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Abstract 

 

The study provides evidence in favour of the price range as a proxy estimator of volatility 

in financial time series, in the cases that either intra-day datasets are unavailable or they are 

available at a low sampling frequency. 

A stochastic differential equation with time varying volatility of the instantaneous log-

returns process is simulated, in order to mimic the continuous time diffusion analogue of the 

discrete time volatility process. The simulations provide evidence that the price range 

measures are superior to the realized volatility constructed at low sampling frequency. The 

high-low price range volatility estimator is more accurate than the realized volatility 

estimator based on five, or less, equidistance points in time. The open-high-low-close price 

range is more accurate than the realized volatility estimator based on eight, or less, intra-

period log-returns. 
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1. Introduction 

Realized volatility, introduced by Andersen and Bollerslev (1998), is an alternative 

measure of daily volatility in financial markets. The modeling of realized volatility is based 

on the idea of using the sum of squared intraday returns to generate more accurate daily 

volatility measures. Merton (1980) was the first who noted the idea of using high frequency 

data to compute measures of volatility at a higher frequency, whereas French et al. (1987), 

Schwert (1989, 1990) and Schwert and Seguin (1990) computed the monthly variance by 

summing the variance of the daily log-returns. Nowadays there is a growing literature in 

constructing daily realized volatility from ultra-high frequency log-returns, i.e. intraday asset 

prices per minute. Andersen and Benzoni (2009), Andersen et al. (2001a, 2001b, 2003, 2010), 

McAleer and Medeiros (2008), among others, have provided comprehensive reviews for the 

estimation and the distributional properties of the realized volatility. 

The realized volatility is a less noisy and more accurate estimate of volatility in financial 

time series than the squared daily log-returns
1
. However, the estimation of the realized 

volatility requires the availability of intra-day datasets. On the other hand, the price range, i.e. 

the difference between the highest and the lowest log-prices, can be constructed even when 

detailed intra-day datasets are not available, as the daily high and low prices are recorded in 

business newspapers and Japanese candlestick charting techniques
2
. 

The purpose of the present study is to provide evidence in favour of the use of the price 

range as a proxy estimator of volatility in financial time series, in the cases that either intra-

day time series datasets are unavailable or they require a high cost of data collection and 

processing.  

The price range can be constructed based on either two-data-points or four-data-points. 

The two-data-points price range estimator is based the highest and the lowest prices of the 

asset over a specific time interval, whereas the four-data-points price range requires, 

additionally, the first and the last prices of the asset. The simulations provide evidence that 

the price range measures are superior/inferior to the realized volatility constructed at low/high 

sampling frequency. Specifically, the two-data-points price range estimator provides more 

accurate volatility estimates that the realized volatility constructed with 8 equidistance points 

                                                 
1
 According to Oomen (2001), the average daily return variance is estimated more accurately by summing up 

squared intra-daily returns rather than calculating the squared daily return. 
2
 A candlestick chart is a bar-chart that displays the open, close, high and low prices of the trading day (Nison, 

2001). 
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in time. In example
3
, for a daily trading period of 16 hours and 40 minutes, the price range 

can provide more accurate risk estimate than the sum of squared intraday returns at a 

sampling frequency of 125 minutes. Additionally, the four-data-points price range provides 

more accurate volatility estimates that the realized volatility constructed with 10 equidistance 

points in time; i.e. the price range is a more accurate volatility estimator than the realized 

volatility at a sampling frequency of 100 minutes (for a daily trading period of 16 hours and 

40 minutes). 

Τhis paper is organized as follows. Section 2 illustrates the notion of integrated 

volatility as well as its relation to the realized volatility. Section 3 provides a brief description 

of the price range estimators, whereas section 4 provides the framework of the relative 

simulation. The last section concludes the paper. 

 

2. Integrated and Realized Volatility 

The instantaneous prices  tp  represent the continuous time prices of the asset generated 

by the true data generated mechanism. Financial literature assumes that the instantaneous 

logarithmic price,  tplog , of a financial asset follows a simple diffusion process
4
: 

     tdWttpd log . (1) 

The  t  is the volatility of the instantaneous log-returns process and the  tW  is the 

standard Wiener process. Over the time interval  ba,  the aggregated volatility,
  

 IV

ba

2

, , is: 

 
   dtt

b

a

IV

ba

22

,   . (2) 

 The integrated variance,
  

 IV

ba

2

, , is the actual, but unobservable, variance we would 

like to estimate.  

As the actual volatility is not observed, we require a proxy measure for the  
 IV

ba

2

, . 

