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                         FORWARD ORDINAL PROBABILITY MODELS FOR 

             POINT-IN-TIME PROBABILITY OF DEFAULT TERM STRUCTURE

    

              -Methodologies and implementations for IFRS9 ECL estimation and CCAR stress testing  
    

                                       Bill Huajian Yang           
   

                                                                           Abstract 

Common ordinal models, including the ordered logit model and the continuation ratio model, are structured by a 
common score (i.e., a linear combination of a list of given explanatory variables) plus rank specific intercepts. 
Sensitivity with respect to the common score is generally not differentiated between rank outcomes. In this paper, we 
propose an ordinal model based on forward ordinal probabilities for rank outcomes. The forward ordinal probabilities 
are structured by, in addition to the common score and intercepts, the rank and rating (for a risk-rated portfolio) specific 
sensitivity. This rank specific sensitivity allows a risk rating to respond to its migrations to default, downgrade, stay, 
and upgrade accordingly. An approach for parameter estimation is proposed based on maximum likelihood for 
observing rank outcome frequencies. Applications of the proposed model include modeling rating migration probability 
for point-in-time probability of default term structure for IFRS9 expected credit loss estimation and CCAR stress 
testing. Unlike the rating transition model based on Merton model, which allows only one sensitivity parameter for all 
rank outcomes for a rating, and uses only systematic risk drivers, the proposed forward ordinal model allows sensitivity 
to be differentiated between outcomes and include entity specific risk drivers (e.g., downgrade history or credit quality 
changes for an entity in last two quarters can be included). No estimation of the asset correlation is required. As an 
example, the proposed model, benchmarked with the rating transition model based on Merton model, is used to 
estimate the rating migration probability and probability of default term structure for a commercial portfolio, where for 
each rating the sensitivity is differentiated between migrations to default, downgrade, stay, and upgrade. Results show 
that the proposed model is more robust.             
 

 

Keywords: ordinal model, forward ordinal probability, common score, rank specific sensitivity, rating migration 
probability   
 
 

1. Introduction  
  

Let R denote the outcome for a trial with exactly one of the ordinal outcome values }....,,2,1{ k  The forward 

ordinal probability, for a rank value ,i  is the conditional probability that the outcome value is ,i  given that 

all outcome ranks are no less than .i  While for the backward ordinal probability for a rank value i  is the 

conditional probability that the outcome value is ,i  given that all outcomes are not larger than .i  
 

Common ordinal models, as reviewed in section 2, include the ordered logit model (i.e., the proportion odd 
model), and the continuation ratio model. For an ordered logit model, the cumulative probabilities for rank 
outcomes are modeled by a common score, i.e. a linear combination of a list of explanatory variables, 
together with rank specific intercept. While for a continuation ratio model, the forward or backward ordinal 
probabilities for rank outcomes are modeled by a common score with rank specific intercept. Sensitivity 
with respect to the common score is generally not differentiated between rank outcomes.  
  
It is commonly observed that entities with high risk ratings are more sensitive and vulnerable to adverse 
shocks, and that entities are more likely to migrate to higher risk grades in the downturn time than to lower 
risk ratings. Risk sensitivity is generally not uniform between risk ratings, and nor between outcome ranks. 
 

In this paper, we propose an ordinal model based on forward ordinal probability (model (3.2) or (3.4), see 
section 3). The forward ordinal probabilities are structured by a common score plus rank specific sensitivity 
and intercept. An algorithm for parameter estimation is proposed based on maximum likelihood approach 
for observing rank outcome frequencies. The model can be implemented easily by a modeller using, for 
example SAS PROC NLMIXED ([12]).  
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Applications of the proposed model include: (a) modeling rating migration probability for CCAR stress 
testing ([2]), and point-in-time probability of default term structure for IFRS9 expected credit loss 
estimation ([1]); (b) estimation of probability of default for a low default portfolio, and shadow rating 
modeling.  
 
The modeling of state transition probabilities dates back to the original credit portfolio approaches of 
CreditMetrics, CreditPortfolioView, and CreditRisk+ ([3], [4]), and contributions by researchers, including 
the works by Nyström and Skoglund ([8]) and Wei ([11]). Point-in-time rating transition probability model 
based on Merton model ([5], [6], [7], [10]), structured by a common credit index, is proposed by Miu and 
Ozdemir ([7]), and is extended by Yang and Du ([13])) to facilitate rating level sensitivity for CCAR stress 
testing and IFRS9 expected credit loss estimation. 
 
