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  SMOOTHING ALGORITHMS BY CONSTRAINED MAXIMUM LIKELIHOOD
   

     -Methodologies and implementations for CCAR stress testing and IFRS9 ECL estimation 
 

                                                                  Bill Huajian Yang 
                                                        

                                                                                Abstract 
In the process of loan pricing, stress testing, capital allocation, modeling of PD term structure, and IFRS9 expected credit loss 
estimation, it is widely expected that higher risk grades carry higher default risks, and that an entity is more likely to migrate to a 
closer non-default rating than a farther away non-default rating.  In practice, sample estimates for rating level default rate or rating 
migration probability do not always respect this monotonicity rule, and hence the need for smoothing approaches. Regression and 
interpolation techniques are widely used for this purpose. A common issue with these approaches is that the risk scale for the estimates 
is not fully justified, leading to a possible bias in credit loss estimates. In this paper, we propose smoothing algorithms for rating level 
PD and rating migration probability. The smoothed estimates obtained by these approaches are optimal in the sense of constrained 
maximum likelihood, with a fair risk scale determined by constrained maximum likelihood, leading to more robust credit loss 
estimation. The proposed algorithms can be easily implemented by a modeller using, for example, the SAS procedure PROC 
NLMIXED.  The approaches proposed in this paper will provide an effective and useful smoothing tool for practitioners in the field of 
risk modeling. 
 
Keywords: Credit loss estimation, risk scale, constrained maximum likelihood, PD term structure, rating migration probability  

 
 
 

1. Introduction  
 

Given a risk-rated portfolio with k  ratings },1|{ kiRi   we assume that rating
1R is the best quality rating 

and
kR is the worst rating, i.e., the default rating. It is widely expected that higher risk ratings carry higher 

default risk, and that an entity is more likely to be downgraded (resp. upgraded) to a closer non-default 
rating than a farther away non-default rating.  The following constraints are therefore required: 
 

                   1...0 121  kppp                                                                            (1.1) 

                   121 ...   ikiiii ppp                                                                                  (1.2) 

                    121 ...  iiii ppp                                                                                       (1.3) 

 

where ,11,  kipi
denotes the probability of default for rating ,iR  and ,1,1,  kjip ji

is the 

migration probability from a non-default initial rating
iR to a non-default rating .jR  

 

Estimates that satisfy the above monotonicity constraints are called smoothed estimates. Smoothed 
estimates are widely expected for rating level PD and rating migration probability in process of loan 
pricing, capital allocation, CCAR stress testing ([2]), modeling of probability of default (PD) term 
structure, and IFRS9 expected credit loss (ECL) estimation ([1]).  
 

In practice, sample estimates for rating level PD and rating migration probability do not always respect 
these monotonicity rules. This calls for smoothing approaches. Regression and interpolation methods have 
been widely used for this purpose. A common issue with these approaches is that the risk scale for the 
estimates is not fully justified, leading to a possible bias estimate for the credit loss.  
 

In this paper, we propose smoothing algorithms based on constrained maximum likelihood (CML). These 
CML smoothed estimates are optimal in the sense of constrained maximum likelihood, with a fair risk scale 
determined by constrained maximum likelihood, leading to a fair and more justified loss estimation. As 
shown by the empirical examples for rating level PD in section 2.3, the CML approach is more robust, 
compared to the logistic model and the log-linear model, with quality being measured based on the 
resulting likelihood ratio, the predicted portfolio level PD, and the impacted ECL.  
 
 

                                                 
Bill Huajian Yang, Royal Bank of Canada, 155 Wellington Street West, Toronto, Canada, M5V 3H6. The views expressed in this 
article are not necessarily those of Royal Bank of Canada or any of its affiliates. Please direct any comments to bill.yang@rbc.com 
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The paper is organized as follows: In section 2, we propose smoothing algorithms for smoothed rating level 
PD, for the cases with and with no default correlation. A smoothing algorithm for multinomial probability 
is proposed in section 3. Empirical examples are given accordingly in sections 2 and 3, where in section 2, 
we benchmark the CML approach for rating level PD with logistic model proposed by Tasche ([5]) and 
log-linear model proposed by Burgt ([6]).  
 
  

2. Smoothing Rating Level Probability of Default 

2.1. The proposed smoothing algorithm for rating level PD assuming no default correlation 

 
Cross-section or within section default correlation may arise, due to some commonly shared risk factors.  In 
which case, we assume that the sample is at a point-in-time, given the commonly shared risk factors; and 
that defaults occur independently given the commonly shared risk factors. 
 

