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Suppose a random variable takes on values in an interval. The 

minimal distance between the expectation of the variable and the 
nearest boundary of the interval is considered in the present article. 
A question whether this distance can be neglected with respect to 
the standard deviation is analyzed as the main item. This minimal 
distance can determine the minimal magnitudes of non-zero 
forbidden zones and biases caused by noise for results of 
experiments. These non-zero forbidden zones and biases cause 
fundamental problems, especially in interpretations of experiments 
in behavioral economics and decision sciences.  
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1.  Introduction  

1.1.  Bounds for functions and moments of random variables  
 

Bounds for functions of random variables and their moments are considered in 
a number of works.  

Bounds for the probabilities and expectations of convex functions of discrete 
random variables with finite support are studied in [8].  

Inequalities for the expectations of functions are studied in [9]. These 
inequalities are based on information of the moments of discrete random variables.  

A class of lower bounds on the expectation of a convex function using the first 
two moments of the random variable with a bounded support is considered in [1].  

Bounds on the exponential moments of  ),min( Xy   and  }{ yXIX <   using 

the first two moments of the random variable  X  are considered in [7].  
 
 

1.2.  Problems, their solution and the need of further research  
1.2.1.  Problems of applied sciences  

 
There are some basic problems concerned with the mathematical description 

of the behavior of a man. They are the most actual in behavioral economics, 
decision sciences, social sciences and psychology. They are pointed out, e.g., in [6].  

Examples of the problems are the underweighting of high and the 
overweighting of low probabilities, risk aversion, the Allais paradox, risk premium, 
the four-fold pattern paradox, etc.  

The essence of the problems consists in biases of preferences and decisions of 
a man in comparison with predictions of the probability theory.  

These biases are maximal near the boundaries of the probability scale, that is, 
at high and low probabilities.  
 
 

1.2.2.  Bounds (forbidden zones) for the expectations  
 

Bounds on the expectation of a random variable that takes on values in a finite 
interval are considered as well (see, e.g., [4] and [5]).  

Suppose a random variable takes on values in a finite interval. An existence 
theorem was proven. The theorem states: if there is a non-zero lower bound on the 
variance of the variable, then non-zero bounds on its expectation exist near the 
boundaries of the interval.  

The obtained non-zero bounds (or strict bounding inequalities) can be treated 
as non-zero forbidden zones for the expectation near the boundaries of the interval.  
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1.2.3.  Partial solution of the problems  

 
A non-zero noise can be associated with the non-zero minimal variance of 

random variables. The dispersion and noisiness of the initial data can lead to bounds 
(restrictions) on the expectations of experimental data. This should be taken into 
account when dealing with data obtained in real circumstances.  

The works [2] and [3] were devoted to the well-known problems of utility and 
prospect theories. Such problems had been pointed out, e.g., in [6]. In [2] and [3] 
some examples of typical paradoxes were studied. Similar paradoxes may concern 
problems such as the underweighting of high and the overweighting of low 
probabilities, risk aversion, the Allais paradox, etc. A noise and data scattering are 
usual circumstances of the experiments. The proposed bounds explained, at least 
partially, the analyzed examples of paradoxes.  
 
 

1.2.4.  The need of further research  
 

However, there is a consequence of the theorem of existence of the forbidden 
zones: when the level of the noise and, hence, the minimal variance of variables 
tends to zero, then not only the width of the revealed forbidden zones, but also the 
ratio of this width to the standard deviation tends to zero.  Therefore, in some cases 
these forbidden zones can be neglected at low level of the noise.  

So, there is a need of a more deep consideration of the question whether, when 
and under what conditions this minimal distance can be neglected with respect to 
the standard deviation at low level of this standard deviation.  
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1.2.5.  The aims and the practical motivation of the present article  

 
The general aim of the present article is the consideration of the minimal 

distance from the nearest boundary of an interval to the expectation of a random 
variable that takes on values in this interval. This minimal distance is expressed 
here in terms of the standard deviation of the random variable.  

The consideration is concentrated on the normal and similar distributions.  
In this preliminary version of the article, the calculations are given as detailed 

as possible to be the verification for following journal articles.  
The first particular aim of the article is the determination of some typical 

reference points for considerations of this minimal distance.  
The second particular aim is to start a consideration of a question whether, 

when and under what conditions this minimal distance can be neglected with 
respect to the standard deviation of the random variable, especially when this 
standard deviation tends to zero.  

