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Abstract 

This study explores productivity growth for a group of 65 Austrian biogas plants from 2006 to 

2014 using Data Envelopment Analysis. The sample covers about 25 % of the installed electric 

capacity of Austrian biogas plants. Productivity growth is measured by calculating the Malmquist 

productivity index, and the contributions of technical change, efficiency change and scale change 

to productivity growth are isolated. Average annual productivity growth between 2006 and 2014 

is 1.1 %. The decomposition of the Malmquist index shows that the annual scale change, 

technical change, and efficiency change for the average plant is 0.6 %, 0.3 % and 0.3 %, 

respectively. Those results indicate that the exploitation of returns to scale is a major driver of 

productivity growth in the Austrian biogas sector. However, there is a large variation in 

productivity growth across biogas plants. A second-stage regression analysis identifies important 

determinants of productivity growth. The results show that i) the exploitation of returns to scale 

as well as changes in ii) output diversification iii) capital intensity, iv) capacity utilization and v) 

feedstock prices are positively associated with productivity growth. 
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1. Introduction 

Reducing greenhouse gas emissions, improving energy efficiency and promoting renewable en-

ergy sources are the main pillars of the EU climate policy. Indicative targets on the share of 

renewable electricity for each Member State to be achieved in the year 2010 were introduced by 

the Renewable Electricity Directive (directive no. 2001/77/EC). According to the Renewable 

Energy Directive (directive no. 2009/28/EC) the share of renewable energy sources in total EU 

energy consumption should be increased to 20 % in 2020. In October 2014 the European 

Council agreed on the new target of 27 % for 2030. Within this framework, all EU Member 

States have implemented policy support for electricity generation from renewable energy sources 

(RES-E). As documented by Klessmann et al. (2011) and Kitzing et al. (2012) RES-E support 

schemes vary across EU Member states, including feed-in-tariffs (FITs), feed-in-premiums, 

tender schemes, quota obligations, investment grants, tax incentives and loans. All of these 

schemes subsidize RES-E generation in one way or another. 

Among others2, electricity generated from biogas is one of the technologies promoted by 

the Austrian green electricity law (BGBl. I Nr. 149/2002; BGBl. I Nr. 75/2011).3 Biogas plants 

convert feedstock, e.g. maize silage, grass silage, manure or organic waste, by anaerobic digestion 

into biogas. Whereby, maize is the primarily feedstock component for biogas generation in 

Austria (Stürmer, 2017). Most commonly, biogas is used in a cogeneration unit (CHP) to produce 

combined heat and power. The green electricity law (GEL) implies a purchase guarantee for 

RES-E and technological specific fixed electricity prices (feed-in-tariffs or FITs) for at least 13 

years. Production subsidies for heat are not available.4 Commonly, heat prices are negotiated 

bilaterally between the biogas plant operator and the buyer (e.g. district heating grid providers, 

consumers). Investment grants are provided for different plant areas (e.g. heat utilization), where 

eligibility and extend varies by Austrian federal states.  

The GEL became effective in 2003 and the rise of RES-E eligible to FIT remuneration be-

gan, which excludes middle and large sized hydropower plants in Austria. The amount of green 

electricity - mostly generated from wind power, solar power and biomass - fed into the power 

grid increased from 597 GWh in 2003 to 7,998 GWh in 2016 (E-Control, 2017). In 2003 green 

electricity roughly covered 1 % of total electricity demand5, whereas in 2016 nearly 12 % of 

Austria´s demand is covered by RES-E eligible to FIT remuneration.6 

The stable and predictable investment environment created by the FIT support scheme 

combined with low agricultural commodity prices up to the year 2006 led to a biogas boom be-

                                                           
2
 Small hydro power plants, photovoltaic and wind power plants, landfill and sewage gas, geothermal energy, as well 
as solid and liquid biomass are promoted by the Austrian green electricity law. 

3 The green electricity law was frequently amended. FITs are announced in the green electricity acts (e.g. BGBl. II 
Nr. 508/2002). For a detailed documentation of relevant laws and enactments see: at http://www.oem-
ag.at/de/gesetze-regelwerk/ 

4 Though, the green electricity law 2012 (BGBl. I Nr. 75/2011) provides incentives for the utilization of heat gener-
ated in biogas plants. A premium on top of the FIT of 1 to 2 cent/kWhel for certain plants with high fuel conver-
sion efficiency is provided. 

5 Electricity demand is gross electricity generation plus net imports (imports-exports). According to E-Control (2017) 
gross electricity generation was 59,986 GWh and net imports amounted to 7,273.   

6 Small hydropower plants eligible to FIT remuneration are not included in these calculations (green electricity). They 
generated 3,386 GWh electricity in 2003 and 1,772 GWh in 2016 (E-Control, 2017). The average FIT for small 
hydropower plants was 4.86 cent/ kWhel in 2016.  
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tween 2003 and 2007. The number of plants increased from about 70 in 2002 to about 295 at the 

beginning of 2008 with a rise of the installed electric capacity from 15 to 76 MW.7 After that 

boom the number of biogas plants roughly stagnated. Some of the existing plants expanded their 

capacity, so the total capacity reached 83 MW at the end of 2016, which generated 565 GWh 

electricity (OeMAG, 2017). The period of stagnation, 2007 to 2016, was accompanied by high 

and volatile feedstock prices relative to the preceding years. 

The GEL is quite successful in increasing RES-E. Though, increasing RES-E is not the 

only objective of the GEL. In general, renewable energy policies (should) aim at making renew-

able energy technologies ready for the market such that they are able to compete with fossil fuel 

electricity generation technologies. In particular, the biogas technology suffers from a lack of 

competitiveness. The FIT, according to the GEL, should be oriented towards the average 

production costs of cost efficient biogas plants. In 2016 the average FIT for biogas plants was 

17.31cent/kWhel, whereas the average exchange price for base load electricity was 2.70 

cent/kWhel (E-Control, 2017).8 The difference between FITs and the exchange electricity price is 

financed through fees paid by electricity consumers and amounted to 83 Million Euros in 2016 

for biogas. The expiration of FITs for many plants in the foreseeable future further illustrates the 

need for increasing the competitiveness of Austrian biogas plants. 

Productivity is an essential determinant of a firm‟s competitiveness. Productivity influences a 

firm´s i) output given a fixed amount of inputs, ii) unit cost and iii) profit. On the macro-level 

productivity growth is an important driver of economic growth. Therefore, it is crucial to meas-

ure and understand productivity growth of RES-E. While there is an extensive literature analyzing 

productivity growth of fossil-fuelled power plants (see e.g. Zhou et al., 2008) only few studies 

measure the productivity growth of renewable energy plants, except for hydroelectric power 

facilities. Even less try to explore the determinants of productivity growth in RES-E. Our study 

aims to fill this gap in the literature. As far as we know, the work of Rácz and Vestergaard (2016) 

is the only existing study on productivity growth of biogas plants.  

This study explores productivity growth for a sample of 65 biogas plants from 2006 to 

2014 using a non-parametric approach that is Data Envelopment Analysis (DEA). The sample 

covers about 25 % of the installed electric capacity of Austrian biogas plants. We measure 

productivity growth using the Malmquist productivity index, employing a decomposition under 

variable returns to scale proposed by Ray and Desli (1997). This decomposition isolates the 

contributions of technical change, efficiency change and scale change to productivity growth. 

Moreover, we complement the non-parametric analysis with pooled ordinary least squares (OLS) 

regressions to explain differences in productivity change of biogas plants in terms of a number of 

variables, including capacity/size, output diversification, capital subsidies, capacity utilization, 

capital intensity, feedstock prices and regional location. 

We find that average annual productivity growth between 2006 and 2014 is 1.1 % but the 

productivity of the average plant declined by 3.8 % in 2013. The decomposition of the Malmquist 

index shows that the annual scale change, technical change, and efficiency change for the average 

plant is 0.6 %, 0.3 % and 0.3 %, respectively. Those results indicate that the exploitation of re-

                                                           

7 All of these plants make use of the FIT provided by the green electricity act. Plants not receiving FITs are of minor 
importance. They only produce 36 GWh electricity, which is 6 % of the electricity produced from biogas in 2014 
(Statistics Austria, 2016). 

8
  Note that exchange prices are marginal costs whereas FITs are based on full costs. 

http://www.dict.cc/englisch-deutsch/the.html
http://www.dict.cc/englisch-deutsch/foreseeable.html
http://www.dict.cc/englisch-deutsch/future.html
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turns to scale is an important driver of productivity growth in the Austrian biogas sector. How-

ever, the meaning of this average values is weakened by the huge heterogeneity of productivity 

growth found in this study. A majority of 41 plants experienced productivity gains between 2006 

and 2014; 24 biogas plants show a productivity decline. The second-stage pooled OLS regres-

sions reveal that biogas plants expanding their capacity, diversifying their outputs, increasing their 

capacity utilization and capital intensity as well as experiencing a stronger rise in feedstock prices 

have higher productivity growth.  

The study proceeds as follows. Section 2 shortly reviews the relevant literature. Section 3 

outlines the methodology leading to our decomposition. Section 4 describes the data and devel-

ops the empirical model. Section 5 presents the results of the analysis and section 6 concludes 

with some final remarks.   

2. Literature Review  

Many studies analyze the productive efficiency and productivity growth of power generation 

plants and power distribution companies. The Malmquist-productivity index requires estimating 

distance functions or efficiency scores. Measuring distance functions can employ either paramet-

ric or non-parametric methods. Among the most important methods are the parametric method 

of Stochastic Frontier Analysis (SFA) and the nonparametric method of Data Envelopment 

Analysis (DEA); see e.g. Fried et al. (2008). Zhou et al. (2008) survey the literature on the applica-

tion of DEA to energy and environmental studies. More recent literature on applying the Malm-

quist index and DEA to the electricity industry is reviewed in Gharneh et al. (2014). With respect 

to the parametric approach, Ramos-Real (2005) reviews some studies applying econometric 

methods to analyse the productive efficiency and productivity growth of generating plants. Barros 

(2008) gives a short review of selected applications to the energy sector, which either rely on SFA 

or DEA.  

