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Abstract. This paper revisits the asymptotic inference for non-stationary AR(1) mod-

els of Phillips and Magdalinos (2007a) by incorporating a structural change in the AR

parameter at an unknown time k0. Consider the model yt = β1yt−1I{t ≤ k0}+ β2yt−1I{t >
k0} + εt, t = 1, 2, · · · , T, where I{·} denotes the indicator function, one of β1 and β2 de-

pends on the sample size T , and the other is equal to one. We examine four cases: Case

(I): β1 = β1T = 1 − c/kT , β2 = 1; (II): β1 = 1, β2 = β2T = 1 − c/kT ; (III): β1 = 1,

β2 = β2T = 1+ c/kT ; and case (IV): β1 = β1T = 1+ c/kT , β2 = 1, where c is a fixed positive

constant, and kT is a sequence of positive constants increasing to ∞ such that kT = o(T ).

We derive the limiting distributions of the t-ratios of β1 and β2 and the least squares es-

timator of the change point for the cases above under some mild conditions. Monte Carlo

simulations are conducted to examine the finite-sample properties of the estimators. Our

theoretical findings are supported by the Monte Carlo simulations.

Keywords: AR(1) model, Least squares estimator, Limiting distribution, Mildly ex-

plosive, Mildly integrated, Structural change, Unit root.

∗Tianxiao Pang and Yanling Liang’s research was supported by the Department of Education of Zhejiang

Province in China (N20140202).

E-mail addresses: txpang@zju.edu.cn, chong2064@cuhk.edu.hk, zhangdanna0507@gmail.com and

1040857986@qq.com.
†Corresponding author.

1



JEL Classification: C22

1 Introduction and Main Results

The change-point problem in time series regression models has received considerable atten-

tion in the literature over the past decades. Many economic time series data are characterized

by single or multiple structural changes (Stock and Watson (1996, 1999), Hansen (2001)).

Bai and Perron (1998) provided the estimation and test procedures for linear models with

multiple structural changes. Leybourne et al. (2003), Harvey et al. (2006), Halunga and

Osborn (2012) and Kejriwal et al. (2013) investigated structural changes in persistence.

Chong (2003), Pitarakis (2004) and Bai et al. (2008) studied the estimation and tests of

the change point under model misspecification. Qu (2008) tested for the structural change

in regression quantiles. Recent development in this area includes that of Lee et al. (2016),

who investigated the change-point problem in high-dimensional regression models.

An important strand of literature on structural change focuses on autoregressive models.

Structural changes in autoregressive models are of interest as the time series properties of

the model, such as stationarity, may be different before and after the change. As a result,

the rates of convergence and the asymptotic distributions of the estimators are difficult to

derive. Chong (2001) investigated the statistical inference for the change point in various

AR(1) models. Berkes et al. (2011) studied the structural change from an AR(1) model to

a threshold AR(1) model. An important application of the AR(1) change-point model was

given by Mankiw and Miron (1986) and Mankiw et al. (1987), who found that the short-

term interest rate has changed from a stationary process to a near random walk since the

Federal Reserve System was founded at the end of 1914. Other applications can be found in

Barsky (1987) and Burdekin and Siklos (1999) for inflation rate series, in Hakkio and Rush

(1991) for government budget deficits, in Phillips et al. (2011) for 1990’s NASDAQ stock

prices and in Phillips and Yu (2011), Phillips et al. (2015a, 2015b, 2015c) and Phillips and

Shi (2017) for financial bubbles and collapses.

This paper revisits and generalizes the model of Chong (2001). Consider the following

AR(1) model with a change in the AR parameter at an unknown time k0,

yt = β1yt−1I{t ≤ k0}+ β2yt−1I{t > k0}+ εt, t = 1, 2, · · · , T, (1.1)

where I{·} denotes the indicator function, and {εt, t ≥ 1} is a sequence of i.i.d. random

variables. Under the regularity conditions that E(εt) = 0, V ar(εt) < ∞ and E(y20) < ∞,
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the consistency and limiting distributions of the least squares estimators (LSE) of fixed β1

and β2 and the change-point estimator of τ0(= k0/T ) were developed in Chong (2001) for

the following three cases: (1) |β1| < 1 and |β2| < 1, (2) |β1| < 1 and β2 = 1, and (3) β1 = 1

and |β2| < 1.

Since heavy-tailed distributions such as the Student’s t-distribution with degrees of free-

dom 2, Pareto distribution with index 2 and stable random variables are often used to model

asset returns in empirical studies (Mandelbrot (1963)), Pang and Zhang (2015) employed

the truncation technique to weaken the moment conditions of y0 and εt’s in case (1) of

Chong (2001). For any constant c, Pang et al. (2014) examined the asymptotics for the

case where |β1| < 1 and β2 = β2T = 1− c/T as well as the case where β1 = β1T = 1− c/T

and |β2| < 1. In these two cases, one of β1 and β2 is fixed and smaller than one in absolute

value, while the other is local to unity. The limiting distributions obtained in Pang et al.

(2014) are complicated. In the special case of c = 0, the results in Pang et al. (2014) are

reduced to the two main theorems in Chong (2001). Both Pang et al. (2014) and Pang and

Zhang (2015) only require εt’s to be in the domain of asymptotic normality (DAN) with zero

mean and possibly infinite variance, and y0 to be any random variable of an order smaller

than
√
T in probability.

The asymptotic theory for the near unit root model was first studied by Phillips (1987)

and Chan and Wei (1987) independently. Their studies bridge the gap between the station-

ary AR(1) model and the unit root model. This paper is related to that of Phillips and

Magdalinos (2007a), who attempted to bridge the gap between the asymptotic theories of

the stationary, the explosive and the local-to-unity AR(1) models. In particular, they inves-

tigated the limiting distribution of the LSE of the AR parameter for the following AR(1)

model: yt = βyt−1 + εt, t = 1, 2, · · · , T, with β = βT = 1 − c/kT and β = βT = 1 + c/kT ,

where c is a positive constant, and kT is a sequence of positive constants increasing to ∞
such that kT = o(T ). They proved the asymptotic normality for the LSE of β with con-

vergence rate
√
TkT for the mildly integrated AR(1) model when β = βT = 1 − c/kT and

showed a Cauchy limiting distribution for the LSE of β with convergence rate kTβ
T
T for

the mildly explosive AR(1) model when β = βT = 1 + c/kT . The mildly explosive and the

integrated AR(1) models have been widely used to model financial bubbles and collapses,

respectively. The reader is referred to Phillips and Yu (2011), Phillips et al. (2011), Phillips

et al. (2015a, 2015b, 2015c) and Phillips and Shi (2017) for more details.

