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ABSTRACT 

 

This paper takes advantage of a unique data set on 143,000 poor households from northern 
Bangladesh to analyze the effects of microfinance membership on a household’s ability to cope 
with seasonal famine known as Monga.  We develop an instrumental variables strategy that 
exploits a jump and a kink at the 10 decimal (0.1 acre) land ownership threshold driven by MFI 
screening process to ensure repayment by excluding the ultra-poor. Evidence from the local 
2SLS estimator (Dong, 2017) shows that microfinance membership improves food security 
during the hungry season, especially for the poorest households who struggle to survive at the 
margin of 1 and 2 meals a day. Microfinance membership also reduces the probability of short-
term migration for work during Monga, but is ineffective in reducing the incidence of advance 
sale of labor at low wages.  These conclusions are also supported by estimates from minimum-
biased IPW estimator of Millimet and Tchernis (2013) that reduces bias without imposing 
exclusion restrictions.   
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(1) Introduction 

Microfinance programs have become an integral part of the anti-poverty strategies in 

many developing countries over the last four decades. While proponents argue that microfinance 

has improved the lives of millions of poor people (especially women) by providing access to 

credit without collateral, the critics have raised serious doubts about its efficacy as a poverty 

alleviation tool and as a broader development strategy (for recent surveys of the literature, see 

Armendáriz and Morduch (2010), Banerjee et al. (2015), Mahmud and Osmani (2017)).2  

Although the initial focus of the literature on microcredit had been on the implications of 

missing credit market and the potential effects of relaxing binding credit constraint on household 

outcomes, it is now well appreciated that microcredit may at least partially be filling in for other 

missing markets.3  Microcredit in many cases works as an imperfect substitute for missing 

insurance and consumer credit markets.4 That the credit market can play an insurance role, 

especially when the credit contract is renegotiable, has been well-understood in the literature on 

consumption smoothing in developing countries (Udry (1990, 1994), Besley (1995), Morduch 

(1995, 2011), Carter and Lybbert (2012)).5 Taking advantage of a unique data set on 143,000 

ultra-poor households and using the seasonal famine in Northern Bangladesh known as Monga 

as a case study, this paper provides evidence on the effectiveness of microfinance programs in 

coping with anticipated seasonal shocks in rural economy.  Seasonality and seasonal hunger are 

not unique to Bangladesh, it is a feature of many poor agrarian economies (see Chambers et al. 

(1981), Devereux et al. (2012)). 

Almost every year during the months of September-November (before the Aman rice 

harvest), a large part of rural Northern Bangladesh, especially in the Greater Rangpur region, 

becomes vulnerable to seasonal famine or near famine situation. During this lean season, a large 

number of poor and extreme poor (ultra-poor) households cannot find any employment. The poor 

and ultra-poor households thus turn to desperate measures to cope with the seasonal famine such 

                                                
2
	Recent empirical analysis of the effects of microfinance includes six papers based on RCT in the special issue of 

American Economic Journal Applied Economics (2015). For papers using nonexperimental data, see Berhane and 

Gardebroek (2011), and Islam (2011), Morduch and Roodman (2014), Menon (2006), among others. 
3 For example, Emran, Morshed and Stiglitz (2011) show that microcredit addresses simultaneously two missing 

markets: credit and labor.   
4 There is evidence that many households use microcredit for consumption smoothing (an insurance market role), 

and for financing indivisible consumer durables such as bicycle and television (missing market for consumer credit), 

or other lumpy expenditures (such as financing migration and education). 
5 Microfinance NGOs are also increasingly offering explicit savings and insurance products to poor households (see 

Karlan and Morduch (2009) and Banerjee and Duflo (2011) for discussions). 
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as reducing daily food intake and distress sale of assets (Rahman (1995)). Since many of them 

own few assets other than their labor endowment, selling labor in advance during Monga is 

among the few options they might have to avoid starvation. When households own land, they can 

also sell their crops in advance.6 Such ‘distress sale’ of labor or crops implies that the households 

receive very unfavorable prices, and thus may be trapped in a vicious cycle of poverty. The 

average wage received for advance labor sale is about 50 percent of the wage in the spot market 

(Rahman (1995)). Access to credit in such a situation can potentially make a big difference. 

Microcredit is likely to yield higher income when used in productive activities, and fungibility of 

credit means that loans taken ostensibly for investment can be used for consumption smoothing.  

Most of the microcredit projects are non-farm activities, and thus are not subject to seasonality or 

weather shocks, unlike agriculture. Moreover, microcredit may be effective in mitigating the 

effects of low demand for labor in agriculture during the lean season, because it creates 

employment opportunities within the household.  

One can, however, easily find reasons to suspect that microcredit may not be an effective 

policy tool for addressing seasonal famine.  First, microcredit loans are not short-term 

consumption loans, and thus a household may not be able to get a new loan when they need it 

most, i.e. during the Monga period. In fact, the rigid loan repayment schedule might make it 

difficult to buy enough food, and repay the loans at the same time.  Second, although 

microfinance groups may be helpful in the face of idiosyncratic shocks at the household level 

(such as health shocks as found by Gertler et al. (2009)), Monga is a more aggregate shock (at 

the village or sub-district level) that affects many (or even most of the) households in a village at 

the same time. This is likely to make the ‘solidarity group’ aspect of microcredit programs such 

as Grameen Bank and BRAC less effective in coping with Monga and other aggregate shocks, 

both anticipated and unanticipated.7 Thus, it is by no means obvious that access to microcredit 

necessarily makes it easier for a household to cope with seasonal adversity. Whether 

microfinance helps a household cope with Monga is thus an empirical issue.  

This paper analyzes the impact of microfinance membership on a set of economic 

indicators that are informative about a household’s ability to cope with famine. They are: 

                                                
6 In our data set the incidence of advance crop sale is very low, less than 1 percent. So, we do not use it as an 

indicator of a household's ability to cope with seasonal famine. 
7 The income level of most of the households in the affected regions suffers during Monga and the resulting fall in 

local demand can make nonfarm activities financed by microcredit unprofitable. 



4 
 

indicators of food security (number of meals a day during Monga), advance sale of labor as an 

indicator of distress sale, and short-term migration for work during Monga. An important 

advantage of our study is that we have an exceptionally large data set on 143,000 poor and ultra-

poor households (monthly household income less than Tk. 1,500 which was approximately $21 

in 2006) which was collected by the Institute of Microfinance (InM), Dhaka, through a 

household census of the Monga-prone districts in Northern Bangladesh.8 A second important 

advantage is that our sample covers many different microfinance NGOs working in the 

Northwestern Bangladesh including Grameen Bank, BRAC, ASA and BRDB. Our estimates 

give average effects of the different programs, and thus can lay claim to a higher level of 

generality compared to most of studies that focus on one specific microfinance program with a 

relatively small sample size of ultra-poor households.  

Identification and estimation of the effects of microfinance membership is difficult 

because of selection biases arising from a household’s participation decision and the screening 

by the MFIs (for a discussion, see Armendáriz and Morduch (2010)).  Our main empirical 

strategy is an instrumental variables approach motivated by the screening process of MFIs in 

Bangladesh, especially as it relates to the ultra-poor households.  While MFIs have in general 

been successful in reaching the moderate poor, the ultra-poor are more often excluded from 

microcredit services (see the discussion in Matin (1998), and Emran et al (2014)).  The focus on 

moderate poor reflects an uneasy tradeoff between the poverty alleviation and repayment 

objectives of MFIs (Salim (2013), Emran et al. (2014)).   Land ownership has been used by most 

of the MFIs in Bangladesh as a screening device.  The microfinance programs are supposed to 

use half acre (50 decimal) land ownership as a cut-off, but the evidence in the literature shows 

that the half-acre rule is often violated (Morduch and Roodman (2014)).  Consistent with the 

literature, we find that the half-acre landownership has little power in explaining the 

microfinance membership in our data set and thus cannot be the basis for an instrumental 

variables approach.  Our approach instead exploits the fact that, to improve the repayment rate, 

MFIs try to exclude the ultra-poor, defined by BRAC and others as households owning less than 

10 decimal land.  We show that there is evidence of both a jump and a kink in the probability of 

MFI membership at the 10 decimal land ownership threshold: the households with less than 10 

                                                
8 We are not aware of any other work that utilizes such a large data set to analyze the effects of microfinance on 

ultra-poor households.  
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decimal land are less likely to be included in the MFI program (after controlling for land owned 

and land squared).  We implement the local 2SLS (henceforth L2SLS) suggested by Dong 

(2017) which is appropriate in our case with binary treatment and both a jump and kink in 

participation probability at the 10 decimal threshold. Since our outcome variables are binary, we 

also report estimates using a local bivariate probit estimator (LBiprobit) with the same 

instruments.9 

The results from our empirical analysis provide robust evidence in favor of a beneficial 

effect of microfinance membership on a household’s ability to cope with hunger during the 

seasonal famine (Monga), but microfinance seems to be ineffective in tackling the seasonal labor 

market failure.   The probability that a household survives on 1 meal a day during the hungry 

season declines by 19 percentage points for the microfinance members according to the local 

Biprobit estimate.10  This suggests that the poorest of the poor who struggle at the margin of 1 

and 2 meals a day benefit substantially from microfinance.  The relatively moderate poor for 

whom the relevant margin is 2 and 3 meals a day also seem to benefit, but to a much lesser 

extent.  Microfinance membership improves the probability of having 3 meals a day during 

Monga by only 1.5 percentage points.  The probability that a household resorts to short-term 

migration to cope with seasonal famine is 16 percentage points lower among the microfinance 

households.  The magnitudes of the effects on these three outcome variables are larger according 

to the local 2SLS estimator.11  In contrast, there is no evidence of a reduction in the probability 

of distress sale of labor in advance at low wages.  The evidence thus suggests that microfinance 

is ineffective in addressing the labor market failure during the seasonal famine. 