While there is an extensive literature analyzing productivity growth of fossil fuel power 

plants, only few studies measure the productivity growth of renewable energy plants, except for 

hydroelectric facilities. Examples for analysing productivity growth of hydroelectric power plants 

are Barros (2008) and Briec et al. (2011). There are some studies analyzing the static efficiency of 

wind farms; see e.g. Iglesias et al. (2010), Barros and Antunes (2011), Ederer (2015). However, 

none of them provide an intertemporal analysis of efficiency and productivity change. As far as 

we know, Vaz and Ferreira (2015) is the only study analysing productivity growth of wind farms. 

Though, the period under investigation is limited to 2010-2011. Braun et al. (2007) and Madlener 

et al. (2009) examine the static efficiency of 41 Austrian biogas plants using DEA. Ðatkov and 

Effenberger (2010) and Filler et al. (2007) apply DEA on a sample of German biogas plants. The 

eco-efficiency of 15 biogas plants in Northern-Italy is analyzed in Lijo et al. (2017) by combining 

life cycle assessment methods and DEA. 

The study most closely related to ours is that of Rácz and Vestergaard (2016). As far as we 

know, this is the only existing study analyzing productivity growth of biogas plants. Rácz and 

Vestergaard (2016) calculate Malmquist indices using DEA for 19 Danish centralized biogas 

power plants for the period 1992-2005. The authors use animal manure and other organic waste 

as input variables but neglect labour and capital. The biogas generated in the power plant is used 

as single output. Our study can draw from a much richer set of inputs and outputs, avoiding the 

omission of significant variables. The consequences of such model misspecifications are de-
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scribed e.g. in Smith (1997). Furthermore, the sample in this study is larger and includes 65 

biogas plants. Though, we only have data for 2006 and 2012-2014. The sample of Rácz and 

Vestergaard (2016) changes over time. It starts with 7 plants in 1992 and end-ups with 19 plants 

in the period 1998 to 2005. Our sample of 65 plants remains invariant over time. Finally, we 

provide second-stage regressions in order to explain the variation in productivity growth across 

biogas plants; they do not.  

Rácz and Vestergaard (2016) find that average annual total factor productivity increased by 

2.5 % annually in the examined period. That is more than twice as much than our estimates (1.1 

% annually). Following Färe et al. (1994), the authors decompose productivity growth into 

technical change, pure efficiency change and scale change. As outlined in the following sections, 

we argue that the decomposition of Färe et al. (1994) is not appropriate in the case of biogas 

plants because many of them exhibit increasing returns to scale. In such a case, the Färe et al. 

(1994) decomposition overestimates technical change because it is measured relative to a constant 

returns to scale technology. That is why we use the decomposition proposed by Ray and Desli 

(1997), which measures technical change relative to a variable returns to scale technology. 

3. Methodology 

We assume that for each time period         the production technology    models the 

transformation of   inputs,       , into   outputs,       ,                      can produce    . This means the technology consists of the set of all 

feasible input/output vectors. Following Shephard (1970), the input distance function is defined 

at   as                                                     . This function is 

defined as the reciprocal of the „„minimum” proportional contraction of the input vector,   , 

given outputs,   . The distance function completely represents the production technology. Note 

that             if and only if           . In addition,             if and only if         is on the frontier of the technology. In the terminology of Farrell (1957), that occurs 

when the production process is technically efficient. If             production is technically 

inefficient. The Farrell input oriented measure of technical efficiency is given as the value of the 

function                               . It follows that                         . 

Let              denote the distance function satisfying constant returns to scale (CRS) 

and              be the distance function satisfying variable returns to scale (VRS). Scale effi-

ciency refers to the deviation between CRS and VRS technologies. It is defined by the ratio of the 

distance functions                                      and measures how far the scale 

size of a plant is away from optimal. For firms operating at the optimal scale size CRS holds. Be-

cause the CRS-frontier envelops the VRS-frontier and all observations,                           holds and the measure for scale efficiency has an upper bound of one. At              the plant is scale efficient. A value smaller than one indicates a potential to in-

crease efficiency by extending the plant‟s production activity. 

We estimate productivity change by computing the Malmquist productivity index which 

combines input oriented distance functions at different points in time. To define this index, we 

need not only distance functions within the same period   (so called own-period distance func-

tions) but also distance functions with respect to two different time periods (so called cross-pe-
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riod or mixed period distance functions) such as                                      . This distance function measures the minimal proportional change in inputs required to make 

(    ,    ) feasible in relation to the technology at  . Similarly, one may define a distance func-

tion that measures the minimal proportional change in inputs required to make (  ,   ) feasible 

in relation to the technology at     which we call            . In order to compute the 

productivity change of individual plants between   and    , we need to estimate four different 

distance functions, namely          ,            ,              , and                . 

The Malmquist productivity index                         measures the change in 

productivity for an individual plant and is defined as  

                                                                                            
 

This index is based on distance functions satisfying CRS and measures productivity change 

at optimal scale. This is the potential productivity change that a plant could enjoy if it were 

producing efficiently from a technical and scale perspective in both periods (Zofío, 2007). One 

advantage of the Malmquist productivity index is that the component distance functions allow 

breaking down productivity change into components and in this way identifying its main drivers. 

The index can be decomposed in different ways. Of the many different possibilities9 we choose 

the form proposed by Ray and Desli (1997) and decompose the index in the following manner: 

                                                                                              

 

where                         represents pure efficiency change,                         represents technical change, and                      repre-

sents scale change factor. We define technical change as:  

                                                                                          
 

 

which captures the shift in technology between two periods measured at input and output levels 

from periods   and    , respectively. Thus technical change is measured as the geometric mean 

of those two shifts, i.e. as the geometric mean of the ratios of VRS distance functions. This 

component indicates the general development of productivity of the benchmark plants and cor-

rectly measures technical change in the presence of VRS. Pure efficiency change is defined as  

                                                        

 

                                                           

9 For an overview of the many decompositions of the Malmquist productivity index see e.g. Balk (2001), Lovell 
(2003), Zofío (2007) as well as Diewert and Fox (2017).  
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and measures the change in relative technical efficiency calculated relative to VRS technology. 

This is the change in the distance of observed from potential production between years   and    . Thus,                         captures the „„catch-up” process to the industry fron-

tier. The                      is defined as  

                                                                               
 

 

and measures changes in the deviation between the productivity change assuming VRS and CRS. 

It is computed as the geometric mean of the ratios of scale efficiencies and takes into account the 

contribution of returns to scale (Zofío, 2007).  

Improvements in productivity over time result in a Malmquist productivity index above 

unity, whereas deterioration in performance is associated with a Malmquist productivity index 

below unity. The same holds true for all components of the Malmquist productivity index. 

The distance functions can be calculated in several ways. In our empirical work we follow 

Färe et al. (1994) and compute them by applying the linear programming approach outlined by 

Charnes et al. (1978), Banker et al. (1984), and Färe et al. (1985), which is known as Data 

Envelopment Analysis (DEA). One could also calculate the distance functions using frontier 

econometric approaches. The main strength of DEA method may be its lack of parameterization; 

it requires no assumptions about the form of the production technology.10 

In the following linear programs, we assume that there are         biogas plants using         inputs      producing         outputs      at each time period        . 

For each observation inputs and outputs are non-negative. The own-period distance function           for period   for each individual plant is computed by solving the following optimiza-

tion problem: 

                                 

s.t.                   ,               ,    free,      , 

      free  in case of C    ,         in case of       

 

where    is the efficiency score of the plant under investigation and     are the peer weights. This 

procedure minimizes the efficiency score    of a biogas plant and must be repeated for every 

plant in the sample. The computation of the own-period distance function                 for 

period     is done by solving a very similar linear program where   is substituted by    . For 

statistical tests on returns to scale as described in Simar and Wilson (2002), we also compute the 

own-period distance functions satisfying non-increasing returns to scale (NIRS). The linear pro-

gram used for this estimation is distinguished from the problem shown above by restricting the 

sum of peer weights below 1             
                                                           

10 Recent comprehensive overviews of concepts and models in DEA are provided e.g. in Bogetoft and Otto (2011) 
and Zhu (2015). 
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The linear optimization problem for the cross-period distance functions is somewhat 

different from the own-period distance functions. The first of these for               is com-

puted as 

                                  min    

s.t.                     ,                 ,    free,      , 

      free  in case of C    ,         in case of      . 

 

The remaining linear program for             is specified like that for              , 

but superscripts   and     are transposed. 

4. Data and Empirical Model 

The data in our analysis comes from the Austrian Compost and Biogas Association (ACBA). The 

ACBA collects data via online questionnaires filled in by biogas plant operators. Data is cross-

checked by special trained persons. The collected data include detailed information on technical 

characteristics of the biogas plants, economic data as well as material and energy flows. The data 

received by the ACBA is an unbalanced panel of 74 to 86 biogas plants covering the years 2006, 

2012, 2013 and 2014. Since we are interested in measuring the long-run productivity development 

of the Austrian biogas sector between 2006 and 2014 we drop all observations with missing data 

for 2006 from our analysis. After excluding all plants starting their operation after 2006 we obtain 

a balanced sample of 65 biogas plants for the years 2006, 2012, 2013 and 2014. Those 65 plants 

cover about 25 % of the installed electric capacity and net electricity generation of Austrian 

biogas plants in 2014. 

This representative sample of Austrian biogas plants includes a wide range of plant types 

and operating conditions. All plants have in common, that they use the biogas produced in the 

digesters to generate electricity and heat in a combined heat and power plant (CHP). Electricity is 

fed into the power grid. Heat is required as process heat. The surplus heat is used for supplying 

district heating and drying services. Unutilized heat is wasted into the atmosphere. The electricity 

demand of the biogas plants is covered by electricity from the power grid as well as from own 

production. Digestate can be used as valuable organic fertilizer. 

