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ABSTRACT 
While a wide variety of hypotheses have been offered to 

explain the anomalous market phenomena known as a 

“Flash Crash”, there is as of yet no consensus among 
financial experts as to the sources of these sudden 

market collapses. In contrast to the behavior expected 

from standard financial theory, both the equity and bond 

markets have been thrown into freefall in the absence of 

any significant news event.  The author posits that a 

combination of probability and information theory, and 

diffusion dynamics offers a relatively simple explanation 

of the causes of some of these dramatic events.  This 

new avenue of research also suggests new policies or 

measures to lower the probability of occurrence and to 

mitigate the effects of these extreme events. 
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1. Introduction 

Two of the key variables studied in this paper that affect the behavior of the markets are the 

information arrival (CCA) and processing rates (CCL) of the market (and by extension the 

market participants).  As will be shown the value of the ratio of these rates (CCA/CCL) can 

determine different regimes of normal and “anomalous” behaviors for security returns.  As 

this ratio evolves over a continuum of values, security returns can be expected to go through 

phase transitions between different types of behavior.  These dramatic phase transitions can 

occur even when the underlying information generation mechanism is unchanged.  

Additionally when the information arrival and processing rates are assumed to fluctuate 

independently and normally, the resulting ratio (CCA/CCL) is shown to be Cauchy distributed 

and thus fat tailed.  

This line of research actually suggests significantly different remedies to market instability 

compared to those currently utilized such as so called “circuit breakers”.  The level and 

stability of the information processing rate CCL of the market (and market participants) turns 

out to be the most important variable in the model.  Policies which increase this level and 

minimize the variance of the information processing rate will reduce the probability of 

occurrence and the ultimate severity of anomalous market fluctuations. 

1.1 Non-normality, Subordination, and the Limits of Computation 

One obvious and well documented feature of securities markets is the observed non-

normality of market returns.   The concept of trading time or subordinated Brownian motion 

as pioneered by (Mandelbrot & Taylor, 1967), and Clark (1973) provides a method of 

retrieving the normality assumption.  The traditional calendar clock is replaced with 

stochastic time due to the random arrival of information at the market.   Market activity in 

terms of the number and/or size of trades is often used as a proxy of the information arrival 

rate.   After taking into account this stochastic changing of time or “time deformation” returns 

have been demonstrated to be approximately normally distributed for most return data. 

1.2 Failure of the Subordination Hypothesis for Large Price Movements 

The time deformation or subordination methods have been extensively studied and provide a 

useful explanation and remedy for a large bulk of the observed market non-normality. 

However, there is evidence that subordination fails to completely explain extreme price 

movements.  Silva (2005) determined that subordination only effectively explains the center 

(≈  85%) of price movements, and that the subordination hypothesis is rejected for returns 
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that reach the 2 standard deviation level and above.  While (Farmer, Gillemot, Lillo, Mike, & 

Sen, 2004) provides evidence that subordination does not explain large price movements in 

the London Stock Exchange.   

This author argues that prior time deformation methods are missing an additional important 

factor which may affect the subordination process.  The missing factor is the information 

processing ability of the market (and market participants) relative to the randomly arriving 

information.  The decisive role of the information processing rate and its variance in the 

behavior of market returns is the subject the following analysis. 

In the following section an alternative formulation of the standard subordination process is 

derived and its relation to the typical trade number and volume type time deformation process 

is presented.  Afterwards the author shows how this alternative structure naturally generates 

different behaviors including the increased likelihood of large price movements.  Finally the 

remedies suggested by this perspective to reduce the severity and probability of occurrence of 

these extreme events are discussed. 

2. Model Subordination by the Information Processing Clock 

Extending the presentation style of (Huth & Abergel, 2012) this author introduces the new 

concept of the relative excess (or unprocessed) information.  Information that is not 

immediately processed is not somehow rendered irrelevant.  Unprocessed information in a 

current time period will have to be processed at some future time period in order for no 

arbitrage arguments to hold.   