The rest of this paper is organized as follows. Section (2) provides a brief background of 

the persistent seasonal famine (Monga) in Bangladesh. The next section discusses our empirical 

strategy. Section (4) is devoted to a discussion of the data and main variables. The empirical 

                                                
9 In the empirical results section, we also discuss and report estimates from the recently proposed minimum biased 

inverse probability weighted (MB-IPW) estimator by Millimet and Tchernis (2013). The estimates from MB-IPW 

are useful in two ways: (1) a comparison of OLS, MB-IPW, and L2SLS estimates help us better understand the 

direction of omitted variables bias, and (2) they provide a robustness check without imposing exclusion restrictions. 
10 We use three meals a day as an indicator of food security, as it is the norm in rural Bangladesh to have three full 
meals when a household has enough wealth. It is important to appreciate the fact that even the three meals are not 

likely to supply enough nutrition (especially protein) nor calories during Monga for most of the poor households. 
11 It is important to appreciate that the estimates from local Biprobit are average treatment effect on treated, while 

the estimates from local 2SLS are local average treatment effect.  For an excellent discussion on this point, see 

Chiburis et al. (2012). 
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results are reported in section (5). The paper concludes with a summary of the empirical 

findings. 

 

(2) Monga: The Season of Deprivation and Starvation  

 
Despite the enormous social and economic progress made in last few decades, 

Bangladesh remains a poor country. While poverty fell nationwide from 49 to 40 percent 

between 2000 and 2005 (World Bank (2008)), the rural poverty rate in Rangpur district and 

surrounding areas in Northern Bangladesh was 56 percent in 2005 (Khandker et al. (2012)). Five 

million of Bangladesh’s poor live in the ‘Greater Rangpur’ region, an area plagued almost every 

year by Monga, a season of near famine (World Bank (2008)).  

An agricultural phenomenon, Monga is a season of severe food deprivation that strikes 

parts of Bangladesh with disturbing regularity.  Locally known as Mora Kartik, or October the 

month of deprivation, it is “the bane of the rural poor, the season of half-meals and debt 

bondage” (Rahman (1995), p. 234).  Every mid-September through mid-November there is a 

negative shock to income for the poor landless households primarily because of a lack of 

employment, and consequently households find it difficult to buy enough food for three meals a 

day.   It is important to note that seasonal hunger is the consequence of seasonal income 

fluctuations among the ultra-poor whose income is barely enough to survive during regular 

times. It is not primarily the result of a shortage of food, the real problem is one of seasonal 

‘entitlement failure’ in the sense of Sen (1981).  

In rain-fed areas, the agricultural calendar in Bangladesh is divided into two main 

growing seasons. Aus, the wet season first paddy crop is grown when enough rainfall occurs 

(April to August). Aman, the wet season second rice crop lasts from July to December. In 

addition, if irrigation is available, a third rice crop, called Boro, can be planted after Aman. The 

hunger months occur between the planting and harvest of Aman, the autumn rice crop, when 

there is a shortage of employment and wages are very low but grain prices are high (Rahman 

(1995)). Thus, Monga repeats itself almost every year around September to November after the 

previous season’s food has run out, before the transplanted rice is harvested in December. These 

months, and especially October, give rural people a harder time than usual because of extremely 

limited job opportunities (Muqtada (1975), Hossain and Bayes (2009)). Evidence shows that this 
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variation in income is more pronounced in Greater Rangpur area which is the focus on our study 

than it is in other parts of the country (Khandker (2009)).  

The Monga-affected region of Greater Rangpur, encompasses the districts of Gaibandha, 

Kurigram, Lalmonirhat, Nilphamari, and Rangpur. In the Monga of October 1991, Greater 

Rangpur experienced an average 50 percent drop in the daily wage rate compared to the rest of 

the year (Rahman (1995)). The existing evidence shows that the inhabitants of Greater Rangpur 

are poorer than the rest of the country in terms of a variety of indicators including income, 

expenditure, and poverty level.  Extreme poverty in Greater Rangpur is 48 percent compared to 

the national rural average of 31 percent in 2005 (Khandker et al. (2012). Also, the daily wage 

rate in the same year was for male agricultural workers in Greater Rangpur is 46 taka compared 

to 64 taka found elsewhere (Khandker et al. (2009)). During Monga, the landless ultra-poor are 

especially hard hit as they cannot find employment. 

Seasonal variation in income is, however, not unique to Bangladesh, it is common to 

agrarian economies. In addition to Bangladesh, Devereux et al (2012) discuss seasonality in 

China, Ethiopia, India, Malawi, Niger, Peru, and Sub-Saharan Africa. With monsoon-dependent 

crops and a lack of irrigation, agricultural households in Indian villages receive on average 75 

percent of their annual income in the span of a three-month period (Chauduri and Paxson 

(2001)). When combined with extreme poverty, seasonal variation in income translates to 

seasonal hunger. Dercon and Krishnan (2000) found consumption of rural households in 

Ethiopia to vary greatly over a short period of time. Malawi has its own hungry season, as one of 

its citizen recounts: “Come January, most people are forced to tighten their belts and wait until 

harvest…We call this period ‘the hungry season’. In the countryside, people are working the 

hardest … but doing so with the least amount of food. Understandably, they grow thin, slow, and 

weak” (Kamkwamba and Mealer, (2009, p. 71)). Seasonal hunger in turn is the “father of 

famine” (Devereux et al (2008)). The distinction between seasonal hunger and famine is one of 

severity. Periodically, an annual shortfall in income will be so severe as to cause a famine.  

 

(3) Empirical Strategy  

To understand the issues involved in identification and estimation of the effects of 

microfinance on a household’s ability to cope with seasonal famine, consider the following 

triangular model: 
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𝐶! = 𝛽! + 𝛽!𝑀! + 𝑋!
′
Γ+ 𝜉!      (1) 

𝑀! = 𝛼! + 𝑋!
!
Π+ 𝜀!        (2) 

 
Where (1) is the outcome equation and (2) is the selection equation. The outcome equation 

shows household i’s ability to cope during Monga (𝐶!), as a function of membership in any 

Microfinance Institution (𝑀!), household and village characteristics (𝑋!), and an error term (𝜉!). 

As noted earlier, the outcome variables we focus on are indicators of household food security 

(number of meals a day), incidence of advance labor sale, and migration in search of work during 

Monga.  

The parameter of interest is 𝛽! in equation (1) which indicates the effect that 

microfinance membership has on a household’s ability to cope during Monga.  OLS and Probit 

estimation of equation (1) is likely to yield biased results.  The endogeneity arises from the fact 

that there are individual, household and village level unobserved factors that may affect both the 

outcome and the selection equations, and thus the correlation between the error terms is not zero, 

i.e., 𝜌 = 𝐶𝑜𝑣(𝜉! , 𝜀!) ≠ 0. The most obvious individual-level common unobserved heterogeneity 

in the context of microfinance is ability (or entrepreneurial capability). An individual with higher 

ability would expect higher net return from participation in the credit program, and thus would 

self-select into the program. But higher ability may also mean that she will have better economic 

outcomes in the absence of credit availability. This creates a positive selection effect, and 𝜌 > 0 

on this account. However, it is also possible that the outside option for a high ability entrepreneur 

is much better (shadow price of time is higher), and thus she might not be interested in high 

interest rate microloans with its web of restrictions (such as group liability, and substantial time 

commitments for regular group meetings).  If this is the case, MFI would attract relatively low 

ability micro-entrepreneurs and thus the selection would be negative implying 𝜌 < 0.  

