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Abstract 

 

Academics and practitioners have extensively studied Value-at-Risk (VaR) to propose a 

unique risk management technique that generates accurate VaR estimations for long and short 

trading positions. However, they have not succeeded yet as the developed testing frameworks have 

not been widely accepted. A two-stage backtesting procedure is proposed in order a model that not 

only forecasts VaR but also predicts the loss beyond VaR to be selected. Numerous conditional 

volatility models that capture the main characteristics of asset returns (asymmetric and leptokurtic 

unconditional distribution of returns, power transformation and fractional integration of the 

conditional variance) under four distributional assumptions (normal, GED, Student-t, and skewed 

Student-t) have been estimated to find the best model for three financial markets (US stock, gold and 

dollar-pound exchange rate markets), long and short trading positions, and two confidence levels. By 

following this procedure, the risk manager can significantly reduce the number of competing models. 

 

Keywords: Backtesting, Value-at-Risk, Expected Shortfall, Volatility Forecasting, Arch Models. 
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1. Introduction 

The need of major financial institutions to measure their risk started in 1970s after an increase 

in financial instability. Baumol (1963) first attempted to estimate the risk that financial institutions 

faced. He proposed a measure based on standard deviation adjusted to a confidence level parameter 

that reflects the user’s attitude to risk.  However, this measure is not different from the widely known 

Value-at-Risk (VaR), which refers to a portfolio's worst outcome that is likely to occur at a given 

confidence level. According to the proposal of Basle Committee, the VaR methodology can be used 

by financial institutions to calculate capital charges in respect of their financial risk and, hence, 

academics and practitioners were triggered to find the best-performing risk management technique. 

However, even now, the results are conflicting and confusing.  

Giot and Laurent (2003a) calculated VaR for long and short equity trading positions and 

proposed the APARCHi model with skewed Student-t conditionally distributed innovations 

(APARCH-skT) as it had the best overall performance in terms of the proportion of failure test.  In a 

similar study, Giot and Laurent (2003b) suggested the same model to the risk managers, even if a 

simpler model (ARCH-skT) generated accurate VaR forecasts. Huang and Lin (2004) argued that for 

the Taiwan Stock Index Futures, the APARCH model under the normal (Student-t) distribution must 

be used by risk managers at the lower (higher) confidence level. 

Although the APARCH model comprises several volatility specifications, its superiority has 

not been proved by all researchers. Angelidis and Degiannakis (2005) opined that “a risk manager 

must employ different volatility techniques in order to forecast accurately VaR for long and short 

trading positions”, whereas Angelidis et al. (2004) argued that “the Arch structure that produces the 

most accurate VaR forecasts is different for every portfolio”. Furthermore, Guermat and Harris 

(2002) applied an exponentially weighted likelihood model in three equity portfolios (US, UK, and 

Japan) and proved its superiority to the GARCH model under the normal and the Student-t 

distributions in terms of two backtesting measures (unconditional and conditional coverage). 

Moreover, Degiannakis (2004) studied the forecasting performance of various risk models to 

estimate the one-day-ahead realized volatility and the daily VaR. He proposed the fractional 

integrated APARCH model with skewed Student-t conditionally distributed innovations 

(FIAPARCH-skT) that efficiently captures the main characteristics of the empirical distribution. 

Focusing only on VaR forecasts, So and Yu (2006) argued, on the other hand, that it was more 

important to model the fat tailed underlying distribution than the fractional integration of the 

volatility process. The two papers, one by Degiannakis (2004) and the other by So and Yu (2006), 

among many others, highlight that different volatility techniques must be applied for different 

purposes.  
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Contrary to the contention of the previous authors that the most flexible models generate the 

most accurate VaR forecasts, Brooks and Persand (2003) pointed out that the simplest ones, such as 

the historical average of the variance or the autoregressive volatility model, achieve an appropriate 

out-of-sample coverage rate. Similarly, Bams et al. (2005) argued that complex (simple) tail models 

often lead to overestimation (underestimation) of VaR. 

VaR, however, has been criticized on two grounds. On the one hand, Taleb (1997) and Hoppe 

(1999) argued that the underlying statistical assumptions are violated because they could not capture 

many features of the financial markets (e.g. intelligent agents). Under the same framework, many 

researchers (see for example Beder, 1995 and Angelidis et al., 2004) showed that different risk 

management techniques produced different VaR forecasts and therefore, these risk estimates might 

be imprecise.   

On the other hand, even if VaR is useful for financial institutions to understand the risk they 

face, it is now widely believed that VaR is not the best risk measure. Artzner et al. (1997, 1999) 

showed that it is not necessarily sub-additive, i.e., the VaR of a portfolio may be greater than the sum 

of individual VaRs and therefore, managing risk by using it may fail to automatically stimulate 

diversification. Moreover, it does not indicate the size of the potential loss, given that this loss 

exceeds VaR. To remedy these shortcomings, Delbaen (2002) and Artzner et al. (1997) introduced 

the Expected Shortfall (ES), which equals the expected value of the loss, given that a VaR violation 

occurred. Furthermore, Basak and Shapiro (2001) suggested an alternative risk management 

procedure, namely limited expected losses based risk management (LEL-RM), that focuses on the 

expected loss also when (and if) losses occur. They substantiated that the proposed procedure 

generates losses lower than what VaR-based risk management techniques generate.  

ES is the most attractive coherent riskii measure and has been studied by many authors (see 

Acerbi et al. 2001; Acerbi, 2002; and Inui and Kijima, 2005). Yamai and Yoshiba (2005) compared 

the two measures—VaR and ES—and argued that VaR is not reliable during market turmoil as it can 

mislead investors, whereas ES can be a better choice overall. However, they pointed out that gains on 

efficient management by using the ES measure are substantial whenever its estimation is accurate. In 

other cases, they advise the market practitioners to combine the two measures. 

The study sheds light on the issue of volatility forecasting under risk management 

environment and on the evaluation procedure of various risk models. It compares the performances 

of the most well known risk management techniques for different markets (stock exchanges, 

commodities, and exchange rates) and trading positions. Specifically, it estimates the VaR and the 

ES by using 11 ARCH volatility specifications under four distributional assumptions, namely 

normal, Student-t, skewed Student-t, and generalized error distribution. We investigated 44 models 
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following a two-stage backtesting procedure to assess the forecasting power of each volatility 

technique and to select one model for each financial market. In the first stage, to test the statistical 

accuracy of the models in the VaR context, we examined whether the average number of violations is 

statistically equal to the expected one and whether these violations are independently distributed. In 

the second stage, we employed standard forecast evaluation methods by comparing the returns of a 

portfolio with the ES, whenever a violation occurs. 

The results of this paper are important for many reasons. VaR summarizes the risk exposure 

of an investor in just one number, and therefore portfolio managers can interpret it quite easilyiii. Yet, 

it is not the most attractive risk measure.  On the other hand, the use of ES in evaluating the risk 

models can be rewarding. Currently, however, most researchers judge the models only by calculating 

the average number of violations. Moreover, even if the risk managers hold both long and short 

trading positions to hedge their portfolios, most of the research has been applied only on long 

positions. Therefore, it is interesting in investigating if a model can capture the characteristics of both 

tails simultaneously.  