Ross (1989) found that changes in the resolution of uncertainty (or the arrival time of 

information) will change current prices only if they alter the cash flows or equivalently alter 

the average standard deviation of the price process.  However future prices will certainly be 

affected by future information or information whose arrival is postponed into the future.  

Prices will respond at the time that the information is eventually processed. 

Intermediate asset prices can diverge from those implied by the supporting information series 

if the information processing rate falls behind the information arrival rate.  Although prices 

may later converge to those indicated by the full information stream, intermediate prices may 

deviate wildly from those rationally implied by concurrent information arrival and 

processing.  A normally distributed information arrival process may ultimately result in a 

highly volatile and non-normal price return distribution.  
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Additionally unprocessed information may build up until some point in the future where 

processing expands and/or current information generation drops to a level where it can be 

appropriately analyzed.  The resolution of this backlogged information would lead to 

apparent clustering of price changes.  This clustering of processed information would occur 

in spite of a hypothetically Gaussian informal arrival mechanism. 

First we present the typical subordination in the style of (Huth & Abergel, 2012): 

𝐹𝑖 = 𝑃𝑖𝑃𝑖−1 ; 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑎𝑑𝑒𝑠 (𝑖 − 1)𝑎𝑛𝑑 𝑖 𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑁𝑃0 =∏𝐹𝑖𝑁
𝑖=1  

𝑅𝐶𝐶𝑎𝐶𝐶𝑙 = ln (𝑃𝑁𝑃0) =∑ln(𝐹𝑖)𝑁
𝑖  

 

lim𝑁→∞𝑉𝑎𝑟 ( 1√𝑁∑𝑋1𝑁
𝑖=1 ) = 𝑉𝑎𝑟(𝑋1) + 2∑𝐶𝑜𝑣(𝑋1, 𝑋1+𝑘)+∞

𝑘=1  

𝑅𝑁√𝑁 = 𝑁 (0, 𝜎2) 𝑅𝑁~𝑁 (0, 𝑁𝜎2) 
A similar result can be obtained for volume, see (Huth & Abergel, 2012): 

𝑅𝑉~𝑁 (0, 𝑉𝜎2𝐸(𝑉1)) 

An extension is made of the above logic with the addition of the new concept of excess (or 

unprocessed) information in the ith information set.   The key result of additional return 

variance beyond that of traditional subordination is caused by this excess information: 

𝐹𝑖 = 𝑃𝑖𝑃𝑖−1 = 𝐼𝑖𝐼𝑖−1 ; 𝑏𝑦  𝑅𝑜𝑠𝑠 (1989) 𝐿𝑒𝑡 𝐶𝑙𝑖 = 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑡𝑟𝑎𝑑𝑒 𝑖 𝐼𝑒𝑖 = max (𝐼𝑖, 𝐼𝑖 𝐶𝑙𝑖)⁄ = 𝑒𝑥𝑐𝑒𝑠𝑠 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑟𝑎𝑑𝑒 𝑖 
If all information is processed at i, 𝐼𝑖 = 𝐶𝑙𝑖  𝑡ℎ𝑒𝑛 𝐼𝑒𝑖 = 𝐼𝑖   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐼𝑒𝑖 = 𝐼𝑖/𝐶𝑙𝑖 
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𝐿𝑒𝑡 𝐶𝐶𝑎𝑖 = 𝐼𝑖𝐼𝑖−1 ;  𝐶𝐶𝑙𝑖 = 𝐶𝑙𝑖𝐶𝑙𝑖−1 

𝐶𝐶𝑎𝑖𝐶𝐶𝑙𝑖  𝐼𝑒𝑖𝐼𝑒𝑖−1 = 𝐼𝑖 𝐶𝑙𝑖⁄𝐼𝑖−1 𝐶𝑙𝑖−1⁄ = 𝐼𝑖 𝐼𝑖−1⁄𝐶𝑙𝑖 𝐶𝑙𝑖−1⁄ = 𝐶𝐶𝑎𝑖𝐶𝐶𝑙𝑖 ; 𝐶𝐶𝑎𝑖𝐶𝐶𝑙𝑖 = min (1, 𝐶𝐶𝑎𝑖𝐶𝐶𝑙𝑖 )  
There is a greater amount of information per trade than has been analyzed by the market in N 

trades.  𝑁𝑡𝑜𝑡𝑎𝑙 = total information content of N trades = 𝑁 ∗ 𝑒𝑥𝑐𝑒𝑠𝑠 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙  
𝐹𝑖 = 𝐼𝑒𝑖𝐼𝑒𝑖−1 = 𝐼(𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙 )𝐼𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙−1 𝐼(𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙 )𝐼0 =∏𝐹𝑖𝑁

