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Abstract 

 The present study compares the performance of the long memory FIGARCH model, 

with that of the short memory GARCH specification, in the forecasting of multi-period 

Value-at-Risk (VaR) and Expected Shortfall (ES) across 20 stock indices worldwide. The 

dataset is comprised of daily data covering the period from 1989 to 2009. The research 

addresses the question of whether or not accounting for long memory in the conditional 

variance specification improves the accuracy of the VaR and ES forecasts produced, 

particularly for longer time horizons. Accounting for fractional integration in the conditional 

variance model does not appear to improve the accuracy of the VaR forecasts for the 1-day-

ahead, 10-day-ahead and 20-day-ahead forecasting horizons relative to the short memory 

GARCH specification. Additionally, the results suggest that underestimation of the true VaR 

figure becomes less prevalent as the forecasting horizon increases. Furthermore, the GARCH 

model has a lower quadratic loss between actual returns and ES forecasts, for the majority of 

the indices considered for the 10-day and 20-day forecasting horizons. Therefore, a long 

memory volatility model compared to a short memory GARCH model does not appear to 

improve the VaR and ES forecasting accuracy, even for longer forecasting horizons. Finally, 

the rolling-sampled estimated FIGARCH parameters change less smoothly over time 

compared to the GARCH models. Hence, the parameters' time-variant characteristic cannot 

be entirely due to the news information arrival process of the market; a portion must be due 

to the FIGARCH modelling process itself. 
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1. Introduction – Motivation and Review of Literature 

 

 The recent financial crisis has emphasised the importance for financial institutions of 

producing reliable Value-at-Risk (VaR) and Expected Shortfall (ES) forecasts. VaR 

quantifies the maximum amount of loss for a portfolio of assets, under normal market 

conditions over a given period of time and at a certain confidence level. ES quantifies the 

expected value of the loss, given that a VaR violation has occurred. 

Following the recommendations of the Basel Committee on Banking Supervision 

(1996, 2006), many financial institutions have flexibility over their choice of model for 

estimating VaR. The guidelines prescribe, however, that financial institutions should use up 

to one year of data to calculate the VaR of their portfolios for a ten-day holding period1. The 

Basel Committee recommend producing multi-step VaR forecasts by scaling up the daily 

VaR figure using the square root of time rule2. However, this method is criticised in the 

literature, with Engle (2004) noting that it makes the invalid assumption that volatilities over 

time are constant. Further, Rossignolo et al. (2011) give emphasis to both the current (Basel 

II3) and proposed regulations (Basel III4) with regard to VaR estimation. Focusing on 1-

trading-day VaR, they compare results from current and proposed regulations and suggest 

that heavy-tailed distributions are the most accurate technique to model market risks.  

The majority of existing models for forecasting VaR and ES are focused on producing 

accurate forecasts for 1-trading-day. An enormous variety of VaR models have been tested in 

the literature, including both parametric and non-parametric models. The results have not 

been entirely consistent, often suggesting that the optimum choice of model, as well as the 

distributional assumptions, may depend upon a number of factors including the market for 

which the model is being estimated, the length and frequency of the data series, and whether 

or not the VaR relates to long or short trading positions (Angelidis et al., 2004; Shao et al., 

2009).  

                                                           
1  Following the financial crash, amendments to the regulations were announced, necessitating financial 

institutions to calculate a ‘stressed value-at-risk’ measure, using data covering a year of trading in which the 
financial institution incurred significant losses (Basel Committee on Banking Supervision, 2009).  
2 To account for the non-linear price characteristics of option contracts, financial institutions are expected to 

move towards calculating a full 10-day VaR for positions involving such contracts. 
3 Basel II VaR quantitative requirements include: (a) daily-basis estimation; (b) confidence level set at 99%; (c) 
one-year minimum sample extension with quarterly or more frequent updates; (d) no specific models prescribed: 
banks are free to adopt their own schemes; (e) regular backtesting and stress testing programme for validation 
purposes, see  Rossignolo et al. (2011). 
4 Basel III captures fat-tail risks (that most VaR models are not able to do under Basel II) by introducing a 
stressed VaR (sVaR) metric to increase the Minimum Capital Requirements (MCR), see  Rossignolo et al. 
(2011). 



 

 

The Generalised Autoregressive Conditionally Heteroskedastic (GARCH) model has 

been shown in the literature to produce reasonable low and high frequency VaR forecasts 

across a variety of markets and under different distributional assumptions. For example 

Sriananthakumar and Silvapulle (2003) estimate the VaR for daily returns and select the 

simple GARCH(1,1) model with Student-t errors as the preferred model. Some studies have 

concluded that the use of a skewed, rather than a symmetrical, distribution for the 

standardised residuals produces superior VaR forecasts. For example, Giot and Laurent 

(2003, 2004) find the skewed Student-t APARCH model to be superior to other specifications 

for estimating both in-sample and out-of-sample VaR. On the other hand, Angelidis and 

Degiannakis (2007) conclude that the Student-t and skewed Student-t overestimate the true 

VaR, and consequently other distributions such as the normal may be more appropriate for 

the standardised residuals. There is some debate over the relative merits of conditional 

volatility models compared to other specifications. Whilst, Danielsson and Morimoto (2000) 

find that conditional volatility models produce more volatile VaR predictions, Kuester et al. 

(2006) conclude that the VaR violations arising from unconditional VaR models do not occur 

independently throughout the estimation period, but may be clustered together. 

 Accounting for long memory and asymmetries in the conditional volatility process 

has been shown to improve VaR and ES forecasting accuracy for short (1-day and 5-day) 

forecasting horizons (Härdle and Mungo, 2008; Angelidis and Degiannakis, 2007).  

Recently, Halbleib and Pohlmeimer (2012) propose a methodology of computing VaR 

based on the principle of optimal combination that accurately predicts losses during periods 

of high financial risk. They develop data-driven VaR approaches that provide robust VaR 

forecasts; the examined methods include the ARMA-GARCH, RiskMetricsTM and ARMA-

FIGARCH. They argue that popular VaR methods perform very differently from calm to 

crisis periods. Further, they show that, in the case of 1-day VaR forecasts, proper 

distributional assumptions (Student-t with estimated degrees of freedom, skewed Student-t 

and extreme value theory), deliver better quantile estimates and VaR forecasts. 

Rossignolo et al. (2011) give a detailed theoretical description of the Regulatory 

framework (Basel II and III Capital Accord) as well as a synopsis of VaR models. Using data 

from 10 stock market blue-chip indices of six emerging markets (Brazil, Hungary, India, 

Czech Republic, Indonesia and Malaysia) and four frontier markets (Argentina, Lithuania, 

Tunisia and Croatia), they argue that "No improvement is virtually recorded employing a 

heavy-tailed t distribution instead of the normal one as the underlying risk measure is 



 

 

inherently flawed". Further, they show that the EGARCH technique brings no significant 

advantage over the GARCH method for daily time horizon. 