Table 1: Characteristics of biogas plants in our sample in 2014 

 Mean 

value 

Standard 

deviation 

Median Minimum Maximum 

First start-up (year) 2004.38 1.27 2005 1999 2006 

Number of digesters 2.17 0.38 2 2 3 

Size      

Total digester volume (m³) 3,024 1,840 2,664 410 11,200 

CHP nominal capacity el. (kWel) 312 215 250 25 1,000 

Feedstock processed (t FM) 7,241 4,979 5,450 790 22,111 

Feedstock shares in total FM input      

Maize (%) 40 27 47 0 91 

Manure (%) 21 23 9 0 90 

Other renewable raw materials (%) 18 17 14 0 75 

Grass (%) 14 23 2 0 88 

Waste (%) 8 24 0 0 100 

Note: The sample size is 65. 
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Table 1 shows some characteristics of the biogas plants in our sample for the year 2014. 

The sample includes plants with an installed nominal electrical capacity of the combined heat and 

power unit (CHP) from 25 kWel to 1000 kWel. It is worth to note, that 17 plants or a quarter of 

the sample increased their capacity by 20 to 150 % between 2006 and 2014. This resulted in an 

increase of the average electric capacity by 10 %. The increase of the average feedstock input 

from 6104 t fresh matter (FM) to 7241 t FM between 2006 and 2014 confirms the upscaling 

trend and is only to a negligibly extend attributable to eight plants starting operation after January 

2006. 

The average share of other renewable raw materials, such as sugar beets and crop residuals, 

in total feedstock input is monotonically increasing from 10 % in 2006 to 18 % in 2014. This 

trend is accompanied by a slightly falling share of maize and liquid manure in the substrate mix. 

However, changes in average feedstock composition between 2006 and 2014 are only of minor 

importance and maize silage makes up the bulk of feedstock input in 2006 and 2014.  

There are fifty-seven agricultural biogas plants in our sample using maize, animal manure, 

grass and other renewable raw materials. Six plants are mixed plants also processing organic 

waste from gastronomy or food processing industry and in some cases from households. The 

share of waste in the input mass (in t of FM) for those plants ranges from 3 to 96 %.  Two plants 

are pure waste plants solely processing organic waste in all years. The business concepts of waste 

and agricultural biogas plants are somewhat different. While for waste plants the processing of 

waste (part of the feedstock used) generates operating revenues (so-called “income from dis-

posal” , for agricultural plants feedstock causes operating costs. Therefore, waste plants have an 

incentive to increase the amount of waste disposed to maximize revenues. By contrast, agricul-

tural plants usually try to minimize the amount of feedstock used. 

With regard to the choice of inputs and outputs, Cook et al.  2014  points out that “if the 
DEA problem is a general benchmarking problem, then the inputs are usually the 'less-the-better' 

type of performance measures and the outputs are usually the 'more-the-better' type of perform-

ance measures.” Based on this definition of inputs and outputs, we selected five inputs and four 

outputs summarized in Table 2. 

Table 2: Selection and description of input and output variables 

Variables Description 

Desirable Inputs  

Feedstock (Nm³ CH4) Aggregated methane content of the substrates, excluding waste. Reflects the 

energy content of the feedstock. 

Capital (Euros) Capital stock at the end of the year including e.g. CHP, digesters,... 

Labour (h) Working hours for operating and managing the plant 

Electricity consumption (kWhel) Electricity consumption for operating the plant  

Other costs (Euros) Include insurance, maintenance and other costs 

Outputs  

Electricity sold (kWhel) Amount of Electricity sold generated by the CHP 

Heat sold (kWhth) Amount of Heat sold generated by the CHP 

Waste disposed (t FM) Amount of organic waste processed 

 

All other types of feedstock (except of waste) are considered as desirable input. In order to 

reduce the number of inputs we derive a single measure for feedstock input. Thereby it is impor-

tant to take account of the different energy contents of the various kinds of feedstock. The 

http://www.dict.cc/englisch-deutsch/negligibly.html
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aggregation of the different substrates is based on guide values for the methane content of each 

substrate (cf. Appendix A). 

Other inputs included in the analysis are i) labour, ii) capital stock, iii) electricity demand and iv) 

other costs (including insurance, maintenance and other costs). Electricity consumption is known 

for those plants covering their demand from the power grid. For the other plants, covering their 

demand from own production, an electricity consumption of 12.5 % of sold electricity is as-

sumed.11 Imputations of electricity demand values concern 36 % and 46 % of the sample in 2012 

and 2014, respectively. The input variable “capital” reflects the sum of all investments from start-
ing plant operation until the end of the year under consideration. “Capital” includes investments 
in digesters, digester heating, CHPs, stirrers and pumps, other machinery, power grid connection, 

local and district heating grid as well as others. Unluckily, data about the capital stock at the end 

of 2012 and 2013 is unavailable. Since investments during 2012 and 2013 are extremely rare, the 

capital stock of 2014 serves as a proxy for the capital stock in 2012 and 2013.  

The biogas produced in the digesters is used in a CHP to produce combined heat and 

power. Electricity as well as heat sold are identified as outputs. As mentioned above, twelve biogas 

plants dispose waste and generate operating revenue out of this function. Taking this fact into 

account, following the studies about economic performance of the waste sector reviewed by 

Simões and Marques (2012) and in contrast to previous studies about biogas plants, such as Filler 

et al. (2007) and Madlener et al. (2009), we model waste as an output in our DEA-models.12 

CO2 emissions emerging from the combustion process and methane emissions, emerging 

e.g. from leakages, are (undesirable) outputs. Another output is digestate emerging from the 

anaerobic digestion. It can be used to fertilize agricultural land and permanent grassland. Due to 

data unavailability, those outputs have to be excluded from the productivity analysis. The input 

and output variables selected for this study are summarized in Table 2. Note that cultivation, 

harvesting and transportation of feedstock are not considered, as they are processes outside of 

the system boundaries chosen in this study. 

Table 3 provides summary statistics of the applied input and output variables for all years 

considered in the productivity analysis. Table 3 indicates a general increase in input and output 

volumes between 2006 and 2014 confirming the expansionary tendencies of the sector. However, 

the major increase in input and output volumes occurred between 2006 and 2012. In fact, some 

input volumes and total electricity output show a contraction in 2013 and 2014.

                                                           

11 According to experts (e.g. engineers planning biogas plants) 12.5% is a typical value if an appropriate heat use is 
considered and therefore a good approximation. 

12 Allen (1999) and Dyckhoff and Allen (2001) argue that waste burned in a power plant is an undesirable object. Its 
destruction is desired and, therefore, waste should be maximized. 
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Table 3: Descriptive statistics of input and output variables used for DEA and Malmquist-productivity-analysis 

  
  

Feedstock 
(Nm³ CH4) 

% 
change 

Capital 
(Euros) 

% 
change 

Labour 
(h) 

% 
change 

Electricity 
used 
(kWhel) 

% 
change 

Other 
costs 
(Euros) 

% 
change 

Electricity 
sold (kWhel) 

% 
change 

Heat sold 
(kWhth) 

% 
change 

Waste   
disposed   
(t FM)  

% 
change 

2006 
                Avg 508,530 

 
1,259,744 

 
1,382 

 
209,304 

 
94,229 

 
1,906,822 

 
370,375 

 
374 

 Min 0 
 

187,430 
 

150 
 

13,069 
 

400 
 

104,550 
 

0 
 

0 
 Max 2,433,890 

 
5,380,000 

 
7,200 

 
1,060,074 

 
392,801 

 
8,480,591 

 
6,000,000 

 
10,278 

 St. Dev 470,048 
 

859,151 
 

1,112 
 

176,249 
 

74,187 
 

1,567,501 
 

873,757 
 

1,553 
 2012 

                Avg 611,601 20.3% 1,413,318 12.2% 1,703 23.2% 248,750 18.8% 141,342 50.0% 2,435,176 27.7% 1,165,764 214.8% 657 75.7% 

Min 0 
 

204,741 
 

420 
 

12,037 
 

4,531 
 

96,297 
 

0 
 

0 
 Max 1,634,680 

 
5,734,800 

 
14,000 

 
862,558 

 
624,469 

 
8,577,008 

 
6,178,000 

 
15,337 

 St. Dev 426,273 
 

921,226 
 

1,805 
 

165,243 
 

112,722 
 

1,750,075 
 

1,185,016 
 

2,687 
 2013 

                Avg 615,778 0.7% 1,413,318 0.0% 1,834 7.7% 242,095 -2.7% 142,594 0.9% 2,363,455 -2.9% 1,264,885 8.5% 540 -17.8% 

Min 0 
 

204,741 
 

410 
 

12,570 
 

6,500 
 

100,560 
 

0 
 

0 
 Max 2,030,360 

 
5,734,800 

 
14,000 

 
865,172 

 
619,799 

 
6,921,377 

 
9,154,251 

 
13,577 

 St. Dev 443,945 
 

921,226 
 

1,822 
 

159,744 
 

120,270 
 

1,655,983 
 

1,519,365 
 

2160 
 2014 

                Avg 589,903 -4.2% 1,413,318 0.0% 1,869 1.9% 241,816 -0.1% 135,019 -5.3% 2,324,796 -1.6% 1,307,123 3.3% 628 16.3% 

Min 0 
 

204,741 
 

320 
 

12,652 
 

6,900 
 

101,214 
 

0 
 

0 
 Max 1,708,525 

 
5,734,800 

 
14,000 

 
915,856 

 
531,800 

 
7,326,850 

 
6,584,899 

 
14,681 

 St. Dev 431,144   921,226   1,829   166,497   104,425   1,613,574   1,309,297   2,583   
Note: Sample size is 65.
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5. Empirical Results 

5.1 Scale effects 

Choosing the proper technology for efficiency and productivity estimates is important for eco-

nomic and statistical reasons. If a technology does not exhibit CRS everywhere (globally), then 

some production units may improve their efficiency by adjusting their size and exploiting returns 

to scale. Assuming a CRS-technology in such cases distort measures of efficiency and leads to 

statistically inconsistent estimates of efficiency (Simar and Wilson, 2002).  