The proposed ordinal model, structured by a common score plus outcome rank specific sensitivity, has 
several advantages. The outcome rank specific sensitivity allows a risk rating to respond to its migrations to 
default, downgrade, stay, and upgrade accordingly. Under this model structure, risk for an entity is driven 
by the common score (as a dynamic) plus sensitivity in responding to a scenario. Unlike the rating 
transition model ([13]) based on the Merton model framework, which allows only one sensitivity parameter 
for all outcomes for a rating and uses only systematic risk drivers, this proposed model can include entity 
specific risk drivers and allows rank specific sensitivity. No estimation for asset correlation is required. 
Furthermore, the log likelihood based on forward probability of default given by a CDF function is 
generally concave, greatly increasing optimization efficiency.    
 
Entity specific drivers, such as downgrade history or credit quality changes in the last two quarters, can 
help improve the prediction and address the issue of the Markov assumption for most migration models, 
particularly when the portfolio is small and idiosyncratic risk cannot be diversified away.  
 
The paper is organized as follows: In section 2, we review two of the commonly used ordinal regression 
models: the ordered logit model and the continuation ratio model. In section 3, we propose the forward 
ordinal model and show the log likelihood function and its concavity. A heuristic hard EM (expectation 
maximization) algorithm for parameter estimation is proposed in section 4. The model is validated and used 
in section 5 to model the rating migration probability for a commercial portfolio, where for each rating the 
sensitivity is differentiated between migrations to default, downgrade, stay, and upgrade. The model is 
benchmarked with the rating transition model based on Merton framework.  
 

 
2. A Review of  Ordinal Regression Models 

 
In this section, we review two commonly used ordinal models:  ordinal regression and continuation ratio 
models.  
 

Let R denote the outcome for a trial with exactly one of the ordinal outcome values }....,,2,1{ k  Given a 

scenario consisting of a list explanatory variables ,...,,, 21 mxxx  let )...,,,( 21 mxxxx  denote the 

corresponding vector.  Let )(xFi
and )(xpi

denote, respectively, the cumulative and marginal probabilities 

defined by 
 

            ),|()( xiRPxFi   
            )|()( xiRPxpi   
 

Given x  and rank value ,i  the forward ordinal probability )(~ xpi
 and the backward ordinal probability

)(~ xp ib
are defined respectively by the conditional probabilities below   

 

           ),,|()(~ iRxiRPxpi    ),|()(~ iRxiRPxp ib    
                                   

Remark. We can always model the backward ordinal probability via the forward ordinal probability model: 
simply reverse the order of the ordinal outcomes and re-index the resulting forward ordinal probability 
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)(~ xpi  by replacing i  with ).1( ik   For this reason, we focus our discussion only on forward ordinal 

probability model. All discussions for forward ordinal model apply naturally to the backward ordinal model 
by an appropriate reversion for the outcome order and the index of the forward probability. 
 
Proposition 2.1. The following equations hold 
 

          )(...)()()( 21 xpxpxpxF ii                                                                      (2.1A) 

          ))(1/()()(~
1 xFxpxp iii                                                                                    (2.1B) 

          )(~)](1[()()()( 11 xpxFxFxFxp iiiii                                                       (2.1C) 

          )](~1)]...[(~1)][(~1[)](1[ 21 xpxpxpxF ii                                                     (2.1D) 
 

Proof.  Equation (2.1A) is immediate.  Equation (2.1B) follows from the Bayesian theorem, while equation 
(2.1C) follows from (2.1A) and (2.1B). By (2.1C), we have 
 

       
)](~1)][(1[(

)()](1[)(1

1

1

xpxF

xpxFxF

ii

iii






  

 

Thus the last equation (2.1D) follows by induction. □ 
 

For the largest rank outcome ,k we have the following 
 

        
)](...)()([1)(

;1)(~;1)(

121 xpxpxpxp

xpxF

kk

kk


  

 

Therefore, by Proposition 2.1, an ordinal model can choose to model one of the components below:  
 

(a) the cumulative probabilities }1...,,2,1|)({  kixFi
  

(b) the marginal probabilities }1...,,2,1|)({  kixpi
  

(c) the forward ordinal probabilities }.1...,,2,1|)(~{  kixpi
  

 

Marginal probabilities are subject to constraints below  
 

       ,1)(...)()( 21  xpxpxp i
 

       ,1)(...)()( 21  xpxpxp k
  

 

Therefore, modeling marginal probabilities individually exposes to additional complexity. In general, one 
can choose to model either the cumulative probabilities or forward ordinal probabilities, as reviewed and 
discussed in subsequent sections 2.1 and 2.2. 
 
