -8.14E-07 5.52E-09 2.35E-08 -4.07E-08 1.49E-08 -5.02E-09 -6.94E-06 -4.10E-08 7.24E-21
450 0.957678 -2.30E-07 3.16E-09 1.07E-08 -1.35E-07 3.40E-08 1.81E-08 -7.48E-09 4.16E-08 8.02E-22

Table 20: Simulated MSE of Estimates for the D.G.P. with Unknown Group Memberships: Nonstationary Covariate
and Linear SAR Errors with Rook-Contiguity Weights

45

T MSE(¢)) MSE(¢y) MSE(¢s) MSE(¢y) MSE(#,) MSE(®,) MSE(@;) MSE(,) MSE(U)

50
150
250
350
450

50
150
250
350
450

Experiment 3 using (7.3) instead of (7.2) (N} = 45, Ny = 30, N3 = 30, and N, = 70)

0.009112  0.000547  0.001821  0.003870  0.000386  0.000066  0.000008  0.001562
0.009065  0.000570  0.001611  0.004957  0.000212  0.000075  0.000004 0.001420
0.011053  0.000581  0.001671  0.003652  0.000228  0.000052  0.000005 0.001129
0.003905  0.000589  0.001704  0.005266  0.000242  0.000046  0.000005  0.000933
0.004905  0.000595  0.001530  0.004886  0.000255  0.000030  0.000005  0.001035

Experiment 4 using (7.3) instead of (7.2) (N; = 100, Ny = 60, N3 = 65, and N, = 150)
0.301930  0.058145  1.130780  0.378353  5.786110  1.511700  1.304870  58.980300
0.005589  0.001878  0.027947  0.005613  0.123075  0.044864  0.032433  1.039320
0.004744  4.41E-05 0.000151  0.007093  6.80E-05 2.13E-06 4.47E-09  4.95E-05
8.78E-12  5.09E-15 9.21E-14  2.76E-13  2.73E-13 1.30E-13  9.90E-15  9.64E-13
3.35E-11  7.75E-15  1.00E-13  1.03E-12 3.72E-14 4.19E-15 4.47E-14 281E-13

2.43E-05
2.99E-06
1.75E-06
1.39E-06
1.15E-06

0.343519
0.008055
0.000582
7.84E-10
4.85E-09




Table 21: Unit Root Tests

Unit root ADF test”

Country I 4 Sit

Australia 0.1529 0.3528
Belgium 0.0482 0.8366
Canada 0.4372 0.2867
Costa Rica 0.4589 0.0477
Czech Republic 0.3651 0.2809
Denmark 0.2294 0.4473
Estonia 0.2478 0.5324
European Union (EU-28) 0.5762 0.1357
Finland 0.1356 0.9741
France 0.2363 0.3993
Germany 0.3279 0.0857
Greece 0.9345 0.6244
Hungary 0.4449 0.0895
Israel 0.0810 0.0455
Italy 0.6776 0.5049
Japan 0.3629 0.5700
Korea 0.0197 0.1168
Latvia 0.1844 0.5216
Mexico 0.0527 0.2478
Netherlands 0.4776 0.2230
New Zealand 0.0128 0.0845
Norway 0.3402 0.1501
Portugal 0.9577 0.5390
Slovak Republic 0.1069 0.0060
Slovenia 0.7136 0.0508
South Africa 0.4728 0.3390
Spain 0.8018 0.4308
Sweden 0.0452 0.1721
Switzerland 0.0000 0.7048
UK 0.2104 0.3151
USA 0.5978 0.6530

* ADF is the Augmented Dickey-Fuller test with
optimal lag orders (< 11) selected by the
Schwartz information criterion. Numbers re-
ported are MacKinnon (1996) one-sided p-
values.
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Table 22: Investment-Saving Error-Correction Model (ECM) Estimates

G ) [ @3 4 [ 6 0 0 03 0y 05 Os ol o s Y1 s Yo Composite error
-0.001 ) -1.0089 N N B B -0.7310 0.4660 N B B N 01812 -0.0112 0.0026
[:0.4148,0.4168)"  [-1.6152,-0.4025] [-551.74,550.28] 0.0735,0.8586]
-0.3898 -0.001 -0.4608 -0.4127 -0.4679 -0.0444 .
3 [17557,0.0760]  -0-4039.0.4059]  [-0.8393,-0.0824] n - n [-5.6886, 4.8631]  [-565.57,564.63]  [-1.1959,1.1070] - n n -0.1833  0.3406  0.3617 0.0019
0.8 20.9785 20.1365 K = YEOTR -
0.8441 0.9785 0.1365 0.001 0.1701 , 1.0573 0.4336 0.8177 00784 04491 -0.0750 -0.0931 B - 0.0005
[-1.4443-0.2439]  [1.3922,:0.5647)  [-0.8320,0.5597]  [-0.2497, 0.2517] [0.4510,0.7913]  [0.6879,1.4267)  [-8.8209,9.6071]  [-435.43,444.79]
202 20.0465 015 K - v N 20.085 N N ]
0.4407 0.0465 0.1560 0.001 1.2015 N 0.2933 0.0851 0.3379 0.0647 0.8283 B 02912 0.0855 02959 -0.2268 0.3686 N 0.0008
[-1.0208,0.1484]  [-1.3475,1.2544]  [-0.8147,0.5025]  [-0.6292,0.6312]  [-1.6539,-0.7490] [-1.7819,1.1951] -32.36,32.19] [-6.2712,5.5053]  [-607.95,607.83]  [0.4359,1.2207]
6 0.5167 -0.3255 0.0277 -0.3094 -1.1471 -0.0873 -0.7834 -0.3776 -0.4112 0.0010 0.8522 0.0665 0.1107 -0.0149 0.5724 -0.0758 0.1516 -0.4504 0.0006

99

Note: (*) Script-size numbers in square brackets are the bounds of 95% confidence intervals.



Table 23: Investment-Saving Error-Correction Model (ECM) Group Classifications

G Group estimates
Group 1: Australia, France, Germany, Italy, Korea, Mexico, Netherlands, New
Zealand, Portugal, Slovak Republic, Spain, UK, USA, Estonia, Israel, South

2 Africa, Euro28, Costa Rica
Group 2: Belgium, Canada, Czech Republic, Denmark, Finland, Greece, Hungary,
Japan, Norway, Sweden, Switzerland, Slovenia, Latvia
Group 1: Spain, Israel,South Africa
Group 2: Australia, Belgium, Canada, Czech Republic, Greece, Italy, Korea,

3 Netherlands, New Zealand, Portugal, Sweden, UK, USA, Estonia, Costa Rica
Group 3: Denmark, Finland, France, Germany, Hungary, Japan, Mexico, Norway,
Slovak Republic, Switzerland, Slovenia, Euro28, Latvia
Group 1: Denmark, Hungary, Italy, New Zealand, Spain, Sweden, South Africa
Group 2: Australia, Belgium, Canada, Czech Republic, Finland, France, Germany,
Japan, Mexico, Norway, Switzerland, UK, Euro28

4 .
Group 3: Latvia
Group 4: Greece, Korea, Netherlands, Portugal, Slovak Republic, USA, Estonia,
Israel, Slovenia, Costa Rica
Group 1: Denmark, Hungary, Korea, New Zealand, Portugal, South Africa, Latvia
Group 2: Netherlands, Slovenia

5 Group 3: Greece, Italy, Slovak Republic

Group 4: Germany, Spain, Estonia, Israel, Costa Rica
Group 5: Australia, Belgium, Canada, Czech Republic, Finland, France, Japan,
Mexico, Norway, Switzerland, UK, USA, Euro28
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Figure 1: Geographical Locations by Group
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Note: This group map is sketched using Bonhomme and Manresa’s (2015) Stata code.




Capital Contral Index Parameter

Figure 2: Average Capital Control Indices by Group
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Note: The indices reported here are constructed based on Miniane’s (2004) methodology.
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Appendix A. Some Important Definitions

Definition 1. A random field, {X;, © € V,,}, on a sublattice indezed by n, say V,,, in the standard
integer lattice Z% is mizing with the mizing coefficient o (+) if there exists a function a(7) | 0 as

71 00 such that, for any pair of subsets, S, S’ C V,,
as(B(S), B(S")) = sup {‘P(AHB) — P(A)P(B)|, AC B(S) and B C B(S’)} < M (|S],1S)a(d(S, S)),

where B(S) is the Borel o-field generated by the random elements {X;, © € S} and M,(-,) is a
symmetric positive function non-decreasing in its arquments. Throughout this paper, we assume
that M,(-,-) satisfies one of the following conditions:

M, (n,m) < Comin(n,m) (A-1)

M, (n,m) < Cy(n+my)™ for some yp > 1. (A-2)

Conditions (A-1) and (A-2) correspond to the ones used by Neaderhouser (1980) and Takahata
(1983) respectively. They are satisfied by many spatial models (see, e.g., Rosenblatt (1985) or Guyon
(1995)). It is important to note that, if M, (n,m) =1 for every n,m > 1, then we call {X;, 1 € V,,}
a strongly mixing random field. There are many random fields which do not satisfy the strong-mizing

condition, but they do satisfy the mizing condition (see, e.g., Neaderhouser (1980)).

Appendix B. Auxiliary Results

Lemma 1. Let {ns, s € V,} represent a mizing centered random field. Suppose that ns, s €

V. are identically distributed across locations such that E[ns|™] < oo for some v, > 2; and
Zdiam(vn)

2
do—1, () 750
1 r~la(r) m < oo. Then,

2

E < Co|Val.

> s

SEVn

Proof. For brevity, define S(V,,) = > ., 7. One has

EIS(Va)l?
Val

“E+ T S Bl

| n| s,weVy,s#w

diam(v;)

SERlH T Y Y Yl = B+ A,

seVp =1 weV,,||lw—s|=r
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By Lemma 12, one gets A, < Corr Yey, g™ [{w € Vi [lw = ]| = r}|a(r) =/, In-

voking Lemma 11, it then follows that A, < Cj Zdlam V) pdv=10,(r)1=2/7 < 0. The lemma is
proved. O

Lemma 2. Let {ns, s € V,} be defined as in Lemma 1 and S(V,) = >,y N Suppose that

_2 '
E[|ns|*] < oo for some y, > 2. ]fzdzam(vn) rd=lo(r)' " < oo and |V,,|/? dem(‘fl) rd—lo(r)=2/m <
r=|Va | 20

oo, then
E[S(V,)?] < Co|V,, |32 (B-1)

Proof. One can immediately obtain

ES(V)? = ValE + > Elinel+ D Elsmwns] = [ValEDE) + Ay + B (B-2)
s,weVy,s#w s, w,z€V,
sF#w
s#z
wH#z
(Note that the symbols A, and B, are meant specifically in this proof and different from those
defined elsewhere.) By Lemma 12, one has |[En2nw]| < Col|n2ll, 17wl Ma(1, 1) ma(||s —

w||)'=2/7. Thus, in view of Lemmas 11 and 12,

diam(v.,) diamv,)
A<y Y Y e <2 GolVal Y @ R a2
seVy r=1 |s—wl||=r,weVi, —

Next, to bound B,,, a decomposition of the summation indices yields

B, = Z Z Z Z Z Ensnwnz]
SEVn z€Vy
||w S||<Cn ||w S||>Cn ||z S||<Cn [|z—s||>cn
NP SIS SRR DEE D DD
et ||w 3||<Cn ||z s||<Cn ||'LU 3||<Cn ||Z S||>cn ||w s||>cn ||z s||<cn
+ Z Z E[nsnwnz] = Bn,l + Bn72 -+ Bmg + Bn’4. (B—4)

e sl Sen - slSen

Notice that, by Lemma 11, for a given s € V,,, >°  sev, =y om Z wev, < 2d, > (2r +

1<||lw—s||<cn [[w—s||=r
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)&=t < 2d 2d“_2(2d“_1 + 1) r® 7t < Coclr, where the last inequality holds by the formula:
Sk~ 2 and, by Lemma 12, |Elnau=]] < oo (min(flw — sl 1 — sl}))"™ . Tt immed-
ately follows that

Cn

B,1 < Co| Vil Z rd”_la(r)l_z/“’”. (B-5)

r=1

Since Bno =D ey > weve |2 zevi > zevi | ENsNwn:] = BnootBnas, where |[E[nsnen:]| <
|[w—s|<cn [|z—s||>cn [|z—s||>cn
lz—wll<cn lz—w|>cn

Coa (min(]|z — s]|, ||z — w|)))"*", one has

n2a < CO Z Z Z ||Z w”)l 2/ < C |V |Cdvz dy— 1 )1—2/—y,7

seV, weV, zeVn r=1
[[w—s||<cn ||z—s||<cn

diam(v;,) diam(vy,)
Biao < G 3 3 r TS GVl 30 rta)
seV, weV, r=cp r=cp
[w—s|[<cn
Thus,
diam(v,,)
Buo < ColValel Y~ ™ a(r) =2, (B-6)
r=1
and similarly, one also has
diam(v,,)
Bus < ColValel Y~ ™ a(r) =2/ (B-7)
r=1

By the same argument, we can also show that

diam(v,,)
B,s < Cp Z Z Z rde Loy (r) =2/
seV, weV, r=cpn
[[w—s||>cn
diam(v;,)
< Gyl Z rt Lo (r) =2/, (B-8)
The lemma readily follows from (B-2)-(B-8) by choosing ¢,, = |Vn|i O

Lemma 3. Let S(V,,) = Y. .y, 1s be defined as in Lemma 1 above. Suppose that () < Cyr=% for

pdvyn dy
some 6, > max (7@_(1)(%_2) + doyms 75

n 5+2 p

ﬁ—VM),where%>2 p >0+ 2, =1 p(2+6 for

62



some § > 0, and ~yyy is defined in Definition 1. Moreover, assume that max (E|n;|P, E|n;|", E|n;|°t?) <

oo. Then,
E[IS(Va) ] < CL|Va |12,

- . - cs A u 1 /I' 3 17
where C, is some sufficiently large generic constant such that C, > %, 5 = {2571 505; ,
C\ 1s the generic constant chosen in Lemma 1, As > 0 is to ensure that (B-9) holds, £ € (0, 410;106 ,

and 1y is some generic constant chosen less than 1.

Proof. As the argument based on the decomposition of summation indices (used in the proof of
Lemma 2) is rather cumbersome to apply in this current context, especially when 0 is greater than
3, we shall here base the proof on an inductive argument, reminiscent of the one used in Bulinski
and Shashkin (2007). First, note that, for a given ¢, one can always choose an As; > 0 to ensure
that

(r+y)(1+z+y)° <2 + 9+ A5 (1 +2)°y* + 2°(1 +y)°) for any 2,y > 0. (B-9)

Let h(n) = min{k € Z, : 2¥ > n}, n € N. For any sublattice, V,, C Z%, having edges of lengths, at
most equal to (..., Ly, we define h(V,) = 3% h((;). We need to show that, for some Cx large
enough and all sublattices, V,, C Z%,

E[S2(V,) (1 + S(V,)°| < CL|V,| e, (B-10)

When h(V,) =0 (i.e., |V,| = 1), (B-10) is obviously true. Suppose that (B-10) holds for every U,
such that h(U,) < hg. One needs to verify that it also holds for any V,, such that (V) = ho + 1,
say. Let ¢,(V,) represent the maximum length of the longest edge of V. Draw a hyperplane
orthogonal to this longest edge, cutting this edge into two intervals of lengths, L%J and 0, (V) —
L%J The hyperplane then divides V;, into two non-overlapping sublattices, say Vi, and Va,,
with A(Vi,), h(Va,) < h.

Let Q1, = S(Vi,) and Q2,, = S(Va,). By (B-9) and Lemma 13, one obtains that, for some
0 < 1,

B [$2(Va) (14 SVa))’| = B [(Qua + Qo) (14 Qua + Q2,0)"]

< C(|Van "2 + Vo %) + A5 {E [(1 4 |Q10)’Q2,] + E[(1+]Q2n)’Q2,] }
< C*To|vn\1+% + AE 1+ QLHWQ;,L} + AE 1+ Qg,nPQin} . (B-11)

We still need to bound E [|1 4 Q1,[°Q3,] and E [|1 + Q2,[°Q%,,]. We shall now proceed with the
former as the latter is quite similar. Introduce the subset U, = {8 € Vo d(s,Vig) < §\Vn|1/dv}
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1—19

for some £ € (O, i A(;) , where ¢; is defined in (B-13). An application of the elementary inequality
((a+b)" <c(a"+b), ¢, =1ifr <1andc, =2""1ifr >1) yields

E [|1 + Q17n|6Qg,n} =F [|1 + Ql,n|6 (S(un) + S(%,n\un))z}
<2E |14 Qup|"S*(Un)] + 2B [|1 + Q10" S (Vo \Un)]

< 2¢;E[S*(Uy)] + 2¢5E [\QmP Sz(un)} +2F |1+ Q1.0°S? (Vo \Uy )]

< 2¢s E[S2(U,)] + 265 (E [\QMF”] ) BT UN) T + 2B |1+ Qual®S?(Vau \Un)]
< 2 E[S2(U,)] + 2656C, Va2 + 2B [|1 + Qual’ S2 (Vo \U)] . (B-12)

Since E[S?*(U,)] < C,|V,|, where C,, is some given constant, by Lemma 1, one then has
E 11+ Qual’@2,] < 2¢5CulVa| + 2¢56C, [V 3 + 2B [[1 + Qo °S* (Vo \U)] - (B-13)

Moreover, notice that

E |1+ Qual’S* (Vo \Un)] < > E[+Qualmn]|+| D E[I1+Qual'n]
1,J€V2,n \Un,i#7 1€V2 0 \Un

= A, + B,. (B-14)

To bound A, note that, for each ¢ € V5,\U,,

> B 4Qualmng]| < | Y. B[+ Qualnans] |+ Y. E[IL+ Qual'nims]| = AvntAzn,

JEV2,n \Un i#j jevil jevyi? j#i

where Vi) = {5 € Vau\Uy G —ill 2 €[Val"/*} and V) = {§ € Vo \Uo =[G — il < Vil
For each pair, ¢ # j € V5, \U,, define truncated random variables, 1, ; = n;1(|n;| < M(¢,7)) and
N2 = 1 — T, where M (3, j) = (d({7}, {1} U vl,n)))&7 with gii] <0y < (0o —doymr)(1=2/7) — do.

