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Abstract 

 

Most of the methods used in the ARCH literature for selecting the appropriate 

model are based on evaluating the ability of the models to describe the data. An 

alternative model selection approach is examined based on the evaluation of the 

predictability of the models in terms of standardized prediction errors. 
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1 .  I n t r o d u c t i o n  

 

ARCH models have widely been used in financial time series analysis, particularly 

in analyzing the risk of holding an asset, evaluating the price of an option, forecasting time 

varying confidence intervals and obtaining more efficient estimators under the existence of 

heteroscedasticity. 

In the recent literature, numerous parametric specifications of ARCH models have 

been considered for the description of the characteristics of financial markets. In the linear 

ARCH(q) model, originally introduced by Engle (1982), the conditional variance is 

postulated to be a linear function of the past q squared innovations. Bollerslev (1986) 

proposed the generalized ARCH, or GARCH(p,q), model, where the conditional variance 

is postulated to be a linear function of both the past q squared innovations and the past p 

conditional variances. Nelson (1991) proposed the exponential GARCH, or EGARCH, 

model. The EGARCH model belongs to the family of asymmetric GARCH models, which 

capture the phenomenon that negative returns predict higher volatility than positive 

returns of the same magnitude. Other popular asymmetric models are the GJR model of 

Glosten et al. (1993), the threshold GARCH, or TARCH, model, introduced by Zakoian 

(1990) and the quadratic ARCH, or QGARCH, model, introduced by Sentana (1995). 

ARCH models go by such exotic names as AARCH, NARCH, PARCH, PNP-ARCH and 

STARCH among others. For a comprehensive review of the literature on such models, the 

interested reader is referred to Degiannakis and Xekalaki (2004). 

The richness of the family of parametric ARCH models certainly complicates the 

search for the true model, and leaves quite a bit of arbitrariness in the model selection 

stage. The problem of selecting the model that describes best the movement of the series 

under study is, therefore, of practical importance. 

The aim of this paper is to develop a model selection method based on the 

evaluation of the predictability of the ARCH models. In section 2 of the paper, the ARCH 

process is presented. Section 3 provides a brief description of the methods used in the 

literature for selecting the appropriate model based on evaluating the ability of the models 

to describe the data. In section 4, Xekalaki et al.’s (2003) model selection method based 

on a standardized prediction error criterion is examined in the context of ARCH models. In 

section 5, the suggested model selection method is applied using return data for the 

Athens Stock Exchange (ASE) index over the period August 30th, 1993 to November 4th, 
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1996, while, in section 6, a selection method based on the ability of the models describing 

the data is investigated. Finally, in section 7, a brief discussion of the results is provided.  

 

2 .  T h e  A R C H  P r o c e s s  

 

Let   
1tty   refer to the univariate discrete time real-valued stochastic process to 

be predicted  (e.g. the rate of return of a particular stock or market portfolio from time 1t  

to t ) where   is a vector of unknown parameters and         ttttt yEIyE   11|  

denotes the conditional mean given the information set available at time 1t , 1tI . The 

innovation process for the conditional mean,   
1tt  , is then represented by 

      ttt y   with corresponding unconditional variance 

        22  tt EV , zero unconditional mean and      0 stE , st  . 

The conditional variance of the process given 1tI  is defined by 

           22
111| ttttttt EyVIyV   . Since investors would know the 

information set 1tI  when they make their investment decisions at time 1t , the relevant 

expected return to the investors and volatility are   t  and   2
t

, respectively. 

An ARCH process,   
1tt  , can be presented as: 

   
   

    
          ,,...,,...;,,...;,

1,0~

212121
2

...








ttttttt

tt

dii

t

ttt

ttt

g

zVzEfz

z

xy






 (2.1) 

where tx  is a 1k  vector of endogenous and exogenous explanatory variables included 

in the information set 1tI ,   is a 1k  vector of unknown parameters,  .f  is the density 

function of tz ,   t  is a time-varying, positive and measurable function of the 

information set at time 1t , t  is a vector of predetermined variables included in tI , and 

 .g  is a linear or nonlinear functional form. By definition,   t  is serially uncorrelated 

with mean zero, but with a time varying conditional variance equal to   2
t . The standard 

ARCH models assume that  .f  is the density function of the normal distribution. 
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Bollerslev (1987) proposed using the student t distribution with an estimated kurtosis 

regulated by the degrees of freedom parameter. Nelson (1991) proposed the use of the 

generalized error distribution (Harvey (1981), Box and Tiao (1973)), which is also referred 

to as the exponential power distribution. Other distributions, that have been employed, 

include the generalized t distribution (Bollerslev et al. (1994)), the normal Poisson mixture 

distribution (Jorion (1988)), the normal lognormal mixture (Hsieh (1989)), and a serially 

dependent mixture of normally distributed variables (Cai (1994)) or student t distributed 

variables (Hamilton and Susmel (1994)). In the sequel, for notational convenience, no 

explicit indication of the dependence on the vector of parameters,  , is given when 

obvious from the context. 

