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Abstract 

We examine the performance of the threshold cointegration approach, specifically Band-

TVECM, to price transmission analysis in an explicit context where trade decisions are made 

based on expectation of final prices, because trade takes time. We find that, following a 

standard inference strategy, a large portion of three-regime cases are not identified as such. 

Results show that transfer costs are systematically underestimated, particularly in three-

regime models. The speed of price transmission is also biased in three-regime models. 

Furthermore, inferences about occurrence of trade are poor, with estimated models 

suggesting far lower market integration than is true in the data generating process.  

 

Keywords: Band-TVECM, market integration, price transmission, threshold cointegration, 

transfer costs.  

 

JEL codes: Q11, F17, C32 

 

 

 

 

This version: June 27, 2017 

 

* Lence is Professor and Marlin Cole Chair of International Agricultural Economics, 

Department of Economics, Iowa State University. Moschini is Professor and Pioneer Chair in 

Science and Technology Policy, Department of Economics and CARD, Iowa State 

University. Santeramo is Ricercatore, University of Foggia, Italy. Senior authorship is not 

assigned. 



1 
 

Threshold Cointegration and Spatial Price Transmission when Expectations Matter 

 

1. Introduction 

Prices reflect competing equilibrating forces at work in a market setting, condense 

complex and decentralized information, and provide vital signals for the allocation of 

resources by economic agents. Much can be learned from price data, but, because goods and 

services are heterogeneous with respect to form, space, and time, price analysis can be 

challenging. In addition to sophisticated econometric techniques, accurate inference may 

require a clear understanding of industry, and awareness of relevant policies and institutions. 

The interaction of such factors in the analyst’s model is just as important. Efforts to 

investigate the scope and applicability of the expanding economist’s toolkit are essential, as 

methods and techniques appropriate in one setting might prove inadequate when seemingly 

minor conditions or assumptions are changed. In this paper, we revisit a popular approach to 

the analysis of price transmission, the threshold autoregressive model, and assess its 

performance in an explicit spatial equilibrium context. 

Spatial links between prices have long been of interest in agricultural economics. Earlier 

work is summarized and discussed in Fackler and Goodwin (2001). A central concept is the 

so-called Law of One Price (LOP), whereby prices in two markets linked by trade tend to be 

equalized by arbitrage—apart, of course, for the cost of carrying out such arbitrage, which 

includes transport and other transaction costs (collectively referred to as “transfer costs” 

hereafter). Important questions regarding market integration, market efficiency, and the 

effectiveness of policies can relate to how exactly prices are transmitted between markets. 

Wright and Williams (1989) and Coleman (2009b) highlight the role of storage activities and 

inventory management in determining the spatial constellation of prices. Shiue (2002) also 

studies physical arbitrage, with an emphasis on the connection between trade and inter-

temporal arbitrage within the framework of spatial price transmission. Coleman (2009a) and 

Stephens et al. (2011) explore the importance of information on trade capacity constraints and 

on trade flows in analyses of spatial price transmission. Myers and Jayne (2012) identify the 

differing impacts on price transmission of private sector trade and government behavior. 
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The concept of cointegration has played a central role, at least since Ardeni (1989), in 

the analysis of price transmission (e.g., García‐Germán et al., 2016). In particular, 

following the seminal papers by Balke and Fomby (1997) and Hansen and Seo (2002), 

many LOP econometric studies have adopted “threshold cointegration” as the benchmark. 

The essential feature of this approach is to allow for regime switching in the transmission 

of prices, such that the correction of deviations from the long-run equilibrium displays 

threshold behavior. Applications of threshold cointegration to price transmission include 

Goodwin and Piggot (2001), Ben-Kaabia and Gil (2007), and Balcombe et al. (2007). 

Recent developments have featured increasingly sophisticated econometric specifications, 

such as polynomial fitting, Markov-switching, and smooth transition models (Serra et al., 

2006; Ihle et al., 2009; Goodwin et al., 2011, Hahn et al., 2016). 

A feature of the threshold autoregressive models of price transmission is that, under 

certain assumptions, they can recover transfer costs as estimated parameters. More 

specifically, in the canonical version of this model for two trading points, such parameters 

identify a “band of inactivity” such that arbitrage activities (e.g., trade) are triggered when 

price differences tend to move outside this band. This is attractive because the model 

offers a coherent way of capturing the nonlinearities implied by the presumption of 

switching regimes (trade or no trade, depending on whether price differences are smaller 

or greater than transfer costs). The modeling approach also elegantly deals with the fact 

that, for most empirical applications of price transmission, transfer costs and trade flows 

are often not observable. 

Despite the wide diffusion of threshold autoregressive price transmission models, 

concerns have been raised from several points of view. One criticism focuses on the fact 

that price data alone may provide an insufficient basis to make inference about the 

performance of markets. Specifically, additional information and data on actual transport 

costs, quantities transacted and trade flows would be especially helpful (Barrett 2001). 

Another strand of criticism has focused on the econometric challenges of estimating 

threshold parameters. A broader cautionary perspective recognizes that applying these 

price transmission models to real-world data, and interpreting estimation results, requires 
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a lucid grasp of the process being modeled, that is, “… a wider understanding of the structure 

and institutions underlying the price data” (Goodwin and Vavra, 2009, p. 10). 

This paper contributes to assessing the usefulness of threshold autoregressive price 

transmission models by reporting the results of a Monte Carlo experiment wherein several 

performance features of some standard inference procedures are assessed in a context where 

the data generating process (DGP) is known. Studies in this setting typically focus on the 

modeler’s “estimation problem,” wherein one seeks the best procedure to recover the 

parameters of a model that is held to be true by assumption (e.g., Greb et al. 2013). In the 

spirit of Goodwin and Vavra’s (2009) thoughtful discussion, however, we propose to focus 

on what may be termed the modeler’s “specification problem,” whereby a parametric 

structure is postulated to represent and interpret a real-world setting of interest. As in Fackler 

and Tastan (2008), we emphasize the need for an explicit consideration of the underlying 

economic model of price determination. Hence, rather than relying on a reduced-form 

parameterization, the DGP that we invoke is based on a structural specification in which the 

notion of price transmission has a clear and explicit economic interpretation. 

Specifically, the economic model that generates our data is predicated on the basic 

competitive model of spatial equilibrium (Takayama and Judge, 1971), but embeds two 

(related) features that, while plausible attributes of most real world situations, are often 

neglected in applied work (Fackler and Goodwin, 2001): delivery lags and rational 

expectations. Within this framework, a primary goal is to explore the empirical relevance of 

the econometrician’s problem, wherein the analyst typically cannot observe data on transfer 

costs or trade flows while attempting to provide inference on market integration based on 

econometric methods. We also study the implications of different attributes of transfer costs, 

as well as the speed of price transmission. 

The novelty of our approach, relative to previous work that has evaluated the performance 

of threshold autoregressive price transmission models, follows from the motivation for our 

Monte Carlo experiment articulated in the foregoing discussion. Rather than seeking an 

improved estimation method, we take a standard inferential strategy as given and ask how 

well it captures the salient attributes of the underlying economic model. The particular 
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structure of our DGP is predicated on a two-region equilibrium model, in which trade 

occurs according to rational expectations and the tradeable product is assumed to be 

perishable. The inferential strategy that we implement is based on testing for unit-roots 

and estimating a threshold autoregressive model (or a simpler autoregressive 

specification) in order to quantify the transfer costs. Furthermore, we explore the 

robustness of our findings through sensitivity analysis. 

The remainder of the paper is organized as follows. The next section presents the 

theoretical structure of DGP that embeds delivery lags and (rational) price expectations in 

a two-region spatial equilibrium model. This is followed by parameterization of the 

model and a discussion of the implied price dynamics. The various simulation scenarios 

considered are discussed next, along with the inference strategy used to evaluate the 

modeling approach. This is followed by a presentation of the results of the analysis, and a 

discussion of the main conclusions. 

 

2. The DGP: Price Expectations and Spatial Arbitrage  

The data used to evaluate the estimators of interest is generated from a structural 

representation of a prototypical market where delivery lags give rise to a meaningful role 

for price expectations to influence arbitrage decisions. The underlying economic 

environment is that of a competitive model of spatial equilibrium. To capture the essence 

of the economic forces at work, we focus on the simplest possible structure: a two-region 

equilibrium model in which trade occurs according to rational expectations and the 

tradeable product is assumed to be perishable. 

Arbitrage entails that prices in two markets linked by trade tend to be equalized as a 

consequence of agents pursuing profitable trade opportunities. This results in the LOP 

noted earlier, according to which prices should differ at most by the transfer costs needed 

to move the goods from one location to the other (except for corner solutions). The 

transfer costs determine the so-called “inactivity band” within which no adjustments take 

place. In analytical terms, the arbitrage conditions can be stated as follows: 

|PA − PB| ≥ T  if  X > 0, (1) 
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|PA − PB| < T  if  X = 0, (2) 

where Pi denotes the price in region i ∈ {A, B}, T > 0 represents the per-unit transfer costs to 

ship the good between A and B, and X is the quantity shipped between regions.  

The foregoing formulation makes it apparent why one should expect threshold effects in 

price transmission: the equilibrating role of spatial arbitrage (trade) does not come into play 

when prices differ by less than transfer costs. A variety of threshold cointegration 

specifications have been proposed for the econometric analysis of price transmission. 

Because analyzing all of them is not workable, here we focus our attention on the Band-

TVECM proposed by Balke and Fomby (1997, p. 631), arguably the most popular and 

intuitive specification to model the arbitrage conditions (1)-(2): 

zt =  

1 1

1 1

1 1

(1 )   if ,

                         if    | | ,

  (1 )   if   .

t t t

t t t

t t t

z e z

z e z
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 − − + + < −

 (3) 

In the above expression, zt ≡ A
tP  − 

B
tP  is the spatial price differential, parameter θ 

determines the equilibrium band [−θ, θ] to which variable z tends to return over time, (1 − ρ) 

reflects the speed of price transmission, and et is an independently and identically distributed 

(i.i.d.) N(0, σ2) error. Within the so-called “inactivity band” [−θ, θ], z follows a random walk 

without drift. If θ = 0, the inactivity band disappears and the price differential follows a 

process with unconditional mean equal to zero and autocorrelation equal to ρ ∈ (0, 1). 