𝑖=1  

𝑅𝐶𝐶𝑎𝐶𝐶𝑙 = ln(𝐼(𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙 )𝐼0 ) = ∑ ln(𝐹𝑖)𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙
𝑖  

lim𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙→∞𝑉𝑎𝑟( 1√𝑁 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙 ∑ 𝑋1𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙
𝑖=1 ) = 𝑉𝑎𝑟(𝑋1) + 2∑𝐶𝑜𝑣(𝑋1, 𝑋1+𝑘)+∞

𝑘=1  

𝑅𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙√𝑁 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙 = 𝑁 (0, 𝜎2) 
𝑅𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙 = 𝑁 (0, 𝑁 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙 𝜎2) 

Or similarly for volume: 

𝑅𝑉∗𝐶𝐶𝑎𝐶𝐶𝑙~𝑁 (0, 𝑉 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙 𝜎2𝐸(𝑉1) ) 
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Now the total variance is dependent on the amount of information in a similar fashion to 

trading time subordination.  However the total variance is also inversely related to the speed 

of information processing in the market.   

If all of the information generated is processed (𝐶𝐶𝑎 = 𝐶𝐶𝑙); then the preceding reduces to 

the standard trading time (Number of trades) relationship: 

𝐴𝑙𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑; 𝐶𝐶𝑎𝐶𝐶𝑙 = 1 𝑅𝑁∗𝐶𝐶𝑎𝐶𝐶𝑙 = 𝑅𝑁 = 𝑁 (0, 𝑁𝜎2) 
In summary when the market processes all information associated with each trade the typical 

trade size subordination holds.  However when there is excess or unprocessed information 

(CCA/CCL >1), then the return variance will be greater than that implied by the typical 

subordination relationship.  This is the source of the failure of the subordination hypothesis 

reported by Silva (2005) for approximately 15% of returns, and for (Farmer et al., 2004) for 

large price movements. 

𝐼𝑓 𝐶𝐶𝑎𝐶𝐶𝑙 ≤ 1; 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑁 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙 𝜎2 = 𝑁 ∗ (1) ∗ 𝜎2 = 𝑁𝜎2 

𝐼𝑓 𝐶𝐶𝑎𝐶𝐶𝑙 > 1; 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑁 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙 𝜎2 > 𝑁𝜎2 

3. Analysis 

3.1 Phase Transitions (The Level of CCL) 

Utilized in conjunction with the new variance relationship derived above, diffusion theory 

provides a revealing perspective to analyze the transitions between the “normal” and 

anomalous behavior of security returns.  This framework shows how changes in information 

processing can lead price movements to experience transformations in their diffusive 

character.  These transitions lead to different periods of Gaussian and non-Gaussian behavior 

even under the assumption of a stable and Gaussian information arrival process.  These 

different periods can be viewed as phase transitions in behavior as distinct as the transition of 

water to steam and ice. 

(Plerou, Gopikrishnan, Amaral, Gabaix, & Stanley, 2000) found that stock price movements 

are equivalent to a complex variant of classical diffusion.  Agent actions and interactions 

were shown to generate non normal price behavior even when the underlying information 
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process is Gaussian by (Lux & Marchesi, 1999).  (Parker, 2013, 2015) used the various states 

of diffusion as described by Klages (2010) and information theory to describe regimes of 

price return behavior.    

The author suggests that differing diffusive states of the price process can be generated if the 

information processing rate of the market equals, exceeds, or is less than the information 

reception rate from the outside environment. The possible regimes are the normal, 

subdiffusive, and superdiffusive states.   The normal or Gaussian diffusive state as identified 

by Bachelier (1900) in finance and Einstein (1905) in the Brownian motion of colloidal 

particles suspended in a solution is the diffusion type typically assumed in most financial 

theory. 