Let 
id and )( ii dn   be respectively the observed default and non-default frequencies for a non-default risk 

rating iR .  Let ip  denote the probability of default for an entity with a non-default initial rating .iR  With 

no default correlation, we can assume that the default frequency follows a binomial distribution. Then the 
sample log likelihood is given by: 
 

        ])log()1log()[(
1

1






k

i

iiiii pdpdnLL                                                                             (2.1) 

 

up to a summand given by the logarithms of the related binomial coefficients, which are independent 

of }.{ ip By taking the derivative of (2.1) with respect to ip and setting it to zero, we have: 
 

          0/)1/()(  iiiii pdpdn  

          
iiiii pdnpd )()1(   

          
iii ndp /  

Therefore, the unconstrained maximum likelihood estimate for ip is just the sample default rate ./ ii nd   

 
We propose the following smoothing algorithm for the case when no default correlation is assumed. 
 
Algorithm 2.1. (Smoothing rating level PD assuming no default correlation)  
 

(a) Parameterize the probability of default for a non-default rating iR by: 
 

     )...exp( 21 iki bbbp                                                                                      (2.2) 
 

where 
 

      0,...,,, 1222211   bbbb kkk                                                         (2.3) 
 

for given constants ,0i  .21  ki  
 

(b)  Maximize, under constraint (2.3), the log likelihood (2.1) for parameters }....,,,{ 121 kbbb  Derive the 

smoothed estimates using (2.2). □ 
 
By (2.2) and (2.3), we have: 
 

          ,1)0exp()exp( 11  bpk
 1)exp()exp(/ 111   iikii bpp   

             1...0 121  kppp                                                                             
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Thus monotonicity (1.1) is satisfied. When ,0... 221    k
 let ).exp(   Then  is the 

maximum lower bound for all the ratios }/{ 1ii pp  of the smoothed estimates }.{ ip  

 
2.2. The proposed smoothing algorithms for rating level PD assuming default correlation 
 

 

Default correlation can be modelled by the asymptotic single risk factor (ASRF) model using asset 
correlation. Under the ASRF model framework, the risk for an entity is governed by a latent random 
variable z , called the firm’s normalized asset value, which splits into two parts as ([3]): 
 

            )1,0(~),1,0(~,10,1 NNssz                      (2.4) 
 

where s  denotes the common systematic risk and   is the idiosyncratic risk independent of .s  The 
quantity  is called the asset correlation. It is assumed that there exist threshold values (i.e., the default 

points) }{ ib such that an entity with an initial risk rating iR will default when z falls below the threshold 

value ib . The long-run PD for rating iR is then given by )( ii bp  , where  denotes the standard 

normal cumulative distribution function. 
 

Let )(spi  denote the probability of default for an entity with an initial risk rating iR given the systematic 

risk .s  It is shown ([8]) that 
 

                  )1()(
2

rsrbsp ii                                                            (2.5) 

where 

                     1/r      

 

Let )(tni
and )(tdi  denote respectively the number of entities and the number of defaults at time t  for 

....,,, 21 qtttt   Given the latent factor s , we propose the following smoothing algorithm for rating level 

correlated long-run PDs by using (2.5).  
 
Algorithm 2.2. (Smoothing rating level correlated long-run PDs given the latent systematic risk factor)  
 

(a) Parameterize )(spi  for a non-default rating iR by (2.5) with 
 

     )...( 21 iki cccb                                                                                   (2.6) 
 

where, for a given constants ,0 the following constraints are satisfied: 
 

      0,...,,, 1221   cccc kk                                                       (2.7) 
 

(b)  Estimate parameters }...,,,{ 121 kccc by maximizing, under constraint (2.7), the log likelihood below: 

 

   )])(log()()(1log())()([(
1

11






k

i

ihiihihi

q

h

sptdsptdtnLL                     (2.8) 

 

Set )( ii bp  . Then monotonicity (1.1) for }{ ip , i.e., the rating level long-run PDs, follows from 

constraints (2.6) and (2.7). □ 
 
Optimization with a random effect can be implemented by using, for example, SAS PROC NLMIXED 
([4]).  
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When some key risk factors ),...,,,( 21 mxxxx  common to all ratings, are observed, we assume the 

following decomposition for the systematic risk factor s :  
 

         10),1,0(~,1)( 2   Neexcis                                       
 

where vuxaxaxaxci mm /]...[)( 2211   is a linear combination of variables mxxx ...,,, 21 with 

u  and v  being the mean and standard deviation of 
mmxaxaxa  ...2211

.   