Parameter ρ is inversely related to the speed at which z tends to revert to the band. When ρ → 

1, the speed of price transmission equals zero, and the inactivity band cannot be identified 

because the price differential behaves as a random walk everywhere.1 

Based on competitive spatial equilibrium theory, spatial price differentials zt that exceed 

the inactivity band are corrected toward the edges of the band. Within the band, price 

differentials are not large enough to trigger arbitrage, and behave like a random walk. In 

terms of trading activities, three regimes can be distinguished based on the value of the price 

differential zt, namely: (a) the price differential is larger than the threshold θ, so that trade 

                                                            
1 An earlier model assuming a stationary price differential inside the band of inaction was developed 
by Spiller and Woods (1988a, 1988b). Such assumption is a likely reason why their model has not been 
widely adopted, as it seems less realistic than the nonstationary no-trade price differential that 
characterizes the Band-TVECM (3).  
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occurs from B to A; (b) the price differential is smaller in absolute value than the 

threshold, implying no trade; and (c) the price differential is smaller than the negative of 

the threshold (i.e., 
B

tP  − 
A

tP  > θ), with trade taking place from A to B. 

The performance of the econometric formulation of price transmission in (3), 

however, is bound to depend on the specific structure that is generating the prices 
i

tP . In 

the experiment reported in this paper, we assume a simple but explicit economic model of 

price determination with stochastic supply and demand conditions in each market, in a 

setting where agents’ expectations play a meaningful role. 

Specifically, each region contains a terminal market where, in each period, price 

reflects the equilibrium between local demand and total shipments to that market from 

both regions. In each region production has to be pooled and shipped to either or both of 

the terminal market locations, and this basic marketing stage takes some time. We 

abstract from storage and assume that the product is perishable (e.g., vegetables) and must 

be consumed once it reaches the terminal markets. The two regions are labeled A and B, 

and the sequence of events is as follows: at the beginning of period t the amount of 

production
i
tS  is realized in region i ∈ {A, B} and becomes available for shipment to the 

terminal markets of either/both regions. The transportation/marketing stage takes some 

time, and so shipping decisions have to be based on the agents’ expectation of the 

equilibrium price that will emerge in the terminal markets later in the period, when 

consumption will take place. Given the assumption that the product is perishable and 

storage is not possible, the total amount shipped to either terminal location in period t is 

available to satisfy demand only in this period. Figure 1 illustrates the presumed timeline, 

where we adopt the convention of labeling the period by its beginning date. 

Let 
ij
tx  ∈ [0, 1] denote the share of output 

i
tS  shipped to market j, for i, j ∈ {A, B}. 

The fact that shipments from a region cannot exceed total availability in that region is 

expressed as the constraint 

i
tS  ≥ ii

tx
i
tS  + 

ij
tx

i
tS , (4) 

for i ≠ j and i, j ∈ {A, B}. Similarly, consumption in region i ∈ {A, B} in period t , labeled 

,i
tC  cannot exceed the amount available, in other words,  
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i
tC  ≤ 

ii
tx

i
tS  + 

ji
tx

j
tS , (5) 

for j ≠ i and j ∈ {A, B}. 

As noted, immediately after output 
i
tS  is obtained, economic agents decide how much to 

ship to regions A or B, a decision that is based on the expected gains (given the stochastic 

elements of the system to be discussed shortly) after paying for transfer costs. Let 
ij

tT  ≥ 0 

denote the transfer cost required to ship one unit of product from region i to region j in period 

t. Transfer costs may change from period to period, but are known to decision makers at the 

time of shipping. The cost of shipping between regions is strictly positive (
ij

tT  > 0, i ≠ j). 

Furthermore, we maintain the assumption that it is costlier to ship the good to the other 

region than to the terminal market of the own region (i.e., 
ij

tT  > 
ii

tT , i ≠ j); thus, without 

further loss of generality, we set 
ii

tT  = 0, ∀ i, t. Given that the product is perishable, and 

together with regularity conditions on demand (to be detailed below), it will always be the 

case that in each period: (a) some of each region’s supply is always shipped to the own 

market (i.e., 
ii
tx  > 0 for i ∈ {A, B}); (b) the entire supply in each region is shipped (i.e., 

expression (4) holds as an equality); and (c) in each market the total shipments arriving from 

both regions will be consumed (i.e., expression (5) holds as an equality). Condition (a) 

implies that 
ij
tx  ∈ [0, 1) for i ≠ j, and condition (b) means that 

ii
tx  + 

ij
tx  = 1,         i, j ∈ {A, B}.  (6) 

In a competitive setting where individual agents are atomistic and make shipping 

decisions so as to maximize expected profits conditional on their information at the time of 

shipment, in equilibrium the shares shipped to the farthest consumption region (
AB

tx  and 

)BA
tx  must exhaust ex ante arbitrage opportunities, in other words, they must simultaneously 

satisfy the following conditions: 

( ) ( ) 0,  0,  [ ( ) ( )] 0,− − ≤ ≥ − − =B AB A AB B AB A AB
t t t t t t t t t t t tE P T E P x E P T E P x  (7a) 

( ) ( ) 0,  0,  [ ( ) ( )] 0,− − ≤ ≥ − − =A BA B BA A BA B BA
t t t t t t t t t t t tE P T E P x E P T E P x  (7b) 

where the overbar denotes equilibrium values and Et(∙) ≡ E(∙|Ωt), (i.e., expectations are 

rational and conditional on the information set Ωt at the time of shipping). This information 

set includes all fixed parameters of the model and the values of all random variables that are 

realized before the time when shipping decisions are made (more details below). 
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2.1. On the Generality of the DGP Structure: Discussion 

The proposed structure of the DGP is admittedly simple. It does not incorporate many 

real-world features, such as the possibility of storage and/or the existence of trade across 

many regions. This is a deliberate choice that is meant to make the outcome of our 

analysis crisper and easier to interpret. If the question of interest is whether a given 

econometric procedure can uncover certain properties of a DGP, then making the latter 

arbitrarily complex can only increase the likelihood of a negative answer. Conversely, if 

one finds that a given procedure performs poorly in a simple setting, the presumption that 

it would do better in more complex cases is not tenable.  

To elaborate further on the advantages of the postulated DGP structure, note that the 

typical empirical approach consists of employing historical price series to infer transfer 

costs across regions. Thus, the empirical analysis of a model consisting of two regions 

relies on two observed price series (one for each region) to recover one transfer cost. If 

instead one were to analyze spatial equilibrium among many regions, the number of price 

series would increase linearly but the number of unknown objects would increase 

quadratically (e.g., for n regions one would use n observed price series to infer [n (n − 

1)/2] transfer costs). Quite clearly, adding regions to the analysis can only exacerbate the 

problem of identifying transfer costs from the observed price data. 

Explicitly allowing for storage decisions would similarly introduce nontrivial 

complexities (Coleman, 2009a). To the best of our knowledge there is no study showing 

how to extend the standard storage model (Wright and Williams, 1989) to the case where 

the endogenously-determined equilibrium prices have a unit root, as required by our 

analysis. For instance, the numerical solution of the standard storage model provided by 

Miranda and Fackler (2002, pp. 215-217 and 298-301) deals with a setup that yields 

stationary prices. Nonetheless, we can conjecture some likely effects of storage on price 

behavior. The first impact is greater autocorrelation, due to intertemporal arbitrage that 

links the current price with the expected next-period price via storage. The second impact 

is smaller price changes in response to exogenous (e.g., weather) shocks, as the addition 

of the demand for stocks makes total demand more elastic. Hence, even though no storage 
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is involved in the proposed DGP, the “Stochastic Supply with High Autocorrelation” and 

“High Demand Elasticity” scenarios discussed later (which, respectively, yield more 

autocorrelated prices and more subdued responses to exogenous shocks) may provide 

valuable insights about the possible impact of introducing storage on inference. 

To anticipate some of our findings, results will show that transfer costs are poorly 

estimated from price data for simplest scenario of n = 2 regions and no storage. Hence, one 

can safely conclude that transfer costs would also be poorly estimated from price data for 

more complex scenarios with n > 2 regions and/or incorporating storage. In short, increasing 

the complexity of the model can only exacerbate the (lack of) identification problems that we 

find characterizes the simplest two-region trade model.  

 

3. Parameterization and Price Dynamics 

To make this framework operational we need to specify demand and supply conditions. 

Demand in each region is assumed to be isoelastic, so that the inverse demand functions are 

written as  

i
tP  = 

i
tδ ( ) 1/

,
ii

tC
ε−

 (8) 

where 
i

tP  is the price in region i  in period t , 
i
tδ  > 0 is a demand scaling factor defining the 

market size, and εi is the own-price elasticity of demand. With this demand parameterization, 

consumers’ marginal willingness to pay is bounded away from zero (
i

tP  > 0 as long as 
i
tC  < 

∞), implying that total shipments to each region will be consumed. Together with equations 

(4) to (6), this implies that equilibrium prices in the two markets are determined along the 

demand curves, given the quantities shipped to each market in equilibrium: 

A
tP  = 

A
tδ

1/
(1 ) ,

AAB A BA B
t t t tx S x S

ε−
 − +   (9a) 

B
tP  = 

B
tδ

1/
(1 ) .

BAB A BA B
t t t tx S x S

ε−
 + −   (9b) 

From the complementarity slackness conditions in (7a) and (7b), it follows that: (a) the 

expected spatial price differential is exactly equal to the transfer cost when there is a positive 

shipment between regions, and (b) between-region shipments are equal to zero when the 

expected price differential is strictly smaller than the transfer cost. Given the specific form of 
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the assumed demand functions, the expected price differentials cannot exceed the relevant 

transfer cost between the regions. 