Knowledge about returns to scale of the production technology also plays a prominent role 

in choosing the proper decomposition of the Malmquist productivity index presented in section 

2. If a technology exhibits non-constant returns to scale, the use of the decomposition introduced 

by Färe et al. (1994) is criticized by various authors: Lovell (2003) criticizes that i) technical 

change is measured relative to a CRS-technology and has no economically meaningful interpreta-

tion and ii) the scale efficiency change component is not measuring the contribution of returns to 

scale to productivity change. Lovell (2003) concludes that there exist three economically 

meaningful decompositions of the Malmquist productivity index. The decomposition proposed 

by Ray and Desli (1997) is one of them and their scale change factor can be accepted as an ade-

quate reflection of the contribution of returns to scale to productivity change. Additionally, Ray 

and Desli (1997) criticize the internal inconsistency of the decomposition introduced by Färe et 

al. (1994). They argue that if the technology exhibits CRS technical change is measured correctly 

but no scale effects exist, and any measure of it is misleading.  

Column two and three of Table 4 show the input-oriented, average technical efficiency un-

der CRS-, VRS-, and NIRS-technology for the years 2006 and 2014. Technical efficiency under 

VRS, CRS and NIRS varies around a mean of 0.896, 0.819 and 0.826 in 2014, respectively. This 

result indicates an average potential for input savings of up to 18.1 %. The average efficiency 

under VRS, CRS and NIRS show a slight increase between 2006 and 2014. Efficiency scores are 

in a range between 0.38 and 1 under CRS and NIRS, and between 0.53 and 1 under VRS.  

The deviations between average technical efficiency under CRS-/NIRS- and VRS-technol-

ogy suggest that the biogas technology does not exhibit CRS and NIRS. However, to determine if 

those differences are due to non-constant returns to scale or due to sampling variation we apply 

formal statistical tests for global returns to scale proposed by Simar and Wilson (2002).  

Table 4: Global returns to scale test (Simar and Wilson, 2002) 

Test 1: H0: CRS vs. H1: VRS 

Average 
TEt(xt, yt) 
under CRS 

Average 
TEt(xt, yt) 

under VRS 

Test 
Statistic (TS) 

Critical 
Value (cα) for 
α = 0.05 

p-value 
for 

rejecting H0 

2014 0.819 0.896 0.914 0.926 0.014 

2006 0.813 0.879 0.925 0.930 0.023 

Test 2: H0: NIRS vs. H1: VRS 

Average 
TEt(xt, yt) 

under NIRS 

Average 
TEt(xt, yt) 

under VRS 
Test 

Statistic (TS) 

Critical 
value for 
α = 0.05 

p-value 
for 

rejecting H0 

2014 0.826 0.896 0.921 0.963 0.000 

2006 0.816 0.879 0.928 0.955 0.000 
Note: The critical value and the p-value are based on 2000 bootstrap replicates of the test statistic.  

We test the null-hypothesis that the production frontier exhibits CRS (NIRS) versus the 

alternative hypothesis of VRS (VRS) - labelled as test 1 (test 2) in Table 4. Colum four of Table 4 
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shows the test statistic which is                                           for test 1 and                                            for test 2. Those test statistics are the input-oriented 

equivalent to formula 4.6 in Simar and Wilson (2002) and they are by construction smaller than 

one. The smaller the test statistic, the larger is the deviation between CRS- (NIRS-) and the VRS-

technology. The test is applied for t=2006 and t=2014. The critical value shown in column 5 of 

Table 4 is such that               . cα is derived from the empirical distribution of the 

test statistic, which is unknown but is estimated based on 2000 bootstrap pseudo-samples. For 

the size of the test α, a significance level 0.05 is chosen. We reject the null hypothesis if the test 

statistic is smaller than cα. 

The results presented in Table 4 show that the null-hypothesis of CRS- and the NIRS-

technology are rejected at the 5 % significance level for the year 2006 and 2014. All in all, the 

results of the global returns to scale tests suggest the use of non-decreasing returns to scale 

(NDRS-) or VRS-technology for estimating efficiency scores. The results of the local returns to 

scale analysis (see Eder & Mahlberg, 2018) proposed by Färe et al. (1985) show that a minority of 

larger plants in the sample exhibit decreasing returns to scale. However, the majority of 52 % or 

49 % of the plants exhibit local increasing returns to scale in 2006 and 2014, respectively.13 

Combining these latter results with the fact that no decomposition of the Malmquist productivity 

index based on NDRS exists leads us to the application of a VRS technology.  

Clearly, the results show that the biogas production technology exhibits non-constant re-

turns to scale and for most of the plants in our sample increasing returns to scale prevail. There-

fore, we are interested in the contribution of returns to scale to productivity change and prefer 

the decomposition proposed by Ray and Desli (1997) above all others.  

The results presented in this section are in line with anecdotal evidence suggesting increas-

ing returns to scale in biogas production; see e.g. Walla and Schneeberger (2008). Remember that 

cultivation, harvesting and transportation of feedstock as well as digestate handling are not 

considered in this analysis. Therefore, a more than proportional increase of physical inputs 

needed for those processes as plant size increases could mitigate or, for certain feedstock types, 

even outweigh positive scale effects (Skovsgaard and Klinge Jacobsen, 2017). 

5.2  Malmquist productivity index and decomposition 

The upper part of Table 5 shows some information about the distribution of the Malmquist 

productivity index. Between 2006 and 2014, average annual productivity increased by 1.1 % for 

the average plant. This corresponds to a cumulative average productivity growth of 9.4 % be-

tween 2006 and 2014. Column two of Table 5 shows that cumulative productivity growth for the 

average plant between 2006 and 2012 was 10.5 % with an average annual growth rate of 1.68 %. 

Due to missing data for the years 2007-2011 we do not know if productivity increased 

monotonically, or the development between 2006 and 2012 was accompanied by fluctuations in 

that period. However, average productivity between 2012 and 2013 declined by 3.8 % and was 

mainly driven by technical regress. Between 2013 and 2014 average productivity increased by 0.9 

% due to a positive scale change factor and nearly reached the average productivity level of 2012.  

  

                                                           
13

 Biogas plants with local increasing returns to scale are found in the range of 25 to 500 kWel installed electric capac-
ity. 
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Table 5: Summary statistics for productivity change and its components 

 
2006 to 2012 2012 to 2013 2013 to 2014 2006 to 2014 

PRODCH 
    geometric mean 1.105 0.962 1.009 1.094 

coefficient of variation 0.292 0.172 0.181 0.308 

minimum 0.439 0.520 0.636 0.274 

25th percentile 0.926 0.884 0.899 0.917 

75th percentile 1.309 1.050 1.088 1.343 

maximum 2.133 1.487 1.596 2.389 

number of plants  with PRODCH > 1 43 26 32 41 

number of plants  with PRODCH < 1 22 39 33 24 

number of plants  with PRODCH =  1 0 0 0 0 

PEFFCH 
    geometric mean 1.015 1.007 1.000 1.023 

coefficient of variation 0.155 0.100 0.121 0.152 

minimum 0.673 0.615 0.659 0.630 

25th percentile 0.976 1.000 0.945 0.983 

75th percentile 1.040 1.063 1.032 1.130 

maximum 1.618 1.228 1.402 1.538 

number of plants  with PEFFCH > 1 23 24 17 26 

number of plants  with PEFFCH < 1 22 14 22 20 

number of plants  with PEFFCH =  1 20 27 26 19 

TECHCH 
    geometric mean 1.052 0.949 1.001 1.022 

coefficient of variation 0.208 0.085 0.137 0.209 

minimum 0.371 0.734 0.463 0.303 

25th percentile 0.989 0.915 0.970 0.943 

75th percentile 1.182 0.989 1.064 1.136 

maximum 1.900 1.316 1.528 1.673 

number of plants  with TECHCH > 1 43 14 36 38 

number of plants  with TECHCH < 1 18 47 26 22 

number of plants  with TECHCH =  1 0 0 0 0 

SCH 
    geometric mean 1.042 1.004 1.009 1.047 

coefficient of variation 0.151 0.067 0.054 0.121 

minimum 0.856 0.835 0.884 0.867 

25th percentile 0.971 0.984 0.972 0.984 

75th percentile 1.088 1.028 1.026 1.089 

maximum 1.669 1.318 1.761 1.615 

number of plants  with SCH > 1 37 32 26 33 

number of plants  with SCH < 1 24 29 36 27 

number of plants  with SCH = 1 0 0 0 0 
Note: Sample size is 65. Due to infeasible solutions the summary statistics for TECHCH and SCH are based on a 

sample of 61, 61, 62 and 60 plants for the period 2006-2012, 2012-2013, 2013-2014 and 2006-2014, respectively. 

https://en.wikipedia.org/wiki/Percentile
https://en.wikipedia.org/wiki/Percentile
https://en.wikipedia.org/wiki/Percentile
https://en.wikipedia.org/wiki/Percentile
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Table 5 also reveals the wide variation in productivity change across biogas plants.14 For in-

stance, productivity growth rates between 2006 and 2014 are found in a range between -73 % and 

139 %. One quarter of the plants show a productivity decline of more than 8.3 % and the upper 

quarter exhibit productivity increases of more than 34.3 %. Figure 2 in Appendix B shows that 

between 2006 and 2014 seven plants exhibit a decline in productivity of more than 20 % and 

eight plants show a productivity growth of more than 50 %. All in all, a majority of 63 % of the 

plants experienced a rise in productivity and 37 % a decline between 2006 and 2014. Whereby, 

the largest component contributing to productivity progress is in 47 %, 37 % and 16 % of the 

cases technical change, efficiency change and scale change, respectively. Productivity regress is 

dominated in 59 %, 36 % and 5 % of the cases by efficiency decline, technical regress and a nega-

tive scale change factor, respectively.  

The second part of Table 5 shows summary statistics for the pure efficiency change index 

or “catch-up” term. Between 2006 and 2014 average annual efficiency increased by 0.3 % for the 
average plant, corresponding to a cumulative average efficiency growth of 2.3 % in that period. 

Whereas the average plant shows an average annual efficiency increase of 0.2 % between 2006 

and 2012, efficiency increased by 0.7 % in 2013 and remained constant during 2014. The disper-

sion of the pure efficiency change index is smaller than the productivity change index. Between 

2006 and 2014 40 % and 31 % of the biogas plants show an efficiency increase and efficiency 

decline, respectively. 29 % of the plants are efficient or on the production possibility frontier in 

2006 and 2014 showing no efficiency change.  