Also let |14+ Q1,]° = |1+ Q1.,°1(|Q1n| < Ly) + 1+ Q1,|°1(|Q1.n| > L), where L, = |V,,|'/2, one
obtains that

E Ul + Ql,n‘(sninj} = Cov (|1 + Ql,n|51(‘Q1,n| < Ln)ﬁl,iu nj)+COU (‘1 + Ql,n|51(|Q1,n‘ > Ln)nl,ivnj)
+ Cov (|1 + Qual'n2s.my) = I+ 11+ 111, (B-15)
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where, by Lemma 12,

B . 1-2/vy
1< Callally I alt + QualL(1Qual < L), {Ma(L. Vil + e (G} (i} Vi) }
5 .o . . 1=2/vn
< CaCo, LM iy ) { Ma(1, Vil + D (d{5} G Vi) b
where C., = |15, and C, is the generic constant defined by Lemma 12. By the same argument,

one can prove that

59 ()2 1/%7
1T < My ) <E 11+ Q£2n| Ql,n}) {Ma(17 Vil + Da (d({j}, {3} UVln))}

1=2/vy

o4 1 1=2/vy
< CaCo O M (i )L Vi |25 50 { M1, Vil + D (aih i Vi) )
An application of Holder’s inequality, one has

Vin|3

_o _6
1T < (B[ + Qua*™]) % (Blnol )" Imill, < C$+p/q0*2+5Wa
9

where C, = ||n;]|,. Therefore, in view of (B-15),

Sy 1
B (114 Qualming] < CaCy, M3y 5) { L + CHM L 20 V|70 |

e 1-2/ S Vin s
{Ma(l, Vinl +1)a (d({]}, iy ‘/lm)) } + ClrlaEe W

It then follows that

Ain < CaCé_z/%C% {Lfb + C'i/%’L;Q/V" Vl,n|%+%} {M,(1,|V,| + 1)}1—2/70

335 P—q
>0 d{gy AU na)n 0 oot v Y dda i a)

Gevi) i#i GEVan g
Notice that, by Lemma 11, one can effectively show that
> A Ui < D G € e\t s 3 — il = m im0
JeVy i m>€|Vy [/ dv

A, 9203 |\ Ontdu—ta (1-2)
< 4dv22dv_3 Ontdv—1—0a(1-2/vy) ~ v ( Vn %) R
< Y oom =2/ 0 —d, ¢ Val

ng‘vnp/dv
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and

L, 2d, -3
Z d({]}, {Z}UVL e ‘1 < 4d 22dv_3 Z mdv_l_ein ~ 4d”_27 (§|V |1/dv) 0, =1 q ‘

P—q _
Jevy) g m>g|Vy |1/ dv 6" — o
It then follows that

£7z+du—0a< )C Cl 2/%0 (Ci/%y + 1) . é‘dv —0y Cl+p/qc*2+6

Al,n S 4dv22dv_3
0, (1——)—9n—dv Oyt — d

|Vn|5/2-

(B-16)

Next, to derive the upper bound for A, ,,, note that, for every pair, 2,5 € Vﬁ), an application of the
E |1+ Qual’ning] — E |11+ Qu.al’] E [niny]| +
‘E Ul + Qm\‘;] E[mnj” = Asun + Aopy. First, by Lemma 12 and Holder’s inequality, one can
show that

triangle inequality yields }E [11+ Qunl’min;]

0

Apn < Co (E[[L+ Q) 75 Imanslly {Ma (2, [Vina(d({4, 5}, Vi) } 27

< 0,020t (st ) |y, B Ou 0 (1-5—3)

==

and

0 _2
Azpn < CoC2 CEP V|2 a(|fs — )7

Therefore, one has

g £ CuC2OTE 003t 0) v, v (mha=) 5 e Vi), i )

FCOECHE S (i g ).

GEVL) i

npt1
pr17

Moreover, an application of Lemma 12 and an elementary inequality (i.e., >, kP & p>—1

as n T 00) yields

eV, 53} =[G € Vet 5 —dll < €IVal ™} < {5 € 2%+ 5 — il < €IVl /™)

< 22BNV
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and

EIVn\d , ( 2) &V |1/ v , (1
—0a . 2 . . B
S it =y S U = S e v G-l =
jevy) gt =t jevi) -ill=r r=1
§|Vn‘dv
<2d, 2070 3 R % (1-3) < 9q, 0%~ 3max< (§\V|)d”_9“<1‘_)).
r=1
It then follows that
Ay, < C,CTF {22@”_1)025%—9&(1_%_%) +2d,2% 32 } V2. (B-17)
n = o P v n n

6
Finally, an application of Hélder’s inequality yields E[|1+ Q1.,|°77] < (E[1 + Qu.n|**) ™ |nill545 <
[

CPC§+2|Vn|%> where Csio = ||ni||s+2. Therefore, one has
B, < CFRC | (B-18)

Collecting all the results derived in (B-13)-(B-18), we have

£9n+du—9a (1——)0 C’l 2/%6« (Ci/% +1)
Qa (1_%> _en_dv

E |1+ Q1,°Q3,] < 26;Cu| V|42 ¢s6C, + 4d,2°% 3

dv—GnuCH-p/qCﬁ;é 5 e
+£ ; ‘;ﬂp_ y * OO {22(du—1)C5§dv—€a(1—#;2—%) + 2dv22dv_30—3,]} + O C§+2 v, |1+6'
L v

In view of (B-11), some algebraic manipulations yield

1

. - 1
E [52(Vn) (1 + S(Vn))é} S ((’7‘0 + 405€A5)C* + BlC*‘m + ClCJ" + Dl) |Vn|%6 —|—4C(50uA5 |Vn| s

(B-19)
where
gdv -0 ;‘IC;JFE s o
By = 44; { 4d, 223 ; — — +Co {22<dv—1>cggdv—"a(1—a—+z—;) 4 2dv22d“‘303n} +C2,
n g v
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1-2
%z)cac ey,

6o (1-2 ) ~6y—do
n
polynomial function of C,, thus will become less than C, if C, is large. The inductive argument

On+dy—0a (

and C, = D, = 1(’31450&,226[”_3§ . The right-hand side of (B-19) is a root-

has been proved. O

Lemma 4 (FCLT for Strongly Mixing Spatio-Temporal Data). Let S(V,,, |[T'7]) = ZLTTJ 2 iev, Mt
represent a partial-sum process of mizing centered spatio-temporal random fields, {n;;, © € V,,t €
[1,T}. Suppose that {n;s, © € Vy,,t € [1,T]|} are identically distributed across both space and time.

Moreover, let the following conditions holds: (a) a(1) < Copm=% for some 0, > max (% +
p(2490)

(dy + D)y, f”+21,1+ 7M>, where v, > 2, p > 0+ 2, q = T for some 6 > 0, d, is
d+2 p
the dimension of Vo, and vy is given in Definition 1; (b) max (E|n;|P, E|n;|", E|n;|°t?) < oo; (c)

|Vn|“/MT“/M+1—9a 10. Then,

1
U\/_|V ‘1/2

E[S?(V,,,T)] < oo and W (7) is the Brownian motion.

S(Va, [T7]) = W(7),

where 0® = lim,, 7100 Tﬁ/ |
n

Proof. Let D[0,1] denote the Skorohod space of cadlag functions on [0, 1]. (All the properties that
we need can be found in Billingsley (1968).) The partial-sum process S(V,,, |7'7|) can be considered
as a random function in D|0, 1]. Therefore, the FCLT for S(V,,, |7'7|) is reminiscent of Billingsley
(1968, Theorem 20.1). As in Deo (1975) the weak convergence of S( ,[T'T]) to the Brownian
svinvizd Vo, [T7]),

motion requires the following conditions: Define S(V,,, |T7]) = \F\V e

(i) lim, ree E[S°(Vy, | T7])] = 7 for each 7 € (0, 1],
(ii) §2(Vn, |T'7]|) is uniformly integrable for each 7 € (0, 1],
(iii) S(V,, |Tt]) has asymptotically independent increments,

(iv) S(V,, |T7]) is tight in D[0, 1] (see Billingsley (1968, Theorem 19.2)).

N . . T T |77
Vemﬁcatwn of (i): ﬁVar (S(Vy,, | TT])) = Lz JE[% )+ T|V7\ Z I Zt 1Jt7$s Zi,jevn Enisnje +
|77 TT
VT S S sevivg Elisngs) = SR Em2 ] + Aur + Bar.

|77 |T'7] |77

Z |V|Z [i.07i1] +Z

i€V

|T7T| 1

An,T -

> Enionidl

| "| 4,5 €V, i#]
Tr
== |- T J (Al,n,T + A2,n,T)7 (B_20)
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where A, 7 < Co 320, 1030/l 173t ]|, (7)1 27 < 00 by Lemma 12 and Conditions (a) and (b);
and, by Lemma 11,

diam(v, x[1,|T7]])

1
A2,n,T - Z |V | Z E[ni,onj,t]
m=1 "iev,  te,|Tr]
JEVL

d({i,0},{5,t})=m
diam(v,, x[1,|T7]])

1
=G v

{31} € Vi x (1 [T7]] = d({i. 0} {4 t}) = m}| [miolls, sl () =2
€Vn

o0
<y Z m™a(m)' =" < co.
m=1

By using the same argument, one can also verify that

B, — EE”-SZQ B, B-21
7T T |Vn| L~ [nv /)7.77] T 17 7T ( )
s

where By, < Co Y00 m®~ta(m)=2/"m < .

Notice that % — 7 and 02 = E[nz?,t] + limy, 7100 (A1 e + Agnr + Binr) < 0o, Condition (i)
has been verified.

Verification of (ii): Is is sufficient to show that §2(Vn, T') is uniformly integrable. An application
of the Tchebyshev inequality and Lemma 3 yields that, for some 6 > 0,

L, _ 1
B[S0 TS0 D 2 O] = B[S0 D1 (180, 1)) 2 0V TITIC)]
1 245
< gy [0 DI
C.
< P yer — 0as C — oo.

Verification of (iii): Let 0 = s1 <t < 89 <ty < -++ < 8, < t,, = 1 denote a partition of the
unit interval [0, 1]. For all Borel sets, Hy,..., H,,, of R, one needs to show that

lim [P (S(Vy, |Tt:]) = S(V;, [Tsi)) € Hy, i=1,...m)

n,TToo
- ﬁ P (S(V,, | Tt:]) — S(Vi, | Ts:)) € H)| = 0. (B-22)

1=1

Note that, as the event {S(V,,, [Tt;|) —S(Vy, | T'si]) € H;} belongs to the o-algebra B; generated by
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the sequence {ns : s € V,x[|T's;|+1, [Tt;]]}, the random element & = 1 (S(V,, [Tt;]) — S(Vy, |T's;]) € H;)

is B;-measurable. By Lemma 14, one obtains that

ﬁf] [Teel <3y

s=1 =1 j=i+1

E

Cov (62 ) gj - 1) H 65) ‘ : (B'23)

s=j+1

Since (§;—1) [TiZ,,, & is Ui ; Bi-measurable and d (Vn X [|Tsi] + 1, [ Tt:]], Vi x UL (| Tse) + 1, LTth]) =
| T(sj—t;)] > |Th] > 0 for every j > i, where b is some positive number, by Lemma 12, one obtains
that

Vo x [ JIITse) +1, [Tte)]

=j

Cov <§,- -1 -1 ] &) < CyM, <|Vn x [|Tsi] + 1, |Tt:]]|, ) a(|T0))

s=j+1

< Oy (TVa| )™ a(|Th]) ~ (T|V,|)™ (|Th]) "% — 0 by Condition (c).

Therefore, in view of (B-23), (B-22) has been proved.
Verification of (iv): In view of Billingsley (1968, Theorem 8.4) (adapted to D[0, 1]), the tightness
condition will follow if one can prove that, for each positive €, there exist a positive A and integers,

ng and Ty, such that n > ng and T' > Tj together imply

P (max |S(Vi, )] = o A/T|V,, ) < )\2 (B-24)

1<t<T

First, introduce the events F; = {|S(Vn, 1| > UA\/T\Vn|} and E; = {maxlSKj |S(Vi, 0)| < oA/ T| V3|
< |S(Vp,7)|} for every 7 > 1. It then follows that

P (I@%w(vn,t | > o A/TV,] ) <p <|S(Vn,T)| > (A — Ao /TV, |)

+§P(Ejﬂ{l5(Vn,T) n,]|>0AW}) (B-25)

for any A\; < A. Note that

P (B {18V, T) = SV )] 2 AVTTVa })
<P ( N {|S(Vn,T) SV j+ k)| > oA — Az)\/TIVnI})

+ P (18 + 8) = SV )| 2 XV TIVal ) = A + Bur,

where Ay € (0, A1) and k takes some value less than 7. To bound the right-hand side of (B-25), one
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first needs to bound A,, 1 and B,, r. Let B{ be the o-algebra generated by {ns : s € V,, x[i, j]}. Thus
the Bernoulli random variables 1(E}) is B]-measurable and 1 (\S(Vn, T)—= SV, i+ k)| >0\ — )\2)\/T|Vn|>

is B, ;. ,-measurable. Invoking Lemma 12, one obtains

P (B (1SVas T) = S(Vasj + B = (A = 2) VTV,
= P(E)P (IS(V2, T) = S(Vasj + B)| = oM = Xa)v/TIVal )|
< CoMa ([Valj Val(T = j = k) @ (d (Ve % [1, ),V X [+ b+ 1,7])
< ColT|Valy™ a(k).

In addition,

P (IS(Vn, T)=SWVu,j+Ek)| >0l — MWW) (%) EHS((‘T/SEQ__)\SQS%{/J o

< oo |2 el Y Ea

seVin x[1,j+k] s,weV, X[1,j+k], s#w

®) >
< [ValT <Hns!l2 +2Cod, 372 |l |13 (2 + 1)d”04(7”)1_2”"> = [ValT®©,,

r=1

where Conditions (a) and (b) ensure that ©,, < oco; (a) follows from the Tchebyshev inequality; and
(b) follows from Lemma 12. It then follows that

0,

AnT<P(E)W

+ Co(T |V )™ (k). (B-26)
By the Tchebyshev inequality and Lemma 3, one also has

e

Jj+k
Bn,T S Z P<

s=j+1

Z'rhs

ZGVn

k3+6

k3+6
< E
- 02+5>\§+5(\Vn\T)1+5/2

< - -
=G U2+6)\§+6T1+§ (B-27)
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for some § > 0. In view of (B-25), (B-26), and (B-27), we have

P (1@% 1S(Viy, 1) = oA/TV, ) < P(lS(VmT)I > (A= A)ov TV, |)

k3+5

Ym+1 Y™
2\ — )\22ZP )+ T [Val ™k )+C*02+5>\§+5Tg'

Because the events E;, j = 1,...,7 — 1 are disjoint and U "B, ¢ {maxj<;< |S(V,,t)] >
oA\/T|V,|}, one can immediately show that

P (1@% |S(Vy,, t)| > o—)\\/T\Vn|) < (1 _ ﬁ) - <p <|S(Vn,T)| > (N — Al)a\/T\VnD

k3+5
+C, Ty M (k) + C,——— | . (B-28
DT |V a(k) 0_2+5A§+5T%) (B-28)

Now, let A\ = A/2. For a given € > 0, one can choose A sufficiently large so that

P (150D 2 PovITT) < 575

which is possible because of the uniform integrability condition (ii). One can also choose Ay < A\
so that m < 2. Therefore, (B-28) results in

3+
P <1I£1t22)§1|5(vmt )| > oA/ TV, ) <3 ( 2 + Co| V| Tmeti=0a 4 7&) ‘

o2 NITOTs

If one chooses k < T such that k79 /T9/2 is arbitrarily small, Condition (c) then implies that

P (max |S(Vp, t)| > o A/T |V, ) 2)\2
o

1<t<T
The tightness condition was verified. O

Lemma 5. Let S(U,,V,,T) = Zle > icUn, Zjevn w; €5+, where {w;, © € U,} and {€j4, 3 € Vi, }
are contemporaneously independent centered spatio-temporal processes; and for given t € U, and
J € Vi, wiy is a causal process and {ej;, t = 1,...,T} are independent over time. In addi-
tion, suppose that (a) the processes are identically distributed across both space and time, (b)

w;y and €5, are miving with the mizing coefficient satisfying a(T) < Cyr7% for some 6, >

) 2
max ((FI;)(JU +don T8, 3G

d, 1is the dimension of

),where%>2p>4 q= 525
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Vi, and vy is given in Definition 1, (c) max <(|Un| + |V, ) A2/ 3 pe1/2 v Hba—D)emg (Ba—n—1)
max(|Uy|, |[V.])™) | 0 for some € € (O, min <% M)) . Then,

" 2(ym+0a—1)
1

VU Vil

2 o .
where 0% = limpyoo |Un||Vn ‘ZzeUn wzt‘ E ‘Zzevn ezt‘

S(Un, Vo, T) -5 N(0, 02),

Proof. Let S*(U,,V,,T) = Zthl Wy 1€4t, Where w, ; = |U—1n| > icu, Wiy and €, = \V_lnl > iy, Eit
Step I: Divide the time-period index set [1, 7] into kp big blocks, {nflb)TZ, i=0,....,kr — 1}, of
size pr = |T/?*¢| and kr + 1 small blocks, {17,(182“, i =0,...,kr}, of size gr = |T/?>7¢| for some

small 0 < e < fe—m=L_"5nq put

2(ym+0a—1)
o pr
Mh,ri = Z Wy i(pr+qr)+iC+i(pr+ar)+i> i =0, kr =1,

j=1

“ pr
M, 1i = Z Wai(prtar) +pr+i€xilpr+ar)+pr+is ¢ = 0, kp =1,
7=1
and the small remaining block nﬁfzp ey = ngsz(pT tar)+1 Whj€nj- It then follows that
kr—1
S*(Up, Vo, T) = Znﬂﬁznm— o1 + Sn. (B-29)

Step II: Derive the asymptotic variance for S*(U,,V,,T). Notice that E|[S*(U,,V,,T)|* =
Zf 1E|w*t€*t|2+zt;és [w*t€*tw* 5€x s] :ﬂnT_'_EnTu where |U”||V”‘T |U |E}Z1,6Un w"‘t‘
|Vn E ‘Zzevl ezt‘ < oo asn — oo by Lemma 1 and Top =2)__, E[e*7t]E[w*,tw*7se*7s] = 0. One
then obtains that

2 .
o° = lim w €
oo |U| ; ot |V| ;t

Step III: Let St = 1/ Z2ILS, 1 Then,

kr—1 2
. 2 UVl s
E‘STMT‘ - T2 E va(z,%“,i—i_nn,T,kT
i=0
kp—1
Unl| V2]
- T0'2 |77nTkT|2+kTE nnTO} +2E ZnnTznn%“kT )
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where E\ny(fzp’kT ? = <M>

[Un[Val
kr—1_(s)  (s) _ T _
E [ZZTO UnST mnST kT] = 2.j=1 ZZ:kT(pT—l—qT)—I—l E[w*,i(p:r+q:r)+p:r+jw*le*,i(p:r+q:r)+p:r+j€*,€] = 0. It then

follows that E |S;,|* = O (=telprian] o aglke) — o(1),

Step IV: Let B, = /22l 1B, 1. Show that

kp—1
[1Un][Val ||V|1 (®)
E (i0B;, | | E 6
exp (i exp (z T

To do so, invoking Lemma 12 yields @1 < Cy ZkT > My, (|Valpr, (ke — 5 — Dpr|Vi]) algr)
1
3

Mo ’ =0 (MH‘/”) by Lemma 1. In addition,

Q1=

= o(1), where i =+/—1. (B-30)

(b)
< Cokr (|Vn|pT)ﬁ/M OZ(C_IT) S COT1/2—€|Vn|“/MT“/M(1/2+€)a(qT) < CO|Vn|“/MT(“/M+9a—1)€— (Ba—ym—1) where

(a) follows because kr|_— iqTJ < gr, and (b) follows because of Condition (b). Now, invoking Con-

dition (c), we obtain Q; = o(1).