Finally, Chen and Lu (2010) review the robustness and accuracy of several VaR 

estimation methods, under normal, Student-t and normal inverse Gaussian (NIG) 

distributional assumptions, and further test both the unconditional and conditional coverage 

properties of all the models using the Christoffersen's test, the Ljung-Box test and the 

dynamic quantile test. Using data from Dow Jones Industrial, DAX 30 and Singapore STI, 

they argue that conditional autoregressive VaR (CAViaR) and the NIG-based estimation are 

robust and deliver accurate VaR estimation for the 1-day forecasting interval, whilst the 

filtered historical simulation (FHS) and filtered  EVT perform well for 5-day forecasting 

interval5. 

The aim of this paper is to test empirically whether the short memory GARCH model 

is outperformed for forecasting multi-period VaR for longer time horizons (10-day and 20-

day) by the long memory FIGARCH model, which accounts for the persistence of financial 

volatility (Baillie et al., 1996; Bollerslev and Mikkelsen, 1996; Nagayasu, 2008)6. 

 The FIGARCH specification has been shown in some empirical studies to produce 

superior VaR forecasts (Caporin, 2008; Tang and Shieh, 2006).  However, these contrast with 

the findings of McMillan and Kambouroudis (2009) who conclude that the FIGARCH (as 

well as the RiskMetricsTM and HYGARCH) specifications are adequate to forecast the 

volatility of smaller emerging markets at a 5% significance, but that the APARCH model is 

superior for modelling a 99% VaR. 

 Recently, attention has turned towards extending the existing literature on the 

accuracy of various modelling specifications to produce one-step-ahead VaR forecasts, to 

formulate reliable modelling techniques for multi-step-ahead VaR forecasts. For example, 

historical simulation using past data on the sensitivity of the assets within a portfolio to 

macroeconomic factors has been used to estimate 1-day and 10-day VaR (Semenov, 2009). 

Furthermore, a Monte Carlo simulation has been shown to produce useful estimates of intra-

day VaR using tick-by-tick data (Dionne et al., 2009; Brooks and Persand, 2003). 

 The empirical analysis in this paper makes use of an adaptation of the Monte Carlo 

simulation technique of Christoffersen (2003) for estimating multiple-step-ahead VaR and ES 

forecasts to the FIGARCH model. This enables comparisons to be made between the 

                                                           
5 Chen and Lu (2010) show that NIG works well if the market is normal, whereas the method provides low 
accurate VaR values within a financial crisis period. 
6 It should be recognised that some authors suggest that accounting for structural breaks in volatility (Granger 

and Hyung, 2004), or allowing the unconditional variance to change over time (McMillan and Ruiz, 2009) can 

reduce the strength of the evidence in favour of the persistence of financial volatility. 



 

 

forecasting performances of the GARCH and FIGARCH models for i) 1-step-ahead, ii) 10-

step-ahead and iii) 20-step-ahead VaR and ES predictions. The 95% VaR and 95% ES 

forecasting performances of the GARCH and FIGARCH models are tested on daily data 

across 20 leading stock indices worldwide. 

 This study further provides evidence for the time-variant characteristic of the 

estimated parameters7. In particular, this paper contributes to the debate on the out-of-sample 

forecast performance of fractionally integrated models (see Ellis and Wilson, 2004). The out-

of-sample forecast performance of the GARCH and FIGARCH models is investigated in 

order to examine (i) whether the FIGARCH model provides superior multi-period VaR and 

ES forecasts and (ii) in what extend do the rolling-sampled estimated parameters confirm a 

time-variant characteristic (see Degiannakis et al., 2008). 

 We show that i) the long memory FIGARCH model, as compared to the short 

memory GARCH model, does not appear to improve the VaR and ES forecasting accuracy 

and ii) the estimated parameters of the models present a time-varying characteristic, which 

can be linked to market dynamics in response to the unexpected news. However, the 

estimated parameters of the FIGARCH model exhibit relatively a more time-varying 

characteristic than those of the GARCH model, inferring evidence that not all of the time-

varying characteristics can be due to the news information arrival process of the market. 

These findings are similar to those of Ellis and Wilson (2004) who argue that fractionally 

integrated models for forecasting the conditional mean of financial asset returns (i.e. 

ARFIMA model) fail to outperform forecasts derived from short memory models.  

 Furthermore, we conclude that the models should be constructed carefully, either by 

risk managers or by market regulators. The ES estimates the capital requirements when a 

violation of normal market conditions occurs. The forecast of such measures must not be 

based on fractionally integrated models before their forecasting ability has been investigated. 

The results provide valuable information to risk analysts and managers on the application of 

long memory volatility models in forecasting VaR and ES. When a long memory volatility 

model is compared to a short memory GARCH model, it does not appear to improve the VaR 

forecasting accuracy, even for longer forecasting horizons. 

                                                           
7 To this end, we allow the standardised residuals of the model to follow the relatively parsimonious normal 

distribution, since we are only interested in comparing the effects of modelling for short memory and long 

memory on the VaR and ES forecasting accuracy. The normal model has been shown by Angelidis and 

Degiannakis (2007) to be preferable to more parameterised distributions for the standardised residuals in some 

cases. 



 

 

 The remainder of the paper is organised as follows: Section 2 illustrates the short 

memory and long memory frameworks of modelling conditional variance. Section 3 presents 

the techniques for modelling 1-step-ahead and multiple-step-ahead VaR and ES measures, 

whilst Section 4 describes the data. Section 5 presents the empirical analysis, and Section 6 

concludes the paper and summarises the main findings. 

 

2. GARCH and FIGARCH Modelling 

  
 Let us assume that the continuously compounded returns series,

 

    T

ttt

T

tt ppy
111

log   , where tp
 
is the closing price on trading day t , follows Engle's 

(1982) ARCH process: 
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where  1,0~ Nzt . The conditional mean has an AR(1) specification8, and the error term t ,
 

is conditionally standard normally distributed9. The conditional variance of the error term, 

2
t , is modelled first on a short memory GARCH(1,1) specification (Bollerslev, 1986): 

2
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2
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A GARCH(1,1) specification has been selected as it has been shown that a lag of order 1 on 

the squared residuals and the conditional variance are sufficient to model conditional 

volatility (Angelidis and Degiannakis, 2007; Hansen and Lunde, 2005).   

 The VaR forecasting performance of the GARCH(1,1) specification, is compared to 

that of the fractionally integrated GARCH, or FIGARCH  qdp ,, , model, which allows for 

long memory within the conditional volatility of the returns (Baillie et al., 1996). The 

FIGARCH  qdp ,,  
process is given by: 

        22
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t LBLLLBa   , (3) 

where         1
11

 LLBLAL , and  LA  and  LB  are the lag operator polynomials 

of order q
 
and p , respectively (Harris and Sollis, 2003). 

 The fractional differencing operator  dL1  is defined as: 

                                                           
8 Research suggests that the specification of the conditional mean is not important to the forecasting of the 

conditional variance. However, the proposed specification allows for discontinuous or non-synchronous trading 

in the stocks making up an index (see Angelidis and Degiannakis, 2007; Lo and MacKinlay, 1990). 
9 The normal density function has been selected to reduce the degree of parameterisation of the model, in order 

to focus the analysis on the distinction between the long memory and short memory specifications for the 

conditional variance. 
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conditional variance decay at a hyperbolic rate (Baillie et al., 1996). The FIGARCH model 

nests the IGARCH  qp,  where 1d , as well as the GARCH  qp, , where 0d . Once 

again, it is assumed that 1 qp , therefore the FIGARCH  1,,1 d  
is presented as (see 

Xekalaki and Degiannakis, 2010): 
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3.  Modelling one-step-ahead and multiple-step-ahead VaR and Expected Shortfall 

 

One-step-ahead VaR 

 

 The VaR figure presents a single number which indicates the worst possible 

outcome for a portfolio, under normal market conditions and for a specified confidence level. 

