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A b s t r a c t  

 ARFIMAX models are applied in estimating the intra-day realized volatility of the 

CAC40 and DAX30 indices. Volatility clustering and asymmetry characterize the logarithmic 

realized volatility of both indices. ARFIMAX model with time-varying conditional 

heteroscedasticity is the best performing specification and, at least in the case of DAX30, 

provides statistically superior next trading day’s realized volatility forecasts. 
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1 .  I n t r o d u c t i o n  

Andersen and Bollerslev (1998) first stated that the volatility estimates based on intra-day 

returns are more accurate than those based one daily data and introduced the realized volatility. 

The concept of the realized volatility is based on the integrated volatility. The integrated 

volatility,  IV

t

2 , aggregated over the time interval  tt ,1 : 
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is a latent variable which is not observable. Integrated volatility’s volatility named integrated 
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The volatility at a lower frequency is computed using data available at a higher frequency. Thus, 

the integrated volatility over the time interval  tt ,1  can be consistently estimated by the 

trading day’s t  realized volatility,  
      
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sum of squared log-returns observed over m  intra-day time intervals, for   m

jtmP
1, 
 denoting the 

asset prices over m  intra-day time intervals of day t . The realized volatility converges in 

probability to the integrated volatility as m , or 
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Fractionally integrated autoregressive moving average with exogenous variables 

(ARFIMAX) models, introduced by Granger (1980), were proposed to model the long memory 

property of the realized volatility. Ebens (1999) proposed the application of ARFIMAX models 

in realized volatility modelling and they, subsequently, applied by Bollerslev and Wright (2001), 

Giot and Laurent (2004), Koopman et al. (2005) and Angelidis and Degiannakis (2009) among 

others. As concerns the point forecasts of volatility, the findings provide evidence in favour of 

                                                 
1 For details about  IV

t

2  and  IQ

t

2  see Barndorff-Nielsen and Shephard (2005) and references therein. 

2 See chapter 1.5 in Karatzas and Shreve (1988) and Barndorff-Nielsen and Shephard (2005). 
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realized volatility ARFIMAX models rather than autoregressive conditional heteroskedasticity 

(ARCH) framework of modeling daily log-returns. Corsi et al. (2005) noted that the volatility of 

S&P500 index futures volatility also exhibits time-variation and proposed the estimation of an 

ARFIMAX model that accounts for conditional heteroskedasticity. 

In the present study, an ARFIMAX model is extended to account for volatility clustering 

as well as for the asymmetric relation between realized volatility and volatility of realized 

volatility. The unobservable term of an ARFIMAX specification is modelled as an asymmetric 

ARCH process. The new model framework, named ARFIMAX-TARCH model, is applied for 

CAC40 and DAX30 stock indices. In-sample as well as out-of-sample analysis provide 

statistically significant evidence in favour of the new model specification. Thus, in risk 

management applications, the volatility’s conditional volatility should be taken into 

consideration. 

The manuscript is divided in six sections.  In section 2, descriptive information of the 

CAC40 and DAX30 realized volatility measures is provided. Section 3 lays out the ARFIMAX 

and ARFIMAX-TARCH specifications. The in-sample and out-of-sample model evaluation is 

investigated in sections 4 and 5, respectively, and section 6 concludes. 

 

2 .  C A C 4 0  a n d  D A X 3 0  R e a l i z e d  V o l a t i l i t y  P r o p e r t i e s  

Tick by tick linearly interpolated prices of the CAC40 and DAX30 indices were obtained 

from Olsen and Associates for the period of July 1995 to December 2003. The sampling 

frequency should be as high as the market microstructure features do not induce bias to volatility 

estimator. In order to avoid market microstructure frictions without lessening the accuracy of the 

continuous record asymptotics, in most of the studies, such as Andersen and Bollerslev (1998), 

Andersen et al. (1999, 2001b) and Kayahan et al. (2002), a sampling frequency of five minutes is 

used. 