    
2.1. Ordinal regression models  

 
An ordinal regression model is generally structured by cumulative probabilities }1...,,2,1|)({  kixFi

as 
 

           ),...()( 2211 mmii xaxaxabFxF      
121 ...  kbbb                         (2.2) 

where F denotes the cumulative distribution for a probability distribution. The coefficients 
maaa ...,,, 21

in 

model (2.2) do not depend on index .1 ki   
 

As cumulative probabilities, }1...,,2,1|)({  kixFi
are required to satisfy the following condition  

 

          )(...)()( 121 xFxFxF k                                                                                    (2.3) 
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This is guaranteed for model (2.2) by the constraint 
121 ...  kbbb in (2.2).  Condition (2.3) implies, 

when modeling the cumulative probabilities, the coefficients 
maaa ...,,, 21

in (2.2) must be the same for all 

rank outcomes },1...,,2,1{  ki  a limitation for choosing to model the cumulative probabilities.  

  

Recall that, given a sample with n  independent trials, where each trial results in exactly one of k rank 

outcomes, the probability of observing frequencies },{ in with frequency in  for the 
th

i  outcome, is 

                  ,...
!...!!

!
21

21

21

kn

k

nn

k

ppp
nnn

n
 

knnnn  ...21
                       

where )(xpp ii  is the marginal probability for rank outcome ,i  which can be derived from the 

cumulative probabilities given in (2.2). Therefore, the parameters for model (2.2) can be estimated by using 
the maximum likelihood approaches, given a sample for the observed rank outcome frequencies. 
 
The proportion odd (or ordered logistic regression) model, a commonly used ordinal model, is given by 
 
 

       
mmi xaxaxabxiRPxiRP  ...)]|(/)|(log[ 2211

 

         )|()( xiRPxFi   

                   )]...exp(1/[1 2211 mmi xaxaxab   

                   )]...( 2211 mmi xaxaxabF   
 

where ))exp(1/(1)( xxF   is the standard logistic cumulative probability distribution. Thus the proportion 

odd model is a special case of the ordinal regression model (2.2) with the link function given by the inverse 
of the standard logistic cumulative distribution, i.e., the logit function. 
 

Ordinal regression models are implemented by SAS, with options for different link functions, including the 
inverse of standard logistic and the inverse of standard normal cumulative distributions (i.e., the logit and 
probit functions).    
 
 
2.2. Forward/backward continuation ratio model 

 
Recall that the logit function is defined as )]1(log[)(logit -pp/p   for 1.0  p  The forward and backward 

logistic continuation ratio models are structured, respectively, by equations (2.4A) and (2.4B) below, given 
scenario x  and rank outcome value i : 
 

    
mmi xaxaxabxiRPxiRP  ...)]|(/)|([logit 2211

                                            (2.4A) 

    
mmi xaxaxabxiRPxiRP  ...)]|(/)|([logit 2211

                                               (2.4B) 
 

The coefficients 
maaa ...,,, 21  do not depend on index .1 ki  Let )(~ xpi  denote the forward ordinal 

probability ),|( iRxiRP  or the backward ordinal probability ).,|( iRxiRP   Then we can 

reformulate (2.4A) and (2.4B) as  
 

       ))...exp(1/(1)(~
2211 mmii xaxaxabxp                                  

                 )...( 2211 mmi xaxaxab                                                                       (2.5) 
- 

where   denotes standard logistic cumulative distribution.  This means the logistic forward continuation 
ratio model is structured by the forward ordinal probabilities for rank outcomes, with the inverse of the 
standard logistic cumulative distribution, i.e., the logit function, as the link function. The probit 
continuation ratio model is structured similarly using the inverse of the standard normal cumulative 
distribution, i.e., the probit function, as the link function. 
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3. The Proposed Forward Ordinal Model  
 
With ordinal regression model (2.2) and continuation ratio models (2.4A)-(2.4B), sensitivities for all rank 
outcomes are all the same, though the intercept can be different between rank outcomes.  In this section, we 
propose an ordinal model based on forward ordinal probabilities. This forward ordinal model allows 
sensitivity to be differentiated between rank outcomes. 
 

 
3.1. The mathematical setup  
 

We assume, given that the rank outcome will be no less than i , i.e., ,iR   there is a latent variable iy

given by 
 

            
immiii xaxaxarby  )...( 2211                                              (3.1)              

such that the outcome iR   when ;0iy  and iR   if ;0iy  where i  is a random variable with zero 

mean, independent of )...,,,( 21 mxxxx  . The coefficients }...,,,{ 21 maaa  do not depend on index 

.1 ki   
 

By an appropriate scaling to both sides of (3.1), we can assume the standard deviation of i  is 1. We 

assume that i is standard normal.  Let denote the cumulative distribution for .i  Then the forward 

ordinal probability )(~ xpi
by (3.1) is 

 

           ))...(()(~
2211 mmiii xaxaxarbxp                                                         (3.2) 

 

Let )....()( 2211 mmxaxaxaxc   We call )(xc a common score and ir the sensitivity for the rank 

value 1 ki with respect to the common score ).(xc  For IFRS9 expected loss estimation and CCAR 

stress testing, )(xc  can include both systematic and entity specific risk drivers.  
 