 

Let )(xpi  denote the probability of default given the scenario .x  Assume that )(xci  is standard normal 

independent of .e  Then we have ([8, Theorem 2.2]) 
 

        )](~~1[)( 2
xcirrbxp ii                                                                         (2.9) 

 

for some .~r  
  

Let ))(( txci denote the value of )(xci  at time t  for ....,,, 21 qtttt  Given the common index )(xci , we 

propose the following smoothing algorithm for rating level correlated long-run PDs and rating level point-
in-time PDs by using (2.9). 
  

Algorithm 2.3. (Smoothing rating level correlated PDs given the common index )(xci )  
 

(c) Parameterize ))(( txpi  for a non-default rating iR by (2.6) with 
 

     )...( 21 iki cccb                                                                                   (2.10) 
 

where, for a given constants ,0 the following constraints are satisfied: 
 

      0,...,,, 1221   cccc kk                                                       (2.11) 
 

(d)  Estimate parameters }...,,,{ 121 kccc by maximizing, under constraint (2.11), log likelihood below: 

 

   ])))((log()())((1log())()([(
1

11






k

i

hihihihihi

q

h

txptdtxptdtnLL           (2.12) 

 

Set )( ii bp  . Then monotonicity (1.1) for }{ ip , i.e., the rating level long-run PDs, and for 

))}(({ hi txp  at time htt  , follows from constraints (2.10) and (2.11). □ 

 

 

2.3.  Empirical examples: smoothing of rating level PDs  

 
A. Example 1: Smoothing rating level long-run PDs assuming no default correlation 

 

 Table 1 shows the record count and default rate (DF Rate) for a sample created synthetically with 6 non-
default risk ratings (RR): 
 

               Table 1. Sample count by rating 
RR 1 2 3 4 5 6 Portfolio Level

DF 1 11 22 124 62 170 391

Count 5529 11566 29765 52875 4846 4318 108899

DF Rate 0.0173% 0.0993% 0.0739% 0.2352% 1.2833% 3.9442% 0.3594%  
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Algorithm 2.1 will be benchmarked by the following methods: 
 

LGL1- With this approach, the PD for rating iR  is estimated by ),exp( bxapi  where x  denotes the 

index for rating iR , i.e., ix   for rating .iR  Parameters a  and b are estimated by a linear regression of 

the form below, using logarithm of the sample default rate for a rating: 
 

            ),0(~,)log( 2Neebxari   
 

A common issue with this approach is the unjustified uniform risk scale b  (in the log-space) for all ratings. 
Besides, this approach in general causes the portfolio level PD to be underestimated, due to the convexity 

of the exponential function (the 2nd derivative of the function )exp( is positive): 
 

    )exp()2/exp()|)(exp()|( 2
bxabxaxebxaExyE    

 
LGL2 – Like method LGL1, rating level PD is estimated by ).exp( bxapi   However, parameters a  

and b are estimated by maximizing the log likelihood given in (2.1). With this approach, the bias for 
portfolio PD can generally be avoided, though the issue with the unjustified uniform risk scale remains. 
 

EXP-CDF – The method proposed by Burgt ([6]). With this approach, the rating level PD is estimated 
by ),exp( bxapi  where x  denotes, for rating

iR , the adjusted sample cumulative distribution: 
 

                    ).../()2/...()( 121121   kii nnnnnnnix                  (2.13) 
 

Instead of estimating parameters via cap ratio ([6]), we estimate parameters by maximizing the log 
likelihood given in (2.1). 
 

LGST-INVCDF – The method proposed by Tasche ([5]). With this approach, the rating level PD is 

estimated by ))),(exp(1/(1 1
xbapi

 where x  is as in (2.13). Parameters are estimated by 

maximizing the log likelihood given in (2.1). 
 
 

Estimation quality is measured by the following: 
   
P-Value – The p-value calculated from the likelihood ratio chi-squared test with degree freedom equal to 
the number of restrictions. Higher p-value indicates a better model.  
 

ECL Ratio – The ratio of expected credit loss based on the smoothed rating level PDs in relative to that 
based on the realized rating level PDs, given the EAD and LGD parameters for each rating. A significantly 
lower ECL ratio value indicates a possible underestimation of the credit loss.  
 

