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Suppose a random variable takes on values in an interval. The
minimal distance between the expectation of the variable and the
nearest boundary of the interval is considered in the present article.
A question whether this distance can be neglected with respect to
the standard deviation is analyzed as the main item. This minimal
distance can determine the minimal magnitudes of non-zero
forbidden zones and biases caused by noise for results of
experiments. These non-zero forbidden zones and biases cause
fundamental problems, especially in interpretations of experiments
in behavioral economics and decision sciences.
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1. Introduction
1.1. Bounds for functions and moments of random variables

Bounds for functions of random variables and their moments are considered in
a number of works.

Bounds for the probabilities and expectations of convex functions of discrete
random variables with finite support are studied in [8].

Inequalities for the expectations of functions are studied in [9]. These
inequalities are based on information of the moments of discrete random variables.

A class of lower bounds on the expectation of a convex function using the first
two moments of the random variable with a bounded support is considered in [1].

Bounds on the exponential moments of min(y,X) and XI{X <y} using

the first two moments of the random variable X are considered in [7].

1.2. Problems, their solution and the need of further research
1.2.1. Problems of applied sciences

There are some basic problems concerned with the mathematical description
of the behavior of a man. They are the most actual in behavioral economics,
decision sciences, social sciences and psychology. They are pointed out, e.g., in [6].

Examples of the problems are the underweighting of high and the
overweighting of low probabilities, risk aversion, the Allais paradox, risk premium,
the four-fold pattern paradox, etc.

The essence of the problems consists in biases of preferences and decisions of
a man in comparison with predictions of the probability theory.

These biases are maximal near the boundaries of the probability scale, that is,
at high and low probabilities.

1.2.2. Bounds (forbidden zones) for the expectations

Bounds on the expectation of a random variable that takes on values in a finite
interval are considered as well (see, e.g., [4] and [5]).

Suppose a random variable takes on values in a finite interval. An existence
theorem was proven. The theorem states: if there is a non-zero lower bound on the
variance of the variable, then non-zero bounds on its expectation exist near the
boundaries of the interval.

The obtained non-zero bounds (or strict bounding inequalities) can be treated
as non-zero forbidden zones for the expectation near the boundaries of the interval.



1.2.3. Partial solution of the problems

A non-zero noise can be associated with the non-zero minimal variance of
random variables. The dispersion and noisiness of the initial data can lead to bounds
(restrictions) on the expectations of experimental data. This should be taken into
account when dealing with data obtained in real circumstances.

The works [2] and [3] were devoted to the well-known problems of utility and
prospect theories. Such problems had been pointed out, e.g., in [6]. In [2] and [3]
some examples of typical paradoxes were studied. Similar paradoxes may concern
problems such as the underweighting of high and the overweighting of low
probabilities, risk aversion, the Allais paradox, etc. A noise and data scattering are
usual circumstances of the experiments. The proposed bounds explained, at least
partially, the analyzed examples of paradoxes.

1.2.4. The need of further research

However, there is a consequence of the theorem of existence of the forbidden
zones: when the level of the noise and, hence, the minimal variance of variables
tends to zero, then not only the width of the revealed forbidden zones, but also the
ratio of this width to the standard deviation tends to zero. Therefore, in some cases
these forbidden zones can be neglected at low level of the noise.

So, there is a need of a more deep consideration of the question whether, when
and under what conditions this minimal distance can be neglected with respect to
the standard deviation at low level of this standard deviation.



1.2.5. The aims and the practical motivation of the present article

The general aim of the present article is the consideration of the minimal
distance from the nearest boundary of an interval to the expectation of a random
variable that takes on values in this interval. This minimal distance is expressed
here in terms of the standard deviation of the random variable.

The consideration is concentrated on the normal and similar distributions.

In this preliminary version of the article, the calculations are given as detailed
as possible to be the verification for following journal articles.

The first particular aim of the article is the determination of some typical
reference points for considerations of this minimal distance.

The second particular aim is to start a consideration of a question whether,
when and under what conditions this minimal distance can be neglected with
respect to the standard deviation of the random variable, especially when this
standard deviation tends to zero.

The practical motivation of the present article is caused by the above problems
of behavioral economics, decision sciences, social sciences and psychology.

The article is to provide the mathematical support for a consideration of a
question whether, when and under what conditions the above influence of a noise
can be neglected at low level of the noise.

1.3..General definitions and notes

For the purposes of the present article, let us define and denote some terms:

The standard deviation is referred to as SD.

The probability density functions are referred to as PDFs.

The interval boundary that is the nearest to the expectation of the variable is
referred to as  bpoundary- SO the minimal distance between the expectation of the
variable and the nearest boundary bgounaary ©Of the interval is referred to as
min(|E(X)-bpoundary| ). To avoid ambiguity, the minimal distance min(|E(X)-
bpoundary|) between the expectation of the variable and the nearest boundary of the
interval is referred to as |E(X)-bgoundary|- This nearest boundary is usually defined
as bBoundary =0.

Normal-like distributions are defined as distributions that have symmetric
probability density functions f with non-increasing sides. In other words:

JE(X)+a)=f(E(X)-a)
and if |x, —E(X)|<|x, —E(X)|, then f(x)>f(x,).




For the conciseness, in the scope of this article, distributions with bounded or
compact support are referred to as compact distributions. The distributions with
not bounded support are referred to as noncompact distributions.

Usually, h denotes the value (height) of PDF, [ denotes the length. The
index [ denotes the centre of a distribution, that is h; = hcewre and Iy = lconire.
The index 2 denotes the side or tail of a distribution, that is h, = hgjy, = hr,; and
Iy = Isige = it

The contiguous situation is defined as the situation when one side of
distribution’s support touches the boundary of a half-infinite or finite interval.

The hypothetical reflection situation is defined as the situation when f is
modified to the hypothetical function fr.; that is reflected with respect to E(X) = 0

Jreq(X) =002 f (x).
The hypothetical reflection situation is, in a sense similar to the reflection of a wave
of light from a mirror.

The hypothetical reflection situation can simulate and be used to analyze not
normal-like distributions.