This study, to best of our knowledge, is the first that estimates VaR and ESiv for three 

different markets simultaneously and therefore, we can infer if these markets share common features 

in risk management framework. Therefore, we combined the most well-known and concurrent 

parametric models with four distributional assumptions to find out which model has the best overall 

performance. Even though we did not include all ARCH specifications available in the literature, we 

estimated the models that captured the most important characteristics of the financial time series and 

those that were already used or were extensions of specifications that were implemented in similar 

studies. Finally, we employed a two-stage procedure to investigate the forecasting power of each 

volatility technique and to guide on VaR model selection process. Following this procedure, the 

selected risk model predicts VaR accurately and minimizes, if a VaR violation occurs, the difference 

between the realized and the expected loss. In contrast to this, earlier research focused mainly on the 

unconditional and conditional coverage of the models. 

To summarize, this study juxtaposes the performance of the most well-known parametric 

techniques, and shows that for each financial market, there is a small set of models that accurately 

estimate VaR for both long and short trading positions and two confidence levels. Moreover, 

contrary to the findings of the previous research, the more flexible models do not necessarily 

generate the most accurate risk forecasts, as a simpler specification can be selected regarding two 

dimensions: (a) distributional assumption and (b) volatility specification. For distributional 

assumption, standard normalv or GED is the most appropriate choice depending on the financial 

asset, trading position, and confidence level. Besides the distributional choice, asymmetric volatility 
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specifications perform better than symmetric ones, and in most cases, fractional integrated 

parameterization of volatility process is necessary. 

The rest of the paper is organized as follows: Section 2 describes the ARCH models and 

presents the calculation of VaR and ES, whereas section 3 describes the evaluation framework of 

VaR and ES forecasts. Section 4 presents preliminary statistics for the dataset, explains the 

estimation procedure, and presents the results of the empirical investigation. Section 5 presents the 

conclusions. 

2. ARCH Volatility Models 

To fix notation, let     T

ttt

T

tt ppy
010

ln    refer to the continuously compounded return 

series, where tp  is the closing price at trading day t . The return series follows the stochastic 

process: 
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where    ttt IyE 1|  denotes the conditional mean, given the information set available at time 

1t , 1tI ,  T

tt 0  is the innovation process with unconditional variance   2 tV  and conditional 

variance     2
1| ttt IV  ,  .f  is the density function of  T

ttz
0 ,  .g  is any of the functional 

forms presented in Table 1 and   is the vector of the unknown parameters. 

[Insert Table 1 about here] 

 We take into consideration the following conditional volatility specifications: GARCH  qp,  

of Bollerslev (1986), EGARCH  qp,  of Nelson (1991), TARCH  qp,  of Glosten et al. (1993), 

APARCH  qp,  of Ding et al. (1993), IGARCH  qp,  of Engle and Bollerslev (1986), 

FIGARCH  qp,  of Baillie et al. (1996), FIGARCHC  qp,  of Chung (1999), FIEGARCH  qp,  of 

Bollerslev and Mikkelsen (1996), FIAPARCH  qp,  of Tse (1998), FIAPARCHC  qp,  of Chung 

(1999), and HYGARCH  qp,  of Davidson (2004). To summarize, the selected volatility models 

include, besides others, the simplest GARCH model as also the most complex ones, such as 

FIAPARCHC and HYGARCH. All the selected models reflect the most recent developments in 

financial forecasting.   
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Similarly, the chosen density functions of  T

ttz
0  are widely applied in finance. In seminal 

Engle’s (1982) paper, the standard normal density function was used: 

  2
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. (13) 

However, as the empirical distribution of financial assets is fat-tailed, Bollerslev (1987) introduced 

the Student-t distribution: 
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where  .  is the gamma function. As v  tends to infinity, the Student-t tends to the normal 

distribution.  Since Student-t is not the only fat tailed distribution available, we also considered the 

generalized error distribution (GED), which is more flexible than the Student-t as it can include both 

fat and thin tailed distributions. It was introduced by Subbotin (1923) and applied in ARCH 

framework by Nelson (1991). Its density function is given in the following equation: 
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where    112 32   vv
  and 0v   are the tail-thickness parameters (i.e. for 2v , tz  is 

standard normally distributed and for 2v , the distribution of tz  has thicker tails than the normal 

distribution). Finally, given that both the long and short trading positions are important, the skewed 

Student-t distributionvi is also applied: 
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where g  is the asymmetry parameter, 2v  denotes the degrees of freedom of the distribution,  .  

is the gamma function, 1td  if smz t / , and 1td  otherwise. 1222  
mggs  and 

         11

2221 
 ggvvvm   are the standard deviation and the mean, respectively. 

Having estimated the vector of the unknown parameters, it is straightforward to calculate 

VaR using the following equation: 

   tt

t

tttt aFVaR |1|1|1 ;    , (17) 

where tt |1  and tt |1  are the conditional forecasts of the mean and the standard deviation at time 

1t , given the information at time t , and   t
aF ;  is the th

a  quantile of the assumed distribution, 

which is computed based on the vector of parameters estimated at time t . 
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As we have already mentioned, ES is defined as the conditional expected loss, given a VaR 

violation. Specifically, for long trading positions, it is calculated as  

  tttttt VaRyyEES |111|1 |   . (18) 

In particular, ES is a probability-weighted average of tail loss and therefore, to calculate it, we follow 

Dowd (2002) who suggested that for any distributional assumption “slice the tail into a large number 

  of slices, each of which has the same probability mass, estimate the VaR associated with each 

slice and take the ES as the average of these VaRs”.  To implement this approach, we set 5000  

to increase the accuracy.  

3. Evaluate VaR and ES Forecasts 

Having presented various risk management techniques, we now discuss their formal 

statistical evaluation. Given that VaR is never observed, not even after violation, we have to first 

calculate it and then rank the risk models by examining the statistical properties of the forecasts. 

Specifically, in the first stage, a model is deemed adequate only if it has not been rejected by both the 

unconditional and the independence hypotheses. The first hypothesis examines if the average number 

of violations is statistically equal to the excepted one and the second hypothesis if these violations 

are independent. However, risk managers who use these tests cannot rank the adequate models, 

because a model with greater p-value is not superior to its competitors and, hence, cannot be the best-

performing model.  

    We extended the forecast evaluation approach of Lopez (1999) and Sarma et al. (2003) as 

the ES was introduced in the second stage by creating a loss function that calculated the difference 

between the actual and the expected loss when a violation occurred. For all the best-performing 

models of the first stage, we implemented Hansen’s (2005) superior predictive ability (SPA) test to 

evaluate their differences statistically. As Yamai and Yoshiba (2005) pointed out, the two risk 

measures must be combined and hence, under the proposed backtesting framework, the selected 

models not only calculate VaR accurately but also minimize the difference between the actual loss 

and the ES. 