Although the integrated volatility is a latent variable, according to the theory of quadratic 

variation of semi-martingales (Barndorff-Nielsen and Shephard, 2001, 2002, 2005), it can be 

consistently estimated by the realized volatility. The time interval is partitioned in   

                                                 
3
 A trading day of 16 hours and 40 minutes, i.e. the market is open from 07:00 to 23:40, is divided in  1.001 

one-minute points in time. 
4
 Although a jump-diffusion model (Barndorff-Nielsen and Shephard, 2004) is highly important for financial 

economics (asset allocation, derivatives pricing, risk management), we focus in simulating a continuous time 

diffusion without jumps, in order to concentrate on the comparison between price range and realized volatility 

measures. 
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equidistance points in time ttt ,...,, 21 . At each point in time 
jt , the integrated variance is 

decomposed to: 

 
       dttdttdtt

t

t

t

t

t

t

IV

ba

2222

,

1

3

2

2

1

... 







 , (3) 

For the length of each sub-interval tending to zero, 1 jj ttdt , and the number of 

equidistance points in time tending to infinity,  , the realized volatility is a consistent 

estimator for  
 IV

ba

2

, : 

   








1

2

1
loglog

j

ttt jj
PPRV , (4) 

The realized volatility converges in probability to the integrated volatility, as  , 

    
 IV

batRVp
2

,lim 





, (5) 

and is asymptotically normally distributed: 

   

 
 1,0

2 4

2

N

dtt

dttRV
d

b

a

b

a

t


















 

. (6) 

The asymptotic volatility of volatility,  
 IQ

ba

2

, , is termed integrated quarticity: 

 
   

b

a

IQ

ba dtt
42

, 2 . (7) 

The  
tRV   would be an ideal estimate of volatility

5
, over any time interval  ba, , under the 

assumptions that i) the logarithmic prices follow the diffusion process and ii) there are no 

microstructure frictions
6
.  

                                                 
5
 Consider the realized volatility for n  days defined as the sum of squared returns observed over one-minute 

time intervals. Each trading day, the asset is pricing in the time interval    00:15,00:09, ba , or, in other 

words, the market is open from 09:00 to 15:00. The five-days realized volatility defined as the sum of squared 

log-returns observed over one-minute time intervals is denoted as: 
   

 


 
n

t j
jtjt

n

t
PPRV

1 1

2

1
loglog




, where jt
P

 

are the financial asset prices for the trading day t , which is divided in 360  equidistance intra-day log-

returns. The 
 3605

t
RV  denotes the five-days realized volatility from the trading day t  up to the trading day 5t , 

based on 360  log-returns for each trading day. 
6
 Microstructure frictions include discreteness of the pricing data, trading liquidity, transaction and regulatory 

costs, taxes, properties of the trading mechanism and protocols, the bid-ask spreads, etc. For a comprehensive 

explanation you are referred to the excellent reviews of Alexander (2008) and Madhavan (2000).  
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 Barndorff-Nielsen and Shephard (2005), based on the realised power variation theory, 

examined the finite sample performance of the asymptotic approximation to the distribution 

of the realised variance. The realized power variation of order 2q is defined as: 

    








2

22

1
loglog

j

q

tt

q

t jj
PPRV . (8) 

They studied the finite sample behaviour of the realized variance 

 
 
 

  
 1,0

3

2 4

2

,
N

RV

RV d

t

IV

bat 




 
, 

(9) 

and the logarithmic realized variance 

    
  

  
 1,0

3

2

loglog

24

2

,
N

RVRV

RV d

tt

IV

bat 




 
, 

(10) 

as well. The asymptotic normality holds for   
tRVlog  even for moderately small values of 

 , whereas for the case of  
tRV a much higher value of   is required. Barndorff-Nielsen 

and Shephard (2005) provided simulated evidence where the quantity: 

    
     

  
 1,0

2
,

3

2
max

2
,

3

2
max5.0loglog

24

242

,

N

RVRV

RVRVRV
d

tt

tt

IV

bat
































 (11) 

improves the finite sample behaviour.  

 

3. Price Range Estimators of Volatility 

The two-data-points price range, introduced by Parkinson (1980), for the time interval 

 ba, , is the difference between the highest and the lowest log-prices: 

            2,,2 minlogmaxlog
2log4

1
jj ttba PPRange  . (12) 

The advantage of the price range proxy is its construction due to the availability of the 

high and low prices. Even when detailed intra-day datasets are not available, intra-day high 

and low prices are recorded in business newspapers and Japanese candlestick charting 

techniques.  