The realized intraday volatility at day t  is computed as in Martens (2002) and Koopman 

et al. (2005): 
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where   m

jtmP
1, 
 are the five-minute linearly interpolated prices at trading day t  with 

103m  134m  observations per day for the CAC40 (DAX30) index, 
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      



 

T

t

ttmco PPT
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2

1,1,1
12 loglog̂  is the close to open sample variance. The factor 

 222
coococ    accounts for changes in the asset prices during the hours that the stock market is 

closed without inserting the noisy effect of daily returns. 

[Insert Table 1 about here] 

Table 1 lists descriptive information of the logarithmic realized volatility,   RV

t

2log . 

Lilliefors’ (1967) and Anderson and Darling’s (1954) statistics reject the null hypothesis that the 

logarithmic realized variance is normally distributed.  Literature provides empirical evidence that 

the distribution of the daily returns,  1log  ttt PPy , standardized by the square root of the 

realized volatility,   T
t

RV

tty
1 , is very close to the normal one, but, it is statistically 

distinguishable from the normal distribution3. The histograms of   T
t

RV

tty
1  are plotted in 

Figure 1. According to Lilliefors and Aderson-Darling normality tests in Table 3,   T
t

RV

tty
1  is 

normally distributed, in the case of DAX30, at 1% level of significance. In the case of CAC40, 

the null hypothesis, that the empirical distribution of   T
t

RV

tty
1  is the normal one, is rejected at 

any reasonable level of significance. 

Figure 2 presents the square root of realized volatility. On the right-hand axis, the daily 

index prices are plotted to present the asymmetric relationship between index log-returns and 

changes in realized volatility.  

[Insert Figure 1 about here] 

[Insert Figure 2 about here] 

 

3 .  A R F I M A X  a n d  A R F I M A X - T A R C H  I n t r a - D a y  V o l a t i l i t y  M o d e l s  

An ARFIMAX  ldk ,,  model for the realized volatility,  RV

t

2 , can be presented as: 

           tt

RV

t

d
LxLLc   1log11 2 , 

 2,0~  Nt , 
(4) 

                                                 
3 See for example Andersen et al. (2001a). 
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1 ,  .  is the Gamma function, tx  is a  vector of 

explanatory variables and   is a vector of unknown parameters. 

As, we want to investigate whether the volatility of realized volatility exhibits time-

variation, the ARFIMAX model is extended to account for conditional heteroskedasticity4. An 

ARFIMAX model with time varying conditional variance for the realized volatility,  RV

t

2 , can 

be presented as: 
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where 1tI  is the information set available in time 1t , 2
t  is a time-varying, positive and 

measurable function of 1tI ,   is a vector of unknown parameters and  .g  is a functional form of 

1tI . In our case, an asymmetric conditional variance specification is considered to account for 

asymmetric relationship between realized volatility and its volatility. Therefore an 

ARFIMAX  ldk ,, -TARCH  qp,  model for the realized volatility is proposed: 
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(6) 

where  1,0~ Nzt .  .I   denotes the indicator function, i.e.   10 itI   if 0it , and 

  00 itI  , otherwise. The Threshold-ARCH  qp, , or TARCH  qp, , specification, 

introduced by Glosten et al. (1993), allows positive,  0it , and negative,  0it , 

innovations to have differential effects on the volatility of the realized volatility. 

 

4 .  I n - s a m p l e  E v a l u a t i o n  

The ARFIMAX  ldk ,,  model is considered in the form: 

                                                 
4 Baillie et al. (1996) firstly proposed an ARFIMAX–ARCH model to analyze monthly consumer price index inflation. Hauser 

and Kunst (1998) also applied ARFIMAX–ARCH model to analyze monthly Swiss one-month Euromarket interest rates. 
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where   10 tyI  when 0ty  and   00 tyI  otherwise. Parameter 2w  models the 

asymmetric relationship between realized volatility and previous trading day’s log-return5. Since, 

 2,0~  Nt
, the  texp  is log-normally distributed, therefore the unbiased in-sample realized 

volatility is estimated as: 

    222 5.0ˆlogexpˆ *

  RV

t

RV

t
. (8) 

In order to determine the optimal lag order, model (7) is estimated for 2,1,0k  and 