VaR has well-documented limitations, i.e. it is not sub-additive, so the VaR of the overall 

portfolio may be greater than the sum of the VaRs of its component assets.  

 Nonetheless, VaR is a straightforward measure of market risk, and its estimation 

remains ubiquitous within financial risk management. The one-step-ahead 95% VaR is 

calculated using: 

    ,|1|1
1

|1 tttttt NVaR 

    (6) 

where %951   ,10 tt |1  and tt |1  are the conditional forecasts of the mean and of the 

standard deviation at time 1t , given the information available at time t , respectively.  N
 

is the th
 
quantile of the normal distribution. 

 The accuracy of the VaR forecasts is examined using the Kupiec (1995) and 

Christoffersen (1998) tests. Kupiec's unconditional coverage statistic tests the null hypothesis 

that the observed violation rate  0

~ TN  is statistically equal to the expected violation 

                                                           
10 For long trading positions   , whereas for short trading positions  1 . 



 

 

rate,
 
 , where N  is the number of days on which a violation occurred across the total 

estimation period T
~ 11

. The likelihood ratio statistic used to test this is given by:  
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The null hypothesis will be rejected wherever the observed failure rate is statistically 

different to the expected failure rate, denoted by the level of significance of the VaR figure, 

  (for long trading positions). 

 Christoffersen's conditional coverage statistic examines the null hypothesis that the 

VaR failures occur independently, and spread across the whole estimation period, against the 

alternative hypothesis that the failures are clustered together.  This is tested on the likelihood 

ratio statistic: 

        2
10011110101 ~1log211log2 1101100011100100  nnnnnnnn

INLR
 . (8) 

The ijn  is the number of observations with value i  followed by j  for 1,0, ji , and 


j ijijij nn  are the corresponding probabilities. A violation has occurred if 1, ji , 

whereas 0, ji indicates the converse. ij  indicates the probability that j  occurs at time t , 

given that i  occurred at time 1t . The 11010 :  H  hypothesis is tested against the 

alternative 11011 :  H . 

 If the null hypothesis of both the unconditional and independence hypotheses is not 

rejected for a particular model, then we consider that the model produces the expected 

proportion of VaR violations, and that these violations occur independently of each other.  

  

One-step-ahead Expected Shortfall 

 

 Taleb (1997) and Hoppe (1999) argue that the underlying statistical assumptions of 

VaR modelling are often violated in practice. VaR does not measure the size of the potential 

loss, given that this loss exceeds the estimate of VaR; hence, we know nothing about the 

expected loss. In other words, the magnitude of the expected loss should be the priority of the 

risk manager. To overcome such shortcomings of the VaR, Artzner et al. (1997) introduce the 

ES risk measure, which expresses the expected value of the loss, given that a VaR violation 

occurred. Hence, we consider ES risk measure in our study for comparison purposes, as 

                                                           
11  T

~
is the total number of out-of-sample one-step-ahead VaR forecasts. 



 

 

previous studies clearly show the main advantages of ES12. The ES is a measure of the 

expected loss on a portfolio conditional on the VaR figure being breached. Following Dowd 

(2002), to calculate the ES we divide the tail of the probability distribution of returns into 

5,000 slices each with identical probability mass, calculate the VaR attached to each slice and 

find the mean of these VaRs to estimate the ES: 
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The ES is a coherent risk measure that satisfies the properties of sub-additivity, homogeneity, 

monotonicity and risk-free condition (for more information see Artzner et al., 1999). 

In addition to evaluating an Expected Shortfall forecast, Angelidis and Degiannakis 

(2007) propose measuring the squared difference of the loss using ES as VaR does not give 

any indication about the size of the expected loss: 
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1t  compares the actual return to the expected return in the event of a VaR violation. The 

best model will have the smallest mean squared error: 
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Multiple-step-ahead VaR 

 

In order to compute the multi-period VaR forecasts, we utilise the Monte Carlo 

simulation algorithm presented in Xekalaki and Degiannakis (2010) and originally proposed 

for the GARCH model by Christoffersen (2003). We should note that this is the first attempt 

of restructuring the Monte Carlo simulation algorithm for fractionally integrated conditional 

volatility model. The approach involves dividing the out-of-sample estimation period into 

non-overlapping intervals13 . For each non-overlapping interval, a distribution of  -step-

ahead returns (where in this case  =1, 10, or 20) is produced, from which the  -step-ahead 

95% VaR figure can be estimated: 

                                                           
12 There is evidence that VaR may not be reliable during market turmoil as it can mislead rational investors, 
whereas ES can be a better choice overall (Yamai and Yoshiba, 2005). 

 

 
13 The use of non-overlapping intervals is necessary to avoid autocorrelation in the forecast errors. 
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The simulation algorithm for computing the  -step-ahead conditional return and conditional 

variance figures as well as the
 

%)95(
|ttVaR   and %)95(

|ttES   based on the AR(1)-FIGARCH(1,1) 

model is presented in the Appendix. The collective accuracy of the VaR figures produced for 

each of the non-overlapping intervals is then evaluated using the Kupiec and Christoffersen 

tests, as outlined above.  

 

Multiple-step-ahead Expected Shortfall  

 

 Subsequently, the models are further compared by the calculation of the  -day-ahead 

95% Expected Shortfall, %)95(
|ttES  . This measures the  -day-ahead expected value of the loss, 

given that the return at time t  falls below the corresponding value of the VaR forecast: 
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The value of the  -day-ahead ES measure is given by: 
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Hence, by slicing the tail into a large number  of slices, we can estimate the  -day-ahead 

VaR associated with each slice and then take the  -day-ahead ES as the average of these 

VaRs using: 
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The best performing model deemed adequate for ES forecasting, will have the minimum 

mean squared error: 
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  which is calculated based on the following quadratic loss function: 
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4. Data Description 

  

 In order to examine the robustness of the VaR and ES forecasting performances of the 

selected volatility models, the VaR forecasts were generated using daily returns data from 20 

k
~



 

 

developed market stock indices.  The indices are  AEX Index (AMSTEOE), ATHEX 

Composite (GRAGENL), Austrian Traded Index (ATXINDX), CAC 40 Index (FRCAC40), 

DAX 30 Performance (DAXINDX), Dow Jones Industrial (DJINDUS), FTSE 100 

(FTSE100),  Ireland SE Overall (ISEQUIT), Hang Seng (HNGKNGI), Korea SE Composite 

(KORCOMP), Madrid SE General (MADRIDI), Mexico IPC (MXIPC35), NASDAQ 

Composite (NASCOMP), Nikkei 225 Stock Average (JAPDOWA), NYSE Composite 

(NYSEALL), OMX Stockholm (SWSEALI), Portugal PSI General (POPSIGN), S&P500 

Composite (S&PCOMP), S&P/TSX Composite (TTOCOMP) and Swiss Market (SWISSMI). 

