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We study properties of the solutions toa parametrized constrained optimiza-
tien problem in Hilbert spaces. A special operator is studied which iz of im-
portance in econotmic theory; sufficient conditions are given for its existence,
symmetry, and negative semidefiniteness. The technigues used are caleulus
and non linear functional analvsis on Hilbert spaces.

InthupUCTION

Lo a wide range of econumic problems the equilibrium values of the variables
can be regarded ss solutions of a parametrized constrained maximization problem,
This veeurs in static as well 33 dynamic models: in the latter case the choice
variables are often paths in certain function spaces and thus can be regarded as
points in infinite dimensional spaces.

It is sometimes possible to determine qualitative properties of the solutions
with tespect to changes in the parameters of the model. The study of such
properties is often called comparative statics; [15], [2], and [10]. Certain com-
parative static prapertics of the maxima have proven to be of particular import-
ance for economic theory, since the works of Slutsky, Hicks, and Samuelson
[15]: they have been formulated in terms of symmetry and negative semi-
definiteness of a matvix, called the Slutsky-Hicks-Samuelson matrix. A discus-
sion of this matrix and its applications is given in Section 1. The study of these
properties in cconomic theory, however, has so far been restricted to static
models where the choice variable and the parameters are elements in Evclidean
spaces, and where there is only one constraint. Infinite dimensionality of the
choice variables arises naturally from the underlying dynamics of the models.
Far example, in optimal growth models with continuous time and problems of
planning with infinite horizons [4) and also from the existence of infinitely

* This rescarch was supported by NSF Grant GS18174. P ]. Kalmon was visiting
Harvard University from SUNY ot Stony Brook. The authors thank K. J. Arrow and
1. Sandberg for helptul suggestions,
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CUMPARATIVE STATICS AMD OFTIMAL CHUOICE 449

many characterstics of the commodities indexed, for instance, by states of
nature in models with uncertainty, by Incation, ete, Many times these models are
formalized as oplumization problems with more than one Constraing.

It s the purpose of tus paper to extend the study of the Slutsky-1Ticks-
Samuelson operator ot a general class of parmmetrized, constrained optimization
problems which appear in recent works in economic theary: the choice variables
and parameters belong to infinite dimensional spaces, e abjective function to
be maximized depends also on parameters, and the optimization is restricted to
regions given by many possibly infinite parametrized constraints, lincar or not.!
The results provide a foundation for the study of comparative statics in dynamic
models such s optimal growth and other dynamic models [4].

The derivation of the Slusky operator is fnore complicated in the case of
many constraints, and the operator ohtwned is of a slightly different nature.
e reason 15 that the compensation” can be performed in different manners
since there are fmany constraints, as becomes clear in the proof of Theorem |
and the remark following it. Also, the existence of parameters introduces new
effcets that do st exist in the classical models; in gencral, the classical properties
are nit preserved. Further, since the values of the constraints may be in an
infinite dimensiomal space of sequences (denoted €7, then “gencralized Lagran-
glan multiphicr™ may alsu be infinite dimensional, in effeer, an element of the
dual space of 7 denoted C*, To avoid the prablem of existence of such dual
elements which arc not representable by sequences (e, purely linite additive
measures [B]) and thus complicate the computations, we work on a Hilbert space
of sequences (7, Infinite dimensional econamic models where the variables are
clements of Hillert spaces have heen studied in [4] and [5].

One problem in the extension from finite ta infinite dimensional choice
varialdes and parasoptimal solutions is that closed and bounded sets in infinite
dimensional Epaces are not, i peneral, COmpact in certain Tu[m]ugius such as
the L, or € norms, To avoid this problems, one usually uses certuin weak
topologies in which purm bounded and closed sets are compact. However, in
these topolegies, the continuity of the ohjective functions is more difficult Lo
obtain, and thus the usual proofz of existence of sulutions by compactness-
continuity arguments may restrict the class of admissible objective functions.
However, using the concavity of the objective function amd convexity of the set
om which the optimization s performed, we prove existence of an optimal solu-
tivn on norm bounded closed sets? or weakly compact sets without requiring

' Reloted weotk an inlinite dimensional cormemodd ity spaces buss been done for spocial
cases of une hinear constraint and no parwmetes i the ohjective Function by L. Coure [7]
and Herger [3]. Lo finnite dimensional models, celated woork For parametrized mcdels with
ane constraint wss done by Kaliwan %], end Kalman and Ineriligator [10]; Chachilnsky
amd Kalman studied parametrized mulfi-conatraint problems in [6].