In addition to the role of arbitrage, the dynamic behavior of prices in the two markets 

will depend on the dynamic properties of the exogenous shocks to supply and demand, 

which we specify as follows. Production in region i is assumed to follow the (covariance) 

stationary random process  

ln(
i
tS ) = µi + γi ln( 1

i
tS − ) + 

i
tv , (10) 

where µi is a scalar that defines the long-term mean supply, γi ∈ [0, 1) is another scalar that 

determines the level of autocorrelation in supply, and 
i
tv  is an i.i.d. N(−0.5

2
iψ , 

2
iψ ) 

random shock. Under the assumed distribution for 
i
tv , the random variable exp(

i
tv ) is log-

normally distributed, with mean equal to 1 and variance equal to [exp(
2
iψ ) − 1].2 

Because supply is stationary by construction, to generate prices that are I(1) (i.e., 

integrated of order one), demand (8) is assumed to be subjected to exogenous I(1) shocks: 

ln(
i
tδ ) = ln( 1

i
tδ − ) + 

i
tu , (11) 

where 
i
tu  is an i.i.d. N(−0.5

2
iξ , 

2
iξ ) random shock. Given process (11), and given the 

equilibrium quantity shipments 
ij
tx , the equilibrium price processes (9a) and (9b) can be 

written as 

A
tP  = exp(

A
tu ) 1

A
tδ −

1/[(1 ) ] ,ε−− + AAB A BA B
t t t tx S x S  (12a) 

B
tP  = exp(

B
tu ) 1

B
tδ −

1/[ (1 ) ] .ε−+ − BAB A BA B
t t t tx S x S  (12b) 

By construction, price series in both regions are I(1) and exhibit threshold cointegration. 

Consistent with the timeline illustrated in Figure 1, the realized values of the random 

variables 
i
tu  are not part of the information set Ωt of the conditional expectation E(∙|Ωt) 

introduced earlier (i.e., shipping decisions are made without knowing the demand shock that 

                                                            

2Therefore, the conditional mean and variance of 
i

t
S  are respectively Et(

i

t
S ) = 

µie 1( )
γ

−
ii

tS  and  

Vart(
i

t
S ) = 

2

( 1)
ψ −ie

2
1[ ( ) ] ,

µ γ
−

i ii

te S  whereas the unconditional mean and variance are E(
i

t
S ) = 

exp[µi/(1 − γi) − 0.5 γi 
2

i
ψ /(1 − 

2

i
γ )] and Var(

i

t
S ) = {exp[

2

i
ψ /(1 − 

2

i
γ )] − 1} exp[2 µi/(1 − γi) − γi 

2

i
ψ

/(1 − 
2

i
γ )], respectively. 
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will be realized in the terminal markets). That is, if Ω0 denotes the set of all fixed parameters 

of the model, then Ωt = Ωt−1 { }, , , ,A B A B
t tt tu u v v− −

1 1
∀ t > 0. 

 

4. Simulation Scenarios 

The purpose of the proposed economic model is to provide a transparent framework to 

to assess the inferences based on threshold cointegration about the true economic structure. 

structure. To this end, we use the model to simulate data and examine the performance of 

threshold cointegration inferences for alternative scenarios. The scenarios under study consist 

consist of specific parameterizations of the underlying economic model, aimed at obtaining 

simulated data representative of typical time series observations available to econometricians 

when conducting price analysis. For each scenario, we simulate 1,000 samples (i.e., sets of 

time series), each of them comprising either 260 or 520 observations for each of the variables 

analyzed. The design of the simulations and information about the numerical procedures used 

to solve the model are provided in the online appendix. 

 

4.1. Transfer Costs  

A drawback encountered when performing econometric analyses of price transmission is 

that transfer costs are typically not observable, and usually assumed to be constant or simple 

functions of time. However, such a simplification might hinder the study of price dynamics 

because in reality transfer costs may change over time. 

In order to understand the empirical relevance of transfer costs, we simulated the model 

under three alternative assumptions, namely, (a) fixed per-unit transfer costs, (b) exogenous 

time-varying per-unit transfer costs, and (c) endogenous time-varying per-unit transfer costs. 

In all instances, it is assumed that transfer costs are known to decision-makers at the time of 

making shipment decisions, but unknown to the econometrician. 

The case of fixed per-unit transfer costs, designated “fixed transfer costs” for simplicity, 

assumes that 
ij

tT  = 
ij

T , ∀t. The case of exogenous time-varying per-unit transfer costs is 

obtained by drawing i.i.d. values of 
ij

tT  from a beta probability distribution. To simplify the 

presentation, this case is labeled “stochastic transfer costs” in the remainder of the study. 
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Finally, we consider a scenario with endogenous time-varying per-unit transfer costs, or 

“endogenous transfer costs” for short. International trade studies provide a variety of 

perspectives on how such transfer costs can be modeled (Behrens and Picard, 2011), but 

have consistently found that endogenous freight rates respond to trade imbalances (best 

exemplified, perhaps, by the so-called “backhaul problem”). Thus, we postulate that 

larger shipment volumes would need to bid away transportation resources from other 

uses, thereby increasing the unit transfer cost. Hence, for this case per-unit transfer costs 

are represented by 

ij
tT  = τ0 + τ1 

ij i
t tx S , (13) 

where τ0 and τ1 are strictly positive parameters. Unlike the cases of fixed or stochastic 

transfer costs, endogenous transfer costs imply that the supply of transfer services is not 

infinitely elastic. Importantly, per-unit transfer costs are endogenous in equilibrium, because 

the equilibrium share of output shipped 
ij
tx  that determines 

ij
tT  must simultaneously solve the 

no-arbitrage conditions (7a) and (7b). 

 

4.2. Parameter Values 

The parameterization adopted for the baseline scenario consists of 520 observations 

per sample, fixed and symmetric transfer costs with 
ij

tT  = 0.05, a constant and unitary 

supply in each region (µi = γi = ψi = 0), inelastic demand functions with εi = 0.7, and 

demand shocks with a variance of 
2
iξ  = 0.00120. The latter value is the weekly equivalent 

of a 25% annual price volatility under autarky, which is a representative volatility for 

many agricultural commodities (FAO, 2004 p. 51; Gilbert, 2006 p. 51).3 This means that 

the simulations are aimed at mimicking samples of weekly time series observations. Thus, 

in the case of the baseline, each sample (520 observations) represents ten years of data. 

The baseline transfer cost value of 
ij

tT  = 0.05 was determined by calibration. It was 

obtained by simulating the model so that approximately half of the spatial price 

differential observations fall inside the transfer cost band (i.e., Prob(|zt| ≤ 0.05) = 0.5), 

                                                            
3To see this, note that an annual variance of (0.25)2 is equal to a weekly variance of (0.25)2/52 = 0.00120. 
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and the other half are evenly distributed above and below such band (i.e., Prob(zt > 0.05) = 

Prob(zt < −0.05) = 0.25). This was done to ensure a sufficiently large number of observations 

pertaining to each price differential regime to facilitate their identification. That is, if 

anything, the baseline simulated series are slanted in favor of identification. 

The first four columns of Table 1 show the parameterizations of the alternative scenarios 

analyzed relative to the baseline. The “high fixed transfer cost” scenario is aimed at 

uncovering the impact of higher fixed transfer costs. The “stochastic transfer cost” and “high 

stochastic transfer cost” scenarios are the stochastic counterparts of the baseline and the high 

fixed transfer cost scenarios. Both of the stochastic transfer cost scenarios assume a four-

parameter symmetric beta probability distribution with a coefficient of variation equal to 

10%, and a lower bound on the transfer cost equal to half of the mean. The “endogenous 

transfer cost” scenario corresponds to the situation where transfer costs are modeled as in 

equation (13), with τ0 = 0.05 and τ1 = 0.26. Setting τ0 = 0.05 ensures that trade under 

“endogenous transfer cost” occurs if and only if trade in the baseline occurs. Parameter τ1 = 

0.26 was set by calibration, so that the unconditional mean transfer cost is approximately the 

average of the transfer costs in the baseline and the “high transfer cost” scenarios. 

The “small sample” scenario is characterized by simulated samples with half of the 

observations assumed for the baseline, each of them representing five years of weekly data. 

The “high demand elasticity” scenario imposes elastic rather than inelastic demand in both 

regions, whereas the “different demand elasticities” scenario assumes that demand is inelastic 

in region A and elastic in region B. Finally, the “stochastic supply” scenarios with “low 

autocorrelation” and “high autocorrelation” are generated by setting, respectively, [γi, µi, 
2

i
ψ ] 

= [0.2, 0.00485, 0.0582] and [γi, µi, 
2

i
ψ ] = [0.9, 0.002728, 0.011519] in the production 

process (10). Both parameterizations imply the same unconditional expected output as in the 

baseline, and an unconditional coefficient of variation equal to [Var(
i
tS )]0.5/E(

i
tS ) = 25%. 

However, the weekly autocorrelations are respectively γi = 0.2 and γi = 0.9 for the stochastic 

supply scenarios with “low” and “high” autocorrelation. 
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5. Inference Strategy 

The estimation strategy that we evaluate is aimed at inferring aspects of the true DGP 

from the simulated data. The procedure consists of two main tasks. The first one is 

classifying each sample according to the inferred number of spatial price differential zt 

regimes comprised in it. The second task consists of estimating each sample’s DGP 

parameters, based on the results from the first task. 

 

5.1. Classification of Samples According to the Number of Spatial Price Differential Regimes 

The strategy to infer the number of zt regimes in each sample is summarized in Figure 

2. Following standard practice, the first step consists of conducting an augmented Dickey-

Fuller (ADF) unit root test (Dickey and Fuller, 1979) on each sample’s individual price 

series, followed by an ADF unit root test on the spatial price differential.4 The ADF test 

assumes I(1) under the null hypothesis. The sample is excluded from further 

consideration if the null of a unit root is rejected for 
A

tP  or 
B

tP , as cointegration requires 

both series to be I(1). 

The samples that are kept but fail to reject the ADF test null of a unit root for zt are 

subjected to a Seo test of the null hypothesis of linear no cointegration (Seo, 2006). We 

proceeded in this manner because the ADF test has much lower power than the Seo test 

against the alternative hypothesis of threshold cointegration (Seo, 2006), and therefore 

might incorrectly fail to reject the null. No additional tests are performed on samples that 

fail to reject Seo’s null, as they are inferred to consist entirely of I(1) spatial price 

differentials. In other words, such samples are inferred to only contain observations 

pertaining to a single zt regime, consisting of “within band” realizations. 