The correlation between 𝜉! and 𝜀! can also arise because of nonrandom placement of MFI 

programs (and branches) across different villages.  For example, to ensure high repayment rates, 

the MFIs have incentives to select villages with concentration of moderate poor and eschew the 

most vulnerable villages with concentration of ultra-poor.  The MFI can also use information 

about a village’s economic potential to pick better endowed villages.  This would result in a 

positive correlation between the error terms in equations (1) and (2) above implying 𝜌 > 0. But 

if the MFIs are true to their objective of poverty alleviation, then they will target relatively 
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unfavorable villages, thus making 𝜌 < 0 The available evidence shows that the objective 

function of microfinance NGOs is a convex combination of poverty objective and repayment 

objective (Salim (2013)). 

 

Tackling Omitted Variables Bias: Alternative Approaches 

When the outcome variable is binary, as is the case in our application, one can estimate 

the triangular model using maximum likelihood under the assumption that 𝜉! and 𝜀! are 

approximately bivariate normal without imposing any exclusion restrictions. However, such 

identification relies on the nonlinearity of Normal CDF, and is regarded as non-robust (Altonji et 

al, (2005)). In the absence of any exclusion restrictions, one can also use various matching 

methods (Heckman and Navarro-Lozano (2004), Heckman et al. (1998), Hirano and Imbens 

(2001)). However, the matching methods rely on the assumption that there is no significant 

selection on unobservables conditional on matching on the observable characteristics.  This is a 

strong assumption, unlikely to hold in our context.  

Recent literature has developed ways to minimize and correct for the bias that results 

from the failure of the conditional independence assumption (CIA).  We use the Minimum 

Biased Inverse Probability Weighted IPW (MB-IPW) estimator proposed by Millimet and 

Tchernis (2013) which provides a way to reduce the bias. The Minimum-Biased IPW estimator 

adapts the normalized Inverse Probability Weighting (IPW) estimator of Hirano and Imbens 

(2001) by exploiting a result due to Black and Smith (2004) that the bias minimizing propensity 

score is equal to 0.50 when estimating the average treatment effect on the treated. The MB-IPW 

estimator restricts the sample to the observations with a propensity score in the “neighborhood” 

around the Bias Minimizing Propensity Score (BMPS). This can be thought of as a formalization 

of the increasingly common practice of reducing bias in matching and propensity score weighted 

estimates by excluding observations from the tails of propensity score distribution (see, for 

example, Moretti and Kline (2014)). Millimet and Tchernis define the neighborhood around the 

‘BMPS’ as observations with a propensity score within a radius 𝜃, such that at least 𝜃 percent of 

both treatment and control groups are included (after trimming observations with a BMPS below 

0.02 and above 0.98). They set this radius at 0.05 and 0.25.  Motivated by the Monte Carlo 

evidence, we implement the MB-IPW estimator with a radius of 0.25. 
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  An Instrumental Variables Approach 

 Our main identification approach is an instrumental variables strategy inspired by the 

recent literature on Regression Jump and Kink Design (Nielson et al. (2010), Card et al (2012), 

Dong (2017)).  While it has long been known that a jump (or a discontinuity) in the participation 

probability at a policy threshold generates credible identifying variation, the recent advances in 

the literature has clarified the advantages of such a design for nonexperimental data (for a 

survey, see Lee and Lemieux (2010)).  The general idea is that observations within a close 

neighborhood around the threshold are similar except for the fact that some received treatment 

while others did not because of idiosyncratic factors beyond their control, thus mimicking a local 

randomization.  Differences in their outcomes can then be attributed to the effect of the 

treatment. An interesting recent extension called regression kink design (RKD) shows that, in the 

absence of a discontinuity, a kink (i.e., a change in the slope) in the probability of participation at 

a threshold created by program design or policy rule can provide the basis for identification.  The 

approach is implemented as an instrumental variable estimator when compliance is imperfect.12 

In our context, while the MFI loan officers tried to exclude high repayment risk ultra-poor 

households with less than 10 decimal land, this screening process was less than perfect.  In a 

recent paper, Dong (2017) proposes a local 2SLS estimator for the case when there is evidence 

of both kink and discontinuity at a threshold and the treatment is binary as is the case in our 

application. We thus implement the L2SLS approach suggested by Dong (2017) which applies 

the 2SLS estimator to a subsample of observations around the threshold. 

  In the context of microfinance in Bangladesh, it is widely discussed in the literature that 

MFIs use land ownership of potential borrowers as a screening mechanism (for a discussion, see 

Mahmud and Osmani (2017)).  Following Grameen Bank, most MFIs in Bangladesh, at least in 

principle, use less than half an acre (50 decimal) of land ownership as an eligibility criterion, 

ostensibly to target the poor.  This suggests half an acre of land as a possible cutoff, as was used 

in Pitt and Khandker (1998), Morduch (1998), and Menon (2006), among others.  However, 

there is substantial evidence that most of the MFI programs, in many cases, fail to adhere to the 

                                                
12 Nielson et al (2010) first coined the term “RKD” and demonstrated that it is enough that there is a kink in the 

treatment probability to achieve identification.  Building on the Nielson et al (2010) paper, Card et al (2012) present 

a fuzzy RKD for the case when treatment is continuous.			
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half-acre rule. Moreover, it might be subject to manipulation by credit constrained households, a 

possibility especially important in our context given the weakness of land administration and 

record keeping in Bangladesh.  In our data set, there is no evidence that the half-acre rule is an 

important factor in determining which households get microcredit and which do not.  As shown 

in Table 1, the half-acre land dummy is not statistically significant at the 10 percent level in the 

microcredit membership equation.  

We instead rely on the widely-documented fact that the standard microcredit programs 

systematically exclude the ultra-poor, motivated by the goal of ensuring high repayment rates 

(see, e.g. Noor et. al. (2004), Rabbani et al. (2006), Emran et al. (2014), Mahmud and Osmani 

(2017)).  This suggests a different land ownership cutoff that is potentially important for 

explaining microcredit membership because most of the MFIs in Bangladesh define a household 

as ultra-poor if it owns less than 10 decimal land.  BRAC’s specialized CFPR-TUP asset transfer 

program uses 10 decimal land as an eligibility criterion for ultra-poor (see Emran et al. (2014), 

Matin et. al. (2008)).  The households with less than 10 decimal land belong to “landless I” (with 

no land) and “landless II” (own only homestead land) categories according to the landlessness 

definitions used by Land Occupancy Survey of 1977-78 done by Bangladesh Bureau of Statistics 

in collaboration with USAID. 13  The importance of 10 decimal land cut-off for MFI membership 

is confirmed by the regression evidence presented in column 2 of Table 1; the coefficient on the 

dummy for less than 10 decimal land-ownership is -0.056 and is statistically significant at the 1 

percent level (standard error is 0.01), after controlling for land owned and its square term along 

with village level controls and district fixed effects. The ultra-poor households are thus less 

likely to receive microcredit.  Figure 1 shows that there is a visible jump in the probability of 

MFI membership around the 10-decimal threshold using the 20 percent sample around the 

threshold (10 percent above and 10 percent below).  Figure 2 shows the corresponding graph for 

the 10 percent sample (5 percent above and 5 percent below).  The graphs also suggest that the 

slopes of the probability function may be different below and above the 10-decimal threshold.  

To check if the slope of the propensity score function changes at the 10-decimal threshold giving 

rise to a kink, we regress the dummy for MFI membership on the interaction of the dummy for 

10 decimal land with rescaled land (=land owned – 10).  The coefficient on this variable is -

                                                
13

 The households with half-acre land are classified as “landless III”. The half-acre eligibility criterion used by the 

standard microfinance programs is based on this definition of landlessness. 



12 
 

0.036 with a standard error of 0.012 (significant at the 1 percent level).  This suggests that there 

is a kink in the probability of MFI membership at the 10-decimal land ownership threshold. We 

thus use the interaction as an additional instrument. 

  A key issue for identification using 10 decimal land ownership cut-off is whether it is 

manipulated by the households.  The worry is that the poorest of the poor households with less 

than 10 decimal land might misreport higher than 10 decimal land to increase their odds of 

getting credit.  This assumes that the practice of excluding ultra-poor with less than 10 decimal 

land was widely known to the households.  However, unlike the 50-decimal (half-acre) eligibility 

criterion, the 10-decimal cut-off used by the loan officers was not widely publicized. So, it is 

likely that many of the households were not aware of the 10 decimal cut-off, and the possibility 

of manipulation is much less in this case. Second, even if some ultra-poor households over-report 

land to increase their probability of getting loans, the fuzzy jump and kink design remains valid 

as long as they cannot precisely manipulate the land ownership information to meet the de facto 

exclusion rule used by the loan officers. Third, if the households are successful in manipulating 

the selection process by overstating land ownership, we should observe a lump in the land 

distribution just above the 10-decimal threshold. However, a McCrary (2008) test does not show 

a lump above the 10-decimal land ownership (see Figure 3).  A test of the null hypothesis that 

the households over-report land ownership to increase their odds of getting credit is soundly 

rejected at the 1 percent level.  