PD Ratio – The ratio of the portfolio level PD aggregated from the smoothed rating level PDs in relative to 
the portfolio level PD aggregated from the realized rating level PDs. A value significantly lower than 100% 
for the PD ratio indicates a possible underestimation for the PD at portfolio level.  
 

Table 2 shows results for Algorithm 2.1 (labelled as CML) when ,0... 221  k  and the 

benchmarks, where smoothed rating level PDs are listed in columns 2-7. 
 
                  Table 2. Smoothed results by Algorithm 2.1 and benchmarks 

Portfolio Level

Method P1 P2 P3 P4 P5 P6 P-Value ECL Ratio PD Ratio

CML 0.0173% 0.0810% 0.0810% 0.2352% 1.2833% 3.9442% 95.92% 99.91% 100.00%

LGL1 0.0165% 0.0416% 0.1053% 0.2663% 0.6732% 1.7022% 0.00% 46.09% 72.57%

LGL2 0.0032% 0.1468% 0.2901% 0.4333% 0.5763% 0.7191% 0.00% 27.58% 100.07%

EXP-CDF 0.0061% 0.0086% 0.0294% 0.3431% 1.9081% 2.5057% 0.00% 72.92% 100.21%

LGST-INVCDF 0.0104% 0.0188% 0.0585% 0.2795% 1.5457% 3.4388% 0.00% 90.46% 100.00%  
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Results show, the Algorithm 2.1 outperforms significantly the other benchmarks by p-value, impacted 
ECL, and aggregated portfolio level PD. The first log-linear model (LGL1) underestimates the portfolio 
level PD significantly. All log linear models LGL1, LGL2, and EXP-CDF underestimate the ECL 
significantly. 
 
Table 3 illustrates the strictly monotonic smoothed rating level PDs by Algorithm 2.1 when 

.0... 221    k
 While p-value deteriorates quickly as  increases from 0 to 1, the impacted 

ECL does not change that much, however.   

 
            Table 3. Strictly monotonic smoothed rating level PDs 
 

        

Portfolio Level

Epsilon P1 P2 P3 P4 P5 P6 P-Value ECL Ratio PD Ratio

0 0.0173% 0.0810% 0.0810% 0.2352% 1.2833% 3.9442% 95.92% 99.91% 100.00%

0.1 0.0173% 0.0753% 0.0832% 0.2352% 1.2833% 3.9442% 89.06% 99.88% 100.00%

0.5 0.0173% 0.0552% 0.0910% 0.2352% 1.2833% 3.9442% 36.63% 99.79% 100.00%

1 0.0120% 0.0327% 0.0890% 0.2419% 1.2833% 3.9442% 2.54% 99.63% 100.00%  
 

 
B. Example 2: Smoothing rating level long-run PDs in presence of default correlation 

 
The sample created synthetically contains the quarterly default count by rating for a portfolio with 6 non-
default ratings between 2005Q1 and 2014Q4. Point-in-time default rate (rating level or portfolio level) is 
calculated for each quarter and then averaged over the sample window by dividing the number of quarters 
(44) to get the estimate for the long-run average realized PD (labelled as AVG PD). Sample distribution 
(labelled as Overall Distribution) by rating is calculated by combining all 44 quarters. Table 4 displays 

sample statistics (with heavy size concentration at rating 4R ): 
 

                         Table 4. Long-run default rate by rating calculated from the sample 

       

RR 1 2 3 4 5 6 Portfolio

Long-Run AVG PD 0.0215% 0.1027% 0.0764% 0.2731% 1.1986% 3.8563% 0.3818%

Overall Distribution 5.07% 10.61% 27.47% 48.32% 4.52% 4.01% 100.00%  
 
Table 5 shows the smoothed correlated rating level long-run PD for all 6 non-default ratings by using 
Algorithm 2.2.  
 
Estimation quality is measured by the following: 
 

AIC – Akaike information criterion. Lower AIC indicates a better model. 
 

PD Ratio - The ratio of the long-run average predicted portfolio level PD (labelled AVG PD) relative to    
the long-run average realized portfolio level PD. A value significantly lower than 100% for this ratio 
indicates a possible underestimation for the PD at portfolio level. 
 
The first row in Table 5 shows results for the case when no default correlation is assumed (labelled as “no 
correl”) and  (labelled as Epsilon) is chosen to be 0, while for the 2nd row, results are for the case when 
default correlation is assumed (labelled as “w correl”) and is equal to 0. 
 