Let us assume that the conditional mean,  1|  ttt IyE , can be adequately 

described by a 
th  order autoregressive   AR  model: 

  t

i

itit yccy 


 



1

0 . (2.2) 

Usually, the conditional mean is either the overall mean or a first order autoregressive 

process. Theoretically, the  1AR  process allows for the autocorrelation induced by 

discontinuous (or non-synchronous) trading in the stocks making up an index (Scholes 

and Williams (1977), Lo and MacKinlay (1988)). According to Campbell et al. (1997), “the 

non-synchronous trading arises when time series, usually asset prices, are taken to be 

recorded at time intervals of a fixed length when in fact they are recorded at time intervals 

of other, possible irregular lengths.” The Scholes and Williams model suggests the st1  

order moving average process for index returns, while the Lo and MacKinlay model 

suggests an  1AR  form. Higher orders of the autoregressive process are considered in 

order to investigate if they are adequate to produce more accurate predictions. 

Engle (1982) introduced the original form of  .2
gt   as a linear function of the 

past q  squared innovations: 

 



q

i

itit aa
1

2
0

2  . (2.3) 

For the conditional variance to be positive, the parameters must satisfy 00  , 0ia , for 

qi ,...,1 . In empirical applications of ARCH(q) models, a long lag length and a large 

number of parameters are often called for. To circumvent this problem Bollerslev (1986) 

proposed the generalized ARCH, or GARCH(p,q), model: 
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   





 
p

i

iti

q

i

itit baa
1

2

1

2
0

2  , (2.4) 

where 00  , 0ia , for qi ,...,1 , and 0ib , for pi ,...,1 . Note that even though the 

innovation process for the conditional mean is serially uncorrelated, it is not independent 

through time. The innovations for the variance are denoted as: 

    ttttttt vEE  
222

1
2  . (2.5) 

The innovation process  tv  is a martingale difference sequence in the sense that it 

cannot be predicted from its past. However, its range may depend upon the past, making 

it neither serially independent nor identically distributed. 

The GARCH(p,q) model successfully captures several characteristics of financial 

time series, such as thick tailed returns and volatility clustering first noted by Mandelbrot 

(1963): “… large changes tend to be followed by large changes of either sign, and small 

changes tend to be followed by small changes…”. On the other hand, the GARCH 

structure imposes important limitations. The variance only depends on the magnitude and 

not on the sign of t , which is somewhat at odds with the empirical behavior of stock 

market prices where a leverage effect may be present. The term leverage effect, first 

noted by Black (1976), refers to the tendency for changes in stock returns to be negatively 

correlated with changes in returns volatility, i.e. volatility tends to rise in response to bad 

news,  0t , and to fall in response to good news,  0t . 

In order to capture the asymmetry exhibited by the data, a new class of models 

was introduced, termed the asymmetric ARCH models. The most popular model proposed 

to capture the asymmetric effects is Nelson’s (1991) exponential GARCH, or 

EGARCH(p,q), model:  

    



 
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

 



















p

i

iti

q

i it

it
i

it

it
it baa

1

2

1
0

2 lnln 




 . (2.6) 

Because of the logarithmic transformation, the forecasts of the variance are guaranteed to 

be non-negative. Thus, in contrast to the GARCH model, no restrictions need to be 

imposed on the model estimation. The number of possible conditional volatility 

formulations is vast. The threshold GARCH, or TARCH(p,q), model is one of the widely 

used models: 
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     





 
p

i

ititt

q

i

itit bdaa
1

11
1

0 0   , (2.7) 

where   10 td   if 0t , and   00 td   otherwise. Zakoian’s (1990) model is a 

special case of the TARCH model with 1 , while Glosten et al. (1993) consider a 

version of the TARCH model with 2 . The TARCH model allows a response of 

volatility to news with different coefficients for good and bad news. 

A wide range of ARCH models proposed in the literature has been reviewed by 

Bera and Higgins (1993), Bollerslev et al. (1992), Bollerslev et al. (1994), Degiannakis and 

Xekalaki (2004), Gourieroux (1997) and Hamilton (1994). 

 

3 .  M o d e l  S e l e c t i o n  M e t h o d s  

 

Most of the methods used in the literature for selecting the appropriate model are 

based on evaluating the ability of the models to describe the data. Standard model 

selection criteria such as the Akaike Information Criterion (AIC) (Akaike (1973)) and the 

Schwarz Bayesian Criterion (SBC) (Schwarz (1978)) have widely been used in the ARCH 

literature, despite the fact that their statistical properties in the ARCH context are 

unknown. These are defined in terms of  ̂Tl , the maximized value of the log-likelihood 

function of a model, where ̂  is the maximum likelihood estimator of   based on a 

sample of size T  and 


 denotes the dimension of  , thus: 

  


 ˆ
TlAIC  (3.1) 

   . ln2ˆ 1
TlSBC T 


  (3.2) 

In addition, the evaluation of loss functions for alternative models is mainly used in 

model selection. When we focus on estimation of means, the loss function of choice is 

typically the mean squared error (MSE): 





T

t

tTMSE
1

21  . (3.3) 

When the same strategy is applied to variance estimation, the choice of the mean 

squared error is much less clear. Because of high non-linearity in volatility models, a 

number of researchers constructed heteroscedasticity-adjusted loss functions. Bollerslev 

et al. (1994) present four types of loss functions: 
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  ,
1

222
1 




T

t

ttL   (3.4) 

,ln
1

2

2

2

2 












T

t t

tL



 (3.5) 

 
,

1
4

222

3 





T

t t

ttL



 (3.6) 

  . ln
1

2

2

2

4 












T

t

t

t

tL 



 (3.7) 

Pagan and Schwert (1990) used the first two of the loss functions to compare alternative 

estimators with in-sample and out-of-sample data sets. Andersen et al. (1999), Heynen 

and Kat (1994), Hol and Koopman (2000), are some examples from the literature that 

applied loss functions to compare the forecast performance of various volatility models. 