Tl any reflesive Banach space or Hilbero space, norm bounded and closed sOtE are
wiakly corpact [H].
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the objective function to be weakly continuous, which significantly widens the
choice of objective functions. Thus, the existence of a solution can be obtained
in a much wider class of cconomic models; a useful tool here is the Bamach-
Saks theorem [14].

In Section | suthcient conditions are given for existence and unigueness of a
(™" solution to a general optimization problem and for existence of a generalized
Slutsky-Hicks—Samuelson aperator which contains as a special case the operator
of classical economic models. In Section 2, properties of this operator are studied:
a class of objective and constrained functions is shown to preserve the classical
properties of symmetry and negative semidefiniteness of the operator, which are,
in general, lost in parametrized models, as seen in [10].

We now discuss the Slutsky—1licks—Samuclson operator and its applications.
For further references, see, for instance, [15] and [10). Consider the maximiza-
tinn problem:;

max f(x, a)

(F}

subject to. pix, @) = ¢,

where f is a real valued map defined on a lincar space and g is vector valued,
defined on a linear space. Under cerain assumptions the optimal solution vector x
denoted A{a, c) is a € function of the variables @ and ¢, and, as the parameter ¢
varics, the constraints describe a parametrized family of manifolds on which f
i3 being maximized. In neoclassical consumer theory, for instance, f represents a
utility function, x consumption of all commadities, ¢ prices of all commodities
and ¢ income. In this theory, £ is called the demand function for commodities
of the consumer, Tn neoclassical producer theory, f represents the cost function, =
inputs, a input prices, and g a production function constrained by an output
requirement ¢; in this theory, A is called the demand function for inputs of the
firrn. In both these models, ¢ B, Comparative static resulta relate to the
Slatzky—Hicks-Samuelson operator, given by the derivative of the optimal
solution A with respect to the parameter a restricted to the manifold given by

=z a) =vr,

parametrized by the real number r, denoted

% M, s
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‘This operator will alsu be denoted S(a, c). It is a well known result that in the
finite dimensional consumer model, under certain assumptions,

S e) = = oy ¢ My L wa g G

da 7 ST T

Equation (*} is also called the fundarmental equation of value. While in this case
&{a, £) is cansidercd unobservable since it represents changes in the demand due
to a price change when utility is assumed to remain constant, the right hand side
represents two observable effects called the price effect and the income effect
on the demand, respectively, Analogous operators are found throughout the
body of economic theory. Important properties of the S{a, ¢} operator are its
syminetry and negative semidefiniteness. In addition to their empirical implica-
tions, the symmetry property (5} is related to the Frobenius property of local
integrability of vector ficlds or preferences and the negative semidefiniteness
property [NV} is related to problems of stability of the equilibrium.

A natural question is whether the results of neoclassical consumer and produ-
cer theory can be obtained for the general classes of constrained optimization
madels described above, The results of this paper point in this general direction,
However, the § and N properties of the S(a, ¢} matrix are not, in gencral,
preserved in parametrized models [9]; thus, cne can at most hope to obtain
sufficient conditions of the classes of models (objective functions and constraints)
in which these properties are still satisfied. This is discossed in Section 2.

We now formally define the problem: for a given vector parameters (a, ¢) we
study the solutions of

max [z, a)

testricted by plx, a) = ¢, )

We assume that { and g are twice continuously Frecher differentiable (denoted
C# real valued and vector valued functions, respectively, For a discussion of
Frechet derivatives see, for instance, [12] ar [13]. The Frechet derivative gene-
ralizes the definition of the Jacobian of a map between finite dimensional spaces,
In infinite dimensional Banach spaces there are other possible definitions of
derivatives, such as the Gateaux derivative which generalizes the concept of
dircetional derivatives. Far our purposes, we uae the Frechet derivatives since
much of the theory of ordinary derivatives extends (o them, and since the
nnplicit function theorem has a satisfactory extension in this case. In the
following, all derivatives are Frechet.