                         Table 5. Smoothed correlated long-run rating level PDs 
                   

                  

Portfolio Long-Run PD

Epsilon P1 P2 P3 P4 P5 P6 AIC  AVG PD PD Ratio

0  (no correl) 0.0179% 0.0836% 0.0836% 0.2371% 1.3076% 4.0372% 694.02 0.3710% 97.17%

0  (w correl) 0.0183% 0.0828% 0.0828% 0.2545% 1.1951% 3.9340% 594.62 0.3843% 100.66%

0.1  (w correl) 0.0183% 0.0483% 0.0966% 0.2541% 1.1942% 3.9318% 600.79 0.3842% 100.64%

0 .2  (w correl) 0.0035% 0.0176% 0.0754% 0.2775% 1.1859% 3.9237% 617.96 0.3842% 100.64%

0.3  (w correl) 0.0010% 0.0086% 0.0560% 0.2905% 1.1961% 3.9342% 637.25 0.3845% 100.71%  
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Results in the 1st row show, the estimated long-run portfolio level PD for the case assuming no default 
correlation is lower than the case when default correlation is assumed (2nd row), which suggests we may 
have underestimated the long-run rating level PD when assuming no default correlation. The high AIC 
value in the first row implies that the assumption of no default correlation may not be appropriate.  
 
It is worth mentioning that, when applying Algorithm 2.2 to the sample used in Example 1, assuming no 
default correlation, we got exactly the same estimates as in Example 1.   

 
 

3. Smoothing Algorithms for Multinomial Probability  
3.1. Unconstrained maximum likelihood estimates for multinomial probability 

 
For n  independent trials, where each trial results in exactly one of h fixed outcomes, the probability of 

observing frequencies },{ in with frequency 
in  for the th

i ordinal outcome, is: 
 

                  hn

h

nn

h

xxx
nnn

n
...

!...!!

!
21

21

21

                                                                           (3.1) 

 

where 0ix  is the probability of observing the th
i ordinal outcome in a single trial, and  

 

                  ,...21 hnnnn    1...21  hxxx  
 

 

The natural logarithm of the likelihood is: 
 

       
hh xnxnxnLL log...loglog 2211                                                      (3.2) 

 

up to a constant given by the logarithm of some multinomial coefficient independent of 

parameters }....,,,{ 21 hxxx  By using the relation 121 ...1  hh xxxx and setting to zero the 

derivative of (3.2) with respect to ,11,  hixi
we have:  

 

             0)...1/(/ 121  hhii xxxnxn  

            
hhii xnxn //                                                                                           

 

Since this holds for each i  and for the fixed h , we conclude that the vector )...,,,( 21 hxxx  is in proportion 

with )...,,,( 21 hnnn .  Thus, the maximum likelihood estimate for ix  is the sample estimate: 
 

             nnnnnnx ihii /).../( 21                                                                               (3.3) 

 
 

3.2. The proposed smoothing algorithm for multinomial probability 

 
We propose the following smoothing algorithm for multinomial probability under the constraint below: 
 

               1...0 21  hxxx                                                                                   (3.4)        
 

Algorithm 3.1. (Smoothing multinomial probability)  
 
 

(a) Parameterize the multinomial probability by: 
 

                    /)...exp( 121 ihi bbbx                                                                        (3.5) 

                  )...exp(...)exp()exp( 21211 hbbbbbb   
 

(b) Maximize (3.2), with ix  being given by (3.5), for parameters 
hbbb ...,,, 21
subject to: 

 

                   0,...,,, 112211   bbbb hhh                                              (3.6) 
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              for .11,0  hii  Derive the CML smoothed estimates by using (3.5). Then monotonicity  

              (3.4) for the estimates follows from (3.5) and (3.6). 

□ 
 

In the case when ,0... 121    h
 let ).exp(   Then  is the maximum lower bound for all 

the ratios }/{ 1ii xx . 