Part three of Table 5 shows summary statistics for the technical change index. Average an-

nual technical change is 0.3 % between 2006 and 2014 and 0.8 % between 2006 and 2012 for the 

average plant. The difference between those two numbers can be explained by an average techni-

cal regress of 5.1 % between 2012 and 2013. There is hardly any average technical change be-

tween 2013 and 2014 (+0.1 %). Technical change varies widely across biogas plants showing a 

technical regress of 70% for the worst and a technical progress of 67 % for the best plant be-

tween 2006 and 2014. Thirty-eight plants exhibit a positive technical change and 22 a negative 

technical change between 2006 and 2014. 

The lower part of Table 5 provides summary statistics for the scale change index. Average 

annual scale change is 0.6 % between 2006 and 2014 and 0.7 % between 2006 and 2012 for the 

average plant. Between 2012 and 2013 the average scale change factor increased by 0.4 %. The 

corresponding value for the period 2013 to 2014 is 0.9 %. 61 %, 52 % and 42 % of the biogas 

plants have a positive scale change for the period 2006 to 2012, 2012 to 2013, 2013 to 2014, 

respectively. The scale change index shows the lowest dispersion among the components of 

productivity change and lies in the range of between 0.87 and 1.62 for the period 2006-2014.  

55 % of the biogas plants have a positive scale change factor and 25 % of the biogas plants have 

a scale change factor larger than 1.089 between 2006 and 2014. 

Table 6 sums up the results discussed above by providing the annual growth rates for 

productivity, efficiency, the scale change index and the technical change index for the average 

plant. Average annual productivity change between 2006 and 2012 (1.7 % for the average plant) 

is driven by technical progress (0.8 %) and a positive scale change factor (0.7 %). Whereby, both 

components almost equally contribute to productivity growth. Increases in pure technical effi-

                                                           
14

 Appendix B provides detailed information (histograms) about the frequency distribution of the Malmquist 
productivity index and its components. 
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ciency are only of minor importance. Table 3 shows that productivity growth between 2006 and 

2012 can also be explained by average output growth rates (28% to 215%) exceeding average 

input growth rates (12% to 23%), except for growth of other costs (50%). Since there is no data 

for the years 2007 to 2011 we have no knowledge about the productivity development in those 

years. The average annual growth rates for the period 2006 to 2012 presented in Table 6 may hide 

substantial yearly fluctuations. 

Table 6: Annual growth rates (productivity-, efficiency-, technical- and scale-change) for the 

average plant  
 Average annual growth rate 

of average plant between 
2006 to 2012 (%) 

Growth rate of average plant 
between 2012 to 2013 (%) 

Growth rate of average plant 
between 2013 to 2014 (%) 

PRODCH 1.7 -3.8 0.9 
PEFFCH 0.2 0.7 0.0 
TECHCH 0.8 -5.1 0.1 
SCH 0.7 0.4 0.9 

 

The productivity downturn of 3.8 % between 2012 and 2013 is largely explained by a technical 

regress of 5.1 %. Average efficiency gains of 0.7 % and a positive scale change factor of 0.4 % 

somewhat outweigh the technical regress. Table 3 indicates that the productivity decline in 2013 

is driven by negative average output growth rates (-3% and -18%), except for heat sold (+8%), 

and mostly positive average input growth rates (0%-8%) with a remarkable increase in average 

labour requirements (+8%). 

Between 2013 and 2014 average productivity increased by 0.9 % and is attributable to the 

exploitation of returns of scale or a positive scale change factor of 0.9 %. Efficiency change and 

technical change is roughly zero. Table 3 shows that average feedstock input (-4%) and other 

costs (-5%) decline sharper than electricity output (-2%). The other output growth rates are posi-

tive (3% and 16%) contributing to productivity progress. Labour requirements increase by 2 % 

and may negatively affect productivity growth. 

5.3 Explaining productivity growth and its components 

In order to identify determinants of productivity change and its components a second stage 

regression analysis is carried out. Environmental factors such as capital subsidies, age of the plant, 

feedstock prices and regional differences across Austrian federal states are considered as potential 

candidates, having an impact on productivity growth and its components. We also test for the 

effect of factors which are to a certain extent under the control of the biogas plant operator, such 

as capacity utilization, size of the plant, output diversification or heat utilization and the capital 

labour ratio, on productivity growth. 

A pooled OLS regression model is used to regress the Malmquist productivity index, the 

pure efficiency change index, the technical change index, and the scale change index on a bunch 

of explanatory variables. The standard errors are clustered on the plant identifier to correct for 

the correlation in individual errors and heteroscedasticity. We prefer the pooled OLS model over 

the fixed effects estimator due to i) small within plant variation, ii) a short panel with three time 

periods and iii) the fact that we are interested in the effect of time-invariant variables such as 
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plant type or regional dummies on productivity growth and its components.15 We estimate the 

following equations:                                   
i = 1, ..., 65        t = 2006-12, 2012-13, 2013-14 

whereby the dependent variable Yi,t is either PRODCH, PEFFCH, TECHCH or SCH. The term 

„time‟ captures time specific effects, which are not explained by the variation in Xi,t. It is repre-

sented by a dummy variable for the period 2012 to 2013 (Dummy 2012-2013) and 2013 to 2014 

(Dummy 2013-2014) with the period 2006 to 2012 as reference point. 

Xi,t covers the following time invariant variables: i) Dummy variables for Austrian federal 

states to control for geographical and state-specific particularities (Wirth et al., 2013). Dummies 

for Upper Austria, Styria, Tyrol and Vorarlberg are included with Lower Austria as the reference 

state; ii) a dummy for plants processing organic waste (Waste plant dummy) to test whether waste 

disposing plants experience different productivity developments than agricultural biogas plants. 

Distinct regulations applying for waste and agricultural plants could translate into different 

productivity changes; and iii) a dummy variable equal to one if a capital subsidy is received in the 

early days of the plant for financing the initial investments (Capital subsidy dummy). Further-

more, we control for the age (Age) of the plant and allow for a non-linear relationship between 

plant age and productivity growth by including age-squared (Age sq.) as explanatory variable in 

our models. 

What follows is a description of time-varying variables included in Xi,t: 

i) To test whether larger plants have different productivity developments than smaller 

plants we include the installed electric capacity (in kW) of the biogas plant in the base year 

(2006, 2012 and 2013) as a measure of plant size (Size) in the regression analysis. As 

noted earlier, about a quarter of the plants increased its capacity between 2006 and 2012. 

To test for scale effects we include the change in size  ∆  ize , measured as the first 

difference of the installed capacity, in our regression model. As shown in a previous 

subsection about half of the plants exhibit local increasing returns to scale and the biogas 

production technology can be characterized by a global NDRS-technology. Therefore, we 

expect that the scale change factor and productivity growth show a high correlation with 

the change in plant size. To test the hypothesis that the contribution of returns to scale to 

productivity growth (scale change) is greater for smaller plants we include an interaction 

term between the size of the plant and the change of plant size in our model. Note that 

the size variable (Size) in our specifications is centred at the median plant size (250 kW). 

ii) Variation in capacity utilization is recognized as one important factor explaining the 

procyclicality of productivity (Basu, 1996). Various measures and estimates of capacity 

utilization are proposed in the literature (Morrisson, 2012). We use a very simple technical 

approach to derive a proxy for capacity utilization: capacity utilization is measured as the 

ratio of yearly actual electricity generation divided by the maximum potential electricity 

output. The maximum potential electricity output of a biogas plant is ultimately con-

strained by the electric capacity of the CHP, and is reached if the CHP is running with 

                                                           
15

 Cross sectional estimates for the period 2006 to 2014, 2006 to 2013 and 2006 to 2012 are available on request. The 
results obtained are similar to the pooled OLS estimates. 
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full load throughout the year (8,760 hours). Multiplying the installed capacity of the CHP 

(measured in kW) by 8,760 gives the maximum potential electricity output. 

iii) To investigate the impact of output diversification on productivity change we construct a 

Herfindahl-Index by using heat and electricity sold, both measured in kWh. The Herfin-

dahl-Index is a measure of concentration and lies between 0.5 and 1. The index is one if 

there is only a single output (no diversification) and 0.5 if the amount of electricity sold is 

equal to the amount of heat sold (full diversification). Note that the data shows that 

electricity output is always positive and the amount of electricity sold is usually higher 

than the amount of heat sold. Therefore, the constructed index can also be considered as 

a measure of heat utilization. A negative change in the Herfindahl-Index between years is 

equivalent to an increased output diversification or higher heat utilization. A positive 

change indicates higher output concentration and lower heat utilization. Anecdotal evi-

dence suggests the existence of economies of scope for cogeneration systems and is con-

firmed by empirical studies such as Kwon and Yun (2003). Therefore, we expect that out-

put diversification is positively correlated with productivity growth. A negative relation-

ship between the change in the Herfindahl-Index (Δ Output concentration  and 

productivity change can be expected. 

iv) It follows from a simple neoclassical growth model with a Cobb-Douglas production 

function, having labour and capital as the only input factors, that capital intensity (capital 

per worker) is a critical determinant of labour productivity (output per worker). A higher 

capital stock per unit of labour increases labour productivity. Micro-level studies on the 

determinants of labour productivity usually control for capital intensity in the regression 

models (see e.g. Heshmati and Rashidghalam, 2016; Giannangeli abd Gomez-Salvador, 

2008; Mcguckin et al., 1998). By including the change of the capital-labour ratio  Δ Capital 
intensity) as a left-hand-side variable in our regressions, we test the hypothesis that capital 

deepening raises productivity. Capital intensity is measured as the total capital stock 

(EUR) divided by yearly labour requirements (h). As the biogas sector is characterized by 

low investment activities since 2008, we expect that capital deepening increases multifac-

tor productivity by raising the productivity of all other factors of production, e.g. labour 

productivity. 

v) A sharp increase of feedstock prices starting in 2007 led to a shift in relative input prices 

faced by many biogas plant operators. The type of feedstock used varies widely across 

biogas plants and a considerable variation in feedstock price changes can be observed. 