The data, which was obtained from Datastream
® for the period from 12th January, 1989 until 

12th February, 2009, was conditioned to remove any non-trading days.  Thus the total number 

of log-returns, T̂ , ranged from 4.924 for the Japanese and Korean indices, to 5.072 for the 

Dutch index.  Based on a rolling sample of 000.2T  observations, a total of TTT  ˆ~
 out-

of-sample forecasts were produced for each model, with the parameters of the models re-

estimated each trading day14. 

 Descriptive statistics for the daily log returns for the selected indices are given in 

Table 1. All of the returns distributions are leptokurtic and the majority are negatively 

skewed. The Jarque-Bera test results indicate that none of the log returns series follows a 

Gaussian distribution15. The absolute value of the log-returns is significantly positively auto-

correlated for a high number of lags.  Examining the correlograms for the various indices, the 

decay in the value of the autocorrelation coefficients is initially rapid, before slowing and is 

suggestive of the hyperbolic decay which is typical for a long memory volatility process16.  

[Insert Table 1 about here] 

 

5.  Empirical Analysis 

  

VaR Analysis 

 

                                                           
14 The estimations were carried out using the G@RCH (Laurent, 2009) for Ox programming language. 
15 The unconditional distribution of the log-returns is not assumed to be the normal one. Under our model 

framework, the log-returns are assumed to be conditionally, to the information set, normally distributed, i.e.
 

  2

11101
,1~|

tttt
ycccNIy   . However, Bollerslev and Wooldridge's (1992) quasi-maximum likelihood 

covariances and standard errors are estimated. If the assumption of conditional normality does not hold, the 

quasi-maximum likelihood parameter estimates of conditional variance will still be consistent, provided that the 

mean and variance functions are correctly specified. 
16 Correlograms for the absolute log returns of the 20 indices are available from the authors upon request. 



 

 

 The results for the one-step-ahead VaR forecasting across the 20 indices for both the 

FIGARCH and GARCH specifications are shown in Table 2. Overall, the fractionally 

integrated modelling of conditional volatility does not appear to improve the forecasting 

accuracy of VaR across the 20 stock indices for the one-step-ahead time horizon.  

Furthermore, the results appear to corroborate the findings from the literature that VaR 

models are not robust across different markets, so that the optimal model varies from one 

index to the next (Angelidis et al., 2004; McMillan and Kambouroudis, 2009). 

[Insert Table 2 about here] 

 According to the results of the Kupiec (1995) test, the observed violation rate is not 

statistically different to the expected violation rate (5%) for the one-step-ahead VaR forecasts 

produced by both the GARCH and FIGARCH models for the ATXINDX, GRAGENL, 

HNGKNGI, MXIPC35, POPSIGN, and S&PCOMP indices. This is also the case for the one-

step-ahead VaR forecasts produced by the FIGARCH specification for the JAPDOWA and 

MADRIDI indices, and for the one-step-ahead VaR forecasts produced by the GARCH 

model for the DJINDUS index. In general, the models appear to underestimate the true VaR 

figure, as the observed proportion of VaR violations exceeds the expected value of 5% in 

almost all cases, sometimes by a large amount. This is in accordance with the findings of 

Kuester et al. (2006) who report that the majority of VaR models suffer from excessive VaR 

violations due to the models underestimating the true VaR figure.  

 According to the Christoffersen (1998) test, the VaR violations are independently 

distributed for the majority of the stock indices for both models, with just one exception, that 

of the ATXINDX for the FIGARCH  1,,1 d  specification. However, although there is limited 

evidence of clustering of the VaR violations, this is overridden by the results of the Kupiec 

test suggesting a widespread underestimation of the true VaR figure by both models.  

 Table 3 shows the results for the 10-step-ahead VaR forecasting. For this forecasting 

horizon, the long memory FIGARCH specification does not appear to overperform the 

GARCH model. According to the Kupiec test, the FIGARCH specification produces an 

observed exception rate which is not statistically different to the anticipated failure rate of 5% 

for 18 of the 20 indices. The corresponding figure for the GARCH model is 19 out of 20 

indices. The results of the Christoffersen test indicate that the VaR violations are not 

independently distributed for the GRAGENL and S&PCOMP indices under the FIGARCH 

model, and the ATXINDX under the GARCH specification. Although this represents an 

improvement over the long memory specification, it once again suggests that the modelling 

results are not robust across the different indices tested.  



 

 

[Insert Table 3 about here] 

 Table 4 shows the results for the forecasting of 20-step-ahead VaR across the 20 

indices for both the FIGARCH and GARCH models. For this longer time horizon the 

performance of the FIGARCH model slightly improves from the 10-step-ahead forecasting 

period, as the Kupiec test results suggest that the observed exception rate is not statistically 

different to the expected failure rate for all the indices.  Furthermore, the Christoffersen test 

results suggest that for two of these indices, namely the MXIPC35 and SWSEALI, the VaR 

violations are not independently distributed. A similar case holds for the performance of the 

GARCH model. It is now only marginally better than that of the FIGARCH model, with the 

Kupiec test indicating an adequate forecasting performance for all the 20 indices, but with 

one (MXIPC35) index showing evidence of clustering of VaR violations according to the 

Christoffersen test. 

[Insert Table 4 about here] 

 Another emerging pattern suggests that the longer the VaR forecasting time horizon, 

the less both models underestimate the true VaR. For the 1-day ahead time horizon, the 

observed failure rate was more than 5% in all 20 cases for the FIGARCH model and in 19 

cases for the GARCH specification. At the 10-day-horizon the observed failure rate exceeded 

5% in 18 cases (FIGARCH) and 15 cases (GARCH), whilst for the 20-day horizon the 

observed failure rate exceeded 5% in 13 and 11 cases for the FIGARCH and GARCH 

models, respectively. 

 

Expected Shortfall Analysis 

 

 The ES measure reports to the risk manager the expected loss of his investment if an 

extreme event occurs; in other words, the capital requirement under stress test conditions. 

Figures 1 and 2 plot, indicatively, the non-overlapping 10-trading-days-ahead 95% ES 

forecasts for the JAPDOWA index. In order to provide a more explanatory review of the 95% 

ES forecasts, we focus on a specific period which is characterized by high volatility. The 

second part of Figures 1 and 2 provides a magnified illustration for the specific volatile 

period, which is indicated in the bubble scheme17.  

                                                           
17 For example, for the trading day 18th of July, 2008, for a portfolio of ¥10.000.000, the predicted amount of the 

average loss, given a 95% VaR violation, equals ¥272.000 for the FIGARCH model; in other words, under 

stress test conditions, there is a capital requirement of ¥272.000 for the 10th trading day ahead. Note that the ES 

forecast for the 18th of July, 2008, trading day is available to the risk manager at the 4th of July, 2008. Similarly, 

for the same day, according to the GARCH model, there is a capital requirement of ¥263.000. 



 

 

[Insert Figure 1 about here] 

[Insert Figure 2 about here] 

 Turning to the estimates for the quadratic loss function that measures the distance 

between actual returns and expected returns in the event of a VaR violation (MSE for ES), 

the FIGARCH model produces lower values for the 1-day horizon for 13 of the indices.  