Motivated by the works of Chong (2001) and Phillips and Magdalinos (2007a) and the
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importance of the mildly integrated and explosive AR(1) models in applications, we aim to

study in this article the structural change in mildly integrated and mildly explosive AR(1)

models from the theoretical perspective. In particular, we are interested in the following

four cases: (I) β1 = β1T = 1− c/kT , β2 = 1; (II) β1 = 1, β2 = β2T = 1− c/kT ; (III) β1 = 1,

β2 = β2T = 1 + c/kT ; and (IV) β1 = β1T = 1 + c/kT , β2 = 1, where c > 0, and kT shares

the same assumption in Phillips and Magdalinos (2007a). Since the models before and after

the time k0 are either non-stationary or nearly non-stationary, and the difference between

β1 and β2 converges to zero as the sample size tends to infinity, obtaining the closed-form

limiting distributions of the LSEs of β1 and β2 and the estimator of the change point will be

a challenging task. The main contribution of this paper is to derive the closed-form solution

of the limiting distributions of these estimators for the cases above when the distribution of

the error term belongs to the DAN.∗

A sequence of i.i.d. random variables {Xi, i ≥ 1} belongs to the DAN if there exist two

constant sequences {An, n ≥ 1} and {Bn, n ≥ 1} such that Zn := B−1
n (X1 + · · ·+Xn)−An

converges to a standard normal random variable in distribution as n tends to infinity (Feller

(1971)), where Bn takes the form
√
nh(n), and h(n) is a slowly varying function at infinity.

For the models studied in this article, we make the following assumptions:

• C1: {εt, t ≥ 1} is a sequence of i.i.d. random variables which are in the DAN with

zero mean and possibly infinite variance.

• C2: {kT , t ≥ 1} is a sequence of positive constants increasing to infinity slowly such

that kT = o(T ).

• C3: y0 is an arbitrary random variable satisfying y0 = op(
√
T ) when β1 = 1 and

y0 = op(
√
kT ) when β1 = 1− c/kT or β1 = 1 + c/kT .

• C4: τ0 ∈ [τ , τ ] ⊂ (0, 1).

Remark 1.1 The assumption of i.i.d. in C1 is only for convenience of exposition in the

proofs. If the DAN condition is replaced by some appropriate moment conditions, one can

extend our results to allow for dependence. One may refer to Phillips and Magdalinos

(2007b) and Magdalinos (2012) for details. Assumption C2 is the same as that in Phillips

and Magdalinos (2007a). Assumption C3 states that y0 will not affect the asymptotic prop-

erties of the estimators of β1, β2 and the change point. Assumption C4 is standard in the

∗We present the limiting distributions of the t-ratios instead of the LSEs for the AR parameters. The

latter can be derived in a similar fashion.
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change-point literature (Bai (1997), Chong (2001) and Pitarakis (2004)), which ensures the

identifiability of the AR parameters and the change point. In empirical studies, one can set

[τ , τ ] = [0.05, 0.95].

Let [a] denote the integer part of a. For any given 0 < τ < 1, the LSEs of the AR

parameters β1 and β2 are given by

β̂1(τ) =

∑[τT ]
t=1 ytyt−1∑[τT ]
t=1 y2t−1

and β̂2(τ) =

∑T
t=[τT ]+1 ytyt−1
∑T

t=[τT ]+1 y
2
t−1

.

The change-point estimator is defined as

τ̂T = argmin
τ∈(0,1)

RSST (τ),

where

RSST (τ) =

[τT ]∑

t=1

(
yt − β̂1(τ)yt−1

)2
+

T∑

t=[τT ]+1

(
yt − β̂2(τ)yt−1

)2
.

Once we obtain the change-point estimator τ̂T , the final LSEs of β1 and β2 are defined by

β̂1(τ̂T ) and β̂2(τ̂T ) respectively.

We define some notations before proceeding to our main results. Let W (·), W (·) and

W̃ (·) be three independent standard Brownian motions defined on [0, 1], [0, 1] and R+ re-

spectively; and W1(·) and W2(·) be two independent Brownian motions defined on R+. “⇒”

denotes the weak convergence of the associated probability measures. “
p→” denotes conver-

gence in probability and “
d
=” means being identical in distribution. The limits in this paper

are all taken as T → ∞ unless specified otherwise. We denote k̂ = [T τ̂T ], and the notation

aT ≍ bT means there exist two positive constants c1 and c2 such that c1 ≤ aT /bT ≤ c2 for all

large T , where aT and bT are two positive functions of T . In addition, in order to deal with

possibly heavy-tailed distributions, we employ the following truncation technique letting




l(u) = E(ε21I{|ε1| ≤ u}), b = inf{u ≥ 1 : l(u) > 0},

ηj = inf{s : s ≥ b+ 1,
l(s)

s2
≤ 1

j
}, for j = 1, 2, 3, · · · .

(1.2)

When ε1 belongs to the DAN, l(u) is a slowly varying function approaching a constant

(when ε1 has finite variance) or infinity (when ε1 has infinite variance) as u tends to infinity.

Finally, we denote

t1 =

√∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ̂T )− β1) and t2 =

√∑T
t=[τ0T ]+1 y

2
t−1

l(ηT )
(β̂2(τ̂T )− β2)

as the t-ratios of β1 and β2 respectively.
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Under assumptions C1-C4, we have the following results.

Theorem 1.1 In Model (1.1), if β1 = β1T = 1−c/kT and β2 = 1, where c is a fixed positive

constant, under assumptions C1-C4, we have

(a) τ̂T is consistent, and its limiting distribution is given by

cT

kT
(τ̂T − τ0) ⇒ argmax

ν∈R

{
C∗(ν)

Bc(
1
2)

− |ν|
2

}
, (1.3)

where Bc(
1
2) =

√
c
∫∞
0 exp (−cs)dW1(s), and C∗(ν) is defined to be C∗(ν) = W1(−ν) for

ν ≤ 0 and

C∗(ν) = −W2(ν)−
∫ ν

0

W2(s)

Bc(
1
2)

dW2(s)−
∫ ν

0

( W2(s)

2Bc(
1
2)

+ 1
)
W2(s)ds

for ν > 0.

