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T h e  o n e - t ra d in g -da y - ah ea d  f o re c as t  e r ro r s  o f  i n t ra -

d a y  r ea l i z ed  vo la t i l i t y  

 
A b s t r a c t  

 Two volatility forecasting evaluation measures are considered; the squared one-day-

ahead forecast error and its standardized version. The mean squared forecast error is the 

widely accepted evaluation function for the realized volatility forecasting accuracy. 

Additionally, we explore the forecasting accuracy based on the squared distance of the 

forecast error standardized with its volatility. The statistical properties of the forecast errors 

point the standardized version as a more appropriate metric for evaluating volatility forecasts.  

We highlight the importance of standardizing the forecast errors with their volatility. 

The predictive accuracy of the models is investigated for the FTSE100, DAX30 and CAC40 

European stock indices and the exchange rates of Euro to British Pound, US Dollar and 

Japanese Yen. Additionally, a trading strategy defined by the standardized forecast errors 

provides higher returns compared to the strategy based on the simple forecast errors. The 

exploration of forecast errors is paving the way for rethinking the evaluation of ultra-high 

frequency realized volatility models. 

 

K e y w o r d s :  ARFIMA model, HAR model, intra-day data, predictive ability, realized 

volatility, ultra-high frequency modelling. 
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1. Introduction 

A volatility forecasting evaluation framework that brings together a well defined 

measure with known statistical properties is applied for predicting one-trading-day-ahead 

realized volatility. Any evaluation (or loss) function is a measure of accuracy constructed 

upon the goals of its particular appliance. For example, the most widely applied evaluation 

function is the mean squared forecast error.  

A number of model evaluation methods have been applied in financial literature. Most 

of them are based on measuring the ability of the models to fit in the data. The most cited in-

sample fitting evaluation functions are the information criteria of Akaike (1973), Schwarz 

(1978) and Shibata (1980) that are based on the Kullback and Leibler (1951) measure. In the 

case that researchers focus on evaluating models' forecasting ability, they construct 

evaluation functions that take into consideration the characteristics of the predicting variable. 

For example, because of the non-linearity of volatility, Pagan and Schwert (1990), Heynen 

and Kat (1994) and Andersen et al. (1999), among others, have evaluated the predictive 

ability of volatility models with robust to heteroscedasticity evaluation functions. As Hendry 

and Clements (2001) noted it seems natural that a stock broker measures the value of 

forecasts by their monetary return, not their mean squared error. Thus, Engle et al. (1993), 

West et al. (1993) and Granger and Pesaran (2000), among others, have defined loss 

functions that evaluate the models according to the usage of the predictions. 

Although evaluation functions are measures of accuracy that have been constructed 

upon the goals of their particular application, in the vast majority of the cases, their statistical 

properties are unknown. In volatility forecasting literature, the superiority of a loss function 

against others is not conducted according to a statistical based theoretical ground but it is 

based on empirical motivations. The present manuscript provides an empirical investigation 

of forecasting accuracy of ultra high frequency volatility models according to the one-step-

ahead standardized forecast errors. These standardized forecast errors define an evaluation 

function that comprises a selection procedure whose distribution is explicitly derived. 

The joint distribution of the half-sum of the squared one-step-ahead standardized 

forecast errors from a set of models is the multivariate gamma (Krishnamoorthy and 

Parthasarathy, 1951). The cumulative distribution function of the minimum half-sum of the 

squared one-step-ahead standardized forecast errors is the minimum multivariate gamma 

(Degiannakis and Xekalaki, 2005). Hence, a model selection algorithm is defined according 

to which the model with the lowest sum of squared standardized one-step-ahead prediction 

errors is considered as having a superior ability to predict the realized volatility. 



3 
 

 

 The contribution of the paper is described concisely. First, we define an evaluation 

function of realized volatility forecasts that comprises a selection procedure whose 

distribution is explicitly derived. Second, we infer for the distributional properties of the 

standardized forecast errors of the most widely applied realized volatility models and third, 

we open new avenues for the exploitation of forecast errors in financial markets’ literature. 

The rest of the paper is structured as follows. Section 2 provides information for the 

stock indices (FTSE100, DAX30 and CAC40) and the exchange rates (Euro to British Pound, 

US Dollar and Japanese Yen) that comprise the dataset and the construction of the annualized 

realized volatility measures. Section 3 illustrates the forecasting models and the distributional 

assumptions under investigation. The most widely applied models for realized volatility 

forecasting, i.e. AFRIMA and HAR specifications, are estimated assuming that the 

standardized unpredictable components are normally, Student t, GED, and skewed Student t 

distributed. Section 4 describes the statistical properties of the forecast errors estimated from 

two generic model frameworks widely applied in financial literature (i.e. regression and 

ARFIMA models with heteroscedastic residuals), as well as the exploitation of the 

standardized forecast errors for defining an evaluation procedure of volatility models’ 

predictability. Section 5 analyses the findings of the adopted forecasting evaluation method. 

In Section 6, we assume that the realized volatility measure is a tradeable asset and we define 

a trading framework under which we will investigate whether a trader based on the 

standardized forecast errors achieves higher returns compared to a trader whose trading is 

based on the simple forecast errors. Finally Section 7 concludes the study. 

 
2. Dataset – European Stock Indices and Euro Exchange Rates 

Figure 1 plots the daily prices, 
t

Plog , along with their logarithmic first differences, 

 
 1loglog  ttt PPy , for the FTSE100 (20th August, 1998-12th January, 2011), DAX30 (3rd 

January,  2000-12th January, 2011), CAC40 (13th June, 2000-12th January, 2011) indices, as 

well as for the exchange rates of Euro to the Great Britain Pound (4th January, 1999-21st 

January, 2011), United States Dollar (20th April, 1998-24th January, 2011) and Japanese Yen 

(4th January, 1999-24th January, 2011). The dataset under investigation consists of 2686, 

2784, 3106, 3308, 3091 and 3108 trading days for the CAC40, DAX30, FTSE100, EURUSD, 

EURGBP and EURJPY realized volatility series, respectively. 