Hicks  1932  argues that „„... a change in relative prices of factors of production is itself a 

spur to invention, and to invention of a particular kind – directed to economizing the use 

of a factor which has become relatively expensive (pp. 124–125 .‟‟ We follow the 

argumentation of Kumar and Managi (2009) considering technical change as an appropri-

ate measure for testing the induced innovation hypothesis. Including the change in feed-

stock price  Δ Feedstock price  in our regression models allows us to test the hypothesis 

of factor price-induced technical change. We expect that changes in feedstock prices, 

measured as total feedstock costs (EUR) divided by feedstock input (Nm³CH4), are posi-

tively correlated with productivity growth and technical change. 

vi) To test the hypothesis of converging efficiency and productivity levels of biogas plants we 

include the initial efficiency level (efficiency score at the start of each time period) as 
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explanatory variable in our regression models. To be more precise, we test if plants with 

low initial efficiency level experience higher efficiency and productivity growth than 

plants with high initial efficiency (beta-convergence). A statistically significant negative 

coefficient estimate for the initial efficiency variable would favour the beta-convergence 

hypothesis.  

Table 7 reports the results from our regressions. Column 5 shows that productivity growth 

is not correlated with plant size. The productivity development of smaller plants is by no means 

different from larger plants. However, the change in plant size (capacity) associates positively 

with productivity growth; biogas plants increasing their capacity have on average higher 

productivity growth. The insignificant interaction term between plant size and change in plant 

size indicates that the effect of a change in capacity on productivity growth does not depend on 

plant size. 

Interestingly, the estimated coefficient of the interaction term is statistically significant in 

models using the components of productivity growth as independent variable (see columns 2 to 

4, Table 7). We find that the larger the size of a plant i) the greater the effect of a capacity in-

crease on technical change and ii) the smaller the effect of a capacity increase on efficiency 

change and scale change. The latter indicates that increasing returns to scale are stronger for 

smaller plants and are a less important source of productivity growth for larger plants. 

Remember that the plant size variable is centred at the median plant size (250 kW). There-

fore, the estimated coefficients of the change in plant size and their significance shown in Table 7 

reflect the effect of a capacity change on SCH, TECHCH, PEFFCH and PRODCH for a plant 

of median size. Centring the size variable at different levels allows us to explore the range of 

plant size for which an increase in capacity translates into a higher scale change factor. On aver-

age, increasing the scale of operation (capacity) positively contributes to the scale change index 

for plants in the range of 0 to 190 kW (0 to 160 kW) at the 10 % (5 %) significance level; those 

plants are able to exploit returns to scale by increasing their size. 

We also estimate models with a dummy variable capturing investment activities and exclud-

ing the capacity change variable, as well as the interaction term between capacity change and size 

of the plant. The results are available in Appendix E. The investment dummy is equal to one if 

investments were undertaken and zero otherwise. While 66 % of the biogas plants in the sample 

increased their capital stock between 2006 and 2012, 34 % do not show any investment activity in 

that period. We find that there is a statistically significant positive relationship between i) 

productivity growth and investment activity, as well as ii) scale change and investments. 

Unfortunately, we are not able to distinguish between types of investments (e.g. installed electric 

capacity, heat grid… . However, the results suggest that investments triggered productivity 
growth mainly via scale change. 

Unsurprisingly, changes in capacity utilization positively correlate with productivity growth. 

In line with Borger and Kerstens (2000), the results suggest that changes in technical efficiency 

are partially due to changes in capacity utilization. However, disentangling the effects of capacity 

utilization change and technical efficiency change is difficult. Though, the decomposition of the 

Malmquist-index provided by Borger and Kerstens (2000) is able to differentiate between 

changes in capacity utilization and changes in technical efficiency, their approach is only applica-

ble to output oriented distance functions.  

  

http://www.dict.cc/englisch-deutsch/unfortunately.html
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Table 7: Regression results of pooled OLS-Model 

Independent Dependent  Variable 

Variables PEFFCH TECHCH SCH PRODCH 

(Intercept) 1.310000*** 

(0.092540) 

1.008700*** 

(0.081093) 

0.970990*** 

(0.076099) 

1.286900*** 

(0.150338) 

Initial efficiency level -0.404543*** 

(0.077009) 

0.052148   

(0.072430) 

0.038796   

(0.052249) 

-0.375547*** 

(0.123720) 

Waste plant dummy -0.007319 

(0.016837) 

0.013916   

(0.068028) 

0.079780   

(0.095214) 

-0.022269   

(0.051223) 

Capital subsidy dummy -0.015279 

(0.025588) 

-0.019863  

(0.026429) 

-0.021538  

(0.020580) 

-0.026465  

(0.044112) 

Age -0.007668 

(0.016328) 

0.006335   

(0.028031) 

-0.003909   

(0.024277) 

0.019791   

(0.040994) 

Age sq. 0.000755 

(0.000855) 

-0.000126  

(0.001445) 

-0.000816  

(0.001328) 

-0.000494  

(0.002121) 

Size 0.000024 

(0.000032) 

-0.000113  

(0.000069) 

-0.000013  

(0.000051) 

-0.000054  

(0.000059) 

Δ  ize 0.000588** 

(0.000284) 

0.001073** 

(0.000518) 

0.000423   

(0.000442) 

0.001730** 

(0.000784) 

 ize * Δ  ize -0.000003* 

(0.000002) 

0.000009** 

(0.000003) 

-0.000006*** 

(0.000002) 

-0.000002  

(0.000004) 

Δ Capacity utilization 0.200711** 

(0.078034) 

0.013513   

(0.085653) 

0.129297   

(0.116731) 

0.354004** 

(0.164641) 

Δ Output concentration  -0.241025*** 

(0.062633) 

-0.122538  

(0.102070) 

-0.158427* 

(0.087203) 

-0.437017*** 

(0.154463) 

Δ Capital intensity/100 0.005877** 

(0.002562) 

0.008429*** 

(0.001630) 

-0.001036  

(0.002549) 

0.016111*** 

(0.002847) 

Δ Feedstock price 0.000315** 

(0.000148) 

0.000181   

(0.000377) 

0.000169   

(0.000280) 

0.001104** 

(0.000453) 

Upper Austria -0.043301 

(0.035111) 

0.036072   

(0.028674) 

-0.019898   

(0.025368) 

0.007322   

(0.056886) 

Styria 0.017007 

(0.018121) 

-0.024094  

(0.022938) 

-0.007296  

(0.016607) 

0.004041   

(0.034301) 

Tyrol 0.006287 

(0.021036) 

-0.155590*** 

(0.058814) 

0.009226   

(0.045042) 

-0.101944   

(0.070197) 

Vorarlberg 0.008300 

(0.024412) 

-0.190578*** 

(0.068615) 

-0.031246  

(0.097933) 

-0.087945   

(0.059857) 

Dummy 2012-2013 0.090847* 

(0.047971) 

-0.102604  

(0.089990) 

0.097584   

(0.087939) 

-0.055361  

(0.133151) 

Dummy 2013-2014 0.079146 

(0.053079) 

-0.051798  

(0.106168) 

0.123942   

(0.107593) 

-0.024627  

(0.138724) 

R-squared 0.41 0.42 0.25 0.41 

Adj. R-squared 0.34 0.36 0.16 0.35 

Number of obs. 195 184 184 195 

Note: Estimated coefficients of the pooled-OLS model are reported. Standard errors clustered on the plant identifier 

are shown in parenthesis. Four infeasible solutions for the period 2006-2012 and 2012-2013 as well as three infeasi-

ble solution for the period 2013-2014 for TECHCH and SCH reduce the number of observations in model 2 and 3 

to 184. The variable “ ize” is centred at the median plant size of 250 kW. p<0.01, ** p<0.05, * p<0.1. 

Changes in output concentration are negatively associated with productivity growth. We 

find that output diversification is a statistically significant positive determinant of productivity 

growth and efficiency change. That is, on average, biogas plants which increase their heat output 

are moving closer to the production-possibility frontier.  
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The growth of the capital-labour ratio shows a statistically significant, positive relationship 

with efficiency change, technical change and productivity growth. Capital deepening16 seems to 

be an important determinant of productivity growth. Anecdotal evidence suggests that changes in 

the capital-labour ratio are a proxy for improved monitoring techniques/components. Such 

improvements are accompanied by an increase in the capital stock. Perhaps more important, the 

time spent on monitoring and adjustment activities can be reduced substantially while biological 

disturbances in the digester are shortened, which in turn raises biogas yield.  

The results in Table 7 show that variations in feedstock prices are positively associated with 

productivity growth. Interestingly, this productivity enhancing effect comes not from technical 

change as suggested by the price-induced innovation hypothesis, but from a boost of relative 

efficiency change. The results suggest that biogas plants, which are confronted with rising feed-

stock prices, tend to economise on feedstock. This effect increases with the magnitude of the 

price rise. Jaraite and Di Maria (2012) study the environmental efficiency and productivity of the 

public power generating sector in the EU and find similar results: rising prices of crude oil and 

gas have a positive effect on productivity change via efficiency improvements. These effects are 

stronger for countries which rely heavily on oil or gas and have limited possibilities to switch be-

tween fuels in the short-run. 

The initial efficiency level shows a statistically significant, negative relationship with effi-

ciency change and productivity growth. These results provide some evidence for the hypothesis 

of converging efficiency and productivity levels. Plants with low efficiency levels tend to have, on 

average, higher efficiency and productivity growth rates  β-convergence). However, the disper-

sion of efficiency scores across biogas plants is highly persistent over time  no σ-convergence).17 

Furthermore, we find that technical change is significantly lower in Tyrol and Vorarlberg relative 

to Lower Austria. The differences between technical changes across Austrian federal states are 

remarkable: while Upper Austria, Lower Austria and Styria show a technical progress of 16 %, 10 

% and 2 %, respectively, Tyrol has a technical regress of 23 % and Vorarlberg exhibits a negative 

technical change of 16 %. These results might reflect geographic learning or knowledge spillover 

effects between producers. At the end of 2014 the installed electric capacity of Lower Austria, 

Upper Austria, Styria, Tyrol and Vorarlberg represented about 40 %, 17.5 %, 17.5 %, 4 % and 4 

% of the total installed capacity of Austrian biogas plants, respectively. Furthermore, work 

groups, which aim at further training of biogas plant operators through knowledge transfer and 

guidance, are organised from ACBA on the level of federal states. In addition, federal states 

interpret the legislation for the operating license differently. The authorities focus on different 

priorities. For instance, requirements of safety equipment vary across federal states. 