(b) β̂1(τ̂T ) is consistent, and its limiting distribution is given by

t1 ⇒ N(0, 1). (1.4)

(c) β̂2(τ̂T ) is also consistent, and its limiting distribution is given by

t2 ⇒
W

2
(1)− 1

2

√∫ 1
0 W

2
(s)ds

. (1.5)

Theorem 1.2 In Model (1.1), if β1 = 1 and β2 = β2T = 1−c/kT , where c is a fixed positive

constant, under assumptions C1-C4, we have

(a) (i) When kT = o(
√
T ), τ̂T is exactly T -consistent, i.e.,

P (k̂ ̸= k0) → 0.

(ii) When kT ≍
√
T , τ̂T is T -consistent, i.e.,

|k̂ − k0| = Op(1).

(iii) When
√
T = o(kT ), τ̂T is not T -consistent, but τ̂T is consistent, and its limiting distri-

bution is given by
c2T 2

k2T
(τ̂T − τ0) ⇒ argmax

ν∈R

{
W ∗(ν)
W1(τ0)

− |ν|
2

}
, (1.6)
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where W ∗(ν) is a two-sided Brownian motion on R defined to be W ∗(ν) = W1(−ν) for ν ≤ 0

and W ∗(ν) = W2(ν) for ν > 0.

(b) β̂1(τ̂T ) is consistent, and its limiting distribution is given by

t1 ⇒
W 2(1)− 1

2
√∫ 1

0 W 2(s)ds
. (1.7)

(c) β̂2(τ̂T ) is also consistent, and its limiting distribution is given by

t2 ⇒
W̃ (1)√

W 2(τ0) + (1− τ0)
. (1.8)

Theorem 1.3 In Model (1.1), if β1 = 1 and β2 = β2T = 1+c/kT , where c is a fixed positive

constant, under assumptions C1-C4, we have

(a) (i) When kT = o(
√
T ), τ̂T is exactly T -consistent, i.e.,

P (k̂ ̸= k0) → 0.

(ii) When kT ≍
√
T , τ̂T is T -consistent, i.e.,

|k̂ − k0| = Op(1).

(iii) When
√
T = o(kT ), τ̂T is not T -consistent, but τ̂T is consistent, and its limiting distri-

bution is given by (1.6).

(b) β̂1(τ̂T ) is consistent, and its limiting distribution is given by

t1 ⇒
W 2(1)− 1

2
√∫ 1

0 W 2(s)ds
. (1.9)

(c) β̂2(τ̂T ) is also consistent, and its limiting distribution is given by

t2 ⇒ N(0, 1). (1.10)

Theorem 1.4 In Model (1.1), if β1 = β1T = 1+c/kT and β2 = 1, where c is a fixed positive

constant, under assumptions C1-C4, the estimators k̂, β̂1(τ̂T ) and β̂2(τ̂T ) are all consistent

and the following results hold:

P (k̂ ̸= k0) → 0, (1.11)

t1 ⇒ N(0, 1), (1.12)

t2 ⇒ N(0, 1). (1.13)
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Remark 1.2 The statistics t1 and t2 in Theorems 1.1-1.4 are not pivotal. We denote

t
′
1 =

√∑[τ̂TT ]
t=1 y2t−1

σ̂2
(β̂1(τ̂T )− β1) and t

′
2 =

√∑T
t=[τ̂TT ]+1 y

2
t−1

σ̂2
(β̂2(τ̂T )− β2),

with

σ̂2 =
1

T





[τ̂TT ]∑

t=1

(yt − β̂1(τ̂T )yt−1)
2 +

T∑

t=[τ̂TT ]+1

(yt − β̂2(τ̂T )yt−1)
2



 ,

and it can be proved that

∑[τ̂TT ]
t=1 y2t−1∑[τ0T ]
t=1 y2t−1

p→ 1,

∑T
t=[τ̂TT ]+1 y

2
t−1∑T

t=[τ0T ]+1 y
2
t−1

p→ 1 and
σ̂2

l(ηT )

p→ 1

hold in Theorems 1.1-1.4. Therefore, Theorems 1.1-1.4 will still hold when t1 and t2 are

replaced by t
′
1 and t

′
2, respectively.

Remark 1.3 As pointed out by the referees, an AR(1) model with a drift is more realistic in

most applications. However, the closed-form expression of RSST (τ)−RSST (τ0) is difficult

to obtain in an AR(1) model with a drift. In Phillips et al. (2015a, 2015b) and Phillips

and Shi (2017), they specified the drift as c0/T
γ, with c0 being a constant and γ > 1/2;

we can absorb this drift into the error term since it is asymptotically negligible, and denote

ε
′
t = εt + c0/T

γ , t = 1, · · · , T as the new error term and then use the previous change-point

estimation procedure to conduct statistical inference. Note that εt = Op(
√

l(ηT )), and hence

ε
′
t = εt · (1+Op(

1

T γ
√

l(ηT )
)); one can prove that the theoretical results in this paper still hold.

Remark 1.4 Our study is related to the works of Phillips and Yu (2011), Phillips et al.

(2011), Phillips et al. (2015a, 2015b, 2015c) and Phillips and Shi (2017). In the aforemen-

tioned papers, the authors proposed a structural change AR(1) model with a bubble process

and dated the origination of the explosive episode based on recursive right-tailed unit root

tests. The explosive AR parameter is estimated by using a demeaning procedure and the

least squares method. As pointed out by a referee, our study is also related to a recent

work of Harvey et al. (2017), which assumes that yt = µ + ut, where µ is a constant, and

{ut, t = 1, · · · , T} is generated according to a unit root model with a bubble process and a

collapse process. They applied the least squares method to the first-differenced data and ob-

tained consistent estimators for the regime change points. Both Harvey et al. (2017) and

our work mainly focus on the estimation of the change point by the least squares method,

and their results seem better. However, in Harvey et al. (2017), the explosive and the s-

tationary AR (1) models, instead of the mildly explosive and the mildly integrated AR (1)
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models, are used to model the bubble process and the collapse process, respectively. Hence,

the differences between the AR parameters are all fixed in Harvey et al. (2017), which leads

to the consistency of change-point estimators. In fact, a similar result had been obtained in

Theorem 4 of Chong (2001). In our paper, the differences between the AR parameters tend

to zero when the sample size tends to infinity, thus our asymptotics are more complicated,

and one cannot obtain consistent estimators for all cases. In addition, in this paper, apart

from the change point, we also examine the asymptotics of the AR parameters.