3.1. First Stage Evaluation 

The most widely used test, developed by Kupiec (1995), examines whether the observed 

exception rate is statistically equal to the expected one. Under the null hypothesis that the model is 

adequate, the appropriate likelihood ratio statistic is: 
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where N  is the number of days over a period T
~

 that a violation occurred and   is the desired 

coverage rate. Therefore, the risk model is rejected if it generates too many or too few violations, but 

based on it, the risk manager can accept a model that generates dependent exceptions. 

Christofersen (1998) proposed a more elaborate criterion, which simultaneously examines if 

(i) the total number of failures is equal to the excepted one and (ii) the VaR failure process is 

independently distributed. The appropriate likelihood ratio test of the first hypothesis is given by 

equation (19) and that of the second one by the following equation: 

         2
10011110101 ~-1ln--1-1ln2 1101100011100100 XLR

nnnnnnnn

in

  , (20) 

where ijn  is the number of observations with value i  followed by j , for 1,0, ji  and 



j ij

ij

ij
n

n
  

are the corresponding probabilities. 1, ji  denotes that a violation has been made, whereas 0, ji  

indicates the opposite, which implies that the process of  VaR failures must be spread over the entire 

samplevii. The main advantage of using these two tests is that the risk managers can reject a VaR 

model that generates too few or too many clustered violations and thereby identify the reason for its 

failure. However, they cannot rank the models based only on the p-values of these tests. 

3.2. Second Stage Evaluation 

The statistical adequacy of the VaR forecasts is obtained by the previous backtesting tests: 

the unconditional coverage (equation 19) and the independence test (equation 20). If a model is not 

rejected, it forecasts VaR accurately. However, in most cases, more than one model can be deemed 

as adequate and hence, the risk manager cannot select a unique risk management technique. 

 To overcome this shortcoming of the backtesting measures, Lopez (1999) proposed a 

forecast evaluation framework based on a loss function. The loss function enables the researcher to 

rank the models and specify a utility function that accommodates the specific concerns of the risk 

manager. Specifically, he suggested the following loss function: 
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which accounts for the magnitude of the tail losses   2

1|1   ttt yVaR  and adds a score of one 

whenever a violation is observed. The model that minimizes the total loss 



T

t

t

1

, is preferred   to 

other models. 

 Nevertheless, his approach has two drawbacks. First, if the risk management techniques are 

not filtered by the aforementioned unconditional or conditional coverage procedures, a model that 

does not generate any violation is deemed as the most adequate as 01  t . Second, the return, 1ty , 

should be better compared with the ES measure and not with the VaR, as VaR does not give any 

indication about the size of the expected loss. Therefore, with these limitations in mind, in order to 

judge the models in the second stage, we computed for each model i  the mean absolute error 

(MAE),  
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According to the two-stage backtesting procedure, the best performing model will (i) 

calculate VaR accurately, as it will satisfy the prerequisite of correct unconditional and conditional 

coverage and (ii) forecast the expected loss, given a VaR violation, as it minimizes the total loss 

value,  
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lT  statistic are obtained by using the stationary bootstrap of Politis and Romano 

(1994). 
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Under the proposed backtesting environment, the risk manager achieves three goals: forecasts 

VaR accurately and thus satisfies the prerequisites of the Basel Committee for Banking Supervision; 

selects one model or a family of models among various candidates following a statistical inference 

procedure; and finally knows in advance the amount that may be needed if a VaR violation occurs, 

and therefore is better prepared to face the future losses by forecasting ES accurately. The next figure 

briefly demonstrates the two-stage backtesting procedure. In the first stage, the investor can work 

with fewer than the available models by applying the two tests (equations 19 and 20). In the next 

stage, according to the developed loss functions (equations 22 and 23), the ES measure is used to 

evaluate statistically the best-performing models. 

 

 

4. Empirical Analysis 

To evaluate all the available volatility models, we generated out-of-sample VaR and ES 

forecasts for S&P500 equity index, Gold Bullion $ per Troy Ounce commodity and US dollar/British 

pound exchange rate, obtained from Datastream for the period April 4th 1988 to April 5th 2005. The 

daily prices, the log-returns, and the autocorrelations for the absolute log-returns are presented in 

Figure 1. Volatility clustering is clearly visible and suggests the presence of heteroskedasticity. The 

absolute log-returns are significantly positive serial autocorrelated over long lags, whereas the 

sample autocorrelations decrease too fast at the first lags; at higher lags however, the decrease 

becomes slower, indicating the long-memory property of volatility process and the need to use 

fractionally integrated volatility specifications.  

[Insert Figure 1 about here] 

In the conditional volatility specifications, we choose to set 1 qp , given that in the 

majority of empirical volatility forecasting studies, the order of one lag has proven to work 

effectively. Based on a 3000T


 rolling sample, we generated 1435
~ T

viii out-of-sample forecasts 

(the parameters are re-estimated each trading day) to calculate the 95% and 99% VaR and ES values 

for long and short trading positions. The parameters of the models were estimated using the G@RCH 

(Laurent and Peters, 2002) package of Ox (Doornik, 2001).  
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[Insert Table 2 about here] 

[Insert Table 3 about here] 

[Insert Table 4 about here] 

The MAE and MSE (equations 22 and 23), the average values of VaR and ES, the exception 

rates, and the p-values of the two backtesting measures are presented in Tables 2 to 4 for all the 

models that survived the first evaluation (equations 19 and 20)ix. 

Irrespective of the volatility models and the financial assets, ARCH specifications under the 

Student-t distribution and its corresponding skewed version overestimate VaR at both confidence 

levels.  A similar observation was made in several earlier studies (see Guermat and Harris, 2002 and 

Billio and Pelizzon, 2000 among others). Even at a 99% confidence level, they did not show any 

major improvement, as the average realized exception rates were significantly lower than the 

expected ones. The introduction of the asymmetry parameter  g  in the underlying distribution did 

not make any significant difference. In most cases, they were overestimated, mainly because  gln  

was close to zero and therefore, the two distributions in the VaR context, were similarx. 

For each financial asset appears to be a different model that forecasts VaR accurately. So and 

Yu (2006) favored different models for stock indexes and exchange rates. Specifically, for stock 

indexes, they favored an asymmetric specification and for exchange rates, a symmetric function was 

preferred.  

In our dataset and for the S&P500 index, five models (FIEGARCH-N, EGARCH-N, 

APARCH-N, TARCH-N, and FIGARCH-GED) generate adequate VaR forecasts, as the p-values of 

the backtesting measures are greater than 10% for both confidence levels and both trading positions. 

Even if the more complex models generate, in some cases, the most accurate VaR forecasts (i.e. 

FIEGARCH-GED for 95% confidence level and long trading position), they do not give the best 

overall performance. This finding is in line with that of Brooks and Persand (2003) but not with the 

argument of Mittnik and Paolella (2000) that more general ARCH structures are needed. 

Highlighting this conclusion is the observation that the IGARCH-GED model generates exception 

rates that are close to the expected ones only for the short trading positions, whereas it is rejected for 

the long trading positions, because either the model generates clustered violations or the model 

misestimates the true VaR. As far as the underlying distribution is concerned, there are indications 

that standard normal is the best overall choice, as four out of five models are normally distributed.  

