
Munich Personal RePEc Archive

A Monte Carlo Simulation Approach to

Forecasting Multi-period Value-at-Risk

and Expected Shortfall Using the

FIGARCH-skT Specification

Degiannakis, Stavros and Dent, Pamela and Floros, Christos

Department of Economics, Portsmouth Business School, University

of Portsmouth, Postgraduate Department of Business

Administration, Hellenic Open University

2014

Online at https://mpra.ub.uni-muenchen.de/80431/

MPRA Paper No. 80431, posted 30 Jul 2017 12:09 UTC



1 

 

A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and 

Expected Shortfall Using the FIGARCH-skT Specification 

Stavros Degiannakis∞,*,**, Pamela Dent* and Christos Floros*  

*Department of Economics, Portsmouth Business School, University of Portsmouth, 

Richmond Building, Portland Street, Portsmouth, UK, PO1 3DE 

** Postgraduate Department of Business Administration, Hellenic Open University, 

Aristotelous 18, Greece, 26 335, 

Abstract 

 In financial literature, Value-at-Risk (VaR) and Expected Shortfall (ES) modelling is 

focused on producing 1-step ahead conditional variance forecasts. The present paper provides 

a methodological contribution to the multi-step VaR and ES forecasting through a new 

adaptation of the Monte Carlo simulation approach for forecasting multi-period volatility to a 

fractionally integrated GARCH framework for leptokurtic and asymmetrically distributed 

portfolio returns. Accounting for long memory within the conditional variance process with 

skewed Student-t (skT) conditionally distributed innovations, accurate 95% and 99% VaR 

and ES forecasts are calculated for multi-period time horizons. The results show that the 

FIGARCH-skT model has a superior multi-period VaR and ES forecasting performance. 
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1. Introduction  

 Value-at-Risk (VaR) is an important tool in risk measurement and the management of 

the financial assets. Originally used internally by financial institutions to assess risk, VaR 

assumed greater significance when the Basel Committee encouraged its use through the 1996 

Market Risk Amendment to the 1988 Basel Accord (Basel, 1988; Basel, 1996). Subsequently, 

the Basel Committee has refined the regulations relating to the use of VaR, allowing greater 

flexibility for certain financial institutions to use their own internal VaR models subject to the 

models being approved by the regulator (Basel, 2006). 

 VaR quantifies the maximum loss for a portfolio of assets under normal market 

conditions over a given period of time and at a certain confidence level. Although financial 

institutions have flexibility over the model which is used to estimate VaR, the regulations 

prescribe that they use up to one year of historical data to calculate the daily VaR for their 

positions. This daily VaR should be up scaled to a 10-day VaR figure to represent the banks 

having at least a 10-day holding period for any given position. The recent financial crash has 

highlighted the importance and need for reliable models to predict VaR, and has led to further 

amendments to the regulations, which now require financial institutions to additionally 

calculate a ‘stressed value-at-risk’ measure using a one year data period in which the bank 

incurred significant losses (Basel, 2009). Expected Shortfall (ES) is an alternative to VaR that 

is more sensitive to the shape of the loss distribution in the tail of the distribution. ES 

quantifies the expected value of the loss, given that a VaR violation has occurred. 

 Within the literature the ability of a variety of increasingly complex models (both 

parametric and non-parametric) to estimate and forecast VaR has been tested. These models 

can account variously for certain features of financial asset returns such as heteroskedasticity, 

asymmetry or leverage effects, leptokurtic distribution and long memory (hyperbolic decline 

of the conditional variance); see Alexander (2008) for more details. The various competing 

models have been compared using a range of distributions for the standardised residuals 

(normal, Student-t, skewed Student-t, generalized error distribution, stable Paretian, 

exponential generalized beta), across a number of markets for different levels of statistical 

significance, often for both long and short positions; see González-Rivera et al. (2004), 

Xekalaki and Degiannakis (2010) for more details.  

 At present, the findings in the literature are highly inconsistent as to which is the 

optimal model for estimating VaR. The best model appears to vary, amongst other factors, 

with the length of the data series, the market for which VaR is being estimated and the 

assumptions regarding the distribution of the standardised residuals (Angelidis et al., 2004).  
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Furthermore, a model found to be superior for estimating VaR for long positions may not be 

optimal for estimating VaR for short positions due to the asymmetric distribution of financial 

returns (Shao et al., 2009).  

 The empirical success of the Generalised Autoregressive Conditional 

Heteroscedasticity (GARCH) framework (Engle, 1982 and Bollerslev, 1986) to model high 

frequency volatility has been widely highlighted, with many papers focussing on the selection 

of the optimal GARCH specification in order to calculate and predict VaR (see, for example, 

Giot and Laurent, 2003a, 2003b, 2004, Caporin, 2008, Tang and Shieh, 2006, McMillan and 

Kambouroudis, 2009). Literature provides evidence that among the simple models, the 

GARCH(1,1) model is the most adequate one. Thus, our intention is to compare the baseline 

model with a more complex specification to allow an assessment of the trade-off between 

complexity and accuracy. Berkowitz and O’Brien (2002), in order to assess the performance 

of the banks structural models, compare their VaR forecasts with those from a GARCH 

model of the banks P&L volatility. They provide evidence that the banks structural VaR 

models do not provide forecasts superior to a simple GARCH model of P&L volatility1. 

 Grané and Veiga (2008) demonstrate that long memory models outperform short 

memory GARCH specifications, but like the majority of VaR studies, limit their backtesting 

to forecasting horizon of just one trading day. By contrast, financial institutions are required 

by the Basel Committee to calculate the VaR of their positions for at least a 10-day holding 

period in order to calculate their minimum capital risk requirements (Basel, 2009). Although 

the Basel Committee suggest that 10-day VaR may be calculated by augmenting 1-day VaR 

using the square root of time rule2, Wang et al. (2011), Engle (2004) and Danielsson (2002) 

criticise this technique on the basis that it makes the invalid assumption that the returns are 

independently and identically normally distributed and that volatilities over time are constant. 

Danielsson and Zigrand (2006) show that the square root of time scaling rule can lead to an 

underestimation of market risk, especially for longer time horizons. Beltratti and Morana 

(1999) find for horizons of one, five and ten days, that the FIGARCH model produces similar 

VaR forecasts to the simpler GARCH model, when the multi-period forecasts have been 

constructed based on the square-root-of-time rule. 

 Hartz et al. (2006) employ a re-sampling technique based on the bootstrap and bias 

correction step to improve the multi-period VaR forecasts produced by the simple normally 
                                                           
1
 The GARCH model, for lower VaRs, is better at predicting changes in volatility and permits comparable risk 

coverage with less regulatory capital. 
2
 To account for the non-linear price characteristics of options contracts, financial institutions are expected to 

move towards calculating a full 10-day VaR for positions involving such contracts. 
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distributed AR(1)-GARCH model. They employ another standard multi-period forecasting 

technique of iterating the conditional mean and conditional variance specifications, using 

expected values where the returns or innovations are inestimable. Brooks and Persand (2003) 

use a similar technique to investigate methods of evaluating multi-period volatility forecasts 

produced by a range of GARCH family and other linear models. By contrast, Kinateder and 

Wagner (2010) show that a scaling-based GARCH-LM technique produces superior VaR 

forecasts to a benchmark fully parametric GARCH model utilising the Drost-Nijman (1993) 

formula for multiday volatility forecasts, especially for the five and ten day horizons.   

 Multi-period VaR may be estimated using a variety of techniques, including 

parametric or variance-covariance approaches, non-parametric approaches (e.g. historical 

simulation), semi-parametric approaches (e.g. extreme value theory) and Monte Carlo 

simulation (Dionne et al., 2009). For example, Semenov (2009) proposes a historical 

simulation technique which allows the accurate estimation of 1-day and 10-day VaR figures 

conditional on the historical sensitivity of assets returns (within a portfolio) to various 

macroeconomic factors (risk factor betas) over a period of time. Dionne et al. (2009) use a 

Monte Carlo approach to estimate intraday VaR (IVaR) using tick-by-tick data. Employing a 

log ACD-ARMA-EGARCH model3, they find that the approach produces reliable estimates 

of intra-day risk. The model benefits from its greater informational content than IVaR 

estimates based on regularly spaced data, and a greater flexibility with regard to the 

estimation time horizon. Recently, Huang (2010) uses an iterative Monte Carlo Simulation 

approach to produce a reliable VaR model, which more adequately models shocks to 

financial markets than a simple Monte Carlo Simulation. Further, Hoogerheide and van Dijk 

(2010) propose a technique for forecasting multiple step ahead VaR and ES using a Bayesian 

approach. Using data from the S&P 500 index, they find that the 10-day ahead forecasting for 

a single asset has similarities with the 1-day ahead forecasting (for a portfolio of 10 assets). 

