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Analytical Portfolio Value-at-Risk 
 

Abstract 

 

The paper develops analytical tools used to calculate the VaR of a portfolio 

composed of generally distributed assets.  Accordingly, the VaR of a portfolio is 

analytically constructed from the conditional returns of the individual assets.  This 

analytical VaR can then be used to construct optimal portfolios of generally 

distributed assets for the case in which the target function and/or constraints are 

expressed in terms of VaR.  The proposed method is applicable in a wide range of 

practical problems such as utility maximization under a VaR constraint.  The article 

demonstrates this method by developing a minimal VaR rule that identifies the 

proportions that minimize the portfolio VaR.  This rule is used to compare the 

minimal VaR portfolio with the minimal standard deviation portfolio in the case of the 

lognormal distribution.  This example illustrates the importance of downside risk in 

optimal asset allocation even under modest deviations from the normal distribution 

such as in the case of the lognormal distribution.   

 

Keywords: Value-at-Risk, Risk measurement, Portfolio Optimization, Downsize Risk 
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Introduction 

In recent years, Value-at-Risk (VaR) has become the standard tool used by 

financial institutions to measure and manage risk.
1
  Currently, VaR is used primarily 

for measuring market risk.  However, there has been an increasing interest in using 

the VaR concept as a tool for managing and regulating credit risk and as a 

methodology for constraining and controlling the risk exposure of a portfolio.
2
 Most 

studies that focus on VaR in the context of a portfolio either assume a simple normal 

distribution or practically, use numerical calculations (see, for example, Campbell, 

Huisman and Koedijk (2001) and Jorion (2001)).  However, the widespread adoption 

of VaR and other quantile measures in a portfolio framework calls for the 

development of analytical methods to solve the portfolio optimization problem for 

non-normal distributions and thereby to take full take advantage of these risk 

measures.  These methods are also required in order to improve and further develop 

and explore VaR as a tool for risk measurement in a portfolio framework.   

Assume, for example, the classical problem of optimal proportions between 

the market shares portfolio and the market bonds portfolio such as in Campbell et al. 

(2001).   What is the portfolio VaR and how would the proportions of the two 

portfolios influence this overall portfolio VaR?  Usually, such a common problem is 

solved either assuming the strong and restricting assumption of normal distribution or 

by using a numerical approximation method.  For example, Alexander & Baptista 

(2002) assume either a normal distribution or a t-distribution when comparing VaR 

and standard deviation in the context of mean-VaR analysis.  Similarly, Sentana 

(2001) analyzes the mean-variance frontier under a VaR constraint assuming 

elliptically symmetric distributions, which can be fully defined by the first two 

moments.  However, this approach provides only an approximation in several 

important cases where the distribution is not symmetrical or cannot be considered 

elliptical.  Differently, Emmer, Klüppelberg & Korn (2001), Cuoco, He & Issaenko 

(2001), Yiu (2004) and others analyze the impact of a VaR constraint or some other 

quantile constraint on asset allocation while using numerical techniques. This 

approach might require large calculation resources and reckons on a possibly long 

convergence process, especially when a range of compositions and strategies are 

analyzed.   

This article provides an alternative analytical method to solve such problems.    

The article develops analytical tools for calculating the VaR of a portfolio composed 
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of generally distributed assets.  Accordingly, the VaR of a portfolio is analytically 

constructed from the conditional returns of the individual assets.  This analytical VaR 

can then be used to construct optimal portfolios of generally distributed assets for the 

case in which the target function and/or constraints are expressed in terms of VaR.  

The proposed method is appropriate for a wide range of applications.  For example, it 

can be used to analytically solve Basak & Shapiro’s (2001) problem of maximizing 

utility under VaR constraint.  Similarly, it can be used to expand the solution of Ahn, 

Boudoukh, Richardson & Whitelaw’s (1999) problem in the realistic case of hedging 

a portfolio with an option that is only partially correlated with the hedged portfolio.  

The proposed method is demonstrated by developing a minimal VaR rule, which 

identifies the proportions that minimize the portfolio VaR.  A numeric example with 

the lognormal distribution is then used to compare the minimal VaR with the minimal 

standard deviation portfolios.  This example highlights the importance of downside 

risk in the context of portfolio asset allocation.   

The paper is organized as follows: The next section develops the theoretical 

relationship between the distribution of the individual assets and the VaR of the 

portfolio.  For simplicity, the presentation is confined to two assets (the generalization 

to multiple assets can be found in Appendix B).  Section II applies the findings from 

Section I in order to develop a VaR minimization rule and to present a comprehensive 

numerical example.  Section III shows how the previous results can be used to solve 

more complicated optimization problems such as Ahn, Boudoukh, Richardson and 

Whitelaw’s (1999) problem of selecting a put option, which minimizes the portfolio 

VaR.  Section V concludes the paper.   

 

I. Analytical Portfolio VaR 

In this section, an analytical expression of the portfolio VaR is developed.  

More specifically, the portfolio VaR is expressed in terms of the conditional 

distributions of the individual assets and their proportions in the portfolio.  The 

information about these conditional distributions is equivalent to the information 

about the assets cumulative distribution functions and their mutual correlations, which 

is a prerequisite to solving any portfolio optimization problem.  This is comparable to 

the information about the means and the variance-covariance matrix required for the 

classical Markowitz solution of the portfolio optimization problem.  In order to 

simplify the presentation we start with a two-asset portfolio (the general solution for 
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multiple asset portfolios together with an illustrative example are presented in 

Appendix B).  

Denote by X and Y the risky returns on any two assets with probability density 

functions, f(X)
 
and g(Y), and cumulative distribution functions (cdf), F(X) and G(Y), 

respectively.  In the proposed method, the correlation between X and Y is realized 

through the use of the conditional distribution.  Therefore, without losing generality, 

let us select Y as the “unconditionally-distributed” asset and X as the “conditionally-

distributed” asset.  This selection does not indicate anything about the assets 

themselves but rather implies that information about the correlation between X and Y 

is given by the conditional distribution of X over Y.   Namely, the roles of X and Y can 

be inverted.  Intuitively, if the specific problem is involved with the market portfolio 

or an index and a single asset, then selecting Y as the market portfolio corresponds to 

this model.   