All samples for which the null that zt is I(1) is rejected are assumed to consist of zt 

observations that belong to at least one I(0) regime. That is, such samples are taken to 

                                                            
4Even though individual price series are I(1) and the spatial price differential zt is I(0) by construction, 

in a particular sample any 
A

t
P , 

B

t
P , and zt could be inferred to be I(0) or I(1). However, for a sufficiently 

large sample with frequent enough spatial arbitrage, one would most likely infer 
A

t
P , 

B

t
P , and zt to be 

I(1), I(1), and I(0), respectively. 
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have some zt realizations outside the no-arbitrage band. To determine whether a particular 

sample contains zt realizations for a single regime (i.e., all zts are either below or above the 

the band), two regimes (i.e., all zts are either below and within the band, or above and within 

within the band), or all three regimes, we apply Hansen’s sequential testing procedure 

(Hansen, 1999). Hansen’s F12 (F13, F23) test postulates a null hypothesis of one (one, two) 

regime(s) versus an alternative of two (three, three) regimes. Hansen’s F12 test is conducted 

conducted first. If F12’s null is rejected, favoring two regimes rather than one, the sample is 

subjected to the F23 test. In this manner, rejecting (failing to reject) F23’s null allows us to 

conclude that the sample contains zt observations pertaining to three (two) regimes. If F12’s 

null is not rejected, the F13 test is conducted to discriminate between samples involving one 

and three regimes. We infer that the sample comprises observations for three regimes if F13’s 

null is rejected, and for only one regime otherwise. 

The ADF test was performed using the “adftest” function in the MATLAB program. The 

tsDyn package (Stigler, 2013) written in the R program was used to conduct Seo’s and 

Hansen’s tests. The trimming for the tests was set at 10% (i.e., each regime was assumed to 

comprise at least 10% of the observations in any of the tested samples). 

 

5.2. Estimation of Transfer Costs and Speed of Price Transmission for Each Sample 

Once it has been determined whether a sample comprises one I(0), two, or three price 

differential regimes, one can proceed to estimate its corresponding transfer costs and speed of 

price transmission. In the case of samples inferred to have one I(0) zt regime, the outer 

equations in expression (3) imply that transfer costs can be estimated by running the 

unrestricted autoregression 

zt = α + ρ zt−1 + et. (14) 

The estimated speed of price transmission is (1 − ρ̂ ), and the transfer cost estimate is 

recovered as |α̂ /(1 − ρ̂ )|, where hats represent the respective parameter estimates. 

For samples inferred to comprise two zt regimes, the econometric model consists of a 

system of two equations representing the middle and one of the outer regimes in expression 

(3). Similarly, samples inferred to have three zt regimes are assumed to span all of the three 
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regimes. All models are estimated by concentrating the likelihood function on the 

threshold θ (Hansen and Seo, 2002). Succinctly, we set a 10% trim and perform a grid 

search over the potential threshold values. For each threshold value θi on the grid, we 

obtain the concentrated likelihood L(θi) (i.e., the value of the likelihood function 

maximized with respect to other parameters of the model). The estimated transfer cost θ̂  

is the value θi that results in the largest value for L(θ) over the grid. 

 

6. Results 

Table 1 summarizes the features of the various parameterizations of the scenarios 

analyzed, as well as the percentages of observations belonging to each price differential 

regime and to each trading regime. As explained earlier, transfer costs in the baseline 

scenario have been calibrated so that observations on price differentials zt are about 

evenly distributed inside and outside the band of transfer costs. Even though almost half 

of the observations on price differentials are inside the band, only 6% of the observations 

involve no trade. This seemingly counterintuitive result is actually an important feature of 

the problem at hand. Recall that the arbitrage conditions in (7) depend on expected prices, 

and they imply that it is the expected price differential for any observation involving 

positive trade that must be on the boundary of the transfer cost band. Realized prices 

differ from expected prices by the unanticipated realized shock. In fact, conditional on the 

equilibrium trade flows 
ij
tx , the three regimes of the DGP can be represented as follows 

zt = 1

   if 0,

    if  0,

    if  0,

t t

t t t

t t

e x

z e x

e x

θ

θ
−

+ >
 + =
 − + <

 (15) 

where tx  ≡ 
AB

tx  − 
BA
tx . Hence, actual price differentials when trade occurs fall outside the 

band with about 50% probability. Thus, the 94% of observations where trade occurs imply 

about 47% of realized price differentials outside the transfer cost band. More generally it is 

worth noting that, with the explicit structural DGP that we postulated, realized price 

differentials outside of the band are fully consistent with equilibrium and arbitrage. 
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Except for the scenarios with large transfer costs, the percentages of observations in 

different price differential regimes are similar across scenarios. The same is true regarding 

the percentages of observations in different trading regimes. As expected, scenarios with 

larger transfer costs yield larger percentages of observations inside the transfer cost band and 

involving no trade. Importantly, however, all of the scenarios include a relatively large 

percentage of observations for each of the price differential regimes. This implies that, if 

anything, the simulated data unduly favor the identification of regimes. 

Results for the baseline scenario are discussed in greater depth in the next subsections. 

Results for the alternative scenarios are largely consistent with the baseline results; hence, in 

the interest of space, they are reported and discussed in the online appendix. 

 

6.1. Baseline Scenario: Inference about Price Differential Regimes 

Results regarding inferences on the number of price differential regimes in each sample 

are reported in Table 2. Column totals show that 198 out of the 1,000 samples contain price 

differentials that are inside and below or above the transfer cost band (i.e., belong to two 

regimes), and that the other 802 samples comprise price differentials inside, below, and above 

the band (i.e., belong to three regimes). In contrast, the inference procedure yields 207 two-

regime samples and only 104 three-regime samples. 

There are several factors explaining the striking differences between the true and the 

inferred number of regimes. First, 10.4% of the samples are incorrectly inferred to involve at 

least one stationary price series. Such a percentage is somewhat large given the 5% 

significance level adopted for the Dickey-Fuller tests. Overrejection arises from using price 

levels rather than price logarithms to perform the tests, as tests conducted in logarithms yield 

percentages of unit-root rejections consistent with the 5% significance level.5 

                                                            
5 Most practitioners use prices in logarithms when defining price differentials. However, as shown in 
the theoretical model section, consistency with trade models requires that price differentials in the 
empirical specification be constructed using price levels, as opposed to logarithms. Price levels lead to 
overrejection at the first of the estimation procedure, but they most definitely favor identification at 
the following stages, because in the true model the no-arbitrage restriction involves price levels. 
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Second, 24.0% of the samples are incorrectly categorized as having price differentials 

which are all inside the transfer cost band, because they are inferred to consist only of 

cointegrated non-stationary prices. The flow chart in Figure 2 reveals that both the 

Fuller test and the Seo test are the sources of these inferential errors. Importantly, if 

Table 2 understates the actual number of incorrect inferences, because the 6.5% of the 

samples that failed the numerical computation of the Seo test were assumed to have 

cointegrated prices to favor the odds of obtaining correct inferences. 

Third, 34.5% of the samples were erroneously inferred to consist of cointegrated price 

differentials in only one regime (i.e., price differentials either only above or only below 

the transfer cost band). This inferential mistake accounts for the largest number of 

misclassifications, and is attributable to Hansen’s F12 and F13 tests (see Figure 2). 

The final major source of faulty inferences is the large number (190) of three-regime 

samples misclassified as having only two regimes. This error is worth noting because the 

similarity between the inferred and true numbers of two-regime samples (207 vs. 198) 

might be misleading: in fact, only 17 out of the 207 samples inferred to have only two 

regimes actually do so. According to Figure 2, these inferential mistakes arise from 

Hansen’s F13 and F23 tests. 

Before turning to the estimated transfer costs, it is worth emphasizing the poor 

performance of the Seo test, especially given the heavy computational efforts it requires. 

In the case of the tsDyn package in R, conducting the Seo test on a single sample took 

about 50 times as long as performing Hansen’s F12 and F13 tests together. Yet, the 

numerical computation of the Seo test failed in 65 out of the 305 tested samples, and it 

did not reject the null of no cointegration in any of the other 240 samples. The present 

results suggest that, from a practitioner’s perspective, carrying out the Seo test may 

simply not be worth the effort. 

 

6.2. Baseline Scenario: Estimated Transfer Costs 

Summary statistics regarding estimated transfer costs for the baseline scenario are 

reported in the second column of Table 3. Point estimates of transfer costs based on the 
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inferred one-regime samples (mean and median equal to 0.0477 and 0.050, respectively) are 

quite similar to the true transfer costs of 0.050. Interestingly, one-regime estimates have a 

distribution noticeably skewed to the left, as evidenced by the 5% and 95% quantiles of 0.025 

and 0.0055, respectively. Transfer cost estimates based on the inferred two-regime samples 

exhibit similar characteristics, except for a larger standard deviation and a lesser left skew 

(5% and 95% quantiles of 0.030 and 0.060, respectively). 

Estimates based on the inferred three-regime samples are the worst ones. The mean 

estimate (0.038) and the median (0.044) are respectively 24% and 12% smaller than the true 

transfer cost (0.050). Further, the estimates exhibit a distribution highly skewed to the left: 

The 5% quantile equals only 0.011, and the 95% quantile of 0.051 barely includes the true 

transfer cost. The poor performance of the model at estimating the band parameter is 

consistent with the Monte Carlo results reported in Greb et al. (2013) (whose DGP, however, 

is different from the one studied in this paper, as explained earlier). 

As discussed in the previous subsection, inferences about the number of regimes are 

incorrect for most of the samples. Hence, it is of interest to uncover the impact of such errors 

on the estimation of transfer costs. To this end, the third column in Table 3 provides summary 

statistics for estimates based on the true number of regimes in each sample. Because none of 

the samples truly consists of zt observations that belong to one I(0) regime, the corresponding 

cells are labelled “not applicable.” 

In the case of transfer costs based on true two-regime samples, point estimates (mean and 

median equal to 0.0505 and 0.050, respectively) are almost identical to the true transfer costs. 