Step V: Show that ZkT 'E '\/ \UnHan lm(Lsz

kp—1 2
T l ‘17](5, _
o n, Ty

2 E
Step VI: Finally, we need to verify the following uniform integrability condition

T
0P ] > A o
T o |Unl| V2]

for every A > 0. Invoking the Tchebyshev inequality, the left-hand side of (B-31) is dominated by

/\2102 (‘UHHVR ) ZkT E . To study this upper bound, one needs to bound £ m(f’)m
of notation, we shall write w*vj = Wai(pr+ar)+i and . j = Exi(pr+ar)

— 1. An application of Lemma 1 yields

| 1 T prk
ThT
—22 *tE*t = T —>1

Ul Vel HV|’” !

ZE

— 0 (B-31)

nnTz

. For ease

+;- Therefore,

ZE|w*Je*]| +Z w; e wl e

*,J2 Jz]
J1#j2

pT

+ Z *]1 *le*]2€*J2] + Z E[~2 & ]

Wy j1 Ex le* J2 6* J2w* JSE* J3
J1#j2 ji#ia#js (pairwise)
pr

+ E B[y jy € j Wi o €x o Wi 3 €x, 5 Wt 1 Ex s
h#je#is#ia (pairwise)

=Ar+Bur+Cor+Dpr+Enr. (B-32)
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An application of Holder’s inequality and Lemma 3 under Condition (b) yields

pr

R O B-33
Anr < o (B-33)
and
pPT
Bur <2 Z E[gjh]E[wjjlgjﬁ *m] < 2p2E[e ]E1/3[~6 | B3 ]E1/3[~6 ]
J1<j2
2
O P — B-34
e B

Moreover, by the covariance inequality (Lemma 12),

Cor = Y E[E, |E[@ ;. j,&. ;)
J1>72
< Co | BIE 1 @2 5, 1D il Ma(1T] VA0 Dl = al)' =2/
J1>72
It is 1mmed1ate to verify that all the conditions set out in Lemma 2 hold therefore, one has E/ [ €5 <

< C |3/27 ||w*7j2||’7n < C |1/2’ and

C. |3/2 Also, by invoking Lemma 3, one obtains [|@? ; |-,

TV
o < C It then follows that

HE* »J2 1V ‘1/2

pr(|Un| + [Va| )12 0=2/m) & 1-2
Cor < C, > a(r)m, (B-35)
! [Un|?[Va|? p—
Notice that
pr
Dor= Y. B, &, 0t + Y B E@2 ) Wy W s i)
J1<min(jz2,53) J1>min(jz2,53)
J2#73 B J2#73
VT
T
S COE[/Ei,‘]l] Z }E[wz jlw*7.]2€*7j2/&7*7j3g*7j3:|} ?
J1>32>73

where - by the same argument as above - one has E[e? ; ] < C and

Vil

‘E[{Ez,hw*,hg*vhw*JSE*,js]‘ < C(]sz,h H’Yn H@*,jzg*mw*,jsfg*,jsH-yn Ma(‘Un|7 |Vn‘)1_2/%’oz(‘j1 — j2|)1_2/'Yn
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with ||w < CO\U—1n| and [|Wy j, €. j, Wi js€e s ||, < C’om. It then follows that

*]1||'Yn

p?p(IUnI + |Vn|)’YM(1_2/’Yn)

Dn,T < CO Q(T)l_z/%. (B-36)
|Un[?|Va]? ;
Finally, it is not difficult to see that
pT
gn,T < Co Z E[[&*Jlg*,h{E*,jzg&hﬁj*,ja’g&h[&*leg*,jzx] = 0. (B'37)
J1<j2<j3<ja

Therefore, in view of (B-32)-(B-37), we have

2 (1-2/yn) >
(t) 4<Co{ Pr__ P P2(|Un| + |V )2 =2/m) Za - 2/%,}.
=1

E nnTz

|Un?[Va? |Un?[Va?

Invoking Condition (c), (B-31) has been verified. The main theorem then follows in view of Steps
I-VI above. O

Lemma 6. Let {Xs;: s € Vy, t € [1,T|} be a mizing spatio-temporal process. Suppose that (a)
Xst, s € Vv and t € [1,T] are identically distributed over time and space; (b) Elexp(£]|Xs.|)] < Co
for a constant Cy > 0 and £ > 0 small enough; (c) || Xs4ll;. < 0o for some o > 2; (d) a(T) < Cyr e

for some 6, > <4VM dyt1 ) . Then,

1 1-2/54
1 <& 9 1 /(M\?NT
PlI=S"Xx.,|>M| < Z7C y CyN™ log(T)T7 1% 44 - [ =
<T; ] = )_M +Cy og(T) 10e max{exp( 576 (Cé) 200),

1N TV/4N\ "
o <_§@log(T))} ’

Proof. First, we employ the following truncation: X,; = XS X(>t with Xst = X1 1(| Xst| <
Cylog(T)) and Xgi) = X5t — XS). It then follows that

where Cy, and C,, are sufficiently large constants.

T
1
> M) <Pp OT SoxY - BxF) >
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By the Tchebyshev inequality and Conditions (a) and (b), one could show that
2 2 .
7;7N’T S ME[|X3¢|1(|XS¢| > Cx lOg(T))] S MT a’ (B-39)

where C, can always be chosen to make C,, large enough. To bound 7- yr, let pr and by denote
two divergent sequences so that 7' — by < 2upby < T, divide {X, 1,..., X, 7} into 2ur blocks of
size bp. We can always choose by and pp in such a way that the remainder { X, r_ou6p, .-, Xur}

can be ignored. Let ({51, ..., &spr), (Esprtts- > E&s200)s - - s (§oy2ur—1)brt1s - - - s s 20707 ) DE indepen-
LX)

dent blocks of random elements such that (&sjpp41,---,&s (j+1)pr) and (X(< s (j+1) b:r)

s,jbp+17 "
J=1,...,2ur, have the same distribution. Moreover, define

2jbr

Z*,j: Z 5*,t> ]:172a,uT

t=(2j—1)bp+1
It then follows that

2jbp

Tenr < 2P Z > XY -ExY) >

] 1t=(2j—1)br+1

14T o (<) M 14T M
<
< 2P T E E Xoi = 2 2; + 2P T E Z.; — E[Z, ;] 2;
J=1  t=(2j-1)br+1 j=1
a b
:T<(1)V,T+T<(J)V,T

Let Sn; = [(2) — Dby + 1,25b7] x Vv, j = 1,..., up, then d(Sn;, Sn,;) > br for every i # j. Since
Z,j is B(Sn;)-measurable, |Z, ;| < C,brlog(T), and Sy ; contains Nby sites, an application of
Rio’s coupling inequality (Lemma 15) yields

Tz < 2C, purbr log(T) Mo (Nbpjir, Nop)a(br) < CoN™ log(T)T ~ 0% (B-40)

In addition, as |Z. ; — E[Z.;]| < 2C,brlog(T), thus | Z. ;| = 5452l < 1 and

~ Var(Z.;) 1 T
Var(Z, ;) = = < V Xt |- B-41
ar(Z;) 402b%.10g*(T) — 2C2b2.1og*(T) “ (; ’t> ( )
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Some combinatorics arguments yield

br by
Var <Z X*,t) = % Z Z Var(Xs,:)
t=1 t=1 seVy

diam(vy x[1,b7])

- % > > > Cov(Xap Xusr)

r=1 (SJ)EVNX[l,bT} (w,T)EVNX[l,bT]
ll(s,t)=(w,7)||I=r

by
< % > Var(X.,)

t=1 seVn
diam(vy x[1,b7])

+ Co% > > [{(s,2) € Vv x [1,b1] = [[(s,1) = (w,7)[| = r}|

(w,m)EVN x[1,b7] r=1

_2 , b
HXs,tHga {Ma(lyl)&(r)}l fa < C’szgmaWT.

It then follows from (B-41) that

_ 1
Var(Z, )< Cp—— .
ar(Zeg) < Nbr log?(T)

Invoking Lemma 19, one obtains that

KT 2 1/4 +
T Aoy N A N W 1 M\ Ny M T
T (; S =160, brlog(T) ) = VTP Ta\se, ) o ) TP\ T2 10Ty ) [
(B-42)
The main lemma then follows from (B-38)-(B-42). O

Lemma 7. Let {(X;+,€¢) : © € Vi, t € [1,T]} represent a mizing bivariate spatio-temporal

process. Suppose that (a) {X;1, €1}, 2 € Vy and t € [1,T] are identically distributed over time
+

and space; (b) a(r) < Cor~02, 0, > (4% 2l ) for some 5o > 2; (c) || Xsseidll, < ooi (d)

Elexp(l|| Xs4]|)] < Cy for a constant Cy > 0 and £ > 0 small enough. Then,

1
Pl=
<T

where C, and Cyy are some sufficiently large constants.

> M) < Co {T7%% + ¥ log?(T) T~ i

T
Z{X*,te*,t - E[X*,te*,t]}
t=1

T1/4
+ max {exp (—C’UN2 logz(T)T7/4) , €XP <_CMW) }} ,

Proof. Define the following truncated random variables: X;; = X i(;)th Z(i) with X z(f) = X;1(| X4 <
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C,log(T)) and X{; = X; 1(|X; 4] > Cplog(T)); €y = ey +esy) with iy = €5,1(|eg | < C.log(T))
and egi) = €1 1(|es4] > Clog(T)). Thus, Xe = X(Del<) 4 X©el>) + X)) 4 XF)e>) Tt then

follows that
> M) (l )
- T

P (1
T
T M M
> (x5 - £[x 5]} | = ) oo -4

t=1
1
Pl=
v

t=1

st €t — E[X*,te*,t]} >

==

T
Z{ ot E*t - [XS)EEF t)]}
t=1
T
Yo {xPdY - B X7}

t=1

M
+P ( Z {XS €t — B [Xg)ei?} } > Z) =Tine +Tone +Tsnr + Tane. (B-43)
t=1
To bound 71 y 7, let w,; = X,Et e t . Divide {w, 1, ..., w. r} into 2 blocks, {w. —1)pr+1, - - - Wi jbr )
j=1,...,2ur, of size by and a smaller remaining block. One can always choose pr and by such that

the remaining block is negligible so that it can be ignored. Define 2ur contemporaneously indepen-

dent blocks, {(fi,h Ci,1), . (&,bT, Ci,bT)}a {(fi,bTJrl, Ci,bT+1)7 ceey (&',%T, Cz‘,2bT>}a ceey {(&,(mT—l)bT, Cz‘,(zuT—an),
. (§i72MTbT’ <i72MTbT)}, such that (gi,(j—l)b’r-i-l? Ce >€i7ij) and {Xi,(j—l)b;r+1a Ce >Xi,ij} are identi-

cally distributed; and (G,(j—1)pr+1, - - - > Gijbr) a0d {€5 (G—1)byp+15 - - - » € jby } are identically distributed.

) ,
Let Zuj = 3 1y 1 &xtCots § =1, ., pr. We have

2ij M
71,N,T <2P | |+ Z Z Wit — E[w*,t] > g

] 1t=(2j—-1)br+1

1 il 2ij M 1 mr M
<2p T Z Z Wer = Zuj || 2 16 + 2P T Z(Z*,j —E[Z.])| =2 16
j=1 \t=(2j—1)bp+1 =

= 71(NT + 7—1 N.T" (B‘44)

Define Sy ; = [(2j—1)br+1, 2jbr|x Viy x V. Then, d(Sn.j, Snx) > by for j # k and Zf’bgj Dbpt1 Wt
is B(Sy j)-measurable. Since |Z, ;| < C,Cbrlog?(T), an application of Lemma 15 yields

TQr < CoN™ log?(T) T~ 3%,
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To bound 7—1(,?\)7,% notice that

1
Var(Z.,) = 5 Var >oooxe
(ivjvt)EVN,T
1 (<) (<) 1 ) (<) 3(<) (<)
=i Z Var(X;e;)) + Ni Z Cov(X 11 sejl o Xy 1€6501)
(3,3,)€EVN T (41,41,8)€EVN,T

(i2,J2,t)EVN, T
” (il 7j1 75)_(i27j27t) Il;éo

where the second term is bounded by

diamu.r) (/. - . . 2
Cont i grsevn dor=t {2, G2, t) € Vivr + |32, 52, 1) — (i, 41, 8)I| = 43 [ X, s s,
{M,(1,1)a(r)} 72 < ¢ D rzdva(r)l_% in view of Lemma 12. Conditions (b) and (c) imply

that

Var (Z, )<Cb

Let Z*,j = = |Z, ;| < 1. Invoking Lemma 19, one can show that

1
C»Cebr log?(T)

1 Hr
T\ Nr <2P (‘T > (2o = BlZ.,))| = Copr

j=1

1 M N?log*(T)T
br log"(T)N2 32C.C,C, pr

N?log*(T)T?
< 4 max { exp —CUL() sexp | —Cyy—5— s .
fir log*(T)

By choosing pr = O(T'*) and by = O (Lﬁj) , we obtain that

T1/4
7_1, N < < 4maX {exp (—CO—N2 10g2(T)T7/4) ,eXp <_CMW) } .

It then follows from (B-44) that

1/4
Tint < CoN?M logQ(T)TW_%O‘* + 4 max {exp (—C'(,N2 logQ(T)T7/4) , €XP ( OMI a (T)) } )
og’

(B-45)
To bound the remaining terms in (B-43), Condition (d) implies that one can choose C, such that, for
C, large enough, F [|€;,]*1(|€;4] > Cclog(T))] < T=% and E [|X;4|*1(| X > Celog(T))] < T~ .

Therefore, we have

8§ 1 (<) _(>)
Tonr < U N2 Z E|X; e 1 < MN2 Z | X ]2 || €

1,J€EVN 1,J€VN

< CoT™%. (B-46)

80



Similarly, we also obtain 73 yr < CoT ~Ca and Tint < CoT~2C . The main lemma then follows
from (B-43)-(B-46). O

Lemma 8. The function

1 L1 , 2 016,
Hinr(y,U) = N2 > 5 \Pullic T Po5s FP0—3 = | = Enr(,U) + A

c=1 i=1

is convex for every p = (pu, ps, po) satisfying (B-47)-(B-48), (B-53)-(B-55).

Proof. Write Hy nr(v,U) = 12 20, S8 10 +(7, U), where {3 (v, U) = 1 <puugﬁc o+ py egvec> _
N2 Ay — u} G2 AL — u? 920 By + 2u? 020 C1i + 2Nu; ¢ D1 — 2Nu; (40, Fi ;. One needs to
verify that fgf}QT('y, U) is convex for each i € [1, N] and ¢ € [1,G]. It is equivalent to showing that
the minimum eigenvalue of the Hessian matrix is strictly positive. The positivity of the minimum
eigenvalue of a matrix can be verified by the positive definiteness of all the sub-matrices. Some

simple calculations yield the second-order derivatives of ff}QT(% U):

) = PN (v, U) = %’ —2u2 Ay, — 2u2,0] By 0. + 42 0] C, ;.
al) = o fiNe(7.U) = —4u2 3By 0. + 4l 6 Cri — 2Nu; J i(= af}),
aly = RBIN(nU) = K, — 20 0281,
aof] = 0 fNr(7.U) = pu — 202 A1 — 2020] By 6, + 4620] C, ;.
aty = 02, fNr (1 U) = —Au; beAr; — A 00 By i, + Sui 6.0, Cri + 2NDy; — 2NO] Fy (= a)),
aly = 02 o FNr(V,U) = —4u; 0By 0, + 4ui 62C1 s — 2N 6o Fri(= af)).
afll af}) afly’ .
Let Hy = | a8 o83 a$" | denote the Hessian matrix of fgf}i,)’T('y, U). The positive definiteness of

IDIN¢!
ay) af)

the first Hessian sub-matrix is warranted by

(1)
as 3

pu > max {203 | Ay | + 205 1€ c||* Mnax (Bi) + 465 .45 |[C14l } . (B-47)

where £y, = (ly.1,. --,fa,c,dx)T- The positive definiteness of the second Hessian sub-matrix is

warranted by

pu 2 max {(205 . + 40o.c) | Av| + 2ll€p.c|*Amax(Bri) (6. + 2s.c) + 465 .+ 2Ls.0) g | ICui

+2N|Dy | + 2N € || Fii|} (B-48)
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and

po > N max {2 Avi (1 260) + 201+ 260) [l PAumas (B o) + 41+ 20,0185, 1]

+2N|Dy | + 2N|z;c||f1,i|} . (B-49)

In view of Lemma 20 the positive definiteness of the third Hessian sub-matrices is warranted by

1 1 1 1 nT
) <a§%+a§%+a§§ ld.d, ) > max(0, alg,agg, ), (B-50)
1 1 1 1 nT
) (a%% +a( ) + aé% Vd,d, ) > max(0, alg,agg ) (B-51)
1
A (e ali o) > wx(0alhalh2tB) B
foralld =1,...,d,, where 154, = (1,...,1,0,...,0)". We immediately verify that |a1 2\ < €a12 =
——

d

(. J/
-~

dg
max; {40p | Avil + 405,01 €00 *Amax (Bri) + 8| €0.|1C1il + 2N[Dy,| — 2N|€] || Fil} , lash| < €5 =
max; {40s.(|Builloc + Cri) + 2NFi;}, and |aly| < €0 = max.; {462 |Byi||€o.| + 4@3),C|c17,~| + 2Nl | Fril} -
Therefore, Eq. (B-50) is implied by

& +e

a2 a13¥d,de

Pu > max {26 | A1l + 26 |1 €o.c||*Ammax (Bui) + 405 |€5 .| 1Cril + €

+(d + 2) max (¢, £)7)} . (B-53)

@127 °7ai13

Eq. (B-51) is implied by

qu > NmaX {2|A1 z| + 2”’&9 c” )\max(Bl z) + 4'89 c|cl z| + E + ’€[(11225Tzd,dx (d -+ 2) max(f( ) E(I)T)} .

ai2 a2’ a3

(B-54)

Eq. (B-52) is implied by

Pola, > Nmax{QuZ L | Builia, + 20 4 )

a13 a23

+ (dy +2) max (€ £8) 203 1B )}, (B-55)

ai13? a3’

O

Lemma 9. The function

G N 2 2
1 1 (uic_'_u'c) 2 02—00
Hone(v,U) = N2 ZZ Py (pu N L 4 py —\ T Pe NN — 1)) —&nr(,U)



is convex for every p = (pu, ps, po) satisfying (B-71)-(B-75).