[Insert Figure 1 About here] 
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The integrated variance  
 IV

tt

2
,1 


 
is the actual, but unobservable, variance over the interval 

 tt ,1 . We are able to approximate the integrated variance of trading day t  with the realized 

volatility: 

     




 1

2

, 11
loglog

j tttt jj
PPRV , (1) 

where ,...,1j  denote the equidistant points in time at which the asset prices 
jtP  are 

observed. The realized volatility converges in probability to the integrated volatility, or 

    
 IV

ttttRVp
2

,, 11
lim








. (2) 

The accuracy improves as the number of sub-intervals increases, but on the other hand, at a 

high sampling frequency the market frictions is a source of noise due to market 

microstructure features. As Andersen et al. (2006) noted, the realized volatility is constructed 

in the highest sampling frequency that the intra-day autocovariance minimizes: 

  
jii tt yyE


min , (3) 

where  
1

loglog



iii ttt PPy .  

Since the induction of ultra-high frequency based volatility estimation, the literature has 

proposed a number of variations of realized volatility measure in order to account for 

microstructure effects and various assumptions about efficient prices; see Aït-Sahalia et al. 

(2005, 2011), Barunik et al. (2016), Barndorff-Nielsen and Shephard (2005), among others. 

Some examples are the bipower variation of Barndorff-Nielsen and Shephard (2004), the two 

time scale realized volatility of Zhang et al., (2005), realized range of Christensen and 

Podolskij (2007), semivariance of Choobineh and Branting (1986) and Grootveld and 

Hallerbach (1999). As the scope of the study is not affected by the necessity to state a 

particular relation for the efficient prices and the market microstructure noise, we employ the 

most widely used measure the realized volatility adjusted for the overnight volatility. 

Thus, we estimate the realized volatility at the optimal sampling frequency according to 

eq. (3) and adjust it with the overnight volatility according to the method of Hansen and 

Lunde (2005). Hence, the annualized realized volatility estimate for the whole day is: 

        


 
 1

2

2

2

11 11
loglogloglog252252

j ttttt jj
PPPPRV , (4) 

for the 1 , 2  weights as defined by Hansen and Lunde (see also Degiannakis and Floros, 

2015, 2016). Figure 2 illustrates the annualized adjusted realized volatilities,  
tRV252 , at 

the optimal sampling frequencies which are the 7 minutes for the CAC40 and FTSE100, the 

13 minutes for the DAX30 and the 20 minutes for the three exchange rates. 
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[Insert Figure 2 About here] 

 

3. Set of competing models 

Literature has provided evidence in favour to the use of the ARFIMA and the HAR-

RV models for predicting realised volatility1. Hence, these two model frameworks comprise 

our set of competing models. Additionally, in order to capture the statistical properties of 

integrated quarticity, we extend the ARFIMA and the HAR-RV model frameworks by 

incorporating a time varying framework for the conditional standard deviation of the 

dependent variable. In our case, the logarithmic annualized realized volatility is the 

dependent variable, and the integrated quarticity is expressed as the conditional standard 

deviation of logarithmic realized volatility. 

3.1. ARFIMA-GARCH framework 

The Autoregressive Fractionally Integrated Moving Average model with dynamic 

conditional volatility was initially proposed by Baillie et al. (1996). It captures the long 

memory property of the logarithmic annualized volatility    
tt RVlRV 252log  as well as 

its high persistence and the time-variation and clustering of the integrated quarticity via the 

GARCH approaching. The ARFIMA-GARCH model for  
tlRV  is expressed as: 

     t

l

i

i

it

d
k

i

i

i LdlRVLLc  
















 

 1
0

1

111 , (5) 

where 
ttt zh , 

2

1

2

1
0

2
t

p

i

i

it

q

i

i

it hLbLaah 


  ,  θ;1,0~ fzt  and   .f  is the density 

function of tz  . The 2
th  defines an estimate of the volatility’s volatility,  

   





t

t

IQ

tt dtt
1

1

42
, 2 , 

which is termed integrated quarticity. Thus: 

        1,02log
11

1

42
, NdttdttRV

dt

t

t

t
tt 





  




 . (6) 

3.2. HAR-RV-GARCH framework 

The Heterogeneous Autoregressive model with dynamic conditional volatility was 

was introduced by Corsi et al. (2008). The heterogeneous autoregressive framework 

accommodates the beliefs of heterogeneous traders, an idea proposed by Müller et al., (1997). 

The HAR-RV-GARCH model is an autoregressive structure of the volatilities realized over 

different time intervals. Thus, current trading day’s realized volatility is expressed by the 

daily, the weekly and the monthly volatilities: 
                                                 
1 Indicatively, you are referred to Chiriac and Voev (2011), Prokopczuk et al. (2016) and Sevi (2014). 
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        ,225
22

1

1
3

5

1

1
2110 t

j

jt

j

jttt lRVwlRVwlRVwwlRV  
















 










  (7) 

where 
ttt zh , 

2

1

2

1
0

2
t

p

i

i

it

q

i

i

it hLbLaah 


  ,  θ;1,0~ fz t  and   .f  is the density 

function of tz  .  

 The ARFIMA-GARCH and HAR-RV-GARCH model  specifications are estimated 

for standardized residuals  that are normally,  1,0~ Nzt , Student t ,  vtzt ;1,0~ ,
 
 GED of 

Box and Tiao (1973),  vGedzt ;1,0~ , and skewed Student t of Fernandez and Steel (1998), 

 gvskTzt ,;1,0~ , distributed. The density functions of   vtzt ;1,0~  is 

     
   

2

1
2

2
1

22

21
;























 t

tt

z
zf , for  .  denoting is the gamma function. The 

generalized error, or exponential power, distribution’s density function is 

    
   1

11
2

5.0exp
;












v

v

t

tGED

z
zf  for 0  and    112 3/2     . For 

 gvskTzt ,;1,0~  the density function is

     
   

2

1

1 2
1

2

22

21
,;




 


























 g

msz

gg

s
gzf t

tskT , for 1 mszt
, and 

     
   

2

1

1

1 2
1

2

22

21
,;





 



























 g

msz

gg

s
gzf t

tskT , for 1 mszt
, where 

         11

2221 
 ggm   and 1222  

mggs . The g  and   

are the asymmetry and tail parameters of the distribution, respectively. 