Moreover, loss functions have been constructed, based upon the goals of the 

particular application. West et al. (1993) developed such a criterion based on the portfolio 

decisions of a risk averse investor. Engle et al. (1993) assumed that the objective was to 

price options and developed a loss function from the profitability of a particular trading 

strategy. 

 

4 .  M o d e l  S e l e c t i o n  B a s e d  o n  t h e  S t a n d a r d i z e d  P r e d i c t i o n  

E r r o r  C r i t e r i o n  ( S P E C )  

 

Let us assume that a researcher is interested in evaluating the ability of the ARCH 

models to forecast the conditional variance. Consider the simple case of a regression 

model: ttt xy    where   is a vector of k  unknown parameters to be estimated, tx  

is a vector of explanatory variables included in the information set at time 1t  and 

 2
...

,0~  N
dii

t . At time 1t , the expected value t  of ty  is estimated on the basis of the 

information available at time 1t , i.e. 11|
ˆˆˆ   ttttt xy  , where 

   11

1

111
ˆ




  ttttt YXXX  is the least square estimator of   at time 1t , tY  is the 

 1tl  vector of tl  observations on the dependent variable ty , and tX  is the  klt   

matrix whose rows comprise the k -dimensional vectors tx  of the explanatory variables 
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included in the information set, so that 









 

t

t

t
x

1X
X , 








 

t

t

t
y

1Y
Y . Here kl 0 , 11  tt ll  

and 0
tt XX , ,...1,0t . In a manner of speaking, tty |

ˆ  and 1|
ˆ tty  can be considered as 

in-sample and out-of-sample forecasts, respectively. In other words, tty |
ˆ  is measured on 

the basis of tI , the information set available at time t , while 1|
ˆ tty  is measured on the 

basis of 1tI , the information set available at time 1t . 

In the sequel, the density function  .f , in equation (2.1), is assumed to be that of 

the normal distribution and 
1

1|1|1|
ˆˆˆ 

  ttttttz   denotes the standardized one step ahead 

prediction errors1. The most commonly used way to model the conditional variance is the 

GARCH(p,q) process in (2.4). The GARCH(p,q) process may be rewritten as2: 

   ,,,,2
vwu tttt

 , 

where  22
1,...,,1 qtttu   , 0t ,  22

1,..., ptttw   ,  
qaaav ,...,, 10 , 0 , 

 
pbb ,...,1 . 

 

The vector    ,,,v  denotes the set of parameters to be estimated for both the 

conditional mean and the conditional variance at time t . 

The residual 1|1|
ˆˆ   ttttt yy  reflects the difference between the forecast and the 

observed value of the stochastic process. Xekalaki et al. (2003) suggested measuring the 

predictive behavior of linear regression models on the basis of the standardized distance 

between the predicted and the observed value of the dependent random variable. The 

estimate of the standardized distance was defined by: 

 1|

1|

ˆ
ˆ






tt

ttt

t
yV

yy
r , 

                                                           
1 Consider the case of the AR(1)GARCH(1,1) model as defined by equations (2.2) and (2.4), for 1  and 

1 qp , respectively. The estimators of the one step ahead prediction error and its variance conditional on 

the information set available at time 1t  are given by 11,11,01|
ˆˆˆ

 
tttttt

yccy  and 

2

1|11,1

2

1|11,11,0

2

1|
ˆˆˆˆˆˆ

 
ttttttttt

baa  , respectively. The estimated parameters are indexed by the subscript t  to 

indicate that they may vary with time. 
2 The conditional variance is written in the form:    ,,,, vwu

ttt
 , which includes the most widely used 

ARCH models such as the TARCH and the EGARCH processes. 
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where           1

1

1

111111111| 1ˆˆˆ 



 


 klxxyV ttttttttttttt XXXYXY  . A scoring 

rule to rate the performance of the model at time t  for a series of T  points in time, 

 Tt ,...,1 , was defined by 





T

t

tT rTR
1

21 , 

the average of the squared standardized residuals. As an ARCH model estimates 

simultaneously the conditional mean and the conditional variance, its evaluation is two 

fold. In the sequel, this approach is adopted using the average of the squared 

standardized one step ahead prediction errors as a scoring rule in order to rate the 

performance of an ARCH model to forecast both the conditional mean and the conditional 

variance, in particular, 

T

z

R

T

t

tt

T






 1

2
1|ˆ

. (4.1) 

1
1|1|1|

ˆˆˆ 
  ttttttz   is the estimated standardized distance between the predicted and the 

observed value of the dependent random variable, when the conditional standard 

deviation of the dependent variable given 1tI  is defined by an ARCH model, 

  2
1| ttt IyV  . 

Let  t  denote the vector of unknown parameters to be estimated at time t . 