When excess information is generated the diffusive nature of the original information series 

can be amplified or pushed to greater diffusion as reflected in the final price series.  In the 

context of security returns when CCA/CCL >1, the lowest achievable diffusion of the original 

information series is moved upward towards greater diffusion in terms of the resultant price 

series.  An information series that has a normal Gaussian diffusion may result in a price series 

with a higher adjusted diffusion and ultimately be in a super diffusive state.  The result would 

be extreme movements in the return distribution despite the arrival of normally distributed 

information.   

States of Diffusion 𝐶𝐶𝑎𝐶𝐶𝑙 ≤ 1;𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑠𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑁 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙 𝜎2 = 𝑁𝜎2 𝐶𝐶𝑎𝐶𝐶𝑙 > 1; 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑝𝑢𝑠ℎ 𝑡𝑜 𝑠𝑢𝑝𝑒𝑟𝑑𝑖𝑓𝑢𝑠𝑠𝑖𝑜𝑛 𝑡ℎ𝑎𝑛 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑠𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑁 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙 𝜎2 > 𝑁𝜎2 

As the ratio CCA/CCL varies over time, an information series that is subdiffusive and non 

Gaussian may be moved across the entire spectrum of behavior from sub to normal to super 

diffusion as measured by the price series.  This evolution in price behavior can occur even if 

the information arrival process experienced no such change.  From this vantage point 

dramatic changes in market behavior are a natural outcome of changing information creation 

and processing rates as represented in the relationship between them in the ratio CCA/CCL.  
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Additionally, measures that increase the level of CCL will reduce the occurrence of extreme 

price changes. 

3.2 Information Processing and the Cauchy Distribution (The Variance of CCL) 

In this section the analysis will be extended by assuming that both CCA and CCL are 

generated as normal random variables.  Under these assumptions the information arrival and 

processing rates of the markets (and agents) fluctuate randomly.  The simple model built 

upon these assumptions will illustrate the importance of the variance CCL in the behavior of 

the price return process.  

(Bohacek & Rozovskii 2004) studied the travel times of information packets over the 

internet.  Queuing delay resulted in a random time varying component to their model  

(Footnote:  Interestingly they utilized models originally developed to model short rates in 

finance, further illustrating the linkage between finance, information theory, and information 

processing).  Similarly the different components of an agent’s information processing system 

can be assumed to experience similar queuing delays and the resulting randomly evolving 

processing rates CCL(t).  𝐶𝐶𝑎𝑡 = 𝐶𝐶𝑎0 +  𝜎𝑍1;   𝑍1~𝑁(0,1)  𝐶𝐶𝑙𝑡 = 𝐶𝐶𝑙0 +  𝜎𝑍2;   𝑍2~𝑁(0,1)  
Let 𝑊𝑡 = 𝐶𝐶𝑎𝑡𝐶𝐶𝑙𝑡  
It can be shown Wt is a random variable with a Cauchy distribution which is one of the few 

stable but non-normal distributions.   The Levy, the Normal, and the Cauchy are the only 

stable distributions with analytical probability density functions.  Mandelbrot (2006) among 

others favored non-normal distributions (such the Levy and Cauchy distributions) as better 

approximations of stock and commodity price behavior.  Specifically he studied “Stable 

Pareto Distributions” which similar to Cauchy distributions result in fatter tails when 

compared to the normal distributions.  Cauchy distributions actually have nonfinite (or 

undefined) means and variances.  The fatter tails and undefined variances cause extreme 

events to occur much more frequently compared to a process modeled with the normal 

distribution. 
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Below we demonstrate that 𝑊𝑡 = 𝐶𝐶𝑎𝑡𝐶𝐶𝑙𝑡   has the standard Cauchy distribution: 