Transfer costs are estimated much more precisely when using true as opposed to inferred 

two-regime samples, as the standard deviation for the former (equal to 0.0019) is almost one 

order of magnitude smaller than the standard deviation for the latter (equal to 0.015). Another 

major difference between the two types of estimates is that the ones based on true two-regime 

samples have a fairly symmetric distribution, with 5% and 95% quantiles of 0.047 and 0.054, 

respectively. 

The substantially lower quality of the estimates obtained from the inferred two-regime 

samples should not be surprising, given the inferences shown in Table 2. This table shows 
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that only 17 out of the 207 samples inferred to have two regimes truly have two regimes, 

whereas the other 190 samples actually have three regimes. In other words, 190 out of the 

207 inference-based cost estimates are obtained by applying two-regime methods to 

three-regime samples. 

Surprisingly, the transfer cost estimates based on true three-regime samples are of 

lesser quality than their counterparts based on inferred three-regime samples, as the mean 

and median exhibit a greater downward bias and the standard deviation is slightly higher. 

This counterintuitive result is driven by the fact that 103 out of the 104 samples inferred 

to have three regimes indeed have three regimes, and 699 out of the 802 true three-regime 

samples are inferred to not contain three regimes (see Table 2). Thus, the inference-based 

three-regime cost estimates are obtained from the subset of true three-regime samples 

with the strongest three-regime features. 

Given the structural representation in (15) noted earlier, it is clear that if shipment 

data were available, one could use them not only to determine the number of regimes in a 

sample, but also to estimate transfer costs. Importantly, shipment data would obviate the 

need to perform inferences on the number of price differential regimes. In fact, if 

shipment data were available, transfer costs could be estimated by simply fitting linear 

regressions like (14) using only the price differentials corresponding to nonzero 

shipments. Unfortunately, implementing this strategy may not be feasible in most 

empirical applications, as the econometrician may not be able to obtain shipment data. 

 

6.3. Baseline Scenario: Estimated Speed of Price Transmission 

The second column of Table 4 reports summary statistics for the estimated speeds of 

price transmission in the baseline scenario. Point estimates from the inferred one- and 

two-regime samples are centered around the true value of one (e.g., the respective 

medians are 0.993 and 1.00), whereas those from the inferred three-regime samples are 

downwardly biased (mean and median equal to 0.90 and 0.92, respectively). Surprisingly, 

the one- and two-regime estimates have opposite skewness, the former to the left and the 

latter to the right. The precision of the estimates worsens substantially as one moves from 
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the inferred one-regime samples to the three-regime samples (standard deviations are 

respectively 0.078, 0.17, and 0.37 for the one-, two-, and three-regime estimates). Overall, the 

Overall, the three-regime samples yield very noisy estimates, with 5% and 95% quantiles 

equal to 0.25 and 1.52, respectively. 

Summary statistics for speed of price transmission estimates based on the true number of 

regimes in each sample are shown in the third column of Table 4. Compared to the inference-

based estimates, the ones based on the true regimes are more accurate and, in the case of the 

three-regime samples, less biased (e.g., the mean is 1.04 and the median equals 0.97).  

 

6.4. Baseline Scenario: Inferences about Individual Observations 

In practice, it is not uncommon to use the estimated transfer costs to make inferences as 

to whether (i) the individual price differential observations in the sample are within or outside 

the cost band, or (ii) whether trade occurred at the times corresponding to the sample 

observations. We provide information about inferences (i) and (ii) for the baseline scenario in 

Tables 5 and 6, respectively. The reported results correspond to samples inferred to have two 

and three zt regimes (Panels A and B, respectively), because the empirical threshold 

cointegration literature concentrates its attention on multi-regime cases. 

According to Table 5, inferences about price differentials being within or outside the band 

are reasonably accurate for samples inferred to have two zt regimes, and less so for their three 

zt regime counterparts. The results in Panel A indicate that whenever an inferred two-regime 

sample yields transfer cost estimates considerably different from the true transfer costs, it 

contains few price differential observations in the interval determined by the estimated and 

the true transfer costs. 

Table 5 reveals that most of the misclassifications consist of price differentials which are 

actually within the band but are inferred to be outside the band, especially for inferred three 

regime samples. This finding is consistent with the fact that transfer cost estimates are 

downwardly biased, especially for inferred three-regime samples (see Table 3). 

Studies of price transmission by threshold cointegration analysis are often interested in 

assessing market integration and market efficiency. Market integration is a concept typically 
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associated with the ease of tradability (Baulch, 1997). For our two-region model, an 

obvious metric to measure the extent of market integration is the probability (or 

frequency) of trade taking place, which itself depends on the size of transfer costs. If 

transfer costs were prohibitively high, no trade would ever take place, and segmented 

equilibria would result wherein each market absorbs its own supply and demand shocks. 

Conversely, if transfer costs were zero, trade would always take place (demand and 

supply shocks are fully shared between the regions), and we would say markets are 

perfectly integrated. As transfer costs increase from zero, the frequency of trade 

decreases, and hence we can measure market integration by how often the two regions 

trade with one another. 

The results in Table 6 suggest that inferences about trade are quite poor, with the main 

problem being that “no trade” is inferred much more often than warranted (e.g., 47.5% vs. 

8.8% for inferred two-regime samples). This result emerges even though, somewhat 

paradoxically, the model also tends to underestimate the transfer costs (band) parameter, a 

fact underscoring the relevance of the economic model that we have postulated as the true 

DGP. The threshold cointegration approach that we have evaluated, therefore, tends to 

suggest a much lower degree of market integration than is true in the DGP. In light of the 

previously discussed downwardly biased transfer cost estimates, this finding is seemingly 

paradoxical; however, it can be easily explained by the structure of the economic model. 

Whereas the occurrence of trade implies that the expected price differential must be on 

the boundary of the transfer cost band, it is fully consistent with realized price 

differentials both inside and outside the band (see discussion of expression (15)). 

 

7. Conclusions 

The Band-TVECM specification is a popular model to study spatial price 

transmission. It is rooted in the econometrics of time-series cointegration, and the 

threshold framework it implements is an appealing way to capture the fact that transfer 

costs are real impediments to the arbitrage role of trade. In this model, spatial price 

differences that exceed transfer costs disappear over time, as implied by market 
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equilibrium. This appears prima facie consistent with the notion that market equilibrium 

cannot absorb shocks instantaneously and that time is required for trade to perform its 

arbitrage role. How well Band-TVECM parameterizations perform at representing the 

dynamics of spatial market equilibrium, however, has remained an open question.  

Previous work on this topic has privileged the study of estimation challenges inherent 

with this econometric model, while maintaining the validity of the model’s parametric 

structure (e.g., Greb et al., 2013). In this paper we take an alternative tack, and ask how well 

the Band-TVECM formulation works at capturing the arbitrage conditions of spatial 

equilibrium. As noted, trade shipments inevitably take time, suggesting that expectations are 

bound to play a key role in arbitrage decisions. How market equilibrium adjusts to shocks, 

therefore, will depend on how such expectations affect relevant decisions. Because this is 

likely to be context-specific, an explicit economic model of price transmission is necessary in 

order to evaluate the econometric model of interest. Consequently, in this paper we use an 

explicit economic model—a simple two-region model for a perishable product, a setting 

where the competitive equilibrium critically depends on agents’ expectations—to generate 

the data that is then used to evaluate the performance of standard inference strategies with the 

Band-TVECM approach. 

We found remarkable differences between the true and the inferred number of price 

differential regimes in each sample. Even though most samples truly comprise three price 

differential regimes, the majority of the samples are inferred to contain only one regime. This 

finding suggests that only a small proportion of real-world price series could end up being 

analyzed by threshold cointegration. The inferential errors regarding the number of regimes 

in each sample emerges notwithstanding our reliance on the canonical tests proposed by 

Dickey and Fuller, Hansen, and Seo. Importantly, the poor performance of the Seo test 

suggests it may not be worthwhile to conduct it, especially in view of the computational 

effort that it requires. 

Transfer costs estimates based on the inferred three-regime samples were found to be 

severely downwardly biased. Importantly, they are better than the transfer costs estimated 

from the true three-regime samples. This counterintuitive result is explained by the fact that 
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the Band-TVECM does not exactly match the structure of the economic model underlying 

the data. Worryingly, it suggests that improved inference regarding the number of 

regimes in the sample may not lead to better transfer cost estimates. 

The speed of price transmission estimated from the inferred tree-regime samples is 

downwardly biased and has a large standard deviation. The scenario with endogenous 

transfer costs and the two scenarios with high transfer costs exhibit the largest bias, with 

mean estimates 30% to 40% smaller than the true speed of price transmission. 

Inferences about individual observations of price differentials being within or outside 

the band proved to be reasonably accurate, especially for samples inferred to have two 

regimes. In contrast, inferences as to whether individual observations involved trade or 

not were quite poor, with “no trade” being inferred far more often than warranted. The 

result is seemingly paradoxical, as it suggests that threshold cointegration may mislead 

the practitioner into underestimating both the magnitude of transfer costs and the extent 

of market integration. This underscores the importance of the actual economic model, 

which in our case yields about half of the observations on price differentials outside the 

transfer costs band, even though trade occurs most of the time. 