Let X(P) be the P-order quantile function of F(X).  The quantile function is the 

inverse function of the cdf.  Formally, X(P) is the maximum value of X for which 

there is a probability P of being below this value in the cdf of F(X) (namely, 

Pr(X�X(P))=P).  The quantile function is assumed to be monotonous. This 

monotonicity is a direct result of the cdf monotonicity, which has been proved and 

used by Rothschild and Stiglitz (1970) for the Second Stochastic Dominance analysis.  

Let X
Y
(P) be the conditional quantile of X on Y.  Namely, X

Y
(P) is the inverse function 

of the cdf of asset X conditional on Y, F
Y
(X).  By the same token, let X

y
(P) be the 

conditional quantile of X on a specific realization y of Y.   

VaR with a P̂1����  confidence interval, denoted as VaR( P̂ ), can be defined as 

the loss below some reference point t over a given period of time, where there is a 

probability of P̂  of incurring this loss or a larger one.  In terms of the quantile 

function, VaR( P̂ ) can simply be written as 

 )ˆ()ˆ( PXtPVaR �������� .          (1) 

The reference point t can be a function of the cdf of X or a constant reference point, 

such as the risk-free return or zero.  For example, the official Basel (1996) 

Amendment recommends calculating the VaR as the potential loss below the current 

value.   
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Proposition 1. The VaR of a Portfolio   

Without losing generality, let � be the proportion of X and 1-� the proportion 

of Y in a portfolio YXZ )1( ��� ������������ .  For any 0 < �,
3
 and for some selected 

realization y of Y, the VaR of this portfolio is given by 

yPXtPVaR y

Z )1(*)( )ˆ( �� ���������������� ,         (2) 

where t is the loss reference point, X
y
(P*) is the quantile of X conditional on a given 

realization y, P* is solved by the expression 

� ��
�	

	�

� ��� dYYgyYPXFP yY )()(*)(ˆ 1

�
�

,          (3) 

and the range of probabilities for which the specific realization y of Y provides a 

solution of (2) is given by 

� � � ���
�	

	�

�
�	

	�

� ������ dYYgyYXFPdYYgyYXF yYyY )()()1(ˆ)()()0(
11

�
�

�
�

.          (4) 

 

Proof  

Denote the quantile of the portfolio Z� = �X + (1-�)Y of order P̂  as )ˆ(PZ� .  

Denote the cdf of the portfolio Z� conditional on asset Y as )(** �ZHP
Y



 , where 

0�P**�1.  For a specific selected value y of Y, denote the cdf of the portfolio return at 

point Z� conditional on y as )(* �ZHP
y



 , where 0�P*�1.  According to Bayes’ 

Theorem (the “Total Probability Equation”) 

dYZHYgZHP
Y����

�	�	�	�	

				����

����



 )()()(ˆ
�� .          (5) 

Following Levy and Kroll’s (1978) quantile approach, the quantile of portfolio Z� of 

order P* conditional on realization y of Y can be written as  

yPXPZ
yy )1(*)( *)( ��� ��� ,          (6) 

(for a proof of Levy and Kroll’s (1978) quantile approach see Appendix A).  

According to the previous definitions of P̂ and P*, we know that the P̂ -order quantile 

of the unconditional return on the portfolio is equal to Z� as is the conditional quantile 

of order P* over y.  Hence, 

*)()ˆ( PZPZZ
y

��� ����



 .          (7)�
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From (6), (7) and the definition of P* we can conclude that for every value of Y either 

there is an order 0<P**<1 such that the following holds 

 YPXyPXZ
Yy )1(*)*( )1(*)( ����� ��������������������



 ,          (8)�

or for that specific y either 

P** = 0,          (8a) 

or  

P** = 1.          (8b) 

Note that (8a) and (8b) are required as the quantile function is defined over a finite 

range.  From (8), we get
4
  

 � �)(*)(**
1

YyPXFP
yY ��� �

�
�

.          (9) 

Combining (6) and (7) with the definition of VaR in (1) yields (2).  Substituting 

)(** �ZHP
Y



  from (9) into (5) yields (3).  Finally, from the monotonuosity of the 

quantile function it is sufficient to solve (5) for the two extremes P*=0 and P*=1 in 

order to find the range of probabilities in (4) for which the specific realization y of Y 

provides a solution to (2). 

 

Discussion   

Proposition 1 provides a method for calculating analytically the portfolio VaR 

based on the conditional distributions of the individual assets.  First, the order P* of 

the quantile of X conditional on Y is implicitly solved by (3) and then it is substituted 

into (2).  The order P* is required as in general the P-order quantile of a portfolio is 

not a linear combination of the individual quantiles.
5
   

One might wonder how (2) and (3) yield the same VaRZ( P̂ ) for any selected 

realization y.  The explanation lies in the fact that the integration in (3) is over all 

values of Y and the arbitrary realization y of Y serves only as a reference and starting 

point for this integration.  Hence, the simultaneous effect of the selected y on both the 

order P* in (3) and on the portfolio VaR in (2) completely offset each other such that 

the total impact of the selection of y on the solution of the portfolio VaR is zero.  

Nonetheless, the selected realization y might have an impact on the range of 

probabilities for which there is a solution of Proposition 1, as is defined in (4).  

Normally, this impact does not complicate the selection of y.  This is because VaR is 

calculated usually over the lower left-hand side of the distribution (namely, for low 
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order P̂ ) such that (4) implies simply that the selected realization y should be 

sufficiently small to contain the lower range of probabilities.  In other words, except 

for unique cases, when calculating VaR by Proposition 1 it is sufficient to choose a 

sufficiently small realization y and solving (4) is not required practically.  This issue is 

further clarified in the following example. 