It is also interesting to mention that biogas plants receiving a capital subsidy do not show, 

on average, different productivity developments than plants without receiving a capital subsidy.  

Productivity growth of waste plants is not statistically different to that of agricultural plants. 

5.4 Sensitivity of Results 

Several experts, engaged in the field of efficiency and productivity analysis, pointed out that waste 

and agricultural plants may not be directly comparable. For example, they have different business 

                                                           

16 A situation where the capital stock grows faster than labour requirements. 
17 The standard deviation for efficiency scores estimated under VRS-technology is 0.15, 0.13, 0. 13, 0.13 for the year 

2006, 2012, 2013, 2014, respectively. 
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models and do not share the same technology. In order to check the sensitivity of our results we 

exclude waste processing plants from the sample. The remaining 57 agricultural plants  „N=57 
sample‟  are used to estimate the input distance functions and the Malmquist productivity index 
as outlined in section 2. Furthermore, similar regression analyses, as described in section 3.2, are 

performed.  

The estimates for the average annual growth rates of productivity, efficiency, technical, and 

scale change based on the „N=57 sample‟ are available in Appendix C. The long-term average 

annual productivity growth rates for the average plant between 2006 and 2012/2014 are similar 

to the estimates based on the „N=65 sample‟. Though, productivity growth of the average plant 

for the period 2012 to 2013 and 2013 to 2014 is somewhat different to the estimates presented 

previously. For instance, while the productivity growth estimate for 2013 to 2014 is 0.9 % based 

on the large sample, it is 1.6 % based on the „N=57 sample‟. 

Table 9 in Appendix D shows the regression results for the „N=57 sample‟. The estimated 
models are exactly the same as described in the previous section. The model with efficiency 

change as independent variable displays the largest sensitivity. The estimated coefficients for 

changes in substrate prices and changes in the installed capacity are still positive but become 

statistically insignificant. The coefficient of the change in capacity utilization is significantly differ-

ent from zero at the 10 % significance level. 

Similar to the results presented in Table 7 we find that capacity change (size change) is an 

important determinant of the scale change factor. However, the range of plants for which an in-

crease in plant size raises the scale change factor differs. Remember, the results in Table 7 show 

that plants in the range of 0 to 160 kW can improve their scale change factor by increasing the in-

stalled capacity. Table 9 indicates that this range is much broader, reaching from 0 to 275 kW.  

The model explaining technical change is highly robust to sample variations.  The sign of 

the estimated coefficients and their significance level are hardly changing.   

With respect to productivity growth, the estimated coefficients of capacity utilization and 

feedstock prices show a lower significance level (10 %). Nevertheless, estimates of the investment 

dummy model18 indicate that feedstock prices are a highly significant (1 % level) determinant of 

productivity change, irrespective of the sample used. Table E.1 and Table E.2 in Appendix E 

report the results of the investment dummy models for the „N=65 sample‟ and N=57 sample‟. 

All in all, it turns out that the regression results are rather insensitive to the applied sample 

and to various model specifications. Changes in i) plant size, ii) capacity utilization, iii) output 

diversification, iv) capital intensity and v) feedstock prices are important determinants of 

productivity growth. 

6. Conclusion 

In this study, we apply the linear-programming approach of Data Envelopment Analysis (DEA) 

to measure productivity change of 65 Austrian biogas plants between 2006 and 2014. Productiv-

ity change is decomposed into technical change (i.e., shift of the technology frontier), technical 

efficiency change (i.e., movements towards the technology frontier) and scale change (i.e., 

exploitation of returns to scale) as proposed by Ray and Desli (1997). 

                                                           
18

 That is replacing the capacity change variable and the interaction term with an investment dummy. 



23 

 

Productivity is an essential determinant of a plant‟s i  output given a fixed amount of 
inputs, ii) units costs and iii) profit. Reducing costs and increasing profits of renewable electricity 

generation i) fosters the deployment of renewable energy sources (RES-E) technologies, ii) 

enables to reduce the financial burden faced by electricity consumers, and hence iii) could further 

raise the public acceptance of renewable energy technologies. Therefore, it is crucial to measure 

and understand productivity growth of RES-E. Only few studies analyze the productivity growth 

of renewable energy plants, except for hydroelectric power facilities. Our study aims to fill this 

gap in the literature. As far as we know, we are the first evaluating productivity change of biogas 

plants based on a broad sample and an extensive set of inputs and outputs. 

Our results indicate that on average productivity increased by 9.4 % over the whole sample 

period meaning an average annual increase of 1.1 %. The exploitation of returns to scale is an 

important driver of productivity growth, which is indicated by an average scale change of 4.7 % 

over the whole sample period (or 0.6 % per year). The technical efficiency increase turned out to 

be much lower. It amounts to merely 2.3 % over the whole period (or 0.3 % per year). The 

regression analysis shows that plants with low initial efficiency exhibit larger efficiency gains. 

Technical change component of 2.2 % over the whole period (or 0.3 % per year) turns out to be 

even smaller. 

While average annual productivity growth was 1.7 % between 2006 and 2012, productivity 

change slowed down in 2013 and 2014. If the rather low productivity growth of the last years 

continues, and input price changes are absent, only minor unit cost reductions in biogas produc-

tion can be expected. Technical change is low, which might reflects that technical innovations 

where hardly implemented in Austrian biogas plants. The exploitation of returns to scale seems 

to be the most important driver of productivity growth in the period 2006-2014. However, if 

technical progress is missing (outward shift of the production possibility curve) productivity 

growth will be exhausted over time.  

A second-stage pooled-OLS regression confirms that biogas plants, which expand their 

electric capacity, have on average higher productivity growth. Especially small plants increasing 

their capacity reap productivity gains via increasing returns to scale. Increasing returns to scale are 

a less important source of productivity growth for larger plants. Feedstock prices show a positive 

relationship with productivity and efficiency change. This may indicates that biogas plant opera-

tors react to feedstock price increases with efficiency improvements. 

Further, the regression analysis shows that output-mix diversification is an important 

determinant of productivity growth. Though, complete specialization in electricity generation 

declined substantially between 2006 and 201419, most of the plants are still partially specialized in 

electricity production. That means electricity output exceeds heat output. The focus of biogas 

plant operators on electricity generation is largely driven by regulatory measures.20 Absent or 

weak locational signals led to placement of generation at sites, where heat demand is low and 

expenditures for district heat connections are high. Policy makers should be aware that co-

generation units are characterized by positive synergies among power and heat generation, which 

                                                           

19 The percentage of plants without any heat utilization in the sample declined from 49 % in 2006 to 8 % in 2014. 
20

 The green electricity law implies a purchase guarantee for electricity generated in biogas plants and fixed electricity 
prices (feed-in tariffs) for 13 years. Production subsidies for heat are not available. In 2015 the average feed-in tar-
iff for biogas plants was 17.60 cent/kWhel, whereas the average exchange price for electricity was 3.23 cent/kWhel. 
Commonly, heat prices are negotiated bilaterally between the biogas plant operator and the buyer (e.g. district heat-
ing grid providers). 
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are primarily based on cost reductions through fuel savings (cf. Kwon and Yun, 2003).21 Policies 

that incentivize biogas plant operators to diversify outputs can generate substantial productivity 

gains. For plant operators the regression results indicate that increasing the size, more full-load 

hours or shorter operational interruptions (e.g. through regular maintenance) and diversification 

(e.g. increased heat utilization) may contribute to an improvement of productivity. 

The results of this study are in line with anecdotal evidence and previous analysis 

suggesting increasing returns to scale in biogas production; see e.g. Walla and Schneeberger 

(2008) and Skovsgaard and Klinge Jacobsen (2017). Policy makers and regulators should consider 

that larger plants might generate biogas at lower unit costs due to increasing returns to scale. 

Incentivising the cooperation of farmers in one region to run a collaborative biogas plant is one 

possibility to exploit returns to scale. Another option is to set a uniform feed-in tariff for all 

biogas plants, which does not cover the costs of small-scaled plants. 

The fact that harvesting and transportation of feedstock as well as the handling of digestate 

are not considered in our study might be seen as a limitation. Skovsgaard and Klinge Jacobsen 

(2017) show in a Danish case study that per unit transport costs for biogas plants increase with 

scale, which partly offsets the economies of scale found for capital and operational expenditures. 

This finding is in line with the studies of Walla and Schneeberger (2008) and Stürmer et al. 

(2011). Hence, one possible avenue for future research could reconsider scale effects based on an 

investigation of cost efficiency including costs for i) feedstock transportation and ii) digestate 

handling. Last but not least similar analyses of technical and cost efficiency as well as productivity 

and profitability change should be carried out for other renewable energy technologies such as 

wind power plants, solar power plants, biomass power plants, etc. Those technologies play a ma-

jor role in the energy transition to a sustainable and eco-friendly energy system with low carbon 

emissions.  
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Appendix A 

Table A.1: Guide values for methane, dry matter and organic dry matter content per t of  FM 

 Ø Nm3 CH4/t FM DM (in % FM) Organic DM (in % of DM) 

Waste  145 24% 85% 
Grass  110 33% 93% 
Cascading use  85 65% 90% 
Maize  115 35% 98% 
Other renewables  105 33% 95% 
Manure  20 10% 85% 

Note: FM is fresh matter; DM is dry matter; Source: ACAB. 
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Appendix B: Frequency distributions of Malmquist productivity indices and components 

Figure 2: Frequency distribution of productivity change and its components, 2006-2014. 

Figure 3: Frequency distribution of productivity change and its components, 2006-2012. 
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 Figure 4: Frequency distribution of productivity change and its components, 2012-2013. 

