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A bs t ra c t  

This paper analyses several volatility models by examining their ability to forecast the 

Value-at-Risk (VaR) for two different time periods and two capitalization weighting 

schemes. Specifically, VaR is calculated for large and small capitalization stocks, based 

on Dow Jones (DJ) Euro Stoxx indices and is modeled for long and short trading 

positions by using non parametric, semi parametric and parametric methods. In order to 

choose one model among the various forecasting methods, a two-stage backtesting 

procedure is implemented. In the first stage the unconditional coverage test is used to 

examine the statistical accuracy of the models. In the second stage a loss function is 

applied to investigate whether the differences between the models, that calculated 

accurately the VaR, are statistically significant. Under this framework, the combination 

of a parametric model with the historical simulation produced robust results across the 

sample periods, market capitalization schemes, trading positions and confidence levels 

and therefore there is a risk measure that is reliable. 
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Regulatory authorities led financial institutions into calculating Value-at-Risk (VaR) 

for compliance to market risk capital requirements after the increase of financial 

uncertainty in the 90's. VaR is a statistic of the dispersion of a distribution and refers to a 

portfolio's worst outcome likely to occur over a predetermined period and a given 

confidence level. In order for a risk manager to forecast accurately the VaR he/she must 

develop a model that accommodates the non-symmetrical fat tails of the empirical 

distribution. Several methods have been proposed to estimate the risk that the financial 

institutions face, but until now no model has been deemed as adequate for all financial 

datasets, sample frequencies, trading positions, confidence levels and sub-periods. 

The existing methods of forecasting quantiles of the underlying distribution can be 

classified in three categories: fully parametric methods that model the entire distribution 

and the volatility dynamics; non-parametric ones, such as the historical simulation that 

relies on actual prices and semi-parametric ones, such as filtered historical simulation and 

extreme value theory, which combine the two previous methods. 

Gurmat and Harris (2002) proposed an exponentially weighted likelihood model, as 

they pointed out that, for three equity portfolios (U.S., U.K. and Japan), it calculated the 

VaR more accurate than that of the GARCH model under either the normal or the 

Student-t distributions. Bali and Theodossiou (2006) combined the skewed generalized 

Student-t distribution with 10 GARCH specifications and argued that the TS-GARCH, 

proposed by Taylor (1986) and Schwert (1989), and the EGARCH, introduced by Nelson 

(1991), had the best overall performance, as they accurately estimate both VaR and the 

Expected Shortfall measure. Giot and Laurent (2003a, 2003b) suggested the APARCH 

model under a skewed Student-t distribution to researchers in order to forecast the VaR 

both for long and short trading positions, since the exception rates of the model were too 

close to the expected ones at all confidence levels. In a similar work, Huang and Lin 

(2004) also argued that the APARCH model must be used, but they noted that the normal 

(Student-t) distribution was preferred at the lower (higher) confidence level. Furthermore, 

Degiannakis (2004) proposed to portfolio managers the fractional integrated APARCH 

model under the skewed Student-t distribution in order to forecast both the one-day-ahead 

realized volatility and the daily VaR. Similar to the aforementioned work, Mittnik and 

Paolella (2000) and Mittnik et al. (2000) recommended more general structures for both 
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the volatility process and the distribution in order to improve the VaR forecasts, while So 

and Yu (2006) argued that it was more important to model the fat tailed underlying 

distribution than the fractional integration of the volatility process. 

Historical Simulation1 (HS) is a non-parametric technique that is based only on the 

empirical distribution of returns. It uses historical returns and derives the VaR number for 

a specific confidence interval as the corresponding quantile of the empirical historical 

distribution. It therefore accommodates non-normal distributions and accounts for ''fat 

tails'' and non-zero skewness. However, based on this method, there is no consistent 

method of estimating the volatility innovation. 

Filtered Historical Simulation (FHS), which was presented by Hull and White (1998) 

and Barone-Adesi et al. (1999), tries to fill the gap between the non-parametric and the 

parametric methods by taking the best part of them. More specifically, it forecasts 

variance through a parametric volatility model and uses the quantile of the standardized 

returns in order to calculate the VaR. Barone-Adesi and Giannopoulos (2001) argued the 

FHS produces risk forecasts that accommodate the current state of the market and 

therefore it is better than the Historical Simulation. Angelidis and Benos (2006) reached 

to the same conclusion, claiming that at the higher confidence level the FHS performed 

better than the parametric and the semi-parametric methods. 