  

An Illustrative Example 

For illustration purposes, the following simplified example provides a 

graphical exposition of Proposition 1.  For simplicity of presentation, let the return on 

Y be restricted to only two values, y1 and y2 with probabilities q and 1-q, respectively, 

where y1 < y2 (see Figure 1).  In the following solution, y1 serves as the selected 

realization.  As has been previously mentioned, the intuition behind this selection is 

that VaR is calculated usually over the lower left-hand side of the distribution and 

therefore it is sufficient practically to simply choose a sufficiently low Y, in our case 

y1, without actually solving (4).  Later on, we also solve inequality (4) for a specific 

example.   

Assuming � > 0, the conditional cdf of the portfolio for Y = y1 is given by 

)(1

�ZH
y

.  For any given order P, including the order P̂ , )(1

�ZH
y

divides the 

horizontal difference between F(X) and y1 according to the proportions � and (1-�) 

(see Figure 1 and Appendix A).   Hence, according to (6), the conditional quantile is 

given by 

 1)1(*)( *)( 11 yPXPZ
yy ��� ��� .          (10) 

Similarly,  

 2)1(*)*( *)*( 22 yPXPZ
yy ��� ��� .          (11) 

Thus, from (10) and (11) we obtain  

21 )1(*)*( )1(*)( 21 yPXyPXZ
yy ����� ������ ,          (12)  

or  P** = 0 or P** = 1, depending on the distribution of X and the selected realization 

y.  According to Bayes’ Theorem in its discrete form 

 **)1(*ˆ PqqPP ��� .          (13) 

Finally, using (12) to extract P** and substituting it into (13) yields (3) in its discrete 

form 

  � �)(*)()1(*ˆ
12

112 yyPXFqqPP
yy ����� �

�
�

.          (14)     
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Solving for P*, substituting it into (6) and deducting it from the reference point t, 

yields (2) and produces the portfolio VaR.   

For the purpose of demonstration, let us further assume that X is distributed 

exponentially uncorrelated with Y, namely  

�
�
 ���

��
,0

,0)exp(1
)()(

other

XX
XFXF

Y
�

          (15) 

and 

10    )1log(
1

)()( ������ PPPXPX
Y

�
.          (16) 

First, as 0)0( �yX  and 	�)1(yX , (4) in its discrete form yields 

� � � � 1)()(ˆ0)()(0
2

1

2

1

11 ���	����� �� �

�

�

� y

yY

Yy

yY

Y
YgyYFPYgyYF

�
�

�
�

, for both 

values of Y.  Hence, in this specific case, both values of Y could be selected unrelated 

to the required confidence interval.   

Continuing with y1 as the arbitrarily selected realization, substituting (15) and 

(16) into (14) yields two possible ranges.  Assuming 0)(*)( 12

11 ��� �
yyPX

y

�
�

 or 

equivalently ))(exp(1* 12

1
yyP ���� �

�
�� , (14) yields  

  )))(exp(1(ˆ           
ˆ

* 12

1
yyqP

q

P
P ����� �

�
�� .          (17)     

Assuming ))(exp(1* 12

1
yyP ���� �

�
��  yields 

)))(*)1exp(log(1)(1(*ˆ
12

1
yyPqqPP ������� �

�
��  which yields 

)))(exp(1(ˆ        
))(exp()1(

))(exp(1)(1(ˆ
* 12

1

12

1

12

1

yyqP
yyqq

yyqP
P ����

���

����
� �

�

�

�
�

�
�
�
�

�
�

�
.       (18) 

Substituting the order P* from (17) and (18) into (2) yields the portfolio VaR   

�
�

�

�
�

�



��
���

����
�

��������

�

�

�

�

  )1( )
))(exp()1(

))(exp(1)(1(ˆ
-log(1

)))(exp(1(ˆ0          )1( )
ˆ

-log(1

)ˆ(

1

12

1

12

1

12

1

1

y
yyqq

yyqP
t

yyqPy
q

P
t

PVaRZ

�
�

�

�
�

��
�
�

�
�
�
�

�
�

 

1ˆ)))(exp(1( 12

1 ����� �
Pyyq

�
�� .          (19) 

Figure 1 depicts the solution graphically for the case of assets X and Y in 

proportions Z = 0.6X + 0.4Y (i.e. �  = 0.6).  The return on asset X is exponentially 

distributed with parameter � = 1 uncorrelated with the return on asset Y which is 
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restricted to the two values, y1= 1 and y2= 2 with probabilities q = 0.3 and 1-q = 0.7.  

Figure 1 reveals that the conditional cdf of the portfolio for Y = y1, )(1

�ZH
y

, divides 

the horizontal difference between F(X) and y1 according to the proportions �  = 0.6 

and 1-� = 0.4.  Similarly, the conditional cdf of the portfolio for Y = y2, )(2

�ZH
y

, 

divides the horizontal difference between F(X) and y2 according to the same 

proportions.   It can also be seen in Figure 1 that P̂  divides the vertical distance 

between P* and P** according to the proportions 1 - q = 0.7 and q = 0.3.  Similarly, 

H(Z�)  divides the vertical distance between the conditional cdfs )(1

�ZH
y

 and 

)(2

�ZH
y

 according to the same proportions.  Finally, using these characteristics, the 

bold curve in Figure 1 graphically depicts the solution of (19).   

The lower feasible range, (1-�)y1� Z�<(1-�)y2 (i.e. 0.4� Z�<0.8), can be 

realized only when Y=y1 (as the minimal contribution of realization y2 to the total 

portfolio value is the value y2 = 2 times its proportion in the portfolio of 0.4) .  Hence, 

the solution divides the vertical distance between the conditional cdf )(1

�ZH
y

 and 

P**=0 according to the proportions 1 - q and q.  Finding this vertical weighted 

average between )(1

�ZH
y

 and P**=0 provides the solution in this range which is 

given by the first range of (19).  Correspondingly, the upper feasible range Z��(1-�)y2 

(i.e. Z��0.8) can be realized under both realizations of Y.  Hence, the solution divides 

the vertical distance between the conditional cdfs )(1

�ZH
y

 and )(2

�ZH
y

 according 

to the same proportions, 1 - q and q.  Thus, finding the vertical weighted average 

between )(1

�ZH
y

 and )(2

�ZH
y

 provides the solution in this range, which is given 

by the second range of (19).   