The hypothetical adhesion situation is modified from the hypothetical
reflection situation such that the reflected part of the PDF is “adhered” to the
boundary 0. In other words, a half of the reflected PDF is adhered to the point
E(X) = boundary = 0. In particular, in the hypothetical adhesion situation

+o0 1+
E(X y40) = _J;fAdhes(x)dx = E .([f(x)dx .

The hypothetical situation of “adhesion” is in a sense similar to the absorption of a
wave of light by a black body.

Reasons for the choice of the hypothetical situations will be considered in next
articles of this series.

Note, in all hypothetic situations the standard deviation of the non-modified
function is used.



2. Normal distribution

The normal distribution is one of the most important ones in the probability
theory and statistics. Its PDF can be represented in a form of, e.g.,

2
X

202

fx(x)=N(0,6%)= f(x) =

1
e
o217

Hypothetical situations

The standard deviation (SD) of the normal distribution equals .
One can calculate the expectation for the hypothetic situation of “reflection”
from the boundary bgyundary = 0

E(X)= 2jxf(x)dx 2j G\/_ i 227je 20 d(

0

_20 J.e’ydyz——za e"r():o-\/z
N2y, N2 o T

The ratio |E(X)-bpoundary|/SD is equal to
E(X)-b ,
| ( ) Boundary I — E(X) — 2 0 789 3 4 .
SD SD V4

For the hypothetic situation of “adhesion” the ratio |E(X)-bpoundary|/SD is
equal to 1/2 of that of the hypothetic situation of “reflection” and is equal to

E(X)-b
I ( ) Boundary | — 1 ~ 0 399 1 1 )
SD N2 372

So, for the hypothetic situations of both “reflection” and “adhesion,” the ratio
| E(X)-bBoundary|/SD cannot be negligibly small with respect to unity.




3. Noncompact distributions
3.1. Laplace distribution

One can write Laplace distribution as

IXI

f(x)=he *
The parameter /& can be calculated from the normalizing integration

2jf (x)dx = 2] he *dx=—2hA j eﬂd(— %J — dhie | =2ha-=1.
0 0 0

0

So,
1 1 |X|
h=— and X)=—-=e *.
24 f= 24
The variance can be calculated from

Var(X) = 2_[ X f(x)dx = 2_[ X Le7dx = Ixz le7dx =
0 o 24 0 A

w XX o x _x
=—x’e * +J.2xe ldx:J.2xe rdx =—2xle *
0
0

O+J.2ﬂ,e 2dx = .

Ry

0 0

= j 2Ae *dx = —2/12jeﬂd(— 1} Y
) A

So, the standard deviation is

SD =42 .

Hypothetical situations

One can calculate the expectation for the hypothetic situation of “reflection”

OO+ T%e;dx = %Ie;dx =

0

E(X)=|xf(x)dx=|x—e *dx=—x—e *
[ ar=x )

- —ije_‘d[—i) __A
2 i) 2

The ratio |E(X)-b|/SD is equal to
E(X)-b
I ( ) Boundary | ﬂ' 1 ~ O 354 c (l %)

SD 22 J_
For the hypothetic situation of “adhesion” the ratio |E(X)-bpoundars|/SD is
equal to 1/2 of that of the hypothetic situation of “reflection” and is equal to

E(X)-b
| ( ) Boundary | — 1 ~ 0 177 (1 1)
SD 442 6°5
So, for the hypothetic situations of both “reflection” and “adhesion,” the ratio
| E(X)-bBoundary|/SD cannot be much less then unity.

e
2

0




3.2. A power one-step test distribution with noncompact support

Let us consider the power noncompact “one-step” test distribution. Its
probability density function can be written as, e.g.,

-B
f=hll+a|x—ul)’ :h(l+ x;,uD ,

where u = EX), h >0, a=1/1>0, [ >0 and S > 3.
The normalizing integration (under the simplifying condition u = 0) can be

written as
2T f(x)dx = 2]0 h(l + f)_ﬂ dx = 2th(1 + fj_ﬂdf -
) ) ! A !
—/)’+100
o [1+1j L
B-n 1) |0 p-1
So
2h
51

The variance can be calculated as

© © -p 0
Var(X)=2[x*f (x)dx = 2jx2h(1+§j dx = 2hjx2(1+§j dx =
0 0 0

l x—ﬁ’+1
=—2hx2—(1+—)
B-1 1
0 —-p+1
=4—hl x(1+£j dx =
f-14 I
4nl 1 x| 4hi> W( xjﬂ”
—_ x 1+= +— " (l1+3]  ax=
p-1 ﬂ—Z( l) 0 (ﬂ—l)(ﬂ—Z)l )

2 © -p+2
4ht j(1 + f) dx =

o © —f+1
+ﬂj2x(1+fj dx =
o p-1y [

VTR

_ 4w ! (1+fj_ﬂ+3 . 4hl’
(L-D(p-2) -3 ! o (B-D(B-2(L-3)

~ 21

(B-2(B-3)

So, the standard deviation is

D=l |— >
(B-2(B-3)



Hypothetical situations

For the hypothetical reflection situation, the expectation can be calculated as

© © X -p © , X -B
E(X)zZ!xf(x)dx=2.£xh(l+7j dx=2h_([x (1+7) dx =

—p+1 o © -p+1
:—2hx2ﬁl 1(1+%) +ﬁ2—hl1 (1+%) dx =
_ o B-19

-1 !

=_ﬂ;(1+ij’“w= 2m 1 2n
-15-20 |1 o B-1p-2 (B-D(-2)

1

-

The ratio |E(X)-bgoundary|/SD is equal to

| EQO =g | _EC) _ 1/, 2 :\F p-3
SD SD  p-2 (B-2)(B-3) 2\ -2

The variance can exist only if > 3. Let f = 3+¢ > 3, where ¢ 20, then

SD:I 2 &—0 >l\/I &—0 >0
\ (B-2)(B-3) g

|E(X)—b30undm|_\/1 3+g—3_\/I &£ \\/E .0
SD 31e-—2 V2V1+e =0 N2 =0

So, if the power index tends down to three and is sufficiently close to three,
then the ratio |E(X)-bpoundary|/SD can be much less than unity.

and




4. Compact distributions
4.1. General consideration of the contiguous situation

Let us consider the contiguous situation for continuous (exactly speaking, for
Riemann integrable function) PDFs in general.