Under the same framework, the Extreme Value Theory2 (EVT), which models only 

the tails of the distribution, has been suggested as an alternative VaR methodology. Chan 

and Gray (2006) provided evidence in favour of the EVT since when compared to a 

number of other parametric models and simple historical simulation based approaches, it 

produced the appropriate unconditional and conditional coverage. Brooks et al. (2005) 

suggested to “treat the tails as being distinct from the rest of the distribution and to model 

them separately but to incorporate information from both”. 

To sum up, the choice of an adequate model for volatility forecasting is far from 

resolved. Our study sheds light on the volatility forecasting methods under a risk 

management framework, since it juxtaposes the performance of the most well known 

                                                 
1 For more information on Historical Simulation, see Hendricks (1996), and Vlaar (2000) among others.  
2 For more information on EVT techniques on VaR modelling see Jondeau and Rockinger (1999), Ho et al. 
(2000), MacNeil and Frey (2000), Rozario (2002), Bali (2003), Jondeau and Rockinger (2003), Seymour 
and Polakov (2003), Byström (2004) and Gençay and Selçuk (2004).  
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techniques for different market capitalization schemes, trading positions and sample 

periods and therefore provides an elaborate exposition of the risk management 

techniques.  

The main contribution of the paper is a thorough stress testing of risk management 

techniques. We implement several volatility models (parametric, semi-parametric and 

non-parametric) in order to forecast both long and short VaRs, at two confidence 

intervals (97.5% and 99%) for two equity indices (DJ Euro Stoxx large and small 

capitalizations). Models are compared over two different time periods in order to 

investigate whether the risk management techniques are robust across time. Stress testing 

provides evidence that the risk measures are reliable and help select a model not affected 

by the chosen sample period, thereby reducing the painful losses due to the use of an 

inadequate model (model risk). 

Furthermore, in the majority of VaR studies no statistical evaluation of the volatility 

specifications is implemented and hence no robust model for different schemes (i.e. for 

long and short trading positions or several confidence levels) is being selected. In order to 

fill this void, we employ a two-stage backtesting procedure, similar to that of Sarma et al. 

(2003), and propose a specific volatility-forecasting model for risk management. In the 

first stage, we assess the statistical accuracy of the models and we specifically investigate 

whether the total number of failures is statistically equal to the expected one. In the 

second stage, we implement a forecast evaluation method to examine whether the 

differences between models (which have converged sufficiently), are statistically 

significant according to Hansen’s (2005) Superior Predictive Ability (SPA) test.  

For robustness purposes, we use two different equity indices to avoid the results 

being dependent on a specific financial market and to examine, at the same time, the 

effect of stock capitalization to the VaR framework. We look specifically for patterns that 

could bring some information on how the market capitalization affects the model 

selection procedure. This is an important issue and has not been examined yet; most 

financial institutions hold portfolios that contain securities of either large or small 

capitalization and hence it is interesting to know if they can use the same risk model in all 

cases.  

According to the two-stage backtesting evaluation procedure, a risk manager can 
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select a robust model irrespectively of the testing framework. For both sub-periods, FHS 

generates accurate VaR numbers for both trading positions and confidence levels, as it 

captures the characteristics of the empirical distribution more efficiently than parametric 

methods. It also exhibits in most of the cases superior predictive ability based on 

Hansen’s (2005) SPA test. 

The rest of the paper is organized as follows. Section 2 provides a description of the 

various VaR methods, while section 3 describes the evaluation framework. Section 4 

presents preliminary statistics for the dataset and presents the results of the empirical 

investigation while section 5 concludes. 

2 .  V a lu e- a t - Ri sk  

2 . 1  Pa r a me t r i c  V aR  

We assume that the data generated process of the log-returns,  1log  ttt ppy , is an 

ARCH process with constant mean and unconditional variance but time varying 

conditional variance, 2
t , given the information set available at time 1t , 1tI : 
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where tp  is the price of the index at the end of day t ,  .f  is the density function of tz , 

  is the vector of the unknown parameters of  .f ,  .g  is a time-varying, positive and 

measurable function of 1tI  and w  is the vector of the unknown parameters for the 

conditional variance. 