Note that, with model (3.2), an increase (resp. decrease) for the norm of the parameter vector 

)...,,,( 21 maaa during parameter estimation can propagate to the sensitivity parameter vector 

)...,,,( 121 krrr by a scale down (resp. up).  To prevent unnecessary disturbance of parameter estimation 

and ensure estimation convergence, the following constraints can be imposed 
 

         1...
22

2

2

1  maaa                                                                                                (3.3A) 
 

In practice, the sign of a coefficient ia is pre-determined. For example, default risk increases as 

unemployment rate increases. We thus require the coefficient for unemployment rate in the model to be 

positive. In this case, we can assume that all }{ ia are nonnegative by an appropriate sign scaling to the 

corresponding variable. Then a linear constraint as below can be imposed 
 

          1...21  maaa                                                                                                    (3.3B) 
   

Let )....()( 2211 mmxaxaxaxc   In the case when variables
mxxx ...,,, 21 are common to all entities 

(e.g., the macroeconomic variables), we have the model (3.4) below, assuming the normality for )(xc with 

mean u  and standard deviation :v  
 

           ))...()(1()(~
2211

2
uxaxaxarvrcxp mmiiii                                  (3.4) 

 

where ic is the threshold value estimated directly by taking the inverse 
1 to the long-run average for 

forward ordinal probability, which can be estimated directly from the sample. Model (3.4) is derived from 
(3.2) by a well-known lemma ([9]) for the expectation with respect to s  
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           )1,0(~),1/()]([ 2
NsbabsaEs    

 

With model (3.4), estimation is required only for parameters }...,,,{ 21 maaa and }{ ir , not the intercepts }.{ ib  

   
 

3.2. The log-likelihood function given the observed rank frequencies 
 
In this section, we show the log-likelihood and its concavity for observing rank outcome frequencies by 
using the forward ordinal probabilities }....,,2,1|)(~{ kixpi    

 

Given a scenario ),...,,,( 21 mxxxx  let in  denote the corresponding observed frequency for the 
th

i rank 

value. Let  
 

               
knnnn  ...21

                                                                                            (3.5A) 

Define is by 

            
ikkii nnnnnnns   ...)...( 1121
                                          (3.5B) 

 

We focus on the conditional probability space given that the rank value of the outcome R is no less than .i  

The log-likelihood for observing frequency in for the
th

i rank value and frequency 
ii ns   for rank values 

larger than i , given ),...,,,( 21 mxxxx   is 
 

            )](~log[)](~1log[)()( xpnxpnsxL iiiiii                                                           (3.6) 
 

up to a summand given by the logarithm of a binomial coefficient, which is independent of model 

parameters of model (3.2) and (3.4), assuming the occurrence of the 
th

i rank value is a binary event.  
 
Let ),,( hiixL  denote the log likelihood over this probability space for observing multiple frequencies

}...,,,{ 1 hiii nnn 
 for rank values }...,,1,{ hiii  and the frequency  

 

                 
111 ...   hikkhi nnns  

 

for rank values larger than hi  . We have the following proposition (see Appendix for a proof). 
 
Proposition 3.1. Equations (3.7A) and (3.7B) hold up to a summand given by the logarithms of some 
binomial coefficients (independent of the parameters in model (3.2) and (3.4)): 
 

             )(...)()(),,( 1 xLxLxLhiixL hiii                                                          (3.7A) 

              )(...)()(),1,( 21 xLxLxLkxL k                                                            (3.7B) 

□ 

 

A function is log concave if its logarithm is concave. If a function is concave, a local maximum is a global 
maximum, and the function is unimodal. This property is important for maximum likelihood estimate 
search. A proof for the proposition below can be found in Appendix. 
      

Proposition 3.2. The log likelihood function (3.7A) and (3.7B), with   being the standard normal 
cumulative probability distribution, is concave in the following two cases: 

(a) As a function of the r-parameters },{ ir  or of the b-parameters },{ jb and the a-parameters

}...,,,{ 21 maaa when )(~ xpi
 is given by (3.2). 

(b) As a function of the a-parameters }...,,,{ 21 maaa , or as a function of the r-parameters }{ ir  when 

)(~ xpi
 is given by (3.4).  

□ 
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4. Parameter Estimation by Maximum Likelihood Approaches   
 
In this section, we propose an algorithm for parameter estimation for models (3.2) and (3.4) by maximizing 
the log likelihood for observing rank outcome frequencies. This generic algorithm works for one forward 
ordinal. For modeling rating migration for a risk rated portfolio, multiple forward ordinal models are 
required, with one for each of non-default risk rating (See section 5 for model formulation and the adapted 
algorithm for parameter fitting).  
 