Suppose a normal-like continuous distribution having the PDF f, such that
EX) =1, fix) =0 for x¢[0,2]] and f(l+y) = fil-y) and fix;) > f(x2) if |xz-l| >
|x;-l|. The maximal value of f{x) can be denoted as max(f(x)) = f{I) = h and the
expression for the variance can be rewritten as

Var(X) = j(x—Z)zf(x)dx = 2j(x—1)2f(x)dx =

= zj(x—zf{h—(h — F(O)dx = Zh%— 2j(x—1)2[h — F(X)ldx=.

2l )
=1 T—zg(x—z) [h— f(x)]dx

The members (x-I )2 and [h - f(x] = [max(f(x)) - f(x)] are positive. Hence the
variance is maximal when [max(f(x)) - f(x)] = 0, that is when f{x) = Const = h.
This condition implies the normalization equality 2Al = I. Under this condition the
standard deviation is equal to the well-known value

SD:\/122_hl =] 2_hl :L'

3 3 43
Due to the symmetry of the distributions, E(X) = [.
The ratio |E(X)-bgoundary|/SD is equal to

| ECO =iy | _ E(X) _1
ounda. — —_ 3: 3'
SD SD l\/_ \/_

So, in the general case, for the contiguous situation, the minimal ratio
|E(X)-bBoundary|/SD of a normal-like continuous distribution with compact support
cannot tend to zero. Moreover, it is more than unity.

10



4.2. Power one-step test distribution with compact support

Let us consider a continuous power one-step test distribution with compact
support

21— x

s B
f(x)= h[f) [0(x) - 0(x— )]+ h( ) [0(x—1)—0(x—21)],

where f > 0. Due to the symmetry of the distributions, E(X) = 1.
The normalizing integration is

21 21 2 —x B 2h21
2 dx=2\h dx="(Ql-x)’dx=
!f(x)x j( l ] lﬂJ( )
__%(2l_x)ﬁ+l 21_% lﬁ+l ~

I pg+1 | I B+l
_ 2hl 1

p+1

The variance equals
21

21 B
Var(X) = ZI(x—u)zf(x)dx = 2j(x—l)2h(2ll_xj dx =
1

l

21
:%I(x—l)z(Zl—x)ﬂdx:
1

2h , (21— x)P*

21 2h

21 .

_ =" _ _ _ [+l —
=-S5 (D) 5 ‘z+lﬁ(ﬂ+l)~[2(x Q21— x)" dx
. I PR _
TG !(x D21 - x)" dx
4k NG 4h Tonr g
- zﬂ(ﬁ+1)(x 2 B+2 | lﬁ(ﬁ+1)(ﬂ+2)~,[(2l xdr=
~ 4h Tinr g _
" FGINGTD !(21 x)"*2dx
. 4h (21— x)PP | 4h e
BB B3 | BB B3

4l 202

T (BHD(B+(B+3) (B+2(B+3)

11



So,
(B+2)(B+3)

and the standard deviation is

Dot 2
(B+D(F+3)

In particular, this expression gives the well-known formulae

l )
SD Uniform = ﬁ and SD

Triangle = .
V6

for the uniform (f = 0) and triangle (f = I) distributions.

The contiguous situation

The above general consideration states that minimal ratio |E(X)-bgoundary|/SD
is more, then unity for the contiguous situation. One can see indeed that the ratio
| E(X)-bBoundary|/SD equals

|E(X)_bBoundary | — E(X) — (ﬂ—l— 2)(,8"‘3)
SD sD 2 '

The minimal ratio |E(X)-bpoundars|/SD is reached at f = 0 (the power distribution
tends to the uniform one)

| E(X) _bBoundary | _ (ﬂ + 2)(ﬂ + 3) N
SD -\ 2 3

So, the minimal ratio |E(X)-Dpoundar)/SD is more, then unity for the
contiguous situation of the one-step power test distribution.

12



The hypothetic situations

One can calculate the expectation for the hypothetic situation of “reflection”
(under the condition E(x) =u = 0)

E(X)= Zj. xf (x)dx = Zhj. xh(l_—xjﬂdx 2h xh(l xj dx =
[ l [

_ 20 (=0 2hpd-0)" 2k (-0
177 B+1 |o lﬂo B+1 zﬁo L+1
2h (=Xt 2n 1P om0
Bl B2 |0 PP(B+D) f+2 P12
1
_ﬂ+2

The ratio |E(X)-bgoundar|//SD = Rraio(B) is equal to

|E(X)_bBoundary| E(X) I 1 [(f+2)(S+3) _
SD sD pg+21\ 2

\F L2 < R D)

The derlvatlve of RRm,-o(ﬂ) with respect to f is

8RRW.U(,B)_L[ﬂ+3rnﬂ+2—ﬂ—3_
op 2 p+2 B+2°
p+2 2-3 p+2 -1

f B+3 (B+2)° f f+3 (B+2)
The ratio |E(X)-bpoundary|/SD tends to the maximum at S = 0 (the power
distribution tends to the uniform one) to

E(X)-b

OO D] [F03 1 B g
SD 2\ g+2 7 "2 N2 2

The minimal ratio |E(X)-b30unda,}|/SD is reached at ﬁ 2w

|E(X)_memdary| 1
SD J_ ﬂ+ J_

1 2 4

‘ﬁNOﬂ (3 5)

For the hypothetic situation of “adhesion” the minimal ratio is equal to //2 of
that of the hypothetic situation of “reflection” and is equal to

|E(X)_bBuundar)|2 1 ~035 (1 2)
D 22 35

So, for the hypothetic situations of both “reflection” and “adhesion,” the
minimal ratio |E(X)-bgoundary|/SD do not tend to zero when o tend to zero.