To sum up, equation (2) calculates the vertical weighted average between 

)(1

�ZH
y

 and )(2

�ZH
y

 (or zero) at the order P̂  and yields the P̂ -order VaR.  

Naturally, the solution of this simplified example of an asset, which is restricted to 

only two values, is straightforward.  However, the proposed method is general and the 

same principles are applicable for any other, more complicated, case as is further 

shown in the following sections. 

 

 



��9�
��

Generalization 

 Solving (3) for P*, which may be relatively complex in the case of numerous 

assets (depending also on the conditional distribution), is quite simple in the case of 

only few assets, as it requires the solution of only two equations.  Furthermore, in this 

case it has the advantage of yielding a unique analytical solution for any distribution 

and with small calculation resources.  Therefore, in the case of a small number of 

assets, where the conditional distribution can easily be obtained, and when the 

distribution cannot be considered normal, Proposition 1 provides a relatively simple 

and straightforward solution.  This case of small number of assets covers a wide range 

of important problems.  For example, Proposition 1 is best suited for solving 

Campbell et al.’s (2001) problem of the optimal combination of shares and bonds 

portfolios.  In this important problem, in which at least one of the two assets cannot be 

assumed to be normally distributed, it provides a unique solution, which requires 

solving only two equations.  This is in contrast to other numerical methods, which 

might require a lengthy convergence process, and more seriously, might produce a 

solution that is path-dependent of this convergence process.  Other examples, which 

are well suited for this method, are when optimization of VaR is required.  For 

example, Proposition 1 can be used to analytically find the minimal VaR portfolio as 

is presented in the next section.   

Another optimization example is analytically solving the agent’s optimization 

problem presented in Basak & Shapiro (2001).  In that problem, the agent maximizes 

U(Z�) subject to                  

                                                    f

y

Z VaRyPXtPVaR ����� )1(*)( )ˆ( �� ,         (20)  

which leads to the following constraint on the proportion of X in the portfolio  

                                                                                    
yPX

VaRyt

y

f

f �

��
��

*)(
��  ,        (21) 

where VaRf is the required constraint floor, �f is the bound on the proportion of X 

which is induced by the constraint and the order P* is given in (3).  Note that the 

order P* in (21) is also a function of � itself such that equality (21) may define both 

upper and lower bounds on �.  Naturally, when the optimization problem involves 

numerous assets the solution is more complex (see Appendix B).  Another useful 

example of only two assets, and therefore requires the solution of only two simple 

equations, is when analyzing the impact of adding an asset, X, to an existing portfolio, 
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Y, assuming the composition of Y is unchanged.  Proposition 1 enables to fully study 

that impact as a function of the composition of the overall portfolio.  This ability is 

further elaborated in the next section. 

 

II. The Minimal VaR Portfolio in Case of Continuous Distributions  

 

In this section Proposition 1 is used to analytically find the minimal VaR 

portfolio in the case of two continuous and differentiable distributions.  Then, an 

illustrative numerical example is provided.  This example demonstrates the advantage 

of Proposition 1 over simulation techniques in calculating the VaR of a portfolio and 

in VaR analysis when both assets are continuously distributed.  This example is 

further elaborated in order to compare between the minimal VaR and the minimal 

standard deviation in the lognormal case.  This comparison illustrates also the 

importance of downside risk in optimal asset allocation even under modest deviations 

from the normal case.   

 Let X and Y be the returns on two risky assets as in Proposition 1.  If X
y
(P) is 

differentiable for a realization y of Y over the entire range 0�P�1, the proportion that 

leads to the minimal VaR portfolio is solved by 

 *)(
*)(

 min PXy
d

PdX
y

y

��
�

� ,          (22) 

and the minimal VaR portfolio is given by substituting the proportion �min in (2), 

where the order P* is given by (3) as a function of P̂ , y and the solution �min.  The 

proof of (22) is straightforward.  Differentiating the portfolio VaR, given by (2), with 

respect to � and equating it to zero in order to find the local minimum yields �min, 

which leads to the minimal VaR portfolio.  Note that the differentiability of the 

portfolio VaR and thus the existence of �min is guaranteed as long as X
y
(P) is 

differentiable in the range 0�P�1.
6
 

In the following, Proposition 1 and the implied minimal VaR rule in (22) are 

used to analyze the VaR of a portfolio that is composed of lognormlly-distributed 

assets.  The lognormal distribution is appealing in many economic applications.  This 

is mainly because in contrast to the normal distribution the lognormal distribution is 

able to capture the empirical phenomena of positive skewness and extra kurtosis as 

well as the fact that risky returns are bounded from below.  On the other hand, the 

main drawback of the lognormal distribution is that the distribution of a portfolio 
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composed of lognormally distributed assets is not lognormally distributed and does 

not have an analytical expression.  Thus, the VaR of the combined portfolio cannot be 

found straightforwardly and an approximation or a numerical technique is usually 

required.  Proposition 1 provides a simple solution for this shortcoming as is shown 

below.  In Appendix B this example is expanded to a more realistic case of a three-

asset portfolio.   