As additional evidence, we check whether the households in the sample around the 10-

decimal land threshold are sufficiently similar in terms of observables.  Figure 4 displays 

Quantile-Quantile Plots comparing the control variables for microfinance members with those of 

non-members using the 10 percent sample around a tenth of an acre.14  Except for distance to 

secondary school, all the other controls appear balanced on either side of the 45-degree line.   

An important advantage of our data for local 2SLS and local Biprobit estimation is that it 

is exceptionally large.  This allows us to trim the data around the threshold considerably while 

still retaining enough power to yield credible estimates.  Our main IV estimates use a 10 percent 

sub-sample consisting of 24,132 households, which is much larger than the other household data 

sets used for microfinance evaluation in Bangladesh.  The 10 percent sample consists of 

households with land ownership in a very small interval: [6 decimal, 16 decimal] (1 acre = 100 

                                                
14 See Calel and Dechezleprêtre (2016) for recent use of quantile-quantile plots. 
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decimal).  This considerably strengthens the credibility of the local 2SLS and local Biprobit 

estimates. 

   

(4) Data  

The data used in this paper were collected by the Institute of Microfinance (InM), a non-

profit research institution in Dhaka, Bangladesh. The InM and Palli Karma Shahayak Foundation 

(PKSF), non-profit government organizations, jointly conducted a census of poor households in 

the district of Lalmonirhat in 2006 and in the districts of Gaibandha, Kurigram, Nilphamari, and 

Ranpgur in 2007. The sample was limited to the poor households meeting at least one of the 

following three criteria: less than 1,500 taka of monthly income, dependent on day labor, or 

having less than 50 decimals (half an acre) of land (Uddin (2008)). 

The questionnaire used to collect the data covered a broad range of topics including 

employment, family size, assets, migration for work during Monga, food security, and 

membership in any microfinance institution. The census was conducted during normal (non-

Monga) time and Monga-values refer to the seasonal famine during the previous lean season. An 

example of a question asked of households is “During the last Monga how many times a day did 

you eat (how many meals)?” This provided information on whether a household could consume 

three meals or was facing starvation with only one or two meals a day during Monga. 

The outcome variables we focus on in this paper are indicators of food security, distress 

sale of labor, and short-term migration during the seasonal famine. We use two indicators of 

food security: binary variables for ability to have three meals and one meal a day during last 

Monga. We use a dummy for advanced labor sale during last Monga as an indicator of distress 

sale. Village-level variables were collected in a separate questionnaire and included information 

on the moneylender interest rate; agricultural wages; electricity use in the village; and distances 

to the nearest bank, market, and secondary school. 

This paper focuses on the Districts of Gaibandha, Lalmonirhat, and Nilphamari as they 

had the most complete data set (Kurigram and Rangpur were lacking village-level variables). For 

the basic OLS and Probit estimates, we use a sample of 143,346 households.  Although the 

household census covered a much larger sample of 280,000 households, only a subset of villages 

was covered by the village survey.  Our sample consists of only those households where the 

village survey was carried out.  More important, to implement the local 2SLS estimator we need 
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to restrict the sample by excluding the households far away from the 10 decimal land threshold. 

After dropping the households with missing variables, and restricting to the observations in the 

10 percent of the sample around the 10 decimal land threshold, we focus on 24,132 households 

for the main empirical analysis. Table A1 in the appendix reports summary statistics of the main 

variables used in our analysis. We check the robustness of the conclusions using alternative 

samples. 

 

(5) Empirical Results  

Preliminary Results 

We begin our analysis with OLS and Probit estimates. Given the binary-binary structure 

of our empirical model, Probit estimates may be more efficient, but the OLS may be more 

robust, as it does not rely on distributional assumptions. The estimates from OLS and Probit are, 

however, very similar, and we thus focus on the OLS results in the main text (see Table 2), and 

report the Probit results in the online appendix. The set of controls used in different 

specifications include household level controls (age and age squared, land owned and land 

squared), and village level controls (electricity use in the village, and distances to the bank, 

market, and secondary school).  The controls are selected to reduce biases due to self-selection 

by households and MFI program placement. For an extended discussion on the choice of control 

variables, please see the online appendix. 

The broad picture that emerges from the OLS results for the full sample (143,346 

households) reported in Table 2 panel A is that microfinance membership seems to have a small 

positive effect on a household’s ability to cope with Monga.  The OLS estimates suggest that 

microfinance membership increases the probability that a household can have three meals a day, 

and reduces the probability that a household survives only on one meal a day, and thus help 

avoid hunger during the seasonal famine.  The estimated effects from the most complete 

specification including household and village characteristics are statistically significant at the 1 

percent level.  In terms of magnitude, microfinance membership raises the probability of 

consuming three meals a day by about 1 percentage point, and reduces the probability of 

surviving on one meal a day by about 3 percentage points, which are not substantial.15  The 

                                                
15 Note, however, that the OLS results may be significantly biased downward due to negative selection and 

attenuation bias. The results reported later that correct for the bias seem to confirm this suspicion. 
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estimated impacts on three meals and one meal a day are robust across the samples:   Panel B 

reports the results for the 20 percent sample and panel C for the 10 percent sample.  

 The impact of microfinance on no labor sale is consistently positive and significant at the 

1 percent level.  In terms of magnitude, microfinance membership increases the probability that a 

household does not need to sell labor in advance by about 1.5 percent.  As was the case for three 

meals, the coefficient for no labor sale is robust to different control variables.  Unlike three 

meals, though, as the sample is reduced the magnitude falls, suggesting that the effect may not be 

robust.  

The OLS results do not indicate any impact of microfinance on the probability of 

migration for the full sample.  Since microfinance uses family labor, one might have expected a 

negative effect on migration for short-term work.  When we look at the 20 and 10 percent 

samples, we find that microfinance has a negative effect on migration when including only 

household characteristics.  However, the finding is not robust, as it becomes insignificant with 

the inclusion of village characteristics.   

These preliminary results are interesting, but are subject to potentially serious 

endogeneity bias due to omitted heterogeneity that affects both the selection into the program, 

and the outcomes. In addition, measurement error may partly be responsible for very small 

numerical magnitudes of the estimates in Table 2. To address the potential bias in the OLS 

estimates, we report estimates from two approaches below: (i) minimum bias (MB) estimator due 

to Millimet and Tchernis (2013) that reduces the omitted variables bias without any exclusion 

restrictions; and (ii) the instrumental variables approach developed above in section (3). 

  

Estimates from Minimum Biased IPW Estimator  

In this sub-section, we discuss the results from the Minimum Biased IPW (MB-IPW) 

estimator reported in Table 3.  All the estimates reported in Table 3 use the full specification 

with household and village controls used in column (3) of Table 2.  Column (1) runs the MB-

IPW estimator on the full 143,346 sample of households.  All of the MB-IPW point estimates are 

larger as compared to OLS, suggesting that the bias in the OLS estimates is negative.  In terms of 

magnitude, microfinance increases the probability of three meals by 1 percent, decreases the 

probability of only one meal by 5 percent, and increases the probability of not selling labor in 

advance by 2 percent, and increases the probability of migration by 2 percent.  The 90 percent 
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confidence interval shows that the effect of microfinance membership is statistically significant 

for all four outcomes.   

Columns (2) and (3) focus on the 20 and 10 percent sub-samples, respectively.  These are 

included as a benchmark, since we will focus on the 10 percent sample for our main IV 

estimation, because the local 2SLS and local Biprobit estimators use only a subsample of 

observations from the neighborhood of a threshold (Dong, 2017).  It is reassuring to note that the 

point estimates are robust in these subsamples for three of the four outcome variables.  The 

exception is migration, which becomes insignificant in smaller samples.  Note that the 20 percent 

and 10 percent samples are symmetric around the threshold in that they include one half of the 

households from above and the other half from below. 

 

Evidence from Instrumental Variables Approach 

Our main IV results are reported in Tables 4 (local 2SLS) and 5 (local Biprobit). 

Following Dong (2017), we use a subset of the observations in the neighborhood of the threshold 

for estimation.  The results reported in Tables 4 are based on the 10 percent sample: 5 percent 

from above the 10-decimal threshold and 5 percent from below.  We later check the sensitivity of 

these estimates with alternative samples around the threshold (12 percent and 8 percent samples).   

We control for the direct effect of land ownership on the outcome variables in the 

regressions.  One would expect that the effect of land on the outcome variables is concave 

because of diminishing returns. However, the sample covers a narrow interval of land ownership, 

with a minimum of 6 decimal and a maximum of 16 decimal (1 acre = 100 decimal).  Since the 

households vary little in terms of land ownership, the direct effect is likely to be well 

approximated by a linear control term.  We take a conservative approach and report the estimated 

effects with quadratic controls for land ownership.  The results with a linear land ownership 

control are similar and reported in the online appendix, Table B.2.     