Under the assumption that the instantaneous logarithmic price,  tplog , of a financial 

asset follows the diffusion process in equation (1), Parkinson (1980) showed that 
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  
    t
tp

tp
E /8

min

max
log 
















. (13) 

and 

  
      2

2

2log4
min

max
t

tp

tp
E 






















. (14) 

 The computation of the price range is based on two data points; the highest and the 

lowest prices over the time interval. Garman and Klass (1980) proposed an extension of the 

price range, incorporating information for the opening and the closing prices, as well. The 

four-data-points price range estimator, or    baRange ,,4 , is computed as: 

   
 
    

22

,,4

1

log12log2
min

max
log

2

1






















































t

t

t

t

ba
P

P

P

P
Range

j

j  , (15) 

where 
1t

P  and 
t

P  are the open and close prices for the time interval  ba, , which is 

partitioned in   equidistance points, respectively. 

 

4. Simulations 

 We simulate a stochastic differential equation, by relaxing the assumption of constant 

volatility of the instantaneous log-returns process in equation (1). We undertake a time 

varying volatility of the instantaneous log-returns process in order to mimic the continuous 

time diffusion analogue of the GARCH(1,1) process
7
. 

 The GARCH(1,1) process is defined as: 

 ,1,0~

,

,

...

2

11

2

110

2

Nz

baa

zy

dii

t

ttt

ttt

 







 (16) 

According to Andersen and Bollerslev (1998) and Drost and Werker (1996), the discrete time 

GARCH(1,1) process with parameters 0a , 1a  and 1b  is related to the continuous time 

GARCH(1,1) diffusion: 

                                                 
7
 Literature has provided an extensive number of ARCH type processes that model the properties of financial 

assets. In example, the FIGARCH model captures the long memory property of volatility (Baillie et al., 1996), 

the regime switching ARCH model allows the modelling of regimes in markets (Hamilton and Susmel, 1994), 

etc. However, the GARCH(1,1) is the most widely applied discrete time volatility process which captures the 

property of volatility clustering in asset returns; see also Hansen and Lunde (2005). 
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      
        ,2

log

210

2

10

2

1

tdWtbadttaatd

tdWttpd




 


 (17) 

with  tW1  and  tW2  denoting independent standard Wiener processes and with parameters 


0a , 


1a , 


1b  relating to those of the discrete time model as 

 110 log baa  , 

 11

0
1 1 ba

a
a




, 

  
   

          11

2

1111

1111

2

1

2

11

2

11
1

14log2log6
1

11

log2

bababa
baba

bba

ba
b






 . 

In general, as the length of the discrete time intervals goes to zero, the stochastic difference 

ARCH process convergences to a stochastic differential equation. For technical details see 

Nelson (1990). 

We assume a generated data process of 1.000 trading days for each of which there 

will be 1.000 intraday log-returns
8
. Therefore, the simulated process 

jt
P , where ,...,1,0j  

and Tt ,...,1 , for  1.000 equidistance points in time and 000.1T  days is observed at 

sampling frequency 
1001

01






ab

m , or 000.1/11  jj ttdt . Therefore, there are 

000.1  intra-day log-returns over the daily intervals,    1,0, ba .  

Hence, we generate 1.000.000 observations from the continuous time GARCH(1,1) 

diffusion in framework (17). The discrete presentation for 001,00 a , 12,01 a  and 

80,01 b  in equation (16) is
9
: 

         
      ,084,0083,0100108,0

,loglog

2

22

1

tWdtdttdtdtt

tWdtttpdttp








 (18) 

where  tW1  and  tW2  denote independent standard normal variables. Then, we simulate the 

000.1T  daily log-returns, ty , as  
 1loglog  ttt ppy . Note that under the ideal 

situations of the simulated framework;   


tppt loglog  . Our purpose is to estimate the 

discrete time GARCH(1,1) model for the 1.000 simulated daily log-returns as: 

                                                 
8
 In the simulated framework there are no market frictions. Thus we do need to take into consideration any 

frictions, such as the bid-ask spread, the time interval that the market is closed, etc. 
9
 The values of the parameters reflect the representative estimates of the parameters of a GARCH(1,1) process 

for stock indices. 
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 ttt zy  , 

2

11

2

110

2

  ttt byaa  , 

   
 1,0~ Nzt . 