Let X and Y be multivariate lognormally distributed with expected returns and 

standard deviations of the logs of �X, �Y, �X and �Y, respectively, and with correlation 

coefficients of the logs of �.  Namely, log(X) and log(Y) are multivariate normally 

distributed with the above parameters.  Hence,  

)
2

)(
exp(

2

1
)(

2

2

2
YY

YB

Y
Yg

���
�� ,          (23) 

for Y > 0 and zero for other, 

)
)1(2

))()((

exp(
)1(2

1
)(

22

2

22
X

y

x

X

Y

YBXB

X
Xf

��

�
��

��� �

�
�

�
� ,          (24) 

and 

)
)1(

)()(

()(
22

X

Y

X

N

Y

YBXB

FXF
��

�
��

�

�
� ,          (25) 

for X > 0 and zero for other, and 

))1()()(exp()( 22

X
Y

X
X

Y
PNYBPX ���

��� ���� ,          (26) 

for 0 � P � 1, where FN  and N(P) are the cdf and the P-order quantile of the normal 

standard distribution and XXXB ��
 )log()( .  From (2), the portfolio VaR is given 

by 

yPNyBtPVaR X
Y

X
XZ )1())1(*)()(exp( )ˆ( 22 ����

���� ������� ,          (27) 

where, from (3), the order P* is solved implicitly by 

�
	�

�

�

�����
�

0
22

122

)1(

))())1(*)()(log(exp(

(ˆ

X

X
Y

X
X

N

yYPNyB

FP
��

���
���

�
�
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dY
YB

Y

YB

YYX

Y

X
X

)
2

)(
exp(

2

1
)

)1(

)(

2

2

222 �����

�
���

�
�

��
.          (28) 

Thus, finding the VaR of the portfolio requires solving implicitly the order P* from 

(28) and substituting it in (27).  This is a relatively simple task, which does not 

involve numerous iterations as might be in other numerical methods.   

Continuing with this example, the same technique can be used to find the 

minimal VaR portfolio.  By chain differentiation we can rewrite (22) as
7
�
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where � �)(*)()()(
1

yYPXfYgYA
yY ��� �

�
�

, g(Y), f
Y
(X) and X

y
(P*) are given by 

(23), (24) and (26) (only with y instead of Y), the order P* is solved by (3) and y is 

any arbitrarily selected realization of Y (as the ranges of X  and Y are identical).  

Figure 2 presents a numerical example of the above results.  Panel A plots the 

mean-VaR frontier of two independent lognormally-distributed assets with the 

following parameters: )136.0,4.2(~ �X  and )15.0,3.2(~ �Y , where for simplicity, 

t=0 and the confidence interval is either 99 percent or 95 percent.  The VaR at each 

point on the curves is calculated by solving implicitly for P* from (28) and then 

substituting it in (27).  Thus, each point on the curves requires solving only two 

equations together with the trivial equation of the portfolio expected return, EZ = �EX 

+(1-�)EY.  This is comparable with a simulation method, which might require several 

hundred samples for each point in order to guarantee plausible accuracy.  This 

advantage is even more apparent when calculating the minimal VaR portfolio.   

The horizontal curve in Panel A plots the minimal VaR portfolio as a function 

of the required confidence interval using equation (29).  Once again, each point on the 

curve requires to solve only the two equations, (28) and (29).  In contrast, a simulation 

method might require an iterative convergence process in which each iteration, which 

takes the VaR closer to the minimal VaR, might be involved also with numerous 

samples.   

Panel B of Figure 2 plots the mean-VaR frontier for a 99 percent confidence 

interval assuming a correlation coefficient of � = -0.5, 0, 0.25 and 0.9.  As in the 
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previous example, these curves demonstrate the relative simplicity of calculating the 

portfolio VaR at each point using equations (27) and (28).  In addition, this example 

shows the impact of correlation on the portfolio VaR, which, as expected, is 

analogous to the impact of correlation on the portfolio standard deviation.  However, 

in spite of this similarity there are also important differences as are presented below. 

Figure 3 juxtaposes the proportion of X, which leads to the minimal VaR 

portfolio, �min, calculated by (29) with the proportion of X, which leads to the minimal 

standard deviation portfolio
8
 in the lognormal case.  This comparison shows that even 

under the modest deviation from the normal distribution of assuming a lognormal 

distribution there are critical differences between VaR and standard deviation and 

between the implied optimal asset allocation according to these risk measures.  It is 

plausible to assume that the differences would be even larger in the case of empirical 

distributions.  Each point on the curves in Figure 3 represents the proportion of X in 

the minimal VaR portfolio (�min) and in the minimal standard deviation portfolio for 

portfolios constructed from two independent lognormally-distributed assets, X and Y.  

Namely, at each point the assets’ returns have different parameters.  Panel A plots 

�min as a function of the ratio between the expected returns of X and Y with standard 

deviations held constant.
9
  The calculations are done for three different ratios of the 

standard deviations of X and Y, where the standard deviation of X is equal to 1.5 and 

the standard deviation of Y is 0.5, 1.5 and 2.5.  Panel B plots �min as a function of the 

ratio of the standard deviations of X and Y while the expected returns of X and Y are 

held constant.  The calculations are done for three different ratios of the expected 

returns of X and Y, where the expected return of X is equal to 10 and the expected 

return of Y is 9,10 and 11.   

The results emphasize the differences between VaR and standard deviation 

risk measures and the impact of downside risk on assets allocation.  The curves on 

Panel A show that for a given ratio of standard deviations, a higher expected return of 

X relative to that of Y does not affect �min which leads to the minimal standard 

deviation.  In contrast, a higher expected return of X relative to that of Y leads to a 

higher �min which leads to the minimal VaR.  For example, a difference of 20 percent 

between the expected returns of X and Y (namely, 2.1/ �YX EE ) leads to a proportion 

of X that is greater than 0.95 in the minimal VaR portfolio.  Furthermore, this result is 

almost independent of the ratio of variances of X and Y.  Panel B reveals that although 
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both values of �min behave similarly when the standard deviation is changed, there is a 

significant quantitative difference between the results, which depends on the relations 

between the expected returns.   

In summary, Figure 3 reveals that the relationship between the minimal VaR 

and the minimal standard deviation in the case of the lognormal distribution is 

significantly different from the relationship in the case of the normal distribution.  

Alexander & Baptista (2002) show that in the case of a multivariate normal 

distribution, if the minimum VaR portfolio exists, then it lies above the minimum 

variance portfolio on the mean-standard deviation frontier.  According to Figure 3 this 

does not hold in the case of the lognormal distribution.   