Figure 5: Frequency distribution of productivity change and its components, 2013-2014. 
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Appendix C 

Table C.1: Annual growth rates (productivity-, efficiency-, technical- and scale-change) for the 

average plant  
 Average annual 

growth rate of average 
plant between 2006-
2012 (%) 

Growth rate of 
average plant between 
2012-2013 (%) 

Growth rate of 
average plant 
between 2013-2014 
(%) 

Average annual 
growth rate of 
average plant 
between 2006-2014 
(%) 

PRODCH 1.9 -4.5 1.6 1.2 
PEFFCH 0.2 0.5 -0.5 0.2 
TECHCH 0.6 -5.1 3.4 0.3 
SCH 0.9 -0.6 -0.5 0.6 
Note: Sample size is 57 – only agriculture plants. Biogas plants processing waste are excluded. 
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Appendix D 
 
Table D.1: Regression results of pooled OLS-Model, Agricultural plants only 

Independent Variable 
Dependent Variable 

PEFFCH TECHCH SCH PRODCH 

(Intercept) 0.355178*** -0.066232 -0.100734 0.270786 

 
(0.114193) (0.092571) (0.115561) (0.185893) 

Initial efficiency level -0.448972*** 0.084923 0.048871 -0.342168** 

 
(0.088865) (0.081591) (0.072579) (0.140284) 

Capital subsidy dummy -0.009595 -0.034059 0.007222 -0.032893 

 
(0.028275) (0.021788) (0.011035) (0.045549) 

Age 0.000803 0.020283 0.013729 0.021822 

 
(0.021319) (0.033400) (0.029343) (0.058648) 

Age sq. 0.000487 -0.001168 -0.000599 -0.000749 

 
(0.001416) (0.001943) (0.001876) (0.003329) 

Size 0.000011 -0.000062 -0.000051 -0.000049 

 
(0.000039) (0.000058) (0.000032) (0.000079) 

Δ  ize 0.000284 0.001486*** 0.000941** 0.002015** 

 
(0.000333) (0.000556) (0.000367) (0.000893) 

 ize * Δ  ize -0.000001 0.000011*** -0.000008*** -0.000002 

 
(0.000002) (0.000003) (0.000002) (0.000004) 

Δ Output concentration -0.186301*** -0.162452 -0.146551 -0.425157*** 

 
(0.069344) (0.107835) (0.094970) (0.159542) 

Δ Capacity utilization 0.178995* -0.006866 0.227676 0.358397* 

 
(0.096957) (0.089741) (0.185953) (0.200428) 

Δ Capital intensity/100 0.005528** 0.008338*** -0.000217 0.016194*** 

 
(0.002721) (0.001346) (0.002930) (0.003449) 

Δ Feedstock price 0.000278 0.000420 0.000167 0.000927* 

 
(0.000182) (0.000387) (0.000217) (0.000513) 

Upper Austria -0.033699 0.031479 0.006943 0.009599 

 
(0.039471) (0.024940) (0.014182) (0.060318) 

Styria 0.017809 -0.031279 -0.005767 -0.004966 

 
(0.018129) (0.019523) (0.012312) (0.035143) 

Tyrol 0.023347 -0.180350*** 0.080627 -0.101680 

 
(0.031109) (0.067405) (0.051192) (0.091408) 

Dummy 2012-2013 0.036559 -0.095667 -0.018979 -0.064491 

 
(0.057849) (0.102385) (0.061900) (0.169731) 

Dummy 2013-2014 0.012761 -0.016539 -0.025931 -0.028684 

 
(0.064452) (0.113170) (0.061561) (0.183060) 

R-squared 0.37 0.53 0.38 0.44 

Adj. R-squared 0.30 0.47 0.32 0.38 

Number of obs. 171 165 165 171 

Note: Estimated coefficients of the pooled-OLS model are reported. Standard errors clustered on the plant identifier 

are shown in parenthesis. Six infeasible solutions for TECHCH and SCH reduce the number of observations in 

model 2 and 3 to 165. The variable “ ize” is centred at the median plant size of 250 kW. p<0.01, ** p<0.05, * p<0.1. 
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Appendix E 
 

Table E.1: Regression results of pooled OLS-Model, Investment Dummy 

Independent Variable 
Dependent Variable 

PEFFCH TECHCH SCH PRODCH 

(Intercept) 1.363945*** 0.995389*** 1.005806*** 1.341705*** 

 
(0.109758) (0.084219) (0.083609) (0.193461) 

Initial efficiency level -0.418664*** 0.103802 0.011885 -0.370784*** 

 
(0.082361) (0.079662) (0.059570) (0.138362) 

Waste plant dummy -0.005154 0.023353 0.063242 -0.031013 

 
(0.018378) (0.074284) (0.093647) (0.053529) 

Capital subsidy dummy -0.019733 -0.014563 -0.030910 -0.032762 

 
(0.025762) (0.024920) (0.021764) (0.042269) 

Age -0.019978 -0.021895 -0.026967 -0.035013 

 
(0.015798) (0.032205) (0.024816) (0.038991) 

Age sq.  0.001326 0.001561 0.000324 0.002420 

 
(0.000813) (0.001827) (0.001361) (0.002011) 

Size 0.000001 -0.000032 -0.000081 -0.000091 

 
(0.000032) (0.000068) (0.000056) (0.000062) 

Investment dummy 0.016221 0.073275 0.099197** 0.177541** 

 
(0.041399) (0.055245) (0.038622) (0.085340) 

Δ Output concentration -0.214034*** -0.135430 -0.090826 -0.365035*** 

 
(0.061337) (0.113638) (0.076098) (0.138698) 

Δ Capacity utilization 0.184099** -0.053882 0.126057 0.302637* 

 
(0.081665) (0.090165) (0.110259) (0.157350) 

Δ Capital intensity/100 0.005858** 0.009084*** -0.001069 0.016507*** 

 
(0.002493) (0.002024) (0.003055) (0.002740) 

Δ Feedstock price 0.000305** 0.000336 0.000262 0.001229*** 

 
(0.000125) (0.000377) (0.000275) (0.000370) 

Upper Austria -0.051943 0.036203 -0.031519 -0.010702 

 
(0.035970) (0.029444) (0.025654) (0.058942) 

Styria 0.017641 -0.047994** 0.002218 -0.005607 

 
(0.018170) (0.022784) (0.017427) (0.033223) 

Tyrol 0.003324 -0.166017*** 0.004158 -0.119208* 

 
(0.022352) (0.059777) (0.043758) (0.067074) 

Vorarlberg 0.026275 -0.193669** 0.000529 -0.044811 

 
(0.033107) (0.074380) (0.088465) (0.066909) 

Dummy 2012-2013 0.115139* -0.021648 0.205783** 0.145104 

 
(0.062020) (0.115305) (0.097533) (0.155377) 

Dummy 2013-2014 0.106143 0.027276 0.236845** 0.181092 

 
(0.065312) (0.127946) (0.116113) (0.159549) 

R-squared 0.37 0.33 0.19 0.41 

Adj. R-squared 0.31 0.26 0.11 0.35 

Number of obs. 195 184 184 195 

Note: Estimated coefficients of the pooled-OLS model are reported. Standard errors clustered on the plant identifier 

are shown in parenthesis. Four infeasible solutions for the period 2006-2012 and 2012-2013 as well as three 

infeasible solution for the period 2013-2014 for TECHCH and SCH reduce the number of observations in model 2 

and 3 to 184. The variable “ ize” is centred at the median plant size of 250 kW. p<0.01, ** p<0.05, * p<0.1. 
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Table E.2: Regression results of pooled OLS-Model, Investment Dummy, Agricultural plants 
only 

Independent Variable 
Dependent Variable 

PEFFCH TECHCH SCH PRODCH 

(Intercept) 0.382366*** -0.003697 -0.048246 0.345884* 

 
(0.122466) (0.093012) (0.121945) (0.207880) 

Initial efficiency level -0.455946*** 0.120727 0.034312 -0.333220** 

 
(0.090826) (0.080248) (0.079548) (0.146686) 

Capital subsidy dummy -0.011618 -0.031463 -0.005814 -0.043324 

 
(0.028080) (0.021117) (0.013503) (0.042020) 

Age -0.004359 -0.035395 -0.022882 -0.050626 

 
(0.020535) (0.044661) (0.029042) (0.057403) 

Age sq. 0.000830 0.002042 0.001578 0.003655 

 
(0.001336) (0.002725) (0.001939) (0.003247) 

Size -0.000001 0.000040 -0.000142*** -0.000098 

 
(0.000037) (0.000049) (0.000038) (0.000078) 

Investment dummy 0.000470 0.074829 0.127672*** 0.204191** 

 
(0.039275) (0.057661) (0.044115) (0.081708) 

Δ Output concentration -0.177663** -0.130656 -0.078723 -0.349357** 

 
(0.068487) (0.123707) (0.080874) (0.134522) 

Δ Capacity utilization 0.162511* -0.124450 0.191455 0.250265 

 
(0.097533) (0.094352) (0.170841) (0.177171) 

Δ Capital intensity/100 0.005389** 0.008860*** -0.000528 0.015937*** 

 
(0.002690) (0.001832) (0.003530) (0.003015) 

Δ Feedstock price 0.000304* 0.000549 0.000317 0.001186** 

 
(0.000179) (0.000391) (0.000204) (0.000462) 

Upper Austria -0.037302 0.030331 -0.011887 -0.011869 

 
(0.039152) (0.025926) (0.017060) (0.060184) 

Styria 0.015965 -0.049540** -0.007817 -0.027232 

 
(0.017661) (0.022391) (0.016320) (0.033382) 

Tyrol 0.022311 -0.186032*** 0.064211 -0.127137 

 
(0.031817) (0.067508) (0.048506) (0.083374) 

Dummy 2012-2013 0.037172 0.040632 0.109550 0.161966 

 
(0.070033) (0.147636) (0.074536) (0.187612) 

Dummy 2013-2014 0.013334 0.123268 0.104471 0.199507 

 
(0.075917) (0.151891) (0.073635) (0.198768) 

R-squared 0.36 0.38 0.29 0.44 

Adj. R-squared 0.30 0.32 0.22 0.38 

Number of obs. 171 165 165 171 

Note: Estimated coefficients of the pooled-OLS model are reported. Standard errors clustered on the plant identifier 

are shown in parenthesis. Six infeasible solutions for TECHCH and SCH reduce the number of observations in 

model 2 and 3 to 165. The variable “ ize” is centred at the median plant size of 250 kW. p<0.01, ** p<0.05, * p<0.1. 

 