(19) 

The estimates of the conditional variance are denoted: 
      2

11

2

110

2 ˆˆ   t

T

t

TT

t byaa  . The 

realized volatility is computed for sampling frequencies of m 250
-1

, 200
-1

, 125
-1

, 100
-1

, 50
-1

, 

40
-1

, 25
-1

, 20
-1

, 10
-1

, 8
-1

, 5
-1

, 4
-1

, 2
-1

, 1, or equivalently for  250, 200, 125, 100, 50, 40, 25, 

20, 10, 8, 5, 4, 2, 1 points in time. The price range measures are computed according to 

equations (12) and (15). Figure 1 presents a visual inspection of the construction of the 

realized variance, for the day t , for 100  points in time, or equivalently for a sampling 

frequency of 100/1m . 

[Insert Figure 1 About here] 

Table 1 presents the values of the mean squared distance between conditional 

variance estimate and realized variance. The mean squared distance is usually referred as 

MSE loss function: 

    


 
T

t

tt RVTMSE
1

221 ˆ   . (20) 

Hansen and Lunde (2006) derived conditions which ensure that the ranking of any two 

variance forecasts by a loss function is the same whether the ranking is done via the true 

variance,  
 IV2

1,0 , or via a conditionally unbiased variance proxy, i.e.  
tRV . The MSE loss 

function ensures the equivalence of the ranking of volatility models that is induced by the 

true volatility and its proxy. 

[Insert Table 1 about here] 

Naturally, the MSE loss function minimises as  . According to Table 1, both 

price range proxies are superior to the realized variance measure for moderate values of  , 

and inferior to the realized variance for larger values of  .  

We repeat the simulation of the 1.000.000 observations several times in order to 

investigate the robustness of the findings. Specifically, the simulation is repeated 2.000 times. 

Table 2 presents the average and the median values of the MSE loss functions corresponding 

to the 2.000 simulations. 

 [Insert Table 2 about here] 

According to Table 2, the MSE loss function decreases monotonically with  . The average 

value of 
 1410 MSE  is 6,506, whereas the average value of 

 250410 MSE  is 0,660. Hence, the 
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volatility measure based on the daily log-returns has on average 10 times higher MSE value 

compared to the volatility measure which is based on 250 intra-day log-returns.  The median 

values of the 
 

MSE
410  provide similar evidence. Both    tRange ,2  and   tRange ,4  are 

superior to the 
 

tRV  when the realized variance measure is constructed on the basis of a 

small number of intraday log-returns, i.e 8 .  More specifically, for the   tRange ,2 , an 

average value of the MSE loss function of 1,881 indicates that the two-data-points price 

range volatility estimator is more accurate than the realized volatility estimator which is 

based on 5  intra-day log-returns. In the case of the four-data-points price range volatility 

estimator, the average of the MSE loss function of 1,491 provides evidence that the   tRange ,4  

is more accurate than the realized volatility estimator when it is based on 8  intra-day log-

returns. In the case the median value of the MSE loss function is under examination, the 

results remain qualitatively similar. 

 Hence, under the ideal situations of a simulated framework, the highest the sampling 

frequency, the lowest the value of the MSE loss function. However, if intra-day data are not 

available, or they are available for less than 8 equidistance points in time, then the price range 

estimators are more accurate volatility estimators than the realized volatility. 

 

5. Conclusion 

Modern applied financial literature concludes that volatility estimates based on intra-day 

asset prices are the most accurate estimates of volatility in time series. However, in the cases 

that either intra-day datasets are unavailable or they require a high cost of data collection, the 

price range volatility estimator is still an adequate proxy for estimating volatility. The price 

range estimates can be constructed with data that are available in business newspapers and 

Japanese candlestick charting techniques.  

Two versions of the price range were investigated. The two-data-points price range 

estimator requires the highest and the lowest prices within the day. The four-data-points price 

range is based on the highest and the lowest prices as well as on the first and the last prices of 

the asset. The simulations provide evidence that the price range measures are superior to the 

realized volatility constructed at low sampling frequency. The two-data-points price range 

volatility estimator is more accurate than the realized volatility estimator based on 5  

intra-day log-returns. The four-data-points price range volatility estimator is more accurate 

than the realized volatility estimator that is based on 8  intra-day log-returns. 
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The comparison of the realized volatility and price range measures under a diffusion 

process with jumps or the existence of a long memory volatility process would be an 

interesting issue for future study. 
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Figures and Tables 

Table 1. Values of the MSE loss functions. The data generating process is the continuous time 

diffusion 
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Table 2. Average and median values of the MSE loss functions of the 2.000 simulations. The data 

generating process is the continuous time diffusion 
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Figure 1. Determination of realized variance for day t ,    
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