 The first two columns report the estimates when a dummy for less than 10 decimal land 

is used as the instrument, i.e., the “jump instrument”; and the second and third columns contain 

the results for the “kink instrument”, i.e., the 10 decimal land dummy interacted with (land 

owned – 10), while the last two columns report the estimates where both the “jump” and “kink” 

instruments are used together. The odd numbered columns report estimates when we control for 

possible direct effect of land ownership by including land owned and its square in the 



17 
 

regressions, but no other controls are included.  It is important to appreciate that our main sample 

(i.e., the 10 percent sample) include a very small interval of land distribution, which implies that 

land ownership is not a major determinant of the observed variations in the outcomes.16  The 

even columns in addition include household and village characteristics described in detail in the 

online appendix A.  

The results in Table 4 are from L2SLS estimator and those in Table 5 are marginal effects 

from LBiprobit using the same set of instruments.  We report estimates from both L2SLS and 

LBiprobit because our outcome variables are binary, and thus we have a binary-binary set-up.  

The linear IV estimator may yield implausible estimates in this case, for example, predict 

probability of an outcome that falls outside the [0,1] bound.   It is, however, important to 

emphasize that the estimates from local 2SLS and local Biprobit are not comparable. As 

discussed by Chiburis et. al. (2012) in detail, the instrumental variables estimates from Biprobit 

provide average treatment effect on treated (ATET), while the estimates from 2SLS provide local 

average treatment effect (LATE).  It is extensively discussed in the literature that 2SLS estimates 

differ substantially (and usually larger in magnitude) when compared to the corresponding 

Biprobit estimates (see the discussion in Altonji et al. (2005)).     

The first stage results reported in the lower panel of Table 4 show that the dummy for 

less than 10 decimal land ownership has a negative effect on the probability of microfinance 

membership, and is statistically significant at the 1 percent level.  The lower probability of 

microcredit membership found among the ultra-poor is consistent with substantial evidence 

accumulated over last four decades that the microcredit programs in Bangladesh consider them 

repayment risk and thus systematically exclude them (see the discussion in Emran et al. (2014), 

and Matin et al. (2008)).   The “kink instrument”, i.e., the interaction of 10 decimal dummy with 

rescaled land (land owned - 10) also bears a negative sign across specifications, and is significant 

at the 1 percent level.  When both instruments are used, the kink instrument loses its significance 

and identification in this case seems to be primarily driven by the 10 decimal dummy.  The 

Angrist-Pischke F statistics for the jump and kink instruments reported in first four columns  

show that the IV estimates are not subject to weak instrument bias: in only one case the A-P F 

statistics is marginally lower than 10 (9.61).  The A-P F statistic falls when we use two 

                                                
16 Compare them to the minimum=0 and maximum=363 decimal in our “full” sample with 143,346 households. I 

acre = 100 decimal. 
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instruments together because the kink instrument loses significance and A-P F incorporates 

penalty for more instruments.  

The instruments based on the 10 decimal land provide us the local average treatment 

effect for those households which have more than 10 decimal land and thus were selected into 

the program.  As noted before, the 10 percent sample used for the IV estimation includes 

households with land in the interval of [6 decimal, 16 decimal].  The treatment households 

captured by the IV approach thus belong to the right of 10 decimal in the above interval. 

 

Estimated Effects of Microfinance Membership 

The local 2SLS (L2SLS) estimates in Table 4 show that microcredit membership 

consistently has a beneficial effect on a household’s food security during the seasonal famine.  

Microcredit-member households were more likely to have 3 meals a day and to avoid surviving 

at the brink of starvation with only one meal a day (estimates are significant at the 1 percent level 

in 10 out of 12 cases in Table 4, and at the 5 percent level in 1 case, and at the 10 percent level in 

1 case).17  The magnitudes of the effect vary across different instruments: the estimated effect is 

larger when we use the interaction instrument compared to the corresponding estimates for 3 and 

1 meal a day based on 10 decimal dummy as the instrument. Since the effects are likely to be 

heterogeneous, the two instruments seem to refer to different subpopulations (i.e., different 

LATEs).18  The L2SLS estimates for the interaction (i.e., kink) instrument for the outcome one 

meal a day are, however, implausibly large; the estimates are larger than 1 in both specifications, 

a limitation of the linear IV estimates noted before.  A plausible interpretation of this evidence is 

that there is a subset of poor households for whom the probability of having one meal a day 

during Monga becomes zero once they become microfinance member.   

The most conservative local 2SLS estimates come from the specification where both 

instruments are used; but even those estimates, reported in the last two columns of Table 4, are 

larger than the corresponding OLS and MB-IPW estimates.  The relative magnitudes of the OLS, 

MB-IPW and Local 2SLS estimates taken together, i.e., OLS < MB-IPW < L2SLS, tells a 

consistent story about the direction of omitted variables bias:  the estimates become 

progressively larger as more effective method to address the bias is used.  This suggests 

                                                
17 Chiburis et al. (2012) recommend that the standard errors are bootstrapped when sample size is less than 10,000. 

Our main sample consists of 24,132 households.  
18 This also implies that it is not meaningful to use Hansen’s J statistic to test for instrument validity. 
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significant downward bias in the OLS estimates owing to negative selection on unobservables 

and possibly attenuation bias caused by measurement error.  A comparison of the first two rows 

show a consistent pattern: the effect is systematically larger in the case of 1 meal a day, 

suggesting that microfinance is especially helpful for the poorest of the treatment households 

struggling at the margin of starvation during seasonal famine.  The relatively food secure 

households for which the relevant margin is between 2 and 3 meals a day also benefit from 

microfinance membership, but to a much lesser extent.   

In contrast to the strong positive effects on food security, the evidence from L2SLS 

estimates suggest that microcredit membership has no perceptible effect on a household’s 

propensity to sell labor in advance; the MFI membership dummy is not significant at the 10 

percent level in any of the six columns reported in Table 4. 

The estimates in the fourth row of Table 4 refer to the probability that a household had to 

resort to short-term migration to cope with seasonal famine. The evidence is strong that 

microfinance membership reduces the probability of short-term migration during the season of 

starvation.  All six estimates, however, are larger than 1 in absolute value.  One way to interpret 

this evidence is that microfinance membership reduces the probability of short-term migration 

during Monga season virtually to zero for a subset of households.    

The LBiprobit estimates in  Table 5 support the qualitative conclusions based on the 

L2SLS results in Table 4: (1) microfinance membership improves food security of a household 

during seasonal famine, (2) the poorest households at the margin of starvation benefit more (i.e., 

the effect is larger in magnitude for one meal a day), (3) microfinance is ineffective in reducing  

a household’s propensity to sell labor in advance at lower wages, and (4) microfinance helps 

avoid short-term migration to cope with Monga.  However, the point estimates from LBiprobit 

are strikingly different from the corresponding L2SLS estimates; they are much smaller in 

magnitude.  This pattern is not surprising, given a wealth of evidence in the literature that the 

linear IV estimates almost always are much larger than the corresponding Biprobit estimates in a 

binary-binary model (see Altonji et al (2005) and Chiburis et al. (2012)).  More important is the 

fact that the Biprobit estimates provide us ATET and thus refer to the average of heterogeneous 

treatment effects over the whole sample (i.e., the 10 percent sample). In contrast, the 2SLS 

estimates are LATEs, and thus refer to some subset of the households in the 10 percent sample. 
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Given the differences in the estimates from L2SLS and LBiprobit, one can adopt two 

alternative strategies to interpret the evidence. The first, and most conservative, is to settle on the 

robust qualitative conclusions without endorsing any preferred point estimate. This is perhaps the 

most widely acceptable interpretation. The second approach is to focus on the ATET estimates 

from LBiprobit, as we do in the introduction of this paper. This approach affects the conclusion 

regarding the effects of microfinance membership on the probability of 3 meals a day most 

dramatically; the effect is numerically ignorable (about 1.5 percentage points) according to 

LBiprobit estimates, but the lowest L2SLS estimate indicates a substantial impact (26 percentage 

points). This suggests that while there are some households who benefit a lot when it comes to 

having three meals a day during seasonal famine, on an average the effects of microfinance 

membership are negligible in the 10 percent sample used for local IV estimates.  