 

4. Evaluate models' predictability 

We define a set of four competing models; two ARFIMA( ldk ,, )-GARCH( qp, ) and 

two HAR-RV-GARCH( qp, ). Additionally, each one of the four model specifications is 

estimated under the four distributional assumptions. The lag orders qpldk ,,,,  of the best 

performing models have been selected according to Schwarz Bayesian information criterion. 

The ARFIMA(0,d,1)-GARCH(1,1), ARFIMA(1,d,1)-GARCH(1,1), HAR-RV-GARCH(1,1) 

and HAR-RV-GARCH(0,1) comprise the set of the competing models. The construction of a 

set of well-performing models makes the models’ evaluation even more challenging. Hence, 
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in total, we estimate 16 models for each of the six assets under investigation. These 16 

models are estimated at each trading day, for TTT


~
 days, where T  denotes the whole 

available dataset and 1000T


 is the rolling sample size. 

The next trading day’s log-realized volatility, 
 

ttlRV |1 , and the tth |1  for the 

ARFIMA(1,d,1)-GARCH(1,1) model are computed as 

                
tt

t

j

tt

j

t

ttt

tt djAjAlRVcclRV |1
0

|
1

110|1 11   







   (8) 

      2
|1

2
|10|1 tt

t

tt

tt

tt hbaah    (9) 

where  
  

     










 j

t

t

L
jd

dj
jA

1
 and  

  
     











 1

1
1 j

t

t

L
jd

dj
jA . Figure 3 presents, 

indicatively for the ARFIMA(1,d,1)-GARCH(1,1) model, the annualized realized volatility, 

the discrepancy between the actual realized volatility and the forecasted values as well as the 

standardized forecast errors. In eq.(8), for   01 t
c , we get the log-realized volatility forecast 

for the ARFIMA(0,d,1) specification.  

For the HAR-RV-GARCH(1,1) model, the next trading day’s  
ttlRV |1  is computed as 

                ,225 |

22

1
1

1
3

5

1
1

1
210|1 tt

j

jt

t

j

jt

t

t

tt

tt lRVwlRVwlRVwwlRV  















 










  (10) 

In eq.(9), for   01 t
b , the forecast of integrated quarticity from the GARCH(0,1) 

specification is computed.  

[Insert Figure 3 About here] 

 

4.1. One-trading-day-ahead forecast error 

Going back to the grounds of financial theory, the actual volatility of the 

instantaneous log-returns during the continuous time interval  tt ,1  is the integral of  t , 

having assuming that the log-returns of the asset follow the diffusion process 

     tdWttpd log . The  t  denotes the volatility of the instantaneous log-returns 

 tplog  and  tW  is the Wiener process. Hence, the actual volatility over a trading day  tt ,1  

is denoted as  
   dtt

t

t

IV

tt

22
,

1

1




  ; which is integrated variance. The  ttRV ,1
 is a proxy 

measure of the unobservable  
 IV

tt

2
,1 

 .  
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Let us assume that a forecaster is interested in evaluating the ability of a set of models 

to forecast the one-day-ahead volatility. The forecaster is not able to observe the actual 

volatility; i.e.  
 IV

tt

2
,1 

 , so she works with the proxy measure  ttRV ,1
. The evaluation of the 

models is conducted according the proxy measure and not based on the actual variable. 

Hence, a question arises concerning the ranking of the models according to their forecasting 

ability.  Hansen and Lunde (2006) derived conditions which ensure that the ranking of 

variance forecasts by an evaluation function is the same (consistent ranking) whether the 

ranking is done via the true and unobserved variance,  
 IV

tt

2
,1 

 , or via an unbiased proxy as the 

 ttRV ,1
. 

Consider an evaluation function  ,L  that measures the distance between the proxy 

variable and its forecast. A sufficient condition for a consistent ranking is the quantity  

 
  

  2,

1|,
2

1

1
,







tt

tttt

RV

RVRVL



   not to depend on 
 

1| ttRV . For example, the mean squared forecast error 

(MSE): 






T

t

ttT

~

1

2
|1

~  , (11) 

ensures the equivalence of the ranking of volatility models, where 

    ttttt lRVlRV |11|1    (12) 

denotes the one-trading-day-ahead forecast error. Hansen and Lunde (2006) and Patton 

(2011) investigate various evaluation functions robust for consistent ranking and study the 

effects of noisy volatility proxies in the evaluation of forecasting ability.  

4.2. One-trading-day-ahead standardized forecast error 

The MSE function is the most widely applied method of evaluating the forecasting 

accuracy. However, we are not aware of the explicit distribution of the squared forecast 

errors. On the other hand, we can infer for the distributional properties of the squared 

standardized forecast errors; i.e. the ratio of the forecast error to the conditional standard 

deviation.  

Regression model with Arch errors 

Let us define a generic form of a multiple regression model with dynamic conditional 

volatility of the error term (such a framework includes the HAR-RV-GARCH model where 

the explanatory variables express the lagged daily, weekly and monthly values of the 

dependent variable). For ty  and 1tx  denoting the dependent variable and the vector of 
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explanatory variables, respectively, the regression model with the error term 
t following an 

ARCH process is presented as:  

 

  
  ,1;,,

;1,0~
2

1

t

jtjtt

t

t

ttt

t

t

tt

jhgh

fz

hz

y

ψ
θ

βx

















 (13) 

where          tttt ψθβφ ,,  is the vector of parameters to be estimated,  .f  is the density 

function of tz , and  .g  is a measurable function of information set at time t-1, 1tI , that 

represents the conditional variance of 
t .  

 Degiannakis and Xekalaki (2005) noted that if the vector of parameters is constant 

over time,     φφφ   ...1tt , and  1,0~ Nzt , then the estimated standardized one-step-

ahead prediction errors are asymptotically standard normally distributed: 

   1,0~1
|1|11|1 Nhyyz ttttttt


  , (14) 

where 
 t

ttty βx |1  and tth |1  is the one-step-ahead conditional standard deviation.  