Based on the tests that most parsimoniously mimic the structure of the underlying 

trading model, our results indicate that the Band-TVECM typically used to analyze price 

transmission, while intuitively appealing, fails to capture essential features of the 

dynamics concerning expectations and trade. Even though it is beyond the scope of the 

present analysis to examine all of the tests that could be used (e.g., Enders and Granger, 

1998; Kapetianos and Shin, 2006), our results suggest that, to the extent that they only 

rely on price data for inference, they are likely to face the same limitations as the tests 

used here. As such, our study suggests that results from applying the Band-TVECM 

should be more strongly qualified, and that it would be valuable to develop threshold 

cointegration models whose structure is better aligned with the economic fundamentals of 

trade.  
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Table 2. True and inferred number of samples of different types in the baseline scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 0 0 33 71 104 

One I(1) 0 0 127 113 240 

One I(0) 0 0 20 325 345 

Two 0 0 17 190 207 

Three 0 0 1 103 104 

Column Total  0 0 198 802 1000 
Note: There were 65 samples for which the numerical procedures for the Seo test failed. Consistent with the stated 
intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it was 
assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 
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Table 3. Estimated transfer costs for the baseline scenario.a 
 

 Transfer Cost Estimates Based on 

 Inferred Sample Types  True Sample Types 

 Mean  Mean 

 (Standard Deviation)  (Standard Deviation) 

 [5%, 50%, 95%] Quantiles  [5%, 50%, 95%] Quantiles 

One I(0) zt Regime Samples 0.0477  Not Applicable 

 (0.0097)  Not Applicable 

 [0.025, 0.050, 0.055]  Not Applicable 

Two zt Regime Samples 0.048  0.0505 

 (0.015)  (0.0019) 

 [0.030, 0.049, 0.060]  [0.047, 0.050, 0.054] 

Three zt Regime Samples 0.038  0.031b 

 (0.014)  (0.015)b 

 [0.011, 0.044, 0.051]  [0.011, 0.029, 0.051]b 
aTrue transfer costs equal 0.05. 
bEstimates based on true three-regime samples are obtained using only samples which have both (i) at least 10% 
of the price differential observations greater than transaction costs, and (ii) at least 10% of the price differential 
observations smaller than transfer costs. 
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Table 4. Estimated speed of price transmission for the baseline scenario.a 
 

 Speed of Price Transmission Estimates Based on 

 Inferred Sample Types  True Sample Types 

 Mean  Mean 

 (Standard Deviation)  (Standard Deviation) 

 [5%, 50%, 95%] Quantiles  [5%, 50%, 95%] Quantiles 

One I(0) zt Regime Samples 0.981  Not Applicable 

 (0.078)  Not Applicable 

 [0.820, 0.993, 1.071]  Not Applicable 

Two zt Regime Samples 1.02  1.03 

 (0.17)  (0.11) 

 [0.80, 1.00, 1.29]  [0.82, 1.04, 1.20] 

Three zt Regime Samples 0.90  1.04b 

 (0.37)  (0.29)b 

 [0.24, 0.92, 1.52]  [0.70, 0.97, 1.60]b 
aTrue speed of price transmission equals 1.00. 
bEstimates based on true three-regime samples are obtained using only samples which have both (i) at least 10% 
of the price differential observations greater than transfer costs, and (ii) at least 10% of the price differential 
observations smaller than transfer costs. 
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Table 5. Percentages of observations in alternative spatial price differential regimes for the 

baseline scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt 

Regimeb 

Within Band 45.6 1.9 47.5 

Outside Band 4.7 47.8 52.5 

Column Total  50.3 49.7 100.0 
aThe table only classifies 20.7% of the total simulated observations, corresponding to the 207 baseline samples 
inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 207), zt observations are inferred to be within the band if |zt| ≤ θ̂

i
, and outside the 

band otherwise, where θ̂
i
 is the transfer cost estimated using only sample i data. 

cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt 

Regimeb 

Within Band 40.3 0.3 40.6 

Outside Band 15.6 43.8 59.4 

Column Total  55.9 44.1 100.0 
aThe table only classifies 10.4% of the total simulated observations, corresponding to the 104 baseline samples 
inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 104), zt observations are inferred to be within the band if |zt| ≤ θ̂

i
, and outside the 

band otherwise, where θ̂
i
 is the transfer cost estimated using only sample i data. 

cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table 6. Percentages of observations in alternative trading regimes for the baseline scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 6.5 41.0 47.5 

Trade 2.3 50.2 52.5 

Column Total  8.8 91.2 100.0 
aThe table only classifies 20.7% of the total simulated observations, corresponding to the 207 baseline samples 
inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 207), “no trade” is inferred if |zt| ≤ θ̂

i
, and “trade” is inferred otherwise, where θ̂

i
 is 

the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 12.9 27.7 40.6 

Trade 5.1 54.3 59.4 

Column Total  18.0 82.0 100.0 
aThe table only classifies 10.4% of the total simulated observations, corresponding to the 104 baseline samples 
inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 104), “no trade” is inferred if |zt| ≤ θ̂

i
, and “trade” is inferred otherwise, where θ̂

i
 is 

the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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Figure 1. Sequence of events in period t  
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Figure 2. Econometric strategy to classify individual simulated samples 
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Appendix A: Simulation Design and Numerical Procedures 

The algorithm used to generate the simulated data for each sample under stochastic transfer 

costs and stochastic output can be summarized as follows: 

Step 1. Set initial values { (0)
A

S  = 1, (0)
B

S  = 1, (0)
Aδ  = 1, (0)

Bδ , = 1}. 

Step 2. Generate realizations { ( )
A
nv , ( )

B
nv } from their respective distributions. 

Step 3. Use { ( 1)
A
nS − , ( 1)

B
nS − , ( )

A
nv , ( )

B
nv } to obtain { ( )

A
nS , ( )

B
nS }, as follows: 

 

(A1) ( )
i
nS  = ( )( 1)

ii
nS

γ
− exp(µi + ( )

i
nv ), 

 

for i ∈ {A, B}. 

Step 4. Generate realizations { ( )
AB
nT , ( )

BA
nT } from their respective beta distributions. 

Step 5. Use { ( )
A
nS , ( )

B
nS , ( 1)

A
nδ − , ( 1)

B
nδ − , ( )

AB
nT , ( )

BA
nT } to solve numerically for the values 

( ){ AB
nx , ( )

BA
nx } that satisfy simultaneously the following arbitrage conditions  

 

(A2a) 

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 0,           

1 > 0,                                            

( ) ( ) 0,

B AB A
n n n n n

AB
n

B AB A AB
n n n n n n

E P T E P

x

E P T E P x

 − − ≤

 ≥

 − − =  

 

 

(A2b) 

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 0,             

1 > 0,                                            

( ) ( ) 0,

A BA B
n n n n n

BA
n

A BA B BA
n n n n n n

E P T E P

x

E P T E P x

 − − ≤

 ≥

 − − =  

 

 

where ( ) ( )( )A
n nE P  ≡ ( 1)

A
nδ −

1/

( ) ( ) ( ) ( )(1 )
AAB A BA B

n n n nx S x S
ε−

 − +   and ( ) ( )( )B
n nE P  ≡ 

( 1)
B
nδ −

1/

( ) ( ) ( ) ( )(1 ) .
BAB A BA B

n n n nx S x S
ε−

 + −   

Step 6. Generate realizations { ( )
A
nu , ( )

B
nu } from their respective distributions. 

Step 7. Use { ( 1)
A
nδ − , ( 1)

B
nδ − , ( )

A
nu , ( )

B
nu } to compute { ( )

A
nδ , ( )

B
nδ } by means of 

 

(A3) ( )
i
nδ  = ( 1)

i
nδ −  exp( ( )

i
nu ), 
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for i ∈ {A, B}. 

Step 8. Use { ( )
A
nS , ( )

B
nS , ( )

AB
nx , ( )

BA
nx , ( )

A
nδ , ( )

B
nδ } to calculate { ( )

A
nP , ( )

B
nP } from 

 

(A4a) ( )
A
nP  = ( )

A
nδ

1/

( ) ( ) ( ) ( )(1 ) ,
AAB A BA B

n n n nx S x S
ε−

 − +   

 

(A4b) ( )
B
nP  = ( )

B
nδ

1/

( ) ( ) ( ) ( )(1 ) .
BAB A BA B

n n n nx S x S
ε−

 + −   

 

Step 9. If n < 1,020, go back to Step 2. Otherwise, proceed to Step 10. 

Step 10. Discard observations for n < 500 and stop. 

The cases of fixed supply and fixed and endogenous transfer costs are straightforward 

variations of the algorithm described and are omitted in the interest of space. 

The equilibrium values ( )
AB
nx  and ( )

BA
nx  that simultaneously solve the complementary 

slackness conditions (A2a) and (A2b) in Step (5) are found by means of the bisection method. 

The main advantage of this method is its robustness in computing the root of continuous real-

valued functions defined on a bounded interval. In our model, ( )
AB
nx  and ( )

BA
nx  are bounded 

because, as stated earlier, ( )
ij
nx  ∈ [0, 1) for i ≠ j. Further, the solution is such that ( )

AB
nx × ( )

BA
nx  

= 0. The first 500 simulated observations are eliminated in Step 10 to reduce the bias due to 

the initialization values (i.e., they are used as a burning period). To enhance the estimation of 

the distributions of the parameter estimates obtained by applying threshold cointegration 

methods, antithetic replications (Geweke, 1988) of the samples were employed. That is, the 

random shocks for 500 of the samples were antithetic replications of the corresponding 

shocks used for the other 500 samples. 

 

References 
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Appendix B: Results for Other Scenarios 

The following tables report the results corresponding to the scenarios omitted from the main 

text. The differences worthy of notice for the alternative scenarios are briefly discussed next. 

In the case of inferences regarding the number of zt regimes in each sample, the 

scenarios with stochastic transfer costs and with high demand elasticity yield results very 

similar to the baseline. As expected, the scenarios with high transfer costs (both fixed and 

stochastic) have a much larger share of true two-regime samples than the baseline (about 66% 

vs. 19.8%), and almost twice the proportion of samples inferred to have one I(1) zt regime 

(about 50% vs. 24.0%). Results for the scenarios with endogenous transfer costs and small 

samples are in between those for the baseline and the high transfer cost scenarios. In contrast, 

the stochastic supply scenarios have a relatively small share of true two-regime samples 

(about 10%) and no samples inferred to have all zt observations in one I(1) regime. Also, 

2.0% (24.8%) of the stochastic supply samples with low (high) autocorrelation are inferred to 

contain 
A

tP  or 
B

tP  that are I(0), and 57.9% (42.8%) of the samples are inferred to have zt 

observations in one I(0) regime. 

In terms of transfer cost estimates, the endogenous transfer costs scenario is the only 

one that yields some noticeable differences. First, the one-regime cost estimates are upwardly 

biased (mean of 0.148 vs. a true unconditional mean of 0.124). Second, the one- and two-

regime cost estimates have standard deviations substantially greater than in other scenarios. 

Third, the distributions of the cost estimates from the one- and two-regime samples exhibit a 

marked skew to the right. 

The endogenous transfer costs scenario is also the one leading to the greatest 

differences regarding the speed of price transmission. All of the speed of price transmission 

estimates under endogenous transfer costs have a substantial downward bias (e.g., the means 

are 0.73, 0.77, and 0.68 for the inferred one-, two-, and three-regime samples, respectively). 