We have so far focused on the IV estimates from the 10 percent sample around the 10 

decimal. To check robustness of the results, we report the L2SLS and LBiprobit estimates for 8 

percent and 12 percent samples (see Table 6).  The strength of the instruments in explaining 

microfinance membership varies across samples and the instrument used. In both 12 percent and 

8 percent samples, the dummy for less than 10 decimal land provides enough power for 

identifying the effects, but the A-P F statistics are low when the interaction instrument alone or 

two instruments are used together.  So, we focus only on those cases where the dummy for less 

than 10 decimal is the only identifying instrument.  The results are consistent with the evidence 

in Table 4 and support the conclusions reached above regarding the effects of microfinance on a 

household’s ability to cope with seasonal famine in Bangladesh.   

 

(6) Conclusions 

This paper provides evidence on the effects of microfinance membership in Bangladesh 

on the ability of a poor household to cope with anticipated seasonal adversity using the seasonal 

famine in North-west Bangladesh as a case study.  We take advantage of an exceptionally large 

households survey data set with more than 143,000 households for the empirical analysis.  

We implement an instrumental variables approach that is motivated by the observation 

that MFIs exclude the ultra-poor households (with less than 10 decimal land) to ensure 

repayment rate.  We show that a household with less than 10 decimal land is significantly less 

likely to get microcredit.  The evidence suggests that there are both a jump and a kink in the 
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probability of MFI membership at the 10 decimal threshold. We implement the local 2SLS 

estimator (Dong, 2017) and a local Biprobit to estimate the effects of MFI membership on 

indicators of food security (number of meals a day), labor market vulnerability (advance sale of 

labor at low wages), and seasonal migration for job during the season of hunger (Monga).  We 

also report estimates from the minimum biased IPW estimator due to Millimet and Tchernis 

(2013) that reduces bias in the estimates without imposing any exclusion restrictions.  Our 

estimates from alternative samples, estimators, and control variables yield robust conclusions: 

(1) MFI membership improves food security during seasonal famine, especially for the poorest 

households who struggle at the margin of 1 or 2 meals a day; (2) MFI members are significantly 

less likely to be forced to short-term migration for jobs during the hungry season, (3) MFI 

membership is ineffective in reducing the labor market vulnerability of ultra-poor:  the 

probability of advance sale of labor during Monga is not affected by MFI membership.  
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Figure 1:  Probability of MFI Membership and Land Ownership (20% Subsample) 
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Notes: Discontinuity in probability of MFI membership with quadratic fit and 95% confidence intervals reported. 

The left hand side indicates household owning less than 10 decimals of land and the right hand side indicates those 

owning more.  The graph shows that owning more land increases the probability of MFI membership 

discontinuously.  The graph is calculated from the 20% subsample of households (49,753). (Graph generated using 

Stata Code cmogram.) 

 
 
 
 
 
 
 
 

Figure 2:  Probability of MFI membership and Land Ownership (10% Subsample) 
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Notes: Discontinuity in probability of MFI membership with quadratic fit and 95% confidence intervals reported. 

The left hand side indicates household owning less than 10 decimals of land and the right hand side indicates those 

owning more.  The graph shows that owning more land increases the probability of MFI membership.  The graph is 

calculated from the 10% subsample of households (24,132). (Graph generated using Stata Code cmogram.) 
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Figure 3: McCrary Density Test 

 

 
Notes : McCrary Density Test on total land owned by the household. (Graph generated using Stata Code 

DCdensity, McCrary (2008)).  
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Figure 4: Quantile-Quantile Plots of Control Variables 

 

 

 

Note: The above empirical Quantile-Quantile Plots are calculated from the 10% subsample and display the value of 
the control variables for the treated (y-axis) and untreated (x-axis) units.  The closer the observations fall relative to 

the 45 degree line, the more similar the treatment and control groups are.   
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Table 1: Determinants of MFI Membership: The Role of 10 Decimal (0.1 acre) and 50 

Decimal (Half-acre) Thresholds 

 

Dependent Variable:  (1) (2) (3) (4) 

MFI Member (yes = 1)  

    Owns less than 10 decimals of 

land (yes = 1) 

-0.060*** -0.056*** 

  (0.01) (0.01) 
  Owns less than 50 decimals of 

land (yes = 1)   

-0.013 -0.012 

  
(0.02) (0.02) 

Land  -0.005 -0.005 -0.003*** -0.003*** 

 
(0.01) (0.01) (0.00) (0.00) 

Land squared -0.000 0.000 0.000* 0.000* 

 
(0.00) (0.00) (0.00) (0.00) 

Age of household head 
 

0.020*** 
 

0.017*** 

  
(0.00) 

 
(0.00) 

Age squared 
 

-0.000*** 
 

-0.000*** 

  
(0.00) 

 
(0.00) 

Electricity use in village (%) 
 

0.001*** 
 

0.002*** 

  
(0.00) 

 
(0.00) 

Distance from bank  
 

-0.010*** 
 

-0.008*** 

  
(0.00) 

 
(0.00) 

Distance from market 
 

0.002 
 

0.001 

  
(0.00) 

 
(0.00) 

Distance from secondary school  
 

-0.003* 
 

0.003 

  
(0.00) 

 
(0.00) 

Constant 0.509*** 0.140** 0.568*** 0.234*** 

 
(0.06) (0.07) (0.05) (0.07) 

Observations 24,132 24,132 10,276 10,276 
R-squared 0.001 0.019 0.002 0.020 

 
Note: columns (1) and (2) use the 10% subsample of observations around 10 decimals of land ownership.  Columns 

(3) and (4) use the 10% subsample of observations around 50 decimals of land ownership.  

Robust standard errors in parenthesis:  * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 2: OLS Results 

   A: Full Sample       

  (1) (2) (3) 

Has 3 full meals per day during Monga (yes = 1) 0.011*** 0.010*** 0.009*** 

  (11.84) (10.45) (9.31) 

Has 1 full meal per day during Monga (yes = 1)  -0.043*** -0.031*** -0.027*** 

  (-15.88) (-11.60) (-9.98) 

Does not sell labor in advance (yes = 1) 0.016*** 0.015*** 0.015*** 

  (14.22) (13.34) (13.17) 

Migrates in search of work (yes = 1)  0.004 -0.004 0.009*** 

  (1.37) (-1.38) (3.18) 

Number of observations 143,346 143,346 143,346 

	 	 	 	B: 20% Sample 		 		 		

Has 3 full meals per day during Monga (yes = 1) 0.012*** 0.012*** 0.010*** 

  (7.72) (7.45) (6.58) 

Has 1 full meal per day during Monga (yes = 1)  -0.047*** -0.043*** -0.036*** 

  (-10.31) (-9.43) (-8.05) 

Does not sell labor in advance (yes = 1) 0.009*** 0.009*** 0.009*** 

  (5.22) (5.01) (4.88) 

Migrates in search of work (yes = 1)  -0.007 -0.012*** -0.001 

  (-1.54) (-2.74) (-0.22) 

Number of observations 49,753 49,753 49,753 

	 	 	 	C: 10% Sample 		 		 		

Has 3 full meals per day during monga (yes = 1) 0.015*** 0.014*** 0.013*** 

  (6.34) (6.24) (5.53) 

Has 1 full meal per day during monga (yes = 1)  -0.056*** -0.053*** -0.044*** 

  (-8.66) (-8.14) (-6.78) 

Does not sell labor in advance (yes = 1) 0.008*** 0.008*** 0.008*** 

  (2.95) (2.86) (2.93) 

Migrates in search of work (yes = 1)  -0.013** -0.017*** -0.005 

  (-1.97) (-2.66) (-0.81) 

Number of observations 24,132 24,132 24,132 

Notes: Panel A uses the full sample, Panel B focuses on 20% of the sample around 0.1 acres of land ownership, and 

Panel C focuses on 10% of the sample around 0.1 acres of land ownership.   
Robust t-statistics in parenthesis:  * significant at 10%; ** significant at 5%; *** significant at 1%. 