A. Estimation of parameters for model (3.2) 

  
The algorithm proposed is essentially a heuristic hard EM (expectation maximization) algorithm.  
 

Parameter initialization: Initially, }...,,,{ 121 krrr are set to 1. Estimate the parameters }...,,,{ 21 maaa  and 

},...,,,{ 121 kbbb without the constraint (3.3A) and (3.3B), by maximizing the log-likelihood of (3.7B). 

Recall that (3.7B) is concave by Proposition 3.2 (a), therefore global maximum estimates are granted. 
Rescale the a-parameter estimates by a scalar 0  to make )...,,,( 21 maaa a unit vector, and then set 

}...,,,{ 121 krrr each to ./1   This completes the initialization for all parameters.  
 

Step 1. Assume that the sensitivities }...,,,{ 121 krrr and }...,,,{ 121 kbbb are given. Estimate the 

parameters }...,,,{ 21 maaa by maximizing the log-likelihood of (3.7B). Global maximum estimates are 

granted by Proposition 3.2 (a). 
 

Step 2. Assume that the parameters }...,,,{ 21 maaa  and }...,,,{ 121 kbbb are given. Estimate the 

sensitivities }...,,,{ 121 krrr by maximizing the log-likelihood of (3.7B). Recall that, by Proposition 3.2 

(a), global maximum estimates are granted.  
 

Step 3. Assume that the parameters }...,,,{ 21 maaa  and }...,,,{ 121 krrr are given. Estimate the 

sensitivities }...,,,{ 121 kbbb by maximizing the log-likelihood of (3.7B). Also by Proposition 3.2 (a), 

global maximum estimates are granted. 
  

Step 4. Iterate the above three steps until a convergence is reached. Steps 1-3 are repeated until 
convergence is reached, i.e., the maximum deviation for all parameter estimates for },...,,,{ 121 kbbb

},...,,,{ 21 maaa and }...,,,{ 121 krrr  in consecutive two iterations, is less than .10 4    

 
We implement the above three-step optimization process by using the SAS procedure PROC NLMIXED. 
 
 

B. Estimation of parameters for model (3.4) 
 

For model (3.4), follows steps 1-4 above to fit for the coefficients }...,,,{ 21 maaa for common score 

)....()( 2211 mmxaxaxaxc  When this common score is known, we estimate }...,,,{ 121 krrr by 

maximizing (3.7B) with )(~ xpi
 being given by (3.4). Global maximum estimates are granted Proposition 

3.2 (b). 
 
 

5.  An Empirical Example: Rating Migration Probability and PD Term Structure 

for a Commercial Portfolio  
 
In this section, we apply the proposed ordinal model to estimate the rating transition probability for a risk 
rated commercial portfolio. Point-in-time PD term structure, for IFRS9 ECL estimation and CCAR stress 
testing, is derived. 
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The sample contains quarterly rating migration frequencies between 2006Q3 and 2016Q4 for a commercial 
portfolio, created synthetically by scrambling the default rate by an appropriate scaling. There are 21 risk 

ratings, with 21R  as the default rating, and 1R  the best quality rating. 
 

Because we are more concerned with the default outcome and default risk, we model rating migration 
probability by backward ordinal model, starting with the most important rating level default risk. As noted 
in section 2, a backward ordinal model can be viewed as a forward ordinal model after an appropriate 
reversion of the outcome order and the index of the resulting forward ordinal probability. 
      
The backward ordinal model is benchmarked with the rating transition model based on Merton model 
proposed by Yang and Du ([13]). Additional benchmark comments for SAS ordinal regression using SAS 
PROC LOGISTIC are given at the end of the section.  
 
 

5.1. The backward ordinal and benchmark models for IFRS9 expected credit loss 

estimation and CCAR stress testing 
 

 

A. Formulation of the models 
 

(a) Backward ordinal model for rating migration probability  
 

Given a non-default initial risk rating iR at the beginning of the quarter, there are 21 possible ordinal 

outcomes at the end of the quarter: an entity can migrate to default rating or any of the other 20 ratings. 