 The present paper presents an empirical application of forecasting 1-step, 10-step and 

20-step ahead 95% and 99% VaR and ES for 10 major worldwide stock indices4. Accurate 

VaR and ES forecasts are calculated by considering long memory within the conditional 

variance process and skewed Student-t conditionally distributed innovations. The Student-t 

distribution is commonly used in financial risk management (VaR models) with various 

                                                           
3
 In full, this is a log autoregressive conditional duration –autoregressive moving average – exponential GARCH 

model. 
4
 At each point in time t , the risk forecasts for the 

th  day ahead is conducted; we do not sum up the forecasts 

made at time t  for the next  -day ahead daily variances. 
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methodologies being proposed (e.g. the two piece method by Hansen, 1994, Fernandez and 

Steel, 1998, Bauwens and Laurent, 2005, Azzalini and Capitanio, 2003, Zhu and Galbraith, 

2010). In this paper, to fully capture not only the leptokurtosis but also the asymmetry of the 

portfolio returns, we incorporate the skewed version of the Student-t distribution proposed by 

Fernandez and Steel (1998). Further, according to Hoogerheide and van Dijk (2010), the 

model selection has an important effect on the numerical accuracy of the VaR and ES 

estimates. 

 The key contribution of this paper is to propose a new adaptation of the Monte Carlo 

simulation technique of Christoffersen (2003) for forecasting multiple step ahead VaR and 

ES. The present paper enables i) the incorporation of long memory in the volatility of the 

returns as well as ii) the utilization of skewed Student-t conditionally distributed innovations 

in estimating multi-period VaR and ES forecasts. At present, there are, to the best of the 

authors’ knowledge, no studies within the literature, which estimate multi-period VaR or ES 

using either a fractionally integrated volatility model or leptokurtotic and asymmetric 

conditional distribution of innovations. Moreover, the proposed simulation-based algorithm 

differs from existing methods to produce long horizon VaR, in that it estimates the time path 

of volatility and density function for the returns and not just scaling the tail risk (see for 

example Wang et al. 2011).   

 The results show that the FIGARCH-skT model has a superior multi-period VaR and 

ES forecasting performance to the GARCH-skT model, for the 10-step and 20-step ahead 

time horizons. The result that accounting for fractional integration and asymmetric and 

leptokurtic conditional distribution improve the multi-period VaR and ES forecasting 

performance should prove to be valuable information for risk analysts and managers. 

 The remainder of the paper is organised as follows: Section 2 presents the framework 

of the GARCH-skT and FIGARCH-skT models. Section 3 shows the methods for modelling 

1-step ahead and multiple step ahead VaR and ES, while Section 4 describes our data. 

Section 5 presents the empirical analysis of this paper and Section 6 concludes the paper and 

summarises the main findings. 

 

2. Modelling GARCH-skT and FIGARCH-skT 

 To successfully capture the characteristics of financial returns data, many papers use 

GARCH family models under different distributional assumptions. In this paper, we assume 
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that the data generating process for the log-returns series,
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the closing price on trading day t , follows an ARCH process (Engle, 1982):   

ttty   , 

                           ttt z  ,  where  ,1,0~ fzt ,                                          (1) 
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wIg tt   

The standardized error term tz  has a density function  .f , where   0tzE ,   1tzVar , and 

  represents the vector of parameters of f  to be estimated.  The conditional variance of the 

error term, 2
t , is a time-varying, positive and measureable function  .g  of the information 

set  1tI  at time 1t , with w  the vector of parameters to be estimated in the conditional 

variance equation. 

 For the GARCH  qp,  specification,  .g  takes the functional form: 

                                   
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2  .                                              (2)                    

Equation (2) can be rewritten with lag operators as follows: 

                                     ,22
0

2
ttt LLaa                                                       (3) 

where  La  and  L  are lag operator polynomials of order q  and p  
respectively. 

 Turning to the rate of decay of shocks to the conditional volatility process, Baillie et 

al. (1996) noted that the distinction between integrated specifications, where shocks affect the 

optimal volatility forecast indefinitely, as for example in the IGARCH  qp,  specification 

given by: 

                                          ,11 22
0

2
ttt LaLL                                          (4) 

and covariance stationary models, where shocks to the volatility process decay exponentially, 

such as the GARCH  qp,  specification, was too sharp. To solve this, Baillie et al. (1996) 

introduced the FIGARCH  qdp ,,
 
process, by replacing the first difference operator from 

equation (4) with the fractional differencing operator  dL1 : 

                                     ,11 22
0

2
ttt

d
LaLL                                        (5) 
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where         1
11

 LLLaL  . The roots of  L  and   L1  lie outside of the 

unit circle.   

 The fractional differencing operator  dL1  is defined as:  

  




0
1

j

j

j

d
LL   where 

 
   dj

dj
j 




1
 . (6) 

In the FIGARCH model, 10  d  
indicates that shocks to the conditional variance decay at a 

hyperbolic rate (Baillie et al., 1996). The FIGARCH model nests the IGARCH  qp,  where 

1d , as well as the GARCH  qp, , where 0d . FIGARCH processes are strictly 

stationary and ergodic but are not weakly stationary since the second moment is infinite. 

 There is substantial evidence for the presence of long memory in volatility of daily 

and high frequency datasets; see Baillie et al. (1996) and Kilic (2011). Corsi (2009) shows 

that long memory specification improves the forecasting accuracy of realized volatility 

significantly. Moreover, recent evidence on volatility forecasting applied to high frequency 

datasets shows that “the forecasting accuracy is improved when the long memory property is 

taken into account”; see Chortareas et al. (2011)5. 

 The conditional mean is modelled using an ARMA(1,0) whilst in the conditional 

variance it is assumed that 1 qp . The fact that the values of time series are often taken to 

have been recorded at time intervals of one length when in fact they were recorded at time 

intervals of another, not necessarily regular, length is an effect known as the non-

synchronous trading effect. Non-synchronous trading in the stocks making up an index 

induces autocorrelation in the return series. To control this Lo and MacKinlay (1988) 

suggested a first order autoregressive form for the returns’ process. For more details see 

Campbell et al. 1997. Following Angelidis et al. (2004), we do not select the order of p  and 

q  according to a model selection criterion, such as the Akaike Information Criterion (AIC) or 

the Schwarz Bayesian Criterion (SBC).6 They argue that in the majority of empirical studies 

the order of one lag has proven to work effectively in forecasting volatility for both GARCH 

and ARFIMA frameworks; hence, in this study we choose to set 1 qp . 

                                                           
5
 Chortareas et al. (2011) argue that the FIGARCH model performs better than GARCH model when high 

frequency data on euro exchange rates are considered. 
6
 According to Degiannakis and Xekalaki (2007, p.154) the commonly used in-sample methods of model 

selection such as AIC, SBC and Mean Squared Error (MSE), do not lead to the selection of a model that closely 

tracks future volatility. Moreover, Angelidis and Degiannakis (2007) provide evidence that an order of one lag 

has been shown to be sufficiently effective in modelling conditional volatility. 
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 Further, since financial returns data is characterised by its skewness and its excess 

kurtosis, the standardised residuals are distributed on a skewed Student-t distribution, in 

preference to the normal distribution which, has been widely shown to underestimate risk, 

particularly in the tails of the returns distribution (see Giot and Laurent, 2003a, 2003b; 

Angelidis et al., 2004; Tang and Shieh, 2006; Kuester et al., 2006). 

 Therefore, the overall model is an AR(1)-FIGARCH  1,,1 d  with skewed Student-t 

distributed innovations, utilising the density function proposed by Fernandez and Steel 

(1998); see also Lambert and Laurent (2000, 2001)7: 

 

   
     

 

  

  
   
  

   
,

,

2
1

2

22

21

2
1

2

22

21

,;

,,;1,0~

,
11

,

,1

1

1

2

1

1

1

2

1

1

...

2
11

1

2
11

22
1110

2

1110












































































































msz

msz

if

if

g
msz

gg

s

g
msz

gg

s

gzf

gvskTz

baL
jd

djd
baa

z

ycccy

t

t

t

t

tskT

dii

t

t

j

tt

j

tt

ttt

ttt


















 

 (7) 

where g  and   are the asymmetry and  tail parameters of the distribution, respectively, 

         11

2221 
 ggm  , and 1222  

mggs . 