The results of Figure 3 illustrate the basic conceptual difference between 

standard deviation and VaR.  Theoreticians, as well as practitioners, conceptually 

view risk as the chance of obtaining poor results relative to a given reference point 

(such as expected return, the risk-free interest rate or zero).  However, standard 

deviation measures the dispersion around the mean and reflects correctly the 

downward risk of two alternative prospects only when their means are equal or when 

distributions are symmetrical.  Unlike the standard deviation, VaR measures 

downward risk in terms of potential loss under specifically defined probability.  Thus, 

VaR considers the mean and dispersion as well as all higher moments.  Therefore, 

substantial differences should be expected between the two measures and the implied 

assets allocation even when it is the higher moments that are being varied.  

 

 

 

III. Analytical VaR and Ahn, Boudoukh, Richardson and Whitelaw (1999) 

Analysis 

 

Ahn et al. were the first to develop an analytical VaR optimization solution.  

They confined themselves to the case of hedging a lognormally-distributed asset with 

a put option on the managed portfolios.  In Ahn et al.’s analysis, X is a put option on 

an underlying asset Y, which is assumed to terminate in-the-money.  Ahn et al. then 

compute the optimal strike price that minimizes VaR.  Below we show how their 

problem can be extracted from our proposed method.  Although in Ahn et al.’s 

specific case it is simpler to formulate the problem straightforwardly, the proposed 

model offers a method to formulate and solve the optimal strategic hedging problem 
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under more complex but yet realistic conditions whereby the optimized portfolio 

includes various types of assets including derivative assets that are only partially 

correlated with the hedged portfolio. 

Ahn et al. assume a fixed hedging expense of C=hq, where h is the number of 

options and q is the price of each option.  They also assume that this expense is 

financed by a loan with a continuous interest rate r such that the amount to be repaid 

in the future is rtqe  per option.  Thus, the fixed hedging expense C determines the 

portfolio assets allocation ( 1 , , ���������������� YrX hh ��� ) and using equation (B1) we get 

the general problem of minimal VaR of a three asset portfolio 

]*)( [ min ,
yhqePXht

rtry ��� ,           (30) 

where P* is solved from (B2).  The formulation of the problem in (30) is general as it 

is correct for any distribution and any correlations between the three assets.  In Ahn et 

al. specific case, the quantile of the put option conditional on the underlying asset 

(which is of course also conditional on the risk-free interest rate as required by (30)) is 

given by yKPX
y ��*)( , where K is the option strike price and y is necessarily the 

P̂ -order quantile of Y (since in the case of a put option with full correlation 

PP ˆ* ���� and there is only one value of X for each realization y of Y).  Substituting 

*)(PX
y

 in (30) yields 

���������� ])1(min[])(min[ y
q

C
CeK

q

C
ryhqeyKht rtrt   

          ]max[]max[
q

yK

q

yK
C

�
�

�
� .          (31)�

Finally, by assuming that the underlying asset Y is lognormally-distributed, such that y 

is equal to the Y's P̂ -order lognormal quantile, we arrive at Ahn et al.'s original 

minimization problem (see equation (16) in Ahn et al.).     

Clearly, it is simpler in case of a full correlation to formulate the problem 

straightforwardly, as Ahn et al. do.  However, their assumption that there is a traded 

put option on the underlying asset scarcely exists.  In general, traded options are not 

written on institutional portfolios but only on specific assets and indexes.  Equation 

(30), which is based on the proposed model, makes it possible to solve the optimal 

strategic hedging problem under more realistic conditions whereby the options and 

other derivative assets are partially correlated with the hedged portfolio.  The model 
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can also deal with more complicated problems in which the portfolio includes various 

types of derivatives and financing is not restricted only to debt.  The following 

example demonstrates these advantages. 

Let us assume that in a hedging problem similar to Ahn et al., the agent faces 

more realistic market terms.  For the purpose of demonstration, suppose that the agent 

faces two types of put options, X1 and X2 written on two market indices, which are 

uncorrelated with each other and only partially correlated with the agent portfolio.  

Assume also that the agent searches for the combination of options that minimize the 

total VaR of her portfolio.  Hence, the fixed hedging expense, C, can be used to buy 

two types of options.  Namely, C = h1q1+ h2q2, where h1 and h2 are the number of 

options of the first type and the second type and q1 and q2 are the prices of each 

option, respectively.  Assume, as in Ahn et al., that the hedging expense is financed 

by a loan with a continuous interest rate r such that the amount to be repaid in the 

future is 
rt

ieq  per option.  Thus, the fixed hedging expense C determines the portfolio 

assets allocation to be 1  and )( ,, 2121 21
������ YrXX hhhh ���� .  Recall that the 

conditional quantile function of the first type of option is uncorrelated with the second 

type option and with r (i.e. *)(*)( 1

,

1
2 PXPX yryx � ) and h2=(C-h1q1)/ q2, equation (B1) 

formulates the optimization problem to be  

]*)([ min 2

2
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11
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rty
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�
���� ,           (32) 

where, from (B2), P* is solved by  
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qhC
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and g(Y) and f(X2) are the probability density functions of Y and X2.  Finally, 

substituting the conditional quantile function and cdf fully formulate the optimization 

problem, which can then be easily solved.   

          

 

  

IV. Concluding remarks  

This paper develops analytical tools for extracting the VaR of a portfolio from 

the general distributions of its underlying assets.  This analytical VaR can then be 

used to construct optimal portfolios of generally distributed assets for the case in 
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which the target function and/or constraints are expressed in terms of VaR.  The basic 

information required for this problem is the conditional distributions of the risky 

assets.  This is analogous to the information about the means and the variance-

covariance matrix required for the classical Markowitz optimal portfolio problem.  

This proposed method can be used to solve any optimization problem, which involves 

portfolio VaR and is applicable to any distribution, not only the problematic normal 

distribution.  

The proposed method is used to develop a minimal VaR rule, which identifies 

the minimal attainable VaR.  The paper presents a detailed illustrative example of a 

portfolio composed of two dependent lognormally-distributed assets.  This example 

emphasizes the advantage of the proposed method since it enables overcoming the 

main drawback of the lognormal distribution, i.e. that the distribution of a portfolio 

composed of lognormally distributed assets cannot be expressed analytically.  