2,1,0l . The optimal lag order is chosen due to the minimization of Schwarz’s (1978) Bayesian 

criterion ( SBC ). The SBC , for model i , is computed as: 

         logˆ;2 11
TTyLTSBC

T

tT

i    
, (9) 

where   lk wwwdcc  ,...,,,,,,,..., 12101 ,  .TL  is the maximized value of the log-likelihood 

function,  T̂  is the maximum likelihood estimator of   based on a sample of size T  and   

denotes the dimension of  . The optimal lag orders are ARFIMAX  2,,2 d  and 

ARFIMAX  1,,0 d  for CAC40 and DAX30, respectively. The models are estimated in Doornik 

and Ooms’ (2006) ARFIMA 1.04 package of Ox Metrics. 

The ARFIMAX  ldk ,, -TARCH  qp,  model is also considered in the form: 
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(10) 

Model (10) is estimated for 2,1,0k , 2,1,0l , 2,1,0p  and 2,1q . The SBC  is computed 

according to equation (9) for   pqqlk bbaaawwwdcc ,...,,,...,,,...,,,,...,,,,,,,..., 111012101  . 

The ARFIMAX  1,,1 d -TARCH  1,1  model achieves the minimum value of the SBC  criterion for 

both indices. The unbiased in-sample realized volatility is also estimated according to (8). The 

models are estimated in Laurent and Peters’ (2006) G@RCH 4.04 package for Ox Metrics. 

                                                 
5 As presented in Figure 2. 
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The estimated parameters of the models that minimize the SBC  criterion are reported in 

Table 2. Τhe values of the parameters inform us that i) the asymmetric relation between past 

return and realized volatility is statistically significant in all cases (coefficient 2w ), ii) the 

fractional integration parameter is statistically insignificant only for Paris stock market in the 

ARFIMAX  2,,2 d  model (coefficient d ), iii) all the conditional variance parameters are 

statistically significant (coefficients 1a  and 1b ), and iv) the  asymmetric relationship between 

realized volatility and its volatility is also statistically significant (coefficient 1 ). The 

significance of the conditional variance parameters justifies the modeling of realized volatility’s 

conditional variance6. 

[Insert Table 2 about here] 

Figure 3 plots the histograms of logarithmic realized volatility,    T
t

RV

t 1

2log   and 

logarithmic realized volatility standardized by its standard deviation estimated by the 

ARFIMAX  1,,1 d -TARCH  1,1  model,    T
tt

RV

t 1

2 ˆlog  . The    T
tt

RV

t 1

2 ˆlog   is much 

closer to the normal distribution than the    T
t

RV

t 1

2log   is, but it is statistically distinguishable 

from it. 

Figure 4 depicts the density graph of daily returns standardized by the in-sample 

estimated realized standard deviation,   T
t

RV

tty
1

*ˆ  , whereas normality tests are listed in Table 3. 

Based on Lilliefors statistic, the hypothesis that   T
t

RV

tty
1

*ˆ   is normally distributed can not be 

rejected only in the case of DAX30 at 1% level of significance. Anderson-Darling statistic rejects 

the normality in any case. 

 

[Insert Figure 3 about here] 

[Insert Figure 4 about here] 

[Insert Table 3 about here] 

The average squared distance between realized volatility and its in-sample estimation is 

measured to evaluate the accuracy of the models in estimating the realized volatility:  

    


 
T

t

RV

t

RV

tTMSE
1

2
221 *

̂ . (11) 

                                                 
6 The standardized residuals obey the assumption of autocorrelation absence. 
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Hansen and Lunde (2006) have stated that the MSE loss function ensures the equivalence of the 

ranking of volatility models that is induced by the true volatility and its proxy. The values of the 

MSE loss functions are reported in Table 4. For both indices, the ARFIMAX  1,,1 d -TARCH  1,1  

model has the lowest value. 