Under the assumption of constancy of parameters over time,          T...21 , 

the estimated standardized one step ahead prediction errors 1||11| ˆ,...,ˆ,ˆ  TTtttt zzz  are 

asymptotically independently standard normally distributed. Symbolically, 

   1,0~ˆˆˆ 1
1|1|1| Nyyz ttttttt


   , Tt ,...,2,1 . (4.2) 

To verify this, observe that at time 1t , the expected value of ty  is estimated on 

the basis of the information available at time 1t , i.e. 11|
ˆˆ   tttt xy   and the expected 

value of the conditional variance is estimated on the basis of the information available at 

time 1t , i.e.   111
2

1|
ˆ,ˆ,ˆ ,,ˆ   tttttttt vwu  . Note that the elements of the vector 

 ttt wu  ,,  belong to the 1tI , so are considered as known values. The 1|ˆ ttz  can be 

written as: 
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We assume that a sample of T  observations has been used to estimate the vector of 

unknown parameters. According to Bollerslev (1986), the maximum likelihood estimate t̂  

is strongly consistent for   and asymptotically normal with mean  . In other words, 

       ,,,ˆ,ˆ,ˆ,ˆlimˆlim vvpp ttttt , where limp  denotes limit in 

probability as the size of the sample, T , goes to infinity. By Slutsky’s theorem (see, e.g. 

Greene (1997, p.118)), for any continuous function  Txg  that is not a function of T , 

   TT xpgxgp limlim  . Hence 
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Using Slutsky’s theorem, the right hand side of this relationship can be written as 
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As convergence in probability implies convergence in distribution, the 1||11| ˆ,...,ˆ,ˆ  TTtttt zzz  

are asymptotically standard normally distributed: 

 1,0~ˆˆ 1|1| Nzzzz t

d

ttt

p

tt   .  

 This result implies that the 1||11| ˆ,...,ˆ,ˆ  TTtttt zzz  are asymptotically independently standard 

normally distributed, since, from the definition of convergence in probability 

     nnTTT WWWXXXP ,...,,,...,, 2121  

     nWXPnWXPnWXP nnTTT

22
22

2
11 ...   , 

which asserts that component wise convergence in probability always implies 

convergence of vectors, i.e., 

 1,0~ˆ
...

1| Nzz
dii

t

d

tt  . 

Hence, (4.2) has been established. 

 

The result of formula (4.2) is valid for all the conditional variance functions with 

consistent estimators of the parameters. 

 

Remark: As concerns the EGARCH and the TARCH models, the maximum likelihood 

estimator  
ttttt v  ˆ,ˆ,ˆ,ˆˆ   is consistent and asymptotically normal. In particular, the 

EGARCH(p,q) model can be written as: 

   ,,,,ln 2
vwu tttt

  

where  qtqttttu   ,...,,1 11 ,     
qtqtttt   ,...,11 , 

 22
1 ln,...,ln ptttw   ,  

qaaav ,...,, 10 ,  
q ,...,1 ,  

pbb ,...,1 . 

 

According to Nelson (1991), under sufficient regularity conditions, the maximum likelihood 

estimator  
ttttt v  ˆ,ˆ,ˆ,ˆˆ   is consistent and asymptotically normal. Also, for the Glosten 

et al.’s (1993) TARCH(p,q) process, the conditional variance can be written as: 

   ,,,,2
vwu tttt

   

where  22
1,...,,1 qtttu   ,   2

11 0   ttt d  ,  22
1,..., ptttw   ,  

qaaav ,...,, 10 , 

   ,  
pbb ,...,1 ,   10 td   if 0t , and   00 td  otherwise. 
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As pointed out by Glosten et al. (1993), as long as the conditional mean and 

variance are correctly specified, the maximum likelihood estimates will be consistent and 

asymptotically normal.  

According to Slutsky’s theorem, if )1,0(~ˆlim 1| Nzzp ttt   and    


 
T

t

tttt zzg
1

2
1|1| ˆˆ , 

which is a continuous function, then    


 
T

t

t

T

t

tt zzp
1

2

1

2
1|ˆlim . As convergence in 

probability implies convergence in distribution,     2

1

2

1

2
1| ~ˆ

T

T

t

t

dT

t

tt zz 


  . Hence, as 1|ˆ ttz  

are asymptotically standard normal variables, the variable TTR  is asymptotically 
2  

distributed with T  degrees of freedom, i.e., 

2
T

d

TTR  . (4.3) 

According to Kibble (1941), if, for Tt ,...,2,1 , 
 A

ttz 1|ˆ   and 
 B

ttz 1|ˆ   are standard 

normally distributed variables, following jointly the bivariate standard normal distribution, 

then the joint distribution of     





 B

T

A

T R
T

R
T

2
,

2
 is the bivariate gamma distribution with 

probability density function (p.d.f) given by: 

 
  

  
      

0,,
21

1

12

1
exp

,
0

12

22

22

2

2
,

2

)()(





























 






yxxy

TiiT

yx

yxf
i

iT

i

T
R

T
R

T B
T

A
T





, 
(4.4) 

where  .  is the gamma function and   is the correlation coefficient between 
 A

ttz 1|ˆ   and 

 B

ttz 1|ˆ  , i.e. 
    B

tt

A

tt zzCor 1|1| ˆ,ˆ  . Xekalaki et al. (2003) showed that, when the joint 

distribution of 
    






 B

T

A

T R
T

R
T

2
,

2
 is Kibble's bivariate gamma, the distribution of the ratio 

     B

T

A

T

BA

T RRZ ,
 is defined by the following p.d.f.: 