Accordingly, the proposed method makes it possible to calculate straightforwardly the 

portfolio VaR by solving two simple equations.  In our particular example, the 

solution is used to compare between the minimal VaR portfolio and the minimal 

standard deviation portfolio in the case of the lognormal distribution.  This 

comparison reveals that the optimal proportions that minimize the VaR depend on all 

moments of the distribution.  This intuitive outcome highlights the importance of 

using the correct measure of risk and the deficiencies of the standard deviation in this 

regard.  Thus, this example illustrates the simplicity and the efficiency of the proposed 

method especially in the case of a portfolio that is composed of only a small number 

of assets.   

This case covers many practical problems in finance.  For example, this 

method is best suited to analyze the Campbell, Huisman and Koedijk (2001) problem 

of the optimal combination of shares and bonds portfolios.  Similarly, this method is 

well suited to find the minimal VaR portfolio and to analyze the impact of adding an 

asset to an existing portfolio on the overall portfolio VaR.  Finally, the paper uses the 

proposed method to formulate the problem of Ahn, Boudoukh, Richardson and 

Whitelaw (1999) of minimizing the portfolio VaR with a put option.  This additional 

example demonstrates the ability of this method to analytically formulate 

complicated, realistic VaR optimization problems such as when the hedging 

derivative is only partially correlated with the hedged portfolio.        
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Appendix A: The Quantile Function of a Portfolio Composed of Risky and Risk-

Free Assets�

 The following proof of the quantile function of a portfolio composed of risky 

and risk-free assets is taken from Levy and Kroll (1978).  Let X be an asset with a 

random return with a cdf F(X) and a quantile function X(P).  Denote the mixture of X 

with the risk-free asset by Z�.  Thus, XrZ ��� ��� )1( where 0 < � and r is the risk-

free interest rate.  Recall that by definition 

          PPXXPXF ��� ))(Pr())(( .         (A1) 

Thus, since � and r are constants (A1) implies that for any 0 < � the following holds 

          PPXrXr ������ ))()1()1Pr(( ���� .         (A2) 

Substituting the definition of Z� from above into (A2) yields   

          PPXrZ ���� ))()1(Pr( ��� .         (A3) 

 However, since by definition PPZZ �� ))(Pr( �� , where Z�(P) is the quantile 

function of the portfolio, then by necessity  

)()1()( PXrPZ ��� ��� .          (A4) 
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Appendix B: Analytical VaR of Multiple Asset Portfolios 

In the following the model is extended to the case of a multiple asset portfolio. 

The proofs in this case are identical to those of the two-assets case and will not be 

repeated. 

Let Xi (i=1…n) be the returns on n risky assets with probability density 

functions fi(X)
 
and cumulative distribution functions (cdf) Fi(X).  Let ���� ����

����
n

i ii XZ
1
��  

be the random return on a portfolio composed of these n assets.  Let )(PX i
x

j be the 

quantile of the return on asset Xj conditional on the vector of realizations xi of Xi 

(i=1…n, i�j).  The information about this conditional quantile is tantamount to the 

information about the assets’ cdfs and the relationship between them and obtaining it 

is a prerequisite to solving any portfolio optimization problem.  

 

Proposition B1.  For every 0��i� 0<�j (i=1,…n,  i�j) and some selected vector of 

realizations xi of Xi which guarantees that 0�P*�1, the VaR of the portfolio Z� is 

given by 
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where the order P* is solved from the following equation 
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Note that the integration in (B2) is over n-1 variables.  The range of probabilities for 

which the vector of realizations xi of Xi provides a solution of (B2) is given by 

������ � �
�	

	�

�	

	� �
�

�
�

PdXXfxXXF iii

n

ji
i

n

ji
i

ii

x

j

X

j

iii ˆ)())()0((...
1

1
�
�

.           

� � �
�	

	�

�	

	� �
�

�
�

��� iii

n

ji
i

n

ji
i

ii

x

j

X
dXXfxXXF

j

iii )())()1((...
1

1
�
�

.          (B3)           

Contentiously with the analogy to the two-asset case, assuming that )(PX i
x

j  is 

differentiable for any order P in the range [0,1] and for any vector of realizations xi of 

Xi (i=1…n,  i�j), which is required in order to guarantee that the portfolio distribution 

is well behaved, the proportions of the minimal VaR portfolio, �min
i (i=1,…n), are 

given by the equation 
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together with the following n-2 equations 
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and the trivial equation 
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where P* is simultaneously solved from (B2) as a function of P̂ , �i
min

 and xi.  Finally, 

the minimal VaR  is obtained by substituting �i
min

 (i=1,…n) into (B1). 

 

An Illustrative Example 

Let X be the return on a bank commercial activity.  Let Y and W be the return on the 

bank domestic and foreign financial investment portfolios, respectively.  Let X and Y 

be multivariate lognormally distributed with expected returns and standard deviations 

of the logs of �X, �Y, �X and �Y, respectively, and with correlation coefficients of the 

logs of �.  Let W be lognormally distributed with expected return and standard 

deviation of the log of �W and �W uncorrelated, as being a foreign market, with X and 

Y.  Denote the bank total portfolio as WYXZ 321 ���� ��� , 0��2,3� 0<�1.  

According to preposition (B1), and using the identities of g(Y) given by (23), F
Y,W

(X) 

= F
Y
(X) given by (24), and X

y,w
(P) = X

y
(P) given by (26), the bank overall VaR is 

given by 
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where the order P* is solved from the following equation 
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and where 123 1 ��� ���  and WWWB ��
 )log()( .   