. ¢, R (“2 ) 2
Proof. Write Honr(v.U) = 5z S0 Zz;é] éN]T(7> U), where fz NT('7> U)=3 (Pu + Py N((Z> )

6] 6.
+pgm> — Wi Wy P2 A+ Ui P20 Ba i — i oy 920 Ca i 0. One then needs to prove that

gc}i,’]T)('y, U) is a convex function for some p sufficiently large. The second-order partial derivatives

of fgc}\l;JT('y, U) can be derived in a straight-forward manner.

a?) = DL FNE(LU) = (B-56)
oy = Dl SN, U) = 67 (0] Boij — Asij — 6. Cas00) (= af)), (B-57)
ay = D2 55N, U) = 2u;.0. (93 Baij— Asij — 0. Co;0c(= aéfi)) , (B-5g)
al’) = D2 oSN U) = o0 (Boij — 2C250.) (= al)), (B-59)
ay = D fionU) = 7 (B-60)
ay) = D; 4. SN U) = 2ui00e (0] Baij — Asij — 0] Ca j0.) (= ai)), (B-61)
ay) = D2 o i U) = wicd? (Baij — 2C2,,0.) (= ail), (B-62)
afy = DiFN.U) = ﬁ, (B-63)
ay) = DI fsni(v.U) = 2u; b (Boij — 2Ca;,0c) (= af)). (B-64)
al’) = D§Fvi(y.U) = ﬁﬂ% — 20, . $7Co i 5. (B-65)

2 @ @ (2)T
ayq @12 a13 @y 4

() 43 o) )7
a. a. . .
Let Hy = fj af; e a?ST be the Hessian matrix of f2 }VT(")/, U). Similar to the proof of Lemma
3,2 ¥3,3 3,4

<2> o o o)

8, all the sub matrlces of the Hessian matrix Hy are positively definite if the following conditions
hold:

2) (2 2) (2)
aiaz) — aihagy > 0; (B-66)
1
p 3( a'?) 1+ ag % + a(?’) + aﬁ{ ld,d,) > Max (O a; %, a%, QT) (B-67)
for every d =0, ..., d,;
1
i3 (ag i + aé% + a(2) + af}l ld,d,) > Max (O as {, a%, ag?f) (B-68)
for every d =0, ..., d,;
1
5 (@6 + 0+ o + @l 1aa,) > max (0,06), o). a2} (B-69)
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for every d =0, ...,d,; and

1 x
173 (Sd,dz a’] +Saa, 0} + Sua. 0 + Saa, afizd,dz) > max (0 af’] af), af’), aﬁ)) (B-70)
for every d = 0,...,d,, where aﬁ) is the matrix with zero diagonal elements and the off-diagonal
’ 1000 d © 0
z—5
elements are the same as those of afi; and Sgq, = | 5690 = 0 | is the selection matrix.
’ ~~ . .
BEANTEY
The relation (B-66) is valid when
pu2 (N —1)max {05l Anigl + 05 185 oI Boi il + €3 £g o[Coi 1o} (B-71)

Moreover, notice that

e < 02 = max {0 . (Azij + 1€5.0|Baij| + €5.0Cs510.c) } ;

a12

a3l < 3 = 2max {loc (Aoiy + €| Bais| + £5,IC2i1b00)}
lash] < 03 = 2max {Lg. (il +€5.1Boijl + €5|Coislboc) }
la?)| < €2 = max {63 (| 4zi] +21Coi 10 )}
2
|ag,4)1 S £a24 = £g2147
laf)| < €6, = 2max {Lo. (Boisl +21Coisloe)}
|a*(2 | < 2 max{ﬁ2 C5 1} with Cy; ; is Ca 5 except for zero diagonal elements.
C,Z,_]

Therefore, it follows that (B-67) holds if

Pu > D) {62 + 02 + 20,4, + (d+ 3) max(¢2), (2, 62T} ; (B-72)

a12? 7a13? ~ai4

(B-68) holds if
o (N = 1) {0 + 62+ 60 1y, + (04 ) max (60,60, €2) ) (BT

(B-69) holds if

ps > N(N {6(2 +02 4 62234 ta.q, + (d+ 3) max (£ (@ g2 O} (B-74)

a13 a23 a13?’ "a23’ ~as4
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and, finally, (B-70) holds if

+ Sd,dx£(2 + Sq dx£(2

a14 a34

po > N(N —1) max 1265 Sa.a,1Ca,i 51040, + Sa.a, £

+ (d+ 3) max (0,62, €2 62 205 |C5. |} [loe, (B-75)

7a14? Ca24’ Casq?
where || - ||o is the matrix sup-norm. O

Lemma 10. The function

Hanr(v,U) = ZZ ( ( _11;?(73\7_1)+(G—11;§(§v—1))+p¢((G—1>f7b\§(N—1>

cAl i#£j

¢Z e;l'ec 92—05
TGN - 1)) M ((G “ONV -1 T (G- 1)N(N - 1))) ~&nar(vU)

is convex for every p = (pu, ps, po) satisfying (B-76), (B-90)-(B-102).

2

. c,lyi c,lyig uy .
Proof. Write Hs nr(v,U) = Nz Zc# ZZ;AJ 3NTJ (7,U), where fé,N,T])(77 U) = % {Pu (m

2

Ui ¢2 ®3 00, 6,0, A
= 1)(N 57 ) T e | Gmovey=n T Teovev=n ) T2 eenviven T eenNeesy ) [ WieWi i@ Aa i
+ U e, gqbcweé Bs ;. ; +u; cuﬂqﬁcqf)wc Csij— uwuj’gqu(bgOCTCZi’ng. We then need to find conditions to

ensure the convexity of fgc]f;lT])('y, U). To start with, let’s compute the second-order partial deriva-

tives:

afi = DLENY U = iy

af’% = Dul vy 361621“] (v, U) = —ujedeAsij + wjede (0, Bsij+ 0. Csij) — uje0. Cas i00(= a;(gg%)
af’i = Dul o 36162’1“] (v, U) = —uj0c Az + ujide (9;33” + 9TC31’,3) Uy, e¢c9 Ca.;00(= af’%)
ays = D ofind (. U) = uj0c0iCaij — uedediCaii0n(= ai)).

aly = D2 o Fnid (7. U) = ;0 (Bsij — Ca1,0.) (= ag)),

ah = DLENT ) = Gty

af) = D2 . SN (0 U) = ety (Avij — 0] Bsij — 0. Cs5+ 0] Cay j0r) (= af),

aé‘?’% = Dij o :(aczéZT] (v, U) = =t Az j + Ui e (9;33,1',9' + GCTCs,i,j) Ui 00, Co;i j04(= a;(),?’%)
a5} = D2 SN (rU) = —ticpeAaj + tiche (0] Baiy + 0] Csij) — 108/ Casj0e(= af)),
aé‘?’% = Diﬂ 0. 30161TJ (7, U) = uichcde (6313 - C22105> (= a53%,

asy = Do fins (7.U) = tibede (Briy — Cass8e) (= agy),
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aé‘?’i = Dicm ;(),C]f}ZTJ)(’Y, U) = —Uj,cUje (A2,i,j - 9;33,1',9' - ecTcs,i,j + ecTcz,i,jez) )
3 cZ,z, p¢
3 liirj 3
ay) = D2 o fni (7. U) = w060 (Caij — Coyi j00) (= aby),
3 c,li,] 3
ai(s,f)i = 350,0@ i(%,N,T])('% U) = u;cujepe (Bsi; — Coij0e) (= a(()‘,%)a
3 i, 3
al) = D2 o isni (7. U) = w00 (Caij — Coi j00) (= @),
3 (c,lyi,5) . Po
a’4,4 - D¢g3NTJ(77U>_(G_1)N(N_1)7
3 liirj 3
aly = D2 o (v, U) = wicujide (Byij — CoijBe) (= al)),
3 el,ij Po
3 liirj 3
al) = D3 oS (V. U) = w1 00eiCos (= aly),
3 cl)ij Lo
0® 4@ B LB BT (BT
1,1 1,2 1,3 1 4 1,5 1,6
o) o) o) o) o7 ol
W® B 3 <é> <é>T Nou elid)
Let’s denote by Hz = ?5 o ¢ (3) ?;;’T ?3?7 the Hessian matrix of f3’ (v, 0).
Ayo G433 Ay Ay 5 4,6
a<3> o o) o o) o
1,5 2,5 3,5 4,5 5,5 6,5
a® o o) o) o8 o0
satisfies Assumption 5.1, one obtains that
lafy] < 02 = max {Csclo (| A2i5] + 40 Bs 5] + £50|Cs,i5] + £5c|Casijllo) } ;
lal)| < £@) = max {Cs0 (| A2,i5| + €541 Bs,ij| + €5, |Cs.i 5] + €4 |Coi 51 0) } ;
3
lash| < €@ = = max {0 (| A2,i5| + €441 Bs,ij| + €4 |Cs.i 5 + €4 |Cai 51 0c) } ;
lai%a] < € = max by (|Azis] + 5l Bsil + €5ICsisl + £5cICaislor) }
|a | < €a24 - g((l?;zﬁ
la)| < 08) = max {\A2 il €64l Baij| + 4 |Csi 5] + £4..|Cai i €0}
@3] < €8 = masc {€, oL (ICaisl +[Caisltor)}
3
laiel < €2 = max {€s, Lo (|Baigl + [Coigl€s)}
3)
| g%| S 'eazd —'e((lgi ) |a’( | < 'eage _£a167 |a' | < EGBo - £ E((lgi ) | < £a36 - £
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lal)] < £ = Lo,

3
— ~ays g a157 |a’4(l,% S 'e[(lia - g '81(13167 |a’ | < 'e - maX{€¢7 €¢Z|C2 7'7]|}

777

as6

Invoking Lemma 20 the minimum eigenvalue of Hj is positive is implied by the following inequality

constraints:
pu2 (G —1)(N —1) max {Pctr (| A,is] + €9 01Bs.i 5] + 9 |Cs. 5] +£5.|Coj1€00) } (B-76)
S+ a2+ al?) > max(0,af, oY), (B-77)
S(aS) + o)+ af) > max(0,af), o), (B-78)
S+ 0l + afl) > max(0, Y, af2). (B-79)
Ll + )+ 02) > max(0, %, o) %), (380
10680+ a2+ ol + o) > max(0,5), ol ofY) (B-81)
i(af’% + a(?’) + a:())?)) + a:(,, i) > max(0, aé?’i, a:(,, %, aé?’i) (B-82)
4(@55? + a(3) + ai% + afl i) > max(0, a, i, afl %, aff’;) (B-83)
e (o o o ) > (0,2 o) o) Y )
B-84
foralld=1,...,d, ande=1,...,d,, ( !
ﬁ (aé i + aé % + a% + aéi + aégé ld,d, T ag’éTzede > max (O, ag’i, ag’;, ag’i, ag’%T, ag’%T>
B-85
foralld=1,...,d, ande=1,...,d,, | |
(ol o, o) > e (0,062, 2 o) )T o)
(B-86)

foralld=1,...,d, ande=1,...,d,,

e (0 o+ o) ) + a0 ) > ma (0,000 o}, )T, o))
(B-87)
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foralld=1,...,d, ande=1,...,d,,

1
44+d+3

<Sd,dzaf’) + Sd,dz CLS) + Sd,dz ag’) + Sd,dz af) + Sd,dz agzd’dz + dez aé?;le,dz>

3 3) 3) (3) 3)
> max <07 Sd,d:ca/1757 Sd,d:c a’2757 Sd,dz a’3757 Sd,dz a’4,57 Sd,dz a’6,5

foralld=1,...,d, ande=1,...,d,, and

1

iidte (Sadxaf% + Se,d, aéf)’é + Se,d, a:(fé + Se.d, af%T + Se,d, a((f%zd,dac + Se.d, a’éi,%leydac>

3 3 3 3 3
> max (O, Se,d, ag,é, Se,d, aé,é, Se,d, aé,é, Se,d, ai,é, Se,d, aé,g)

foralld=1,...,d, ande=1,...,d,.
By some simple calculations, Egs. (B-77)-(B-89) hold if the following conditions hold:

a12 ai3 ?Ta12’ Tai3

pu> (G —1)(N —1) (69 + %) + 3max (£, 60)));

a12 a23 a2’ “azs

ps > (G —1)N(N — 1) (69 +¢©) 4+ 3max (¢80, ¢0)));

a13 a3 ai13’ ~a23

pu > (G—=1)(N —1) (£<3> + 0% 4 4max((®) (B 1B) ) ;

a2 ai3 a2’ “aiz’ “ai4

pu > (G = 1)(N = 1) (69 + 0 4+ 0 4 4max(¢®) 63 (3

ai2 az3 az4 ai2’? “a23’ “a24

py > (G—1)N(N —1) (6(3) + 083 108 1 max (6(3) (%) E(?’))) ;

ai3 az3 asz4 a3’ “a23’ "as4

py > (G—1)N(N —1) (6(3) + 08 1 0B 1 max (E((f’) (® (B ));

a4 a4 az4 147 7a247 Yas4

pu> (G =1 (N —1) (68 + 03 4 0B + 63T, + 3T, 4,

a12 a1s alq ais

+(4 +d+e)max (€8 (@) (B BT g1

a2’ vaiz’ “ai4’ Cais ? Uaie

pu> (G =1)(N —1) (68 + 03 + 0B + 03Ty + 3T, 4,

a12 ails al4 ais

+(4 +d+e)max (€8 (@) (B BT g1

a2’ vaiz’ ‘a4’ Cais ? Uaie

ps > (G—1)N(N —1) (£ + 8 + 05 + 5T, + €370, 4,

ais az3 asz4 ags

+(4 +d+e)max (€8 (@) (B BT gGT))

a3’ “a23’ “as4’ vass ? ase
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py > (G—1)N(N —1) (6(3 S/ CRNIC) +£(3 o+ 3T

aiq a4 as4 a46 dg

(4+d+e) max (&), () (3 e®T p3T)) . (B-100)

a14? 7a247 7a34’ Ta45 7 Ta46

Pola = (G — I)N(N — 1) (dexﬂl(fg + Sd,dmﬁ(g) + Sy dmﬁ(g) + Sy dmﬂl(li) + Sd,dmﬂ,(l?s—rle,dm
"—(4 + d + 6) max (Sd dzeg’; y Sd dzeg y Sd dze(3 dedzﬁt(li?w dezﬁg?s—r)) 3 (B—101)

ass?

and

pote > (G = 1)N(N — 1) (S. 4,3 + S, 4,£5)

aile

+Se., €8 4+ S¢ 0,2

3)T
a6 ase a4e _I_ Se dac £a65 Zd dx

+(4+ d + e) max (Se,dwﬂfg, S. dmﬂa%, Se dng?;é,, Se,dwﬂ,ﬁi, S@dxﬂg?s)) . (B-102)
]
Appendix C. Known Results
Lemma 11. For any fized a € Z* with d > 1,
{beZ: ||a—bl|=r} <2d2r+1)""
Proof. See, e.g., Sunklodas (2008). O

Lemma 12. Suppose that the random field {ns : s € V,,} is mizing. Let L.(F) denote the class
of F-measurable random functions, say f(X), satisfying || f(X)|, = {E|f(X)|"}/" < co. Let U =
u(ns) € L(B(S)) and V =v(ns) € L(B(S")) be measurable functions of ns. If max(||U]|,,[|V]s) <

oo for some r,s > 2, one then has, for somer >1 and 1/s+ 1/r <1,
[Cov (U V)] < CollU IVl {Ma(|S], 1'Dar(d(S, )}
In case where U < C and V < Cy almost surely, one has
Cov(U,v) < CoC1CaMa(|S], |S)e(d(S, 57)).

Proof. This lemma is a variant of Davydov’s inequality (see, e.g., Truong and Stone (1992)). O

Lemma 13. There exists a value 1o = 10(8) < 1 such that, for any subset U C Z% with |U| > 1,

one has that
U3+ |U] '3 < 70| U3, where U = Uy JUs and Uy Uz # 0.
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Proof. See Bulinski and Shashkin (2006). O

Lemma 14. Let (&,...,&,) be a random vector such that max;—y 1 |E[[[l_, &)l < oo and

-----

Co&il <1, i=1,...,n. Then, |E[[]'_, &) - [I'oy El&]] < S0 S0y, ‘E [(gi (& - DT &
~El& = 10E (& - DTy &) |
Proof. See Nakhapetyan (1988). O

Lemma 15. Suppose S, Sy, ..., S, be sets, each containing m sites with dist(S;, Sj) = infues, ves, [[u—
v|| > 0 for all i # j, where 1 < i < jand 1 < j <r. Suppose that Y1,Ys,...,Y, be a sequence of
real-valued random variables measurable with respect to Borel fields, B(S1), B(Ss), ..., B(S,), respec-
tively and Y; takes values in [a,b]. Then, there exists a sequence of independent random variables,
Y Yy, Y independent from Y1,Ys, ... Y, such that Y has the same distribution as Y; and

T

satisfies

S EY; =Y < 2r(b— a)My((r — 1ym, m)a(d).

1=1

Proof. The proof based on Rio (1995) can be found in Carbon, Tran, and Wu (1997). O

Lemma 16 (CLT for Double Arrays of Martingale Difference Sequences (M.D.S.)). Let u,; be a
double arrays of m.d.s. with respect to some sequence, Fp, t = 1,...,T, of o-fields such that
Elu, | F] =0, and let z,; be a sequence of G-dimensional random vectors measurable with respect
to Fnt. Suppose that (1) lim,, rro Zle zn,tz;,t SN 1, where 1 is possibly a stochastic matriz, and
(i1) Timy, 7100 31—y B [[| 204 ]|**°] < 00 for some & > 0. Then,

T
Z Zn,tumt l) Uunl/zN(O, HG))

t=1
where o, = limpoo E[ul | Fry], and 1 and N(0,1g) are independent.
Proof. See Rao (1987, p. 50). O

Lemma 17. If a sequence of random variables {X,,, n € N} satisfies >~ | E|X,| < oo, then )"~

almost surely converges to a random variable X = O,(1).
Proof. See Taniguchi, Hirukawa, and Tamaki (2008, Theorem A.2). O

Lemma 18. Let C be a nonempty bounded polyhedral convex set, f be a d.c. function on C, and
g be a nonnegative concave function on C. Then, there exists o > 0 such that, for all v > 7, the

following problems have the same optimal value and the same solution set:

(P) nf{f(z): v eC, g(r) <0}
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(P) inf{f(x) +79(x) : x € C}.
Proof. See Le Thi Hoai An, Huynh Van Ngai, and Pham Dinh Tao (2012). O

Lemma 19 (Chernoff-type inequality). Let X;, i = 1,...,n, represent jointly independent centered

random variables. Let S, = > 1" | X;, where maxj<;<, |X;| <1 and max;<;<, Var(X;) < o?. Then,

2
sy st () (),

Proof. Notice that, by the independence of X;, ¢ = 1,...,n, one immediately has F[exp(6S,)] =
[T, Elexp(6X;)]. Using an elementary inequality, exp(0X;) < 1+60X;+60>X? for |§] < 1, we obtain
that Flexp(6X;)] <1+ 6*Var(X;) < exp (*Var(X;)), thus, Elexp(0S,)] < exp(nh*c?). Invoking

Chernoft’s inequality, one can immediately show that

_na2\ -
P(|S,| > nio) < 2P (S, >nlo) < 2exp<m'21{—9Aa+n92a2}> = {26Xp( 4% if xg2 :

0<6 2exp(—"37) if A>20
]
Lemma 20. Let A = (a;j),; ;<, be a matriz satisfying, for i = 1,....n, S aix > 0, and
ai; < L3 ag for every j #i. Then, det(A) > 0.
Proof. See Carnicer, Goodman, and Pena (1999, Corollary 4.5). O
Appendix D. Proof of Results in Section 4.1
To start with, we define some notations: Qy () = $Qn1(€); f’i@ = (A, B,0)",C)T;

(G(dz+1)+1)x1

-1
N T T .
€t = % Yo €5:t(©0); €i(t0) = €0t — Doy 60,*7twls (Zs:l w*@wIs) w, ;; Some algebraic

manipulations yields

ol = 1 (02 20 11 1\ (N )
Qnr(Qo) — Qn () = 9 < o2 log o2 L)+ 2 0—52 - o2, T ;EO,*,t ~0e0

€ €

1 T N -
+ (W —t0) DyDy > Fi(6o)e.(tho)
€ t=1

1

_'_
20?2

S| =

3 m(%)a(%ﬂ) D,D, (3 — )

=Ti+T2+T3+ T (D-1)

(lb - 1/)0>TD¢>Dg (



Appendix D..1 Some lemmas

The proof of the main theorems needs the following lemmas.