The GED and normal distribution are the best overall choices for Gold. Between the two, 

GED is considered more appropriate for the commodity market. For example, if the risk manager is 

interested only in the higher confidence level and for short trading positions, he/she should use the 

GED distribution. Any other model would generate inaccurate risk forecasts. To summarize, five 
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models (GARCH-GED, IGARCH-GED, FIAGARCH-GED, FIAGARCHC-GED, and 

FIAPARCHC-GED) generated accurate predictions for both confidence levels and both trading 

positions. The risk manager can select any of these models, irrespective of the trading position, and, 

hence, satisfy the requirements of the Basel Committee. 

 For $/£ exchange rate, the choice of the most appropriate distribution is not straightforward, 

even if the Student-t and skewed Student-t distributions are rejected. For long (short) trading position 

and at 99% confidence level, the best overall distribution is the GED (normal), whereas for the other 

two cases, the results are mixed. EGARCH under the normal distribution appears to have the best 

overall performance, as only this model generates adequate VaR forecasts for long and short trading 

positions and for both confidence levels. At the lower confidence level and for long (short) trading 

position, the exception rate of the model equals to 4.67% (4.25%), whereas the corresponding rates at 

the higher confidence level are 1.39% (0.91%). Furthermore, according to the two loss functions, the 

EGARCH under the normal distribution model is always ranked first except for the higher 

confidence level and the long trading position. Therefore, it is plausible to consider this model as the 

most appropriate, as it forecasts VaR accurately for the two trading positions and confidence levels.  

Τhe difference among the VaR models cannot be evaluated statistically as neither the greatest 

p-value of the backtesting criteria nor the lowest value of the loss functions indicates the superiority 

of a model. Therefore, to evaluate the reported differences statistically, we implemented the SPA test 

taking the following as benchmark models: FIEGARCH-N, EGARCH-N, APARCH-N, TARCH-N, 

and FIGARCH-GED for S&P500, GARCH-GED, IGARCH-GED, FIGARCH-GED, FIGARCHC-

GED, and FIAPARCHC-GED for Gold and EGARCH-N for US dollar to British pound. These 

models predicted VaR accurately for all cases (long and short trading positions, and at 95% and 99% 

confidence levels). 

[Insert Table 5 about here] 

Table 5 presents the p-values of the SPA test for the null hypothesis that the benchmark 

model *
i  is not outperformed by its competing models. For example, in S&P500 index, the 

benchmark model (FIEGARCH-N) has superior forecasting ability, as the p-value of the test is 

greater than 10% in any case. All other benchmark models are outperformed, at least in one case, and 

therefore, there are indications that among the various candidate techniques only one survived the 

proposed evaluation framework. In the case of Gold, the GARCH-GED and the IGARCH-GED 

models are not outperformed by their competitors, whereas at least for 95% confidence level and 

short trading position, FIGARCH-GED, FIGARCHC-GED, and FIAPARCHC-GED models do not 

generate significantly better forecasts. Finally, for the US $ to UK £ exchange rate, the forecasting 

ability of EGARCH-N model is superior to those of other models. Also, it must be noted that the 



 12 

evaluation of the models is robust to the choice of the used loss function, because irrespective of the 

measurement method, we select the same models as the most appropriates 

According to the two-stage backtesting procedure, the risk manager has two choices: (a)  to 

select one model for each trading position and each confidence level from those models that have not 

been rejected by the backtesting measures  and (b) to use the model that forecasts VaR accurately for 

both trading positions and both confidence levels. Naturally, the second choice is better, because it 

reduces the complexity and computational costs.  Consequently, the researcher focuses only on one 

model for each financial asset. Moreover, by employing the two-stage backtesting procedure, the 

researcher evaluates statistically the differences between the models, and selects, in most cases, only 

one volatility specification. 

In summary, only some models can forecast VaR accurately in all cases. Specifically, in the 

case of S&P500 index, the FIEGARCH-N generates adequate forecasts for both confidence levels 

and both trading positions, whereas in the case of Gold, two models (GARCH-GED and IGARCH-

GED) give the best overall performance. Lastly, for the US $ to UK £ exchange rate, EGARCH-N is 

considered the best specification. 

5. Conclusions 

The performance of the most recently developed risk management techniques is examined. 

The paper proposes a two-step backtesting procedure where in the first step all the models, which are 

rejected by univariate VaR backtests, are discarded, whereas, in the second step a multivariate 

superior predictive ability test is run taking as a benchmark model each of the models which were not 

rejected in the first step for any of 95% long/short and 99% long/short VaRs. Specifically, for 

S&P500 equity index, Gold commodity and US $ to UK £ exchange rate, the VaR and ES were 

computed for two confidence levels (95% and 99%) and for two trading positions. We investigated 

whether the models forecast accurately the expected number of violations, generate independent 

violations, and predict the ES. As Hansen (2005) rightly suggested, a filtering procedure must be 

accounted for the full data exploration, before a legitimate statement of the statistical differences 

among the candidate models. The reduction of the under consideration models was achieved because 

the evaluation was made in two stages. In the first stage, the framework developed by Kupiec (1995) 

and Christofersen (1998) was implemented and in the second, the SPA hypothesis testing was 

applied. 

As multiple risk management techniques exhibit unconditional and conditional coverage, the 

utility function of risk management must be brought into picture to evaluate statistically the 

differences among the adequate VaR models. Since an investor is also interested in the loss, given a 
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VaR violation, we introduce the ES to the loss function. According to the SPA test, the risk manager 

can select, for each financial asset, a model that forecasts both the risk measures accurately. 

Therefore, the number of under consideration techniques is reduced to a smaller set of competing 

models. 

Different volatility models achieve accurate VaR and ES forecasts for each dataset. In 

summary, the proposed models are the following: 

Market Model 

S&P500 FIEGARCH-N  

Gold Bullion $ per Troy Ounce GARCH-GED/ IGARCH-GED 

US dollar / British pound EGARCH-N 

Although the most appropriate conditional volatility models are not the same for the three financial 

assets, they share some common characteristics. The normal distribution is often a better choice than 

more highly parameterized distributions. The Student-t and skewed Student-t distributions 

overestimate the true VaR. Asymmetry in volatility specification is inevitable, as all the selected 

models incorporate some form of asymmetry, whereas fractional integration is also important in 

forecasting VaR and ES. This is potentially important as the normal is more parsimonious than the 

other distributions and so this finding suggests that risk managers may be able to focus less on the 

appropriate distributional assumptions and more on the appropriate functional form or degree of 

long-memory. These findings are interesting in their own right and important for risk management as 

they help to narrow the field of empirically relevant VaR models. 
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GARCH = Generalized ARCH, EGARCH = Exponential GARCH, TARCH = Threshold ARCH, APARCH = Asymmetric Power 

ARCH, IGARCH = Integrated ARCH, FIGARCH = Fractionally Integrated GARCH, FIGARCHC = Chung’s FIGARCH, 

FIEGARCH = Fractionally Integrated EGARCH, FIAPARCH Fractionally Integrated APARCH, FIAPARCHC = Chung’s 