Thus, as in the two-asset case, finding the VaR of the overall portfolio requires 

implicitly solving the order P* from (B8) and substituting it in (B7).  This relatively 

simple task can be easily used to map the impact of the proportion of the foreign 

portfolio on the bank overall VaR.  For example, assuming the value of the bank 

financial investment portfolio to be 10% (i.e. 1.023 ���� ) solving (B7) and (B8) 

for a vector of values in the range 1.0...02.0,01.0,02 ��  will map the full scope of the 

impact of international diversification on the bank VaR.  This is achieved by solving 

ten times only two equations.    
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Figure 1.  A graphical exposition of Proposition 1   

The figure plots the construction of a VaR value for a portfolio composed of assets X and Y in 

proportions Z = 0.6X + 0.4Y.  The return on asset X is exponentially distributed with parameter � = 1 

uncorrelated with the return on asset Y which is restricted to two values, y1=1 and y2=2 with 

probabilities q = 0.3 and 1-q = 0.7.  The conditional cdf of the portfolio for Y = y1, )(1

�ZH
y

, divides                                      

the horizontal difference between F(X) and y1 according to the proportions �  = 0.6 and 1-� = 0.4.  

Similarly, the conditional cdf of the portfolio for Y = y2, )(2

�ZH
y

, divides the horizontal difference 

between F(X) and y2 according to the same proportions.   It can be seen in Figure 1 that P̂  divides the 

vertical distance between P* and P** according to the proportions 1 - q = 0.7 and q = 0.3.  Similarly, 

H(Z�) divides the vertical distance between the conditional cdfs )(1

�ZH
y

 and )(2

�ZH
y

according to 

the same proportions.     
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Figure 2. Portfolio VaR of two lognormally-distributed assets 

The figure plots the mean-VaR frontier of a portfolio composed of two lognormally-distributed assets 

with the following parameters: )136.0,4.2(~ �X  and )15.0,3.2(~ �Y  and assuming also t=0.  Panel A 

plots the mean-VaR frontier for 95 and 99 percent confidence intervals assuming independent 

distributions (namely, � =0).   The horizontal curve plots the minimal VaR as a function of the 

confidence interval.  Panel B plots the mean-VaR frontier of a portfolio composed of the same assets 

assuming a correlation coefficient of � =–0.5, 0, 0.25 and 0.9.  Each point on the curves requires to 

solve only the two equations  (27) and (28). 
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Figure 3. The minimal VaR portfolio versus the minimal standard deviation portfolio  

 
Panel A plots the proportion of asset X in the minimal VaR portfolio versus the proportion of asset X in 

the minimal standard deviation portfolio, for different independent assets X and Y, as a function of the 

ratio between the expected returns of assets X and Y.  Panel B plots the same as a function of the ratio 

between the standard deviations of X and Y.  The curves illustrate the importance of downside risk in 

asset allocation and the critical distinction induced by VaR and standard deviation on the portfolio asset 

allocation even under modests deviation from the normal distribution.   
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1
 An introduction and overview of VaR can be found in Duffie & Pan (1997) and in the excellent books 

by Jorion (2000) and Crouhy, Galai & Mark (2001). 
�
2
 For more on credit risk issues see, for example, Duffie & Pan (2000).  For more on the methodology 

used to constrain and control risk exposure see, for example, Basak & Shapiro (2001) and Jorion 

(2001). 
�
3
 Assuming 0<� eliminates short sales of asset X.  This assumption can easily be dropped by replacing 

P* in (2) and (3) for � < 0 by the expression 1-P*.  Then, if � < 0 the VaR of the portfolio is given by 

yPXtPVaR y

Z )1(*)1( )ˆ( �� ����� , and P* is solved by the expression 

� ��
	

	�

� ���� dYYgyYPXFP
yY

)()(*)1(ˆ 1

�
�

.          

�
4
 In (9) we do not need to specify separately the cases of (8a) and (8b) as, unlike the quantile function, 

the cdf function is defined over the entire range.   
�
5
 The order P is stable in a linear combination only when the portfolio is composed of a risky asset and 

a risk-free asset or in the trivial case of fully correlated assets.  Indeed, if Y is the risk-free asset r, then 

Proposition 1 converges to Levy & Kroll's (1978) solution of a portfolio of a risky asset and a risk-free 

asset.  Substituting Y = r in (3) yields 

� � **)()(*)(ˆ 1
PdrPdrrgrrPXFP

rr ����� ��
	

	�

�	

	�

�

�
�

 and substituting *ˆ PP ����  in (2) 

yields rPXtPVaRZ )1()ˆ( )ˆ( �� ����������������  which corresponds to the results of Kroll & Levy (see 

equation (3) there and in Appendix A).  
 ��
6
 In (22) it is assumed that VaR is an increasing monotonic function around �min.  This assumption is 

correct by definition in the immediate neighborhood of �min as long as �min exists since we define �min 

as the proportion that leads to the local minimal VaR.  Furthermore, �min always exists in our case since 

the assumption that the conditional quantile X
y
(P*) is differentiable guarantees the monotonicity of 

VaR.  In fact, VaR monotonicity for contiguous and differentiable quantiles derives from the 

monotonicity of the portfolio cdf, which, as has been previously said, is proved and used by Rothschild 

and Stiglitz (1970) for the case of Second Stochastic Dominance analysis.  Corresponding with Artzner 

et al. (1999), this property does not exist for VaR in the case of discrete distributions.  Nevertheless, it 

should be kept in mind that discrete distributions are usually empirical approximations of actual 

continuous distributions. 
�
7
 The only mathematical manipulation is the use of chain differentiation in order to solve (22).  

Accordingly, equation (22) is rewritten as: 
*ˆ

ˆ

*

*)(
*))(( min

dPPd

dPd

dP

PdX
PXy

y

y �
� ���  and 

from (3) we obtain the following identities: 

� ��
�	

	�

� ��� dY
dP

PdX
yYPXfYg

dP

Pd
y

yY

*

*)(
)(*)()(

*

ˆ
1

�
�

 and 

� ��
�	

	�

� �
��� dY

yY
yYPXfYg

d

Pd yY

2

1
)(*)()(

ˆ

�� �
�

.  

�
8
 The proportion which leads to the minimal standard deviation portfolio is given by: 

YXYX

YXY

�����
����

�
2

22

2

min ��

�
�  

.�
9
 The process of changing the assets’ expected returns without changing their standard deviations or 

changing the assets’ standard deviations without changing their expected returns is achieved by 

simultaneously changing both parameters of the lognormal distribution.    
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