In this paper, we study the t-ratios of β1 and β2 rather than the LSEs of β1 and β2. For

the unit root model, the limiting distribution of the LSE of the AR parameter is W 2(1)−1

2
∫ 1
0 W 2(s)ds

with the convergence rate T , while the limiting distribution of the t-ratio for the AR pa-

rameter is W 2(1)−1

2
√

∫ 1
0 W 2(s)ds

with the convergence rate T/
√

l(ηT ). Although there is a possible

reduction in the convergence rate, the reduction is negligible since l(·) is a slowly varying

function. The advantage of using the t-ratio is that W 2(1)−1

2
√

∫ 1
0 W 2(s)ds

is less skewed compared to

W 2(1)−1

2
∫ 1
0 W 2(s)ds

. For the mildly integrated AR(1) model, the limiting distribution of the t-ratio

for the AR parameter, βT = 1 − c/kT , is N(0, 1) with the convergence rate
√
TkT /l(ηT )

by Theorem 3.2 in Phillips and Magdalinos (2007a). In this case, the benefit of t-ratio is

not obvious as the limiting distribution of the LSE of the AR parameter is also normal

with the convergence rate
√
TkT . However, the benefit of using the t-ratio in the mildly

explosive AR(1) model becomes significant, since the limiting distribution of the t-ratio for

the AR coefficient, βT = 1 + c/kT , is N(0, 1) with the convergence rate βT
T kT /

√
l(ηT ) by

Theorem 4.3 in Phillips and Magdalinos (2007a). Compared with the result (b) of Theorem

4.3 in Phillips and Magdalinos (2007a), although there is a possible reduction in the con-

vergence rate for the t-ratio, the reduction is negligible, and the limiting distribution is no

longer a Cauchy distribution, which has infinite mean and variance. The t-ratio significantly

improves the estimation accuracy in this case.

It follows from Theorems 1.1-1.4 that, for the t-ratio for β2, the first sub-samples

{y1, · · · , y[τ0T ]} will not affect its limiting distribution when β1 < β2. That is, the limit-

ing distribution of the t-ratio for β2 in this case is the same as that in an AR(1) model

without a structural change. Meanwhile, it is not the case when β1 > β2. For example, the

limiting distribution of t2 in Theorem 1.4 is N(0, 1) instead of W
2
(1)−1

2

√

∫ 1
0 W

2
(s)ds

, which is caused

by the influence of the first sub-sample.

Note that in Theorem 1.1, since
∑[τ0T ]

t=1 y2t−1 = Op(TkT l(ηT )) and
∑T

t=[τ0T ]+1 y
2
t−1 =

Op(T
2l(ηT )) by Lemma A.1 and Lemma A.2 below respectively, it can be easily seen that
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the convergence rates of the LSEs of β1 and β2 are
√
TkT and T respectively. Similarly,

it can be shown that the convergence rates of the LSEs of β1 and β2 are T and
√
TkT

respectively in Theorem 1.2, are T and
√
TkT (1 + c/kT )

T−[τ0T ] in Theorem 1.3, and are

kT (1 + c/kT )
[τ0T ] and

√
TkT (1 + c/kT )

[τ0T ] in Theorem 1.4. Hence, the convergence rate

of the LSE when the AR parameter equals one is faster than that in the case when the

AR parameter equals 1 − c/kT , since the signal from the regressor yt−1 in the former case

is stronger than that in the latter case. It should also be noted that the convergence rate

of τ̂T in Theorem 1.2 is faster than that in Theorem 1.1. This is because the signal from

the regressor yt−1 when (β1, β2) = (1, 1 − c/kT ) is stronger than that from the regressor

yt−1 when (β1, β2) = (1 − c/kT , 1). However, these findings are not totally applicable to

Theorem 1.3 and Theorem 1.4. Note that in Theorem 1.3, the convergence rate of the

LSE of β2 is faster than that of the LSE of β1. Moreover, the convergence rate of τ̂T in

Theorem 1.4 is faster than that in Theorem 1.3, since the signal from the regressor yt−1

when (β1, β2) = (1+ c/kT , 1) is stronger compared to the case when (β1, β2) = (1, 1+ c/kT ).

These are consistent with Theorem 1.1 and Theorem 1.2. However, it is surprising that the

convergence rate of the LSE of β2 is faster than that of the LSE of β1 in Theorem 1.4. This

is completely different from the findings of Theorem 1.1 and Theorem 1.2. The reason is

that the second sub-sample is more affected by the first sub-sample in Theorem 1.4 than

that in Theorem 1.3.

The precision of k̂ depends on both the strength of the signal from the model and the

difference between β1 and β2 (i.e., c/kT ). The strength of the signal from the model increases

from Theorem 1.1 to Theorem 1.4. In general, the signal from the model in Theorem 1.1 is

too weak for k0 to be located for any kT = o(T ), while the signal from the model in Theorem

1.4 is so strong that k0 can be located for any kT = o(T ). For the models in Theorems 1.2 and

1.3, although the signal from the model in Theorem 1.3 is stronger than that in Theorem

1.2, it is surprising that k0 can be located consistently only when kT = o(
√
T ) in both

models. This is because the increment in the signal from Theorem 1.2 to Theorem 1.3 is

so small that the difference between RSST (τ0) and RSST (τ0 ± m
T ) for a fixed integer m in

Theorem 1.3 is asymptotically the same as that in Theorem 1.2, which can be seen from

the proofs of Theorems 1.2 and 1.3. Although the increment in the signal from the model

in Theorem 1.2 to the model in Theorem 1.3 does not help to locate k0, it improves the

convergence rate of the LSE of β2.