Given a scenario ),...,,,( 21 mxxxx   let )(~ xp ji
denote the backward ordinal probability that the rating 

iR  migrates to rating jR  given that it will migrate only to a rating with rank no larger than .j  Bearing in  

mind that a backward ordinal model can be viewed as a forward ordinal model by an outcome order and 
probability index reversion, we can model )(~ xp ji

by models (3.2) and (3.4) as (5.1A) and (5.1B) 

respectively: 
 

             ))...(()(~
2211 mmjijiji xaxaxarbxp                                                       (5.1A) 

             ))...()(1()(~
2211

2
uxaxaxarvrcxp mmjiijjiji                                    (5.1B) 

 

We assume that, for each initial rating ,iR   the sensitivity parameter jir  are the same for rank outcome 

values j  when: (a) 21 ji (downgrade); (b) ij 1  (upgrade). Denote the downgrade sensitivity 

dir and the upgrade sensitivity by .uir  Let idfr and isr  be the sensitivities respectively for outcome cases 

(c) 21j  (default); and (d) ij  (stay). Then (5.1A) and (5.1B) reduces to (5.2A) and (5.2B) below: 
 

 

         ))...(()(~
2211 mmijiji xaxaxarbxp                                                      (5.2A) 

          ))...()(1()(~
2211

2
uxaxaxarvrcxp mmiijiji                               (5.2B) 

 

where iuisididfi rrrrr ,,, respectively for default, downgrade, stay, and upgrade. The marginal probability 

is given by  
 

        )(~))(1()( xpxFxp jijiji   
 

where )(...)()()( 222021 xpxpxpxF jiiiji  is the cumulative probability. Constraint (3.3A) or 

(3.3B) is imposed for the proposed backward ordinal model (5.2A) and (5.2B). 
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(b) Rating transition model under the Merton model framework 

 
Point-in-time rating transition probability model based on Merton framework is proposed by Miu and 
Ozdemir ([7]), and is extended by Yang and Du ([13])) to facilitate rating level sensitivity for CCAR stress 
testing and IFRS9 expected credit loss estimation.  
 

Let )(xtij
 denote the transition probability from an initial rating

iR  at the beginning of the quarter to rating

jR at the end of the quarter, given a macroeconomic scenario )...,,,( 21 mxxxx  . Let   denote the 

standard normal cumulative distribution. Under the Merton model framework ([5], [6], [7], [10]), it can be 
shown ([13]) that   
 

     ))(~())(~()( )()1( xcirqxcirqxt ijkiijkiij                                                             

              )]~~...~~~~(~[ 2211)1( mmijki xaxaxarq                    

                )]~~...~~~~(~[ 2211)( mmijki xaxaxarq                                                  (5.3) 
   

where  ,~1
2

ihihi rqq   the quantities }{ ijq are the threshold values given by ),(1
ijij pq

 where ijp is the 

through-the-cycle transition probability from rating
iR to rating

jR , which can be estimated directly from the 

historical sample.  The sensitivity parameter ir
~  is the same for all rank outcomes for a given rating .iR  

 

The index 
mmxaxaxaxci ~~...~~~~)( 2211   is derived by a normalization from a linear combination 

,~...~~
2211 mmxaxaxa   with which the model )}({ xpi

best predicts the portfolio default risk, in the sense of 

maximum likelihood for observing default frequencies, where  
 

 

          )]~~...~~~~(~[)( 2211 mmiii xaxaxarcxp                                                    (5.4) 
 

is a model predicting the probability of default for rating ,iR no constraint is imposed for intercept .ic  The 

quantity ir
~  is driven by 

 

           10,)1(1/~ 22   iii rrr                                                                       (5.5) 
 

where 
iiir   1/  and i  is the asset correlation in the Merton model for rating 

iR ([13]).  

 

Remark. We can choose to fit for }...,,,{ 21 maaa without constraint (5.5). Unconstrained result is always 

better than the constrained one in the sense of higher likelihood value. 
 

 
B. Fitting for parameters 
 
We focus on macroeconomic scenarios and consider parameter fitting only for models (5.2B) and (5.3).  
 

 

For models (5.2B) and (5.3), parameter fitting follows the two steps below: 
 

1. Fit for the macroeconomic variable coefficients }...,,,{ 21 maaa  by maximum likelihood for observing 

rating level default frequencies, with default probability )(xpi  for rating iR being given by (5.4) 

without constraint (5.5). This can be done similarly as steps 1-4 in section 4.  
 

2. When credit index 
mmxaxaxaxci ~~...~~~~)( 2211   is determined, we are required to fit only for the 

risk sensitivity parameters }{ ir for model (5.3), and },,,{ iuisididf rrrr for model (5.2B), for ratings

}.{ iR  For model (5.3), we can choose to fit for }{ ir either separately for each rating iR , or in a 

combined way for all ratings },{ iR by using the appropriate likelihood function (3.7B) for all rating 
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migration frequencies, or (3.7A) for downgrade or default frequencies only. The corresponding log 
likelihood function is concave by Proposition (3.2) (b). For model (5.2B), we fit for each of the four 

groups }{},{},{},{ iuisididf rrrr separately, using the appropriate likelihood function (3.7A) for the 

corresponding migration frequency. 
 