The daily parametric VaR, under the assumption that the conditional mean process is 

essentially zero, is calculated as: 

  ,; |1|1 tttatt zFVaR     (2) 

where  ;ta zF  is the th  quantile of the assumed distribution and tt |1  is the forecast of 

the conditional standard deviation at time 1t , given the estimated parameters   and w  

at time t
3. Since financial time series usually exhibit skewness and kurtosis different 

                                                 
3Under the assumption that the portfolio returns are normally distributed, the calculation of VaR is 
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from that of the standard normal distribution, a risk manager must make assumptions 

about the underlying distribution and the conditional variance of innovations in order to 

accurate calculate the parametric VaR. Bollerslev (1986) introduced the Generalized 

Autoregressive Conditional Heteroskedastic (GARCH) model:  
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where 00 a , 0ia  for qi ,,1 , and 0ib  for pi ,,1 4. However, the model does 

not capture the asymmetry of the financial data and therefore the asymmetric GARCH 

models were introduced. The most popular model is Nelson's (1991) exponential 

GARCH (EGARCH) model: 
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The parameters i  capture the asymmetric effect. The threshold GARCH (TARCH) 

model: 
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allows the volatility to response differently to good or bad news as if 0t , td  equals to 

1 and td  equals to 0 otherwise. Finally, as there is no apparent reason why one should 

assume that the conditional variance is linear function of lagged squared returns5, Ding et 

al. (1993) introduced the asymmetric power ARCH (APARCH) model: 
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where 00 a , 0ia , 11  i , 0ib  and 0 . The APARCH comprises most of 

the presented models. For example, if 2  and 0i , specification (6) is equivalent to 

the GARCH. Given the fact that the GARCH, EGARCH, TARCH and APARCH models 

                                                                                                                                                 
simplified as both 

tt |1  and );( 
ta

zF  have tractable expressions, while this method will be referred as 

Variance-Covariance. This method is used as benchmark. 
4A special case of the GARCH model is the exponentially weighted moving average (EWMA) model, 
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methodology. 
5According to Brooks et al. (2000), "the common use of a squared term is most likely to be a reflection of 
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are able to capture the thick tailed returns, the volatility clustering and the asymmetry of 

the data, we limit our analysis to these four families which are the most well known6. 

We turn the discussion to the distributional assumptions of tz . Engle (1982) 

introduced the ARCH process under the assumption of normality: 
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 (7) 

However, the degree of leptokurtosis induced by the conditional volatility specifications 

often does not capture all of the leptokurtosis present asset returns, giving evidence that 

the distribution of tz  is non-normal as well. Bollerslev (1987) proposed the standardized 

symmetric Student-t distribution with 2  degrees of freedom in order to capture the fat 

tails of the time series: 
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where (.)  is the gamma function. However, the density function is symmetric and 

therefore it is plausible to apply a non-symmetrical distribution to accommodate the non-

zero skewness of the financial time series, as Brooks and Persand (2003a), among others, 

argued that the asymmetry is an important issue in the VaR framework and therefore it 

must be modeled. 

Lambert and Laurent (2001) proposed the standardized skewed Student-t 

distribution: 
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where )(.;f  is defined in (8),   is the asymmetry coefficient, while 

                                                                                                                                                 
the normality assumption traditionally invoked regarding financial data". 
6For more information, see Engle and Patton (2001), Brooks and Persand (2003b), Giot and Laurent 
(2003a) and Poon and Granger (2003) among others. 
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where  vzF ta ;  denotes the  th-quantile function of the standardized symmetric Student-

t distribution. Therefore, it is straightforward to estimate the daily VaR, since the quantile 

function of the standardized skewed Student-t is calculated as:  
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2 . 2  Non - Pa r a me t r i c  V aR  

VaR based on the HS method is calculated as: 

 T

itatt yFVaR 1|1 }{   . (12) 

Because it relies on actual prices, it accommodates non-normal distributions and 

therefore accounts for fat tails and skewness. However, this simple approach does not 

come without a cost, as the choice of the sample length, T , affects the estimates (see for 

example the work of Van den Goorbergh and Vlaar, 1999). 

2 . 3  S e mi - Pa ra me t r i c  V a R  

The presented methods (parametric and non-parametric) face several drawbacks. For 

example, a risk manager must make an assumption for the underlying distribution in 

order to calculate the parametric VaR, while under the framework of the historical 

simulation technique there is no consistent method of estimating and forecasting the 

volatility innovation. Hull and White (1998) and Barone-Adesi et al. (1999) combined the 

two methods in order to lessen the problematic use of the most well known approaches 

and introduced the VaR estimate based on the FHS method: 
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  tt

T

ititatt zFVaR |11|-1|1 ;}{     (13) 

where 
tittittitz |1|1|1    . The combination of a parametric method, such as 

specifications (3) or (6), with the HS might offer an improvement in the calculation of the 

VaR, as it accommodates the main characteristics of the empirical distribution (non-zero 

skewness, fat tails and volatility clustering). 