FIAPARCH, HYGARCH = Hyperbolic GARCH. In TARCH model, 1
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Table 2. The S&P500 case. Column 1 presents the models that have not been rejected by 
the backtesting criteria (unconditional coverage and the independence test). Columns 2 and 
3 present the values of the MAE and the MSE loss functions multiplied by 103 (in 
parentheses the ranking of the models is presented). The average values of the VaR and ES 
forecasts are presented in 4th and 5th columns, respectively. The percentage of violations is 
presented in 6th column, whereas the 7th and 8th columns present the Kupiec’s and 
Christofersen’s p-values, respectively. 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen 

Panel A. Long Position - 95% VaR 

FIEGARCH-GED 19.209 (1) 18.642 (1) -1.964 -2.664 4.18% 14.35% 14.41% 
EGARCH-N 19.868 (2) 24.350 (12) -1.848 -2.324 5.16% 78.62% 54.10% 
FIEGARCH-N 20.028 (3) 21.554 (3) -1.879 -2.365 5.16% 78.62% 27.33% 
TARCH-N 20.195 (4) 24.638 (13) -1.830 -2.302 5.30% 61.00% 32.97% 
APARCH-N 20.230 (5) 23.944 (10) -1.870 -2.352 5.23% 69.59% 58.03% 
HYGARCH-N 20.269 (6) 23.767 (9) -1.894 -2.389 4.95% 92.75% 43.06% 
FIAPARCH-N 20.681 (7) 25.742 (14) -1.890 -2.377 5.09% 88.00% 50.28% 
FIAPARCHC-N 21.112 (8) 27.365 (15) -1.942 -2.441 4.46% 33.93% 50.20% 
IGARCH-N 21.473 (9) 24.213 (11) -1.883 -2.374 5.23% 69.59% 30.07% 
FIAPARCHC-GED 21.537 (10) 22.817 (5) -1.967 -2.668 4.25% 18.19% 79.73% 
HYGARCH-GED 21.598 (11) 22.799 (4) -1.907 -2.616 4.88% 83.15% 17.99% 
EGARCH-GED 21.833 (12) 21.407 (2) -1.952 -2.659 4.53% 40.64% 54.01% 
FIGARCHC-N 22.221 (13) 27.486 (17) -1.837 -2.317 5.37% 52.95% 36.03% 
TARCH-GED 22.279 (14) 22.944 (7) -1.856 -2.534 5.09% 88.00% 50.28% 
APARCH-GED 22.376 (15) 22.903 (6) -1.901 -2.588 4.88% 83.15% 74.62% 
FIAPARCH-GED 22.388 (16) 23.726 (8) -1.912 -2.591 4.81% 73.75% 70.33% 
FIGARCH-N 23.691 (17) 28.718 (18) -1.799 -2.269 5.64% 27.19% 49.82% 
FIGARCH-GED 25.598 (18) 27.420 (16) -1.820 -2.494 5.71% 22.43% 13.61% 

Panel B. Long Position - 99% VaR 

APARCH-GED 3.938 (1) 4.635 (2) -3.015 -3.651 0.63% 12.75% 73.60% 
EGARCH-GED 4.383 (2) 3.914 (1) -3.097 -3.751 0.70% 22.22% 70.78% 
GARCH-GED 4.711 (3) 5.412 (3) -3.003 -3.658 0.63% 12.75% 73.60% 
FIAPARCH-GED 4.855 (4) 6.221 (4) -3.014 -3.637 0.63% 12.75% 73.60% 
FIEGARCH-N 5.450 (5) 7.381 (5) -2.672 -3.066 0.91% 71.59% 62.58% 
FIGARCH-GED 6.322 (6) 8.158 (6) -2.913 -3.540 0.77% 35.40% 68.01% 
HYGARCH-N 6.456 (7) 10.304 (8) -2.701 -3.103 1.12% 66.73% 54.79% 
APARCH-N 6.813 (8) 10.057 (7) -2.656 -3.046 0.98% 92.57% 59.93% 
FIAPARCHC-N 6.836 (9) 12.936 (11) -2.756 -3.161 0.98% 92.57% 12.42% 
EGARCH-N 6.965 (10) 10.323 (9) -2.625 -3.011 1.05% 86.41% 57.33% 
TARCH-N 7.487 (11) 10.782 (10) -2.600 -2.983 1.18% 49.45% 52.30% 
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Table 2. Continued 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen 

Panel C. Short Position - 95% VaR 

APARCH-N 15.106 (1) 9.702 (1) 1.921 2.402 4.53% 40.64% 17.32% 
EGARCH-N 16.357 (2) 12.342 (5) 1.902 2.378 4.53% 40.64% 17.32% 
FIEGARCH-N 16.541 (3) 12.115 (4) 1.951 2.438 4.25% 18.19% 79.73% 
TARCH-N 17.550 (4) 11.554 (2) 1.890 2.362 4.81% 73.75% 12.08% 
IGARCH-GED 17.715 (5) 12.351 (6) 1.972 2.683 4.11% 11.15% 28.27% 
GARCH-N 17.790 (6) 15.400 (10) 1.948 2.429 4.32% 22.71% 22.29% 
GARCH-GED 18.061 (7) 12.732 (7) 1.949 2.650 4.18% 14.35% 26.16% 
FIGARCHC-N 18.267 (8) 14.966 (9) 1.944 2.424 4.32% 22.71% 65.03% 
APARCH-GED 18.314 (9) 11.614 (3) 1.956 2.643 4.39% 27.95% 20.52% 
EGARCH-GED 19.484 (10) 13.706 (8) 1.993 2.699 4.11% 11.15% 71.09% 
FIGARCH-N 20.041 (11) 16.353 (12) 1.906 2.376 4.81% 73.75% 41.42% 
FIGARCHC-GED 21.789 (12) 16.574 (13) 1.936 2.621 4.39% 27.95% 61.29% 
TARCH-GED 23.007 (13) 16.134 (11) 1.917 2.595 5.02% 97.59% 33.23% 
FIGARCH-GED 23.649 (14) 17.524 (14) 1.904 2.579 4.95% 92.75% 78.97% 