However, the GARCH model produces a lower MSE for ES values for 17 and 15 of the 

indices for the 10-day and 20-day forecasting horizons, respectively.  These results 

corroborate the earlier results from the Kupiec and Christoffersen tests, that the performance 

of the two models is similar for the 1-day horizon, whilst the GARCH model slightly 

outperforms the long memory FIGARCH model for the 10-day and 20-day horizons. 

Therefore, accounting for long memory does not appear to improve the model’s ability to 

accurately forecast losses, and consequently the short memory GARCH specification is 

preferable since it is the more parsimonious model. 

 The Diebold and Mariano (1995) test is applied in order to investigate whether the 

difference between the MSE loss functions of GARCH and FIGARCH models is statistically 

significant. The null hypothesis of no difference in the forecasting accuracy of GARCH and 

FIGARCH models,      0 
FIGARCH

t

GARCH

tE  , is tested against the alternative 

     0:1  
FIGARCH

t

GARCH

tEH  . A negative value of the loss differential 

      FIGARCH

t

GARCH

t

FIGARCHGARCH

t    ,  indicates that the GARCH model provides a lower 

value of MSE for ES than the FIGARCH model18. The Diebold and Mariano statistic is 

computed as the t-statistic of regressing   FIGARCHGARCH

t

,
  on a constant under the assumption 

of Newey and West's (1987) heteroskedastic and autocorrelated consistent standard errors. 

Table 5 presents the Diebold and Mariano statistics and the relative p-values, indicatively, for 

indices that both GARCH and FIGARCH models forecast the 95% VaR accurately according 

to the Kupiec and Christoffersen tests. In all the cases, without any exception, the null 

hypothesis that the GARCH and FIGARCH models provide statistically equal MSE loss 

functions for Expected Shortfall forecasts is not rejected. Therefore, the long memory 

modelling of conditional volatility does not appear to improve the forecasting accuracy of ES, 

even for longer forecasting horizons. 

                                                           
18  If the loss differential is a covariance-stationary short-memory process, then the Diebold and Mariano 

statistic, 
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[Insert Table 5 about here] 

 

Rolling-sampled Parameter Estimates 

 

 A further aim of this study is to investigate the behaviour of the rolling-sampled 

estimated parameters over time. The topic of constancy of parameters across time is a long-

standing historical debate as old as the role of econometrics in economics. Hendry (1996) 

notes : "The parameter is constant over the time period T  if it has the same value for all 

Tt . ... As the historical debate
19

 showed, constancy has long been regarded as a 

fundamental requirement for empirical modelling. ... Keynes claimed a number of ‘pre-

conditions’ for the validity of inferences from data, including both ‘time homogeneity’ (or 

parameter constancy) and a complete prior theoretical analysis, so he held to an extreme 

form of the ‘axiom of correct specification’ (see Leamer, 1978): statistical work in economics 

was deemed impossible without prior theoretical knowledge. ... However, as argued in 

Hendry (1995), if partial explanations are devoid of use (i.e., we cannot discover empirically 

anything that is not already known theoretically), Keynes must have believed no science ever 

progressed." 

 Due to the fact that news information arrives daily in an unpredictable fashion, the 

estimated parameters should be revised on a daily basis (see Engle et al., 1990; Degiannakis 

et al., 2008). Figures 3 to 8 illustrate the time plot of the rolling-sampled estimated 

parameters from the FIGARCH and GARCH models. In our case, there is evidence of a 

considerable time-varying characteristic of the estimated parameters of both models for 

FTSE-100, JAPDOWA and HNGKNGI indices20. Test statistics, i.e. Andrews (1993) and Bai 

and Perron (1998), would reject the hypothesis of constancy of parameters of both models 

across various subsamples. 

[Insert Figures 3-8 about here] 

 However, the research question arises: Why do long memory FIGARCH models have 

more time-varying parameters than the short memory GARCH models? Meitz and Saikkonen 

(2008) give conditions under which the AR(1)-GARCH(1,1) model is stable in the sense that 

its Markov chain representation is geometrically ergodic. Although, there is no previous 

                                                           
19 The historical debate refers to Robbins (1932), Keynes (1939) Frisch (1938), and Hendry and Morgan (1995), 

among others. 
20 The time-varying characteristic of the estimated parameters holds for all 20 indices. Figures for other indices 

are available upon request. 



 

 

evidence on the stability of FIGARCH parameters, we show that these parameters change 

less smoothly over time compared to the GARCH models. 

 Hence, we observe that the estimated parameters of the FIGARCH model exhibit a 

relatively more time-varying characteristic than those of the GARCH model. Not all of the 

instability can be due to the news information arrival process of the market since both models 

are fitted to data from the same sample period; a portion must be due to the FIGARCH 

modelling process itself.   

 

6. Conclusion and Suggestions for Further Research 

  

 This research has examined whether or not accounting for fractional integration in the 

volatility process improves VaR and ES forecasting performances, particularly as the 

forecasting time horizon lengthens. To this end, the paper proposes the application of the 

Monte Carlo simulation technique of Christoffersen (2003) to estimating multiple-step-ahead 

VaR forecasts using the FIGARCH model. The models were tested across 20 leading stock 

indices worldwide over the period from 1989 to 2009, at the 95% confidence level, for the 1-

step-ahead, 10-step-ahead and 20-step-ahead VaR forecasts. 

 The modelling results suggest that despite evidence of persistence in the volatility 

process, accounting for long memory in the model did not improve the VaR and ES 

forecasting accuracy relative to the short memory specification. Kuester et al. (2006) find that 

the majority of VaR models suffer from excessive VaR violations, implying an 

underestimation of market risk. Our results suggest that for both modelling specifications 

underestimation of the true VaR becomes less prevalent as the forecasting time horizon 

increases.  

 In addition, the time-varying property of the rolling-sampled FIGARCH parameters 

estimates appear not to be due solely to the news information arrival process on the market, 

but a portion must be due to the FIGARCH modelling process itself. The manuscript 

concludes that the models should be constructed carefully, either by risk managers or by 

market regulators. The ES estimates the capital requirements when a violation of normal 

market conditions occurs. The forecast of such measures must not be based on fractionally 

integrated models before their forecasting ability has been investigated. The incorporation of 

the long memory property in volatility modelling is not a panacea. 

 Due to the use of non-overlapping intervals, as the forecasting time horizon increases, 

the number of VaR and ES forecasts produced decreases by a factor equal to the length of the 



 

 

forecast period. As a result, particularly for the 20-day time horizon, the results of the Kupiec 

and Christoffersen tests are highly sensitive to the number of VaR violations such that a very 

small number of additional (or fewer) violations can be pivotal in determining whether or not 

the forecasting performance of the model is deemed to be adequate. Furthermore, the Kupiec 

model has been shown to lack power when the number of observations is small (Crouhy et 

al., 2001).  