It is interesting to find that the conventional T -consistent estimate for τ̂T occurs only

10



when kT ≍
√
T in both Theorems 1.2 and 1.3. When kT is of an order higher than

√
T , β1

and β2 will be very close to one another, and the estimation error for k̂ will be huge. When

kT has a smaller magnitude than
√
T , it implies that β1 and β2 have enough difference, and

the estimation error for k̂ reduces tremendously.

The rest of the paper is organized as follows. Section 2 demonstrates some finite-sample

Monte Carlo results for our theoretical findings in this paper. Section 3 concludes the

paper. The proofs of Theorems 1.1-1.4 are relegated to Appendices A-D respectively, with

some technical proofs being moved to online supplementary material to this article which is

available at Cambridge Journals Online (journals.cambridge.org/ect).

2 Simulations

For empirical applications, we perform the following two experiments to see how well the

finite-sample properties of the estimators follow the asymptotics. In both experiments, the

sample size is set at T = 600, the interval [τ , τ ] is taken as [0.05, 0.95] (hence the search

for the break fraction is conducted within this interval in our experiments), the true break

fraction is set at τ0 = 0.5 (hence k0 = 300), and the number of replications is set at

N = 50, 000; {yt}Tt=1 is generated from Model (1.1), y0 is set at zero for simplicity, and

{εt}Tt=1 are generated independently from N(0, 1), we hence take l(ηT ) = 1 since T = 600 is

large, and kT = Tα with α = 0.3, 0.5 or 0.7. The case where α = 0.3 implies kT = o(
√
T ),

the case where α = 0.5 implies kT ≍
√
T , and the case where α = 0.7 implies

√
T = o(kT ).

The graph of the distribution of W 2(1)−1

2
√

∫ 1
0 W 2(s)ds

is plotted by dividing the interval [0, 1] into

5, 000 equally spaced sub-intervals first and then using the corresponding Riemann sums to

approximate the integral. The number of replications is also set at N = 50, 000.

2.1 Experiment 1

First, we conduct experiments to verify Theorem 1.1 and Theorem 1.2. We take c = 3 in this

experiment. Note that the two AR parameters have a large difference (= 3/6000.3 = 0.440)

when α = 0.3, have a moderate difference (= 3/6000.5 = 0.122) when α = 0.5 and have a

very small difference (= 3/6000.7 = 0.034) when α = 0.7. Figure 1 and Figure 2 show the

histograms of k̂ and the distributions of t1 and t2 for Theorems 1.1 and 1.2 respectively.

Theorem 1.1 states that k̂ is not a consistent estimator of k0 and the estimation error is of

Op(kT ). This is supported by Figure 1. Part (b) of Theorem 1.1 predicts that t1 should

have a normal distribution, and part (c) of Theorem 1.1 predicts that t2 should have a

11



Dickey-Fuller t-distribution. Figure 1 agrees with these results. Part (a) of Theorem 1.2

predicts that k̂ is a consistent estimator of k0 when kT = o(
√
T ), has a finite estimation

error in probability when kT ≍ o(
√
T ) and has a larger estimation error in probability when

√
T = o(kT ). These theoretical findings are all supported by Figure 2. Part (b) of Theorem

1.2 predicts that t1 should have a Dickey-Fuller t-distribution, and part (c) of Theorem 1.2

predicts that t2 should have a symmetric distribution around zero that looks like a normal

distribution. These theoretical results are also supported by Figure 2.

Figure 1 and Figure 2 also indicate that the smaller the magnitude of change, the larger

the estimation error for k̂ and the poorer the finite-sample performance of t1 and t2, which

agrees with our intuition.

2.2 Experiment 2

Second, we conduct experiments for Theorems 1.3 and 1.4. Here, we take c = 0.7. We

have also conducted experiments with larger c. However, it is found that the finite-sample

distributions of t2 in Theorem 1.3 and t1 and t2 in Theorem 1.4 suffer from shape distortion.

This phenomenon can be partially explained by the findings in Anderson (1959), which

showed that, in general, the limiting distributions of the LSE and the t-ratio for the AR

parameter in an explosive AR(1) model may not exist. Hence, we use c = 0.7 in this

experiment, which guarantees that the mildly explosive AR parameter is not too far away

from unity. Figure 3 and Figure 4 show the distributions of k̂, t1 and t2 for Theorems 1.3

and 1.4 respectively. It can be shown that (1) Theorem 1.3 is supported by Figure 3; (2)

Theorem 1.4 is supported by Figure 4, except that the histograms of k̂ when α = 0.7 is

not very satisfactory due to the close distance between β1 and β2; and (3) the smaller the

magnitude of change, the larger the estimation error for k̂ and the poorer the finite-sample

performance of t1 and t2.

3 Conclusions

In this article, we examined the asymptotic properties of the LSE of the change point

and the t-ratios for the AR parameters in a mildly integrated AR(1) model and a mildly

explosive AR(1) model with a structural change. Some interesting findings are obtained:

(1) the stronger the signals from the model are, the easier it is for the change point to

be located. This suggests that, in general, the estimation of the change point in a mildly

explosive AR(1) model is easier than that in a mildly integrated AR(1) model. However,
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Figure 1: Histograms of k̂ as well as the finite-sample distributions and the corresponding limiting

distributions of the statistics t1 and t2 under the situation where c = 3 and T = 600. The solid lines

represent the graphs when T = 600 and the dashed lines represent the graph when T = ∞.
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Figure 2: Histograms of k̂ as well as the finite-sample distributions and the corresponding limiting

distributions of the statistics t1 and t2 under the situation where c = 3 and T = 600. The solid lines

represent the graphs when T = 600 and the dashed lines represent the graph when T = ∞.
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Figure 3: Histograms of k̂ together with the finite-sample distributions and the corresponding

limiting distributions of the statistics t1 and t2 under the situation where c = 0.7 and T = 600. The

solid lines represent the graphs when T = 600 and the dashed lines represent the graph when T = ∞.
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Figure 4: Histograms of k̂ together with the finite-sample distributions and the corresponding

limiting distributions of the statistics t1 and t2 under the situation where c = 0.7 and T = 600. The

solid lines represent the graphs when T = 600 and the dashed lines represent the graph when T = ∞.
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if the first sub-sample comes from a unit root model, then it is more difficult to locate

the change point regardless of the order of the second sub-sample; (2) in the presence of

a change point, the first sub-sample will not affect the limiting distribution of the t-ratio

for the second AR parameter when β1 < β2, while this is not the case when β1 > β2; (3)

when a unit root model switches to a mildly integrated or mildly explosive AR(1) model,

the asymptotic properties of the LSE of k0 are the same. In particular, in both situations,

our results reveal that P (k̂ ̸= k0) → 0 when kT = o(
√
T ), |k̂ − k0| = Op(1) when kT ≍