13



4.3. Stepwise two-step test distribution with compact support

Let us consider the piecewise continuous two-step stepwise test distribution
with compact support. Let us denote the center step by the subscript “Center” or
“1,” the side step by the subscript “Side” or “Tail” or, shortly, “2.” So, for the
contiguous situation we have

S (%) = hg [0(x) = O(x = g, )]+

+ (g + e MO — L) = OCx = Ly, =2 0, )1+

+ R [0(x =gy =20, ) — O(x =20, =210,
or

J(x) =y [0(x) = O(x = L)1+

+ (M + Mo NO(X = 1) = O(x = Ly =21, )]+

+ hyy [O(x =1y =21 )—0(x =2, -2,,,)]

a Center

or, shortly,
f(xX)=h[0(x)-0(x—-1,)]+
+(h, +h)[O(x—1,)-O0(x—1,-2])]+.
+h[0(x—1,-2])—-60(x—-2l,-2l)]
The parameters hsige = hrair = h2 and heenrer = hiy sige = lrait = 12 and lcener = 1)
are tied by the normalizing integration

Leenter +lside 11 L+l
2 [ foodx=2[(h, +h)dx+2 [hde=
0 0 I,

=21, (hy + h)+2L,h, =2L,h, + 21 h, + 21k, =,
=2h,(l, +1)+2Lh =1

or

2h7'ail (lTail + lCenter) + 21CenterhCenrer = 1 ’
or

g (Lo 1o )+ 2 o =1

Center Center’ “Center

14



The variance

For the two-step stepwise test distribution the variance equals (for simplicity

one can determine E(X) = 0)
L+, L+,

Var(X)=2 jx2f(x)dx - 2jx2(h2 +h)dx+2 jx2h2dx -

I

_ 2(h23+ W4 2;’2 [y +1,)° =11 =

:%131 +%(lz +1))° :%[hlﬁl +hy (1, +ll)3]:

2
_ 5[zahlz1 F(y+1) Ry (L, +1)]
So,
2 2 2
Var(X) = 5[l i, + (L 1)y (1, +1)]
or
2 2 2
Var(X) = E [l CemerhCemerlCenter + (lSide + lCenrer) hSide (lSide + lCenter )]
and the standard deviation is

SD = \E\/hll% +hy(l,+1)* .

Note, for the uniform distribution we have (for example) hgige = hyai = hy = 0
and the variance equals

2 2 2,1 1 1
Var(X) :§h|l31 :glzlh—lll 25121525121 :glzCenter.

Equivalently, for hcener = h; = 0 it equals
2 2 2 1
Var(X) :§h2(12 +ll)3 25(12 +ll)2]’l2(12 +ll) :g(lz +ll)2E:

1 1
= 5 (12 + ll )2 = g(lSide + lCenter )2

15



Due to the normalizing equality
2h, (L, +1)+2Lh =1
none of these parameters can be changed independently. Using
= 1—2%122512 +1,)
1
the variance can be rewritten in terms of A, as

Var(X)zg[hfl+h2(12+ll)3]=§ %131+h2(12+11)3 -

1

:[1 —2hy (L, + 1)) + 2k, (L, + 11)3]=

1 =20, (1, + 1)1+ 20, (1, +1,)° | =

12+ 20, (1, + 1), +1) —14])= %[121 20y (1, +1)(1% + 2L |=

W W= W= W]~

12+ 20,0, (1, + 1)1, +21,)

The derivative of the variance with respect to 4, is
oVar(X) 2
a—hz = 512(12 +ll)(12 + 211) >0,

The variance increases when hg;g. = hr, = hy increases.

16



Using

_1=-2lh
P2, +1)
the variance can be rewritten in terms of h; as

Var(x) =22+ 22, 1) =

2y 21-20 21@(2 py 2 L2
3320, +1) 3 3

=%l3l+—(l l)—ﬂ(l +1)° =

=, + 1) =200, + 1) -1 )=

W= W= L»Iv—*
(U]

+1))’ = 2Lk %2 + 20, +1 —l21]}:

N
~~
[\

) =20 [+ 21,0, ]} =

=
I\J
+

=2 L, w12 —2naft, +21,]
The derivative with respect to h; is

Mzg{_lzll[lz +2ll]}< 0
Oh, 3

The variance increases when hcener = h; decreases.

So, the derivative of the variance with respect to h, is positive but the
derivative with respect to h; is negative. Remember, when #h; increases then #h;
decreases (under the condition that other parameters are constant). So, the variance
increases when hsigo/hcenter = RraiMcener = ho/h; Increases.

Therefore the variance is maximal at the condition /; = 0 and equals

Var(X) = %[lzlhlz1 F (L, +1) Ry (1, +1)]=

2 2 1
:5(12 +1)hy (1, +1,) :5(12 +zl)2§:
3 (, + 11)2
3
The maximum of the standard deviation is
max(sp) = 2-Hh

J§

17



The contiguous situation

For the contiguous situation, due to the symmetry of the PDF, the expectation

1S
|E(X)=bl= E(X) =1, +1,.
So,
|E(X)_bBoundar}| 3 L+ <
SD 2 hP o+ (L, + 1)

\f \f l _\/—1 +1
\/h(l +z) \/ L+ L+l

=3
So, the minimal ratio |E(X)-bpoundary|/SD  for the two-step stepwise test

distribution with compact support for the contiguous situation is finite and is more
than unity (and is equal to that of the uniform distribution).

The hypothetic situations

For the two-step test stepwise test distribution with compact support for the

hypothetic situation of “reflection” the expectation equals
L+l L+l

E(X)=2 jxf(x)dx 2jx(h +h)dx+2 jxh dx =

1

:2(’122”11)12 b (1, + 1) - 1] = ,
=1+ I+ hy (L + 1) =l =kl + hy (1, +1)
or
E(X)=hl* 1 +h(L,+1)" =
_opg I S+, + )(ZZ;ZI)'
So,

E(X) = h‘llzl + h2 (12 + ll )2 = h lzCenter + hSlde (lS1de + lCenter) s

Center

18



Remembering that

SD = \/g\/hll31 +hy(l, +1,)°

we have
| ECX) = bypungary | _ |3 1l + by +1,)°
SD 2 P+ (L +1,)

The ratio depends on the four parameters. The form of the ratio and
preliminary calculations show that the full analysis of it is rather complicated. In
addition, such an analysis is not a goal of this article.