𝑍1 = 𝐶𝐶𝑎𝑡 − 𝐶𝐶𝑎0𝜎  

𝑍2 = 𝐶𝐶𝑙𝑡 − 𝐶𝐶𝑙0𝜎  𝑓𝑍1(𝑍1) = 𝑒𝑍12 2⁄√2𝜋 ; −∞ < 𝑍1 < ∞ 

𝑓𝑍2(𝑍1) = 𝑒𝑍22 2⁄√2𝜋 ; −∞ < 𝑍2 < ∞ 

𝑓𝑍1,𝑍2(𝑍1, 𝑍2) = 𝑒−(𝑍12+𝑍22) 2⁄2𝜋 ;−∞ < 𝑍1 < ∞,−∞ < 𝑍2 < ∞ 

𝑌1 = ℎ1(𝑍1, 𝑍2) = 𝑍1𝑍2 

𝑌2 = ℎ2(𝑍1, 𝑍2) = 𝑍2 𝑍1 = ℎ1−1(𝑌1, 𝑌2) = 𝑌1𝑌2 𝑎𝑛𝑑 𝑍2 = ℎ2−1(𝑌1, 𝑌2) = 𝑌2  𝐽 = |  1𝑌10𝑌2 | = 𝑌2 𝑓𝑌1,𝑌2(𝑦1, 𝑦2) = 𝑓𝑍1,𝑍2 (ℎ1−1(𝑦1, 𝑦2), ℎ1−1(𝑦1, 𝑦2)) |𝐽| 
= 𝑒−(𝑦12𝑦22+𝑦22) 2⁄2𝜋 |𝑦2| 
= 𝑦2𝑒−𝑦22(𝑦12+1) 2⁄2𝜋  

= 1𝜋(𝑦12 + 1) ;  −∞ < 𝑦1 < ∞ 

This is the probability density function of a standard Cauchy random variable.   

Substituting the new Cauchy distributed 𝑊𝑡 = 𝐶𝐶𝑎𝑡𝐶𝐶𝑙𝑡  into the main equation is illustrated 

below.   

𝑁 ∗ 𝐶𝐶𝑎𝐶𝐶𝑙 𝜎2 = 𝑁𝑊𝑡𝜎2 
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Now the values of the critical ratio (
𝐶𝐶𝑎𝑡𝐶𝐶𝑙𝑡 = 𝑊𝑡) are driven by a process where extreme values 

are to be expected more often than under normal assumptions.  

This analysis suggests a potential new means of stabilizing market behavior.  Specifically the 

variance of CCL could be reduced so that it is more dominated by a high level of 𝐶𝐶𝑙0 and 

less by the variance of the information processing structure.  As CCL approaches a more 

constant level with near zero variance 𝑊𝑡 would essentially be transformed into a normally 

distributed random variable whose behavior would be dominated by CCa.  A more reliable 

and stable information processing structure would accomplish this as seen below: 

Increase 𝐶𝐶𝑙0 and minimize the variance of Z2 in such a way so that this stable term 

dominates the relationship: 𝐶𝐶𝑙𝑡 = 𝐶𝐶𝑙0 +  𝜎𝑍2;   𝑍2~𝑁(0,1); 𝑏𝑒𝑐𝑜𝑚𝑒𝑠  𝐶𝐶𝑙𝑡 ≈ 𝐶𝐶𝑙0  
This transforms 𝑊𝑡 = 𝐶𝐶𝑎𝑡𝐶𝐶𝑙𝑡   into a form determined only by the normally distributed CCa. 

𝐹𝑟𝑜𝑚 𝐶𝑎𝑢𝑐ℎ𝑦 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑊𝑡 = 𝐶𝐶𝑎𝑡𝐶𝐶𝑙0  

𝑇𝑜 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑊𝑡 = 𝐶𝐶𝑎𝑡𝐶𝐶𝑙0 ; 𝑤ℎ𝑒𝑟𝑒 𝐶𝐶𝑎𝑡 = 𝐶𝐶𝑎0 +  𝜎𝑍1;   𝑍1~𝑁(0,1)  𝑊𝑡 = ( 1𝐶𝐶𝑙0)𝐶𝐶𝑎0 +  𝜎𝑍1 

(Note:  A key difference in this discussion from some of the usual modeling debates is I am 

not assuming whether the original structure of returns is Gaussian or Cauchy, or any other 

non-normal form.  I am arguing that the trading system can be designed and modified such 

that return behavior more closely approximates a Gaussian versus a Cauchy type 

distribution.) 