√
T

and |k̂−k0| = Op(k
2
T /T ) when

√
T = o(kT ). The phase transition for the estimation error of

k̂ occurs when kT ≍
√
T ; (4) compared with the LSE of the AR parameters, the t-ratios for

the AR parameters have better estimation accuracy without any reduction in convergence

rate when the variance of the model errors is finite and with a reduction in convergence

rate when the variance of the model errors is infinite, but this reduction is asymptotically

negligible.
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Appendix A: Proof of Theorem 1.1

Recalling the definitions in (1.2), it can be shown that T l(ηT ) ≤ η2T for all T ≥ 1 and

η2T ≈ T l(ηT ) for large T . In addition, for each given T , we let




ε
(1)
t = εtI{|εt| ≤ ηT } − E(εtI{|εt| ≤ ηT })
ε
(2)
t = εtI{|εt| > ηT } − E(εtI{|εt| > ηT })

(A.1)

for t = 1, · · · , T . This is a well-known truncation technique for dealing with the weak conver-

gence of the random variables from the DAN with zero mean and possibly infinite variance.

Huang et al. (2014) successfully extended the results in Phillips and Magdalinos (2007a) to

the DAN case by applying this truncation technique.
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The following three lemmas are needed in the proof of Theorem 1.1, and their proofs

can be found in the online supplementary material.

Lemma A.1 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = β1T =

1 − c/kT for a positive constant c. Then under assumptions C1-C4, the following results

hold jointly:

(a) 1√
TkT l(ηT )

∑[τ0T ]
t=1 yt−1εt ⇒ N(0, τ02c),

(b) 1
TkT l(ηT )

∑[τ0T ]
t=1 y2t−1

p→ τ0
2c ,

(c)
y[rT ]√
kT l(ηT )

⇒
∫∞
0 exp (−cs)dW (s) for any 0 < r ≤ τ0.

Lemma A.2 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = β1T =

1−c/kT for a positive constant c and β2 = 1. Then under assumptions C1-C4, the following

results hold jointly:

(a) 1
T l(ηT )

∑T
t=[τ0T ]+1 yt−1εt ⇒ 1

2(W (1)−W (τ0))
2 − 1

2(1− τ0),

(b) 1
T 2l(ηT )

∑T
t=[τ0T ]+1 y

2
t−1 ⇒

∫ 1
τ0
(W (s)−W (τ0))

2ds.

Lemma A.3 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = β1T =

1−c/kT for a positive constant c and β2 = 1. Then under assumptions C1-C4, the following

results hold:

(a)
∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1 = Op(k

2
T l(ηT )) and

∑[τ0T ]
t=[τ̂TT ]+1 yt−1εt = Op(kT l(ηT )) when τ̂T ≤ τ0,

(b)
∑[τ̂TT ]

t=[τ0T ]+1 y
2
t−1 = Op(k

2
T l(ηT )) and

∑[τ̂TT ]
t=[τ0T ]+1 yt−1εt = Op(kT l(ηT )) when τ̂T > τ0.

Proof of Theorem 1.1. To derive the limiting distribution of τ̂T , one can follow Appendix

G in Chong (2001) with the following two main modifications: (1) let g(T ) = kT /c in

Appendix G in Chong (2001); (2) replace
∫∞
0 exp(−s)dW1(s) by

√
c
∫∞
0 exp (−cs)dW1(s),

which is the limiting distribution of y[τ0T ]−t−1/
√

g(T )l(ηT ) for 0 ≤ t ≤ [|ν|g(T )]− 1 (where

ν is a constant) by noting that

y[τ0T ]−t−1√
g(T )l(ηT )

=
1√

g(T )l(ηT )

(
(1− c

kT
)[τ0T ]−t−1y0 +

[τ0T ]−t−2∑

i=0

(1− c

kT
)iε[τ0T ]−t−1−i

)

=
√
c ·

[τ0T ]−t−2∑

i=0

(
(1− c

kT
)kT
)i/kT ε[τ0T ]−t−1−i√

kT l(ηT )
+ op(1)

⇒
√
c

∫ ∞

0
exp(−cs)dW1(s) = Bc(

1

2
).

Moreover, it is worth mentioning that (1.3) is a special case of the limiting distribution of

τ̂T in Theorem 3 in Chong (2001) when the moment conditions E(y20) < ∞ and E(ε4t ) < ∞
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in his paper are satisfied and c = 1. To relax these moment conditions, we only need to

apply the truncation technique (A.1). The details are omitted for brevity.

To find the limiting distribution of t1 under kT = o(T ), one can follow Appendix G in

Chong (2001) and apply Lemma A.1 and Lemma A.3 to have

√
TkT (β̂1(τ̂T )− β̂1(τ0))

=
√

TkT

(∑[τ̂TT ]
t=1 ytyt−1∑[τ̂TT ]

t=1 y2t
−
∑[τ0T ]

t=1 ytyt−1∑[τ0T ]
t=1 y2t

)

= I{τ̂T ≤ τ0}
√

TkT

(∑[τ0T ]
t=[τ̂TT ]+1 y

2
t−1

∑[τ̂TT ]
t=1 y2t−1

∑[τ0T ]
t=1 yt−1εt∑[τ0T ]
t=1 y2t−1

−
∑[τ0T ]

t=[τ̂TT ]+1 yt−1εt
∑[τ̂TT ]

t=1 y2t−1

)

+I{τ̂T > τ0}
√

TkT

(
−
∑[τ̂TT ]

t=[τ0T ]+1 y
2
t−1

∑[τ̂TT ]
t=1 y2t−1

∑[τ0T ]
t=1 yt−1εt∑[τ0T ]
t=1 y2t−1

+

∑[τ̂TT ]
t=[τ0T ]+1 yt−1εt
∑[τ̂TT ]

t=1 y2t−1

+ (β2 − β1T )