One of simpler ways to reach this goal is a general step-by-step analysis of the

ratio.
Let us analyze the three relationships

l—‘, ﬁ and M
12 h2 h212

The standard deviation cannot be more than O(l;+/;). Hence the ratio can
tend to zero only if |E(X)-bpoundary| tends to zero.

If hili/hol; 2 0, then, evidently, |E(X)-bpoundary] 2 11 + /2 and the ratio is
finite. This is not a step to the goal.

If h;li/hol, 2 o (or, equivalently, hylo/hil; = 0) then, evidently, we have
|E(X)-boundary] = 1//2. Hence, if 1)/l tend to zero, then |E(X)-bpoundary] (and the
ratio |E(X)-bpoundary] / SD) can tend to zero.

In addition, if hylx/h;l; 20 and [;/l, 2 0, then

%xl—lzﬁ<<lxl—l=l—l<<1

hl, L, h L1
or

E<<l—1—>0,

2
So, this simple preliminary analysis proves that the ratio can tend to zero if

£<<l—1—>0 and %—m. (D)

1 2 171
One can refer these conditions to as the “preliminary conditions.”
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We can identically rewrite the ratio as
| ECX) = bpaary | _ |3 1P+ 1y (1, +1,)°
SD 2 Jnli+ (41

(l +l) (l +l)
E \f I _
\/_\/13 2(1 +1)° \/131+ 2(L+1)
(i) 2]
\/7\/_13/2 - 3:
h2 ll
+—=| 1+
\/(IZJ hl( lzj

L h, L 2
bt il
:\/;\/hl_lz 2 : 2 3
L h, l

|+ 1+

\/(ZZJ hl( lz]

When
L} -0,
12

then the ratio tends to

E(X)-b l l
| ( ) Boundary | :\/E\/E 2 hl 2 T
SD 2 \/[ 3 -0

3
12 h’l 12

TN
o~ ‘_N
~
(38}
+
=

Further, one can consider the two simplified mutually excluding cases

[l_j b (l_j ol
A hy A hy
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Remembering

If the first case takes place and

l—l—> 0,
then

2

L
L,

2 2
[—J <<£—>O and, due to (1), [lj <<£<<
L h, hy

2

Ll W
| E(X) bBoundary [ l hl
h l (l—lj2<<ﬁ<<lfl—>0 f
71 + ﬁ I hool
l

' :
B
B h,

Due to the “preliminary conditions” (1)
hl, <<hl,.

ﬁ

hl <1,

we obtain

hl, <<1.
Therefore it follows
| E (X ) - bB

oundary |

SD l—‘ <<h'2<<l] —0 \/7 hl hz] -0
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A concrete example

For example, suppose the condition a >> b is true, e.g., if a > b*I 0°. Then
the condition (1)

2
[l—‘J <<£<<l—‘<<1,

12 12

can be true if

hojo¢ and moioe.

12 hl
These values save (1) and lead to

hl, =h—~ 2y hll BRSNS :£<10’3 <<1

hl l1 h l 2

and to

2 2
171 +£ 1+171
|E(X)_b ounda. | 3 l }ll l
Boundary R }lllz 2 - 2 - ~
SD 2V N (1
12 hl 12
\f [10° 10 +10°(1+10°) \E\/loﬁ 1024+10°
2 1071107 (1410 V10 +107
-9
z\fx/lo_’ 107 _ 310 :\Em-%
Vio® V4o V4

<107 <<1

So, the first case allows to achieve the object of the article and there is no need
to investigate the more complicated and less evident second case.

In the hypothetic situation of “adhesion” the minimal ratio is, evidently, half
of the above value and, hence, can be much less than unity as well.

So, it has been proven that the minimal ratio |E(X)-Dpoundary|/SD for the
piecewise continuous two-step stepwise test distribution with compact support can
be much less than unity for the hypothetic situations.
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4.4. Power two-step test distribution with compact support
4.4.1. General formulae

Let us consider a continuous power two-step test distribution with compact
support with a PDF

B
f(x)= h(lﬁ] [6(x)—0(x—1,)]+

B
+[hz+hl XZ_ZZJ }[9(x12)9(x1211)]+

1

2L, +1)—x |

o) 2Rt 42100211

l2

where ,BZ = ,BSide > 0 and ,BI = ﬂCentre > 0, h] = hCentre and l] = lCentre, h2 = hSide
and [; = Isiq.. The above parameters are tied by the normalizing integration

L+, B L+,
2 [ f(x)dx= 2jh( J dx+2 | [h +h(x L ) }dx—

0 I L,

L B L+, L+, l
=2h2j[ﬁJ dx +2h, jdx+2h1j[x j dx

l

L X b L+, L+, A X
=2h,l, [Z—J d(l ]+2h [dx+2hi, j( ] d[l—J:
0 2 2 l 1

L2l —x)"
”{Mj {Olx— (L, +1)]-0[x— (L, +21)]}

Al o,
2l (X 2 _
A 0 B +1 l1 L
B+
2y gy, 2 (L= _
b, +1 B +1 l,
B+l
2l o 2@1(} 2h oy 2y
ﬂ2+1 ﬂl ﬂ2+1 ﬂ1+1
So,
2l gy 4 2h
,B2+1 S +1
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The variance

The variance equals

L+,

Var(X)=2 j [x— ECOP f(x)dx =

0
X ﬁl ll+l2 l+l —x ﬁz
j dx+2jx2h2[1 12 ] dx =
I 2

I}
1 l_
:2£x2l:h2+h{ lll
I I I —x B L+l I +1 —x By
:ZhZIxzdx+2}L1'[x2[‘l j dx+2h, J‘ xz(l 12 J dx
0 I 2