Lemma 21. Suppose that, for each i € Vi, ;; is a stationary process. Let Assumptions 2.1, 2.2,

and /4.1 hold. Then,
N7
VT 30 FiBo)esslapn) = O,(1)
t=1

Proof. First of all, note that [Zt L Fi(00)e (o) = \/72t 1 Fi(00)€0 +1- Define a (G(d,+1)+

.
1)x1 vector, Zn 1 = % (milg - ,wivt y—&t(001)s oy —€t(00.), —1) ;and g = \/Ne()’*,t.
Next, one needs to prove that

N & -
H YED IR ICHENED P ATHIY
=1 =1

=0, (N7'/?). (D-2)

Notice that

‘\/7252 0 €o*t—ZZNTtU0*t

-1 T

ZZNTsw (Zw*sw ) Z’w*tuo*t .

: T
Since Y., F|w. w],

= wzz:l Yijevy |Wisw] | < EllJwi]’] < oo in view of As-

ws.(T). In addition,

sumption 4.1(c), an application of Lemma 17 yields ‘Zle w,  w,
Zzzl ZN,T,S
0,(VT)o,(1) = 0,(v/T) because E[w.,,;] = 0. Invoking Lemma 5 together with Assumption 4.1

yields ’Zthl w, U | = Op (ﬁ) . Therefore, we can obtain (D-2).
Assumption 2.2 ensures that, for each ¢ € [1,G] and j € Vi, the time series &;.(6o,) is

T
maxy<¢<r ‘ ’U)*J

: T
by the same argument, one also obtains ‘23:1 Zyrsw),

stationary. Hence, by applying Lemma 17, it is not hard to show that

T
Z ZN,T,tZ]—\I;T,t ﬂ) sz (D_B)

t=1

where the limiting matrix Q.. is non-stochastic. Furthermore, note that every element of the vector
Zn 1,4 has the (2 + 6)-th moment being bounded by T~!17%/2; for example the k-the element, x,(fl,ii,
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of wilt) has the (2 + ¢)-th moment satisfying

246 2446
1 541
‘VN1|2+6 > e < A ‘Z (@hgp = Elrej.il)
JEVNI ’ JEVN1
+25+1‘VN,1‘2+5(E[$k,j,t])2+6} < 00,
‘ ' 245 s/
where the last inequality follows because £ }ZjEVNyl(ka‘J — Bl j4]) < C,|Vn.1 %% by Lemma
246
3, implying that E ’ \/_xk .t < Coﬁ. Therefore, one has
1
Bl Zn 2] < B[l Zn212*] < Comgars (D-4)
The conditions in Lemma 16 hold because of (D-3) and (D-4); it then follows that
d d
Z ZN,T,tUO,*,t — UEN(07 sz) (D_5)
t=1
The lemma then follows from (D-4) and (D-5). O

Lemma 22. Let the assumptions of Lemma 21 hold. Then,

T
Z 00 E 00 - Op(l)

’ﬂ |

Proof. We need to show that the block matrices on the diagonal are stochastically bounded as the

same argument can also be applied to the other block matrices off the diagonal. Define X, ; =
( T’ (G) )

*t ) s *t

that

. By the same argument as in the proof of Lemma 21, one immediately shows

1 & 1 « T
(33 xwn) (52 mr) (F3wxr)
t=1 t=1

1 ZT 1 ZT
T T

An application of Lemma 17 yields

T

1

T ZX*th::t = Op(l)
t=1
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It then follows that .
1
= Y AA] =0,().
=1

Lemma 23. Under Assumptions 2.1 and 4.3, we have

T 1

N w

- > Ay 5 0 K ) /O W, (7)dW.(7),
t=1

where
Kt:diag( de,izl,...,G)
and
_ (4,9)
E’? - {En ’ }izl ..... G;i=1,...,G
with

t

() (S, (Vi T)Sy (Vv T) 7], where S,y(Vii, t) :Z Z s

) 1
n = pllmN,TToo E
T/ |Vl [V s=1 jEVN,

and W, (1) is a G.d, x 1 vector of Brownian motions with the covariance kernel E[W, (T)W, (k)] =

min(7, K)lg.q,, which are also independent of We(T).

Proof. We merely need to study the limiting distribution of each term in the random vector
% Zle Ayeg . as the limiting joint distribution of the random vector per se can be derived by

applying the Cramér-Wold device. First, noticing that the i-th term of % Zthl Aeg ., can be

written as
NZ T T -1
_ } : (@) Z )0, T Z T
Ql@N’T = T T,y — CCS(’)S'I.U*78 Wiy sW, Wit | €0,x,t
t=1 s=1 s=1
—1
T T T T
N (i) N ,
i T T
= ? § L 1€0,%,t — ? E mfk,)sw*,s E Wy W, § :w*,t€07*,t = Ai,N,T + Bi,N,T- (D_6)
t=1 s=1 s=1 t=1

Define S, (Vy,t) = >0, > jevy s+ Invoking Lemma 4 together with the Cramér-Wold device, one
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obtains that

T
1
Ai,N,T = LNJT tz:; SW(VN,ia t)[Se(VNu t) - SE(VN7t - 1)]

T 41

1 /T
- S, (Vi | TT)AS.(Viy, | T7
\/WT; . 77( N, L J) ( N L J)
w 1 i 1/2 ! 7

RN —\@*,iaﬁzy /0 WO (7)dW(T),

Q

where Eff) = plimN,TToocmV;ME (S, (Vi T)S, (Vi T) ] < o0, and W,gi) (1) is a d, x 1 vector of

Brownian motions with the covariance kernel E [W,gl) (T)Wn(i)(m)q = min(7, k)I;,, which are also
independent of W,(7). To bound B; x,r, note that

T T
>l = (32 ) o
s=1 -

s=1
T3 T 1 1 .
i 2 (s ) £ e e

stl w i3 i .
where 37, f%; <\/1“1\/TS77(VN’i7 LTTJ)> 1 — IOk fol W, (r)dr by Lemma 4 and the contin-

uous mapping theorem; and, for every ¢ € [1,T], w.; = 0,(1), which can immediately be shown by

employing Lemma 3. One then has

T
D w. o =0, (TN
t=1
and
T
Z wyw, , = Oy(T)
t=1

It then follows that B; yr = 0,( N~1/2). Therefore, it has been shown that

w 1 £1/2 ! ,
Wnr — ——0 B / WO (1) dW, (7).
\/g*,i ! 0 !
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O

Lemma 24. Let Ex14(00) = (—&4(001), ..., —&i(00c), —1)". Under Assumptions 2.1 and 4.5,

we have

N < w
VT Y (Bi(6)",C) s — 0N (0, Q) ,

=1
where Q¢e = plimN,TToo% Zf:l éN,Tvt(OO)ﬁN,T,t(HO)T’

Proof. By the same argument used to verify (D-6), one can show that

/7

In the same spirit as Lemma 22, an application of the central limit theorem for martingale difference

T
ZBt 90 Ct €0,x,t — ZﬁNTt 90)€o*t _Op(N_l/2)' (D-7)

sequences yields

T
N
T Z En1(00)€0 it N 0N (0, Q) , (D-8)

t=1
where Q¢ is a non-stochastic asymptotic variance-covariance matrix with finite elements. The
lemma then follows from (D-7) and (D-8). O

Lemma 25. Under Assumptions 2.1 and 4.3, we have

T2 Z AA 5 (g@eg,)(g®eg,)" / W, (1 ) dr, (D-9)

where tq, is the d, x 1 vector of ones, 3, and W, (T) are as defined in Lemma 23;

N1/2 T
T 2 ABi(0)T = Oy(1); (D-10)
t=1
N1/2
T3/2 ZAtCt = Op(1); (D-11)
and
1 I
Z (Bi(60)".Cy) " (Bi(80)",Cy) == E [€nr4(00)€n7e(00) '], (D-12)

t:l

where En.1.4(60) is defined in Lemma 24.

Proof. We shall show (D-9), (D-10) and (D-11) as the proof for (D-12) is pretty similar to Lemma
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T T
24. As in Lemma 22, let X, ; = (@, (1) ,...,:ci? )T, Write

T T
%ZAtA::%ZX*,tX:t T2 ZX*t’w (Zw*tw ) Zw*tX*t—TNT1+TNT2-
t=1 t=1

t=1

First, notice that

\/ g*,ig*,j

where W,gi) (1) is a d, x 1 vector of Brownian motions (as defined during the proof of Lemma 23)
and both W,gi) (1) and Wn(j )<T) are possibly correlated. Invoking the Cramér-Wold device, one
immediately obtains that

Tnrs — (9 ®ta,)(g®eq,)" / W, ( ) dr. (D-13)

Moreover, by the same argument as in the proof of Lemma 23, it follows that Zle X*,tw*T’t =
0p (T*2N-Y2) and 3"/ w.,w], = O,(T). Therefore, one has Ty 2 = 0,(1) and (D-9) has been
verified.

To show (D-10), write

N2 L N2 T
T3/2 ZAtBt (60)' = T3/2 X.i€nra(0o)
t=1
N2 L -7
T TR X, w,, Zw*tw Z’w*thTt(eo) =%Inr1+3ENT2
t=1 t=1
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To bound each element of Ty 71, an application of Lemmas 3 and 4 immediately yields

T
Z afiz)stT s 90 T

s=1

T
(4)
< <Z |33*s|> ax, [FENCHIE

T: [ [T 1 1
il {Z | (msn(vzv,u LTTJ)> T} lfgt%l&vm(@oﬂ

T3/2
=0, ( ) O,(1) by invoking the continuous mapping theorem.

N1/2

Therefore, one has that Ty 11 = O,(1), and Ty r2 = 0,(1) by the same argument. Similarly, one
could prove (D-11). O

Appendix D..2 Proof of Theorem 1

Introduce the following open balls centered at the true parameters: B(0?,0,) = {02 € O, : |07 —
020l < 95}, Bn(69,00) = {0 € ©9: VN[0 — o] < &}, B(o,05) = {¢ € O5: VNl — ¢l <
6o}, and By (11.0,0,) = {1t € O, 1 V/Nlptu — ptuo| < 6,}, where ,, 8p, 84, and 6, are the radiuses.

Let B¢ denote the complement of any ball, B, in a parameter space, define

A(¢075¢) = U BJCV(90759) X B]CV(¢075¢> x B?V(M*,Ovéu)'

0<89,84,0u <00
(03+02+02)1/2=4,

It then follows that

P (a € B 60,5 ), 6 ¢ B3 (60, d9), é € BS N (®0.04), [ € By(psp,6,) for every 0 < 04,69, 0¢, 6, < oo)

<P sup  Qnr(2) > Qn ()
U?EBC(UiO,ég)
PeA(1ho,0y)

Therefore, one needs to verify that either

lim P sup @N,T(Q) > @N,T(QO) =0
NT1oo | o2eBe(02,,60)

’lPEA('(/’O 76111)
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or

lim P inf Qv ()= Qn(Q)]>0] =1 D-14
NI 036312{'0,50) (@uir($) = Qur(D)] 2 ( )
PYEA(Po,0y)

holds.

We examine the terms defined in (D-1). First, note that inf ¢ Be(02,0,65) Ti > 0 and inf 2 Be(0260) T =
0p(1) for every §, > 0 by Assumption 2.1 and the weak law of large numbers. Moreover, since
B$ (60, 6), B (o, 04), and BS (10, 0,,) are compact sets, then, for each triplet, 0 < dp, 0y, ot < 00,
there exist a vector, ¥* = (H*T,(]b*T,uI)T € B$(00,69) x B (¢o,04) X Bi(pep,6,), such that
0 = 0y + N~Y2dy, ¢* = ¢ + N"V2dy, and p = p.o + N7V2d, respectively; thus, in view of

Lemma 21, one has

1 VN &
inf T3> d,.dj,d, inf DD—§ F,(6))e.
02eB(a2 ,00) 0= SuPa2eB(a2 65) 9 ( 6> )¢€BN(¢075¢>) it T p— t( 0) ,t("j’O)
YEA(o,5y)

= O,(T™%) = 0,(1)

where dy, d¢, and d, do not vary with N because if they do, then, for some arbitrarily small

constant, v, there exist sufficiently large integers, Ty = To(v) and Ny = Ny(v), such that

v

ZE 00 €x t 1/)0>
t=1

with probability 1. Since d, = (63 +5§ +52)1/ 2 is an arbitrarily positive constant (neither depending
on N nor T), it may happen that H (d;NO, d; No» @u,No) H < 4y, where the subscript Ny emphasizes the
dependence on Ny, so that ¥* ¢ Bf (00, dg) x Bi (o, 04) X B (14,0, 0,,); we then have a contradiction.

Finally, an application of the minimum eigenvalue inequality yields

T
1
inf T, > f N(p—1o)DyD,||* A\min 1(00) F,(00)
en iy ™ Tibrenct o o7 pedll VN —0) Do Dy Z o) F,(6o)
PEA(o,6y) =
1 1 &
> 62 inf  Auim (DeD,D D] \uin | =Y F(0,)F.(6,)" | >0,
QSupogeB(oZ,o,&,) o2 w¢'€BN(¢0,5¢) ( i ¢>) T; (60) Fi(6o)

where the last inequality follows because of Lemma 22 and Assumption 4.2. Collecting all the above

arguments, we have proved (D-14).

99



Appendix D..3 Proof of Theorem 2

Let Onr(v) = 0628@’\57;(9), where 8@3’;(9) is defined by (3.3)-(3.5). In view of the consistency of

Q = (17,52)7 (as established in Theorem 1), by applying the mean-value expansion of Onr(¢)

around g, we have

9O 7(¥) _ 99nr (%) 4+ 0" Qur(v) (4 — o)

0="%3¢ =~ oy PO T

where 9" = (Ojv,TT, ¢)*N7TT, u:) " is a vector of the mean values such that
P(e* S BN(00759>7 d)* € BN(¢075¢)7 and :ui € BN(IU’*,O76,LL)) ~ 1

for sufficiently large integers, N and T, where By (6o, d9), Bn (o, 64), and By (fi.0,0,) are the open
balls defined in the proof of Theorem 1. It then follows that

By the same argument as in in the proof of Lemma 21, one can immediately show that

To N
\/;%(Q/)O) = —D¢0D9\/;;E(90)6*,t(1/)0) LN 0eN(0, Dy, DyQ..Dg,Dy). (D-16)

In addition,

T
TZ F,(0")F,(6")" ZE (60)F2(80)" ZE (60) (FL(67) — F(60)) "
+ lXT:(F(@*) — F(60)F(60) + = ZT: — Fy(6,))(F(6") — F.(60))"
g t=1 t:l ’
.
where F(0*)—F;(6,) = \QJT’ AtTEIiag((H;-k —60,), i=1,..., GZ, 0] . Therefore, by Theorem 1
Gdgx1 Gd:xG

and the same argument used in the proof of Lemma 21, one can show that max,<;<r |F(0*) — F;(6y)| =
0,(N71/%) and max;<;<7 | F;(6y)| = O,(1). This then implies that

T
Z 00 E 00 +0P(N_1/2)'

T
Z (6 F.(6%)

’ﬂl
'ﬂl
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Since 4 Z554Y) = D, D, (§ 31, F(67)F(6)" ) Dy D, where | Dyr — Dy, | = 0,(N~%), am

application of Lemma 22 yields

1 9*Qnr(v*) ER

N awaw‘r ¢0D9QZZD¢OD9

The theorem then follows by the continuous mapping theorem.