 

3.  Modelling 1-step ahead and multiple step ahead VaR and ES 

 VaR at a given probability level  1  is a single figure which represent a portfolio’s 

worst possible outcome (either a significant loss when a long position is held, or an 

exceptionally high return if a short position is held), which is likely to occur under normal 

market conditions over a pre-determined period and for a given confidence level, i.e.  1 . 

However, the use of VaR has a number of limitations. There is no indication of the size of the 

loss when it exceeds the VaR figure. This problem can be overcome by calculating the ES of 

the portfolio which is a coherent risk measure8. In the event of a VaR violation, the ES is 

                                                           
7
 Note that AR(1) is presented as 

ttttt
eceecy  110

, , thus    
ttt

cyccy   0110 . 
8
 A risk measure   is coherent if it is in accordance with the properties of (i) sub-additivity, (ii) homogeneity, 

(iii) monotonicity and (iv) risk-free condition. These are described in the following equations: (i)
      yxyx   ; (ii)    xttx   ; (iii)    yx    if yx   and (iv)     nxnx   .

 
For further 
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defined as the conditional expected loss. Moreover, the majority of VaR models suffer from 

excessive VaR violations, implying an underestimation of market risk (Kuester et al., 2006)9. 

 Having estimated the parameters of the model, the 1-step ahead VaR is calculated as: 

   ,; |1|1
)1(

|1 tt

t

tttt FVaR 

    (8) 

where 
tt |1  and 

tt |1  are the conditional forecasts of the mean and of the standard deviation 

at time 1t , given the information available at time t , respectively.   t
F  ;  is the th  

quantile of the assumed distribution, given the estimated parameters   at time t . 

 The1-step ahead ES forecast for long trading positions is the 1-day ahead expected 

value of the loss, given that the return at time 1t  falls below the corresponding value of the 

VaR forecast, and is defined by:  

  )1(
|111

)1(
|1 |  



  tttttt VaRyyEES . (9) 

 The proposed algorithm has been constructed in order to provide a methodological 

contribution to the multi-step VaR and ES forecasting under a fractionally integrated 

volatility framework for leptokurtic and asymmetrically distributed portfolio returns. The key 

innovation of this paper is the estimation of multiple step ahead VaR and ES for the 

FIGARCH-skT specification. The new methodology is based on the numerical technique 

presented in Xekalaki and Degiannakis (2010) and has been adapted from Christoffersen 

(2003).  

 Consequently, we suggest a new adaptation of Christoffersen (2003) method, for 

calculating multiple VaR and ES for FIGARCH-skT, using a number of steps arising from a 

new algorithm. 

 To generate the  -step ahead VaR and ES forecasts for the AR(1)-FIGARCH  1,,1 d -

skT model, set out in framework (7), we employ a Monte Carlo simulation technique. Steps 

.1 in the algorithm are required to produce leptokurtic and asymmetrically conditionally 

distributed log-returns. Since analytical expressions for the multi-period density are not 

available, Steps .2 and .3 are used for obtaining estimates for multiperiod VaR and ES based 

on the fractional differencing operator. The out-of-sample observations for each index, T
~

, 

                                                                                                                                                                                     

details, see Artzner et al. (1999). I.e, VaR is not sub-additive, which means that the VaR of an overall portfolio 

may be greater than the sum of the VaRs of its component parts.   
9
 Our empirical results suggest that the method presented in this study tends to overestimate market risk for 

the 1-step ahead time horizon, but that this tendency diminishes for longer forecasting horizons, and 

particularly for the 10-step ahead forecasting period.  
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are divided into T
~

 non-overlapping intervals of observations, with   observations in each 

interval.10  For each non-overlapping interval, we proceed as follows11: 

Step 1.1: Generate random numbers  MC

iiz
11, 


 from the skewed Student-t distribution, where 

000,5MC  denotes the number of draws (see Note 1 in the Appendix). The pseudo-random 

numbers are used to compute the innovations for period 1t  
onwards.   

Step 1.2: Create the hypothetical returns of time 1t , as (see Note 2 in the Appendix): 

      
t

ttt

ittti yccczy 1101,|11, 1  
  , for MCi ,,1 .                            (10) 

The return at time 1t  is generated according to the AR(1) process. The value of the error 

term at time 1t , is simulated using the relation 1,|11 ittt z


  .   

Step 1.3: Create the forecast variance for time 2t  as (see Note 3 in the Appendix): 
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The values of the innovations up to time t
 
are extracted from the model's estimation, whilst 

the value of the innovation at time 1t  
is estimated, as detailed above, and is treated 

separately. 

Step 2.1: Generate further random numbers,  MC

iiz
12, 


from the skewed Student-t distribution, 

to be used to simulate the innovations for period 2t  onwards. 

Step 2.2: Calculate the hypothetical returns of time 2t , using the AR(1) process, 

      
1,1102,2,2, 1   ti

ttt

ititi yccczy
  , for MCi ,,1 .                                                     (12) 

Step 2.3: Create the forecast variance for time 3t  as (see Note 4 in the Appendix): 
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 (13) 

Innovation terms relating to periods 1t  
onwards are simulated using the relation 

.,| jitjtjt z


 
 

…   

Repeat the process for Step 3 through to Step τ -1. 

… 

                                                           
10

 The use of non-overlapping intervals is necessary to avoid autocorrelation in the forecast errors. 
11

 The program code for this simulation is available from the authors on request. 
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Step 1τ. : Generate further random numbers,  MC

iiz
1, 


, from the skewed Student-t distribution, 

to be used to simulate the innovations for period t  onwards. 

Step 2τ. : Calculate the hypothetical returns of time t , 

      
1,110,,, 1     ti

ttt

ititi yccczy


 .                                                                      (14) 

Step 3τ. : Construct a density function for the returns at time t
 
using the 5,000 simulated 

returns.  Calculate the  -day  1 VaR figure for the left-hand tail of this distribution, i.e. 

  MC

ititt yVaR
1,

)1(
| f



  





. 

 Repeat Steps 1.1 through to 3τ.  for each of the non-overlapping intervals of 
 

observations, such that a total of T
~

 VaR forecasts will be produced.  

 

 The  -day ahead ES forecast for long trading positions is the  -day ahead expected 

value of the loss, given that the return at time t  falls below the corresponding value of the 

VaR forecast, and is defined by:  

  )1(
|

)1(
| | 









  tttttt VaRyyEES , (15) 

The value of the -day ahead ES measure is given by: 

 )~1(
|

)1(
|











  tttt VaREES ,   ~0 .  (16) 

 Following Dowd (2002), to calculate the ES we divide the tail of the probability 

distribution of returns into a large number k
~

 of slices each with identical probability mass, 

estimate the  -day ahead VaR attached to each slice and find the mean of these VaRs to 

estimate the  -day ahead ES12. 

  











k

i

ki

tttt VaRkES

~

1

)1
~

1(
|

1)1(
|

1~ 



 . (17) 

4. Data Description 

 In order to examine the robustness of the VaR and ES forecasts produced by the 

proposed forecasting mode, VaR and ES forecasts were generated using daily returns data 

from 10 developed market stock indices. The indices are: Austrian Traded Index 

(ATXINDX), French Cotation Assistée en Continu - Continuous Assisted Quotation 40 

(FRCAC40), Deutscher Aktien IndeX - Dax 30 Performance (DAXINDX), UK Financial 

                                                           
12

 In this study we take k
~

 to be 5,000. 
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Times Stock Exchange 100 (FTSE100), Hang Seng (HNGKNGI), Nikkei 225 Stock Average 

(JAPDOWA), OMX Stockholm (SWSEALI), National Association of Securities Dealers 

Automated Quotations - NASDAQ 100 (NASA100), NYSE Composite (NYSEALL) and 

Standard and Poor’s 500 Composite (S&PCOMP). Our sample considers data from major 

world stock market indices with the longest continuous history13. The selection is based on 

the following criteria: i) the indices’ market capitalization, and ii) the fact that they are the 

most publicly quoted stock market indices. In addition, most indices are considered as 

benchmark indices for large stocks (e.g. NASDAQ, NYSE, S&P500) traded internationally 

as they contain about 70%-80% of the value of their individual stocks (the selected indices 

track the performance of large companies based in the specific country). Moreover, the list 

includes world’s top stock exchanges by value shares traded as reported by World Federation 

of Exchanges Industry Association (WFE); see www.world-exchanges.org. The data, which 

was obtained from Datastream
® for the period from 12th January, 1989 until 12th February, 

2009, was conditioned to remove any non-trading days.  Thus, the total number of log returns 

for a given index, T , ranged from 4,924 for the Nikkei 225 Stock Average, to 5,051 for the 

FTSE100 Index. Based on a rolling sample of T̂ 2,000 observations, a total of TTT ˆ~   

out-of-sample forecasts were produced for each model (with the parameters of the conditional 

mean, conditional variance and density function re-estimated each trading day) 14. 