 
  
3.3. An empirical example: Smoothing transition probability matrix 

 
Rating migration matrix models ([3], [7]) are widely used for IFRS9 expected credit loss estimation and 

CCAR stress testing. Given a non-default risk rating
iR , let ijn be the observed long-run transition 

frequency from 
iR  to

jR at the end of the horizon, and ....21 kiiii nnnn   Let
ijp  be the long-run 

transition probability from 
iR  to .jR  By (3.3), the maximum likelihood estimate for ijp observing the long-

run transition frequencies }{ ijn for a fixed i  is:  
 

               
iijij nnp /                                                                                                              (3.7) 

 
It is widely expected that higher risk grades carry greater default risk, and that an entity is more likely to be 
downgraded (resp. upgraded) to a closer non-default rating than a farther away non-default rating.  The 
following constraints are hence required:  
  

             121 ...   ikiiii ppp                                                                                         (3.8) 

             121 ...  iiii ppp                                                                                                (3.9) 

             
kkkk ppp 121 ...                                                                                                 (3.10) 

 
The constraint (3.10) is for rating level probability of default, which has been discussed in section 2.  
 
Smoothing the long-run migration matrix involves the following steps:  
 

(a) Rescale migration probabilities }...,,,{ 121 iiii ppp in (3.9) to make them sum to 1, then find the 

CML smoothed estimates by using Algorithm 3.1, and rescale these CML estimates back to have 

the same summed value for }...,,,{ 121 iiii ppp as that before smoothing.  Do the same for (3.8). 

(b) Find the CML smoothed estimates by using Algorithm 2.1 for rating level default rate. Keep these 
CML default rate estimates unchanged, while rescaling for each non-default rating

iR  the non-

default migration probabilities }...,,,{ 121 kiii ppp so that the entire row }...,,,{ 21 kiii ppp  sums 

to 1.    
 
Table 6 below shows empirical results using Algorithms 2.1 and 3.1 for smoothing the long-run migration 

matrix, where for Algorithm 3.1 all i are set to zero.  
 

The sample used here is created synthetically. It consists of historical quarterly rating transition frequency 

for a commercial portfolio from 2005Q1 to 2015Q4. There are 7 risk ratings, with 1R as best quality rating 

and 7R being   default rating.  

 
The left-hand-side of the table shows sample estimates for long-run transition probabilities before 
smoothing, while the right-hand-side shows CML smoothed estimates. There are three rows as highlighted 
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in pink in the left-hand-side of the table, where sample estimates violate (3.8) or (3.9) (but (3.10) is 
satisfied). Rating level sample default rates (the column labelled as “p.7”) does not require smoothing. 
 

 

As shown in the table, the CML smoothed estimates are the simple average of the relevant non-monotonic 
sample estimates (For the structure of CML smoothed estimates for multinomial probabilities, we show 
theoretically in a separate paper that the CML smoothed estimate for an ordinal class is either the sample 
estimate or the simple average of the sample estimates for some consecutive ordinal classes including the 
named class). 
 
 
 

  Table 6. Long-run transition probability matrices before and after smoothing 

      

Transition  probability before smoothing Transition probability after smoothing

p.1 p.2 p.3 p.4 p.5 p.6 p.7 p.1 p.2 p.3 p.4 p.5 p.6 p.7

0.97162 0.01835 0.00312 0.00554 0.00104 0.00017 0.00017 0.97162 0.01835 0.00433 0.00433 0.00104 0.00017 0.00017

0.00621 0.94528 0.03071 0.01284 0.00215 0.00257 0.00025 0.00621 0.94528 0.03071 0.01284 0.00236 0.00236 0.00025

0.00071 0.01028 0.93803 0.04089 0.00659 0.00277 0.00074 0.00071 0.01028 0.93803 0.04089 0.00659 0.00277 0.00074

0.00024 0.00069 0.01260 0.96726 0.01261 0.00543 0.00118 0.00024 0.00069 0.01260 0.96726 0.01261 0.00543 0.00118

0.00039 0.00118 0.00790 0.07996 0.82725 0.07048 0.01283 0.00039 0.00118 0.00790 0.07996 0.82725 0.07048 0.01283

0.00022 0.00133 0.00266 0.04498 0.01197 0.89940 0.03944 0.00022 0.00133 0.00266 0.02847 0.02847 0.89940 0.03944  
 

 
Conclusions. Regression and interpolation approaches are widely used for smoothing rating transition 
probability and rating level probability of default. A common issue with these methods is that the risk scale 
for the estimates is not on a strong mathematical footing, leading to possible bias in credit loss estimation. 
In this paper, we propose smoothing algorithms based on constrained maximum likelihood for rating level 
probability of default and for rating migration probability. These smoothed estimates are optimal in the 
sense of constrained maximum likelihood, with a fair risk scale determined by constrained maximum 
likelihood, leading to a fair and more justified credit loss estimation. These algorithms can be implemented 
by a modeller using, for example, the SAS PROC NLMIXED.  
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