In general, monotonicity for sensitivity between ratings is imposed:  Specifically, we require that }{ ir , 

){ idfr and }{ idr be non-decreasing and that }{ isr and }{ iur  be non-increasing for a higher risk rating.    

 
 

5.2. Validation results  
 
 

We use the following labels for the backward ordinal and the benchmark models: 
 

1. BORD – the backward ordinal model (5.2B) 
2. RTGM – the rating migration model based on Merton model framework (5.3) 

 

All three models use the same variables as listed below, provided by the US Federal Reserve: 
 

1. 3-month treasury bill interest rate 
2. Unemployment rate  

 

The macro coefficients for credit index 
mmxaxaxaxci  ...)( 2211

 are fitted as described in section 

5.1 in the same way for both the backward ordinal model and rating migration model based on Merton 
model, so both models have the same macro coefficient estimates. The table below records the estimates 

for these two coefficients, with the variable p-values 1p and 2p .    
 

               Table 1. Macro coefficients  

   
 

For the backward ordinal model the sensitivity parameter estimates are reported as in the table below for 20 
non-default ratings for default (DF), downgrade (DG), and stay (Stay), with monotonicity constraint being 
imposed. The sensitivity estimates for upgrade are all close to zero (reflecting that fact that the upgrade 
probability is slim in the stress period), and are not printed in the table. The migration model based on 
Merton model estimates the sensitivity parameters by maximum likelihood for observing only the default 
frequency, thus it has the same sensitivity parameter estimates as the backward ordinal model for default 
(the first row of the table).    
               
           Table 2. Sensitivity parameter estimates 

          
 
The table below show the back-test performance for two models based on R-Squared for prediction of 
portfolio cumulative default rates for 1, 4, 6, 12, and 16 quarters for the derived point-in-time PD term 
structure.  
 

                 Table 3. RSQ for portfolio cumulative default rate 

  
               
The results show model performance improves for the backward ordinal model when sensitivity parameter 
is differentiated between migrations to default, downgrade, stay, and upgrade for the backward ordinal 
model. This improvement is a trade-off to adding more sensitivity parameters.     
 

Model v1 v2 p1 p2

RTGM/BORD 0.3975 0.6025 0.0247<0.0001

Migration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DF 0.001 0.001 0.002 0.003 0.004 0.005 0.017 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.060 0.060 0.769 0.769

DG 0.128 0.129 0.130 0.131 0.132 0.133 0.134 0.135 0.136 0.151 0.228 0.229 0.230 0.231 0.248 0.249 0.362 0.504 1.139 .

Stay 1.992 1.992 0.258 0.258 0.258 0.144 0.133 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.050 0.050 0.050 0.050 0.050

Model 1 4 8 12 16

BORD 0.420 0.575 0.570 0.792 0.777

RTGM 0.420 0.558 0.518 0.726 0.660
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We end this section by adding additional benchmark comment based on SAS ordinal regression using SAS 
PROC LOGISTIC, with both logit and probit as the link functions, via the “class” and “by” options.  
 

When “by” statement is used for initial ratings, SAS fits for each initial rating iR an ordinal regression 

model of the form 
 

            )...()( 2211 mmiiijiji xaxaxabxF   
 

for the cumulative probability for rank outcome j less than 21. This model has redundant coefficients 

(depending on rating index i ), causing an over-fit issue for such a short time series sample. More 
importantly, it is not structured by a common score, and the sensitivity. We do not recommend this model.  
 
When the “class” statement is used, the initial risk rating is treated as a class variable in the model, and 

SAS fits for each initial risk rating iR an ordinal model of the form as 
 

            )...()( 2211 mmjiji xaxaxabxF   
 

for the cumulative probability for the rank outcome j  less than 21. The intercept vectors for initial risk 

rating iR  and 1R  satisfy the following equation: 
 

         )...,,,()...,,,( 20121112021 bdbdbdbbb iiiiii                                             (5.4) 

with constant id  corresponding to the 
th

i  level of the class variable. That is, the intercept vector for iR  is 

a translation of the intercept vector for 1R . As expected, this model fails to predict the default risk and 

other migration risk. It over-estimates PD for the high risk ratings
20,19 RR , and under-estimates 

significantly the PD for other ratings. We do not recommend this model.   
.         
Conclusions. Ordinal regression models are widely used for modeling rating migration. Results are 
generally not very optimistic, partly due to the lack of flexibility with respect to the sensitivity (between 
rank outcomes and between risk ratings). In this paper, we propose an ordinal model based on forward 
ordinal probabilities. Under this model, forward ordinal probabilities are structured by a common score 
plus rank and rating specific sensitivity. This rank specific sensitivity allows a risk rating to respond to its 
own migration patterns to default, downgrade, stay, and upgrade accordingly.  Empirical results show, the 
model is more robust than the rating transition model based on the Merton model framework. Unlike the 
rating transition model based on Merton model, which allows only one sensitivity parameter for all rank 
outcomes for a rating, and uses only systematic risk drivers, the proposed ordinal model differentiate 
sensitivity between outcomes and include entity specific risk drivers. No estimation for asset correlation is 
required. The model can be implemented by using for example, the SAS PROC NLMIXED procedure. 
This forward ordinal model will provide a new and useful tool for practitioners for point-in-time PD term 
structure modeling for IFRS9 expected credit loss estimation, and multi-period scenario loss projection for 
CCAR stress testing.   
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Appendix 
 