The practical motivation of the present article is caused by the above problems 
of behavioral economics, decision sciences, social sciences and psychology.  

The article is to provide the mathematical support for a consideration of a 
question whether, when and under what conditions the above influence of a noise 
can be neglected at low level of the noise.  
 
 

1.3..General definitions and notes  
 

For the purposes of the present article, let us define and denote some terms:  
The standard deviation is referred to as SD.  
The probability density functions are referred to as PDFs.  
The interval boundary that is the nearest to the expectation of the variable is 

referred to as  bBoundary.  So the minimal distance between the expectation of the 
variable and the nearest boundary  bBoundary  of the interval is referred to as  
min(|E(X)-bBoundary|).  To avoid ambiguity, the minimal distance  min(|E(X)-
bBoundary|)  between the expectation of the variable and the nearest boundary of the 
interval is referred to as  |E(X)-bBoundary|.  This nearest boundary is usually defined 
as  bBoundary = 0.   

Normal-like distributions are defined as distributions that have symmetric 
probability density functions  f  with non-increasing sides. In other words:  

))(())(( aXEfaXEf −=+   

and if  |)(||)(| XExXEx dc −≤− ,  then  )()( dc xfxf ≥ .   
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For the conciseness, in the scope of this article, distributions with bounded or 

compact support are referred to as compact distributions. The distributions with 
not bounded support are referred to as noncompact distributions.  
 

Usually,  h  denotes the value (height) of PDF,  l  denotes the length. The 
index  1  denotes the centre of a distribution, that is  h1 ≡ hCentre  and  l1 ≡ lCentre.  
The index  2  denotes the side or tail of a distribution, that is  h2 ≡ hSide ≡ hTail  and  
l2 ≡ lSide ≡ lTail.   

The contiguous situation is defined as the situation when one side of 
distribution’s support touches the boundary of a half-infinite or finite interval.  

The hypothetical reflection situation is defined as the situation when  f  is 
modified to the hypothetical function  fRefl  that is reflected with respect to  E(X) = 0 

)(2)()(Re xfxxf fl θ= .  

The hypothetical reflection situation is, in a sense similar to the reflection of a wave 
of light from a mirror.  

The hypothetical reflection situation can simulate and be used to analyze not 
normal-like distributions.   

The hypothetical adhesion situation is modified from the hypothetical 
reflection situation such that the reflected part of the PDF is “adhered” to the 
boundary  0.  In other words, a half of the reflected PDF is adhered to the point  
E(X) = bBoundary = 0.   In particular, in the hypothetical adhesion situation  

∫∫
+∞+∞

∞−

==
0

)(
2

1
)()( dxxfdxxfXE AdhesAdhes .  

The hypothetical situation of “adhesion” is in a sense similar to the absorption of a 
wave of light by a black body.  

Reasons for the choice of the hypothetical situations will be considered in next 
articles of this series.  

Note, in all hypothetic situations the standard deviation of the non-modified 
function is used.  
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2. Normal distribution  

 
The normal distribution is one of the most important ones in the probability 

theory and statistics. Its PDF can be represented in a form of, e.g.,  

2

2

22

2

1
)(),0()( σ

πσ
σ

x

X exfNxf
−

=≡≡ .  

 
 

Hypothetical situations  
 

The standard deviation (SD) of the normal distribution equals  σ.   
One can calculate the expectation for the hypothetic situation of “reflection” 

from the boundary  bBoundary = 0   
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.  

The ratio  |E(X)-bBoundary|/SD  is equal to  







∈≈==

−

5

4
,

4

3
789.0

2)(|)(|

πSD

XE

SD

bXE Boundary
.  

For the hypothetic situation of “adhesion” the ratio  |E(X)-bBoundary|/SD  is 
equal to  1/2  of that of the hypothetic situation of “reflection” and is equal to  







∈≈=

−

2

1
,

3

1
399.0

2

1|)(|

πSD

bXE Boundary .  

So, for the hypothetic situations of both “reflection” and “adhesion,” the ratio  
|E(X)-bBoundary|/SD  cannot be negligibly small with respect to unity.  
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3.  Noncompact distributions  

3.1.  Laplace distribution  
 

One can write Laplace distribution as 

λ
||

)(
x

hexf
−

=  .  

The parameter  h  can be calculated from the normalizing integration  
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 .  

So, the standard deviation is  

2λ=SD  .  
 