The models presented in this paper were estimated under the assumption of 

normally21 distributed standardised residuals, since this distribution has fewer parameters and 

allowed the focus of the research to be on the relative VaR forecasting performances of the 

long memory and short memory specifications. Overall, in the literature, the long memory 

volatility models provide a superior one-day-ahead forecasting performance, in cases that the 

long memory is combined with skewed distribution. Degiannakis (2004) provides evidence 

that a fractionally integrated asymmetric ARCH model with skewed Student-t conditionally 

distributed innovations forecasts 1-day-ahead VaR adequately. The adaptive FIGARCH 

specification, of Baillie and Morana (2009), which accounts for both long memory and 

structural changes within the conditional variance process, outperforms the FIGARCH model 

in the presence of structural breaks, whilst the parameters of the model are less biassed and 

more efficient compared to those of a FIGARCH specification. Future research may 

incorporate multi-day-ahead VaR and ES forecasts allowing for asymmetry in the returns' 

distribution, i.e. the skewed Student-t, which has been suggested to improve VaR forecasting 

accuracy (Giot and Laurent 2003, and 2004; Tang and Shieh, 2006; McMillan and 

Kamboroudis, 2009). 

 Further research might benefit from the use of intra-daily data since the longer time 

series would increase the number of observations and will strengthen the results, particularly 

for longer forecasting time horizons. The emerging observation that the underestimation of 

the true VaR becomes less prevalent as the forecasting time horizon increases also warrants 

further investigation. 
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Appendix 

Based on Xekalaki and Degiannakis (2010) and Christoffersen (2003), a Monte Carlo 

simulation algorithm for computing %)95(
|ttVaR   and %)95(

|ttES   based on fractionally integrated 

conditional volatility model is presented. Consider the AR(1)-FIGARCH(1,1): 
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The  -day-ahead 95% VaR and Expected Shortfall estimates are obtained as: 

 

One-day-ahead 

 Step 1.1. Compute the one-day-ahead conditional variance as 
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 Step 1.2. Generate 5.000 random numbers  5000

11, iiz


 from the standard normal distribution 

 Step 1.3. Create the hypothetical returns of time 1t , as 

      
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   , for  000.5,,1i  

Two-day-ahead 

 Step 2.1. Create the forecast variance for time 2t , 2
2, ti


 

 Step 2.2. Generate 5.000 random numbers,   000.5

12, iiz


, from the standard normal 

distribution 

 Step 2.2. Calculate the hypothetical returns of time 2t , 

      
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ttt
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Three-day-ahead 

 Step 3.1. Create the forecast variance for time 3t , 2
3, ti


 

 Step 3.2. Generate 5.000 random numbers,   000.5

13, iiz


, from the standard normal 

distribution 



 

 

 Step 3.3. Calculate the hypothetical returns of time 3t , 
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Figures and Tables 

 

Table 1: Descriptive Statistics. 

INDEX Observations Mean Median Std. Dev. Skewness Kurtosis 
Jarque-

Bera 
Probability

1
 

AMSTEOE 5072 0.016836 0.067192 1.395972 -0.16156 9.766062 9696.817 0.000 

ATXINDX 4945 0.019052 0.054244 1.408684 -0.28461 10.83047 12700.47 0.000 

DAXINDX 5044 0.025316 0.083406 1.48699 -0.12667 8.012514 5293.989 0.000 

DJINDUS 5029 0.026568 0.049052 1.125719 -0.11793 11.44804 14966.53 0.000 

FRCAC40 5050 0.0135 0.033854 1.412313 -0.0377 7.751845 4752.41 0.000 

FTSE100 5051 0.016534 0.040528 1.150512 -0.11488 9.561969 9073.327 0.000 

GRAGENL 4936 0.032748 0.018962 1.736119 0.044387 7.844572 4828.592 0.000 

HNGKNGI 4944 0.042274 0.062797 1.725812 0.007238 12.05344 16884.78 0.000 

ISEQUIT 5017 0.010447 0.049028 1.257524 -0.65183 13.22265 22200.69 0.000 

JAPDOWA 4924 -0.02745 -0.01268 1.578394 -0.02021 8.277182 5713.949 0.000 

KORCOMP 4924 0.011606 0.041168 1.911157 -0.11475 7.005832 3303.052 0.000 

MADRIDI 4992 0.02815 0.077387 1.283485 -0.20082 8.496868 6318.39 0.000 

MXIPC35 5003 0.088184 0.103812 1.640208 0.029248 8.16869 5569.752 0.000 

NASCOMP 5042 0.031029 0.114602 1.57385 -0.04783 8.913875 7349.36 0.000 

NYSEALL 5035 0.025034 0.058148 1.122936 -0.3696 15.23759 31532.73 0.000 

POPSIGN 4984 0.021379 0.018262 0.966043 -0.42194 15.9026 34719.61 0.000 

S_PCOMP 5039 0.022856 0.048103 1.17312 -0.19843 12.1539 17626.3 0.000 

SWISSMI 5023 0.025303 0.067464 1.218007 -0.14656 9.126867 7874.477 0.000 

SWSEALI 4999 0.030183 0.066004 1.393286 0.148244 7.555802 4341.474 0.000 

TTOCOMP 5029 0.021684 0.061911 1.055662 -0.76711 14.25989 27059.97 0.000 
1 

This column displays the p-value for the Jarque-Bera test which has as its null hypothesis that the returns series follow a 

Gaussian distribution. 
 

  



 

 

Table 2: 1-step-ahead VaR and ES modelling results. 

Index 
Number of 1-
step-ahead 

VaR forecasts 

Average 
VaR 

Observed 
exception 

rate 

Kupiec   
p-value 

Christoffersen 
p-value 

Average 
ES 

MSE 
for ES 

PART A. ARMA (1,0) - FIGARCH (1,d,1) 

AMSTEOE 3072 -2.279 5.99% 0.0145* 0.5369 -2.873 0.041 

ATXINDX 2945 -2.009 5.57% 0.1639 0.0278* -2.534 0.042 

DAXINDX 3044 -2.426 6.47% 0.0004** 0.3937 -3.059 0.040 

DJINDUS 3029 -1.832 5.81% 0.0458* 0.5662 -2.310 0.036 

FRCAC40 3050 -2.252 6.36% 0.0009** 0.4328 -2.838 0.038 

FTSE100 3051 -1.889 5.97% 0.0174* 0.3296 -2.378 0.027 

GRAGENL 2936 -2.553 5.48% 0.2361 0.1624 -3.210 0.052 

HNGKNGI 2944 -2.638 5.40% 0.3243 0.8833 -3.325 0.068 

ISEQUIT 3017 -2.015 6.20% 0.0035** 0.6102 -2.260 0.060 

JAPDOWA 2924 -2.483 5.75% 0.0705 0.9069 -3.117 0.050 

KORCOMP 2924 -3.112 6.12% 0.0071** 0.9902 -3.914 0.101 

MADRIDI 2992 -2.019 5.51% 0.2035 0.6936 -2.550 0.035 

MXIPC35 3003 -2.415 5.46% 0.2529 0.4732 -3.059 0.047 

NASCOMP 3042 -2.665 6.48% 0.0003** 0.2375 -3.361 0.044 

NYSEALL 3035 -1.815 5.83% 0.0402* 0.1448 -2.289 0.029 

POPSIGN 2984 -1.528 5.76% 0.0613 0.7195 -1.929 0.038 

S&PCOMP 3039 -1.930 5.76% 0.0608 0.7135 -2.434 0.032 

SWISSMI 3023 -1.919 6.42% 0.0006** 0.6541 -2.423 0.032 

SWSEALI 2999 -2.255 5.80% 0.0492* 0.7090 -2.852 0.039 

TTOCOMP 3029 -1.754 6.50% 0.0003** 0.2309 -2.214 0.043 

PART B. ARMA (1,0) - GARCH (1,1) 