ARFIMA model with Arch errors 

The model framework in eq.(13) is modified in order to include the ARFIMA-GARCH 

model. Let us assume that ty  is the log-realized volatility. Then an ARFIMA model with the 

error term 
t following an ARCH process is presented as: 

     

  
  ,1;,,

;1,0~

1

2

1

t

jtjtt

t

t

ttt

t

d

t

jhgh

fz

hz

LDLLCy

ψ
θ
















 (15) 

where    








 



k

j

jt

j LcLC
1

1 ,    








 



l

j

jt

j LdLD
1

1 ,    







0

1
j

j

j

d
LL

t

 , for 

  
    

 











j

k

t

t

t

j
k

dk

dj

dj

0

1

1
 , and  .  is the gamma function.  

The vector of parameters to be estimated is defined as              tttt

j

t

j

t
ddc ψθφ ,,,, . 

Assuming constancy of parameters over time,     φφφ   ...1tt , and  1,0~ Nzt , the 

statistic   1
|1|11|1


  ttttttt hyyz  is asymptotically standard normally distributed as well. 
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Naturally, based on the mean squared standardized forecast error, we can compare the 

forecasting accuracy of a set of competing models. Degiannakis and Xekalaki (2005) showed 

that the ratio of the sum of the squared standardized forecast errors from two competing 

models follows the correlated gamma ratio distribution. Therefore, they proposed a model 

selection approach, named standardized prediction error criterion (SPEC), based on the 

evaluation of the predictability of the models in terms of standardized prediction errors.  

Let us denote a set of M competing models, and 
 




T

t

m

ttm zX

~

1

2
|1

2

1
 is the half-sum of the 

squared one-step-ahead standardized forecast errors from model m. The joint distribution of 

 MXXX ,...,, 21  is the multivariate gamma. For m=2, the interested reader is referred to 

Kibble (1941), whereas for m>2 you are referred to Krishnamoorthy and Parthasarathy 

(1951). For    MXXXX ,...,,min 211   denoting the minimum half-sum of the 
 m

ttz
2

|1 , the 

cumulative distribution function of  1X  is the minimum multivariate gamma distribution (for 

details see Xekalaki and Degiannakis, 2010). 

According to the SPEC criterion, the most appropriate forecasting model is the i
th  

model with the lowest half-sum of squared one-step-ahead standardized forecast errors:  














T

t

tt
i

z

~

1

2
|1

2

1
min . 

(
(16) 

Moreover, Degiannakis and Livada (2016) provided theoretical and empirical 

evidence that the SPEC criterion can be applied to evaluate models with residuals that are 

leptokurtically (i.e. Student t and generalized error distributed), or even leptokurtically and 

asymmetrically distributed (i.e. skewed Student t distributed).  

Let us consider the frameworks (13) or (15) and assume that  T


φ  is a consistent 

estimator, for T


 denoting the sample size that has been used to estimate  tφ .2 Slutsky’s 

theorem states that    TT xpgxgp limlim  , for any continuous function  Txg  that is not a 

function of T . Henceforth,   ttt zzp  |1lim  and as convergence in probability implies 

convergence in distribution, we get that   t
dii

t

d

ttt

p

tt fzzzz θ;1,0~
...

|1|1   , for    tt φθ  .3 

                                                 
2 If  T



φ  is a strongly consistent estimator and asymptotically normally distributed, then 
    tT

p φφ 


lim .  
3 Hence, 

tt
z |1  are asymptotically   t

f θ;1,0  distributed since, from the definition of convergence in probability, 

component wise convergence in probability implies convergence of vectors. 
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Also, Xekalaki and Degiannakis (2005) provided evidence that traders who base their 

trading preferences on SPEC algorithm (for selecting volatility forecasts extracted by a set of 

ARCH models) achieve higher profits than those who use only a single ARCH model. 

 

5.  Model selection evaluation framework  

According to the aforementioned analysis of forecast errors’ statistical properties, the 

predictive ability evaluation is based on the standardized version of the one-step-ahead 

forecast errors. 

Forecast errors with symmetric distribution 

The values of the 




T

t

ttz

~

1

2
|1

2

1
 evaluation function are presented in the 2nd column of 

Table 1. We observe that the minimum value of 




T

t

ttz

~

1

2
|1

2

1
 is not achieved by the same model 

for all the realized volatility series. Additionally, Table 2 illustrates the sum of the squared 

forecast errors, 




T

t

tt

~

1

2
|1 . In the case of the unstandardized forecast errors, for all the realized 

volatility series under investigation (CAC40, DAX30, FTSE100, EURUSD, EURJPY), 

except for the EURGBP4, the ARFIMA(1,d,1)-GARCH(1,1) model has the lowest value of 






T

t

tt

~

1

2
|1 . 

[Insert Table 1 about here] 
[Insert Table 2 about here] 

 Table 3 provides the descriptive statistics of the standardized one-step-ahead forecast 

errors. The kurtosis for all the models is greater than the normal value of three, rejecting the 

hypothesis that the standardized one-step-ahead forecast errors, ttz \1 , could be normally 

distributed. Naturally, the unstandardized forecast errors, tt \1 , are characterized by even 

higher values of kurtosis5 due to the fact that the unconditional distribution of a stochastic 

process with heteroscedastic formation is more platykurtic compared to the conditional 

distribution. Let us consider the model frameworks of equations (13) and (15). The 

conditional distribution is derived as   t

ttt hfI θ;,0~\ 2
1 , whereas the unconditional 

                                                 
4 In the case of the Euro/Pound rate, the HAR-RV-GARCH(1,1) model is being selected. 
5 The relevant table with the descriptive statistics of the unconditional forecast errors is not presented due to 
space limitations, but it is available to the interested reader upon request. 
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distribution  .;.
~

~ ft , which is not explicitly related with   t

thf θ;,0 2 , has fatter tails as

       2222224 3 tttt EEEE   , for      22 ,0;,0 t

t

t hNhf θ .6  

[Insert Table 3 about here] 

 

Forecast errors with platykurtic distribution 

 According to the 3rd column of Table 1, which presents the values of 




T

t

ttz

~

1

2
|1

2

1
 for 

Student t distributed 
tz , we reach to qualitatively similar conclusion: the model i with 














T

t

tt
i

z

~

1

2
|1

2

1
min  differs for the various volatility series. Concerning the unstandardized 

forecast errors (in Table 2), for all the realized volatility series under investigation except for 

the DAX307, the ARFIMA(1,d,1)-GARCH(1,1) model has the lowest value of 




T

t

tt

~

1

2
|1 . 