In Tables 1 and 2 below are two examples each with 50,000 random draws where 

 𝑋 𝑎𝑛𝑑 𝑌~𝑁(0,1). 
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Table 1 

50,000 Random Draws of X and Y 

X and Y~N(0,1) 

Variable Mean Variance 

X -0.005 0.992 

Y 0.005 0.998 

Z = X/Y 0.902 71,149.79 

 

Similar draws in Table 2 illustrate the dramatic change in the Cauchy distributed Z. 

 

Table 2 

50,000 Random Draws of X and Y 

X and Y~N(0,1) 

Variable Mean Variance 

X 0.000 0.992 

Y -0.001 0.999 

Z = X/Y 53.975 144,400,419.61 

 

To further illustrate the difference in behavior between Z and its constituents a graph of the 

first 50 values of a typical run is presented below in Figure 1.  As seen in the graph, despite 

being composed of X and Y which are normally distributed, clearly Z has dramatically 

different behavior.  The Z distribution is populated with extreme values of greater magnitude 

and frequency. 

 

Figure 1 

First 50 Values of X, Y, and Z 
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Next the effect of reducing the variance of Y (representing a reduction in the variance of 

CCL) on the Z distribution is presented.  Similar to the above example X and Y are IID with 

the mean and variance described below in Table 3: 𝑋 𝑎𝑛𝑑 𝑌~𝑁(1,1) 
Here we are assuming the average information generation and processing rates are nonzero.  

Table 3 below illustrates that the mean and variance of Z is still nonfinite and does not 

converge with added terms or repeated runs: 

Table 3 

50,000 Random Draws of X and Y 

X and Y~N(1,1) 

Variable Mean Variance 

X 0.989 1.000 

Y 0.999 1.003 

Z = X/Y 1.340 298,138.96 

  

However if the variance of Y (representing a reduction in the variance of CCL) is 

dramatically reduced then the mean and variance of Z begins to assume the behavior of X.  

The magnitude and frequency of extreme values are now reduced and 𝑋~𝑁(1,1) 𝑎𝑛𝑑 𝑌~𝑁(1,0.01) in Table 4 below: 

Table 4 

50,000 Random Draws of X and Y 

X~N(1,1) and Y~N(1,0.01) 

Variable Mean Variance 

X 0.997 1.002 

Y 1.001 0.010 

Z = X/Y 1.006 1.04 

 

  



Parker E. / Journal of Insurance and Financial Management, Vol. 2, Issue 2 (2016) 90-103 102 

 

4. Conclusions 

As shown in this paper dramatic market moves such as Flash Crashes are a natural outcome 

of the changing information creation and processing rates, and the relationship between them 

as captured in the ratio CCA/CCL.  Additionally these relationships suggest that current 

measures used to mitigate the effects of dramatic market declines may actually exacerbate the 

situation. 

Instead of speeding the market’s processing of information (including perhaps erroneous 

information or noise which nonetheless must still be processed) circuit breaker type 

interventions tend to result in the reverse effect. Circuit breakers halt a trader’s ability to act 

on market information, and also increase the variability of the rate of such processing.  

However this trading halt neither eliminates existing information nor does it not stop the 

generation of new market information.  Continued information generation can lead to further 

increases in the critical ratio CCA/CCL while the increased variability of CCL can push the 

dynamics into a more extreme regime. This analysis leads to the unfortunate realization that 

circuit breakers can actually precipitate the very behavior they are designed to curb.   

The relationships brought to light by this new perspective suggest that measures that increase 

the speed and decrease of the variability of information processing would be preferable to 

trading halts.  Additionally measures should be taken that encourage relatively faster 

information processing participants such as HFT’s to remain active market participants 

during crises.  Anticipated trading halts turn the markets into a panicked race for the exit 

when volatility becomes extreme.  This happens tragically at the very time that reliable high 

speed information processing is needed. 
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