∑[τ̂TT ]
t=[τ0T ]+1 y

2
t−1

∑[τ̂TT ]
t=1 y2t−1

)

= I{τ̂T ≤ τ0}
√

TkT

(
Op(

k2T l(ηT )

TkT l(ηT )
)Op(

1√
TkT

) +Op(
kT l(ηT )

TkT l(ηT )
)
)

+I{τ̂T > τ0}
√

TkT

(
Op(

k2T l(ηT )

TkT l(ηT )
)Op(

1√
TkT

) +Op(
kT l(ηT )

TkT l(ηT )
) +Op(

k2T l(ηT )

Tk2T l(ηT )
)
)

= op(1),

which implies √∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ̂T )− β̂1(τ0)) = op(1)

by Lemma A.1. Thus, β̂1(τ̂T ) and β̂1(τ0) have the same asymptotic distribution. Applying

Lemma A.1 again, we have

√∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ0)− β1T ) =

∑[τ0T ]
t=1 yt−1εt√

l(ηT )
∑[τ0T ]

t=1 y2t−1

⇒ N(0, 1),

which immediately implies that

t1 =

√∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ̂T )− β1T ) ⇒ N(0, 1).

To find the limiting distribution of t2 under kT = o(T ), one can also follow Appendix G

in Chong (2001) and apply Lemma A.2 and Lemma A.3 to have

T (β̂2(τ̂T )− β̂2(τ0))

= T

(∑T
t=[τ̂TT ]+1 ytyt−1
∑T

t=[τ̂TT ]+1 y
2
t

−
∑T

t=[τ0T ]+1 ytyt−1
∑T

t=[τ0T ]+1 y
2
t

)
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= I{τ̂T ≤ τ0}T
(
−
∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ0T ]+1 yt−1εt
∑T

t=[τ0T ]+1 y
2
t−1

+

∑[τ0T ]
t=[τ̂TT ]+1 yt−1εt
∑T

t=[τ̂TT ]+1 y
2
t−1

+ (β1T − β2)

∑[τ0T ]
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

)

+I{τ̂T > τ0}T
(∑[τ̂TT ]

t=[τ0T ]+1 y
2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ0T ]+1 yt−1εt
∑T

t=[τ0T ]+1 y
2
t−1

−
∑[τ̂TT ]

t=[τ0T ]+1 yt−1εt
∑T

t=[τ̂TT ]+1 y
2
t−1

)

= I{τ̂T ≤ τ0}T
(
Op(

k2T l(ηT )

T 2l(ηT )
)Op(

1

T
) +Op(

kT l(ηT )

T 2l(ηT )
) +Op(

k2T l(ηT )

kTT 2l(ηT )
)
)

+I{τ̂T > τ0}T
(
Op(

k2T l(ηT )

T 2l(ηT )
)Op(

1

T
) +Op(

kT l(ηT )

T 2l(ηT )
)
)

= op(1),

which implies √∑T
t=[τ0T ]+1 y

2
t−1

l(ηT )
(β̂2(τ̂T )− β̂2(τ0)) = op(1)

by Lemma A.2. Thus, β̂2(τ̂T ) and β̂2(τ0) also have the same asymptotic distribution. Ap-

plying Lemma A.2 again, we have

√∑T
t=[τ0T ]+1 y

2
t−1

l(ηT )
(β̂2(τ0)− β2) =

∑T
t=[τ0T ]+1 yt−1εt√

l(ηT )
∑T

t=[τ0T ]+1 y
2
t−1

⇒ (W (1)−W (τ0))
2 − (1− τ0)

2
√∫ 1

τ0
(W (s)−W (τ0))2ds

,

which immediately implies that

t2 =

√∑T
t=[τ0T ]+1 y

2
t−1

l(ηT )
(β̂2(τ̂T )− β2) ⇒

(W (1)−W (τ0))
2 − (1− τ0)

2
√∫ 1

τ0
(W (s)−W (τ0))2ds

.

From the properties of Brownian motion and applying the change of variables, it is trivial

that
(W (1)−W (τ0))

2 − (1− τ0)

2
√∫ 1

τ0
(W (s)−W (τ0))2ds

d
=

W
2
(1)− 1

2

√∫ 1
0 W

2
(s)ds

.

Hence, (1.5) holds. �

Appendix B: Proof of Theorem 1.2

The following six lemmas are used in the proof of Theorem 1.2, and their proofs can be

found in the online supplementary materials.
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Lemma B.1 Let {yt, t ≥ 1} be generated by Model (1.1) with β1 = 1. Then under assump-

tions C1-C4, the following results hold jointly:

(a) 1
T l(ηT )

∑[τ0T ]
t=1 yt−1εt ⇒ 1

2(W
2(τ0)− τ0),

(b) 1
T 2l(ηT )

∑[τ0T ]
t=1 y2t−1 ⇒

∫ τ0
0 W 2(s)ds.

Lemma B.2 Let β2 = β2T = 1 − c/kT with c > 0. Then under assumptions C1-C4, we

have, for any τ0 < s ≤ 1,

1√
kT l(ηT )

[sT ]∑

t=[τ0T ]+1

β
[sT ]−t
2T εt ⇒ N(0,

1

2c
).

Lemma B.3 Let {yt, t ≥ 1} be generated by Model (1.1), where β1 = 1 and β2 = β2T =

1− c/kT with c > 0. Then under assumptions C1-C4, the following results hold jointly:

(a) 1√
TkT l(ηT )

∑T
t=[τ0T ]+1 yt−1εt ⇒ W̃ ( 1

2c),

(b) 1
TkT l(ηT )

∑T
t=[τ0T ]+1 y

2
t−1 ⇒ 1

2c(W
2(τ0) + 1− τ0).