Hansen’s (2005) superior predictive ability (SPA) hypothesis testing is used to investigate 

whether the model with the lowest MSE value provides statistically superior realized volatility 

estimates. Let i  be the model with the lowest MSE value,  *
i

tMSE  is the value of the MSE 

function at time t  of a competing model *
i , for Mi ,...,1*   and      *, i

t

i

t

ii

t MSEMSEX 


. The 

null hypothesis that      0,..., ,1, 
Mi

t

i

t XXE  is tested with the statistic 

 


 


i

i

Mi

SPA

XMVar

XM
T

,...,1
max , where  



 

 
T

t

ii

ti
XTX

1

,1 .7  

According to Table 4, the ARFIMAX-TARCH specification is superior to the ARFIMAX 

one. The null hypothesis, that the ARFIMAX  1,,1 d -TARCH  1,1  model is not outperformed by 

its competing model, is not rejected. 

[Insert Table 4 about here] 

 

5 .  O u t - o f - s a m p l e  E v a l u a t i o n  

In the present section, the ability of the ARFIMAX  ldk ,,  and ARFIMAX  ldk ,, -

TARCH  qp,  models to predict next trading day’s volatility is investigated. In total, for 

2,1,0k , 2,1,0l , 2,1,0p  and 2,1q  lag orders, 56 model specifications are considered. 

Based on a rolling sample of 1000T


 trading days, each model’s parameter vector   is re-

estimated every trading day and T
~

 one-day-ahead volatility forecasts are computed8, for 

TTT


~
. The one-day-ahead conditional standard deviation forecasts are computed as: 

       tRV

tt

RV

tt

22
|1|1 5.0logexp

*

   . (12) 

The distance between realized volatility and next day’s predicted volatility is measured by 

the predicted mean squared error loss function: 

                                                 
7 The estimation of  

i
XMVar  and the p-value of the 

SPA
T  are obtained by using the bootstrap method of Politis and Romano 

(1994). Hansen (2005) provided a program for the computation of the SPA criterion, which is written in Ox Metrics package. 

8 1135
~
T  for CAC40 and 1136

~
T  for DAX30. 
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    



 

T

t

RV

tt

RV

tTPMSE

~

1

2
2

|1
2

1
1 *~  , (13) 

and the SPA hypothesis test is applied. In the ARFIMAX  ldk ,,  specification, the PMSE  is 

minimized for 1k  and 0l  in the CAC40 case, and for 2 lk  in the case of DAX30. In the 

ARFIMAX  ldk ,, -TARCH  qp,  framework, the PMSE  is minimized for 1k , 2l , 2p , 

1q  in the CAC40 case, and for 1 qpk , 0l  in the case of DAX30.  Table 5 presents 

the p-values of the SPA test for the null hypothesis that the ARFIMAX-TARCH model is not 

outperformed by the ARFIMAX one. In the case of the DAX30 the ARFIMAX  0,,1 d -

TARCH  1,1  model is superior to the ARFIMAX  2,,2 d  one. As concerns the CAC40 index, the 

ARFIMAX  2,,1 d -TARCH  1,2  model does not achieve the lowest value in the PMSE  loss 

function, but it is not statistically inferior to its competitor, the ARFIMAX  0,,1 d  model. 

[Insert Table 5 about here] 

Figure 5 presents the returns scaled by the one-day-ahead realized standard deviation 

forecasts,    T
t

RV

ttty

~

11|

*

 . According to Table 3, the null hypothesis, that the daily returns 

standardized by the one-day-ahead realized standard deviation forecasts are normally distributed, 

in not rejected only for the ARFIMAX  2,,2 d  model in the DAX30 case. Giot and Laurent 

(2004) noticed that for the CAC409 and SP500 indices, the   T
t

RV

tty
1  are normally distributed, 

but the   T
t

RV

ttty
11|

*

  are not normally distributed. In the present dataset both series   T
t

RV

tty
1  

and   T
t

RV

ttty
11|

*

  are not normally distributed but they have an almost normal distribution as in 

Andersen et al. (2001a). 