0 1

and

L+,

f v —xY L+l —x)"
2h2'|.x2dx+2hlj'x2(l ] dx+2h, J (¥J dx =
0 0 ll 12
B+l I B+l
L B - - X et
0 ,Bl+1 [, o B+l [,
B Byl Zl+[2 I+, B+l
oh, L K L +1,—x 2h,l, J- 2y L +1, - dr =
S, +1 L,

I ﬂz +1

Py 4R, A
oty j L -
3 B+l L

3

—2h—
3

Byl I+l IR
0som L, lz}(mg-g] | Al jx(ll”2 xj e
B, +1 L, B, +1 ; L
S+l
_2mly o A, f [ j s
3 B+l L,
I+, B+l
L2l oAb, i x[z, +12—xJ 0
pr+1 pr+1 A L

24



and

I _ B+l
1)

3 B +15 A

2l anl, " (1 -x Y
2P 2 Ix[—l = j dx =
B, +1 B, +1 I L
:Mﬁl_

+2 I pi+2
hoARL [zl—xj

Bi
Al b fh-x
L+l +2 [
2l Al x(ll +12—xjﬁ 2”

+1 1 +146 +2
2 2 2

I+l Br+2
LAl L [11 +1, —xJ e
ﬂz +1 ﬂz +2 I, lz

3 B+l +200 |

fr+2
. 2h,1, P 4hl, 1, ! L+1,-1 N
B, +1 B +15,+2 [,

I+, Br+2
Ll L (zl+12—xj e

I _ Bi+2
2l g, Al J(ll x] s

,32+1ﬂ2-|—2 I lz
I Bi+2
:2h211 2 anl, 1, J- [, —x des
3 ﬂ1+1ﬂ1+20 L,

I+, Br+2
N A A Y Ay [zl +1, —x] 0
1
ﬁz"’l ﬁ2+1ﬂ2+2 ﬂ2+1ﬁ2+2 I lz
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and

L Bi+2
Ul 2, Ay, [g—xj e
3 B+l +200 |
I+, Brt2
I A Y O ¥ (A+J2—xj "
1
ﬁz"'l ﬂ2+1182+2 182+1ﬂ2+2 I lz

h

2l Al b L (h=x a
3 B +lp 243 L,
b Al b
B, +1 L, +15,+2

Sl L, L (hen-x)""
L +15,+2 B, +3 [

0

L+,

I

pi+3
_ 2h,l, P anl, 1 L, l_l N
3 B+ B +2 B +3
N 2h,l, P 4h,l, 1, L
B, +1 b, +15,+2

Pr+3
Ll L [A+g—gj

B +15,+2 B, +3 [,
pi+3
_ 2h,l, P anl, 1, [ l_1 N
3 B +1 B, +2 B +3

N 2h,l, P 4hl, 1, -
B, +1 B, +15,+2

N 4hl, 1, L,
B +15,+2 B, +3
So,
Var(X) = 20, 1%+ b !

1
_+_
3 B+1B+2 B +3
2h,l, l21+4h212 L, ll+4hzlz L, L,
B, +1 B, +15,+2 B+1B,+25,+3
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The contiguous situations

Due to the symmetry of the test distributions, E(X) =1, + [;.
The minimal ratio |E(X)-bpoundary|/SD is

| E(X) - bBuundary |

v Var(X)

and this expression is rather complicated.

The hypothetic situations

One can calculate the expectation for the hypothetic situation of “reflection”
L+,

E(X)=2 Ixf(x)dx =

0

1 [ —x . b I +1,—x S
=2[x h2+hl(ll J dx+2jxh2(%] dx =
0

1 L 2

L L [ —x B L+, I+ —x by
:2h2jxdx+2h1jx['l ] dx+2h2jx[%j dx
0 0 1 I 2

and

[ [ I —x B L+, L+l —x B
2h2jxdx+2hljx(ll j dx+2h, | x(%} dx =
0 0 I,

1 2
’ e Loy VA
_%l_lx(ll_x] +%I(A_XJ g
0 b +1 l, o B+l |
fr+1 N
on, l, x[11+12—xj ety
5, +1 L I

I+, By+1
| 2hl, i [ll+lz—xJ e
ﬂz +1 I lz

2
X

= 2]’12?

+
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and

pr+1
=l + ;f“jlﬂ 11 J dx +

, 2hl, z[ll +12—11Jﬂ2”+ 2h, ’1]’2(11+12—x]ﬁ2”dx:
ﬂ2+1 L, B, +1 1 L,

[ _ B+l
=h2121+%j[l‘l—xj dx +
0 1

B +1
2y 20l MR —x de
b, +1 ,82+1 L,
and
2 4 —x Y
h2121+—‘j(1—j dx +
ﬁ1+10 ll
I, +1, B+l
L 2ml 2, i (11+12—xj e
1
ﬂz""l :Bz+1 I lz
Y
:h2121_ 2ml, L —x n
B+ B +20 | 0
L2l 2l (hl-x St
g+1 pg+1p+20 L ;
and

S +2
hzloﬂl_(l_J .
B+1 B +2

fr+2
2hll 0, 2l 1, [11+12—11j _
2

ﬂ2+1 b, +15,+2 [

Li+2
h'll ll ll
el ﬂ1+1ﬁ1+2U ’

N 2h,l, L+ 2nl, 1,
b, +1 p,+15,+2
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and

+1
i+ Zhl dx +
ﬂ1+1
L 2ml 2k, "”2 Ll -x )
,82+1 ﬂ2+1
/)’1+2
_hlzl— [ll x}
,Bl+1,b’1+2 l,

L+,

4

B, +1 B, +13,+2 L,

P2
S UL I L
? B+18+2\1

Sy o, 2l b (Ll f
ﬂ2+1 L, +15,+2 L,

O 0 ’}‘”+
B+l +2\1

2hl 2h,l, 12
l+
,82+1 L, +15,+2

£r+2
2hl, . 2hl, L, [l+l—x]
+ 2] -

and
h2121 2nl, 2hl l+2hzlz l, _
,Bl+1ﬂ,+2 S, +1 b+l B, +2
=l + 2l L +2hl ! [l(,B2+2)+l2]
B+1p+2 B+1p5,+
So,
E(X)=h2121+2h‘l‘ h Zhl [l(,82+2)+l