 Descriptive statistics for the daily log-returns for the selected indices are given in 

Table 1.  All of the returns distributions are leptokurtic and the majority are negatively 

skewed. The Jarque-Bera test results indicate that none of the log-returns series follow a 

Gaussian distribution. The absolute value of the log returns are significantly positively 

autocorrelated for a high number of lags. Examining the correlograms for the various indices, 

the decay in the value of the autocorrelation coefficients is initially rapid, before slowing and 

is suggestive of the hyperbolic decay which is typical for a long memory volatility process15.  

<Insert Table 1 about here> 

 Table 2 reports the full sample parameter estimates of the FIGARCH-skT model in 

order to provide a fair amount of evidence that i) the long-memory of conditional volatility as 

well as ii) a leptokurtic and asymmetric conditional distribution of innovations are present. 

The long memory parameter is statistically significant for all the indices supporting the 
                                                           
13

 For example, the Austrian ATX as well as the Swedish OMX indices are the leading indices of the Wiener 

Borse and the Stockholm Stock Exchange, respectively; both are two of the world’s oldest exchanges (Wiener 
Borse was founded in 1771, while Stockholm Exchange was founded in 1863). 
14

 The estimations were carried out using the G@RCH 6.0 (Laurent, 2009) package of Ox (Doornik, 2009). 
15

 Correlograms for the absolute log returns of the 10 indices are available from the authors on request. 
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presence of long-memory. Moreover, the parameters of the skewed Student-t distribution are 

statistically significant strongly supporting the use of a skewed and leptokurtic distribution. 

<Insert Table 2 about here> 

5. Empirical Analysis 

 

5.1. Evaluation Framework 

 A model is considered to accurately forecast the  -step ahead VaR if it cannot be 

rejected by both the independence and conditional coverage hypotheses. Potential clustering 

of the VaR violations is an important consideration, and is tested for using the independence 

hypothesis. Christoffersen (1998) examines whether the instances of VaR failure are 

independent, based on the likelihood ratio statistic given below: 

     2
111110101 ~~~1log211log2

11011000

11100100  
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
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
 
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N

T

N
LR , 

     

(18) 

where, N  is the number of days on which a violation occurred across the total VaR 

estimation period T
~

, ijn  is the number of observations with value i  followed by j  for 

1,0, ji , and 



j ij

ij

ij
n

n
  are the corresponding probabilities16. The purpose of the test is to 

examine the null hypothesis that the VaR failures are independent and are spread over the 

whole estimation period, against the alternative hypothesis that the failures tend to be 

clustered. The main advantage of the test is that it can reject a model that generates either too 

many or too few clustered exemptions (see Cheng and Hung, 2010). As Angelidis et al. 

(2004) argue, the Christoffersen (2003) procedure can be used to separate clustering effects 

from distributional assumption effects. 

 The conditional coverage hypothesis (Christoffersen, 1998, 2003) combines Kupiec’s 

(1995) test with independence hypothesis, and examines the null hypothesis that the observed 

violation rate, TN
~

, is statistically equal to the expected violation rate,   as well as that the 

VaR failures are independently distributed over time.  In order to test this null hypothesis, the 

likelihood ratio statistic is:  

    2
211110101

~
11100100 )1()1(log2)1(log2    nnnnNNT

ccLR .                (19) 

                                                           
16

 1, ji  indicates that a violation has occurred, whereas 0, ji indicates the converse. 
ij

  indicates the 

probability that  1,0j  occurs at time t , given that  1,0i  occurred at time 1t .  The null hypothesis is 

11010
:  H , which is tested against the alternative 11011

:  H . 
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The most widely applied tests are those of Kupiec (1995) and Christoffersen (2003). 

However, testing for the validity of the VaR forecasts other tests have also been considered, 

i.e. density forecasts test of Berkowitz (2001), CAViaR test of Engle and Manganelli (2004), 

and they provide qualitatively similar results. 

 If the null hypothesis of both the independence and conditional hypotheses is not 

rejected for a particular model, then we conclude that the model produces the expected 

proportion of VaR violations, and that these violations are not clustered together.  

However, it does not provide a method for distinguishing between the performances 

of the various models for which this is the case. Sarma et al. (2003) and Angelidis and 

Degiannakis (2007) suggest a two-stage backtesting procedure. In the first stage, the VaR 

forecasting ability of the candidate models is investigated, and in the second stage the 

forecasting accuracy of the models, which are judged to forecast the VaR adequately in the 

first stage, is compared. For the present study, in the first stage, the VaR forecasting ability of 

the candidate models is investigated according to the likelihood ration statistics in (18) and 

(19). For the second stage, the mean squared error, or  
  tTMSE

1~
, is calculated for 

the loss function: 

  

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
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,VaR y )1(
|

21
|t

otherwise

yifES ttttt
t







  (20) 

Therefore, we pick risk models that calculate the VaR accurately, as the prerequisite of 

independence and correct conditional coverage is satisfied, and provide more precise ES 

forecasts, as they minimize the MSE. The MSE evaluates the  -day ahead ES forecasts. Thus 

for each VaR failure we compare the actual return to the forecasted return, given that the VaR 

is violated. Hence, the model will be deemed to perform well if: 

i) the VaR failures occur independently of each other (Christoffersen, 1998 test);  

ii) the observed failure rate equals the expected failure rate (Christoffersen, 1998, 2003 

test); 

iii) the MSE based on the quadratic loss between the actual and expected returns in the 

event of a VaR violation is minimised (Hansen, 2005 test). 

 Finally, we should check whether the MSE values of the models differ statistically 

significant. Hansen (2005) proposed the Superior Predictive Ability, or SPA, test for 

comparing the performances of two or more forecasting models in terms of a predefined loss 

function,  t . Let us denote as  A

t    and  B

t    the ES loss function for the FIGARCH-skT 
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and GARCH-skT models, respectively. The null hypothesis that the FIGARCH-skT model is 

not outperformed by the GARCH-skT model, or      0:0  
B

t

A

tEH   , is tested against the 

alternative,      0:1  
B

t

A

tEH   .17 Obviously, the  A

t    and  B

t     may be considered for 

various modifications of the loss function, i.e. the absolute distance, )1(
|ES p

ttty

   , as well as 

the absolute percentage distance,    

  t

)1(
| yES p

ttty . 

 

5.2. Empirical Results 

 The empirical results for forecasting 1-step, 10-step and 20-step ahead 95% VaR 

using the FIGARCH and GARCH models based on skewed Student-t distribution are shown 

in Tables 3 and 4, respectively. According to the conditional coverage test, the FIGARCH-

skT model produces an adequate forecasting performance for 5, 10 and 10 indices (out of the 

10 indices tested) at the 1-step ahead, 10-step ahead and 20-step ahead forecasting horizons, 

respectively. This compares favourably to the GARCH-skT model which produces an 

adequate forecasting performance for 4, 8 and 10 indices (out of the 10 indices tested) at the 

1-step ahead, 10-step ahead and 20-step ahead forecasting horizons, respectively. Accounting 

for fractional integration in the volatility model improves the adequacy of the 95% VaR 

forecasts at the 10-step horizon, for which the FIGARCH-skT model adequately predicts 

losses for all the 10 indices. 

 For the FIGARCH-skT model, the results of the independence test indicate that the 

null hypothesis that the VaR violations occur independently cannot be rejected for any of the 

indices for any time horizon. Similarly, for the GARCH model, the null hypothesis of 

independence between the VaR violations cannot be rejected for any of the indices at any 

time horizon except for the ATXINDX at the 10-step ahead time period. Thus, the 

FIGARCH-skT and GARCH-skT specifications demonstrate a comparable performance in 

terms of the independence of the VaR violations, in the multi-period VaR forecasts. 