     
    0,

1

2
11

2
,

2

1 2

1
2

1
2

22

, 





























zz

z
zz

TTB
zf

T

TT

T

Z BA
T


,  (4.5) 

where  T
TTT

B 














2

22
,

2
. Symbolically, 
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       ,~ˆˆ
1

2
1|

1

2
1|

,
kCGRzzZ

T

t

A

tt

T

t

B

tt

BA

T 





 , (4.6) 

where 2Tk  . Xekalaki et al. (2003) referred to the distribution in (4.5) as the Correlated 

gamma ratio (CGR) distribution. In the Appendix, Figure 8 depicts its probability density 

function for 0z , 10    and 30k  and Table 5 presents a sample of the 95th 

percentile of the CGR distribution. Full tables of the CGR percentage points and of graphs 

depicting its probability density function can be found in Degiannakis and Xekalaki (1999).  

As pointed out by Xekalaki et al. (2003), 
 A

TR  and 
 B

TR  could represent the sum of 

the squared standardized prediction errors from two regression models (not necessarily 

nested) but with a common dependent variable. Thus, two regression models can be 

compared through testing a null hypothesis of equivalence of the models in their 

predictability against the alternative that model  A  produces “better” predictions. Here, 

the notion of the equivalence of two models with respect to their predictive ability is 

considered in Xekalaki et al.’s (2003) sense to be defined implicitly through their mean 

squared prediction errors. Following Xekalaki et al.’s (2003) rationale, the closest 

description of the hypothesis to be tested is 

    H0: Models A  and B  have equal mean squared prediction errors 

Versus  

    H1: Model A  has lower mean squared prediction error than model B  

using 
 BA

TZ
,

 as a test statistic, i.e., using the ratio of the sum of the squared standardized 

one step ahead prediction errors 1|ˆ ttz  of the two competing models. The null hypothesis is 

rejected if 
   akCGRZ

BA

T ,,,  , where  akCGR ,,  is the  a1100  percentile of the 

CGR distribution.  

Since very few financial time series have a constant conditional mean of zero, in 

order to estimate the conditional variance, the conditional mean should have been 

defined. Thus, both the conditional mean and variance are estimated simultaneously. 

According to the SPEC model selection algorithm, the models that are considered as 

having a “better” ability to predict future values of the dependent variable, are those with 

the lowest sum of squared standardized one-step-ahead prediction errors. It becomes 

evident, therefore, that these models can potentially be regarded as the most appropriate 

to use for volatility forecasts too. 
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5 .  E m p i r i c a l  R e s u l t s  

 

The suggested model selection procedure is illustrated on data referring to the 

daily returns of the Athens Stock Exchange (ASE) index. Let  1ln  ttt PPy  denote the 

continuously compound rate of return from time 1t  to t , where tP  is the ASE closing 

price at time t .  The data set covers the period from August 30th, 1993 to November 4th, 

1996, a total of 800 trading days. Table 1 presents the descriptive statistics. For an 

estimated kurtosis equal to 7.25 and an estimated skewness equal to 0.08, the distribution 

of returns is flat (platykurtic) and has a long right tail relative to the normal distribution. The 

Jarque Bera (JB) statistic (Jarque and Bera (1980)) is used to test whether the series is 

normally distributed. The test statistic measures the difference of the skewness and 

kurtosis of the series from those of the normal distribution. The JB statistic is computed 

as: 

    643
22  KSTJB , (5.1) 

where T  is the number of observations, S  is the skewness and K  is the kurtosis. Under 

the null hypothesis of a normal distribution, the JB statistic is 
2  distributed with 2 

degrees of freedom. 

Table (1). Descriptive Statistics of the daily returns of the ASE index  

(30th August 1993 to 4th November 1996 (800 observations)) 

   Observations 800    

   Mean 5.72E-05    

   Median -0.00018    

   Standard Deviation 0.012    

   Skewness 0.08    

   Kurtosis 7.25    

   Jarque Bera (JB) 602.38    

   probability <0.000001    

   Augmented Dickey Fuller (ADF) -12.67    

   1% critical value -3.44    

   Phillips Perron  (PP) -24.57    

   1% critical value -3.44    

The skewness of a symmetric distribution, as the normal distribution, is zero. Positive skewness implies that the 
distribution has a long right tail. Negative skewness implies a long left tail distribution.  

The kurtosis of the normal distribution is 3. If the kurtosis exceeds 3, the distribution is peaked (leptokurtic) relative 
to the normal. If the kurtosis is less than 3, the distribution is flat (platykurtic) relative to the normal. 

Under the null hypothesis of a normal distribution, the JB statistic is χ2
 distributed with 2 degrees of freedom. The 

reported probability is the probability that the JB statistic exceeds, in absolute value, the observed value under the null 
hypothesis. 

ADF: The null hypothesis of non-stationarity is rejected if the ADF value is less than the critical value. (4 lagged 
differences). 

PP: The null hypothesis of non-stationarity is rejected if the PP value is less than the critical value.  (4 truncation 
lags). 
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From Table 1, the value of the JB statistic obtained is 602.38 with a very low p-value 

(practically zero). So, the null hypothesis of normality is rejected. In order to determine 

whether  ty  is a stationary process, the Augmented Dickey Fuller test (ADF) (Dickey and 

Fuller (1979)) and the nonparametric Phillips Perron (PP) test (Phillips (1987), Phillips and 

Perron (1988)) are conducted. 