The 4th column of Table 1 illustrates the 




T

t

ttz

~

1

2
|1

2

1
 values for  vGedzt ;1,0~ . We 

observe that for different distributional assumptions, the minimum value of  




T

t

ttz

~

1

2
|1

2

1
 is 

achieved from different models. For the unstandardized forecast errors (4th column of Table 

2), the ARFIMA(1,d,1)-GARCH(1,1) model has the 












T

t

tt

~

1

2
|1min   for all the realized 

volatility series. 

Table 4 provides the descriptive statistics of the standardized one-step-ahead forecast 

errors from the models with conditionally Student t distributed innovations. Concerning the 

estimated kurtosis (for the 4 models and the 6 realized volatility series), there are no 

significant differences in the estimated values of kurtosis under the two assumed distributions 

 1,0~ Nzt  
and  vtzt ;1,0~ . The skewness of ttz \1  is negative in all the cases except for the 

EURUSD exchange rate. In the case of the simulated data of Degiannakis and Livada (2016), 

the skewness was much higher than in the case of the models with normally distributed 

innovations. However, in the case of real data we do not observe any significant differences 

in the estimated skewness for normally and Student t distributed innovations.  

                                                 
6 According to Jensen’s inequality. 
7 In the case of the DAX30 stock index, the ARFIMA(0,d,1)-GARCH(1,1) model is selected. 
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[Insert Table 4 about here] 
 Table 5 provides the descriptive statistics of the standardized one-step-ahead forecast 

errors from the models with conditionally GED distributed innovations. The descriptive 

statistics provide similar information with the case of the Student t distributional assumption. 

For all the models and all the time series, there are no significant differences in the estimated 

values of the descriptive measures compared to the models with normally distributed 

innovations. 

[Insert Table 5 about here] 
  

Forecast errors with platykurtic and asymmetric distribution 

 According to the 5th column of both Tables 1 and 2, we reach to similar conclusions: 

the minimum value of  




T

t

ttz

~

1

2
|1

2

1
 is achieved from different models, whereas the 














T

t

tt

~

1

2
|1min   holds for the same model, the ARFIMA(1,d,1)-GARCH(1,1), across all 

realized volatility series. 

 Table 6 provides the descriptive statistics of the standardized one-step-ahead forecast 

errors from the models with conditionally skewed Student t distributed innovations. In the 

case of the six actual realized volatility series, we do not observe any significant differences 

in the estimated skewness and kurtosis for the various assumed distributions of innovations. 

[Insert Table 6 about here] 
 
6. Financial Application 

Let us define a framework under which we will investigate whether predictive 

information is being extracted by the forecast errors. We assume that the realized volatility 

measure is a tradeable asset (i.e. an ETF or a future contract on the implied volatility index). 

We outline an agent who defines her trading strategy according to the half-sum of the squared 

one-step-ahead standardized forecast errors. At each trading day t, the trader takes into 

consideration the s-trading days ahead forecast, 
 

tstRV | , estimated by the model m with 

 













T

t

m

ttz

~

1

2
|1

2

1
min . Hence, the trader is able to buy (long position) or sell (short position) the 

realized volatility measure. Thus, at each trading day, the trader proceeds to a long position 

when 
   

ttst RVRV  |  and to a short position when
   

ttst RVRV  | . The daily trading returns 

are computed as: 
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 

   

 
   

   

 
   






































ttst

t

tst

ttst

t

tst

s

t

RVRV
RV

RVRV

RVRV
RV

RVRV

r

|

|

if

if

 (17) 

So, the average return of the trading strategy is:  

   



T

t

s

t

s
rTr

~

1

~
, (18) 

where T
~

 is the number of out-of-sample forecasted values. The trading strategy is being 

replicated for s=1,5,10 and 15 trading days ahead and for T
~

=10 and 20. The average returns, 

 s
r , are presented in Table 7. In all the cases, the returns are positive and statistically 

significant.  

In order to compare the trading strategy based on the standardized forecast errors with 

an alternative one based on the unstandardized forecast errors, we assume another trader who 

defines her trading strategy according to the sum of the squared forecast errors, 














T

t

tt

~

1

2
|1min  . Table 8 illustrates the average return,  s

r , of the trading strategy based on the 

model m with 












T

t

tt

~

1

2
|1min  . Comparing the Tables 7 and 8, we conclude that the trader who 

takes into consideration the s-trading days ahead forecast, 
 

tstRV | , estimated by the model m 

with  













T

t

m

ttz

~

1

2
|1

2

1
min  achieves higher average returns,  s

r , compared to the trader whose 

forecasts are based on the 












T

t

tt

~

1

2
|1min   criterion. More specifically, in 40 out of 48 cases the 

strategy based on the standardized forecast errors provides higher returns compared to the 

strategy based on the simple forecast errors. 

[Insert Table 7 about here] 
[Insert Table 8 about here] 

 

7. Conclusion 

 We have estimated a set of ARFIMA-GARCH and HAR-RV models with i) 

normally, ii) Student t, iii) GED and iv) skewed Student t distributed standardized 

innovations. The models were estimated for the major European Union’s stock market 
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indices (FTSE100, DAX30, CAC40) and for the exchange rates of Euro to the Great Britain 

Pound, United States Dollar and Japanese Yen. The models were re-estimated for T
~

 days, 

where T
~

1686, 1784, 2106, 2308, 2091, 2108 for the CAC40, DAX30, FTSE100, 

EURUSD, EURGBP and EURJPY realized volatility series, respectively, based on a rolling 

sample of constant size of  T


1000 days.  

Concerning the evaluation according to the standardized forecast errors, the most 

accurate realized volatility predictions are not produced by the same model for all the realized 

volatility series. On the contrary, in almost all the cases the ARFIMA(1,d,1)-GARCH(1,1) 

model has the lowest value of the sum of the squared forecast errors. For the 6 realized 

volatility series and the 4 distributional assumptions, in total 24 cases, there are only two 

exceptions; the HAR-RV-GARCH(1,1) model for the Euro/Pound rate under the normal 

distribution and the ARFIMA(0,d,1)-GARCH(1,1) model for the DAX30 index under the 

Student t distribution. 