B+ 1,31+2 ﬂz+1ﬂz

General and specific formulae

The above general formulae and their analysis are rather complicated. To
facilitate the achievement of the goal of the article we can consider some simple
specific cases of this distribution and corresponding specific formulae. We can use
also the ideas and formulae of the two-step stepwise test distribution with compact
support from the preceding subsection.
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4.4.2. The case of two steps. 2=, =10
Distribution and normalizing equation

The above general formula of the PDF

B>
f(x)= h[f} [0(x) - 0(x—1,)] +

2

B
+[hz+h, XZ_IZJ }[H(X—lz)—ﬁ(x—lz—ll)]—i-

9

+{h, +h,

- b
M} V0L — (I, +20)] - 0x—20,)] +
1

L+2L—x)"

+h,(%} {Olx—(l, +1)]-0lx—(,+2])]}
2

is transformed to a specific one at £, = f; = 0, that is to the two-step stepwise test

distribution with compact support
f(xX)=hl0(x)-0(x—-1,)]+

+(h, +h)[O(x—1,)-0(x—1,-1)]+
+(hy + h){O0x — (L, + 21)]— O(x —21,) } +
+h{0lx—(,+1)]-0[x—(, +2l)]}

The above general formula of the normalizing integration

%+2hzll+%:l
S, +1 b +1

is transformed to a specific one at > = f; =0
2hl, + 20,1 + 201 =1.
This expression naturally coincides with the above one of the preceding subchapter.
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The variance

The above general formula
Var(xy=20hp,  Ah _h _h
3 L+l +2 P +3
N 2h,1, It 4hl, 1, |+ 4hl, 1, L,
B+l Bl B2 B+l B 425,43

is transformed to a specific one at > = f; =0

Var(x)=2lebpp, AR DL
1 23
N 2h,l, Py 4hl, 1, - 4ly I 1, _
1 1 2" 1 23
2hl, .,
% =

= 21/;211 I+ 2};111 I+ 2hzl2l21 +2hLLk +

= %[thlzl + LI+ 3041+ 3L LT + byl

and
Var(X) = %[hzlllzl + L+ 3R L1+ 3L + RIS ] =

(LI + hy (L1 + 301 + 3L L1 +1,1)] =

[0 W

3 [hllllzl + h2(ll +lz)3]

This expression naturally coincides with the above one of the preceding subchapter.
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The contiguous situations

Due to the symmetry of the test distribution, E(X) =1, + [;.
So, as in the preceding subchapter, we have

|E(X)_anundary |:\/§ l2+ll S\/g
SD 2 I+l + 1)

The hypothetic situations

The above general formula
E(X)=hl* + ZLUNSUN U [, (B, +2)+1,]
Li+1B+2 B, +15,+2
is transformed to a specific one at f, = f; = 0
2hl 1 2h1, 1
E(X)=hl* +%é+%5(2ll +1,) =
= 0%+ hl* + 2R L1+ b =
=hl* +h (1 +1,)
So, the ratio is
| E(X) _bBoundary | _ 3 hllzl + h2 (ll + 12)2

SD 2 P+ by, +1)
This expression naturally coincides with the above one of the preceding subchapter.
Therefore the consideration, final formula and conclusion may be the same as in the
preceding subchapter. Namely,

| ECX) = bypunary | 3 .
D “ (AI«LO ’ 5\/@ [,’5]2«%«%‘% 0

12 hl 1 2
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4.4.3. The case of a two-step triangle. > = p; =1
Distribution and normalizing equation

The above general formula of the PDF

X

2
f(x) :h{l J [0(x)—O(x—1)]+

2

x—1,
ll

b
+[h2+h, ] }[G(X—lz)—e(x—lz—ll)]-i-

(21, +1)—x
ll

B
+{h, +h, :| HOx— (1, +21)]-0(x=21,)]+

L+2l —x )"
+,{%J {Olx— (U, +1)]-6[x— (1, +21)]}

2
is transformed to a specific one at f, = ff; = 1

f(x)= hzli[e(x>—9(x—zz)]+

x—=1,
ll

+(h2+h, J[@(x—lz)—é’(x—lz—ll)]+

b

+ {hz +h [%ﬂ{eu — (L, +21)]-0(x—21,)} +

1

o B2 sy - O+ 20))
2
The above general formula of the normalizing integration
%+2hzll + 2k, =1.
162 + 1 ﬂl + 1 1
is transformed to a specificone at > = f; = 1
2 2
ﬂ +2 h2 ll + ﬂ =
1+1 I+1 .

= L, + 2k, +hl =1
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The variance

The above general formula
Var(X) = 2h,1, 2 anl, | l,
3 L+l +2 B +3
N 2h,1, It 4hl, 1, |+ 4hl, 1, L,
B, +1 B+15,+2 B, +15,+25,+3
is transformed to a specific one at f, = ff; = 1
Var(X) = 2hl I+ b b L
3 1+114+21+3
N 2h,l, 2o 4hl, 1, |+ anl, 1, 1,
1+
I+1 I+11+2 1+1 142143
2hlll2 i, l2 S+ 2h,1, hll2

LI +
3 2 3 3 2 3
and
2 2
Var(X) = 2l o Wb Ty L 21, lzll+h2121—2=
1 2 2 2 2
= g[4hzlll LH L+ 6L + AR LLL + L] =
=é[hll31 + Iy (401 + 61,17 + 4171, +12)]
or
Var(X) = %Wﬂ +hy (41 + 6L 1% + 417, + )] =
1
:g{hlpl + h2[4ll(ll + 12)2 +lz(lz2 _2121)]}
or

Var(X) = éw% +hy (AP + 6117 + 4170, + 1)) =

1
g{hll31 +h (L + 1) +L[3L (L + 1) +172)]} )

So,at fo=p;=1,
Var(X) :é[hfl +hy (41 + 61,17 + 4170 +12)]
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The contiguous situations