Another method combining the parametric with the non-parametric techniques is 

EVT, which models only extreme observations and therefore must be seriously 

considered by risk managers since VaR is only a point estimate of the tails of the 

distribution7. Kuester et al. (2006) extended McNeil and Frey’s (2000) EVT framework 

and argued that a hybrid method, combining a heavy-tailed GARCH filter with an 

extreme value theory based approach, performed better than the alternative strategies 

(historical simulation and fully parametric models). 

The VaR based on the EVT method is calculated as: 
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where a  denotes the VaR confidence level, τ  is the Hill estimator of the tail index, uT  is 

the number of observations beyond the threshold u , which is assumed to be equal to 5% 

of the total sample size T 8. 

3 .  E va lua t i on  Fr a me w o rk  

Kupiec (1995) developed the unconditional coverage test and demonstrated that the 

proportion of failure9 follows a binomial distribution. Consequently, the appropriate 

likelihood ratio statistic, under the null hypothesis that the observed exception frequency 

equals to the expected one  TN / , is given by: 
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where N  is the number of days over a T   period that the portfolio loss was greater than 

                                                 
7The volatility models for the FHS and the EVT are based on quasi-maximum likelihood method assuming 
a normal distribution, as in Diebold et al. (1998) and McNeil and Frey (2000). 
8For more information see Balkema and de Hann (1974), Pickands (1975), McNeil and Frey (2000) and 
Christoffersen (2003) among others. 
9A failure occurs if the predicted VaR is not able to cover the realized loss. 
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the VaR forecast. The main goal of this test is to examine whether the failure rate of a 

model is statistically equal to the expected one and therefore to ensure that the financial 

institution will not misallocate its capital10. 

A backtesting measure neither reflects the specific concerns of the risk managers nor 

can be used to select a unique volatility technique. An alternative method to evaluate 

VaR models is the implementation of a loss function, an idea which was first introduced 

by Lopez (1999), since it is possible to specify a real-world risk manager utility function 

and to perform a model selection procedure, as in most of the cases there are more than 

one risk models that are deemed as adequate and hence a risk manager can not select a 

unique volatility forecasting technique. He suggested measuring the accuracy of the VaR 

forecasts on the basis of the distance between the observed returns and the forecasted 

VaR values if a violation occurs: 

 
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 
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2

|11
1

ttt
t

y
 (16) 

A preferred VaR model is the one that minimizes the total loss value  t

T
t  
1 . 

Sarma et al. (2003) and Angelidis et al. (2004) evaluated the most accurate VaR 

models by implementing a Diebold and Mariano (1995) test in order to select one among 

the various candidates. However, based on this testing procedure a risk manager cannot 

juxtapose all the models simultaneously. Therefore, in order to conduct a multiple 

comparison of the forecasting performance of a benchmark model against its competitors, 

we apply Hansen’s (2005) SPA hypothesis testing.  

Let i  denote the benchmark model and  i
t  be the value of the loss function at time 

t  of model i . The null hypothesis that, the benchmark model i  is superior to its M  

competitors is tested with the statistic  
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,  for Mi ,...,1 . The p-values of the SPA

T  

statistic are computed according to the bootstrap method of Politis and Romano (1994). 

                                                 
10Christoffersen's (1998) conditional coverage test was also implemented, but the results were qualitatively 
similar and therefore are not reported. They are available upon request. 
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In case the null hypothesis is rejected, the benchmark model is not superior to its 

competitors. 

4 .  E mpi r ic a l  In v es t i ga t ion  

4 . 1  Da t a  

To evaluate the volatility models, we generate out-of-sample VaR forecasts for two 

equity portfolios, large and small capitalization of DJ Euro Stoxx, obtained from 

DataStream for the period of January 2nd, 1987 to July 29th, 2005. Descriptive statistics 

for the log-returns of the two indices are presented in Table 1. 

4 . 2  S ta t i s t i ca l  E va lu a t i on  o f  th e  Va R mo d el s  

We split the dataset in two sub-groups, in order to investigate whether the adequacy 

of the risk management techniques is robust across time. The two samples cover the 

periods from 2 January 1987 to 18 March 1996 and from 19 March 1996 to 29 July 2005, 

respectively. Each sub-group contains 2399 trading days. For both sub-groups, we use a 

recursive sample of 1750 observations, leaving 649 trading days for the out-of-sample 

evaluation. Each trading day the parameter vector    ,,0 wc , which denotes the 

whole set of the unknown parameters for the conditional mean, variance and density 

function, is re-estimated in order to produce the VaR forecasts both for long and short 

trading positions11. The exception rates and the p-values of the unconditional coverage 

test are presented for the two sub-samples in Tables 2 and 3, respectively. 