 

Hypothetical situations  
 

One can calculate the expectation for the hypothetic situation of “reflection”  
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The ratio  |E(X)-b|/SD  is equal to  
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For the hypothetic situation of “adhesion” the ratio  |E(X)-bBoundary|/SD  is 
equal to 1/2 of that of the hypothetic situation of “reflection” and is equal to  




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So, for the hypothetic situations of both “reflection” and “adhesion,” the ratio  
|E(X)-bBoundary|/SD  cannot be much less then unity.  
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3.2.  A power one-step test distribution with noncompact support 

 
Let us consider the power noncompact “one-step” test distribution. Its 

probability density function can be written as, e.g.,  
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where  µ ≡ E(X),  h > 0,  α = 1/l > 0,  l > 0  and  β > 3.   
The normalizing integration (under the simplifying condition  µ = 0)  can be 

written as  
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Hypothetical situations  

 
For the hypothetical reflection situation, the expectation can be calculated as  
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The variance can exist only if  β > 3.  Let  β = 3+ε > 3,  where  ε  0,  then  
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So, if the power index tends down to three and is sufficiently close to three, 
then the ratio  |E(X)-bBoundary|/SD  can be much less than unity.  
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4.  Compact distributions  

4.1. General consideration of the contiguous situation  
 

Let us consider the contiguous situation for continuous (exactly speaking, for 
Riemann integrable function) PDFs in general.  

Suppose a normal-like continuous distribution having the PDF  f,  such that  
E(X) = l,  f(x) = 0  for  ]2,0[ lx∉   and  f(l+y) = f(l-y)  and  f(x1) ≥ f(x2)  if  |x2-l| ≥ 
|x1-l|.  The maximal value of  f(x)  can be denoted as  max(f(x)) = f(l) ≡ h  and the 
expression for the variance can be rewritten as  
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The members  (x-l)2  and  [h - f(x] ≡ [max(f(x)) - f(x)]  are positive. Hence the 
variance is maximal when  [max(f(x)) - f(x)] = 0,  that is when  f(x) = Const = h.  
This condition implies the normalization equality  2hl = 1.  Under this condition the 
standard deviation is equal to the well-known value  
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Due to the symmetry of the distributions,  E(X) = l.   
The ratio  |E(X)-bBoundary|/SD  is equal to  
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So, in the general case, for the contiguous situation, the minimal ratio     
|E(X)-bBoundary|/SD  of a normal-like continuous distribution with compact support 
cannot tend to zero. Moreover, it is more than unity.  
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4.2.  Power one-step test distribution with compact support  

 
Let us consider a continuous power one-step test distribution with compact 

support  
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The normalizing integration is  
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So,  
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and the standard deviation is  
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In particular, this expression gives the well-known formulae  

3

l
SDUniform =     and    

6

l
SDTriangle = .  

for the uniform  (β = 0)  and triangle  (β = 1)  distributions.  
 
 

The contiguous situation 
 

The above general consideration states that minimal ratio  |E(X)-bBoundary|/SD  
is more, then unity for the contiguous situation. One can see indeed that the ratio  
|E(X)-bBoundary|/SD  equals  
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The minimal ratio  |E(X)-bBoundary|/SD  is reached at  β  0  (the power distribution 
tends to the uniform one)  
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So, the minimal ratio  |E(X)-bBoundary|/SD  is more, then unity for the 
contiguous situation of the one-step power test distribution.  
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The hypothetic situations 

 
One can calculate the expectation for the hypothetic situation of “reflection” 

(under the condition  E(x) = µ = 0)   
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lll
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 .  

The ratio  |E(X)-bBoundary|/SD ≡ RRatio(β)  is equal to  

)(
2

3

2

1

2

)3)(2(1
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)(|)(|

β
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Ratio

Boundary

R

l
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≡
+
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=
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+
==

−

.  

The derivative of  RRatio(β)  with respect to  β  is  

0
)2(

1

3

2
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ββ
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β
ββ

β
β

β
βRatioR

.  

The ratio  |E(X)-bBoundary|/SD  tends to the maximum at  β  0  (the power 
distribution tends to the uniform one) to  

87.0
2

3

2

3

2

1

2

3

2

1|)(|
0

≈= →
+
+

=
−

→ββ
β

SD

bXE Boundary .  

The minimal ratio  |E(X)-bBoundary|/SD  is reached at  β  ∞   







∈≈=

= →
+
+

≥
−

∞→

5

4
,

3

2
71.0

2

1

2

1

2

3

2

1|)(|

β
β

β
β

βSD

bXE Boundary

.  