Due to the symmetry of the normal-like test distributions, E(X) =, + [;.
Due to the above general considerations about the contiguous situations, the
ratio is minimal at
[,—>0 and h —0.
Under these tendencies, the normalizing integration tends to
hzlz + 2hzll + hlll W)ZhZZI =1.
Under these tendencies, the variance tends to
2h,l 4hl 1 l 2h1
Var(X)="2L11% + Mh b L 22 0
L+l +2 B +3 fS,+1
4hl, 1 4hl, 1 [
+ 272 2 ll + 272 2 2 P — N
Lo+l B, +2 B+l 5,+2 5,43 =007

N 2h2ll 12 \ﬁ
L—0; =0 3 TS0 3
and
ll
SD— =50 Nk
The ratio tends to
|E(X)_bBoundary | N ll — \/5

1,—>0; 1 —0
SD 20 I,

V3

This corresponds to the general limit of the ratio.
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The hypothetic situations

The above general formula

E(X):hZﬁIJrzhll1 h +2h2l2 ! [(L(B,+2)+1,].
Li+1B+2 B, +15,+2

is transformed to a specificone at > = f; = 1
1
E(X)= EW% +h, (3% + 3L +1%2)]
The ratio |E(X)-bgoundary|/SD is equal to
| E(X)_bBoundary | — E(X) —
SD SD
B2 R R GBI BLL 1)
3 P+ hy (41 +6L,1% + 417, + 1)

~ \E hl% + hy 312+ 3L, +12)
3 \/@131 +hy (401 + 6L 1% + 4%, + 1)

| ECX) = bypuiary | \E B+ by (31 + 311 +1%)
SD 3 I+ by (48 + 611 + 4120, + 1)

So,
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One can use the consideration of the preceding subchapter. The ratio |E(X)-
bpoundary|/SD can be identically rewritten as

| ECX) = Bpounaary | _ \E WP+ G +3LL 1)
SD 3 I+ by (4P + 6L + 417, + 1)

o A
EGETE
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The triangle and step functions are, in a sense
Therefore let us test (1)

2 <<t <<,
12 2

with respect to this special case

oundary I _

Under the conditions (1), the ratio |E(X)-bpoundary|/SD tends to the limit
| E (X ) - bB
SD

- \E Jid, .
This limit is, indeed, similar to that of the preceding subchapter and by means
of similar considerations
hl,<<hl, and hl <1 and hl, <<hl,
we obtain
| E (X ) - bB

oundary |

SD L‘ << << 90 \/7 hl h,ll -0
Iy

In the hypothetic 51tuat10n of adhesmn the minimal ratio is, evidently, half
of the above value and, hence, can be much less than unity as well

So, it has been proven that the minimal ratio |E(X)-bpoundary|/SD for the
continuous two-step power test distribution with compact support can be much less
than unity for the hypothetic situations
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5. Conclusions
5.1. General

The minimal distance from the expectation of a random variable to the nearest
boundary of the interval has been considered in the present article. The distance has
been expressed in terms of the standard deviation (SD) of the variable.

The question whether this minimal distance can be neglected with respect to
the SD has been particularly analyzed.

This minimal distance can determine the minimal magnitudes of forbidden
zones caused by a noise for results of measurements near the boundaries of the
intervals (see, e.g., [1] and [2]). These forbidden zones cause fundamental problems
in behavioral economics and decision sciences, in utility and prospect theories.

5.2. Definitions

The interval boundary that is the nearest to the expectation of the variable is
referred to as Dpoundary- SO the minimal distance between the expectation E(X) of
the variable and the nearest boundary bgoumaay ©Of the interval is referred to as
min(|E(X)-bpoundary| ). The ratio of this minimal distance to the standard deviation is
referred to as min(|E(X)-bpoundary|) / SD or simply |E(X)-bgoundary| / SD.

A normal-like distribution is defined as a distribution that has the symmetric
probability density function (PDF) f with non-increasing sides.

Compact distributions are referred to as the distributions with bounded or
compact support. Noncompact distributions are referred to as the distributions
with not bounded support.

The contiguous situation is defined as the situation when one side of
distribution’s support touches the boundary of a half-infinite or finite interval.

The hypothetical reflection situation is defined as the situation when f is
modified to the hypothetical function fr.; that is reflected with respect to E(X) = 0

Jreq(X) =002 f (x).
The hypothetical adhesion situation is modified from the hypothetical

reflection situation such that the reflected part of the PDF is “adhered” to the
boundary 0.
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5.3. The scope of the considerations

The ratio of the minimal distance from the expectation of the variable to the
nearest boundary of the interval to the SD |E(X)-bpoundary] / SD has been considered
for the following situations:

The hypothetical reflection situation and the corresponding adhesion situation
have been analyzed for the normal distribution.

The hypothetical reflection situation and the corresponding adhesion situation
have been analyzed for the distributions having continuous probability density
functions with noncompact support, namely for the Laplace and power test
distributions.

The contiguous and hypothetical situations have been analyzed for the
continuous and piecewise continuous “normal-like” test distributions with compact
support.

5.4. The main results

The main three results of the present article are:

A priori. A priori, one can evidently state that the minimal distance between
the expectation of a random variable and the nearest boundary of the interval can be
equal to zero only if the support of the distribution is a sole point.

First. The normal distribution has the finite ratio |E(X)-bgoundary| / SD for the
hypothetic situations of reflection and adhesion.

Second. For the contiguous situation, the continuous compact “normal-like”
distributions have the finite ratio |E(X)-bpoundary|/SD.

Third. For the hypothetic situations of reflection and adhesion, the existence
of “normal-like” distributions with the negligibly small ratio |E(X)-bpoundary| / SD
has been proven for noncompact continuous distributions and also for compact
continuous and piecewise continuous distributions.

That is, for these distributions, there exist combinations of their parameters,
such that the minimal distance between the expectation and the nearest boundary
min(|E(X)-bpoundary]) can be neglected with respect to the standard deviation.

In addition, all the results of the present article can be treated as those
supporting the need of further research to refine and generalize the conditions of
finite ratios of the minimal distances between the expectations of the variables and
the nearest boundaries of the intervals to the standard deviations.
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