[Insert Figure 5 about here] 

 

6 .  C o n c l u s i o n  

 ARFIMAX and ARFIMAX-TARCH models were applied in estimating and forecasting 

the intra-day realized volatility of the CAC40 and DAX30 indices for the period of July 1995 to 

December 2003. ARFIMAX-TARCH model takes into consideration the dynamics of realized 

volatility’s volatility. The integrated volatility,  IV

t

2 , is estimated by the realized volatility, 

 RV

t

2 , in equation (3), whereas the conditional variance of  the logarithmic realized volatility, 

                                                 
9 CAC40 was analyzed for the period 1995-1999 and fifteen-minute intraday prices were taken into account. 
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2ˆ
t , in equatrion (10), can be regarded as an estimation of integrated quarticity,  IQ

t

2 . The 

significance of the parameters of the TARCH specification provides evidence in favor of 

modeling the asymmetric relationship between realized volatility and its volatility. 

The in-sample evaluation indicates that the ARFIMAX-TARCH specification clearly 

outperforms the ARFIMAX one. In the out-of-sample evaluation, the ARFIMAX-TARCH model 

is superior to the ARFIMAX one for the DAX30. In the case of the CAC40 index, the 

ARFIMAX-TARCH model is not statistically inferior to its competitor. 

To sum up, from econometric point of view, the daily returns standardized by i) the 

realized standard deviation, ii) the in-sample estimated realized standard deviation, and iii) the 

one-day-ahead realized standard deviation forecasts are almost normally distributed but they are 

statistically distinguishable from the normal distribution. The logarithmic realized volatility 

standardized by its standard deviation is much closer to the normal distribution than the 

logarithmic realized volatility but also statistically distinguishable from it. 

From economic point of view, in order to obtain more accurate stock index volatility 

estimations, it is necessary to treat ARFIMAX models for realized volatility, and ARCH 

modeling for volatility of realized volatility, simultaneously. Thus, when the volatility estimation 

is required in financial applications, such as risk management, option pricing and portfolio 

analysis, the time varying conditional heteroscedasticity of volatility should be taken into 

consideration. 
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Figure 1. Histograms of daily log-returns standardized by the realized standard deviation, or 
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Figure 2.  Realized standard deviation,   T
t
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t 1 , and index daily prices,  T
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Figure 3. Histogram of logarithmic realized volatility,    T
t

RV

t 1

2log  , and of logarithmic realized 

volatility standardized by its standard deviation,    T
tt

RV

t 1

2 ˆlog  . 
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Figure 4. Histogram of daily log-returns standardized by the in-sample estimated realized standard 

deviation,   T
t

RV

tty
1

*ˆ  . 
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Figure 5. Histogram of daily log-returns standardized by the one-day-ahead realized standard 

deviation,   T
t

RV

ttty

~

11|

*

 . 
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Table 1. Descriptive statistics of the logarithmic realized 

volatility,   RV

t

2log . 

 CAC40 DAX30 

Mean 0.602  0.498  

Median 0.479  0.567  

Maximum 4.523  4.046  

Minimum -1.751  -3.171  

Std. Dev. 0.923  1.117  

Skewness 0.9912  -0.2971  

Kurtosis 4.8590  3.0776  

Lilliefors 0.077 [0.00] 0.067 [0.00] 

Anderson-Darling 23.3 [0.00] 11.93 [0.00] 
P-values are displayed in squared brackets. 
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Table 2. Estimated parameters of the ARFIMAX  ldk ,, -TARCH  qp,  model: 

             tttt

RV

t

d
LyyIwywwLLc    10log11 112110

2

   








 
p

i

iti

q

i

ititi

q

i

itit bIaa
1

2

1

2

1

2
0

2 0  . 

 CAC40 DAX30 
 ARFIMAX  2,,2 d  ARFIMAX  1,,1 d -

TARCH  1,1  

ARFIMAX  1,,0 d  ARFIMAX  1,,1 d -

TARCH  1,1  

1c  1.39680 a 
(0.3218) 

0.199197 a 
(0.050252) 

- 
0.194364 a 
(0.045510) 

2c  -0.412986 
(0.3041) 

- - - 

d  0.258789 
(0.3203) 

0.755740 a 
(0.068972) 

0.497103 a 
(0.004017) 

0.782399 a 
(0.061348) 

0w  0.416191 
(0.3620) 

0.040664 
(0.25369) 

0.198627 
(2.975) 

-1.331032 a 
(0.48103) 