Proof of Proposition 3.1.  We show only (3.7B), the proof for (3.7A) is similar. For simplicity, we write iF  

and ,~
ip  respectively, for )(xFi

 and ).(~ xpi
 The marginal probability for the event }|{ xiR   is 

).(~))(1( 1 xpxF ii Thus the probability for observing a frequency in for the 
th

i rank value is:  

               ii
n

i

n

i pF ~)1( 1  

up to a multiplicative factor given by the binomial coefficient. Consequently, the probability observing 

frequencies
kiin ...,,2,1}{   with in  for the 

th
i rank value is: 

    kk n

k

nnn

k

nn
FFFppp )1...()1()1(~...~~

12121
3221

                                                 (A.1) 
   

up to a constant factor given by some binomial coefficients.  By (2.1D) of Proposition 2.1, we have: 
 

   k
n

k

nn
FFF )1...()1()1( 121

32

  

   k
n

k

nn
pppppp )]~1)...(~1)(~1...[()]~1)(~1[()~1( 121211

32

  

   kkk
n

k

nnnnnn
ppp )~1(...)~1()~1( 1

...
2

...
1

4332


     

http://dx.doi.org/10.1016/S1042-9573(03)00040-8
http://www.r2-financial.com/wp-content/uploads/2010/07/LinearFactor.pdf
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   112211 )~1(...)~1()~1( 121
 


  kk ns

k

nsns
ppp                                                       (A.2) 

 
 

The equation (A.2) follows from (3.5B).  Thus, by (A.1), the corresponding log-likelihood is: 
 

 

  )]~log([...)]~1log()()~log([)]~1log()()~log([)log( 2222211111 kk pnpnspnpnspn   

            ...)]~1log()()~log([)]~1log()()~log([ 2222211111  pnspnpnspn n
 

                   )]~1log()()~log([ kkkkk pnspn                                                  (A.3)          

                         )(...)()( 21 xLxLxL k  
 

where the equation (A.3) follows form the fact that .0)(  kk ns  □ 

 
Proof of Proposition 3.2. It is well-known that the standard normal or logistic cumulative distribution is log 

concave. Also, if )(xf is log concave, then so is ),( bAzf   where bAz  : 1
RR

m   is any affine 

transformation from the m-dimensional Euclidean space to the one-dimensional Euclidean space. Therefore 

both the cumulative distributions )(x and )( x are log concave. For Proposition 3.2 (a), the concavity 

of (3.7A) and (3.7B) follows from the fact that the sum of concave functions is again concave.  For 
Proposition 3.2 (b), the concavity of (3.7A) and (3.7B) as a function of a-parameters is also immediate.   
 

For Proposition 3.2 (b) and the concavity of (3.7A) and (3.7B), as a function of the r-parameters },{ ir  

recall that )(~ xpi  in (3.4) is given by 

     ))...()(1()(~
2211

2
uxaxaxarvrcxp mmiiii   

 

It suffices to show that the 2nd derivative of the function 
 

           )]1(log[)( 2
rarbrL                                                                               (A.4) 

 

is non-positive for any constants a  and .b  This is because either )])(~log( xpi
 or )])(~1log( xpi will 

have the form of (A.4) after some appropriate scaling transformations. The 2nd derivative 22 /)]([ drrLd is 

given by: 
 

 )}1(/)1(')]1(/[)]1([{)1/( 22222222
rarbrarbrarbrarbarbr    

)1(/)1)()(1( 22/322
rarbrbrarb                              

    III                                                                                                      (A.5) 
 

where   and '  denote the 1st and 2nd derivatives of  .  Because the factor in the 1st summand of (A.5) 
 

      )}1(/)1(')]1(/[)]1([{ 222222
rarbrarbrarbrarb    

corresponds to the 2nd derivative of )(log z  (with respect to ),1 2
rarbz  it is non-positive. Thus  

the 1st summand in (A.5) is non-positive. The 2nd summand in (A.5) is non-positive if .0b  For the case 

,0b  we can change b back to the negative case using the function )()( xxF   and repeat the same 

discussion to have non-positivity of the 2nd derivative of (A.4).  

□ 