We assume that the variable xc X, ac A, where X and 4 are real Hilbert
spaces and that ¢ & €, an I space of sequences® We assume that the spaces X

* Bee, for instance, [5] for cconomic medels defined on (weighted) L0, oo} apaces,
with finite measures on [0, o0}, and [4] for models defined on (weighted) L, and Sebalev
Spaces.
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and €7 have natural positive cones denoted X and €=, and we denote by X the
set of vectors in X which are strictly positive Let + denote the weak tapalogy on

A [B], and let A, and C, be vpen subsets of 4 and €. Forany (e, c)in 4, = €,
denote by g, , the set

fxe At glx, a) = o),

The Lagrangian of (1), denoted L., is a real valued map on X % A, = O, = €*
(C'* the dual of ) given by

Lix, a, ¢, A) = fi(x, a) + Ag(x, &) — ¢],

where A & C* (Cis isomorphic to C*). Let $y: X, % A, % € — € be defined by
dilxa o) —glx a) — o, and i Xy 2 A x O % OF — 20X, B) (the space
of linear functivnals from X to R) be defined by

ok, 1, 2, A) ;t L{x,a, ¢ M,

where {#/8x) L, represents the partial derivative of the function L with respect to
the variable =, as a function defined on X) x 4, = € % €7 with values (in
view of the assumptions on f and g}, on the dual space of X (denoted X*) of
continugus linear functionals on X [8]. Let f: &) = Ay % € % C* - C = X*
be defined by

'ﬂI'[xl i, o, 'h} = (,l;'txw ﬂ} — & %L{.t’, i, £, )I};

= Ul @, c), hyfx, @, ¢, A)).

Let X be a neighborhood of X+,

We now bricfly discuss certain special problems involved in the praof of
existence of solutivns and of the Slutzky Hicks Samuelson operator in infinite
dimensional cases, In the next result we make use of necessary conditions of an
aptimum in order to derive the operator S{a, ¢). These necessary conditions
basically entail the existence of a separating hyperplane; in order to prove that
they are satisfied in problems defined in Banach spaces one uses a Hahn-Danach
type thearem which requires existence of interior points in the regions where the
optimization takes place (see, for instance, the discussion in [13]). However, L,
spaces with | = p = co have positive cones with empty interior, In these cases,

1 X s, for instance, @ sequence space, € X, x = (x,), ¢ — 1, 2., then x is Positive
[denoted » = 0), when x, 2 0 for all 1, (= = (0), and % Qs strictly potitive or x =0,
when x; = 0 for all ¢

When X = L% & — (x(#)) then x = 0af # = 0 and ofe) 5 0 ae. % 5 0f o) = 0
a.e. Sienilarly, for X = LY #R").
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however, if the function to be maximized (£ is continuous and is defined an a
neighborhood Xy of the pusitive cone X, the ficst order condition for 2 maxi-
miwm can sl be sbtained {see footnote 10 below), An immportant wal fer the
derivation of the S{a, ¢) operatar is the inplicit function theorem in Hilbert
spaces [12]. "This theorem requires invertihility of coreain operators. In [6] the
authors investigated these invertibility properties for finite dimensional models
and showed that they are “generically” satislied by using Sard’s theorem, Here
we assume them; one can refer, for instance, to the work of Kantoravich and
Akilov [11] Tor suthicient conditivns on the functions § and g that will vield the
required mvertibility of certain linear operators in infinite dimensional AJHICCE.
T'his is discussed further in the remarks after Theorem 1, One can alse consider
extensioms of the results of [6] by use of the infinite dimensional version of
Sards’ theorem [16].

Toeonest 1. Let (1 X, < 4, R and g1 X, % A, C, be {Frécher)
Sunetions, For every ae Ay, ler (-, @) be strictly concave and increasng on x,
and g be increasing in x.% Assume

(1} the sel g, s @ nomempty convex T-compact subser of Y1 b
() g is reguiar ar a funciion of £
(i) for each {a, o), (3/&{x, AN ohis a top linear rsomorphism, and
(iv)  the opevator Z defined in (6') below, exists for all (x, ) in X, = C* with
dix, a, 0, A) = 0.8

Then there exists @ unique plobal map h: Ay = O, —+ X~ which i of class (1
satisfying

J(hla, c), a) = max f{x, a),

b s increasing o xif flag) e fiz) when x, — xgE X0

F geaisTorwenkly compact in X i is closed and bounded [#]- 5o, hasically, condition (i}
catk be viewed as 0 condition of boundedness and closedness of the "wechnology™ represen-
ted by the feasible ser g, . Let @0 — [viglv,a)d — ob Then when g is strictly increasing
i x, given that /s stoctly inereasings abse, the maxiomnm of §over £ will be attained jn
this casc at £ i g, , . An example in anfinite dimensions| spacts where the set g, | s
comvex is proveded by all the Teasible consumption paths obtsined feom an in tial capital
stock in an economy with a convex technology, i the wsual optimal growth model. In
these cases, the constraint g takes the form of 2 differential for difference) equation with
imitial conditions, see [4].