The ADF test examines the null hypothesis, 0:0 H , versus the alternative, 

0:1 H , in the following regression: 

t

i

ititt yycy 


 



1

1 , (5.2) 

where   denotes the difference operator. According to the ADF test, the null hypothesis 

of non-stationarity is rejected at the 1% level of significance for any lag order up to 

12 . The test regression for the PP test is the AR(1) process: 

ttt ycy   1 . (5.3) 

While the ADF test corrects for higher order serial correlation by adding lagged 

differenced terms on the right hand side, the PP test makes a correction to the t statistic of 

the   coefficient from the AR(1) regression to account for the serial correlation in t . The 

correction is nonparametric since an estimate of the spectrum of t  at frequency zero, 

that is robust to heteroscedasticity and autocorrelation of unknown form, is used. 

According to the PP test, the null hypothesis is also rejected at the 1% level of 

significance. 

Table (2). Lagrange multiplier (LM) test. Test the null hypothesis of no ARCH effects in 

the residuals up to order q. 

cy

u

tt

t

q

i

itit



 







1

2
0

2

 

   Q LM statistic p-value   
   1 108.203 0.00   
   2 113.315 0.00   
   3 127.947 0.00   
   4 128.577 0.00   
   5 130.691 0.00   
   6 133.467 0.00   
   7 131.573 0.00   
   8 129.496 0.00   

The LM statistic is computed as the number of observations times the R
2
 from the auxiliary test regression. It converges 

in distribution to a χ2
q. 
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The most commonly used test, for examining the null hypothesis of 

homoscedasticity against the alternative hypothesis of heteroscedasticity, is Engle’s 

(1982) Lagrange multiplier (LM) test. The ARCH LM test statistic is computed from an 

auxiliary test regression. To test the null hypothesis of no ARCH effects up to order q in 

the residuals, the regression model 

t

q

i

itit u 



1

2
0

2  , (5.4) 

with cytt   is run. Engle’s test statistic is computed as the product of the number of 

observations times the value of the coefficient of variation 
2

R  of the auxiliary test 

regression. From Table 2, the values of the LM test statistic for 8,...,1q  are highly 

significant at any reasonable level. 

As, according to the results of the above tests, the assumptions of stationarity and 

ARCH effects seem to be plausible for the process  ty  of daily returns, several ARCH 

models are considered in the sequel. It is assumed, specifically, that the conditional mean 

is considered as a 
th  order autoregressive process as defined in (2.2) and the 

conditional variance 2
t  is assumed to be related to lagged values of t  and 

t  

according to a GARCH( p , q ) model, an EGARCH( p , q ) model or a TARCH( p , q ) 

model as defined by (2.4), (2.6) and (2.7), respectively. Thus, the AR( )GARCH( p , q ), 

AR( )EGARCH( p , q ) and AR( )TARCH( p , q ) models3 are applied, for 4,...,0 , 

2 ,1 ,0p  and 2 ,1q , yielding a total of 90 cases. 

Since, in estimating non-linear models, no closed form expressions are obtainable 

for the parameter estimators, an iterative method has to be employed. The value of the 

parameter vector   that maximizes  tl , the log likelihood contribution for each 

observation t , is to be found. Iterative optimization algorithms work by starting with an 

initial set of values for the parameter vector  , say  0 , and obtaining a set of parameter 

values  1 , which corresponds to a higher value of  tl . This process is repeated until 

the objective function  tl  no longer improves between iterations. In the sequel, the 

Marquardt algorithm (Marquardt (1963)) is used. This algorithm modifies the Berndt, Hall, 

                                                           
3 Glosten’s et al. (1993) TARCH model is applied with 2 . 
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Hall and Hausman, or BHHH, algorithm (Berndt et al. (1974)) by adding a correction 

matrix to the Hessian approximation (i.e., to the sum of the outer product of the gradient 

vectors for each observation’s contribution to the objective function). The Marquardt 

updating algorithm is computed as: 

   
     






























T

t

i

t
T

t

i

t

i

tii l
aI

ll

1

1

1

1


 , (5.5) 

where I  is the identity matrix and a  is a positive number chosen by the algorithm. The 

effect of this modification is to push the parameter estimates in the direction of the 

gradient vector. The idea is that when we are far from the maximum, the local quadratic 

approximation to the function may be a poor guide to its overall shape, so it may be better 

off to simply follow the gradient. The correction may provide a better performance at 

locations far from the optimum, and allows for computation of the direction vector in cases 

where the Hessian is near singular.  

The quasi-maximum likelihood estimator (QMLE) is used, as according to 

Bollerslev and Wooldridge (1992), it is generally consistent, has a limiting normal 

distribution and provides asymptotic standard errors that are valid under non-normality. 