Further, when transfer costs are endogenous, the precision of the speed estimates is much 

smaller for the inferred one- and two-regime samples (e.g., the corresponding standard 

deviations are 0.19 and 0.24). The two high transfer cost scenarios also exhibit speed 

estimates markedly different from the baseline. More specifically, the speed of price 



4 
 

transmission is substantially underestimated when transfer costs are high and samples are 

inferred to have three regimes (e.g., the means are respectively 0.64 and 0.58 for fixed 

stochastic transfer costs).  

Inferences about individual observations for most of the other scenarios are also 

similar to the ones corresponding to the baseline. However, the two scenarios with high 

transfer costs and the one with endogenous transfer costs exhibit a greater propensity to 

misclassify observations with respect to spatial price differential regimes. In the case of high 

fixed (stochastic) transfer costs, 21.1% (24.9%) of zt observations from inferred three-regime 

samples are incorrectly categorized as outside the band, compared to 15.6% in the baseline. 

In the endogenous transfer cost scenario, about 23% of zt observations from inferred two- and 

three-regime samples are misclassified, vs. 6.6% and 15.9% respectively for the baseline. 
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Table B.2.1. True and inferred number of samples of different types in the High Fixed 

Transfer Costs scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 4 0 76 42 122 

One I(1) 4 0 337 141 482 

One I(0) 3 0 114 9 126 

Two 0 0 130 65 195 

Three 0 0 4 71 75 

Column Total  11 0 661 328 1000 
Note: There were 296 samples for which the numerical procedures for the Seo test failed. Consistent with the 
stated intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it 
was assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 

 

 

 

 

 

 

Table B.2.2. True and inferred number of samples of different types in the Stochastic 

Transfer Costs scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 0 0 30 76 106 

One I(1) 0 0 110 137 247 

One I(0) 0 0 26 317 343 

Two 0 0 17 183 200 

Three 0 0 1 103 104 

Column Total  0 0 184 816 1000 
Note: There were 66 samples for which the numerical procedures for the Seo test failed. Consistent with the 
stated intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it 
was assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 

 



6 
 

Table B.2.3. True and inferred number of samples of different types in the High Stochastic 

Transfer Costs scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 1 0 77 42 120 

One I(1) 3 0 331 140 474 

One I(0) 3 0 108 10 121 

Two 0 0 128 74 202 

Three 0 0 8 75 83 

Column Total  7 0 652 341 1000 
Note: There were 313 samples for which the numerical procedures for the Seo test failed. Consistent with the 
stated intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it 
was assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 

 

 

 

 

 

 

Table B.2.4. True and inferred number of samples of different types in the Endogenous 

Transfer Costs scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 0 0 54 66 120 

One I(1) 0 0 190 286 476 

One I(0) 0 0 110 41 151 

Two 0 0 82 97 179 

Three 0 0 1 73 74 

Column Total  0 0 437 563 1000 
Note: There were 251 samples for which the numerical procedures for the Seo test failed. Consistent with the 
stated intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it 
was assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 
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Table B.2.5. True and inferred number of samples of different types in the Small Sample 

scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 0 0 29 55 84 

One I(1) 0 0 159 165 324 

One I(0) 0 0 50 339 389 

Two 0 0 15 151 166 

Three 0 0 0 37 37 

Column Total  0 0 253 747 1000 
Note: There were 66 samples for which the numerical procedures for the Seo test failed. Consistent with the 
stated intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it 
was assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 

 

 

 

 

 

 

Table B.2.6. True and inferred number of samples of different types in the High Demand 

Elasticity scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 0 0 21 79 100 

One I(1) 0 0 96 101 197 

One I(0) 0 0 16 368 384 

Two 0 0 15 194 209 

Three 0 0 1 109 110 

Column Total  0 0 149 851 1000 
Note: There were 55 samples for which the numerical procedures for the Seo test failed. Consistent with the 
stated intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it 
was assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 
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Table B.2.7. True and inferred number of samples of different types in the Different Demand 

Elasticities scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 0 0 31 77 108 

One I(1) 0 0 130 118 248 

One I(0) 0 0 5 335 340 

Two 0 0 10 184 194 

Three 0 0 1 109 110 

Column Total  0 0 177 823 1000 
Note: There were 38 samples for which the numerical procedures for the Seo test failed. Consistent with the 
stated intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it 
was assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 

 

 

 

 

 

 

Table B.2.8. True and inferred number of samples of different types in the Stochastic Supply 

with Low Autocorrelation scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 0 0 0 20 20 

One I(1) 0 0 0 0 0 

One I(0) 0 0 72 507 579 

Two 0 0 17 250 267 

Three 0 0 1 133 134 

Column Total  0 0 90 910 1000 
Note: There were 30 samples for which the numerical procedures for the Seo test failed. Consistent with the 
stated intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it 
was assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 
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Table B.2.9. True and inferred number of samples of different types in the Stochastic Supply 

with High Autocorrelation scenario. 
 

  True Number of zt Regimes in the Sample Row 

  One Two Three Total 

  I(1) I(0)    

Inferred 

Number of zt 

Regimes in 

the Sample 

A
tP  or 

B
tP  are I(0) 0 0 57 191 248 

One I(1) 0 0 0 0 0 

One I(0) 0 0 33 395 428 

Two 0 0 10 200 210 

Three 0 0 0 114 114 

Column Total  0 0 100 900 1000 
Note: There were 16 samples for which the numerical procedures for the Seo test failed. Consistent with the 
stated intent of favoring correct inferences, such samples were classified as having cointegrated prices (i.e., it 
was assumed that for them the Seo test rejected the null of linear no cointegration between PA and PB). 

 

 

 

 

 



E(∙) = 0.05

E(∙) = 0.20

E(∙) = 0.124

Stoch. Supp. w. Low Autocorr. 0.05 0.0490 0.050  0.046 0.048  0.039 0.045 

  (0.0071) [0.038, 0.055]  (0.013) [0.017, 0.060]  (0.014) [0.012, 0.052] 

Stoch. Supp. w. High Autocorr. 0.05 0.0488 0.050  0.048 0.049  0.041 0.044 

  (0.0081) [0.035, 0.055]  (0.012) [0.031, 0.064]  (0.012) [0.013, 0.052] 
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E(∙) = 0.05

E(∙) = 0.20

E(∙) = 0.124

  (0.0018) [0.048, 0.054]  (0.015) [0.012, 0.051] 

Stoch. Supply with Low Autocorr. 0.05 0.0502 0.050  0.031 0.030 

  (0.0016) [0.048, 0.053]  (0.014) [0.013, 0.051] 

Stoch. Supply with High Autocorr. 0.05 0.0501 0.050  0.031 0.032 

  (0.0019) [0.048, 0.053]  (0.015) [0.013, 0.051] 
Note: One-regime is not applicable because none of the samples actually contain only one stationary regime. Three-regime estimates are based only on samples which have 
both (i) at least 10% of the price differential observations greater than transfer costs, and (ii) at least 10% of the price differential observations smaller than transfer costs. 
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Stoch. Supply with Low Autocorr. 0.989 0.998  1.04 1.01  0.97 0.99 

 (0.067) [0.873, 1.084]  (0.18) [0.83, 1.36]  (0.33) [0.39, 1.53] 

Stoch. Supply with High Autocorr. 0.990 1.000  1.06 1.03  0.99 1.00 

 (0.077) [0.836, 1.092]  (0.20) [0.82, 1.36]  (0.33) [0.43, 1.43] 
Note: The true speed of mean transmission equals 1. 
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Stoch. Supply with Low Autocorr. 1.02 1.00  1.05 1.00 

 (0.10) [0.87, 1.19]  (0.25) [0.73, 1.54] 

Stoch. Supply with High Autocorr. 1.01 1.03  1.06 1.01 

 (0.12) [0.82, 1.20]  (0.26) [0.73, 1.57] 
Note: The true speed of mean transmission equals 1. One-regime is not applicable because none of the samples actually contain only one stationary regime. Three-regime 
estimates are based only on samples which have both (i) at least 10% of the price differential observations greater than transfer costs, and (ii) at least 10% of the price 
differential observations smaller than transfer costs. 
 



Table B.5.1. Percentages of observations in alternative spatial price differential regimes for 

the High Fixed Transfer Costs scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 60.0 1.9 61.9 

Outside Band 1.5 36.5 38.0 

Column Total  61.5 38.5 100.0 
aThe table only classifies 19.5% of the total simulated observations, corresponding to the 195 High Fixed 
Transfer Costs samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 195), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 44.7 0.2 44.9 

Outside Band 21.1 34.0 55.1 

Column Total  65.9 34.1 100.0 
aThe table only classifies 7.5% of the total simulated observations, corresponding to the 75 High Fixed Transfer 
Costs samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 75), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table B.5.2. Percentages of observations in alternative spatial price differential regimes for 

the Stochastic Transfer Costs scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 45.1 3.2 48.2 

Outside Band 5.5 46.3 51.8 

Column Total  50.6 49.4 100.0 
aThe table only classifies 20.0% of the total simulated observations, corresponding to the 200 Stochastic 
Transfer Costs samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 200), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 36.6 1.2 37.8 

Outside Band 17.6 44.6 62.2 

Column Total  54.2 45.8 100.0 
aThe table only classifies 10.4% of the total simulated observations, corresponding to the 104 Stochastic 
Transfer Costs samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 104), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table B.5.3. Percentages of observations in alternative spatial price differential regimes for 

the High Stochastic Transfer Costs scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 55.1 6.8 61.9 

Outside Band 7.0 31.2 38.1 

Column Total  62.0 38.0 100.0 
aThe table only classifies 20.2% of the total simulated observations, corresponding to the 202 High Stochastic 
Transfer Costs samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 202), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 42.3 1.0 43.3 

Outside Band 24.9 31.9 56.7 

Column Total  67.2 32.9 100.0 
aThe table only classifies 8.3% of the total simulated observations, corresponding to the 83 High Stochastic 
Transfer Costs samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 83), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table B.5.4. Percentages of observations in alternative spatial price differential regimes for 

the Endogenous Transfer Costs scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 43.7 15.3 58.9 