<Insert Table 3 about here> 

<Insert Table 4 about here> 

 Furthermore, the average 95% ES figure tends to decrease as the forecasting horizon 

increases for the FIGARCH-skT model across all of the indices. By contrast, the average 

95% ES figure for the GARCH-skT model decreases between the 1-step and 10-step ahead 
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forecasting horizons for all of the indices, but, subsequently, increases between the 10-step 

and 20-step ahead forecasting horizons. The MSE of the ES figures for the FIGARCH-skT 

model are generally lower than those for the GARCH-skT model, especially as the 

forecasting horizon increases. For example, the MSE of the 1-step ahead 95% ES figures are 

greater for the FIGARCH-skT model than the GARCH-skT model for 5 of the 10 indices. 

However, the MSE of the 10-step ahead ES figures for the FIGARCH-skT model are lower 

than, or equal to, those for the GARCH-skT model for all 10 indices. Furthermore, the MSE 

of the 20-step ahead ES figures are lower for the FIGARCH-skT model than the GARCH-

skT model for 8 of the 10 indices. 

 In order to evaluate the performance of the models, we proceed to the statistical 

comparison of the mean squared error loss function in (20). Table 5 presents the p-values of 

the SPA test for the null hypothesis that the FIGARCH-skT model outperforms the GARCH-

skT model. A high p-value indicates evidence in support of the hypothesis that the 

FIGARCH-skT model is superior to the GARCH-skT. As all the p-values of the SPA test are 

greater than 0.05, there is evidence suggesting that the FIGARCH-skT model does not 

demonstrate an inferior performance to the GARCH-skT model in forecasting losses when 

the VaR figure is breached. In the second part of Table 5, the mean absolute error loss 

function is applied, which provides qualitatively similar results18. We, therefore, conclude 

that the FIGARCH-skT model does demonstrate a superior performance to the GARCH-skT 

model in forecasting multiple step ahead losses. 

<Insert Table 5 about here> 

The empirical results for forecasting 1-step, 10-step and 20-step ahead 99% VaR 

using the FIGARCH and GARCH models based on skewed Student-t distribution are shown 

in Tables 6 and 7, respectively. The results are qualitatively similar to the 95% case; the 

fractional integration in the volatility model improves the adequacy of the 99% VaR forecasts 

at the 10-step and 20-step horizons. The conditional coverage test informs us that the 

FIGARCH-skT model produces adequate forecasting performance for all the 10 indices at the 

10-step ahead and 20-step ahead forecasting horizons. This compares favourably to the 

GARCH-skT model which produces an adequate forecasting performance for 8 and 9 indices 

(out of the 10 indices tested) at the 10-step ahead and 20-step ahead forecasting horizons, 

respectively. On the contrary, both models fail to fulfil the conditional coverage for the next 
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The mean absolute percentage error loss function was also applied and provided similar results. 
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trading day; in 8(5) out of the 10 indices the FIGARCH(GARCH) model  does not produce 

an adequate forecasting performance at the 1-step ahead time horizon. 

 The MSE of the 10-step ahead 99% ES figures for the FIGARCH-skT model are 

lower than those for the GARCH-skT model for 9 out of the 10 indices. As in the case of 

95% confidence interval, the evaluation of the performance of the models with the SPA test 

provide evidence in support of a superior performance to the GARCH-skT model in 

forecasting multiple step ahead losses19. 

<Insert Table 6 about here> 

<Insert Table 7 about here> 

 The magnitude of the observed failure rate for each forecasting horizon suggests that 

both models tend to over-forecast the VaR figure at the 1-step ahead time horizon, but that 

this tendency diminishes for longer forecasting horizons, and in particular for the 10-step 

ahead forecasting horizon. This contrasts with the findings of Kuester et al. (2006) who found 

that VaR models tend to underestimate the true VaR figure for the 1-step ahead time horizon.  

 It is interesting to compare the volatility of the returns. Figures 1 and 2 show plots for 

observed returns against the 95% VaR forecasts resulting from the FIGARCH-skT and 

GARCH-skT models for the SWSEALI and HNGKNGI indices for the 1-step, 10-step and 

20-step ahead forecasting horizons20. Looking at the plots for the SWSEALI index (Figure 

1a), it appears that although the most recent returns (representing the start of the global 

financial crisis) are quite volatile in the 1-step  95% VaR plot, the graph (Figure 1b) showing 

every 10th return (for the 10-step VaR forecasts) displays less volatility. Comparing this to the 

plots for the HNGKNGI index (Figure 2), which is slightly more volatile, when we consider 

all the returns, than the SWSEALI index, but is much more volatile when we consider every 

10th return figure (for the 10-step VaR forecasts). The proposed method performs particularly 

well for the SWSEALI index. 

<Insert Figure 1 about here> 

<Insert Figure 2 about here> 

5.3. Square-root Rule 

 As noted by Danielsson and Zigrand (2006) and Engle (2004), the square root of time 

scaling rule appears to lead to inadequate VaR forecasts and, hence, the objective of the Basle 

Committee is not addressed satisfactorily. Table 8 reports the forecasting 10-day-ahead 95% 

                                                           
19

 The p-values of the SPA test are available to the readers upon request. 
20

 Corresponding figures for the remaining indices are available from the authors on request. 
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VaR and 95% ES using the FIGARCH-skT model based on the square root rule21. According 

to the independence and conditional coverage tests, at the 10-step ahead forecast, the square 

of root rule does not produce adequate risk forecasts for just 1 out of the 10 indices. Even the 

square-root rule under an appropriate modelling framework is able to provide proper risk 

forecasts. However, the comparison of the square-root rule to the FIGARCH-skT model 

under the Monte Carlo simulation technique is in favour of the proposed method. There is 

significant difference of the percentage of observed violations between the square-root rule 

(in Table 8) and the proposed simulation technique. For 9 out of the 10 indices, the observed 

exception rate is closer to 5% for the proposed simulation technique compared to the square-

root rule (for the DAXINDX the absolute difference of observed exception rate from 5% is 

0.26% under the square-root rule and 0.92% under the proposed simulation technique).  

 Therefore, we provide a further support that the proposed multi-period forecasting 

risk method is not just a byproduct of a shift in the unconditional variance but instead it does 

capture the long-memory of volatility. Hence, our findings are in accordance with Danielsson 

and Zigrand (2006); "even if the square root of time rule has widespread applications in the 

Basel Accords, it fails to address the objective of the Accords". 

<Insert Table 8 about here> 

 

6. Conclusion and Suggestions for Further Research 

 This paper has introduced a new adaptation to the FIGARCH-skT model of the Monte 

Carlo simulation technique of Christoffersen (2003) for forecasting multiple step ahead 95% 

and 99% VaR and ES. Much of the existing literature on VaR forecasting is limited to the 1-

step ahead horizon, or employs unjustifiable assumptions to produce multiple step ahead 

forecasts using scaling rules such as the square root of time rule. 

 The VaR forecasting accuracy of the simulation technique was tested on 10 

worldwide stock indices. Based on a two-stage backtesting procedure, the VaR forecasting 

ability of the candidate models is investigated, and the forecasting accuracy of the models, 

which are judged to forecast the VaR adequately, is compared. The Superior Predictive 

Ability test compares the forecasting performance of the competing models in terms of a 

predefined loss function. The results show that the FIGARCH-skT model has a superior 95% 

and 99% VaR and ES forecasting performance to the GARCH-skT model, for the 10-step and 
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 The square-root rule assumes that  -day ahead variance forecasts are equal for each day  . Therefore, 
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20-step ahead time horizon. Furthermore, the tendency for the models to over predict the VaR 

figure for the 1-step ahead horizon, appeared to diminish for longer forecasting intervals. 

 The Basel regulations require a 10-day VaR. The FIGARCH-skT model performs 

accurately at the 10-day and 20-day ahead 95% and 99% VaR. Is there anything in the 

structure of the model or the nature of the markets that may cause this to happen? For the 1-

day horizon, the long memory structured model does not perform better that the short 

memory. For the 10-day horizon, the FIGARCH-skT model appeared to produce its best 

forecasts, providing evidence that the superiority of the long memory volatility modelling is 

detected in two-weeks (in calendar time) forecasts, as the Basel regulations require. 

Although, the 20-trading-day (or the one-month in calendar time) horizon is considered a 

faraway point in time to be predicted, the FIGARCH-skT model provides accurate 95% and 

99% VaR forecasts. However, for the 20-day time horizon, the results of the conditional 

coverage tests were highly sensitive to the number of VaR violations such that a very small 

number of additional (or fewer) violations can be pivotal in determining whether or not the 

forecasting performance of the model is deemed to be adequate. 