In order to compute the sum of squared standardized one step ahead prediction 

errors, a rolling sample of constant size equal to 500 is used, or 500T , so 300 one step 

ahead daily forecasts are estimated. The out-of-sample data set is split into 5 subperiods 

and the SPEC model selection algorithm is applied in each subperiod separately. Thus, 

the model selection is revised every 60 trading days and the information set includes daily 

continuously compound returns of the two most recently years, or 500 trading days. The 

choice of a 60-day length for each subperiod is arbitrary. The sum of the squared one step 

ahead prediction errors,   

 
sT

Tt ttz
1

2
1|ˆ , is estimated for each model and presented in Table 

3, in the Appendix. The models selected for each subperiod and their sums of the squared 

standardized one step ahead prediction errors are: 

Subperiod Model Selected    

 
sT

Tt ttz
1

2
1|ˆmin  

1. 25 August 1995 - 16 November 1995 AR(2) EGARCH(0,1) 21.961 
2. 17 November 1995 - 13 February 1996 AR(0) EGARCH(0,1) 76.315 
3. 14 February 1996 - 14 May 1996 AR(0) EGARCH(0,1) 42.176 
4. 15 May 1996 – 8 August 1996 AR(3) EGARCH(0,1) 27.308 
5. 9 August 1996 - 4 November 1996 AR(1) EGARCH(0,1) 43.920 
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According to the SPEC selection method, the exponential GARCH(0,1) model describes 

best the conditional variance for the total examined period of 300 trading days. It is 

selected by the SPEC selection method in each subperiod. Figure 1 shows the daily value 

of the ASE index and the one step ahead conditional standard deviation of its returns.  

Figure 1. The ASE index and the one step ahead conditional standard 

deviation of its returns estimated by the EGARCH(0,1) models
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Despite the fact that an asymmetric model is selected by the SPEC algorithm, there are 

no asymmetries in the ASE index volatility. According to Figure 1, the major episodes of 

high volatility are not associated with market changes of the same sign. Figure 2 presents 

the values of the parameters 1a  and 1  of the 300 estimated EGARCH(0,1) models, while 

Figure 3 depicts the relevant standard errors for the parameters 1a  and 1 . Obviously, the 

1  parameter, which allows for the asymmetric effect, is positive but statistically 

insignificant. Therefore, the asymmetric relation between returns and changes in volatility 

does not characterize the examined period. 

An interesting point is that the higher order of the conditional mean autoregressive 

process is chosen as adequate to produce more accurate predictions for the first and the 

fourth subperiods. As concerns the first subperiod, the AR(2)EGARCH(0,1) model 
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 , 
(5.6) 

is the one with the lowest  value of    
560

501

2
1|ˆ

t ttz  equal to 21.961. The hypothesis: 

 H0: The model AR(2)EGARCH(0,1) has equivalent predictive ability to model X  
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is tested versus 

H1: The model AR(2)EGARCH(0,1) produces “better” predictions than model X , 

with X  denoting any one of the remainder models. 

Figure 2. The parameters of the estimated EGARCH(0,1) models
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Figure 3. The standard error for the  parameters of the estimated 

EGARCH(0,1) models
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Note that the correlation between the standardized one step ahead prediction errors is 

greater than 0.9 in each case. If      


560

501

2
1|

1),1,0()2(
60 ˆ96.21

t

X

tt

XEGARCHAR
zZ  

 akCGR ,9.0,30   , the null hypothesis of equivalent predictive ability of the models 

is rejected at %100a  level of significance and the AR(2)EGARCH(0,1) model is regarded 

as “better” than model X . Table 4, in the Appendix, summarizes the results of the 

hypothesis tests, for each subperiod. 
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Figure 4, in the Appendix, depicts the one step ahead 95 per cent prediction 

intervals for the models with the lowest   

 
sT

Tt ttz
1

2
1|ˆ  in each subperiod. The prediction 

intervals are constructed as the expected rate of return plus\minus 1.96 times the 

conditional standard deviation, both measurable to 1t  information set: 1|1|
ˆ96.1ˆ   tttt  . 

So, each time next day’s prediction interval is plotted, only information available at current 

day is used. Remark that around November 1995, a volatile period, the prediction interval 

in Figure 4 tracked the movement of the returns quite closely  (seven outliers, or 2.33%, 

were observed). 

 

6 .  A n  A l t e r n a t i v e  A p p r o a c h  

 

In this section an in-sample analysis is performed in order to select the appropriate 

models describing the data. Then, the selected models are used to estimate the one step 

ahead forecasts. Having assumed that the conditional mean of the returns follows a 
th  

order autoregressive process, as in (2.2), Richardson and Smith (1994) developed a test 

for autocorrelation. It is a robust version of the standard Box Pierce (Box and Pierce 

(1970)) procedure. For ip  denoting the estimated autocorrelation between the returns at 

time t  and it  , the test is formulated as: 

  
 


r

i i

i

c

p
TrRS

1

2

1
, (6.1) 

where T  is the sample size and ic  is the adjustment factor for heteroscedasticity, which is 

calculated as: 

 
 2

22 ,

t

itt

i
yVar

yyCov
c  , (6.2) 

where  


T

t ttt yTyy
1

1
. Under the null hypothesis of no autocorrelation, the statistic is 

asymptotically distributed as 
2  with r  degrees of freedom. If the null hypothesis of no 

autocorrelation cannot be rejected, then the returns’ process is equal to a constant plus 

the residuals, t . In other words,  ty  follows the AR(0) process. If the null of no 

autocorrelation is rejected, then  ty  follows the AR(1) process. In order to test for the 

existence of a higher order autocorrelation, the test is applied on the estimated residuals 

from the AR(1) model. In this case, the statistic, under the null hypothesis, is 



  

 

 

21 

asymptotically distributed as 
2  with 1r  degrees of freedom. The test is calculated on 

7 autocorrelations  7r  for 800 observations yielding a value equal to 

  2
05.0 ,786,147 RS . As the null hypothesis of no autocorrelation is rejected the test is 

run on the estimated residuals from the AR(1) model that gives   2
05.0 ,633,126 RS . 