Finally, under the assumption that the realized volatility measure could be a tradeable 

asset, we measure via a trading framework the forecasting performance of a trader whose 

strategy is based on the standardized forecast errors. We conclude that the trader who predicts 

the s-trading days ahead volatility forecast from the models with  













T

t

m

ttz

~

1

2
|1

2

1
min  achieves 

higher average returns compared to the trader whose predictions are based on the models with 














T

t

tt

~

1

2
|1min  . 

Therefore, the definition of the evaluation criterion is highly important for the 

predictability assessment of the realized volatility models. The distribution of the squared 

standardized forecast errors is explicitly defined compared to the squared unstandardized 

forecast errors. The one-trading-day-ahead forecast errors’ investigation provides avenues of 

further research in the utilization of ultra-high frequency based volatility modeling. In future 

research, the forecast errors’ properties may be utilized for portfolio evaluation taking into 

consideration multivariate frameworks and the dynamics of correlations across assets. 
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Tables 

Table 1. The half-sum of the squared standardized forecast errors 




T

t

ttz

~

1

2
|1

2

1
  of the 

four models for i) normally, ii) Student t, ii) GED, and iv) skewed Student t 
distributed standardized innovations. 

     

Model 





T

t

ttz

~

1

2
\1  for 

 1,0~ Nzt  






T

t

ttz

~

1

2
\1  for 

 vtzt ;1,0~  






T

t

ttz

~

1

2
\1  for 

 vGedzt ;1,0~  






T

t

ttz

~

1

2
\1  for 

 gvskTzt ,;1,0~  

CAC 40 
1 909.7 900.4 911.9 894.8 
2 914.7 897.5 912.7 893.4 
3 909.2 902.8 902.7 903.8 
4 885.6 882.6 902.6 883.3 

DAX 30 
1 992.1 991.9 995.3 991.1 
2 993.3 1017.7 996.4 987.6 

3 993.9 998.4 994.4 999.8 
4 1014.5 1008.7 994.5 1013.0 

FTSE 100 
1 1075.1 1081.2 1079.1 1079.6 

2 1076.8 1082.8 1082.6 1086.3 
3 1086.3 1091.0 1091.7 1096.2 
4 1087.6 1092.1 1091.7 1097.5 

EURUSD 

1 1132.7 1139.1 1136.9 1134.0 
2 1136.6 1138.3 1141.7 1130.6 
3 1140.2 1128.8 1135.9 1127.9 
4 1129.8 1126.7 1135.8 1126.0 

EURGBP 

1 1084.1 1075.9 1084.3 1068.4 

2 1091.6 1075.6 1086.7 1071.9 
3 1084.4 1085.7 1088.9 1087.5 
4 1101.1 1102.0 1088.7 1104.3 

EURJPY 

1 1126.2 1094.7 1128.6 1098.5 
2 1134.6 1114.7 1142.3 1112.2 
3 1094.4 1116.4 1119.6 1095.6 

4 1155.8 1154.9 1119.8 1157.9 
Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), 
Model 3: HAR-RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
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Table 2. The sum of the squared forecast errors 




T

t

tt

~

1

2
|1  of the four models for 

conditionally i) normally, ii) Student t, ii) GED, and iv) skewed Student t  
distributed innovations. 

     

Model 





T

t

ttz

~

1

2
\1  for 

 1,0~ Nzt  






T

t

ttz

~

1

2
\1  for 

 vtzt ;1,0~  






T

t

ttz

~

1

2
\1  for 

 vGedzt ;1,0~  






T

t

ttz

~

1

2
\1  for 

 gvskTzt ,;1,0~  

CAC 40 
1 1178.2 1185.6 1183.4 1185.8 
2 1174.8 1178.8 1180.6 1178.0 

3 1184.2 1189.8 1190.8 1187.8 
4 1184.4 1187.8 1191.0 1187.0 

DAX 30 
1 1672.6 1672.8 1674.6 1675.0 
2 1665.0 1705.4 1663.6 1664.6 

3 1683.4 1681.0 1680.0 1681.0 
4 1682.2 1680.8 1680.2 1680.8 

FTSE 100 
1 1639.8 1642.2 1641.2 1637.4 
2 1634.8 1637.8 1638.6 1637.1 

3 1657.6 1658.8 1660 1658.4 
4 1656.2 1658.4 1660 1658.6 

EURUSD 

1 1780.4 1773.8 1776.6 1774.8 
2 1773.6 1772.4 1772.8 1771.4 

3 1776.4 1773.1 1774.2 1774 
4 1776.4 1773.0 1774.5 1774 

EURGBP 

1 1124.6 1117.8 1124.0 1121.2 
2 1117.8 1099.2 1105.4 1102.0 

3 1104.6 1105.6 1106.2 1105.8 
4 1105.2 1105.6 1106.2 1106.6 

EURJPY 

1 1693.0 1696 1692.2 1706.2 
2 1685.0 1689.4 1686.0 1690.6 

3 1697.2 1698.8 1695.4 1698.4 
4 1700.0 1700.2 1696.1 1700.2 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), 
Model 3: HAR-RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
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Table 3. Descriptive statistics of the standardized one-step-ahead prediction errors, ttz \1 , from 

the four models under normally distributed innovations. 
CAC 40 

Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
1 -0.007 0.002 1.080 -1.559 0.265 -0.393 5.464 
2 -0.006 0.005 1.097 -1.560 0.265 -0.389 5.502 
3 -0.010 -0.004 1.083 -1.530 0.265 -0.374 5.344 
4 -0.009 -0.004 1.083 -1.541 0.265 -0.376 5.347 

DAX 30 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.007 -0.002 1.119 -1.340 0.307 -0.249 3.958 
2 -0.006 0.001 1.112 -1.348 0.307 -0.248 3.957 
3 -0.009 -0.007 1.109 -1.348 0.308 -0.240 3.865 
4 -0.008 -0.006 1.106 -1.347 0.308 -0.236 3.861 