For the hypothetic situation of “adhesion” the minimal ratio is equal to  1/2  of 
that of the hypothetic situation of “reflection” and is equal to  







∈≈≥

−
5

2
,

3

1
35.0

22

1|)(|

SD

bXE Boundary .  

So, for the hypothetic situations of both “reflection” and “adhesion,” the 
minimal ratio  |E(X)-bBoundary|/SD  do not tend to zero when  σ  tend to zero.  
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4.3.  Stepwise two-step test distribution with compact support  

 
Let us consider the piecewise continuous two-step stepwise test distribution 

with compact support.  Let us denote the center step by the subscript  “Center” or 
“1,” the side step by the subscript  “Side” or “Tail” or, shortly, “2.” So, for the 
contiguous situation we have  

)]22()2([
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or, shortly,  
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+−−=

θθ
θθ

θθ
.  

The parameters  hSide ≡ hTail ≡ h2  and  hCenter ≡ h1,  lSide ≡ lTail ≡ l2  and  lCenter ≡ l1  
are tied by the normalizing integration  

12)(2

2222)(2

2)(2)(2
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11212222121

2
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,  

or  

12)(2 =++ CenterCenterCenterTailTail hlllh ,  

or  

12)(2 =++ CenterCenterCenterSideSide hlllh .  
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The variance  

 
For the two-step stepwise test distribution the variance equals (for simplicity 

one can determine  E(X) = 0)   
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and the standard deviation is  

3
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3
1 )(

3

2
llhlhSD ++= .  

Note, for the uniform distribution we have (for example)  hSide ≡ hTail ≡ h2 = 0  
and the variance equals  
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Equivalently, for  hCenter ≡ h1 = 0  it equals  
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Due to the normalizing equality   

12)(2 11122 =++ hlllh   

none of these parameters can be changed independently. Using  

1
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the variance can be rewritten in terms of  h2  as  
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The derivative of the variance with respect to  h2  is  
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∂
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.  

The variance increases when  hSide ≡ hTail ≡ h2  increases.  
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Using 
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the variance can be rewritten in terms of  h1  as  
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The derivative with respect to  h1  is  
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The variance increases when  hCenter ≡ h1  decreases.  
So, the derivative of the variance with respect to  h2  is positive but the 

derivative with respect to  h1  is negative. Remember, when  h1  increases then  h2  
decreases (under the condition that other parameters are constant). So, the variance 
increases when  hSide/hCenter ≡ hTail/hCenter ≡ h2/h1  increases.  

Therefore the variance is maximal at the condition  h1 = 0  and equals  
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The maximum of the standard deviation is  
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The contiguous situation  

 
For the contiguous situation, due to the symmetry of the PDF, the expectation 

is  
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So, the minimal ratio  |E(X)-bBoundary|/SD  for the two-step stepwise test 
distribution with compact support for the contiguous situation is finite and is more 
than unity (and is equal to that of the uniform distribution).  
 
 

The hypothetic situations  
 

For the two-step test stepwise test distribution with compact support for the 
hypothetic situation of “reflection” the expectation equals  
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Remembering that  

3
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we have  

3
1221

3
1

2
1221

2
1

)(

)(

2

3|)(|

llhlh

llhlh

SD

bXE Boundary

++

++
=

−
.  

The ratio depends on the four parameters. The form of the ratio and 
preliminary calculations show that the full analysis of it is rather complicated. In 
addition, such an analysis is not a goal of this article.  

One of simpler ways to reach this goal is a general step-by-step analysis of the 
ratio.   

Let us analyze the three relationships  
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l
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    and    

22

11
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lh
.  

The standard deviation cannot be more than  O(l1+l2).  Hence the ratio can 
tend to zero only if  |E(X)-bBoundary|  tends to zero.  

If  h1l1/h2l2  0,  then, evidently,  |E(X)-bBoundary|  l1 + l2/2  and the ratio is 
finite.  This is not a step to the goal.  

If  h1l1/h2l2  ∞  (or, equivalently,  h2l2/h1l1  0)  then, evidently, we have  
|E(X)-bBoundary|  l1/2.  Hence, if  l1/l2  tend to zero, then  |E(X)-bBoundary|  (and the 
ratio  |E(X)-bBoundary| / SD)  can tend to zero.  