Thus, a first order autocorrelation is detected for the returns’ process. Note that the AR(1) 

form allows for the autocorrelation imposed by discontinuous trading. 

 Having defined the conditional mean equation, the next step is the estimation of 

the conditional variance function. The AIC and the SBC criteria are used to select the 

appropriate conditional variance equation. Note that the AIC mainly chooses as best the 

less parsimonious model. Also, under certain regularity conditions, the SBC is consistent, 

in the sense that for large samples it leads to the correct model choice, assuming the 

“true” model does belong to the set of models examined. Thus, the SBC may be 

preferable to use. As concerns the specific dataset, both the AIC and SBC select the 

GARCH(1,1) model as the most appropriate function to describe the conditional variance. 

So, performing an in-sample analysis the AR(1)GARCH(1,1) model is regarded as the 

most suitable, which is the model applied in most researches. Figure 5, in the Appendix, 

presents the in-sample 95 per cent confidence interval for the AR(1)GARCH(1,1) model. 

There are fourteen observations, or 4.66%, outside the confidence interval. 

 In order to compare the model selection methods, the choice of the models should 

be conducted at the same time points. Thus, the Richardson Smith test for autocorrelation 

detection and the information criteria for model selection are used in each subperiod 

separately. The models selected for in each subperiod are: 

Subperiod 
Richardson Smith 
Model selection 

SBC  
Model Selection 

AIC  
Model Selection 

1. AR(3) GARCH(1,1) EGARCH(1,2) 
2. AR(2) GARCH(2,1) GARCH(2,1) 
3. AR(0) GARCH(1,1) GARCH(1,1) 
4. AR(0) GARCH(1,1) GARCH(1,1) 
5. AR(0) GARCH(1,1) TARCH(1,1) 

Based on Table 4, the hypothesis that the model selected by the in-sample analysis is 

equivalent to the model with minimum value of   

 
sT

Tt ttz
1

2
1|ˆ  is rejected in the majority of 

the cases. 

Proceeding as in the previous section, the one step ahead prediction intervals, for 

the models selected in each subperiod, are created. As in section 5, next day’s prediction 
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is based only on information available at current day. Figures 6 and 7, in the Appendix, 

present the one step ahead 95 per cent prediction intervals for the models selected by the 

SBC and AIC, respectively. There are thirteen observations, or 4.33%, outside the 

prediction interval for the models selected by the SBC, whereas there are fourteen 

outliers, or 4.66%, for the models selected by the AIC. Therefore, the importance of 

selecting a conditional variance model based on its ability to forecast and not on fitting the 

data gains a lead over. Of course, the construction of the prediction intervals is a naïve 

way to examine the accuracy of our method’s predictability. 

 

7 .  D i s c u s s i o n  

 

An alternative model selection approach, based on the CGR distribution, was 

introduced. Instead of being based on evaluating the ability of the models to describe the 

data (Akaike information and Schwarz Bayesian criteria), the proposed approach is based 

on evaluating the ability of the models to predict the conditional variance. The method was 

applied to 800 daily returns of the ASE index, a dataset covers the period from August 

30th, 1993 to November 4th, 1996. The first T  observations were used to estimate the one 

step ahead prediction of the conditional mean and variance at 1T . For 500T , a total 

of 300 one step ahead predictions of the conditional mean and variance were obtained. 

The out-of-sample data set was split into subsets, one for each of 5 subperiods and the 

SPEC model selection algorithm was applied in each subperiod separately. Thus, the 

model selection was revised every 60 trading days. 

The idea of “jumping” from one model to another, as stock market behavior alters, 

is introduced. The transition from one model to another is done according to the SPEC 

model selection algorithm. Each time the model selection method is applied, the model is 

used to predict the conditional variance is revised. Of course, the idea of switching from 

one regime to another has been already applied to the class of switch regime ARCH 

models introduced by Cai (1994) and Hamilton and Susmel (1994) and extended by 

several authors such as Dueker (1997) and Hansen (1994). However, these models allow 

the parameters of a specific ARCH model to come from one of several different regimes, 

with transitions between regimes governed by an unobserved Markov chain. 

Using an alternative approach, based on evaluating the ability of fitting the data, 

the conditional mean is first modeled and subsequently, an appropriate form for the 

conditional variance is chosen. Applying the SPEC model selection algorithm, the null 
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hypothesis, that the model selected by the in-sample analysis is equivalent to the model 

with minimum value of   

 
sT

Tt ttz
1

2
1|ˆ , is rejected in the plurality of the cases at less than 

5% level of significance. The in-sample model selection methods and the predictability-

based method do not coincide in the sifting of the appropriate conditional variance model. 

Moreover, 2.33% and 4.33% of the data were outside the 1|1|
ˆ96.1ˆ   tttt   prediction 

interval constructed based on the SPEC and the SBC model selection methods, 

respectively. 

The predictive ability of the SPEC model selection algorithm has to be further 

investigated. Among the financial applications where this method could have a potential 

use are in the fields of portfolio analysis, risk management and trading option derivatives. 
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