FTSE 100 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.006 0.002 1.166 -1.754 0.280 -0.452 5.015 
2 -0.005 0.005 1.188 -1.743 0.279 -0.455 5.056 
3 -0.010 0.000 1.227 -1.696 0.281 -0.436 4.918 
4 -0.007 0.005 1.238 -1.696 0.281 -0.427 4.926 

EURUSD 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 0.009 0.008 1.533 -1.246 0.278 0.092 4.184 
2 0.008 0.010 1.539 -1.242 0.277 0.094 4.215 
3 0.012 0.015 1.533 -1.250 0.277 0.093 4.187 
4 0.012 0.015 1.533 -1.252 0.277 0.094 4.186 

EURGBP 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 0.005 0.021 0.721 -1.368 0.233 -0.542 4.741 
2 -0.002 0.013 0.732 -1.411 0.232 -0.541 4.791 
3 0.000 0.017 0.731 -1.380 0.231 -0.532 4.775 
4 0.001 0.018 0.739 -1.385 0.231 -0.528 4.779 

EURJPY 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 0.000 0.005 1.149 -1.305 0.284 -0.237 4.119 
2 0.001 0.004 1.143 -1.297 0.283 -0.221 4.167 
3 -0.002 0.002 1.167 -1.246 0.284 -0.216 4.097 
4 -0.003 0.001 1.166 -1.233 0.284 -0.213 4.073 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), Model 3: 
HAR-RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
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Table 4. Descriptive statistics of the standardized one-step-ahead prediction errors, ttz \1 , from 

the four models under Student t distributed innovations. 
CAC 40 

Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
1 -0.008 0.002 1.077 -1.548 0.266 -0.400 5.466 
2 -0.006 0.005 1.095 -1.540 0.265 -0.400 5.512 
3 -0.013 -0.006 1.075 -1.530 0.266 -0.391 5.367 
4 -0.012 -0.005 1.080 -1.527 0.266 -0.381 5.343 

DAX 30 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.006 -0.002 1.119 -1.347 0.307 -0.243 3.961 
2 -0.002 0.002 1.873 -1.359 0.310 -0.124 4.549 
3 -0.011 -0.007 1.110 -1.359 0.308 -0.241 3.868 
4 -0.011 -0.009 1.110 -1.359 0.308 -0.238 3.867 

FTSE 100 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.007 -0.001 1.168 -1.753 0.280 -0.451 5.017 
2 -0.005 0.006 1.191 -1.740 0.280 -0.461 5.072 
3 -0.012 -0.001 1.226 -1.697 0.281 -0.444 4.945 
4 -0.011 0.001 1.228 -1.697 0.281 -0.442 4.947 

EURUSD 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 0.008 0.008 1.533 -1.241 0.277 0.101 4.195 
2 0.009 0.008 1.537 -1.236 0.277 0.095 4.209 
3 0.010 0.012 1.536 -1.249 0.277 0.095 4.199 
4 0.010 0.013 1.536 -1.251 0.277 0.095 4.199 

EURGBP 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 0.005 0.020 0.720 -1.369 0.232 -0.531 4.729 
2 0.001 0.014 0.733 -1.407 0.230 -0.527 4.806 
3 -0.004 0.013 0.727 -1.389 0.231 -0.534 4.779 
4 -0.004 0.012 0.730 -1.392 0.231 -0.532 4.780 

EURJPY 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.003 0.003 1.146 -1.318 0.284 -0.251 4.145 
2 0.000 0.004 1.141 -1.296 0.284 -0.226 4.184 
3 -0.005 -0.001 1.167 -1.249 0.284 -0.215 4.102 
4 -0.006 -0.002 1.167 -1.236 0.284 -0.213 4.086 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), Model 3: 
HAR-RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
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Table 5. Descriptive statistics of the standardized one-step-ahead prediction errors, ttz \1 , from 

the four models under GED distributed innovations. 
CAC 40 

Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
1 -0.008 0.002 1.076 -1.554 0.265 -0.397 5.483 
2 -0.007 0.004 1.097 -1.548 0.265 -0.394 5.518 
3 -0.013 -0.006 1.075 -1.535 0.266 -0.389 5.373 
4 -0.013 -0.006 1.075 -1.535 0.266 -0.389 5.373 

DAX 30 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.007 -0.002 1.121 -1.346 0.307 -0.249 3.951 
2 -0.005 0.002 1.113 -1.327 0.306 -0.246 3.947 
3 -0.010 -0.007 1.110 -1.358 0.308 -0.241 3.870 
4 -0.010 -0.007 1.110 -1.358 0.308 -0.241 3.870 

FTSE 100 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.006 0.000 1.169 -1.746 0.280 -0.459 5.017 
2 -0.005 0.006 1.192 -1.740 0.280 -0.460 5.068 
3 -0.011 -0.001 1.225 -1.695 0.281 -0.445 4.939 
4 -0.011 -0.001 1.225 -1.695 0.281 -0.445 4.939 

EURUSD 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 0.008 0.009 1.532 -1.242 0.278 0.098 4.198 
2 0.008 0.009 1.537 -1.236 0.277 0.094 4.208 
3 0.010 0.014 1.535 -1.251 0.277 0.094 4.196 
4 0.010 0.014 1.535 -1.251 0.277 0.094 4.196 

EURGBP 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 0.003 0.018 0.720 -1.370 0.233 -0.539 4.725 
2 0.000 0.014 0.732 -1.408 0.231 -0.526 4.788 
3 -0.005 0.012 0.726 -1.391 0.231 -0.534 4.778 
4 -0.005 0.012 0.726 -1.391 0.231 -0.534 4.778 

EURJPY 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.001 0.004 1.145 -1.305 0.284 -0.239 4.119 
2 0.001 0.004 1.139 -1.295 0.283 -0.222 4.164 
3 -0.003 0.000 1.167 -1.231 0.284 -0.212 4.085 
4 -0.003 0.000 1.167 -1.231 0.284 -0.212 4.085 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), Model 3: 
HAR-RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 

 

 
  