TLle, Torall {xq , agdin Xy < A (800%) play , ag) is onte.

EU'his assuinption is showe to e “penerically' satisfied in finite dimensional versions
of theae probilems in [6] under cortain conditions. For n furthe: discussion on the existence
of the aperator &, see the remark after the theorem,
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and for any choice of compensating constraint there extsts a stutsky -Hicks - Samuelson
aperator S: Ay = C; — (A, X) (the space of linear functionals from A o X)
prven by
d 8.8
Sia, )=h+o p Egl{h.a]

satisfying
S(a, ¢) _—h| + ;: {¢ (;f:,f) (aaaf)J

= (&) () (e 2 (e (Ser) ] (L

tohere the operators i, y are defined in (14') below, provided these aperators are well
defined for all (x, A) with §{x, o, ¢, A) =

FProof. Bince g__ ia a r-compact subset of X+ by (i), if {#"} is a sequence in
8e,0 With f(2", @) -+ sup, _f(x, a), then there exists a subsequence, denoted also
{x*}, converging weakly, ire., {x"} —"hing, , [14]. By the Banach-Saks theorem
there exists a subsequence {z"+} such that the sequence of arithmetic means
{ml,

2 ™4 - ox™
¥y = P

converges to f in the norm. By convexity, y™ e g, ., and by concavity of f{-, &),
{3} is a maximizing sequence also. Since [ is continuous, A is 2 maximum on
£ea By (i), ke X+ We denote & by #{a, ¢} also. Uniqueness follows from the
assurnption of strict concavity of f(-, a) on x. Note that, as discussed in footnote
S hising, , .

By [13] {Theorem 1, p. 243) and conditions (i1) and (iii), a2 necessary condition
for Ala, ¢) to be a maximum 1s that ¢ = O at (k(a, ¢}, a, ¢, A} for some A = 0 in
C* 1 Now by condition (iv) and by the implicit function theorem fur Banach
spaces {see [ 2]) it follows that A(a, ¢}, which is the solution of system o ahove, is
of class 1,

We now derive the S{a, ¢} operator™ For each {a,cje 4, =« €, the first
order necessary conditions for an opimum are:

and Wy =10, 1€, 3{1'. a} e

& (2)
oy, =10, i.€., EL{:, a,c, A -0

* We shall not distinguish between an operator and its adjoint.

™ Mote that the fact that F is continuous and defined on X, . which iz a neighborhood
of X*, replaces the condition in [3] of existence of an interior point of X+,

" The approach used here generalizes the approach of Kalman and Intriligator in [10]
which is done for one constraint and for finite dimensional spaces.



COMPARATIVE STATICS AND OPTIMAL CHOICE 407

where, for each fixed (a, e),

pip Xy + O
oy Xy om OF o Xt

so that

drX, % OF =€ x &L

Locally, at the maximum, the differential of (2) can be written as:
& d
(a—xg] dx + [E .E) da — dr [},

(e )2 1 (g ) e+ (o) o) 1 ((peas) )3+ )
—0, (3

where

{({_f—;g}dx]h denotes EA,((ME] x)

and similarly for

((zzat) )

System (3) in turn, can be written as

il
¢ (F‘xg} [-dft] = L?ag} dy ¥ -
& ! T e
{er } l.dx2 ‘.’ - {éxﬁa I'} da
where as defined ahove
A . g K+
axL.‘stﬂxf.:(f. o
" 4)
a:a—aL: X, w A, x € % CF = 54, X*)
and similarly
e

:J__L Ay Ay = 0 w07 — X X"
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sa that for each a, ¢ at the maximum Ala, c) and at the corresponding A,
s R
{:;F{-’sz- a0 AP E LN, X,
To simplify notation we now denote (EHO®) Loat (e, choa, e, 8) by (%) L

also; by the assumption of existence of Z, {4/ Ex®) L is mvertible, 12
Thus, by (iv),

v iy a .
rﬂl} o 'i,&} - {E-'_ﬂg} da | de

l : o &
TG )]\ ()