1w  0.0229716 
(0.01194) 

0.021021 b 
(0.010327) 

0.0350528 a 
(0.01099) 

0.021232 b 
(0.0096266) 

2w  -0.118749 a 
(0.02080) 

-0.104875 a 
(0.020196) 

-0.128690 a 
(0.01885) 

-0.098282 a 
(0.018332) 

1  -1.35808 a 
(0.1985) 

-0.640628 a 
(0.071377) 

-0.138449 a 
(0.02359) 

-0.635783 a 
(0.059226) 

2  0.429437 b 
(0.1737) 

- - - 

0a  - 
0.005054 b 

(0.0020817) 
- 

0.010667 a 
(0.0039589) 

1a  - 
0.058264 a 
(0.014591) 

- 
0.116056 a 
(0.034983) 

1  - 
-0.054705 a 
(0.018628) 

- 
-0.077160 b 
(0.032481) 

1b  - 
0.945498 a 
(0.017546) 

- 
0.872181 a 
(0.036273) 

SBC 1.526597 1.411473 1.374893 1.291441 
Standard errors are reported in parentheses. 
a Indicates that the coefficient is statistically significant at 1% level of significance. 
b Indicates that the coefficient is statistically significant at 5% level of significance. 
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Table 3. Lilliefors and Anderson-Darling statistics for the hypothesis that the daily returns 

standardized by i) the realized standard deviation,   T
t

RV

tty
1 , ii) the in-sample estimated 

realized standard deviation,   T
t

RV

tty
1

*ˆ  , and ii) the one-day-ahead realized standard deviation 

forecast,   T
t

RV

ttty

~

11|

*

 , are normally distributed. 

 CAC40 DAX30 

   T
t

RV

tty
1  

Lilliefors 0.028 [0.00] 0.020 [0.042] 

Anderson-
Darling 

2.115 [0.00] 0.944 [0.014] 

   T
t

RV

tty
1

*ˆ   

 ARFIMAX  2,,2 d  
ARFIMAX  1,,1 d -

TARCH  1,1  
ARFIMAX  1,,0 d  

ARFIMAX  1,,1 d -

TARCH  1,1  

Lilliefors 0.032 [0.00] 0.030 [0.00] 0.020 [0.045] 0.020 [0.041] 

Anderson-
Darling 

3.166 [0.00] 2.695 [0.00] 2.018 [0.00] 1.381 [0.001] 

   T
t

RV

ttty

~

11|

*

  

 ARFIMAX  0,,1 d  
ARFIMAX  2,,1 d -

TARCH  1,2  
ARFIMAX  2,,2 d  

ARFIMAX  0,,1 d -

TARCH  1,1  

Lilliefors 0.031 [0.016] 0.032 [0.011] 0.022 [>0.10] 0.029 [0.027] 

Anderson-
Darling 

1.410 [0.001] 1.297[0.002] 0.595 [0.12] 1.413 [0.001] 

P-values are displayed in squared brackets. 
 
 

Table 4. MSE  loss functions and the p-value of the SPA test 

for the null hypothesis that the ARFIMAX  1,,1 d -

TARCH  1,1  model provides the best in-sample realized 

volatility estimation. 

Index ARFIMAX  2,,2 d  
ARFIMAX  1,,1 d -

TARCH  1,1  
SPA 

p-value 

CAC40 32.569 28.032 [0.53] 

 ARFIMAX  1,,0 d  
ARFIMAX  1,,1 d -

TARCH  1,1  
SPA 

p-value 

DAX30 9.054 7.329 [0.53] 

 



 

18 

 

Table 5. PMSE  loss functions and the p-value of the SPA test for 
the null hypothesis that the ARFIMAX-TARCH model is not 
outperformed by the ARFIMAX one. 

Index ARFIMAX  0,,1 d  
ARFIMAX  2,,1 d -

TARCH  1,2  
SPA p-value 

CAC40 45.438 50.838 [0.054] 

 ARFIMAX  2,,2 d  
ARFIMAX  0,,1 d -

TARCH  1,1  
SPA p-value 

DAX30 9.769 6.412 [0.55] 

  
 