The Variance-Covariance (VC) method, especially for the first sub-sample, is not an 

appropriate technique, as it is rejected by the backtesting measure. In the second sub-

sample, however, the VaR forecasts are more accurate, a finding that indicates that this 

risk measure is not robust across time and therefore not consistent.  

Volatility models based on the normal distribution (GARCH, EGARCH, TARCH 

and APARCH) perform better than VC. In the second sub-group, ARCH models under 

the normal distribution perform better than in the first one as the short trading positions 

of the second sub-group were accurately calculated in all the cases but the 97.5% VaR of 

the large capitalization. In general, for both confidence intervals, these risk management 

techniques accurate calculate long positions but overestimate VaR for the short ones 

                                                 
11 If the numerical maximization of the log-likelihood function failed to converge more than six times, we 
excluded the models from our results. This number of failures (six) is almost the 1% of the out-of-sample. 
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mainly in the first sub-sample. 

ARCH models under the Student-t and the corresponding skewed distribution 

overestimate VaR in the majority of cases, a result also documented by several studies 

(see Guermat and Harris 2002 and Billio and Pelizzon 2000 among others). An exception 

to this general remark is VaR estimates for the large capitalization index, when we 

investigate the long trading position in the second sub-sample.  

The main assumption of the HS method is that samples are identically and 

independently distributed. It is hence expected that the HS method will underestimate or 

overestimate the true VaR, if the distribution of the future returns changes. This is indeed 

the case in our empirical research, as the HS method overestimates the total risk, since for 

all cases exception rates are lower than expected ones. 

Generally speaking, the FHS procedure combined with the ARCH volatility 

specifications offers a major improvement over either the parametric or the non-

parametric methods. For long trading positions, both FHS models estimate the true VaR 

accurately. In the case of the FHS with a GARCH updating volatility technique, the 

exception rates are too close to the theoretical ones in all sub-samples, indices, 

confidence levels and trading positions. On the other hand, EVT models perform better at 

the 99% than at the 97.5% confidence level, but overall they do not outperform the FHS 

models. This finding is in line with the work of Bekiros and Georgoutsos (2005) who 

argued that the superiority of the EVT based methods emerges at high confidence levels.  

To sum up, ARCH models with normally distributed innovations and FHS with an 

ARCH updating technique describe more efficient the tails of the empirical distribution 

than their competing techniques. In conclusion, there are models that generate adequate 

VaR forecasts for specific index, trading position and sub-group but only one technique, 

the FHS combined with GARCH volatility (FHS-G), produces accurate VaR forecasts for 

all cases. 

4 . 3  Mo de l  S e l e c t i on  

The different VaR models cannot be compared directly, as neither an exception rate 

close to the expected one nor a high p-value of a model indicates its superiority among its 

competitors, even if most research has focused on these measures. According however to 

the approach presented in Section 3, a statistical evaluation of risk management 
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techniques can be achieved. For this purpose, we compute the loss function in (16) and 

carry out the SPA hypothesis testing, for all models with a p-value greater than 10% in 

Kupiec’s test12. Using a high cut-off point for the p-value, we ensure that the successful 

models will accurately estimate the expected rate. 

In Table 4, we present p-values of the SPA test for each sub-sample, capitalization, 

confidence level and trading position. We test the null hypothesis that the FHS-G model 

(benchmark) is superior to its competitors, as it is the only model that produces adequate 

VaR forecasts for all cases. For example, for both sub-samples and for the long position 

at the higher confidence level the null hypothesis is not rejected and therefore the FHS-G 

outperforms its competitors. On the other hand, for the first sample and for the short 

position at the lower confidence level, the benchmark model (FHS-G) does not 

outperform the models that were not rejected by the unconditional coverage test.  

Generally speaking, this model selection procedure informs us that the FHS-G model 

not only provides adequate VaR forecasts, as it has not been rejected by the unconditional 

coverage test, but also outperforms its competitors in most cases, since the null 

hypothesis of the SPA test is rejected at 5% level of significance only in four out of 

sixteen cases. Consequently, the risk manager can use this technique irrespectively of the 

sample period, stock portfolio, confidence level and trading position. 