AMSTEOE 3072 -2.272 6.28% 0.0017** 0.2553 -2.863 0.0441 

ATXINDX 2945 -1.967 5.74% 0.0721 0.1665 -2.481 0.0457 

DAXINDX 3044 -2.391 6.73% 0.0000** 0.0715 -3.015 0.0422 

DJINDUS 3029 -1.844 5.55% 0.1748 0.8158 -2.326 0.0343 

FRCAC40 3050 -2.234 6.43% 0.0005** 0.8558 -2.815 0.0379 

FTSE100 3051 -1.895 6.33% 0.0012** 0.2666 -2.386 0.0299 

GRAGENL 2936 -2.596 4.97% 0.9459 0.3093 -3.264 0.0513 

HNGKNGI 2944 -2.623 5.71% 0.0851 0.4251 -3.306 0.0649 

ISEQUIT 3017 -2.031 6.26% 0.0021** 0.7237 -2.279 0.0592 

JAPDOWA 2924 -2.466 5.92% 0.0269* 0.8025 -3.096 0.0451 

KORCOMP 2924 -3.13 6.12% 0.0071** 0.7417 -3.936 0.1034 

MADRIDI 2992 -1.985 6.15% 0.0053** 0.2700 -2.508 0.0376 

MXIPC35 3003 -2.423 5.46% 0.2529 0.7303 -3.070 0.0485 

NASCOMP 3042 -2.674 6.67% 0.0001** 0.0377 -3.373 0.0504 

NYSEALL 3035 -1.821 6.03% 0.0116* 0.5397 -2.296 0.0331 

POPSIGN 2984 -1.575 5.63% 0.1213 0.6044 -1.988 0.0350 

S&PCOMP 3039 -1.958 5.59% 0.1401 0.1986 -2.469 0.0347 

SWISSMI 3023 -1.866 7.08% 0.0000** 0.2306 -2.357 0.0347 

SWSEALI 2999 -2.236 6.10% 0.0073** 0.7047 -2.829 0.0408 

TTOCOMP 3029 -1.750 6.60% 0.0001** 0.1779 -2.209 0.0431 

*denotes significance at 5%, ** denotes significance at 1%. 

 



 

 

Table 3: 10-step-ahead VaR and ES modelling results. 

Index 

Number of 
10-step-

ahead VaR 
forecasts 

Average 
VaR 

Observed 
exception 

rate 

Kupiec   
p-value 

Christoffersen 
p-value 

Average 
ES 

MSE 
for ES 

PART A. ARMA (1,0) - FIGARCH (1,d,1) 

AMSTEOE 307 -2.2143 3.91% 0.3630 0.4799 -2.9164 0.1003 

ATXINDX 294 -1.9578 6.12% 0.3939 0.1032 -2.5870 0.0550 

DAXINDX 504 -2.3837 7.57% 0.0135* 0.3089 -3.1187 0.0530 

DJINDUS 502 -1.7669 6.95% 0.0577 0.6636 -2.2889 0.0280 

FRCAC40 305 -2.1960 4.26% 0.5433 0.5723 -2.8345 0.0295 

FTSE100 305 -1.8245 5.57% 0.6535 0.9576 -2.3744 0.0742 

GRAGENL 293 -2.5373 6.48% 0.2653 0.0284* -3.4059 0.0621 

HNGKNGI 294 -2.5982 6.12% 0.3939 0.4091 -3.3747 0.0840 

ISEQUIT 301 -1.9125 7.97% 0.0289* 0.9502 -2.4978 0.0328 

JAPDOWA 292 -2.4568 5.82% 0.5304 0.3375 -3.1693 0.2446 

KORCOMP 292 -3.0196 5.14% 0.9130 0.7938 -3.9230 0.0876 

MADRIDI 299 -1.9659 6.35% 0.3030 0.8331 -2.5761 0.0382 

MXIPC35 300 -2.3522 5.00% 1.0000 0.2080 -3.1283 0.0589 

NASCOMP 304 -2.5644 5.92% 0.4739 0.9426 -3.3831 0.2638 

NYSEALL 303 -1.7591 6.27% 0.3283 0.1291 -2.2930 0.0850 

POPSIGN 298 -1.4947 6.38% 0.2936 0.1169 -2.0610 0.0213 

S&PCOMP 303 -1.8543 6.27% 0.3283 0.0238* -2.4071 0.0504 

SWISSMI 302 -1.8773 6.29% 0.3218 0.4710 -2.4733 0.0580 

SWSEALI 299 -2.2084 7.36% 0.0792 0.6622 -2.9238 0.0657 

TTOCOMP 302 -1.7096 5.96% 0.4569 0.9108 -2.2458 0.0659 

PART B. ARMA (1,0) - GARCH (1,1) 

AMSTEOE 307 -2.2739 4.23% 0.5253 0.5685 -2.9716 0.1026 

ATXINDX 294 -1.9533 6.80% 0.1783 0.0419* -2.5699 0.0553 

DAXINDX 504 -2.3863 9.54%  0.0000** 0.4000 -3.1146 0.0563 

DJINDUS 502 -1.8516 5.63% 0.5252 0.1536 -2.3906 0.0224 

FRCAC40 305 -2.2315 4.26% 0.5433 0.5723 -2.8631 0.0246 

FTSE100 305 -1.9029 4.92% 0.9488 0.7618 -2.4583 0.0674 

GRAGENL 293 -2.7451 5.80% 0.5396 0.0747 -3.7361 0.0493 

HNGKNGI 294 -2.6550 5.78% 0.5489 0.3335 -3.4372 0.0761 

ISEQUIT 301 -2.0239 7.64% 0.0504 0.5029 -2.6241 0.0207 

JAPDOWA 292 -2.5059 5.14% 0.9130 0.7938 -3.2176 0.2253 

KORCOMP 292 -3.1490 5.14% 0.9130 0.7938 -4.0669 0.0756 

MADRIDI 299 -1.9703 6.02% 0.4323 0.9282 -2.5691 0.0270 

MXIPC35 300 -2.4919 4.67% 0.7910 0.2408 -3.3124 0.0509 

NASCOMP 304 -2.6540 5.59% 0.6429 0.9603 -3.4912 0.2334 

NYSEALL 303 -1.8349 5.61% 0.6325 0.3161 -2.3786 0.0800 

POPSIGN 298 -1.6664 5.70% 0.5872 0.1636 -2.3728 0.0158 

S&PCOMP 303 -1.9813 4.62% 0.7586 0.2433 -2.5435 0.0379 

SWISSMI 302 -1.8297 5.63% 0.6221 0.3179 -2.4231 0.0538 

SWSEALI 299 -2.2493 6.02% 0.4323 0.1281 -2.9797 0.0472 

TTOCOMP 302 -1.7648 5.63% 0.6221 0.9658 -2.3085 0.0650 

*denotes significance at 5%, ** denotes significance at 1%. 



 

 

Table 4: 20-step-ahead VaR and ES modelling results. 