Panel D. Short Position - 99% VaR 

APARCH-N 1.968 (1) 0.963 (1) 2.707 3.097 0.77% 35.40% 68.01% 
IGARCH-GED 2.669 (2) 1.600 (5) 3.124 3.790 0.63% 12.75% 73.60% 
FIGARCH-GED 2.726 (3) 1.564 (4) 2.997 3.624 0.63% 12.75% 73.60% 
TARCH-N 2.747 (4) 1.200 (2) 2.661 3.044 0.98% 92.57% 59.93% 
FIGARCHC-GED 2.829 (5) 1.702 (6) 3.046 3.682 0.63% 12.75% 73.60% 
FIEGARCH-N 2.874 (6) 1.436 (3) 2.745 3.139 0.98% 92.57% 59.93% 
GARCH-GED 3.212 (7) 1.745 (7) 3.084 3.739 0.77% 35.40% 68.01% 
EGARCH-N 3.380 (8) 2.441 (10) 2.679 3.065 0.98% 92.57% 59.93% 
IGARCH-N 3.473 (9) 2.002 (8) 2.786 3.184 1.05% 86.41% 57.33% 
HYGARCH-N 3.600 (10) 2.231 (9) 2.811 3.212 0.98% 92.57% 59.93% 
FIAPARCH-N 3.702 (11) 2.959 (13) 2.740 3.135 0.98% 92.57% 59.93% 
FIGARCHC-N 3.828 (12) 2.622 (12) 2.727 3.116 1.05% 86.41% 57.33% 
GARCH-N 4.337 (13) 2.597 (11) 2.733 3.124 1.18% 49.45% 52.30% 
FIGARCH-N 4.683 (14) 3.263 (14) 2.673 3.055 1.25% 35.16% 49.87% 
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Table 3. The Gold Bullion $ per Troy Ounce case. Column 1 presents the models that have not 
been rejected by the backtesting criteria (unconditional coverage and the independence test). 
Columns 2 and 3 present the values of the MAE and the MSE loss functions multiplied by 103 
(in parentheses the ranking of the models is presented). The average values of the VaR and ES 
forecasts are presented in 4th and 5th columns, respectively. The percentage of violations is 
presented in 6th column, whereas the 7th and 8th columns present the Kupiec’s and 
Christofersen’s p-values, respectively. 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen 

Panel A. Long Position - 95% VaR 

FIGARCHC-N 18.342 (1) 17.047 (8) -1.426 -1.785 4.11% 11.15% 71.09% 
FIGARCH-N 18.581 (2) 17.317 (9) -1.425 -1.783 4.11% 11.15% 76.84% 
EGARCH-N 20.169 (3) 21.477 (10) -1.436 -1.801 4.18% 14.35% 75.38% 
FIAPARCHC-GED 20.296 (4) 15.772 (6) -1.415 -2.054 4.18% 14.35% 75.38% 
APARCH-GED 20.311 (5) 15.128 (2) -1.450 -2.113 4.11% 11.15% 71.09% 
TARCH-GED 20.355 (6) 15.094 (1) -1.464 -2.133 4.11% 11.15% 71.09% 
FIGARCHC-GED 20.430 (7) 15.652 (3) -1.394 -2.027 4.39% 27.95% 88.53% 
FIGARCH-GED 20.657 (8) 15.710 (4) -1.397 -2.030 4.39% 27.95% 88.53% 
GARCH-GED 21.165 (9) 15.753 (5) -1.438 -2.104 4.32% 22.71% 65.03% 
IGARCH-GED 21.272 (10) 16.043 (7) -1.442 -2.109 4.32% 22.71% 65.03% 

Panel B. Long Position - 99% VaR 

EGARCH-GED 2.012 (1) 0.916 (1) -2.692 -3.431 0.70% 22.22% 70.78% 
TARCH-GED 2.463 (2) 1.469 (2) -2.540 -3.224 0.70% 22.22% 70.78% 
FIEGARCH-GED 3.011 (3) 1.626 (3) -2.659 -3.388 0.70% 22.22% 70.78% 
FIAPARCH-GED 3.040 (4) 1.862 (4) -2.479 -3.136 0.84% 52.11% 65.27% 
FIAPARCHC-GED 3.136 (5) 1.926 (5) -2.442 -3.091 0.84% 52.11% 65.27% 
HYGARCH-GED 3.292 (6) 1.927 (6) -2.509 -3.187 0.91% 71.59% 62.58% 
GARCH-GED 3.299 (7) 2.452 (8) -2.508 -3.191 0.77% 35.40% 68.01% 
IGARCH-GED 3.412 (8) 2.563 (10) -2.514 -3.200 0.77% 35.40% 68.01% 
FIGARCH-GED 3.565 (9) 2.214 (7) -2.415 -3.061 0.91% 71.59% 62.58% 
APARCH-GED 4.019 (10) 2.811 (11) -2.516 -3.194 0.84% 52.11% 65.27% 
FIGARCHC-GED 4.077 (11) 2.505 (9) -2.412 -3.057 0.98% 92.57% 59.93% 
TARCH-N 6.038 (12) 5.005 (12) -2.120 -2.428 1.25% 35.16% 49.87% 
APARCH-N 6.317 (13) 5.158 (13) -2.100 -2.406 1.32% 23.99% 47.50% 
IGARCH-N 6.440 (14) 5.685 (15) -2.093 -2.396 1.32% 23.99% 47.50% 
GARCH-N 6.742 (15) 5.788 (16) -2.086 -2.387 1.39% 15.71% 45.19% 
FIAPARCH-N 6.859 (16) 6.215 (17) -2.075 -2.376 1.25% 35.16% 49.87% 
HYGARCH-N 6.860 (17) 5.635 (14) -2.085 -2.386 1.39% 15.71% 45.19% 
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Table 3. Continued 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen 

 

Panel C. Short Position - 95% VaR 

FIEGARCH-GED 21.571 (1) 31.570 (1) 1.523 2.230 4.18% 14.35% 73.22% 
APARCH-N 22.838 (2) 39.708 (15) 1.480 1.857 4.53% 40.64% 52.08% 
TARCH-N 23.160 (3) 39.281 (14) 1.492 1.872 4.67% 56.09% 59.93% 
IGARCH-N 23.802 (4) 42.209 (19) 1.454 1.828 4.67% 56.09% 59.93% 
HYGARCH-N 23.940 (5) 38.789 (13) 1.448 1.820 4.95% 92.75% 76.78% 
FIAPARCH-N 23.964 (6) 37.328 (5) 1.455 1.826 4.88% 83.15% 72.46% 
FIAPARCHC-N 23.992 (7) 38.619 (12) 1.430 1.794 4.88% 83.15% 72.46% 
EGARCH-N 24.157 (8) 45.752 (21) 1.439 1.803 4.53% 40.64% 52.08% 
GARCH-N 24.287 (9) 42.504 (20) 1.449 1.821 4.81% 73.75% 68.20% 
APARCH-GED 24.547 (10) 37.366 (6) 1.450 2.113 4.74% 64.69% 64.02% 
GARCH-GED 24.576 (11) 38.025 (11) 1.439 2.104 4.88% 83.15% 72.46% 
IGARCH-GED 24.672 (12) 37.849 (10) 1.442 2.109 4.88% 83.15% 72.46% 
TARCH-GED 24.781 (13) 36.966 (3) 1.464 2.133 4.74% 64.69% 91.62% 
FIEGARCH-N 25.078 (14) 41.954 (18) 1.382 1.738 4.81% 73.75% 34.85% 
HYGARCH-GED 25.455 (15) 36.201 (2) 1.444 2.106 5.02% 97.59% 81.16% 
FIAPARCH-GED 26.332 (16) 37.076 (4) 1.437 2.084 5.09% 88.00% 85.58% 
FIGARCHC-N 26.620 (17) 41.097 (17) 1.397 1.755 5.71% 22.43% 75.06% 
FIGARCH-N 26.706 (18) 41.083 (16) 1.396 1.754 5.71% 22.43% 75.06% 
FIGARCH-GED 27.028 (19) 37.510 (8) 1.396 2.030 5.44% 45.51% 92.20% 
FIGARCHC-GED 27.081 (20) 37.477 (7) 1.393 2.026 5.44% 45.51% 92.20% 
FIAPARCHC-GED 27.445 (21) 37.599 (9) 1.415 2.054 5.30% 61.00% 98.94% 