5 .  C on c lus i ons  

Given the fact that stress testing is now getting much more attention for market risk 

management purposes, it can help the risk manager to avoid some painful losses, like 

those that emerged these recent years. In this paper, we employ several volatility models 

to forecast daily VaR and to specifically compare the models for over two different time 

periods in order to investigate techniques’ robustness across time. 

As backtesting tests might not identify a unique best model for each portfolio, we 

define a utility function to evaluate models that have already met the prerequisite of the 

correct unconditional coverage. Under this two stage framework, the model which 

minimized the total loss, was preferred over the remaining ones. We also implemented a 

test for forecast error differences and we provide statistical inference for the forecasting 

ability of the models. In most cases, there were significant differences between the 

                                                 
12A similar ranking was also made by Brooks and Persand (2003b). 
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models that satisfied the conditions of the two backtesting tests. Given the fact that we 

started with 18 models, we however manage to reduce them to a much smaller set. 

Finally, we find out that FHS-G is robust across sub-samples, stock portfolio, 

confidence level and trading position as the average exception rates are too close to the 

expected ones. According to SPA test, that same model does not outperform its 

competing models only in four out of sixteen cases, although a risk manager can safely 

use it in all cases.  
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T abl es  a nd  F i gu res  

 

. 

Table 1. Descriptive statistics of the daily log-
returns, for the large and the small capitalization 
(2nd January of 1987 to 29th July of 2005). 

 Large Small 
Mean 0.03% 0.01% 

Median 0.06% 0.05% 
Maximum 6.62% 4.52% 
Minimum -8.07% -7.67% 
Std. Dev. 1.20% 0.83% 
Skewness -0.34 -1.12 
Kurtosis 8.27 12.22 

Jarque-Bera 5648 18007 
Probability 0.00 0.00 
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Table 2. Exception rates and p-values of Kupiec’s unconditional coverage test, at 
the 97.5% and 99% VaR confidence levels, for large and small capitalization and 
long and short trading positions, over the period 2 January 1987 to 18 March 1996. 

 Large Capitalization 

 Long Trading Position Short Trading Position 

 97.5% Conf.L. 99% Conf.L. 97.5% Conf.L. 99% Conf.L. 

Model Ex.Rate Kupiec Ex.Rate Kupiec Ex.Rate Kupiec Ex.Rate Kupiec 

VC 1.1% 0.9% 0.5% 12.4% 0.5% 0.00% 0.00% 0.0% 

G-N 2.3% 75.5% 1.4% 35.0% 0.9% 0.3% 0.3% 3.8% 

E-N 1.4% 4.8% 0.8% 54.0% 0.8% 0.1% 0.2% 0.7% 

T-N 2.2% 56.7% 1.1% 84.3% 0.9% 0.3% 0.2% 0.7% 

A-N 2.0% 40.1% 1.1% 84.3% 0.9% 0.3% 0.2% 0.7% 

G-T 0.9% 0.3% 0.3% 3.8% 0.2% 0.0% 0.0% 0.0% 

E-T 0.8% 0.1% 0.3% 3.8% 0.2% 0.0% 0.0% 0.0% 

T-T 0.9% 0.3% 0.3% 3.8% 0.2% 0.0% 0.0% 0.0% 

A-T 0.8% 0.1% 0.3% 3.8% 0.2% 0.0% 0.0% 0.0% 

G-ST 0.8% 0.1% 0.3% 3.8% 0.3% 0.0% 0.2% 0.7% 

E-ST 0.8% 0.1% 0.3% 3.8% 0.3% 0.0% 0.0% 0.0% 

T-ST 0.8% 0.1% 0.3% 3.8% 0.2% 0.0% 0.2% 0.7% 

A-ST 0.8% 0.1% 0.3% 3.8% 0.2% 0.0% 0.0% 0.0% 

HS 0.9% 0.3% 0.0% 0.0% 0.8% 0.1% 0.0% 0.0% 

FHS-G 1.7% 16.3% 0.8% 54.0% 2.6% 84.7% 0.8% 54.0% 

FHS-A 1.8% 26.6% 0.8% 54.0% 1.8% 26.6% 0.2% 0.7% 

EVT-G 1.2% 2.2% 0.8% 54.0% 1.7% 16.3% 0.6% 29.0% 

EVT-A 1.1% 0.9% 0.6% 29.0% 0.9% 0.3% 0.3% 3.8% 
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 Table 2. Continued. Small Capitalization 

 Long Trading Position Short Trading Position 

 97.5% Conf.L. 99% Conf.L. 97.5% Conf.L. 99% Conf.L. 