Appendix D..4 Proof of Theorem 3

Define open balls centered at the true parameters, B(c?y,0,) = {02 € O, : |02 — 0co| < 0o},
Br(6,0s) = {6 € Oy : \/TH@ — 6|l < dp}, Br(gho,0p) = {¢ € Oy : \/7||<75 — oll < 04}, and
By (fte0,0,) = {1« € 0, 1 V'N|ptw — ptuo| < 6,}, where &,, &, 84, and J,, are the radiuses of the

respective balls. Let B¢ denote the complement of any ball, B, in a parameter space, define

A(vo,0y) = U B5.(60, 69) x B3 (o, 65) x B (0, 6,)-

0<8,0¢,0, <00
(05463 +07)1/2=0,

We need to prove along the lines of the proof of Theorem 1 that

lim P inf Qn () —OQn ()] >0] =1. D-17
N0 036312{'0,50) (Qur($%) = Qur(D)] = ( )
PEA(tho,0y)

To examine the terms defined in (D-1), inf,2epeo2, 5, T1 > 0 and infoecpe2 5,) T2 = 0p(1) as in
the proof of Theorem 1. For the third term, notice that

1

inf > inf (0—6y)"d I, )di I Aqe,
"SEB%?,O,& )T =z meUzeBc( s 5y 02 eeBiTI%eo,ag)( 0) diag(g ® I, )diag(¢p @ 14,) Z 1€4,1(P0)
WEA(2ho,0y) PEBR (P0,04)

HIZ

+ inf Tda
BEB;(MG)@ @) ' diag(g

PEBS (¢0,04)

T
BB * f " C*
; 0€t¢0 ,ueBH(lu*oé) ,UO Z t€t¢0

1
21Hf0.263c( 2 5o )

(7z’>a+7§>b+7§>c)

Because B$(6o,0p), B (¢o,04), and Bf (p.p,6,) are compact sets, then, for each triplet, 0 <
g, 0¢, Op1 < 00, there exist a vector, p* = (B*T, qb*T,,uI)T € B (00, 69) x B3 (@0, 0¢) X B (14,0, 04),
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such that 6* = 0y + T~'2dy, ¢* = Py + N_1/2d¢, and pf = ftio + N_l/zdu respectively to satisfy

. . N <
Toa = dydiag(g @ 1s.)¢ € By(¢o,0,)diag(¢ @ Lu,) 575 > | Ases(bo)
t=1

T
T = dldinge) 20 S BO)ewi (o0
t=1

VN &
7§,c = deZCt€*,t(¢0)-
t=1

As in the proof of Theorem 1, one can argue that dy, dy, and d,,u do not vary with 7"and N. Invoking
Lemmas 23 and 24, one readily has T3, = O,(T~Y?), Tz, = O,(T7?), and Tz. = O,(T~/?).
Therefore, inf,2cpep2 5,)73 = 0 in probability. Finally, to bound 74, define the normalization

¢€A(¢075w)
matrix Ky = diag (T"?Ig.q,, N'/*I¢41) . By the minimum eigenvalue inequality together with

Assumption 4.4, one can obtain that, as N and 7" become large,

T
1 . N
inf T > K - D,D K —§jF9F9T
JgeBigioﬁa) 42 2meEEBC(030760)03( N1(Y — o)) DyDyKy <T 2 +(60) F:(6)
PYEA(Po,0y) ' -
]_ 2
K D,D.K ) > inf HK — ) D,D
N DsDyKnr(Y —tbo) = Tl ez O veitd o) (Knr(¥ — ) DyD,

-1 N d T -1
)\min (KN,T (? ZE(OO)E(OO) ) KN,T)

t=1
1

= . 2
2 lnngeBc(UiO,ég) O¢

2 inf e (DDyD D) Auin(Q..) > 0,
w¢€B§v(¢o,6¢) ( o gHg <Z>) (Q )

where the stochastic limiting matrix Q. exists because of Lemma 25. We have verified (D-17).

Appendix D..5 Proof of Theorem 4

By using the same notations as in the proof of Theorem 2, in view of the consistency of Q=

(¥7,52)T established in Theorem 3, an application of the first-order Taylor expansion of Onr(¢)
around 6 yields

B QN7 (1) B 0Qn7(00, p. 1) | POnr(05, b, 7i) =
0="00 = 06 T o097 00
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where 67 is some point lying in the ball Br(6y,dp). Thus,

~ —1 ~
i, (_a2QN,T<e;,¢, m) 0Qu.r (B0, b 7). (D-18)

00007 00

Note that

€xt(¥) = exu(tho) + (0 — 60) " diag(gly, )diag(¢la, ) A; + (¢ — ¢o) " diag(g) Bi(6o) + (pt — 11,0)C.

(D-19)

One then obtains, in view of (3.3), that

9Qn.1(89, b, Ji.

N,T(ag ¢, fix) = —diag(gly, )diag(@ly, ) — ZAtE*t o)
- N2z L -
— diag(gla,)diag(¢la,) | 7z Z A;By(60)" } diag(g)VNT (¢ — ¢o)
N1/2
— diag(gl,, )diag(ply, ) T Z A, Cy — ).
In addition, from Lemma 25 and Theorem 3, we also have
1 Q.1 (07, & fix w
= Ngre(agT¢ i) = diag(gly, )diag( quIdJC { 5 ZAt }dlag gﬂdﬁ)dlag@)]ldx) H§V7%(¢o)+op(1).

It then follows from (D-18) and (D-19) that, as $ is consistent by Theorem 3,
(H 5 (0)+0,(1))T(0—00) + (Hi (o) +0,(1) VNT (b —po) +(H 53%%<¢o>+op< D)IVNT (i —pia.0)

= —diag(gly, )diag(oly, ) — Z Aqec (1) +0,(1), (D-20)

where H%?T)(qbo) =0,(1), H (ab (o) = Op(1), and ”Hg\‘;’c%(gbo) = 0,(1) in view of Lemma 25. By the

same argument leading to (D—18), one can derive that

(D-21)

$ - d) = _82QN,T(§7 ¢*N7 ﬁ*) - 8QN7T(§’ ¢0’ﬁ*)
0= dpOpT d¢ ’
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where ¢} is lying in an open ball, By (¢, d,), centered at ¢y and

2 6 I ~*
B %8 QNg;a;::_Nvﬂ ) — diag(g { ZBt }diag(g)

— diag(g { ZBt 60)B,(6)" }diag( ) + diag(g { ZBt 6,) (Bt Bt(90)>T}diag(g)
+ diag(g { ! Z ( — By( 90)) Bt(eo)T} diag(g)

+ diag(g { ! i (Bt Bt(eo)) (Bt(e) Bt(90)> }dlag( )= H(bb +Nh+ T+ Ts

Since By(0) — B,(0,) = diag ((;9; —0,0)",i=1,..., G) A, using the same argument as in Lemma
23 together with Theorem 3 yields that

i = diag(g { Z B.(6,) A } diag (((9} —0.), i=1,..., G) diag(g) = Oy (TY2N-1/2) o, (T-12)

= 0,(N71/%).
Analogously, one also obtains that J, = 0,(N~?) and
|7
T . Y T . T . Y . .
Ty = diag(g)diag ((ei —0) T i=1,..., G) {? ; AA] } diag ((ei —0.), i=1,..., G) diag(g)

— 0p(T")O,(TN"") = 0,(N"").

It then follows that B
1 82 QN,T(B, ¢*Na ﬁ*) (bb)

In view of (3.4), we have

aQN,T(éZ ¢)07 ﬁ*)

a¢) €*t 0 q’)o?lu*)

= —diag(g

ﬂlZ
IIM%
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where

By(0)c..(0, ¢, ji.) = Bu(Bo)e.(0)+(Bi(0) = Bul60) ) e.u(abo) +Bu(8) (e..4(0, b0, i) — €altbo))
= Bi(60)e.i(tho) + diag ((@- —0,0)T, i=1,..., G) Ave.,(1ho)
+ B,(6) A/ diag(¢ols, )diag(gla,) (6 — 6y) + (i — 11.0) Bi(0)C,
= By(60)e..+(vho) + Bi(6o) A; diag(¢bola, )diag(gla, ) (6 — 60) + By(80)Ci(fi — ft.0)
+ diag ( ( ( 0,0, i=1.. .,G) Aye. (o) + diag ((9,- 0, i=1,..., G) AC,(i — o)
+ diag ((é; 9, i=1,... G) A, AT diag(oly, diag(gly, )(8 — ).

By Lemma 23 and Theorem 3, one obtains in view of (D-20) that

. Y T . N1/2 T 1/9
diag ((6; - 650) ,z:l,...,G>WZAte*vt(¢o) = o (N7V2),

: n T N1/2 —1/2
dlag ((02 — 0@0) , 1= 1, ) T1/2 Z AtCt /11*7(]) - Op (N ) y
dia ((5- —0,0),i=1,...,G N2 S ZA A/ b diag(epoly, )diag(gly, ) (@ — 6,) = O, (N~V2171/2)
g i i,0) » t=1,..., T2 t 1agl Poly, )A1ag gly, 0) = p .

It then follows that

P 6. do, i . -
\/% QN,T(aq;@),,U ) _ _dlag(g)\/g;Bt(eo)E*,t(TPo)

' Nz X "
— diag(g) ( Z B,(6, AT> diag(oly, )diag(gla, )T (0 — 6,)

T3/2

— diag(g { ZBt (8,)C, }V—( — fao) + 0,(1). (D-23)

Therefore, in view of (D-21), we have

(HE) 4 0,(1)VNT(b — o) + H (o) T(6 — 6)
+ HNYPVNT (fis = prag) = _diag@)\@ > Bi(8o)e.s (1) + 0,(1).  (D-24)
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By the same argument leading to (D-21), it can be shown that

2 n oL x -1 n
ﬁ — g = (_a QN,T(Ov d)u M*,N)) aQN,T(ev d)a M*,O) ’ (D—25)

oz Ot
where p y is some point in an open ball, By (it 0,0,), centered at ju. o, and

_i 82 QN,T(ga [57 :U“I,N)
N oz

=1+ 0,(1).

By the same argument leading to (D-24), one readily has

T 00n.1(0, b, 1. Ny N 0
\/; QN,T(aM,f) [is0) _ _\/;;C’te*,t(dfo)— <T3/2 ZCt ) diag( ¢Hdﬁ)d1ag(9]ld )T'(0—6y)

_ (T > CtBt(HO)T> diag(g)VNT (¢ — ¢o).

Therefore, from (D-25), one obtains that

(HS§H () +0,())T(6—80)+HN) VT (o) +V/NT (i —p1oo) \f > Cicslabo)+0y(1)

(D-26)
Collecting up the terms defined by (D-21), (D-24), and (D-26), we have
T(0 - 6,)
Hur(do) | VNT(d — o)

VNT ([ — fix0)
v (A

— —diag (diag(gly, )diag(¢ols, ), diag(g), 1) Y [ FzBi | VNews(tho) = My (o),
=1\ 1
t ﬁct

whence 1t follows that

T(0 — 6,)
\/W@ — o) | = —Hnr(Po) " Mnr(o).
\/W(ﬁ* - ,U/*,O)

106



Invoking Lemmas 23, 24, and 25, one can prove that My z(¢g) — MN (0,H(¢y)). The main

theorem then follows by applying the continuous mapping theorem.

Appendix E. Proof of Results in Section 4.2

We start by defining some common notations that will be used for the rest of this section. Let

Ue = (Urey.. . un C)T be a N x 1 vector of group membership indicators associated with group
. w N w
labelled 65 607 (u0) = €28 10) = & 32, b2 (B0.)s 2 () = 5, el

Appendix E..1 Proof of Theorem 5

An application of Lemma 21 yields

N T
V7 2 FU. Uy = Oy(1).
t=1

Therefore, it follows that

T

1 w)2 Fper)) o(per)) over)) 5(per) oPerT

= 4w, U) — ey = (07" =07 )T (68" = 6T g — 8T
t=1

T
diag (D (7)), Tac11) Z (U,Up)F,(U,Uy) " diag (Dy(5%"), Iog41)

5(7)@7) O—(PET) O—(PET) o.(per) O—(Pe'f) _
(07" — 0" )T (@ — TN T g — ) 0, (NT)) L (E-D)

Let B(to,ny) = {¥ € Oy : H(¢,vy) < 1y} represent an open ball centered at 1, with radius
ne, and B(Uy,n,) = {U € AY N{0,1}*N . H(U,Uy) < n,} be an open ball centered at U, with
radius 7,. We denote by B¢(vo,ny) and B°(Uy,n,) the complements of B(v,n,) and B(Uy,n,,)
respectively. Since (b, U) are the minimum values of x ST €} ,(,U), it then follows that

P (zZ € B (o, m0), U € B(Uo,nu)) <P| intf Z{e*t B U)— 2 <0 |, (B2
PeB (o, M)
UGB(U@ Nu)
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In view of (E-1), an application of the eigenvalue inequality yields

H(U,Uy

T T
1 w . 1 -
7oA U) =} 2 Co | nl A (f > FU.UyF(U. U0>T) H (@, o)’
t=1 “ t=1
+0,((NT)™?) >0

by Assumption 4.5. In view of (E-2), one obtains that H(QZ, o) < 1y and H(U,Uy) < n, wp.l
for some arbitrarily small constants, 7, and 7,.

One can now refine the rates that H (’l//)\, ) % 0. First let’s define new open ball nested in
B(to, ny), i.e., By, ngp/\/ﬁ) C B(%o, ny). Some algebra yields

_ 1 [o? 02, 1/1 1 N &
2 €,0 €,0 2 9
Qn.r (0,020, Uo)— QNT(“/% o, U) = B ( o2 0g o2 1)+2 (0_52 - ;270) (f ;fo,m - Ue,o)

€

a2T Z{E*t — e} = Ti+ (N, T) + Ty(N, T), (E-3)
where 71 > 0 for every |07 — 02| > 1, with some arbitrarily small 7, > 0, and T3(N,T) = 0,(1) by

the same argument in Theorem 1. Moreover, by Lemma 21, we have

T
N w ~ w ~ w w
Vo Do (a5, €T 0, 570,17 ) ), = 0, (1)

=1 ~ v

Ft(l) (U)T

~+

for every o) € o(P); and

)

T
N w er w ~(per w
=2 (€8T W, 0) €T (U, 5 ) ef,

max inf
Grer) eg(P) orer) €a(P)

max inf
oper) e (P) F(rer) o (P)

} = op(1)

N3 (€ oo 7,5 )
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for every U € B(Uy, n,). Therefore, we have that, for every U € B(Uy, n,) and ¥ € B(o,ny),
{ o (677 < 0T 0l 97 )

g(per) co(P) oPer) co(P)
N T
diag (D(@*"). Tagi1) || 7 Z F,(U, Up)es”),

max nf (07— 67T <q><“(”” =N g — e T

oper) e (P) 7(rer) o (P)
N '
diag (Du(5%), Logun) ) 2 3 Fi(U, U, } — 0,(1)
t=1

Qnr(¥0,020,U0) = Qu (1,02, U) > Gy inf A (1 > FYu)FY ) )NH(¢,¢0)2

Y

It then follows from (E-3) that

H(U,Up)<nu ? =1
+0,(1)
for every ¢ € B(vo,ny) and U € B(Uy, n,). It then follows that
P (152 = 020l > 10, € B (v0,1,/VN) )
<P inf {@N,T("/’o, UEZ,Oa Uy) — @N,T(VJ), o?, U)} <0
peBe(vo,nl,/VN),UEBUonu)

because inf¢€%c(%%/\/ﬁ)yeg(%’nu) {Qnr (0,020, Up) — Qnr(p,02,U)} > 17 > 0. This com-
pletes the proof.

Appendix E..2 Proof of Theorem 6

First, note that discrete constraints of the form U € {0,1}“*" in the combinatorial optimization
problem (3.9) are equivalent to a system of d.c. constraints: U € [0, 1]V, g(U) = 3%, SNy (1
u;.) < 0. Clearly, g(U) is finitely concave on R“*Y non-negative on AY. It immediately follows
that AY N{0,1}*N ={U € AY : ¢g(U) =0} = {U € AY : ¢g(U) < 0}. By Lemma 18 the

following problems are equivalent:

Nl =

t=1

(Pa) mf{ Yo, (p.U): ¢ €0, cREETIIT T e A0, 1}GxN}
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T
N
(P,) inf {? Y e, (. U)+y9(U): €0, RO U e Ag}
t=1

for all v > g, where vy is some positive constant.
For given v € B(ty,ny) with B(g, n,) being an open ball centered at 1y with an arbitrarily

small radius, 7, one obtains that

t=1

T T
EN : N . N
U (%) = argmingeny ppoyoxn 7 Y €2, (%, U) = argmingcay {? Y&, U)+ vg(U)} :

Then, U satisfies the KarushKuhnTucker (KKT) conditions (see, e.g., Bonnans and Shapiro (2000,
p. 146)):
= VOnr($,U) € Nay(U), (E-4)

where Qn (v, U) = X Zle €;,(4,U) and NAsz(lAf) is the normal cone of AY at vec(U);
u' V2 Q (¥, U)u > 0 for every u € Ty (U), (E-5)

where TAg(lAI) is the tangent cone of A at vee(U).
Because Uy and U (1)) are binary variables, it follows from (E-4) and (E-5) that

2
E| swp H <U(1/J),U0)] :/ P < sup  H (U(zp),U()) > T> dr
PpeB(o,ny) 0 PYeEB(ho,ny)
1 1 & +
< CyP i T u; er - i,cls i AT Aic - i .o(per 0
= 0 <(U(P€1;'r)lé2'('P) N ; |uz,cr(P )(c) (":b) Uo,i, | O—(Pel;“r)lég—(’P) N ; |'LL s (w) uO,Z,o( )(c)|> ?é

for every 4 € B(1g,ny) and at least one ¢ € [1, G])

= P< 02::1 {U(Peg)liercl,—(p) T ; E*,t(’l,b, U(])@cﬁ ;(uo,i,o‘(l’er)(c) - ui,c)

1 N
{(0c - 90,0(7)67-)(@)—'—112@(-?2}) — Sz(j:) (907U(per')(c))} + v (N Zu07i70(per-)(c)ui,c — 1> } >0

=1

by (E-4)
SR () _ ow) .
1 2 T, (w w
AT 00 - 0 per . — & 0 per ,
for every v < a(w?)ller;—(P) ; ¢c NT ; (( 0,0 )(C)) Z; {‘Z’t ( 0,0¢ )(C))>
by (E-5)

¥ € B(tpo,my), and u € AQ)
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o(per) e (P

N
w 1
{(eg(pET)(c 00 C)T Et) - 5 00 c <N Z Ug w(Per)(c Ui,e — 1) }

-

" N
Z { min Z €t (P, Uo)Pyiwer (o) % Z Uojie — Ui p(rer) (c))

+p<

c=

>0

-

(E-4)

1 (w) 2
for every v < » pr})lg: Z ¢0<W> ONT ( sven(e) — o) @y — 5” (6o, c)) ,

(. J/

by (E-5)

Y € B, 1) and u € Ag) =Tint+ Tonr. (E-6)

To bound F [SUPibeB(ibo,w) H (ﬁ('l/)),Uo)] , we shall bound 77 yr since 73y can be bounded
in the same manner. As the cardinality of o(P) is finite, we only need to work out the rate of

convergence for

G N
1 1
71/7]\[,7“ =P ( min { Z €xt w UO N Z UQi,c — U c) {(00(1’”)(0 00 c) Z; t 5 (00,0)}

(per)
1 o EU i—1

N
1 w
! (N ; e 1) } > e forevey v <o Z YN Z ( = Bp ptrerr () T

oPer) 0 (P) —

_gz,ltv (90,0(1’5’")(0))> ) Qp S B(d)Oa 771/;) and u € A]SV) )

where ¢, is some arbitrarily small positive constant. Notice that U is bounded and v = O, (N71)

by the strong law of large numbers and the compactness of the parameter spaces. An application
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of Boole’s inequality yields

G

N
1 w w
Tiny <P | sup —— Z SN beluoic — i) {(e)ow-)(c) —0p) 2y — 5,{2(00@)}
UEAN NT

i=1 t=1
() 677 1 G N T

(o« — o)1y \ > Z) +P | sup Z ZZ Bo.c — Botver(¢)) (Uoic — Uic)
UGAN i=1 t=1

> 6,7/4>

{(00(1’”)(0 — 6 C) z t 5 (00 C)} g*,t 00,07 uO,c)

1 G
P -
o (o wr

U(P”)EJ(P

cr(P‘”")Go

Z Z ¢0'(Pe"")(c Uo,i,c — Uw(per)(c)) (eo'(pe"")(c) - 00,0) ! 335:12) (wo,c)