 Considering the case of ES forecasting, the FIGARCH-skT model does demonstrate a 

superior performance to the GARCH-skT model in forecasting losses given that a VaR 

violation has occurred. The 10-step ahead quadratic loss between the actual and expected 

returns in the event of a 95% VaR violation is lower for the long memory volatility model for 

all 10 indices. The 10-step ahead MSE in the event of a 99% VaR violation is lower for the 

long memory volatility model for 9 indices. Furthermore, the 20-step ahead loss function for 

the FIGARCH-skT model is lower for 9 of the 10 indices. Since the findings suggest that 

FIGARCH-skT models have a superior 95% and 99% VaR and ES forecasting performance, 

for the 10-step and 20-step ahead time horizons, risk managers and analysts should apply our 

technique to obtain accurate 95% and 99% risk forecasts. 

 Future research would require the use of other type of financial time series (i.e. 

exchange rates, stocks, futures, portfolio of assets etc.), as well as of different frequency 

datasets (e.g. intra-day data), for testing the performance of the proposed method. A further 

investigation of the trade-off between complexity and accuracy of VaR and ES forecasting 

would be the expansion of the FIGARCH-skT model to an asymmetric conditional volatility 

framework such as the Tse’s (1998) FIAPARCH,  Davidson's (2004) HYGARCH model, or 

indeed both. The multi-period forecasting performance of regime-depended GARCH models, 

which are well established to show that financial volatility behaves with asymmetrical, 
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nonlinear, and regime-switching dynamics (see Haas et al., 2004 and Huang, 2011), may also 

be investigated in future research. 
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Appendix 

Note 1: We define the scheme follows in order to create random draws from the skewed 

Student-t distribution based on Lambert and Laurent (2001).  

1. Generate random numbers  MC

ii 1  from the standard uniform distribution, where 

MC denotes the number of draws22. 

2. For each i  compute the 1,iz
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 random draw as23:  
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where    ;1
iTF

  corresponds to the inverse CDF of the Student-t distribution with   degrees 

of freedom.  

The   gF iskT ,;1   corresponds to the inverse CDF of the skewed Student-t distribution 

with g  and   denoting the asymmetry and tail parameters of the distribution, respectively. 

                                                           
22

 We adopt Christoffersen’s (2003) symbol (MC) for the number of draws. 
23
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Equation (A1) relates the inverse CDF of the skewed Student-t with the inverse CDF of the 

symmetric Student-t. 

Note 2: The 1-step ahead variance forecast is computed as: 
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Note 3: This is based on the 2-step ahead volatility forecasting 
formula:
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Note 4: This is based on the 3-step ahead volatility forecasting 
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Table 1. Descriptive Statistics of the 10 indices. 

INDEX Observations Mean Median 
Std. 

Dev. 
Skewness Kurtosis 

Jarque-

Bera 
Probability

1 

ATXINDX 4945 0.019052 0.054244 1.408684 -0.28461 10.83047 12700.47 0.000 

FRCAC40 5050 0.013500 0.033854 1.412313 -0.03769 7.751845 4752.411 0.000 

DAXINDX 5044 0.025316 0.083406 1.48699 -0.12667 8.012514 5293.989 0.000 

FTSE100 5051 0.016534 0.040528 1.150512 -0.11487 9.561969 9073.328 0.000 

HNGKNGI 4944 0.042274 0.062797 1.725812 0.007238 12.05344 16884.78 0.000 

JAPDOWA 4924 -0.02745 -0.01268 1.578394 -0.02021 8.277182 5713.949 0.000 

NASA100 5031 0.041204 0.121181 1.900873 0.098471 7.94713 5138.512 0.000 

NYSEALL 5035 0.025034 0.058148 1.122936 -0.3696 15.23759 31532.73 0.000 

S&PCOMP 5039 0.022856 0.048103 1.17312 -0.19843 12.1539 17626.3 0.000 

SWSEALI 4999 0.030183 0.066004 1.393286 0.148244 7.555802 4341.474 0.000 
1 This column displays the p-value for the Jarque-Bera test which has as its null hypothesis that the returns series 
follow a Gaussian distribution. The indices are: Austrian Traded Index (ATXINDX), French CAC 40 Index 
(FRCAC40), DAX 30 Performance (DAXINDX), UK Financial Times Stock Exchange 100 (FTSE100), Hang 
Seng (HNGKNGI), Nikkei 225 Stock Average (JAPDOWA), OMX Stockholm (SWSEALI), NASDAQ 100 
(NASA100), NYSE Composite (NYSEALL) and S&P500 Composite (S&PCOMP). 
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Table 2. Full sample parameter estimates of the FIGARCH-skT model, for the 10 indices. 

Coefficients ATXINDX FRCAC40 DAXINDX FTSE100 HNGKNGI JAPDOWA NASA100 NYSEALL S&PCOMP SWSEALI 

0c  0.049571 0.04444 0.05938 0.039123 0.086038 0.00526 0.074679 0.048733 0.046164 0.082983 

 [-3.173] [3.017] [4.158] [3.541] [4.686] [0.3084] [3.999] [4.78] [4.309] [5.419] 

1c  0.113109 -0.00873 -0.01947 -0.01112 0.047015 -0.02945 -0.00292 0.011439 -0.02702 0.061998 

 [7.58] [-0.6305] [-1.421] [-0.7851] [3.232] [-2.15] [-0.2095] [0.8336] [-2.012] [4.128] 

0a  0.07989 0.049509 0.04517 0.034415 0.099726 0.066971 0.087961 0.025265 0.026566 0.050801 

 [3.983] [2.97] [3.654] [3.495] [3.208] [3.342] [3.482] [3.392] [3.356] [3.674] 

d  0.406859 0.528927 0.567897 0.484713 0.403836 0.570475 0.441126 0.480434 0.492826 0.490655 

 [7.978] [6.13] [8.54] [7.656] [8.083] [6.925] [9.359] [7.915] [8.461] [8.295] 

1a  0.204813 0.146109 0.08897 0.138693 0.192626 0.096545 0.178037 0.165812 0.167933 0.180777 

 [3.035] [3.819] [2.528] [3.426] [3.134] [2.38] [4.176] [4.635] [4.837] [3.673] 

1b  0.476467 0.638456 0.625246 0.574383 0.531981 0.636711 0.587057 0.619576 0.642932 0.57433 

 [5.823] [8.39] [10.38] [7.915] [6.311] [8.479] [9.565] [9.882] [11.15] [8.536] 

g  -0.06829 -0.07319 -0.10362 -0.07669 -0.06898 -0.04584 -0.07333 -0.07857 -0.06676 -0.04414 

 [-3.304] [-3.488] [-5.059] [-3.489] [-3.893] [-2.344] [-3.801] [-4.372] [-3.78] [-2.029] 

  7.083723 11.7244 8.959231 13.81621 6.887763 8.031668 12.27752 7.305493 7.478592 9.309369 

 [11.04] [5.729] [7.431] [5.349] [9.859] [8.647] [6.334] [9.927] [9.725] [7.723] 

The numbers in brackets report the coefficient to standard error ratios. The indices are: Austrian Traded Index (ATXINDX), French CAC 40 
Index (FRCAC40), DAX 30 Performance (DAXINDX), UK Financial Times Stock Exchange 100 (FTSE100), Hang Seng (HNGKNGI), Nikkei 
225 Stock Average (JAPDOWA), OMX Stockholm (SWSEALI), NASDAQ 100 (NASA100), NYSE Composite (NYSEALL) and S&P500 
Composite (S&PCOMP). 
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Table 3. 95% VaR and 95% ES forecasts for FIGARCH-skT model. 