Model (1) regresses the outcome variable against microfinance membership. Model (2) adds household control 

variables to Model (1).  Model (3) adds village controls to Model (2).  The set of household controls includes: age of 

household head, age squared, land owned, and land squared.  The village controls include: electricity use in the 

village, and distances to the bank, market, and secondary school. 
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Table 3: Estimates from Minimum Biased-IPW 

 		

  (1) (2) (3) 

  Full Sample 20% Sample 10% Sample 

Has 3 full meals per day 
during Monga (yes = 1) 

0.010 0.010 0.016 

[0.007, 0.014] [0.005, 0.016] [0.009, 0.024] 

Has 1 full meal per day 
during Monga (yes = 1)  

-0.045 -0.048 -0.055 

[-0.053, -0.037] [-0.064, -0.036] [-0.075, -0.037] 

Does not sell labor in 
advance (yes = 1) 

0.020 0.014 0.013 

[0.017, 0.023] [0.009, 0.020] [0.004, 0.020] 

Migrates in search of 
work (yes = 1)  

0.018 0.006 -0.009 

[0.010, 0.025] [-0.008, 0.018] [-0.025, 0.015] 

Household Controls Yes Yes Yes 

Village Controls Yes Yes Yes 

Number of observations 143,346 49,753 24,132 

 

Notes: MB-IPW stands for Minimum Biased Inverse Probability Weighted estimator due to Millimet and Tchernis 

(2013) and is estimated using a 0.25 radius.  The Average Treatment Effect on the Treated are reported.  The 90% 

confidence intervals in brackets are calculated by bootstrapping 250 replications.  All models include controls: age 

of household head, age squared, land owned, land squared, electricity use in the village, and distances to the bank, 
market, and secondary school.  Column (1) uses the full sample of households, column (2) focuses on 20% of the 

sample around 0.1 acre land owned, and column (3) focuses on the 10% sample.   
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Table 4: Local 2SLS Results 

 
  (1) (2) (3) (4) (5) (6) 

Has 3 full meals per day 

during monga (yes = 1) 

0.349*** 0.351*** 0.538*** 0.568*** 0.287*** 0.265** 

(0.12) (0.12) (0.19) (0.21) (0.10) (0.11) 

Has 1 full meal per day 

during monga (yes = 1)  

-0.799*** -0.782** -1.517*** -1.566*** -0.564** -0.471* 

(0.30) (0.32) (0.53) (0.59) (0.27) (0.28) 

Does not sell advanced 
labor (yes = 1) 

0.049 0.051 -0.121 -0.125 0.104 0.121 

(0.09) (0.10) (0.12) (0.13) (0.09) (0.10) 

Migrates in search of work 

(yes = 1)  

-1.704*** -1.604*** -1.927*** -1.826*** -1.631*** -1.515*** 

(0.47) (0.49) (0.64) (0.67) (0.45) (0.46) 

First Stage Results 

Land < 10 (yes=1) -0.060*** -0.056*** 

  

-0.083*** -0.083*** 

(0.01) (0.01) 

  

(0.03) (0.03) 

Land < 10 (yes=1) x  
(Land - 10) 

  

 

-0.040*** -0.036*** 0.021 0.025 

  

 

(0.01) (0.01) (0.03) (0.03) 

Angrist-Pischke F Statistic 17.54 15.48 11.60 9.61 9.05 8.18 

Prob > F 0.000 0.000 0.001 0.002 0.000 0.000 

Control Variables No Yes No Yes No Yes 

Observations 24,132 24,132 24,132 24,132 24,132 24,132 

 
Notes: The above table reports results from local 2SLS, estimated from the 10% subsample around the 10 decimal of 

land threshold. Columns (1) and (2) use as an IV a dummy indicating that the household owns less than 10 decimals 

of land. Columns (3) and (4) use the interaction of this land dummy and rescaled land (land – 10). Columns (5) and 

(6) include both IVs in the first stage.  Odd numbered columns do not include any additional controls beyond land 

and land squared. Even numbered columns include for household and village characteristics: age of household head, 

age squared, electricity use in the village, and distances to the bank, market, and secondary school. Robust standard 

errors in parenthesis:  * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 5: Local Biprobit Results 

 
  (1) (2) (3) (4) (5) (6) 

Has 3 full meals per day 

during monga (yes = 1) 

0.015*** 0.013*** 0.015*** 0.013*** 0.015*** 0.013*** 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Land < 10 (yes=1) 0.000 -0.001** 

  

-0.000 -0.000 

  (0.00) (0.00) 

  

(0.00) 0.00055 

Land < 10 (yes=1) x  
(Land - 10)   

-0.000 -0.000** -0.000 -0.000 

  

(-0.06) (0.00) (0.00) (0.00) 

Has 1 full meal per day 

during monga (yes = 1)  

-0.210*** -0.193*** -0.228*** -0.216*** -0.228*** -0.215*** 

(0.03) (0.03) (0.00) (0.01) (0.00) (0.02) 
Land < 10 (yes=1) -0.036*** -0.034*** 

  
0.003 -0.003 

  (0.01) (0.01) 

  

(0.02) (0.02) 

Land < 10 (yes=1) x  

(Land - 10)   

-0.052*** -0.031*** -0.044 -0.029* 

  

(0.01) (0.01) (0.02) (0.02) 

Does not sell advanced 

labor (yes = 1) 0.022 0.022 -0.010 0.009 0.067 0.035 

  (0.04) (0.01) (0.01) (0.01) (0.09) (0.02) 
Land < 10 (yes=1) -0.058*** -0.054*** 

  

-0.093*** -0.089*** 

  (0.01) (0.01) 

  

(0.04) (0.03) 

Land < 10 (yes=1) x  
(Land - 10)   

-0.039*** -0.034*** 0.033 0.032 

  

(0.01) (0.01) (0.03) (0.03) 

Migrates in search of 

work (yes=1)  

-0.205*** -0.168*** -0.205*** -0.157*** -0.205*** -0.168*** 

(0.00) (0.02) (0.00) (0.02) (0.00) (0.002) 
Land < 10 (yes=1) -0.059*** -0.047*** 

  
-0.067*** -0.059*** 

  (0.01) (0.01) 

  

(0.02) (0.02) 

Land < 10 (yes=1) x  

(Land - 10)   

-0.043*** -0.032*** 0.007 0.011 

  

(0.01) (0.01) (0.02) (0.01) 

Control Variables No Yes No Yes No Yes 

Number of observations 24,132 24,132 24,132 24,132 24,132 24,132 

 
Notes: The above table reports results from local Biprobit, estimated from the 10% subsample around the 10 

decimal of land threshold. Columns (1) and (2) use as an IV a dummy indicating that the household owns less than 

10 decimals of land. Columns (3) and (4) use the interaction of this land dummy and rescaled land (land – 10). 

Columns (5) and (6) include both IVs in the first stage.  Odd numbered columns do not include any additional 

controls beyond land and land squared. Even numbered columns include for household and village characteristics: 

age of household head, age squared, electricity use in the village, and distances to the bank, market, and secondary 

school. Robust standard errors in parenthesis:  * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 6: Local 2SLS Robustness Checks 

 

		 8% subsample 12% subsample 

	

(1) (2) (3) (4) (5) (6) 

Has 3 full meals per day 
during monga (yes = 1) 

0.289* 0.563** 0.120 0.322*** 0.468* 0.262** 

(0.15) (0.26) (0.11) (0.12) (0.25) (0.10) 

Has 1 full meal per day 
during monga (yes = 1)  

-0.875* -1.833** -0.280 -0.605** -0.939 -0.468* 

(0.45) (0.81) (0.35) (0.31) (0.58) (0.27) 

Does not sell advanced 
labor (yes = 1) 

0.282* 0.396* 0.211 -0.075 -0.477* 0.088 

(0.17) (0.22) (0.15) (0.11) (0.27) (0.10) 

Migrates in search of work 
(yes = 1)  

-1.956*** -2.984** -1.318** -1.420*** -1.355* -1.447*** 

(0.75) (1.24) (0.55) (0.46) (0.73) (0.43) 

First Stage Results 

   

  

 

  

Land < 10 (yes=1) -0.046*** 
 

-0.079* -0.050*** 
 

-0.083*** 

  (0.02) 

 

(0.05) (0.01) 

 

(0.02) 

Land < 10 (yes=1) x  
(Land - 10) 

 

-0.035*** 0.031   -0.019** 0.024 

  

 

(0.01) (0.04)   (0.01) (0.01) 

Angrist-Pischke F Statistic 8.72 6.48 4.63 14.37 5.43 8.44 

Prob > F 0.0032 0.0109 0.0098 0.0002 0.0198 0.002 

Observations 19,990 19,990 19,990 25,004 25,004 25,004 

 
Notes: The above table reports results from local 2SLS estimated using alternative subsamples.  Columns (1)-(3) are 

estimated from the 8% subsample around the 10 decimal of land threshold. Columns (4)-(6) are estimated from the 

12% subsample around the 10 decimal land threshold.  Each model controls for household and village 

characteristics: age of household head, age squared, land owned, land squared, electricity use in the village, and 

distances to the bank, market, and secondary school.  Robust standard errors in parenthesis:  * significant at 10%; ** 

significant at 5%; *** significant at 1%. 
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ONLINE APPENDIX: NOT FOR PUBLICATION 

 

Appendix A. Choice of Control Variables (𝑿𝒊) 

 The choice of the control variables is motivated by the objective of minimizing omitted 

variables in the regressions.  Since omitted variables bias arises only when a variable affects both 

the selection and outcome equations, we include observable characteristics that belong to the 

intersection set of the determinants of both these equations.  Following Angrist and Pischke 

(2009), we leave out potentially ‘bad controls’, i.e. those variables which may themselves be 

outcome variables.   