(PET)
o EU(P PE—

G N T
1
00. er 0 C 00}‘>6 4)+P Sll — l'Ilin olprer) (e
{Oroeri) =002l =660 }| > €0/ SN 2, 1 1D bt
w b c d
(0,10 = s o)) { Bty = Boe) Tl = €7 (B0.) f els| > en/d) = TR p+ TR AT o+ TN

As T becomes large, using the same argument in Lemma 21, it can be verified that mgf) =x;1+0,(1),

52.(’1:)(0070) = &.4(60,0) + 0,(1), and 1) = 1 4 0,(1). Therefore, by Boole’s inequality, one has

> En/12>

Y botverr (o (to.0 = i) (0 — 1) (€t (Bo.e) — El€i4(60,0)]) >€77/12>

T

G N T
1
S P < sup  —— ZZ¢ (PGT)(C quc Us; c)(N*O - ,U*)(e (Pef) BOC)wzt

UEAN NT U(pET)EJ(P) 1 =1

.
Il

Mz

e
+P | sup — min
(GEN NT 2o

i=1 t=1

;& N
+ P | sup — min over) (o) (U0i.c — Ui « — W) ENE (O )| > €,/12
<pNT()zz¢ o= ) e I 0)] > 12

=T + T + T (B7)

Since ‘qﬁa(per>(0) (Uo,i.c — Wie)(fuo — ,u*)(ea(per)(c) — 0070)‘ < 00, an application of Lemma 6 yields

max{ﬂ N, T 1(]1\?;} < CO {T Ca + NT™ ]-Og(T)TPYA{_%GO‘

T1/4
+ max (exp (—CEWNT) , €Xp (—Cﬁnm)) } ,

where C,, is a sufficiently large constant, and C., is some generic constant depending on ¢,. Moreover,
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notice that

G
1
USU-ApN W Z U(per)eo — ; ¢U(P€T) uO,i,c - uLc) (MQ* - M*)E[gi,t(eo,c)]
& N
< ma FE 0 S — or .
o | Blesa(@oll swp D min DD dron (voie = vid
Choosin < K, with K, | = n 7
o) nd} - )1 1 IQIimNTOO|E[§i,t(00,c)]| SUPUEAg ﬁ chzl mina(per')EU(p)‘Zle Z?:l d)U(PeT')(C)(uOvi’C_ui’c)

T1oo
one has 71(']15? =0 for N and T sufficiently large. From (E-7), we can show that

T1/4
ﬂ(%T <y {T_C“ + N log(T)T'YM‘%(’a + max <exp (—C’EWNT) , €Xp <—C’En@)) } . (E-8)

Since 5&?(00,0, o) = 9oE[Ei1(00.)] + 0p(1) with g. = £ 3N g, we have

N T
Z Z ¢0 c g(per)(c))(uo,i,c - Uz',g(per)(c))

=1 t=1

71(,117\)/,7“ < P ( sup ch gzt 000 min

U(P”)EJ(P

(05 er (e) — 60.c) Twl('jjtj)

P (& (2 00
> 53)+ <;§§NNTZQ (6o

N T
‘ €
( H)lén(m E E (¢0,c — (ﬁo(per)(c))(uo’iﬁ — uiﬁ(per)(c)) (5@',1&(00,0) - E[gi,t(eo,c)b > é)
orerea(P) 2] =1

T

N
Z D (o = Gotwerr (o) (Wosic — Uy gver (o))

(per)
7 (P i=1 t=1

+P<Sup —ch gzt 000 min

> L
12)

where the first two terms can be bounded in the same manner as (E-8) and the last term can be

made arbitrarily close to zero by choosing 7, < (K1, K, 2)” with

_ €n
K2 = o LN 0 . N T ’
SupUeAg NT Zc:l Je [gi,t( O,C)] MIN G (per) g (P) Zizl thl(uongc - Ui,g(per-)(c))

It then follows that

. T1/4
71(71]7\)[’:,1 < CO {T—Ca + N7 log(T)T’YM—%Qa + max (exp (—CEWNT) , €XP <_Cfn@)) } . (E—Q)
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Using exactly the same argument, one also obtains that

T1/4
T9r < Co {T—Ca + N log(T)T™ 3% + max (exp (CaNT), exp (‘Cﬁ"@» } ’

(E-10)

Now, to bound the last term of 7/ y ;. Notice that

G
(d) 1 . T
e p (g 2 o oo =0

T
Z Z(uo,i,c - Uig(t)ev")(c)) zt (90 6)60 *,t

i=1 t=1

1 G
P .
+ (;;5 NT 20

>5)

o'(p"”‘) uO,i,c - ui7o'(p57‘) (c))gz(ftv)(eo,c)eo’*i

(pef)
7 Go i=1 t=1

d)
N+ T (B-11)

(w)

Since ;" = ;; + 0,(1) and eéﬁ),t = €04t + 0,(1), it then follows that

G
1
T <P sup — E min
LNT S UGAPN NT & stenea(p)

Dotwen (e) (Ootwer) (o) — OO,C)T‘

€
ZDuo,,,c— o)) {®3(80.)c0.1 — Elwia(Bo)eo.JH > )
i=1 t=1

G
1
L&
+ (Sup NT 20,

UeAY
N T
€y
> Y (Wi = i) ElziaBoc)eond| > T2

i=1 t=1

Gotver (e (Optmen (o) — Bo.c) ‘

where the last term can be made arbitrarily close to zero by choosing 1y, < (K1, K2, K,3)” with

My < L , and the first term
16supy e an ¥ e min (per) ¢ (p) H‘i’g(per)(c) 2im1 =1 (“0,i,c—“iya(per)(C)>E[mi,t(90,c)€0,*,t]

can be bounded by invoking Lemma 7. It then follows that

T < Co {70+ N* log? (1)1~ 1%

1/4
+ max {exp (—C’UN2 logz(T)T7/4) , €Xp <_CM10Z;2W) }} .

114



By exactly the same argument, one can also show that
T < Co {0 4 N logh ()T~

1/4
+ max {exp (—C’UN2 10g2(T)T7/4) , €Xp <_CMlojg;W) }} .

It then follows from (E-11) that

Tir < Co{T % + N2 logh (1)~ %

+ max {exp (=CoN?log®(T)T™*) | exp (-CM%) }} . (E-12)

In view of (E-7)-(E-12) the main theorem then follows.

Appendix E..3 Proof of Theorem 7

The proof proceeds in the following three main steps:
STEP 1: It can immediately be verified that e, (¢, Uy) = (¢ — QZ)TDd,DgXN,T,t(O) + (9, Uy).
Since 4 is the minimum value of @MT(?/J) =Z Zthl € (1, Up), it must satisfy the equations:
T
N
TZ& ecauc 6*t(¢7U0) = Oa

t=1

N T
?Zm (o )ens (D, Up) = 0,

t=1

S| =

T
Zﬂ”meo = 0.

t=1

Therefore, an application of the eigenvalue inequality and Theorem 5 yields

T
Qur (%) = Qvar(h) = A (% > XNvT,two)XN,T,t(eo)T) H(p, ) > Coll (,4),  (E-13)

t=1

where the last inequality follows from Assumption 4.2.
STEP 2: Let QN,T(Qp) = % 23:1 Ez,t(’l/)u U)7 where U = U(‘b) = aI'gl’Ilil’erAg N{0,1}GxN % Zthl Git (wv U) :

115



One can show that

G N
Onr(¥) — Qur(¥) = Zaﬁc% Z Uosie = Uy glper (o)) ‘;\f ZS (00.) (€0, 0) + a1, U0) )
c=1 i=1 t=1

G

"‘ Z ¢c(00-(pe'r)(c) - 00 c

c=1

T
N w ~
U; U(PET) uO,i,C)T Z wg,t) <€*7t(¢7 U) + 6*7t(¢7 UO)) :
t=1

||Mz

By Holder’s inequality, one obtains that

N 3
Onr(¥) - éN,T(l/))) Z P | { Z Ugie — w(per)(c))z}

c=1

[N

N N T " N 2
T2 Z (Z fz'(J)(eO,c) (E*,t(l/% U)+ 6*,t("7/)> Uo)))
i=1 t=1
1 & 2
+ Z ‘QSC o(per) (¢ 00 c) ‘ {N Z(ai7o'(l)er)(c) — U07,’7C)2}

i=1

<2T: :1:51? (€*7t(77/)> lAf) + €t (, Uo))) . (E-14)

Because all the clusters are sufficiently large and %Zle xi & 1(00.) = O,(1) for every i € [1, N]
and ¢ € [1,G], one can verify that

N /T 2
N1T2 Z <Z 51'(;))(90@) (6*,t(¢7 (7) + €t (h, UO))) = 0,(1)
i—1 \ (=1

and
T

% Z:; (tz:; 335?(00@) (6*,t(’¢a ﬁ) + 6*,t(’¢a UO))) = Op(l)

Since the objective functions are invariant with respect to relabelling of groups, by Theorem 6, we
obtain that

sup | Onr(th) — Onr(h) ‘
peB(1o,my)

s T
=0, | NT=%% 4 Nmt! log(T)T%—g(’a + Nexp —C’M27)) . (E-15)
log™(T")
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STEP 3: Notice that

On () — Qnr(9h) = Qvr($) — On () + Owr(¥h) — Qv () + On () — Owr ()

<0

< {Qnr(@) - Onr(®)} + {Onr(@) - Onr(®)} . (E-16)

Some probability event computations yield that
{|@vr@®) = Qur(@)| > e} < {# ¢ Bwo.m) } U {# € B, m0). |Qvr($) = Qur ()] > e

and

{|@vr @) = Qur(@)| > e} < {4 ¢ Bwo.m) } U {# € Bwo, m0). | Qvr($) = Q)| > e}

It then follows from (E-16) that

P (Qur($) = Quar($) > €) < P (B & Blspo.m) ) + P ( & Blsgo, my) )

L op < sup | Qnr(tp) — @N,T(‘P)‘ > %)

PeB(Po,ny)

Invoking Theorem 6 together with (E-15), one obtains by letting

s TV
e =C) {NT_C“ + Nt log(T)TTM—%ea + Nexp (—C’Mzi) }
log™(T)

that

B R N N y 5 1/4
0 < Onr(®) — Qnr(y) = O, (NT—Ca 4+ Nt log(T)T%—gea + N exp (—CM-1 TQ(T))) .
0g

(E-17)

Combining (E-13) and (E-17), we obtain the main theorem.

Appendix E..4 Proof of Theorem 8

We proceed in the following four main steps:
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STEP 1: First, by arguing along the lines of the proof of Lemma 23, one obtains that

T
N
TE w uc Eo*t_ E w*t uc 60>|<t—_§ w*t’u’c €0,%,t
t=1
——(E T p(u)w )(E W,y W, ) (E ’w*,tEO,*,t> =TinT+ TanT.
t=1

Define N(u.) = SN, u;. and g, = g(u,) = N(”C . One then obtains that

71,N,T Zzuzcmztz‘%zt—\/@ Z( (uc)zuzcwzt> <\/—Z€02t)
s 00 /7 (B / W) (7)dW,(7),

where X\ is defined as in Lemma 23 and W,\”(7) is a d, x 1 vector of Brownian motions with the
covariance kernel E[W ( )W(c (k)T] = min(x, 7)I4,. Moreover, note that £ ST z,(u)w,], <
(T thl |a:*7t(uc)|> maxe1,7) |w, | = 0,(1) by Lemma 4. It then follows from the weak law of large

numbers that T2y = 0,(1). Therefore, we obtain

T
N 1
7 D w0 (e = 0e/ge (S7) / W (r)dWe(r). (E-18)

t=1

Using the same argument as in the proof of Lemma 25, we can also show that

T
N w w
\/ T Z gi,t)(eo,cuc)e((),*),t = Op(l)a (E—19)
t=1

T 1
N w w w c.c 3 3 C [
ﬁ Z w&,t)(uc)wi,t)(uk)—r — 9c9k (27(77 )) : (E;Iﬁk)) ? 0 Wn( )(T)Wrg )(T)Td7> (E_QO)
t=1
N1/2 T y y
arr O et (W)€l (B wa) = O(1), (E-21)
t=1
and
—Zﬁ 0007“0 *t (0007ud) Op(l)u (E_22)

where all the terms in the limits are stochastic.
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STEP 2: By the definitions of F;(U, Uy), one can write:

T
1 w T | swer) oper)) oper)) F(per) (oPer))T
7oA U)—aiy =2 (\/ﬁ«ﬂ A I R A VIR T S )
t=1
- ~(per) - N 1 ¢ (w)
diag (Dy(57"), L) diag | |/ - Toa, Lo | o ;Fw, Uo)eyes
T 5(per) o(per) o(per) 5(per) O—(Pe”")
+ (‘ /N(g( ) _ 96 ))T,( é ) _ d)( ))T,,u*o L, d’o ) diag (D¢( ),H2G+1)

. ~(per T 5per 0(per) 0(7)@7) S(per
Axr(U, Up)diag (Dy (5" >>,H2G+1)(VN<0“ D= ) (e = )T
(e T\ T
— ") (B23)

Egs. (E-18) and (E-19) imply that

T

1 w _ 1

T E E(Uu UO)ES,*),t = (O;n (N 1) LGxdszp (ﬁ) L20+1)
t=1

uniformly in U. Therefore the first term in (E-23) is negligible in probability. Thus, one has that

T
1 w T 5(per) o(per) o(per) 5(per) O—(Pe”“)
T Z{Ei,t(w> U)_E((),*),?} - (\/ N(e( ) — 0((] ))T> (¢)(() ) ¢)( ! ))T> Hos,0 — Hoss ¢)0 a
t=1

. ~(per . ~(per T 51)67‘ O-(PET)
diag (Dy(7%"), Tag11) An (U, Up)diag (D (5 ))>H20+1)< N(e(( : 9( hT,

o(per) &(per) J( e'r)
@~ "N g — ) 0,1). (B24)

STEP 3: Define the following open balls: B(8y,19) = {0 € Oy : \/%H(B,OO) < g}, B(o,ne) =
{6 €0y Hid do) < sk, Bllieg, 1) = {i—ul < b and By (U, ) = (U € AY = HU, Uy) <
nu}. Let’s denote by A(vo, 1) = nemsmn B<(00,m9) x B(po,ns) X B(pisp,1,) a union of

(3 +n3+n2)t 2=ny
the complements of the above-defined open balls. It then follows that, for some 7, € (0, 1),

P (@Z € Ao, ), U € B;V(Uo,nu)) <P| it Z{e*t (1, U) =7y <0 | (E-25)
0
UEBc (Uo, :;u)
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By the eigenvalue inequality, it follows from (E-24) that

inf € U) — ¢l . Z C inf Amin (A U.U
vedld Z{ (W, e et {Amin (Anr (U, Up))
UeBs; (Uo,nu) UeBg (Uo,nu)

2

H ((\/%0,05, u*> : (\/geo,qbo,u*p))

By sending N and T to infinity, one obtains from Assumption 4.6 that

lim € U)—c¢ > Cony, w.p.1. E-26
N*too,T1oo weA(wo% Z{ *,t (¥, O*t} 07711; p. ( )
UeBg, (Uo,nu)

Egs. (E-25) and (E-26) imply that

P (% € A(tpo,n), U € By (Uo,m)) L0

o~

Thus, one has shown that \/%H(é, 0y) = 0,(1), H ((d),ﬁ*), (qbo,u*,o)) = 0,(1), and HU,U,) =

op(1).
STEP 4: To refine the convergence rates of 'I,//)\, define open balls,

Nr(8o,1y) = {8 € B(6o,m5) : VTH(8,80) <14},

N (o, 1) = { € B(opo,ms) : VNH(b, o) < 1},
N (1) = {0 € Blpeo ) = VN e — ol < 1.},

and
B(U?,Oana) = {052 €0, : |052 - Ue2,o| <o}

Let denote by A1) =U g, Mi(B0.15)  Ni(do 1) x Ng(p, ) a mion of the

(g +n? +nu) =),
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complements of these open balls. One obtains that

P (l/[; € 91(77[)07771//;)a ﬁ € BA?V(U(MUU) U S BC( eOa”U))

<P inf {@N,T(w(b 052,07 UO) o @N,T(wv 0-627 U)} <0 (E_27)
peA(tho )

02686(02,07770)

Similar to the argument in STEP 2, notice that

& (per) o(per) o(per) 5(per) 0—(1’67")
_Z{‘S*t ‘b U O*t ((0( ) _0((] ))Tv(d)(() ) _d)( ’ ))Tvlu*(] M*,d)o )

T
3 ~(per N w
ding (Dy(37)), L) ST F(U, Uy,
t=1

=(per O—(Pe”“) O—(Pef) g (per O—(Pef)
+ (VIO — o) T VN = )T VN (g — ) VNG
dlag (D¢( (per)) H2G+1) AN7T(U, Uo)dlag (D¢ (5(per)), H2G+1)

5(7)@7') O—(Pe'f) O—(PET) 5(7)@7') O-(PET) T
(VIO =0T VNG = TN, VN (o — 1), VNG L (B-28)

In view of (E-23), we have that

T
w | N
T Z E(Ua UO)E((],*),t = (Op (]-) LGxdy s Op ( T) L2G+1> .
t=1

uniformly in U. Therefore, it is immediate to see that the first term on the right-hand side of
(E-28) is probabilistically negligible for every 8 € B(0y,10), ¢ € B(¢o, 1), s € Blpteo,n,), and
U e B(UO>77u)a Le

=

. &(per) o er) o er) &(per) 0( er)\T
( max mln(P){<(9( 0N (T = TN o — e )>

rer) o (P) olrer) o

T
: ~(per N w
dlag (D¢(U(p ))7 H2G+1) ? Z E(Ua UO)E((],*),t} )

t=1

. 5(per) O—(PGT) O—(PGT) 5(per) O—(Per)
max —min L((0) 0T (@ 67 g — )
arer) co(P) 5(Per) o (P)

diag (D¢(5(per))7 I[2G+1 T Z (U, U0)€0*f,}> = 0(1)019(1) + O, (\/g) :

2



By the eigenvalue inequality, one can show from (E-28) that

T

(w)2 .
—€ > 0,(1) + C inf  A\pin (Ay (U, U,
'(/’691('(,1’ nw Z; 0,*,t} P( ) 0 UEBUom) ( N,T( 0))
UeBy (Uo,nu)

2

> )

inf )H ((\/Te, VN¢, VN, (VTO,, VN oy, mﬂ*,()))

PYEA(Wo,my,

in view of Assumption 4.6. The rest of the proof is immediate by following the same line as the

proof of Theorem 7. Hence, in view of (E-27) we have

P (15 € A(ypo,n,,), U € By (Up, ), 52 € B eo,no)) — 0.

The main theorem then follows.