Panel D. Short Position - 99% VaR 

FIAPARCH-GED 7.017 (1) 13.462 (1) 2.478 3.136 1.05% 86.41% 14.57% 
FIAPARCHC-GED 8.003 (2) 14.782 (2) 2.442 3.091 1.12% 66.73% 16.92% 
FIGARCH-GED 8.131 (3) 15.040 (3) 2.415 3.060 1.05% 86.41% 14.57% 
GARCH-GED 8.162 (4) 17.210 (6) 2.508 3.191 0.98% 92.57% 12.42% 
IGARCH-GED 8.176 (5) 16.925 (5) 2.514 3.199 0.98% 92.57% 12.42% 
EGARCH-GED 8.635 (6) 20.424 (7) 2.692 3.431 0.91% 71.59% 10.44% 
FIGARCHC-GED 8.909 (7) 15.308 (4) 2.411 3.056 1.18% 49.45% 19.44% 
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Table 4. The US $ to UK £ case. Column 1 presents the models that have not been rejected 
by the backtesting criteria (unconditional coverage and the independence test). Columns 2 
and 3 present the values of the MAE and the MSE loss functions multiplied by 103 (in 
parentheses the ranking of the models is presented). The average values of the VaR and ES 
forecasts are presented in 4th and 5th columns, respectively. The percentage of violations is 
presented in 6th column, whereas the 7th and 8th columns present the Kupiec’s and 
Christofersen’s p-values, respectively. 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen 

Panel A. Long Position - 95% VaR 

EGARCH-N 8.402 (1) 2.606 (1) -0.886 -1.112 4.67% 56.09% 61.97% 
FIEGARCH-N 8.757 (2) 2.762 (2) -0.895 -1.123 4.74% 64.69% 44.41% 
IGARCH-N 9.172 (3) 2.824 (3) -0.864 -1.084 5.09% 88.00% 68.64% 
FIAPARCHC-GED 9.976 (4) 2.876 (4) -0.833 -1.167 5.44% 45.51% 50.29% 
FIGARCHC-N 9.987 (5) 3.173 (7) -0.834 -1.047 5.44% 45.51% 20.36% 
FIAPARCH-N 10.150 (6) 3.282 (12) -0.831 -1.043 5.64% 27.19% 40.80% 
HYGARCH-GED 10.181 (7) 3.059 (5) -0.842 -1.180 5.37% 52.95% 53.72% 
FIGARCH-N 10.265 (8) 3.288 (13) -0.835 -1.048 5.57% 32.61% 17.04% 
HYGARCH-N 10.400 (9) 3.362 (15) -0.830 -1.041 5.57% 32.61% 17.04% 
FIAPARCHC-N 10.568 (10) 3.410 (18) -0.823 -1.033 5.78% 18.32% 68.94% 
GARCH-N 10.570 (11) 3.391 (16) -0.832 -1.045 5.64% 27.19% 77.13% 
FIGARCHC-GED 10.581 (12) 3.260 (11) -0.835 -1.170 5.51% 38.72% 47.00% 
FIGARCH-GED 10.584 (13) 3.230 (10) -0.844 -1.183 5.44% 45.51% 50.29% 
TARCH-N 10.592 (14) 3.393 (17) -0.834 -1.047 5.71% 22.43% 72.99% 
EGARCH-GED 10.644 (15) 3.161 (6) -0.903 -1.272 4.67% 56.09% 61.97% 
FIAPARCH-GED 10.694 (16) 3.218 (9) -0.842 -1.180 5.51% 38.72% 47.00% 
IGARCH-GED 10.777 (17) 3.212 (8) -0.863 -1.213 5.16% 78.62% 64.74% 
GARCH-GED 11.255 (18) 3.360 (14) -0.843 -1.181 5.51% 38.72% 85.65% 
TARCH-GED 11.646 (19) 3.482 (19) -0.845 -1.183 5.64% 27.19% 77.13% 
APARCH-GED 12.052 (20) 4.656 (20) -0.830 -1.161 5.71% 22.43% 72.99% 

Panel B. Long Position - 99% VaR 

FIGARCHC-GED 1.340 (1) 0.360 (1) -1.376 -1.701 0.77% 35.40% 68.01% 
IGARCH-GED 1.397 (2) 0.381 (4) -1.428 -1.769 0.70% 22.22% 70.78% 
GARCH-GED 1.453 (3) 0.382 (5) -1.389 -1.716 0.84% 52.11% 65.27% 
FIAPARCH-GED 1.488 (4) 0.377 (3) -1.388 -1.715 0.84% 52.11% 65.27% 
EGARCH-GED 1.545 (5) 0.402 (6) -1.499 -1.858 0.70% 22.22% 70.78% 
HYGARCH-GED 1.546 (6) 0.407 (7) -1.388 -1.714 0.84% 52.11% 65.27% 
FIGARCH-GED 1.569 (7) 0.411 (8) -1.391 -1.719 0.84% 52.11% 65.27% 
EGARCH-N 1.572 (8) 0.364 (2) -1.254 -1.437 1.39% 15.71% 45.19% 
TARCH-GED 1.616 (9) 0.433 (9) -1.391 -1.718 0.91% 71.59% 62.58% 
FIEGARCH-GED 1.658 (10) 0.543 (11) -1.586 -1.975 0.63% 12.75% 73.60% 
FIAPARCHC-GED 1.669 (11) 0.464 (10) -1.373 -1.696 0.77% 35.40% 68.01% 
APARCH-GED 2.020 (12) 1.171 (12) -1.364 -1.684 0.91% 71.59% 62.58% 
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Table 4. Continued 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen 
 

Panel C. Short Position - 95% VaR 

EGARCH-N 7.754 (1) 2.839 (1) 0.894 1.120 4.25% 18.19% 79.73% 
IGARCH-N 8.369 (2) 3.057 (5) 0.872 1.092 4.53% 40.64% 54.01% 
FIGARCHC-N 8.499 (3) 3.046 (4) 0.842 1.055 4.81% 73.75% 70.33% 
TARCH-N 8.639 (4) 3.013 (2) 0.844 1.057 4.88% 83.15% 74.62% 
FIGARCH-N 8.926 (5) 3.107 (8) 0.843 1.056 4.95% 92.75% 78.97% 
HYGARCH-N 8.950 (6) 3.107 (9) 0.838 1.050 5.02% 97.59% 83.37% 
GARCH-N 8.966 (7) 3.085 (7) 0.842 1.055 5.02% 97.59% 83.37% 
FIAPARCH-N 9.016 (8) 3.220 (14) 0.839 1.051 4.95% 92.75% 78.97% 
FIAPARCHC-N 9.083 (9) 3.245 (15) 0.830 1.040 5.23% 69.59% 96.72% 
FIAPARCH-GED 9.273 (10) 3.013 (3) 0.847 1.185 4.46% 33.93% 22.58% 
APARCH-N 9.545 (11) 3.344 (16) 0.823 1.031 5.37% 52.95% 94.40% 
FIGARCH-GED 9.659 (12) 3.084 (6) 0.848 1.187 4.60% 48.04% 57.94% 
HYGARCH-GED 9.693 (13) 3.116 (10) 0.846 1.184 4.67% 56.09% 61.97% 
FIGARCHC-GED 9.818 (14) 3.153 (12) 0.839 1.174 4.74% 64.69% 66.11% 
GARCH-GED 10.029 (15) 3.134 (11) 0.848 1.186 4.60% 48.04% 57.94% 
TARCH-GED 10.033 (16) 3.183 (13) 0.850 1.188 4.53% 40.64% 54.01% 
FIAPARCHC-GED 10.345 (17) 3.427 (19) 0.837 1.172 4.88% 83.15% 39.66% 
IGARCH-GED 10.376 (18) 3.392 (17) 0.867 1.217 4.46% 33.93% 50.20% 
APARCH-GED 10.668 (19) 3.407 (18) 0.835 1.166 4.88% 83.15% 39.66% 