In addition, if  h2l2/h1l1  0  and  l1/l2  0, then  
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So, this simple preliminary analysis proves that the ratio can tend to zero if  
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One can refer these conditions to as the “preliminary conditions.” 
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We can identically rewrite the ratio as  

3

2

1

1

2

3

2

1

2

2

1

1

2

2

2

1

21

3

2

1

1

2

3

2

1

2

2

1

1

2

2

2

1

2
2/3

2
2

1

3
12

1

2
1

3

2
12

1

2
1

2

1

3
12

1

2
1

3

2
12

1

2
1

2

1

1

3
1221

3
1

2
1221

2
1

1

1

2

3

1

1

2

3

)(

)(

2

3

)(

)(

2

3

)(

)(

2

3|)(|









++

















++









=

=









++

















++









=

=
++

++
=

++

++
=

=
++

++
=

−

l

l

h

h

l

l

l

l

h

h

l

l

lh

l

l

h

h

l

l

l

l

h

h

l

l

l

l
h

ll
h

h
l

ll
h

h
l

h

ll
h

h
l

ll
h

h
l

h

h

llhlh

llhlh

SD

bXE Boundary

.  

When  

0
2

1 →
l

l
,  

then the ratio tends to  

1

2

3

2

1

1

2

2

2

1

21
0

03

2

1

1

2

3

2

1

2

2

1

1

2

2

2

1

21

2

3

1

1

2

3|)(|

2

1

2

1

h

h

l

l

h

h

l

l

lh

l

l

h

h

l

l

l

l

h

h

l

l

lh
SD

bXE

l

l

l

l

Boundary

+








+








 →

 →









++

















++









=
−

→

→

.  

Further, one can consider the two simplified mutually excluding cases  
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If the first case takes place and  
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A concrete example  

 
For example, suppose the condition  a >> b  is true, e.g., if  a ≥ b*103.  Then 
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So, the first case allows to achieve the object of the article and there is no need 
to investigate the more complicated and less evident second case.  

In the hypothetic situation of “adhesion” the minimal ratio is, evidently, half 
of the above value and, hence, can be much less than unity as well.  

So, it has been proven that the minimal ratio  |E(X)-bBoundary|/SD  for the 
piecewise continuous two-step stepwise test distribution with compact support can 
be much less than unity for the hypothetic situations.  
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4.4.  Power two-step test distribution with compact support 

4.4.1.  General formulae  
 

Let us consider a continuous power two-step test distribution with compact 
support with a PDF  
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The variance  
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The contiguous situations 

 
Due to the symmetry of the test distributions,  E(X) = l2 + l1.   
The minimal ratio  |E(X)-bBoundary|/SD  is  

)(

|)(|

XVar

bXE Boundary−
.  

and this expression is rather complicated.  
 
 

The hypothetic situations 
 

One can calculate the expectation for the hypothetic situation of “reflection”  
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General and specific formulae  
 

The above general formulae and their analysis are rather complicated. To 
facilitate the achievement of the goal of the article we can consider some simple 
specific cases of this distribution and corresponding specific formulae. We can use 
also the ideas and formulae of the two-step stepwise test distribution with compact 
support from the preceding subsection.  
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4.4.2.  The case of two steps.  β2 = β1 = 0   

Distribution and normalizing equation  
 

The above general formula of the PDF  
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is transformed to a specific one at  β2 = β1 = 0,  that is to the two-step stepwise test 
distribution with compact support  
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This expression naturally coincides with the above one of the preceding subchapter.  
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The variance  

 
The above general formula  
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This expression naturally coincides with the above one of the preceding subchapter.  
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The contiguous situations 

 
Due to the symmetry of the test distribution,  E(X) = l2 + l1.   
So, as in the preceding subchapter, we have  
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The hypothetic situations 

 
The above general formula  
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This expression naturally coincides with the above one of the preceding subchapter. 
Therefore the consideration, final formula and conclusion may be the same as in the 
preceding subchapter. Namely,  
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4.4.3.  The case of a two-step triangle.  β2 =  β1 = 1   

Distribution and normalizing equation  
 

The above general formula of the PDF  
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is transformed to a specific one at  β2 = β1 = 1   
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The variance  

 
The above general formula  
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The contiguous situations  

 
Due to the symmetry of the normal-like test distributions,  E(X) = l2 + l1.   
Due to the above general considerations about the contiguous situations, the 
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This corresponds to the general limit of the ratio.  
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The hypothetic situations 

 
The above general formula  

])2([
2

1

1

2

21

2
)( 221

22

22

1

1

1

11
1

2
2 ll

lhllh
lhXE ++

++
+

++
+= β

ββββ
.  

is transformed to a specific one at  β2 = β1 = 1   
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One can use the consideration of the preceding subchapter. The ratio  |E(X)-

bBoundary|/SD  can be identically rewritten as  
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The triangle and step functions are, in a sense, similar to each other.  