Appendix E..5 Proof of Theorem 9

The proof of this theorem follows along the same lines as the proof of Theorem 6; some of the
arguments need to be modified due to the nonstationarity of x;;. First, by Lemma 25, we have

V= 0p (N =3/ 2) + O, (N71), where 7 is deﬁned in the proof of Theorem 6. It is then sufficient

to derive the convergence rates for 71 NT 7'1 NT 7'1(5\),7% and 71(?\)@ Recall some notations that we

have defined during the proof of Theorem 8: N(u,.) = 21111 u; . and g. = g(u.) = %

To bound 71(7']1\),1, an application of Lemma 4 yields

t+1 |TT] N ¥
éZZ www—Z/ D i VS 2/ Wordr. (E-29)
1 t=1 i=1 s=1 i=1
where
. . 1 t N
En’ = pth,TTooWE [Sﬁ(N(uc)7T>S77(N(uc)7T> :| ) where S Zuz cMis;
s=1 i=1

and W9 (1) is a d, x 1 vector of Brownian motions with the covariance kernel E[W,\(r)W,\? (k)] =
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T,.(w)
zt

min(7, )I,,. It then follows that, for a given 1 € Ny 7(o, 1y)

N T
1
N— Z Z gbg@”) uO,i,c - ui,c)(,UO,* - H*)(GJ(PGT) 00 c)
t=1
¢ 1
) Z (ﬁ(ea(per)(c) - OO,C)T) 3 Z Z(uo,i,c - ui,c)

i=1

O—(Per)eg

1
< CON <\/N|/J,07>i< — [

Moreover the weak convergence to a Gaussian process in (E-29) implies that
Ca
lim F

T N
U < 00
N1oo, TToo Z

Z 0,i,c — Ui wz it
for every C, > 1. Therefore, by the consistency of vZ as demonstrated in Theorem &, one obtains

i=1
that the first term in (E-7) T T =0 (N Ca) ; and the convergence rates of the remaining terms

. \) min
arer) eq (P
c=

le

t=1

remain the same. Therefore, it follows that
T /4
—Ce, —— )
"log(T")
(E-30)

(ax) an dﬂ(a***

TN
71(NT < Co {T_C“ + N=% 4 N Jog(T)T7™ 1% + max <exp (=Ce,NT) ,exp <

To bound 7‘1(7%7% notice that
Tl — € (80) b€ (80,0,

T N
> D (G0 bowen(e )(uo,z',c—“i,a“’”)(C>){w"(’m)(c o)
T N
1 w
_E E Ugjc— U ZU(PET)(C))wE,t)}

‘1
; W t=1 i=1
G
= 3 (G El&a(B0)] + 0,(1)) { (G0 = Gt ) Gotren ) — 0.) o
é‘l Lz t=1 i=1
+Z (9* cE[g* t(OO,C)] + 0p( )) (Qﬁ(] c ¢U(per)( W Z Z U5, — Uy oper) (c ) (5@ t(eo c) _ [52 t(eo c)])
cG—l 1 ;1 ;V:l
+Z (g* c [5* t(eo,c)] + 0p( )) (Cb()c QSO-(pe'r) ))W Z Z(uo ie—U; oper) (¢ ) ( [& t(eo,,cr(per)(c))] + 0p(1))
t=1 i=1
= zZiN,T U,o (per) )+ BNT(U o Per) )+ 6’N7T(U o'Per))

1

[

Min, en o (py |An,r (U, 0%) + By p (U, oP)) 4 Cnp(U, o)) = MIN; (per) ¢ (P ‘ANT(U glver ‘—i—

Since
A Y ) B )
M (per) ¢ (P ’BN (U, 0P| + min, ger <, 6’N7T(U, U(p”’))’ for every ¢ € Ny (o, 1), an ap-
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plication of Boole’s inequality yields

AVN7T(O_(per)) 12) + P ( min §N7T(o.(per)) > %)

orer) eo(P)
1 o er € ok ) ko
o ( min _ Cyr(o) > 1_;) 71NT+’T1(IJ)\7T+71(7117V,T)'

a(Per) o (P)

71(?\)@ <P ( min

a(Per) eq(P)

(bexsx)

and 71NT

In view of (E-29), we have T, ?{;T =0 (N_Ca) for every C, > 1. The other terms 7'1(;}

have the same convergence rates as 71 NT ) and ,7-1((1*** It then follows that

T(b) Oy 3T Ca o N—Ca L N oo(T T'YM_%GQ —C. NT _ LM
vt < Co + + og(T) + max exp( . ),exp “ Tog(T) )

To bound 71(5\),3, some simple calculations yield

G N T
1 T (w w

Z ﬁ Z Z ¢o’(per) UO,LC - ui,U(peT')(c)) (ea(per-)(c) — 00,0) wi7t) (UO,C) {(ea(per')(c 00 C)T Et)
c=1 i=1 t=1

N T

1 w

_gz t 00 ,C } N Z ¢U(per) o'(p"”‘) (c 00 C { 2 Z Z UO 7 ,C - z J(Per) (c))wg t)w( ) }

i=1 t=1

G N T
\/T (00(1’57‘) (c 00 C j\]—L Z o'(p"”‘) (c o'(p"”‘) (c) - OO,C)T L Z Z(uo,i,c - ui7o'(p57‘) (c))
c=1 \/T i=1 t=1

(6100~ FIEE 00 )25+ 30 VT (O~ 1) PIES “’“”};’2 Zw

N
1
N Z Uo,i,c i,0(Per)(c ) = ‘Il,N,T(U(per), U) + ‘IQ,MT(U(peT), U) + ‘237N,T(U(per), U)

By (D-9) in Lemma 25, one can show that
N5 (w) ()T 1
WE e,y @,y =5 g B / W ()W, (1) T dr.
0

Therefore, an application of the dominated convergence theorem and the Tchebyshev inequality

yields
677) =0 (N_C‘*) for every C, > 1.

P| sup min “ILN’T(J(p”), U)‘ > —
UEAN o(per) Eo’('P 8
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Moreover, by Lemma 4 and the continuous mapping theorem, one can show that

Zzuw(m (60) — BE(00,))) 2% 5 g0l / WO (1)dWe(dr)

zltl

where aé = liM N4oo oo 7757 N NV ar (Zt 1 ZZ 1 Ui it (6, c)) . Thus, we have

P ( sup  min }‘IQ,MT(U(’M), U)| > 6—") = O ((NT) ) for every Cy > 1.
UEAN a(Per) o (P) 8
By the same argument, we also obtain

P < sup  min }Tg,MT(a(p”),U)‘ > 6—77) =0 (N_C‘*/z) for every C, > 1.

UEAN o(Per) o (P) 8

It then follows that
Tia < Co (N7 4 (NT)~%). (E-32)

Finally, to bound 7:1(5\),3, notice that

N T
1
W Z Z QSJ(P‘”")(C UQ,i,c — Wy, J(P‘”")(c)) {(00(7’”) 00 C) z t 6 (00 C)} 60 *)t
i=1 t=1
1 TN (w)
= N\/TQSO'(PGT)(C) \/T(eo'(Per)(c) - 00 c ? ; ( UO ,C EO *t w* it ( U(per-)(c))€07*7t)

!

+ ¢J<per> ¢ Uo c 60 *,t fifg)(ug(per-) ¢ )60,*,t = Ql,N,T(U(peT), U) + £2,N,T(U(per)a U)-
() (c)

t:l

An application of Lemma 23 yields that 2 "7 wi?(uc)Eo,*,t = \/@JEE;C’C) fol W, (r)dW, (7).

Thus, by the dominated convergence theorem and the Tchebyshev inequality, one readily obtains

P ( sup  min . }21,N7T(U(””), U)} > %7) =0 ((N\/T)_Ca) for every C,, > 1.

UeAl olrrea(P
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Also, by Lemma 7, we can show that

P oswp  min [S2xr(00),U)| > L) = 0 (170 4 N log (1)1 e
UEAN o(pET)EU(P 8

1/4
+ max {exp (—CC,N2 logz(T)T7/4) , €Xp ( Cuy loz (T)) }) .

It then follows that
7;(7?\),3 < Cy {T_C“ + N2 logQ(T)T”’M_%O“

+ max {exp (—CoN?1og?(T)T™/*) exp ( Cu 1025 E;)) }} . (E-33)

Collecting all the terms derived in (E-30)-(E-33), we obtain the main theorem.

Appendix E..6 Proof of Theorem 10

Recall some commonly-used notations: €, ; = (1 — %) DDy X 1.4(0) + €,4(t, Uy), where
oy @T _ () !
XNTt(O) ( Lyt -5 Luy 7_5*,1&(01)?" - *t (OG) )
with Dy = diag (¢ @1y, Ic11) and D, = diag (g ®1,.9.1); and Qnr(eh) = £ 30, €2, (1, Up).

This proof proceeds along the lines of the proof of Theorem 7. As in the Step 1, it can be shown
that

Onr(¥) — Onr()
> Mim (diag (T Igxd, N~ *1g41) < Z Xnri(0)Xn1:(0) ) diag (7?1 xd, N_1/2HG+1))

H (diag (ﬁﬂcxdz, VNIei ), diag (VTTawa,, VNG ) %)
Since @ is consistent by Theorem 8, it then follows from Assumption 4.4 that

(dlag (fHGXdz,fHG+1)¢ diag <\/_HG><dz7\/_I[G+1> )<QNT(¢) éNT(TZ) (E-34)
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Next, by applying Lemmas 24 and 25, it can be shown that

%ﬁi&ﬁ)wﬁ’ = 0,(1), (E-35)
i
—Zg (006" (604) = O,(1), Ve, de (1,6, (E-36)
\/725” (Boc)eosr = Op(1), (E-37)
T2 Za:”w D= 0,0, (E-38)
%Zwﬁf?e(),*,t = 0,(1), (E-39)
t=1
ﬁiﬁi&f?(emwﬁf:’ = 0y(1). (E-40)
t=1

It then follows from (3.8), (E-35)-(E-37) that

N Zg (80) { e, 0) + 0w, U0) b = 0, (VV) (E-41)

and also from (3.8), (E-38)-(E-40), one obtains that

\/T IIllIl Z‘ O.(per)(c 000 ’

oco(P)

T3/2 Za: {E*t U) + eus(3h, Uo)}‘ = 0p (\/N> (E-42)

for some ¥ € Br(60y,m9) X Bn(po, 1) ¥ By (p+0,7,) , where these shrinking balls are defined in
Theorem 9. Recall the representation (E-14) established in the proof of Theorem 7. By Theorem 9
together with (E-41) and (E-42), one then has

sup ‘ QN T QN,T(V»/))
p=(0",0" 1) S.T.
HEBT(BO 779)
PEBN (¢0,m¢)
Hox EBN (11,0511 )

1 1 Ti
=0, N2=F L N3~ 4 N+3 Jog(T)T 3 2% 4 N3 -, ————— )
< &(T) P "2log*(T)

The rest of this proof follows exactly the same argument in Step 3 of the proof of Theorem 7.
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Appendix F. DC Decomposition of the Sum of Squared

Composite Errors

In view of (2.3) the composite errors are given by

G N G N
1 1
€t = €t(0,0, A, 11, U) = Ayay — 1 — Z N Z Pgllig (yi,t—l - O;Fwi,t) - Z N Z ui,g)\;—wi,ta
=1

g:l =1 g:1

where A = (A],...;AL)". We can show by some simple calculations that

N & _ ~ .

T Z 6*,t(07 ¢)7 Aa o U) + ’}/g(U) - gN,T(By ¢)7 Aa o U) - HN,T(By ¢)7 Aa o U)
with

G N
G 0.6 M0nU) = 25303 4203 65 203000, 2 S AN + 20

g=1 =1 g=1 g=1 g=1
- - N E N
HN,T(0a¢>Anu*aU) = gN7T(0> ¢),A,ILL*,U) - ? €*7t(0a¢>Anu*>U) _’}/g(U)a

t=1

and g(U) = Zle SOV iy (1 — ;) for some 7 > 0.
The function ﬁN,T is convex for some choice of p = (pu, ps, po, Pr, p,) similar to what was

asserted in Lemmas 8-10. Some algebraic manipulations yield the following gradient vector of
HN,T(Oa ¢7 A7 fosxes U) :

T

oM N N
N, T = 5puui,g —+ 2? Z Ex,t {¢g(yi,t—l — ngi,t) + )\;’wm} + 7(21@79 — ].),
t=1

8u,-7g

o7 N < -
ST gy 422 e Y i (e~ 0]
a¢g T t=1 i=1
oA N «— v
aejv’T — 4p909 — 2?¢g Z 6*7t Z u’i7gwi,t7
g t= i=1

OHn N ¢ -
8)\g = 4p>\Ag —+ 2? Z Usj g ; 6*,twi,ta

.1
o 4p““*+2 Ze*ﬁ'
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Appendix G. DC Programming and DCA: A Synopsis

Recall that, in the case when group memberships are known, the composite likelihood function is
convex. One can then employ various algorithms in convex optimization (e.g., Newton-Raphson or
Simulated Annealing) to compute solutions to the problem of the composite likelihood maximiza-
tion. However, these algorithms for convex optimization are not sufficient to deal with a large-scale
non-convex optimization problem that arises when one has to incorporate unknown group mem-
bership variables into the composite likelihood function. To surpass the difficulty of optimizing
large-scale non-convex functions, a theory of optimization for a superclass of convex functions, so-
called difference-of-convex (d.c.) functions, has been extensively developed (see, e.g., Hiriart-Urruty
(1985, 1988) for precursors to the DC programming). A concise review of DC programming and
global optimization of d.c. functions is also provided in Hoang (1995) and Thoai (1999).
A DC program can be defined as

(Pac) min{f(z) = g(x) — h(z) : « € R},

where g(-) and h(-) represent lower semi-continuous proper convex functions on R%. Such a function
as f(-) is called a d.c. function. Class of d.c. functions is rather large so that most of functions
encountered in econometric applications are d.c. functions. Note that convex constraints of type,
x € C C RY can be taken into account using a set characteristic function, min{f(x) = g(x) —
h(z) : x € C} = min{xe(x) + f(x) : = € R}, where yc(x) = 0 if ¢ € C, and = +oo otherwise.
Let

9" (y) =sup{< @,y > —g(x) : © R}

be the conjugate of g(x). One then obtains the following dual program of P, :

(Dge) min{h*(y) —g*(y) : y € R}

To see this duality, notice that, since g(x) = sup{< =,y > —¢*(y) : y € R?} and h(x) = sup{<
x,y > —h*(y): y € R}, one has

inf{g(x) — h(z) : x € R} = inf{g(x) —sup{< =,y > —h*(y): y € R} .z c R}
= inf {inf{g(z)— < z,y > +h*(y): x € R} : y e R} =inf {h*(y) —g*(y): y € R'}.
Therefore the optimal solution to the program P, is the same as the optimal solution to the program
Dy.. The existence of these optimal solutions is warranted by the generalized Kuhn-Tucker global

optimality condition (see, e.g., Hoang (2010, Proporsition 3.19)). However, in many large-scale

non-convex problems, a number of algorithms searching for a point satisfying the global optimality
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condition - such as branch-and-bound and cutting cones - do not often compute optimal points
efficiently (see Horst and Hoang (1993)). The DCA based on the duality in d.c. optimization -
first introduced by Pham Dinh and Souad (1988) - is among a few algorithms which allow to solve
large-scale d.c. optimization problems (see, e.g., Le Thi Hoai An and Pham Dinh Tao (2003); Pham
Dinh Tao and Le Thi Hoai An (1998)). In the d.c. programming literature the DCAs converge to
local solutions due to their local optimality nature; however, they often yield the global optimum,
and a number of regularization and initialization methods can be used to facilitate the finding of
global optimum from local ones in many different cases. A comprehensive introduction to DCA is
provided in Pham Dinh Tao and Le Thi Hoai An (1997); and an incisive outline of DCA is given in
Le Thi Hoai An (2014); Pham Dinh Tao and Le Thi Hoai An (2014). DCA has been successfully
applied to many large-scale non-convex problems in applied science, especially, in Machine Learning
where the use of the DCA often leads to global solutions and proves to be more robust than the
standard methods (see, Le Thi Hoai An, Le Hoai Minh, and Pham Dinh Tao (2014) and references
therein).

The DCA is an iterative primal-dual subgradient method consisting of two sequences, {2} and
{y¥}, chosen such that {g(x®) — h(z®)} and {r*(y®) — g*(y)} are decreasing so that {x}
and {y¥} converge to a feasible primal solution, 2*, and a feasible dual solution, y*, respectively.

These feasible solutions are shown to satisfy local optimality conditions and
x* € Jg*(y*) and y* € Oh(x™), (G-1)

where Oh(x*) is the subdifferential of h(x) at x*. Replacing h(-) in the program P,. with its affine
minorization, hy(z) = h(x®)+ < z -z y® > with y© € h(z), one can then obtain a convex

approximation to the primal d.c. program P.:

(Pr) min{g(x) — he(x)}.

By the following property of subdifferentials of convex functions: y € dg(x) <> x € Jg*(y) <<
x,y >= g(x) + ¢*(y), the optimal solution "V to the program P, satisfies ‘™) € dg*(y™®).
This gives rise to the following generic DCA scheme:

The DCA has a linear convergence rate so that every limiting point of the sequence {z(¥}
or {y®} is a generalized KKT point of g — h or h* — g* regardless of chosen starting values.
It is worth mentioning that many standard methods of convex and non-convex programming are
particular cases of DCA, for example, Expectation-Maximization (EM) of Dempster, Laird, and
Rubin (1977), Successive Linear Approximation (SLA) of Bradley and Mangasarian (1998), and
Convex-Concave Procedure (CCCP) of Yuille and Rangarajan (2003).

Efficient implementation of DCA involves an appropriate d.c. decomposition of f(-) and a good
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Algorithm 5 Generic DCA Scheme
1: given an initial guess, (¥ € R%, and an error tolerance level, €
2: <+ 0

3: do
4
5

calculate y® € oh(z®)
calculate Y € 9g*(y"“), which is equivalent to =*? € argmin{g(z) — h(z®)— <
x—x® y¥ > xc R}
(041
while ||z — 20| < ¢

starting point. If f(-) is such a d.c. function that $p[lx||* — f(x) is convex for some sufficiently

large p, then f(-) = g(-) — h(:), where g(x) = 3pllz|* and h(xz) = 3p|lz||* — f(x). This special

decomposition gives rise to the following algorithm:

Algorithm 6 Special-Decomposition DCA Scheme

. given an initial guess, (® € R%, and an error tolerance level, €
0+ 0
. do
calculate y € 9 (3l - [ = f(-)) ()
2V € argmin{ip|z|?— < z,y'? > x €C C R},
(141
while ||z — 20| < ¢

IR A R ol

Algorithm 6 is practically convenient because the convex minimization subproblem on line 5
can easily be solved by using the orthogonal projection, i.e., £t = Projc(#); in fact, there are
many algorithms to compute the projection onto convex sets (e.g., box constraints, polyhedron,
simplices) [see, e.g., Chen and Ye (2011); Judice, Raydan, Rosa, and Santos (2008)].
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