Model Ex.Rate Kupiec Ex.Rate Kupiec Ex.Rate Kupiec Ex.Rate Kupiec 

VC 0.8% 0.1% 0.3% 3.8% 0.0% 0.0% 0.0% 0.0% 

G-N 2.3% 75.5% 1.1% 84.3% 0.5% 0.0% 0.0% 0.0% 

E-N 1.8% 26.6% 0.6% 29.0% 1.1% 0.9% 0.3% 3.8% 

T-N 2.0% 40.1% 1.1% 84.3% 0.8% 0.1% 0.2% 0.7% 

A-N 2.0% 40.1% 1.2% 56.5% 0.6% 0.0% 0.0% 0.0% 

G-T 1.1% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

E-T 0.8% 0.1% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 

T-T 1.1% 0.9% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 

A-T 1.1% 0.9% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 

G-ST 0.9% 0.3% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 

E-ST 0.6% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 

T-ST 0.9% 0.3% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 

A-ST 0.5% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 

HS 0.6% 0.0% 0.2% 0.7% 0.2% 0.0% 0.0% 0.0% 

FHS-G 2.3% 75.5% 0.5% 12.4% 1.8% 26.6% 0.5% 12.4% 

FHS-A 2.0% 40.1% 0.6% 29.0% 1.7% 16.3% 0.2% 0.7% 

EVT-G 1.1% 0.9% 0.3% 3.8% 0.8% 0.1% 0.3% 3.8% 

EVT-A 1.4% 4.8% 0.5% 12.4% 0.8% 0.1% 0.2% 0.7% 
The models are successively Variance-Covariance (VC), GARCH under normal distribution (G-N), 
EGARCH-normal (E-N), TARCH-normal (T-N), APARCH-normal (A-N), GARCH-Student-t (G-
T), EGARCH-Student-t (E-T), TARCH-Student-t (T-T), APARCH-Student-t (A-T), GARCH-
skewed Student-t (G-ST), EGARCH-skewed Student-t (E-ST), TARCH-skewed Student-t (T-ST), 
APARCH-skewed Student-t (A-ST), Historical Simulation (HS), Filtered Historical Simulation-
GARCH (FHS-G), Filtered Historical Simulation-APARCH (FHS-A), Extreme Value Theory-
GARCH  (EVT-G), Extreme Value Theory-APARCH (EVT-A). 
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Table 3. Exception rates and p-values of Kupiec’s unconditional coverage test, at 
the 97.5% and 99% VaR confidence levels, for large and small capitalization and 
long and short trading positions, over the period 19 March 1996 to 29 July 2005. 

 Large Capitalization 

 Long Trading Position Short Trading Position 

 97.5% Conf.L. 99% Conf.L. 97.5% Conf.L. 99% Conf.L. 

Model Ex.Rate Kupiec Ex.Rate Kupiec Ex.Rate Kupiec Ex.Rate Kupiec 

VC 1.1% 0.9% 0.8% 54.0% 1.4% 4.8% 0.8% 54.0% 

G-N 2.3% 75.5% 2.0% 2.4% 1.4% 4.8% 0.8% 54.0% 

E-N 2.3% 75.5% 1.4% 35.0% 1.1% 0.9% 0.6% 29.0% 

T-N 2.5% 95.5% 1.4% 35.0% 1.2% 2.2% 0.6% 29.0% 

A-N 2.5% 95.5% 1.4% 35.0% 1.2% 2.2% 0.6% 29.0% 

G-T 2.2% 56.7% 0.8% 54.0% 0.9% 0.3% 0.5% 12.4% 

E-T 2.2% 56.7% 1.2% 56.5% 0.9% 0.3% 0.2% 0.7% 

T-T 1.8% 26.6% 0.9% 84.5% 0.9% 0.3% 0.2% 0.7% 

A-T 2.2% 56.7% 0.8% 54.0% 0.9% 0.3% 0.2% 0.7% 

G-ST 2.0% 40.1% 0.8% 54.0% 1.4% 4.8% 0.8% 54.0% 

E-ST 1.8% 26.6% 0.6% 29.0% 1.4% 4.8% 0.3% 3.8% 

T-ST 2.0% 40.1% 0.6% 29.0% 1.2% 2.2% 0.5% 12.4% 

A-ST 2.0% 40.1% 0.6% 29.0% 1.2% 2.2% 0.6% 29.0% 

HS 1.1% 0.9% 0.2% 0.7% 1.2% 2.2% 0.5% 12.4% 

FHS-G 2.3% 75.5% 0.9% 84.5% 2.0% 40.1% 0.8% 54.0% 

FHS-A 2.3% 75.5% 0.8% 54.0% 1.5% 9.2% 0.9% 84.5% 

EVT-G 2.0% 40.1% 0.9% 84.5% 0.9% 0.3% 0.8% 54.0% 

EVT-A 2.0% 40.1% 0.8% 54.0% 1.1% 0.9% 0.8% 54.0% 
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 Table 3. Continued. Small Capitalization 