 The household variables we control for include age of the household head, age squared, 

total owned land, and land squared.  Age and its square are included as an indicator of social and 

human capital (experience and wisdom).  The social and human capital might be important for 

access to informal finance in the absence of microcredit, and thus may affect the opportunity cost 

of not joining an MFI program.  Also, MFIs may target households with relatively young and 

energetic borrowers, and thus too young or too old age will be less likely to get selected into the 

program.  We include land owned as an indicator of a household’s endowment.  Land obviously 

affects the outcome variables, such as the ability to consume three meals per day during Monga.  

As discussed previously, land also serves as a screening mechanism for MFIs.  Following the 

RD/RKD literature, we include a polynomial of land in the regression.   

The village-level control variables include percent of electricity usage in a village, the 

average agricultural wage for men and women, distance to the nearest bank, distance to the 

market or business center, distance to the secondary school. All of these variables are indicators 

of the level of development of a village. Percent of electricity usage is a good measure of wealth 

that is not determined by microfinance. The average male and female wages in agriculture reflect 

unobserved land productivity, and are important as indicators of labor market opportunities in a 

village. The distance to bank captures access to formal credit market, and distance to business 

center captures access to urban market. A better access to urban market increases the profitability 

of non-farm activities financed by microcredit. Since the data lack information concerning the 

education level of the household head, we include distance to secondary school as an indicator of 

the availability of educational opportunities in the village. 
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Table A1. Summary Statistics 

 

     (1) (2) (3) 

  
Full 

Sample 
20% 

Sample  
10% 

Sample 

Has 3 full meals per day during Monga  
(yes = 1) 

0.028 0.029 0.030 

(0.166) (0.167) (0.169) 

Has 1 full meal per day during Monga  
(yes = 1)  

0.487 0.467 0.478 

(0.500) (0.499) (0.500) 

Does not sell labor in advance (yes = 1) 0.950 0.957 0.956 

  (0.218) (0.203) (0.206) 

Migrates in search of work (yes = 1)  0.493 0.501 0.508 

  (0.500) (0.500) (0.500) 

Age of the household head (years) 39.041 39.635 40.047 

  (11.945) (11.702) (11.794) 

Total owned land (decimals) 8.356 9.886 10.511 

  (12.245) (5.437) (2.717) 

Electricity use in the village (percent)  31.894 31.205 29.691 

  (25.782) (25.537) (25.165) 

Distance to bank (km) 4.315 4.157 4.237 

  (3.517) (3.224) (3.271) 

Distance to market (km) 3.462 3.505 3.641 

  (2.878) (2.845) (2.931) 

Distance to secondary school (km) 1.482 1.431 1.485 

  (2.087) (2.021) (2.060) 

Number of Observations 143,346 49,753 24,132 
 

Notes: Mean values for the main variables used in the analysis, with standard deviations in parenthesis.  Column (1) 

reports the summary statistics for the main sample, column (2) uses the 20% sample of households around 0.1 acre 

of land ownership, and column (3) focuses on 10% of the households around 0.1 acre of land ownership.   
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Appendix B. Further Robustness Checks 

Table B1: Probit Results 

A: Full Sample       

  (1) (2) (3) 

Has 3 full meals per day during Monga (yes = 1) 0.011*** 0.010*** 0.008*** 

  (11.84) (10.77) (9.98) 

Has 1 full meal per day during Monga (yes = 1)  -0.043*** -0.032*** -0.027*** 

  (-15.88) (-11.48) (-9.83) 

Does not sell labor in advance (yes = 1) 0.016*** 0.015*** 0.015*** 

  (14.22) (13.16) (13.03) 

Migrates in search of work (yes = 1)  0.004 -0.004 0.008*** 

  (1.37) (-1.49) (3.02) 

Number of observations 143,346 143,346 143,346 

	 	 	 	B: 20% Sample 		 		 		

Has 3 full meals per day during Monga (yes = 1) 0.012*** 0.012*** 0.009*** 

  (7.72) (7.45) (6.70) 

Has 1 full meal per day during Monga (yes = 1)  -0.047*** -0.043*** -0.037*** 

  (-10.31) (-9.42) (-8.06) 

Does not sell labor in advance (yes = 1) 0.009*** 0.009*** 0.009*** 

  (5.22) (5.01) (4.83) 

Migrates in search of work (yes = 1)  -0.007 -0.012*** -0.001 

  (-1.54) (-2.73) (-0.27) 

Number of observations 49,753 49,753 49,753 

	 	 	 	C: 10% Sample 		 		 		

Has 3 full meals per day during monga (yes = 1) 0.015*** 0.014*** 0.012*** 

  (6.34) (6.24) (5.60) 

Has 1 full meal per day during monga (yes = 1)  -0.056*** -0.053*** -0.045*** 

  (-8.66) (-8.14) (-6.79) 

Does not sell labor in advance (yes = 1) 0.008*** 0.008*** 0.008*** 

  (2.95) (2.86) (2.89) 

Migrates in search of work (yes = 1)  -0.013** -0.018*** -0.006 

  (-1.97) (-2.66) (-0.84) 

Number of observations 24,132 24,132 24,132 

 
Notes: See Table 2.   
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Table B.2: Local 2SLS Results  

(Linear control for land ownership) 

 

  (1) (2) (3) 

Has 3 full meals per day during monga 
(yes = 1) 

0.352*** 0.470* 0.349*** 
(0.12) (0.28) (0.12) 

Has 1 full meal per day during monga 
(yes = 1)  

-0.689** -0.506 -0.693** 
(0.30) (0.54) (0.30) 

Does not sell advanced labor (yes = 1) 
 

0.024 -0.237 0.031 
(0.10) (0.23) (0.10) 

Migrates in search of work (yes = 1)  
 

-1.504*** -0.993 -1.517*** 
(0.45) (0.69) (0.45) 

First Stage Results  
Land < 10 (yes=1) 
  

-0.056*** 
 

-0.058*** 
(0.01) 

 
(0.02) 

Land < 10 (yes=1) x  
(Land - 10)  

-0.008** 0.001 

 
(0.00) (0.00) 

Angrist-Pischke F Statistic 16.62 4.23 8.32 
Prob > F 0.0000 0.0397 0.0002 

Control Variables No Yes No 

Observations 24,132 24,132 24,132 

 
Notes: The above table reports results from local 2SLS, estimated from the 10% subsample around the 10 decimal of 

land threshold. Columns (1) and (2) use as an IV a dummy indicating that the household owns less than 10 decimals 

of land. Columns (3) and (4) use the interaction of this land dummy and rescaled land (land – 10). Columns (5) and 
(6) include both IVs in the first stage.  Each model controls for household and village characteristics: age of 

household head, age squared, land owned, electricity use in the village, and distances to the bank, market, and 

secondary school. Robust standard errors in parenthesis:  * significant at 10%; ** significant at 5%; *** significant 

at 1%. 
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Table B.3: Local Biprobit Results 

(Linear control for land ownership) 

 

  (1) (2) (3) 

Has 3 full meals per day during monga 
(yes = 1) 

  0.013*** 0.013*** 0.013*** 
(0.00) (0.00) (0.00) 

Land < 10 (yes=1) -0.001** 
 

-0.001** 
  (0.00) 

 
(0.00) 

Land < 10 (yes=1) x (Land - 10) 
  

-0.000* 0.000 

 
(0.00) (0.00) 

Has 1 full meal per day during monga 
(yes = 1)  

-0.187*** -0.174*** -0.188*** 
(0.03) (0.06) (0.03) 

Land < 10 (yes=1) -0.033*** 
 

-0.034*** 
  (0.01) 

 
(0.01) 

Land < 10 (yes=1) x (Land - 10) 
  

-0.005** 0.001 

 
(0.00) (0.00) 

Does not sell advanced labor (yes = 1) 0.019 0.011 0.020 
  (0.01) (0.01) (0.01) 
Land < 10 (yes=1) -0.054*** 

 
-0.056*** 

  (0.01) 
 

(0.02) 
Land < 10 (yes=1) x (Land - 10) 
  

-0.008* 0.001 

 
(0.00) (0.00) 

Migrates in search of work (yes=1)  -0.166*** -0.029 -0.168*** 
(0.02) (0.07) (0.02) 

Land < 10 (yes=1) -0.046*** 
 

-0.050*** 
  (0.01) 

 
(0.01) 

Land < 10 (yes=1) x (Land - 10) 
  

-0.005* 0.002 

 
(0.00) (0.00) 

Control Variables Yes Yes Yes 
Number of observations 24,132 24,132 24,132 

 
Notes: The above table reports results from local Biprobit, estimated from the 10% subsample around the 10 

decimal of land threshold. Each model controls for household and village characteristics: age of household head, age 

squared, land owned, electricity use in the village, and distances to the bank, market, and secondary school.  Robust 

standard errors in parenthesis:  * significant at 10%; ** significant at 5%; *** significant at 1%. 

 
 