24 
 

Table 6. Descriptive statistics of the standardized one-step-ahead prediction errors, ttz \1 , from 

the four models under skewed Student t distributed innovations. 
CAC 40 

Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
1 -0.006 0.001 1.148 -1.546 0.266 -0.392 5.493 
2 -0.005 0.006 1.095 -1.540 0.265 -0.404 5.510 
3 -0.009 -0.003 1.080 -1.527 0.266 -0.391 5.364 
4 -0.008 -0.002 1.083 -1.523 0.266 -0.383 5.343 

DAX 30 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.005 -0.001 1.118 -1.345 0.307 -0.252 3.938 
2 -0.004 0.002 1.111 -1.357 0.307 -0.248 3.959 
3 -0.008 -0.004 1.110 -1.353 0.308 -0.240 3.862 
4 -0.007 -0.005 1.109 -1.352 0.308 -0.239 3.862 

FTSE 100 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.007 0.000 1.167 -1.753 0.279 -0.453 5.032 
2 -0.004 0.006 1.192 -1.738 0.280 -0.461 5.074 
3 -0.008 0.004 1.229 -1.694 0.281 -0.444 4.945 
4 -0.007 0.006 1.232 -1.694 0.281 -0.444 4.954 

EURUSD 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 0.010 0.009 1.533 -1.241 0.277 0.096 4.192 
2 0.009 0.010 1.537 -1.236 0.277 0.095 4.210 
3 0.012 0.014 1.536 -1.248 0.277 0.096 4.196 
4 0.012 0.014 1.536 -1.249 0.277 0.096 4.196 

EURGBP 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 0.006 0.021 0.720 -1.366 0.232 -0.543 4.783 
2 0.000 0.014 0.732 -1.407 0.230 -0.532 4.813 
3 -0.001 0.015 0.728 -1.386 0.231 -0.539 4.797 
4 -0.001 0.016 0.731 -1.389 0.231 -0.537 4.795 

EURJPY 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

1 -0.002 0.005 1.144 -1.315 0.285 -0.253 4.119 
2 0.001 0.005 1.139 -1.294 0.284 -0.226 4.183 
3 -0.001 0.003 1.168 -1.245 0.284 -0.215 4.106 
4 -0.002 0.003 1.168 -1.232 0.285 -0.214 4.089 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), Model 3: 
HAR-RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
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Table 7. The average return,  s
r , of the trading strategy based on the model m with 

 













T

t

m

ttz

~

1

2
|1

2

1
min . 

 10
~ T  10

~ T  10
~ T  10

~ T  22
~ T  22

~ T  22
~ T  22

~ T  

 1s  5s  10s  15s  1s  5s  10s  15s  

CAC 40 11.84% 13.37% 14.86% 15.95% 11.87% 13.36% 14.79% 16.27% 

DAX 30 16.98% 17.80% 20.38% 19.84% 17.01% 17.90% 20.77% 20.45% 

FTSE 100 14.60% 15.66% 17.21% 18.85% 14.57% 15.45% 17.18% 18.64% 

EURUSD 18.96% 18.52% 18.86% 18.62% 18.97% 18.59% 18.72% 18.70% 

EURGBP 13.94% 14.84% 14.60% 15.25% 13.95% 14.86% 14.75% 15.64% 

EURJPY 15.35% 16.56% 17.75% 18.79% 15.35% 16.78% 17.89% 18.41% 

At each trading day t, the trader takes into consideration the s-trading days ahead forecast, 
 

tstRV | , 

estimated by the model m with 
 













T

t

m

ttz

~

1

2
|1

2

1
min . The trader proceeds to a long position when 

   
ttst RVRV  |  and to a short position when 

   
ttst RVRV  | . 

 

Table 8. The average return,  s
r , of the trading strategy based on the model m with 

 













T

t

m

tt

~

1

2
|1min  . 

 10
~ T  10

~ T  10
~ T  10

~ T  22
~ T  22

~ T  22
~ T  22

~ T  

 1s  5s  10s  15s  1s  5s  10s  15s  

CAC 40 11.68% 13.27% 14.72% 15.81% 11.75% 13.17% 14.72% 15.79% 

DAX 30 16.78% 17.54% 20.09% 19.67% 17.00% 17.64% 20.66% 20.35% 

FTSE 100 14.55% 15.63% 17.06% 18.79% 14.45% 15.44% 17.11% 18.52% 

EURUSD 18.86% 18.45% 18.78% 18.61% 18.87% 18.49% 18.76% 18.78% 

EURGBP 13.86% 14.56% 14.63% 15.37% 14.03% 15.11% 14.56% 15.62% 

EURJPY 15.14% 16.59% 17.74% 18.72% 15.35% 16.70% 17.88% 18.47% 

At each trading day t, the trader takes into consideration the s-trading days ahead forecast, 
 

tstRV | , 

estimated by the model m with 
 













T

t

m

tt

~

1

2
|1min  . The trader proceeds to a long position when 

   
ttst RVRV  |  and to a short position when 

   
ttst RVRV  | . 
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Figures 

Figure 1. The daily prices, 
t

P , along with the log-returns,  
 1loglog  ttt PPy . 

CAC 40 (13th June 2000 to 12th January 2011) 

 
DAX 30 (3rd January 2000 to 12th January 2011) 

 
FTSE100 (20th August 1998 to 12th January 2011) 
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Euro to British Pound exchange rate (4th January 1999 to 21st January 2011) 

 
Euro to United States Dollar exchange rate (20th April 1998 to 24th January 2011) 

 
Euro to Japanese Yen exchange rate (4th January 1999 to 24th January 2011) 

 
* The figures in the left column present the daily prices (dash line presented in the LHS axis) and the 
log-returns (solid line presented in the RHS axis). 
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Figure 2. The annualized adjusted realized volatilities,  
tRV252  at the optimal sampling 

frequencies 
CAC 40 (13th June 2000 to 12th January 2011) 

 
DAX 30 (3rd January 2000 to 12th January 2011) 

 
FTSE100 (20th August 1998 to 12th January 2011) 

 
Euro to British Pound exchange rate (4th January 1999 to 21st January 2011) 
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Figure 3. The  
ttRV |1252  , the discrepancy between 

 
1252 tRV

 
and  

ttRV |1252   and the 

standardized forecast errors, ttz \1 , for the ARFIMA(1,d,1)-GARCH(1,1) model. 
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ttz \1  ttz \1  
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