 Long Trading Position Short Trading Position 

 97.5% Conf.L. 99% Conf.L. 97.5% Conf.L. 99% Conf.L. 

Model Ex.Rate Kupiec Ex.Rate Kupiec Ex.Rate Kupiec Ex.Rate Kupiec 

VC 1.9% 26.6% 0.6% 29.0% 1.2% 2.2% 0.5% 12.4% 

G-N 2.9% 49.7% 1.4% 35.0% 2.2% 56.7% 0.5% 12.4% 

E-N 3.1% 35.9% 1.2% 56.5% 2.6% 84.7% 1.1% 84.3% 

T-N 2.8% 66.1% 1.2% 56.5% 2.2% 56.7% 0.9% 84.5% 

A-N 2.9% 49.7% 1.2% 56.5% 2.6% 84.7% 0.8% 54.0% 

G-T 1.4% 4.8% 0.9% 84.5% 0.5% 0.0% 0.2% 0.7% 

E-T 1.8% 26.6% 0.9% 84.5% 1.2% 2.2% 0.5% 12.4% 

T-T 1.4% 4.8% 1.1% 84.3% 0.9% 0.3% 0.0% 0.0% 

A-T - - - - - - - - 

G-ST 1.2% 2.2% 0.5% 12.4% 1.5% 9.2% 0.2% 0.7% 

E-ST 1.2% 2.2% 0.6% 29.0% 1.5% 9.2% 0.5% 12.4% 

T-ST 1.2% 2.2% 0.8% 54.0% 1.5% 9.2% 0.5% 12.4% 
A-ST - - - - - - - - 

HS 0.6% 0.0% 0.2% 0.7% 1.4% 4.8% 0.5% 12.4% 

FHS-G 1.7% 16.3% 1.1% 84.3% 3.5% 10.9% 0.9% 84.5% 

FHS-A 2.2% 56.7% 1.1% 84.3% 3.7% 6.8% 0.9% 84.5% 

EVT-G 1.2% 2.2% 1.1% 84.3% 2.3% 75.5% 1.2% 56.5% 

EVT-A 1.2% 2.2% 1.1% 84.3% 2.5% 95.5% 1.2% 56.5% 
The models are successively Variance-Covariance (VC), GARCH under normal distribution (G-N), 
EGARCH-normal (E-N), TARCH-normal (T-N), APARCH-normal (A-N), GARCH-Student-t (G-
T), EGARCH-Student-t (E-T), TARCH-Student-t (T-T), APARCH-Student-t (A-T), GARCH-
skewed Student-t (G-ST), EGARCH-skewed Student-t (E-ST), TARCH-skewed Student-t (T-ST), 
APARCH-skewed Student-t (A-ST), Historical Simulation (HS), Filtered Historical Simulation-
GARCH (FHS-G), Filtered Historical Simulation-APARCH (FHS-A), Extreme Value Theory-
GARCH  (EVT-G), Extreme Value Theory-APARCH (EVT-A). 
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Table 4. P-values of the SPA test for the null hypothesis that the Filtered 
Historical Simulation GARCH model is superior to its competitors. 

First Sub-sample 

 Long Trading Position Short Trading Position 

Capitalization 97.5% Conf.L. 99% Conf.L. 97.5% Conf.L. 99% Conf.L. 

Large 0.33340 0.13090 0.01490a 0.11930 

Small 0.15590 0.77440 0.03170a - 

Second Sub-sample 

 Long Trading Position Short Trading Position 

Capitalization 97.5% Conf.L. 99% Conf.L. 97.5% Conf.L. 99% Conf.L. 

Large 0.01210a 0.14760 - 0.09710 

Small 0.08710 0.11080 0.00770b 0.09190 
a Indicates that the null hypothesis is rejected at 5% level of significance. 
b Indicates that the null hypothesis is rejected at 1% level of significance. 
- Indicates that there are no competing models. 

 