Index 

Number 

of steps 

ahead 

Number of 

VaR 

forecasts 

Average 

VaR 

Average 

ES 
MSE 

Observed 

exception 

rate 

Independence 

Test p-value 

Conditional 

Coverage 

Test p-value 

ATXINDX 1 2945 -2.396 -3.309 0.028 3.50% 0.230 0.000** 

10 294 -2.109 -2.772 0.036 5.44% 0.266 0.509 

20 147 -2.044 -2.722 0.063 3.95% 0.699 0.592 

FRCAC40 1 3050 -2.4964 -3.297 0.030 4.52% 0.276 0.261 

10 305 -2.5307 -3.2612 0.024 3.61% 0.400 0.353 

20 152 -2.4919 -3.277 0.071 3.95% 0.481 0.641 

DAXINDX 1 3044 -2.797 -3.753 0.034 4.24% 0.815 0.137 

10 304 -2.877 -3.759 0.036 5.92% 0.080 0.167 

20 152 -2.773 -3.745 0.023 3.95% 0.521 0.671 

FTSE100 1 3051 -2.059 -2.6962 0.01978 4.88% 0.313 0.575 

10 305 -1.969 -2.5609 0.06604 4.26% 0.572 0.709 

20 152 -1.9083 -2.5462 0.046 5.92% 0.089 0.208 

HNGKNGI 1 2944 -3.051 -4.21 0.042 3.19% 0.570 0.000** 

10 294 -3.017 -3.905 0.018 4.76% 0.690 0.906 

20 147 -2.858 -3.766 0.027 5.44% 0.335 0.611 

JAPDOWA 1 2924 -2.848 -3.854 0.036 3.42% 0.077 0.000** 

10 292 -2.928 -3.758 0.199 4.45% 0.598 0.789 

20 146 -2.804 -3.667 0.007 3.42% 0.550 0.544 

NASA100 1 3031 -3.417 -4.51 0.045 4.26% 0.293 0.090 

10 303 -3.725 -4.834 0.071 4.62%  0.051 0.065 
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20 151 -3.503 -4.641 0.047 4.64% 0.309 0.582 

NYSEALL 1 3035 -2.152 -2.965 0.025 4.02% 0.965 0.037* 

10 303 -2.02 -2.62 0.042 5.28%  0.050 0.136 

20 151 -1.953 -2.59 0.031 5.96% 0.284 0.494 

S&PCOMP 1 3039 -2.266 -3.106 0.031 3.85% 0.812 0.009** 

10 303 -2.096 -2.708 0.02 4.95% 0.210 0.456 

20 151 -2.032 -2.667 0.013 5.30% 0.421 0.715 

SWSEALI 1 2999 -2.5 -3.337 0.027 4.37% 0.589 0.232 

10 299 -2.429 -3.192 0.043 5.02% 0.776 0.960 

20 149 -2.316 -3.12 0.071 5.37% 0.427 0.717 

*denotes significant at 5%, ** denotes significant at 1%.  
The indices are: Austrian Traded Index(ATXINDX), French CAC 40 Index (FRCAC40), DAX 30 Performance (DAXINDX), 
UKFinancial Times Stock Exchange 100 (FTSE100), Hang Seng (HNGKNGI), Nikkei 225Stock Average (JAPDOWA), OMX 
Stockholm (SWSEALI), NASDAQ 100 (NASA100), NYSEComposite (NYSEALL) and S&P500 Composite (S&PCOMP). 
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Table 4. 95% VaR and 95% ES forecasts for GARCH-skT model. 

Index 

Number 

of steps 

ahead 

Number of 

VaR 

forecasts 

Average 

VaR 

Average 

ES 
MSE 

Observed 

exception 

rate 

Independence 

Test p-value 

Conditional 

Coverage Test 

p-value 

ATXINDX 1 2945 -2.337 -3.229 0.031 3.60% 0.050 0.000** 

10 294 -1.943 -2.541 0.055 6.80% 0.042* 0.049* 

20 147 -1.907 -2.55 0.121 3.95% 0.151 0.228 

FRCAC40 1 3050 -2.4621 -3.2441 0.031 4.92% 0.543 0.813 

10 305 -2.2403 -2.872 0.024 4.59% 0.666 0.862 

20 152 -2.2478 -2.9233 0.064 4.61% 0.409 0.692 

DAXINDX 1 3044 -2.787 -3.739 0.032 4.47% 0.638 0.350 

10 304 -2.451 -3.186 0.055 8.88% 0.635 0.017* 

20 152 -2.449 -3.269 0.023 3.95% 0.521 0.671 

FTSE100 1 3051 -2.0696 -2.7114 0.02025 4.85% 0.752 0.885 

10 305 -1.9022 -2.4489 0.06726 4.92% 0.762 0.953 

20 152 -1.9025 -2.4949 0.0513 5.26% 0.344 0.633 

HNGKNGI 1 2944 -3.091 -4.281 0.038 3.13% 0.940 0.000** 

10 294 -2.707 -3.497 0.078 5.10% 0.207 0.450 

20 147 -2.724 -3.58 0.044 3.40% 0.552 0.536 

JAPDOWA 1 2924 -2.837 -3.834 0.034 3.63% 0.935 0.002** 

10 292 -2.553 -3.268 0.224 5.82% 0.338 0.520 

20 146 -2.551 -3.314 0.01 4.11% 0.472 0.677 

NASA100 1 3031 -3.497 -4.626 0.055 3.93% 0.876 0.018* 

10 303 -3.183 -4.075 0.085 6.27% 0.129 0.196 
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20 151 -3.213 -4.175 0.071 5.30% 0.421 0.714 

NYSEALL 1 3035 -2.164 -2.982 0.022 3.86% 0.799 0.009** 

10 303 -1.865 -2.406 0.072 5.94% 0.095 0.191 

20 151 -1.859 -2.445 0.031 6.62% 0.232 0.338 

S&PCOMP 1 3039 -2.309 -3.171 0.026 3.72% 0.917 0.003** 

10 303 -2.009 -2.572 0.029 4.62% 0.243 0.481 

20 151 -2.036 -2.645 0.011 5.30% 0.421 0.715 

SWSEALI 1 2999 -2.494 -3.337 0.03 4.63% 0.853 0.639 

10 299 -2.242 -2.941 0.057 6.02% 0.128 0.233 

20 149 -2.214 -2.976 0.103 4.70% 0.314 0.591 

*denotes significant at 5%, ** denotes significant at 1%. 
The indices are: Austrian Traded Index(ATXINDX), French CAC 40 Index (FRCAC40), DAX 30 Performance (DAXINDX), 
UKFinancial Times Stock Exchange 100 (FTSE100), Hang Seng (HNGKNGI), Nikkei 225Stock Average (JAPDOWA), OMX 
Stockholm (SWSEALI), NASDAQ 100 (NASA100), NYSEComposite (NYSEALL) and S&P500 Composite (S&PCOMP). 
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Table 5. The p-values of the SPA test for the null hypothesis that the FIGARCH-skT model outperforms the GARCH-skT 

model. 

The loss function measures the squared distance between the actual and expected returns in the event of a 95% VaR violation 

Index 

Number 

of steps 

ahead 

ATXINDX FRCAC40 DAXINDX FTSE100 HNGKNGI JAPDOWA NASA100 NYSEALL S&PCOMP SWESALI 

1 0.82140 0.56110 0.16440 0.62630 0.14020 0.17460 0.95050 0.15310 0.06630 0.51180 
10 0.55070 0.43820 0.53690 0.70940 0.57170 0.84780 0.52670 0.84910 0.80010 0.80980 
20 0.55810 0.20700 0.58620 0.68520 0.75110 0.77190 0.55670 0.50480 0.16330 0.77420 

The loss function measures the absolute distance between the actual and expected returns in the event of a 95% VaR violation 

Index 

Number 

of steps 

ahead 

ATXINDX FRCAC40 DAXINDX FTSE100 HNGKNGI JAPDOWA NASA100 NYSEALL S&PCOMP SWESALI 

1 0.61540 0.80200 0.40340 0.51600 0.35180 0.54330 0.60900 0.08270 0.12180 0.50620 
10 0.54330 0.75590 0.52510 0.84540 0.54380 0.79920 0.52540 0.55330 0.52310 0.70530 
20 0.53330 0.72660 0.39860 0.65350 0.50420 0.75220 0.56520 0.27420 0.23340 0.50020 

The indices are: Austrian Traded Index(ATXINDX), French CAC 40 Index (FRCAC40), DAX 30 Performance (DAXINDX), 
UKFinancial Times Stock Exchange 100 (FTSE100), Hang Seng (HNGKNGI), Nikkei 225Stock Average (JAPDOWA), OMX 
Stockholm (SWSEALI), NASDAQ 100 (NASA100), NYSEComposite (NYSEALL) and S&P500 Composite (S&PCOMP). 
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Table 6. 99% VaR and 99% ES forecasts for FIGARCH-skT model. 