Panel D. Short Position - 99% VaR 

EGARCH-N 1.922 (1) 0.623 (1) 1.262 1.446 0.91% 71.59% 10.44% 
FIEGARCH-N 1.999 (2) 0.650 (2) 1.273 1.458 0.98% 92.57% 12.42% 
TARCH-N 2.175 (3) 0.695 (3) 1.192 1.364 1.05% 86.41% 14.57% 
IGARCH-N 2.246 (4) 0.730 (5) 1.231 1.410 1.05% 86.41% 14.57% 
GARCH-N 2.256 (5) 0.701 (4) 1.189 1.362 1.12% 66.73% 16.92% 
HYGARCH-N 2.501 (6) 0.786 (6) 1.184 1.355 1.25% 35.16% 22.13% 
FIAPARCH-N 2.511 (7) 0.852 (9) 1.185 1.357 1.12% 66.73% 16.92% 
FIGARCH-N 2.585 (8) 0.816 (7) 1.190 1.363 1.25% 35.16% 22.13% 
APARCH-N 2.614 (9) 0.849 (8) 1.162 1.330 1.25% 35.16% 22.13% 
FIAPARCHC-N 2.647 (10) 0.908 (11) 1.172 1.343 1.25% 35.16% 22.13% 
FIGARCHC-N 2.753 (11) 0.877 (10) 1.189 1.362 1.32% 23.99% 25.00% 
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Table 5. The p-values of the SPA test for the null hypothesis that the 
benchmark model is not outperformed by its competing models. 

Loss 
Function 

Long Position 
95% VaR 

Long Position 
99% VaR 

Short Position 
95% VaR 

Short Position 
99% VaR 

S&P500 
(Benchmark Model: FIEGARCH-N) 

  

MAE 0.81390 0.12790 0.61030 0.26370 

MSE 0.34780 0.17080 0.28250 0.38550 

(Benchmark Model: EGARCH-N)   

MAE 0.89750 0.08000b 0.59720 0.20970 

MSE 0.32300 0.11730 0.33850 0.43500 

(Benchmark Model: APARCH-N)   

MAE 0.87810 0.04360a 0.97800 0.89900 

MSE 0.34690 0.11450 0.99820 0.99050 

(Benchmark Model: TARCH-N)   

MAE 0.88740 0.02690a 0.16050 0.48620 

MSE 0.35010 0.12440 0.07160b 0.69910 

(Benchmark Model: FIGARCH-GED)   

MAE 0.01340a 0.09190b 0.00600a 0.79410 

MSE 0.06970b 0.19970 0.00330a 0.77080 
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Table 5. Continued   

Loss 
Function 

Long Position 
95% VaR 

Long Position 
99% VaR 

Short Position 
95% VaR 

Short Position 
99% VaR 

 

  

Gold Bullion $ per Troy Ounce 
(Benchmark Model: GARCH-GED) 

  

MAE 0.36750 0.34000 0.34680 0.56090 

MSE 0.84510 0.32590 0.43570 0.34920 

(Benchmark Model: IGARCH-GED)   

MAE 0.31350 0.35870 0.32110 0.53350 

MSE 0.23210 0.32260 0.43330 0.43680 

(Benchmark Model: FIGARCH-GED)   

MAE 0.26480 0.21560 0.06820b 0.38710 

MSE 0.81200 0.11440 0.20400 0.47350 

(Benchmark Model: FIGARCHC-GED)   

MAE 0.32250 0.11250 0.06840b 0.10370 

MSE 0.84020 0.07850b 0.19470 0.28370 

(Benchmark Model: FIAPARCHC-GED)   

MAE 0.37010 0.41260 0.02870a 0.12790 

MSE 0.83110 0.37380 0.05430b 0.05330b 

US $ to UK £ 
(Benchmark Model: EGARCH-N) 

  

MAE 0.95180 0.72780 0.96560 0.78310 

MSE 0.97730 0.89700 0.97300 0.91270 
a Indicates that the null hypothesis is rejected at 5% level of significance. 
b Indicates that the null hypothesis is rejected at 10% level of significance. 
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Figure 1. Daily closing prices, log-returns and the lag 1 through 1000 autocorrelations for the absolute 

log-returns from April 4th, 1988 through April 5th, 2005. 
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* The vertical lines present the 95% confidence interval of no serial dependence, T/96.1 . 
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iMittnik and Paoella (2000) also used the APARCH model to accommodate the time varying skewness of the exchange rate market.  
iiA coherent risk measure is defined as the one that satisfies the following four properties: (a) sub-additivity, (b) homogeneity, (c) 
monotonicity, and (d) risk-free condition.  These are described in the following equations: (a) )()()( yxyx   , (b) 

)()( xttx   , (c) y xif )()(  yx  , and (d) n-)()( xnx   . For more details on coherent risk measures, see Artzner et 

al. (1997).  
iiiAs the 4:15 report JP Morgan did.  
ivBali and Theodosiou (2006) suggested either the TS-GARCH, proposed by Taylor (1986) and Schwert (1989), or the EGARCH 
model, introduced by Nelson (1991), as the VaR and ES measures were estimated accurately. 
v
 This is potentially important as it suggests that risk managers must focus less on the appropriate distributional assumptions and more 

on the appropriate volatility functional form. 
viThe skewed Student-t distribution was introduced by Fernandez and Steel (1998) and was applied by Lambert and Laurent (2000) in 
ARCH framework. Moreover, Kuester et al. (2006) argued that compared to the normal distribution, substantial improvement in 
predicting VaR was achieved when asymmetrical fat tailed distribution was used.  
viiThe log-likehood ratio statistic of the combined hypothesis is computed as: 

        2
211110101

N-T
~-1-1ln21ln2- 11100100 XLR

nnnnN

cc   , under the null hypothesis of an independence 

failure process with failure probability  . 

viii
TTT



~

. 
ixWe set the cut off point to 10% to ensure that the successful models will neither over nor underestimate the true VaR and the 
sequence of violations will be independent.  Detailed results for all the models are available upon request.  
x
The rolling parameters are available upon request. 