By results of inverting a partioned matrix we have

L [aﬂxg]

%9) [ j;")

{5

ix
g %
* () (1) |

(6)
whiere
. b LR . 2
z-—[Ge) (s t) (o) - (®)
From {5) and {6} we obtain
i % L) = :x gJ z {(& g} dur r.fr.'.}
2 i i 1ogd s P
[(d:.ﬁ L.} l ( ot L} (Eg,i . i 1|rs J I {LI'I.I'IG !
()

" Since X und A are Flilbert spaces and g s convex in the variable s, Tor each {er, ¢ ) thie
operator (EYdcL) will be negative definite at the (x, A) which satiafy the first order
conditions #{x, 4, v, 4] 0 when v is 0 maximom, dod ths (el will be yvertible.
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From (7] we obtain

i e GO R o
e l oxt L;II 1._,';-,.,”?} Z {flr_'elll

et ) (R 2l (e ) ] (at)
(8)

and
L (B0 2 0

We now consider the effect of a “‘compensated”™ change in the vector a,
obtained by a change in the parsmeter & which keeps the value of the objective
function constant, ie., when

g (Lg)ds+ (5 f)da=0.

't

Froen (2], this implies that at the maxima,

S (e P P R (10)
Also,
o {4"1 E’_:l d | ":H.EJ da. (1)

Hence, by (10} and {11}, when df = ()

' 4
—,'l.(dc so&da) b fda 0 (12)

which implies in particular that when gf -0, the det's are not all lincarly
independent. We now choose one of the constraints—say the fth one—to
perform the “compensation," i.e., to insure that the optimal vector stays on the
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surface f = r, on which df = 0. Then, if  is the i-th component of the vector
e, in component form, {12} can be rewritten ag!

(e (gar) ) = 3, (ol e =3 X0 (= (o) ). a9

b opwa

Thus (12) and {13} wuply that

dc — (;; g) da, when df =1 (14}
is
()4 (= () ) w0

where for each (x, a, ¢, A}, p: B — C* js defined by!®

ith place
Y

_u.(u 0'0]

bl ,'h':: 3 Hynis

1In a basis of the Hilbert space €. Similurly, locally the o' sre a “hasis™ for the
cotangent bundle of C at .
" If ¢ is 3 real number and there is ane constraint, Fipmtion {13) becomes

d ['4 )d‘ Y il s 13
— | = a = - |— ;
2 qu A '-f-"u ) )
And, in the chissical case, where a — p (price), gix, o) = p 2, ¢ = § (income), x is
consumption, {13 becomes

df — 2 - dp =) [137)
Muote that the “compensation'' has the effect of making the components of de to be not
all linearly independent nn the surface f = r. For instance, in Eguation (13}, de' iz a
Funeticn of all de', § # 6. Mote thot ${de) = 0 does not imply o = 0; the annlog of this
situation in the clagsical case is the fact that &, f = income, ia not 3 “free" real variable

any mote when f— £ since &l = x + dp. In the clissical consumer case the fact that
Fruation (14}, when df — 0, beeomes (14°), is equivalent to the classical condition that
de — &+ dp (¢ denotes income) beeomes zero when df = 0; this follows from the fact that
(&/du)f} — Ui the clissical consumer case {since £ does nat depend on a), and also
that ¢ in this case i zevo (see, for instance, [15]),

Mo A== % (==l will be well defined if the conditions ¢ = 0 holds for 4 % 0 in C*
at the maximum, A %= 0 means A(c) = 0 for all 2 0 £, In [1] sufficient conditions are
given for the existence of a strictly positive supporting hyperplane (or Lograngian muli-
plier) A % 0, in a different context.
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and ¢ CF — OF {1 = O i3 defined by

#o A
T TR i L= g, g
[ if /g and 14,
A , ! :
'|6=.:l' P, Ijl:l ]i )l =1,
l:rﬁ‘z.l =,

and whered == 0if ¢ is in K10
Therelore, from (7}, {14} and (14°) (denoling, as usual dv, when df =0, by
dax o),

o (rt) G 2ol 401400

G (G ) ) 2 ) (e ) ] ) e

and thus, when ¢{de) = 0, one obtains

el (o B () 2 (o (Gat) + 9(50)

-1

(o 2) 4 (5rt) (2 Ga ) Tt

(15)
So, by (8}, (9) and (5] at the maximum we obtain:
b i 3]
fa® o lzaf)
al = N, T, ] ;
=gl 54 (4 o) = (il )
o] 1 e i T a2 - -
- “FL*_ "‘} ' ( :':x“ L} {grl ”} e {EJ}E.] (% L) 'l {:'.Uf:-‘ﬂ f‘}
Sta. <), (16)

which completes the proof.