Index 

Number 

of steps 

ahead 

Number of 

VaR 

forecasts 

Average 

VaR 

Average 

ES 
MSE 

Observed 

exception 

rate 

Independence 

Test p-value 

Conditional 

Coverage Test 

p-value 

ATXINDX 1 2945 -3.840  -4.835  0.003  0.54% 0.676  0.022* 

10 294 -3.186  -3.818  0.006  2.04% 0.616  0.258  

20 147 -3.125  -3.777  0.026  3.40% 0.551  0.060  

FRCAC40 1 3050 -3.785  -4.542  0.008  0.62% 0.108  0.021* 

10 305 -3.714  -4.343  0.008  0.66% 0.871  0.802  

20 152 -3.753  -4.472  0.019  1.97% 0.727  0.536  

DAXINDX 1 3044 -4.329  -5.268  0.008  0.66% 0.121  0.039* 

10 304 -4.323  -5.149  0.016  1.32% 0.744  0.826  

20 152 -4.333  -5.298  0.001  1.97% 0.727  0.535  

FTSE100 1 3051 -3.088  -3.671  0.004  1.08% 0.396  0.631  

10 305 -2.938  -3.481  0.039  1.64% 0.683  0.543  

20 152 -2.922  -3.521  0.014  2.63% 0.641  0.221  

HNGKNGI 1 2944 -4.877  -6.163  0.009  0.54% 0.676  0.022* 

10 294 -4.465  -5.272  0.004  1.70% 0.677  0.503  

20 147 -4.322  -5.184  0.000  0.68% 0.907  0.911  

JAPDOWA 1 2924 -4.445  -5.510  0.007  0.55% 0.675  0.024* 

10 292 -4.293  -5.029  0.126  2.05% 0.100  0.074  

20 146 -4.202  -5.029  0.001  1.37% 0.813  0.889  

NASA100 1 3031 -5.177  -6.205  0.009  0.53% 0.073  0.003** 

10 303 -5.541  -6.520  0.015  0.66% 0.870  0.807  
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20 151 -5.345  -6.414  0.011  1.99% 0.035* 0.062  

NYSEALL 1 3035 -3.438  -4.317  0.003  0.53% 0.680  0.014* 

10 303 -2.998  -3.544  0.020  1.98% 0.622  0.283  

20 151 -2.982  -3.594  0.015  1.99% 0.726  0.532  

S&PCOMP 1 3039 -3.597  -4.496  0.003  0.49% 0.700  0.007** 

10 303 -3.093  -3.635  0.000  0.66% 0.870  0.805  

20 151 -3.077  -3.674  0.001  1.32% 0.816  0.908  

SWSEALI 1 2999 -3.842  -4.660  0.008  1.00% 0.436  0.738  

10 299 -3.663  -4.384  0.002  1.00% 0.805  0.970  

20 149 -3.614  -4.423  0.008  1.34% 0.815  0.901  

*denotes significant at 5%, ** denotes significant at 1%.  
The indices are: Austrian Traded Index(ATXINDX), French CAC 40 Index (FRCAC40), DAX 30 Performance (DAXINDX), 
UKFinancial Times Stock Exchange 100 (FTSE100), Hang Seng (HNGKNGI), Nikkei 225Stock Average (JAPDOWA), OMX 
Stockholm (SWSEALI), NASDAQ 100 (NASA100), NYSEComposite (NYSEALL) and S&P500 Composite (S&PCOMP). 
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Table 7. 99% VaR and 99% ES forecasts for GARCH-skT model. 

Index 

Number 

of steps 

ahead 

Number of 

VaR 

forecasts 

Average 

VaR 

Average 

ES 
MSE 

Observed 

exception 

rate 

Independence 

Test p-value 

Conditional 

Coverage Test 

p-value 

ATXINDX 1 2945 -3.747  -4.720  0.005  0.75% 0.565  0.299  

10 294 -2.917  -3.487  0.018  2.72% 0.503  0.040* 

20 147 -2.932  -3.557  0.059  4.08% 0.220  0.008** 

FRCAC40 1 3050 -3.722  -4.455  0.009  0.62% 0.625  0.071  

10 305 -3.276  -3.823  0.008  0.66% 0.871  0.802  

20 152 -3.338  -3.940  0.016  1.97% 0.727  0.536  

DAXINDX 1 3044 -4.313  -5.247  0.007  0.49% 0.062  0.001** 

10 304 -3.642  -4.317  0.024  1.64% 0.682  0.540  

20 152 -3.760  -4.536  0.001  2.63% 0.641  0.219  

FTSE100 1 3051 -3.106  -3.694  0.004  1.08% 0.396  0.631  

10 305 -2.794  -3.287  0.041  1.64% 0.683  0.543  

20 152 -2.877  -3.428  0.010  2.63% 0.641  0.221  

HNGKNGI 1 2944 -4.963  -6.296  0.006  0.51% 0.695  0.012* 

10 294 -3.989  -4.707  0.005  2.04% 0.616  0.257  

20 147 -4.115  -4.915  0.002  1.36% 0.814  0.892  

JAPDOWA 1 2924 -4.421  -5.472  0.006  0.62% 0.637  0.071  

10 292 -3.716  -4.337  0.141  1.71% 0.676  0.496  

20 146 -3.776  -4.461  0.000  0.68% 0.906  0.914  

NASA100 1 3031 -5.314  -6.387  0.013  0.43% 0.738  0.001** 

10 303 -4.640  -5.391  0.017  1.32% 0.743  0.822  
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20 151 -4.736  -5.583  0.023  1.99% 0.726  0.531  

NYSEALL 1 3035 -3.458  -4.347  0.002  0.53% 0.680  0.014* 

10 303 -2.753  -3.239  0.020  2.64% 0.509  0.047* 

20 151 -2.812  -3.368  0.012  0.66% 0.908  0.898  

S&PCOMP 1 3039 -3.673  -4.603  0.003  0.53% 0.681  0.014* 

10 303 -2.938  -3.423  0.006  0.66% 0.870  0.805  

20 151 -3.025  -3.572  0.000  1.32% 0.816  0.908  

SWSEALI 1 2999 -3.845  -4.676  0.008  0.87% 0.500  0.602  

10 299 -3.373  -4.024  0.015  1.67% 0.680  0.524  

20 149 -3.437  -4.203  0.030  2.01% 0.725  0.522  

*denotes significant at 5%, ** denotes significant at 1%. 
The indices are: Austrian Traded Index(ATXINDX), French CAC 40 Index (FRCAC40), DAX 30 Performance (DAXINDX), 
UKFinancial Times Stock Exchange 100 (FTSE100), Hang Seng (HNGKNGI), Nikkei 225Stock Average (JAPDOWA), OMX 
Stockholm (SWSEALI), NASDAQ 100 (NASA100), NYSEComposite (NYSEALL) and S&P500 Composite (S&PCOMP). 
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Table 8. 10-day ahead forecasts of 95% VaR and 95% ES for the FIGARCH-skT model under the square-root rule.

 

Index 

Number 

of steps 

ahead 

Number 

of VaR 

forecasts 

Average 

VaR 

Average 

ES 
MSE 

Observed 

exception 

rate 

Independence 

Test p-value 

Conditional 

Coverage Test p-

value 

FIGARCH-skT model 

ATXINDX 10 294 -2.420 -3.338 0.024 3.40% 0.400 0.287 

FRCAC40 10 305 -2.501 -3.304 0.022 3.61% 0.400 0.353 

DAXINDX 10 304 -2.799 -3.757 0.061 5.26% 0.812 0.952 

FTSE100 10 305 -2.055 -2.691 0.056 3.93% 0.483 0.528 

HNGKNGI 10 294 -3.066 -4.228 0.068 3.74% 0.354 0.379 

JAPDOWA 10 292 -2.858 -3.868 0.200 4.45% 0.598 0.789 

NASA100 10 303 -3.406 -4.497 0.054 5.61% 0.010* 0.032* 

NYSEALL 10 303 -2.153 -2.967 0.023 4.62% 0.670 0.869 

S&PCOMP 10 303 -2.268 -3.109 0.010 2.64% 0.509 0.094 

SWSEALI 10 299 -2.505 -3.344 0.018 4.01% 0.316 0.431 

*denotes significant at 5%. 

The indices are: Austrian Traded Index(ATXINDX), French CAC 40 Index (FRCAC40), DAX 30 Performance (DAXINDX), 
UKFinancial Times Stock Exchange 100 (FTSE100), Hang Seng (HNGKNGI), Nikkei 225Stock Average (JAPDOWA), OMX 
Stockholm (SWSEALI), NASDAQ 100 (NASA100), NYSEComposite (NYSEALL) and S&P500 Composite (S&PCOMP). 
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