Outside Band 7.5 33.6 41.1 

Column Total  51.1 48.9 100.0 
aThe table only classifies 17.9% of the total simulated observations, corresponding to the 179 Endogenous 
Transfer Costs samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 179), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 36.9 3.4 40.3 

Outside Band 19.3 40.4 59.7 

Column Total  56.2 43.8 100.0 
aThe table only classifies 7.4% of the total simulated observations, corresponding to the 74 Endogenous 
Transfer Costs samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 74), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table B.5.5. Percentages of observations in alternative spatial price differential regimes for 

the Small Sample scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 49.1 3.5 52.6 

Outside Band 4.5 42.9 47.4 

Column Total  53.6 46.4 100.0 
aThe table only classifies 16.6% of the total simulated observations, corresponding to the 166 Small Sample 
samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 166), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 45.6 1.0 46.6 

Outside Band 11.9 41.6 53.4 

Column Total  57.4 42.6 100.0 
aThe table only classifies 3.7% of the total simulated observations, corresponding to the 37 Small Sample 
samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 37), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table B.5.6. Percentages of observations in alternative spatial price differential regimes for 

the High Demand Elasticity scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 45.4 2.1 47.4 

Outside Band 4.4 48.0 52.6 

Column Total  49.8 50.2 100.0 
aThe table only classifies 20.9% of the total simulated observations, corresponding to the 209 High Demand 
Elasticity samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 209), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 38.7 0.3 38.9 

Outside Band 16.2 44.9 61.1 

Column Total  54.8 45.2 100.0 
aThe table only classifies 11.0% of the total simulated observations, corresponding to the 110 High Demand 
Elasticity samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 110), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table B.5.7. Percentages of observations in alternative spatial price differential regimes for 

the Different Demand Elasticities scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 45.2 2.2 47.4 

Outside Band 4.3 48.3 52.6 

Column Total  49.5 50.5 100.0 
aThe table only classifies 19.4% of the total simulated observations, corresponding to the 194 Different Demand 
Elasticities samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 194), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 39.9 0.2 40.1 

Outside Band 15.1 44.8 59.9 

Column Total  55.0 45.0 100.0 
aThe table only classifies 11.0% of the total simulated observations, corresponding to the 110 Different Demand 
Elasticities samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 110), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table B.5.8. Percentages of observations in alternative spatial price differential regimes for 

the Stochastic Supply with Low Autocorrelation scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 44.5 1.9 46.4 

Outside Band 6.0 47.6 53.6 

Column Total  50.5 49.5 100.0 
aThe table only classifies 26.7% of the total simulated observations, corresponding to the 267 Stochastic Supply 
with Low Autocorrelation samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 267), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 42.4 0.4 42.8 

Outside Band 14.0 43.2 57.2 

Column Total  56.4 43.6 100.0 
aThe table only classifies 13.4% of the total simulated observations, corresponding to the 134 Stochastic Supply 
with Low Autocorrelation samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 134), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table B.5.9. Percentages of observations in alternative spatial price differential regimes for 

the Stochastic Supply with High Autocorrelation scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 43.7 2.5 46.2 

Outside Band 4.6 49.2 53.8 

Column Total  48.3 51.6 100.0 
aThe table only classifies 21.0% of the total simulated observations, corresponding to the 210 Stochastic Supply 
with High Autocorrelation samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 210), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True zt Regimec Row Total 

  Within Band Outside Band  

Inferred zt Regimeb 
Within Band 43.8 0.4 44.2 

Outside Band 12.2 43.6 55.8 

Column Total  55.9 44.1 100.0 
aThe table only classifies 11.4% of the total simulated observations, corresponding to the 114 Stochastic Supply 
with High Autocorrelation samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 114), zt observations are inferred to be within the band if |zt| ≤ ˆ

i
θ , and outside the 

band otherwise, where ˆ
i

θ  is the transfer cost estimated using only sample i data. 
cThe true zt regime is within the band if |zt| ≤ 0.05, and is outside the band otherwise. 
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Table B.6.1. Percentages of observations in alternative trading regimes for the High Fixed 

Transfer Costs scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 23.5 38.4 61.9 

Trade 1.7 36.3 38.1 

Column Total  25.2 74.8 100.0 
aThe table only classifies 19.5% of the total simulated observations, corresponding to the 195 High Fixed 
Transfer Costs samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 195), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 26.0 18.9 44.9 

Trade 9.1 46.0 55.1 

Column Total  35.1 64.9 100.0 
aThe table only classifies 7.5% of the total simulated observations, corresponding to the 75 High Fixed Transfer 
Costs samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 75), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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Table B.6.2. Percentages of observations in alternative trading regimes for the Stochastic 

Transfer Costs scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 7.0 41.3 48.2 

Trade 2.4 49.3 51.8 

Column Total  9.4 90.6 100.0 
aThe table only classifies 20.0% of the total simulated observations, corresponding to the 200 Stochastic 
Transfer Costs samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 200), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 11.0 26.8 37.8 

Trade 4.6 57.6 62.2 

Column Total  15.6 84.4 100.0 
aThe table only classifies 10.4% of the total simulated observations, corresponding to the 104 Stochastic 
Transfer Costs samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 104), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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Table B.6.3. Percentages of observations in alternative trading regimes for the High 

Stochastic Transfer Costs scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 24.0 37.9 61.9 

Trade 2.4 35.7 38.1 

Column Total  26.4 73.6 100.0 
aThe table only classifies 20.2% of the total simulated observations, corresponding to the 202 High Stochastic 
Transfer Costs samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 202), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 26.7 16.6 43.3 

Trade 10.7 46.0 56.7 

Column Total  37.4 62.6 100.0 
aThe table only classifies 8.3% of the total simulated observations, corresponding to the 83 High Stochastic 
Transfer Costs samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 83), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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Table B.6.4. Percentages of observations in alternative trading regimes for the Endogenous 

Transfer Costs scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 5.4 53.6 58.9 

Trade 0.7 40.3 41.1 

Column Total  6.1 93.9 100.0 
aThe table only classifies 17.9% of the total simulated observations, corresponding to the 179 Endogenous 
Transfer Costs samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 179), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 14.0 26.3 40.3 

Trade 3.3 56.4 59.7 

Column Total  17.3 82.7 100.0 
aThe table only classifies 7.4% of the total simulated observations, corresponding to the 74 Endogenous 
Transfer Costs samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 74), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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Table B.6.5. Percentages of observations in alternative trading regimes for the Small Sample 

scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 11.6 41.0 52.6 

Trade 3.5 43.9 47.4 

Column Total  15.1 84.9 100.0 
aThe table only classifies 16.6% of the total simulated observations, corresponding to the 166 Small Sample 
samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 166), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 19.0 27.6 46.6 

Trade 5.0 48.4 53.4 

Column Total  24.0 76.0 100.0 
aThe table only classifies 3.7% of the total simulated observations, corresponding to the 37 Small Sample 
samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 37), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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Table B.6.6. Percentages of observations in alternative trading regimes for the High Demand 

Elasticity scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 6.5 41.0 47.4 

Trade 2.3 50.2 52.6 

Column Total  8.8 91.2 100.0 
aThe table only classifies 20.9% of the total simulated observations, corresponding to the 209 High Demand 
Elasticity samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 209), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 12.3 26.7 38.9 

Trade 5.0 56.1 61.1 

Column Total  17.2 82.8 100.0 
aThe table only classifies 11.0% of the total simulated observations, corresponding to the 110 High Demand 
Elasticity samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 110), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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Table B.6.7. Percentages of observations in alternative trading regimes for the Different 

Demand Elasticities scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 6.0 41.3 47.3 

Trade 2.3 50.4 52.7 

Column Total  8.3 91.7 100.0 
aThe table only classifies 19.4% of the total simulated observations, corresponding to the 194 Different Demand 
Elasticities samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 194), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 11.8 28.3 40.1 

Trade 5.0 54.9 59.9 

Column Total  16.8 83.2 100.0 
aThe table only classifies 11.0% of the total simulated observations, corresponding to the 110 Different Demand 
Elasticities samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 110), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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Table B.6.8. Percentages of observations in alternative trading regimes for the Stochastic 

Supply with Low Autocorrelation scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 7.4 39.0 46.4 

Trade 2.4 51.2 53.6 

Column Total  9.8 90.2 100.0 
aThe table only classifies 26.7% of the total simulated observations, corresponding to the 267 Stochastic Supply 
with Low Autocorrelation samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 267), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 14.4 28.4 42.8 

Trade 5.0 52.2 57.2 

Column Total  19.4 80.6 100.0 
aThe table only classifies 13.4% of the total simulated observations, corresponding to the 134 Stochastic Supply 
with Low Autocorrelation samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 134), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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Table B.6.9. Percentages of observations in alternative trading regimes for the Stochastic 

Supply with High Autocorrelation scenario. 

A. Conditional on samples inferred to have two zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 5.2 41.0 46.2 

Trade 2.0 51.8 53.8 

Column Total  7.2 92.8 100.0 
aThe table only classifies 21.0% of the total simulated observations, corresponding to the 210 Stochastic Supply 
with High Autocorrelation samples inferred to have two zt regimes. 
bFor each sample i (i = 1, …, 210), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 

 

 

B. Conditional on samples inferred to have three zt regimes.a 
 

  True Trading Regimec Row Total 

  No Trade Trade  

Inferred Trading Regimeb 
No Trade 13.4 30.8 44.2 

Trade 4.8 51.0 55.8 

Column Total  18.3 81.7 100.0 
aThe table only classifies 11.4% of the total simulated observations, corresponding to the 114 Stochastic Supply 
with High Autocorrelation samples inferred to have three zt regimes. 
bFor each sample i (i = 1, …, 114), “no trade” is inferred if |zt| ≤ ˆ

i
θ , and “trade” is inferred otherwise, where ˆ

i
θ  

is the transfer cost estimated using only sample i data. 
cThe true regime is “no trade” if trade did not occur, and “trade” otherwise. 
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