W s an [0, o) spuce with s fise mensure on [0, @) given by the density function
A re [0 @) {4 a constant o (0 L)) as o [4) and [5], then Tor ¢ ta he 2 well defined
Wntinumls operatar from Iy o fy @ necessary and sullicient vondition is that

for all r.
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Remark. Buflicient conditions for invertibility of the operators [d){ix, A)] o,
and of

(o) (t) (559))

required in Theorem | can be obrained in certain cases for instance, by direct
cxamination of these operators, which involve first and sccond order partial
derivatives of the functions fand p. For instance when the spaces X, 4 and € are
sequence spaces, these operators will be given by infinite matrices. Conditions for
invertibility of infinite matrices have been studied, for instance, by Kantorovich
in [11]. I X, 1 and € arc spaces of Ly lunctions on the line, one can use Fourer
transform techniques as, for instance, thise of [11]. However, invertibiliey of
operators is a delicate point which requires technical considerations ol its own;
in this case, it requires conditions on the above operators {(and thus on f and g)
anid on the spaces where the problem i defined, depending on the particular
nature of the model. Chher technigues to stady general invertibility of related
operators are given in [6] for finite dimensional spaces, by use of the Sard
theorem. These latter results can be extended to infinite dimensional spaces,
in certain cases, by uae of an infinite dimensional version of the Sard theorem

[16].

2

The classieal property of symmetry of the Slutsky Hicks Samuelson matrix
which in this lramework becomes the operator S(a, ¢ in Section |, is, in general,
not preserved [10], For certain classes of objective functions and constraints,
symmetry of S, ©) can be recovered, as seen in the next results. These classes
of functions have been used in binite dimensional models of the firm, the con-
aumer, and micromonctary models,

In what fullows we assume that all spaces are Hilbert spaces of sequences,

Prorostrios |, Asiwme the ebjective function f{x, a) has the form
(1 f=yla x]+ fHix) + fHa)
and the constraints pix, a) lave the form
(i) g'=d'a-x]+ %)+ g%a) =1, 2.,

and that the conditions of Theorem | of Section | ave satisfied where a e A0 C XY
et y, 8 e R and f, gt have the same properties as f and p of Theorem |, Then
there exists a unique global C' solution for Problem (1) of Section |, and S{a, ¢} fs
S¥misRetrie.
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Proof,  In view of (£}, (99 and {15), we obtain:

s =7 ) e t) (G 2 (e (e t) ] (e

By computing the operator (¢3/8xga)d. for the above objective and constraint
functions we obtain:

¥+ A 0
o
,I—L;;-- i —
flrda { ¥y M

Mote that

)+ t) (en) # (o) () ]

is symmetric. This completes the proof.

PropostTion 2. lader the conditeons of Propesttion |, S{a, o) s negative
semi-definite if y | T, A8 =0,

Proof.  Negatve semi-definitencss of S{e, ) 15 obtained from the conditions
for (i) and {17} of Proposition 1 as follows:
First we prove that

(Pe

is megative semi-definite,
Lot 3 be any vector, and deline a quadratic form Oy — 2Dz Let # -
(e L), and 7 1% be the symmetric negative square roat of £fY, Define

5 1

e ) (o z(ta () ]

v H Vi
where

s s & and oy == JT 1z
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Then,
Op =3y — yulu'u)ytuy
=lxI* — Nall 2] ey

By the Schwarz inequality [8], (3, = 0. 50, &(a, r) will be negative semi-definite
H (#3Exda) 1. is positive semi-definite since under the conditions of the proposi-
tion (#jdvda) L 1 diagonal. Rut (#%éxéa) L is positive  semi-definite if
¥ | X A8 =0, This completes the proof.
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