Therefore let us test (1)  
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with respect to this special case.  
Under the conditions (1), the ratio  |E(X)-bBoundary|/SD  tends to the limit  
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This limit is, indeed, similar to that of the preceding subchapter and by means 
of similar considerations  
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In the hypothetic situation of “adhesion” the minimal ratio is, evidently, half 
of the above value and, hence, can be much less than unity as well.  

So, it has been proven that the minimal ratio  |E(X)-bBoundary|/SD  for the 
continuous two-step power test distribution with compact support can be much less 
than unity for the hypothetic situations.  
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5.  Conclusions  

5.1.  General  
 

The minimal distance from the expectation of a random variable to the nearest 
boundary of the interval has been considered in the present article. The distance has 
been expressed in terms of the standard deviation (SD) of the variable.  

The question whether this minimal distance can be neglected with respect to 
the SD has been particularly analyzed.  

This minimal distance can determine the minimal magnitudes of forbidden 
zones caused by a noise for results of measurements near the boundaries of the 
intervals (see, e.g., [1] and [2]). These forbidden zones cause fundamental problems 
in behavioral economics and decision sciences, in utility and prospect theories.  
 
 

5.2.  Definitions  
 

The interval boundary that is the nearest to the expectation of the variable is 
referred to as  bBoundary.  So the minimal distance between the expectation  E(X)  of 
the variable and the nearest boundary  bBoundary  of the interval is referred to as  
min(|E(X)-bBoundary|).  The ratio of this minimal distance to the standard deviation is 
referred to as  min(|E(X)-bBoundary|) / SD  or simply  |E(X)-bBoundary| / SD.   

A normal-like distribution is defined as a distribution that has the symmetric 
probability density function (PDF)  f  with non-increasing sides.  

Compact distributions are referred to as the distributions with bounded or 
compact support. Noncompact distributions are referred to as the distributions 
with not bounded support.  

The contiguous situation is defined as the situation when one side of 
distribution’s support touches the boundary of a half-infinite or finite interval.  

The hypothetical reflection situation is defined as the situation when  f  is 
modified to the hypothetical function  fRefl  that is reflected with respect to  E(X) = 0 

)(2)()(Re xfxxf fl θ= .  

The hypothetical adhesion situation is modified from the hypothetical 
reflection situation such that the reflected part of the PDF is “adhered” to the 
boundary  0.   
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5.3.  The scope of the considerations  

 
The ratio of the minimal distance from the expectation of the variable to the 

nearest boundary of the interval to the SD  |E(X)-bBoundary| / SD  has been considered 
for the following situations:  

The hypothetical reflection situation and the corresponding adhesion situation 
have been analyzed for the normal distribution.  

The hypothetical reflection situation and the corresponding adhesion situation 
have been analyzed for the distributions having continuous probability density 
functions with noncompact support, namely for the Laplace and power test 
distributions.  

The contiguous and hypothetical situations have been analyzed for the 
continuous and piecewise continuous “normal-like” test distributions with compact 
support.  
 
 

5.4.  The main results  
 

The main three results of the present article are:  
A priori. A priori, one can evidently state that the minimal distance between 

the expectation of a random variable and the nearest boundary of the interval can be 
equal to zero only if the support of the distribution is a sole point.  

First. The normal distribution has the finite ratio  |E(X)-bBoundary| / SD  for the 
hypothetic situations of reflection and adhesion.  

Second. For the contiguous situation, the continuous compact “normal-like” 
distributions have the finite ratio  |E(X)-bBoundary|/SD.   

Third. For the hypothetic situations of reflection and adhesion, the existence 
of “normal-like” distributions with the negligibly small ratio  |E(X)-bBoundary| / SD  
has been proven for noncompact continuous distributions and also for compact 
continuous and piecewise continuous distributions.  

That is, for these distributions, there exist combinations of their parameters, 
such that the minimal distance between the expectation and the nearest boundary  
min(|E(X)-bBoundary|)  can be neglected with respect to the standard deviation.  
 

In addition, all the results of the present article can be treated as those 
supporting the need of further research to refine and generalize the conditions of 
finite ratios of the minimal distances between the expectations of the variables and 
the nearest boundaries of the intervals to the standard deviations.  
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