Index 

Number of 
20-step-

ahead VaR 
forecasts 

Average 
VaR 

Observed 
exception 

rate 

Kupiec     
p-value 

Christoffersen 
p-value 

Average 
ES 

MSE 
for ES 

PART A. ARMA (1,0) - FIGARCH (1,d,1) 

AMSTEOE 153 -2.1929 5.23% 0.8969 0.3457 -2.9664 0.0837 

ATXINDX 147 -1.9353 7.48% 0.1972 0.8431 -2.6041 0.1201 

DAXINDX 152 -2.3759 4.61% 0.8232 0.4457 -3.1815 0.0349 

DJINDUS 151 -1.7433 7.28% 0.2273 0.8219 -2.2948 0.1522 

FRCAC40 152 -2.1893 4.61% 0.8232 0.4093 -2.8817 0.0727 

FTSE100 152 -1.8114 6.58% 0.3930 0.1414 -2.4085 0.0518 

GRAGENL 146 -2.5173 6.16% 0.5342 0.3042 -3.4558 0.0398 

HNGKNGI 147 -2.5828 4.76% 0.8930 0.4010 -3.4149 0.0349 

ISEQUIT 150 -1.8749 8.00% 0.1195 0.3054 -2.4824 0.0341 

JAPDOWA 146 -2.4164 4.11% 0.6111 0.4716 -3.1703 0.0082 

KORCOMP 146 -2.9924 4.79% 0.9067 0.3993 -3.9593 0.1267 

MADRIDI 149 -1.9552 5.37% 0.8377 0.3388 -2.6116 0.0367 

MXIPC35 150 -2.3390 4.67% 0.8513 0.0282* -3.1549 0.0707 

NASCOMP 152 -2.5020 5.92% 0.6126 0.2853 -3.3686 0.3173 

NYSEALL 151 -1.7308 7.28% 0.2273 0.1868 -2.2929 0.0356 

POPSIGN 149 -1.4615 6.71% 0.3616 0.2284 -2.0694 0.0094 

S&PCOMP 151 -1.8266 7.28% 0.2273 0.8219 -2.4045 0.0400 

SWISSMI 151 -1.9058 4.64% 0.8373 0.3090 -2.5744 0.0793 

SWSEALI 149 -2.1658 7.38% 0.2117 0.0342* -2.9428 0.1061 

TTOCOMP 151 -1.7006 7.28% 0.2273 0.8219 -2.2734 0.1151 

PART B. ARMA (1,0) - GARCH (1,1) 

AMSTEOE 153 -2.2896 3.92% 0.5248 0.4825 -3.0813 0.0222 

ATXINDX 147 -1.9360 6.80% 0.3413 0.1512 -2.6161 0.1250 

DAXINDX 152 -2.3736 3.95% 0.5381 0.5207 -3.1831 0.0233 

DJINDUS 151 -1.8627 6.62% 0.3832 0.2318 -2.4515 0.1364 

FRCAC40 152 -2.2477 4.61% 0.8232 0.4093 -2.9269 0.0627 

FTSE100 152 -1.9136 5.26% 0.8840 0.3440 -2.5249 0.0644 

GRAGENL 146 -2.8315 5.48% 0.7931 0.3667 -4.0362 0.0643 

HNGKNGI 147 -2.6596 4.08% 0.5975 0.4732 -3.5204 0.0514 

ISEQUIT 150 -2.0047 6.67% 0.3708 0.6854 -2.6492 0.0244 

JAPDOWA 146 -2.4931 3.42% 0.3540 0.5501 -3.2518 0.0043 

KORCOMP 146 -3.1844 4.11% 0.6111 0.4716 -4.2056 0.0768 

MADRIDI 149 -1.9788 4.70% 0.8653 0.4044 -2.6439 0.0217 

MXIPC35 150 -2.5278 4.00% 0.5610 0.0130* -3.4393 0.0684 

NASCOMP 152 -2.6196 5.26% 0.8840 0.3440 -3.5615 0.2221 

NYSEALL 151 -1.8336 7.28% 0.2273 0.1868 -2.4266 0.0321 

POPSIGN 149 -1.7368 6.04% 0.5722 0.2802 -2.6582 0.0289 

S&PCOMP 151 -1.9922 5.30% 0.8669 0.4207 -2.6065 0.0111 

SWISSMI 151 -1.8528 5.30% 0.8669 0.4207 -2.5202 0.0793 

SWSEALI 149 -2.2321 4.70% 0.8653 0.3137 -3.0435 0.0942 

TTOCOMP 151 -1.8018 5.96% 0.5988 0.5458 -2.4249 0.0958 

*denotes significance at 5%, ** denotes significance at 1%. 



 

 

Table 5: Diebold and Mariano statistics for testing the null hypothesis that the GARCH and 

FIGARCH models provide statistically equal MSE loss functions for Expected Shortfall forecasts. 

Index Diebold and Mariano Statistic p-value 

1-trading-day-ahead 

GRAGENL -0.2679 0.788 

HNGKNGI -0.7781 0.436 

MXIPC35 0.6022 0.547 

POPSIGN -1.1046 0.269 

S&PCOMP 1.3488 0.177 

10-trading-day-ahead 

FRCAC40 -1.4431 0.150 

FTSE100 -1.8015 0.072 

KORCOMP -0.9681 0.333 

MXIPC35 -1.3594 0.175 

20-trading-day-ahead 

FRCAC40 -1.3122 0.191 

MADRIDI -1.0897 0.277 

SWISSMI -0.0062 0.995 

 

 

  



 

 

Figure 1: Ten-trading-day-ahead 95% ES forecasts obtained by the FIGARCH model and the 

corresponding actual JAPDOWA index losses for the period 28th of January, 1998 to 26th of 

November, 2009. 

FIGARCH model 

Ten-trading-day-ahead 95% ES forecasts obtained by the FIGARCH model and the corresponding 

actual JAPDOWA index losses for the period 18th of July, 2008 to 30th of December, 2008. 
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Figure 2: Ten-trading-day-ahead 95% ES forecasts obtained by the GARCH model and the 

corresponding actual JAPDOWA index losses for the period 28th of January, 1998 to 26th of 

November, 2009. 

GARCH model 

Ten-trading-day-ahead 95% ES forecasts obtained by the GARCH model and the corresponding 

actual JAPDOWA index losses for the period 18th of July, 2008 to 30th of December, 2008. 
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Figure 3: FTSE 100 index: Rolling-sampled parameter estimates for the FIGARCH model. 

 
 

Figure 4: JAPDOWA index: Rolling-sampled parameter estimates for the FIGARCH model. 

 
 

Figure 5: HNGKNGI index: Rolling-sampled parameter estimates for the FIGARCH model. 
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Figure 6: FTSE 100 index: Rolling-sampled parameter estimates for the GARCH model. 

 
The rolling-sampled ARCH parameter estimates are presented in the left axis, whereas the rolling-sampled 
GARCH parameter estimates are presented in the right axis.  

 

FIGURE 7: JAPDOWA index: Rolling-sampled parameter estimates for the GARCH model. 

The rolling-sampled ARCH parameter estimates are presented in the left axis, whereas the rolling-sampled 
GARCH parameter estimates are presented in the right axis. 

 

FIGURE 8: HNGKNGI index: Rolling-sampled parameter estimates for the GARCH model. 

The rolling-sampled ARCH parameter estimates are presented in the left axis, whereas the rolling-sampled 
GARCH parameter estimates are presented in the right axis. 
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