Lemma B.4 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = 1 and

β2 = β2T = 1 − c/kT with c > 0. Then under assumptions C1-C4 with kT = O(
√
T ), we

have





A1 =

∑T
t=[τ0T ]+1 yt−1εt
∑T

t=[τ0T ]+1 y
2
t−1

= op(1/kT ),

A2 = sup
m∈D1T

∑[τ0T ]
t=m+1 yt−1εt
∑[τ0T ]

t=m+1 y
2
t−1

= op(1/kT ),

A3 = sup
m∈D1T

∣∣∣∣∣∣

∑T
t=m+1 y

2
t−1∑T

t=[τ0T ]+1 y
2
t−1

∑[τ0T ]
t=m+1 y

2
t−1

ΛT (
m

T
)

∣∣∣∣∣∣
= op(1/k

2
T ),

A4 =

∑[τ0T ]
t=1 yt−1εt∑[τ0T ]
t=1 y2t−1

= op(1/kT ),

A5 = sup
m∈D2T

∑m
t=[τ0T ]+1 yt−1εt∑m
t=[τ0T ]+1 y

2
t−1

= op(1/kT ),

A6 = sup
m∈D2T

∣∣∣∣∣∣

∑m
t=1 y

2
t−1∑m

t=[τ0T ]+1 y
2
t−1

∑[τ0T ]
t=1 y2t−1

ΛT (
m

T
)

∣∣∣∣∣∣
= op(1/k

2
T ),

(B.1)

where

ΛT (
m

T
)

=

(∑[τ0T ]
t=1 yt−1εt

)2

∑[τ0T ]
t=1 y2t−1

−

(∑m
t=1 yt−1εt

)2
∑m

t=1 y
2
t−1

+

(∑T
t=[τ0T ]+1 yt−1εt

)2

∑T
t=[τ0T ]+1 y

2
t−1

−

(∑T
t=m+1 yt−1εt

)2

∑T
t=m+1 y

2
t−1

,
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and 



D1T = {m : m ∈ ZT ,m < [τ0T ]−MT },
D2T = {m : m ∈ ZT ,m > [τ0T ] +MT }

with MT > 0 such that MT → ∞ arbitrary slowly, and ZT denotes the set {0, 1, 2, · · · , T}.

Lemma B.5 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = 1 and

β2 = β2T = 1 − c/kT with c > 0. Then under assumptions C1-C4 with kT = o(
√
T ), we

have, for any fixed integer m ≥ 0,

(a)
k2T

T l(ηT )

(
RSST (τ0 − m

T )−RSST (τ0)
)
⇒ c2mW 2(τ0),

(b)
k2T

T l(ηT )

(
RSST (τ0 +

m
T )−RSST (τ0)

)
⇒ c2mW 2(τ0).

Lemma B.6 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = 1 and

β2 = β2T = 1 − c/kT with c > 0. Then under assumptions C1-C4 with
√
T = o(kT ), we

have

(a)
∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1 = Op(k

2
T l(ηT )) and

∑[τ0T ]
t=[τ̂TT ]+1 yt−1εt = Op(kT l(ηT )) when τ̂T ≤ τ0,

(b)
∑[τ̂TT ]

t=[τ0T ]+1 y
2
t−1 = Op(k

2
T l(ηT )) and

∑[τ̂TT ]
t=[τ0T ]+1 yt−1εt = Op(kT l(ηT )) when τ̂T > τ0.

Proof of Theorem 1.2. To derive the first and second parts of Theorem 1.2(a), i.e., to

prove P (k̂ ̸= k0) → 0 when kT = o(
√
T ) and |k̂ − k0| = Op(1) when kT ≍

√
T , we prove

|τ̂T − τ0| = Op(1/T ) when kT = O(
√
T ) (B.2)

first. According to the proof of Theorem 3 in Chong (2001), it is sufficient to show that

P (λ2
T + 2λTA1 − 2λTA2 −A3 < 0) + P (λ2

T − 2λTA4 + 2λTA5 −A6 < 0) → 0,

where λT = β2−β1 = −c/kT , and the definitions of A1, · · · , A6 can be found in (B.1). Since

λ2
T > 0, it suffices to prove that

Ai = op(1/kT ), i = 1, 2, 4, 5 and Aj = op(1/k
2
T ), j = 3, 6, when kT = O(

√
T ).

This has been proved in Lemma B.4. Therefore, (B.2) is verified. This implies the second

part of Theorem 1.2(a).

To prove the first part of Theorem 1.2(a), i.e., to prove P (k̂ ̸= k0) → 0 when kT = o(
√
T ),

it is noted that |τ̂T − τ0| = Op(1/T ), and for any η > 0, there exists a positive integer M

such that

P (k̂ ̸= k0) = P (|k̂ − k0| > M) + P (|k̂ − k0| ≤ M, k̂ ̸= k0)
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≤ η +

M∑

m=1

P
( k2T
T l(ηT )

(
RSST (τ0 −

m

T
)−RSST (τ0)

)
< 0
)

+

M∑

m=1

P
( k2T
T l(ηT )

(
RSST (τ0 +

m

T
)−RSST (τ0)

)
< 0
)
.

Applying Lemma B.5 to the above inequality, one immediately has P (k̂ ̸= k0) → 0 due to

the finiteness of M and arbitrariness of η.

To prove the third part of Theorem 1.2(a), i.e., the limiting distribution of τ̂T when
√
T = o(kT ), we follow Appendix K in Chong (2001) and let g(T ) = k2T /(c

2T ). Note that

(1.6) is a special case of the limiting distribution of τ̂T in Theorem 4 in Chong (2001)

when
√
T = o(kT )

†, the moment conditions E(y20) < ∞ and E(ε4t ) < ∞ in his paper are

satisfied and c = 1. One can apply the truncation technique (A.1) to weaken the conditions

E(y20) < ∞ and E(ε4t ) < ∞ and accommodate assumptions C1 and C3. The details are

omitted for brevity.

To find the limiting distribution of t1, note that we have proven that |τ̂T − τ0| = op(1/T )

when kT = o(
√
T ), |τ̂T − τ0| = Op(1/T ) when kT ≍

√
T and |τ̂T − τ0| = Op(k

2
T /T

2) when
√
T = o(kT ), hence we study the limiting distribution of t1 under the above three cases

separately.

When
√
T = o(kT ), applying Lemma B.1 and Lemma B.6 and following Appendix G in

Chong (2001), we have

T (β̂1(τ̂T )− β̂1(τ0))

= T

(∑[τ̂TT ]
t=1 ytyt−1∑[τ̂TT ]

t=1 y2t
−
∑[τ0T ]

t=1 ytyt−1∑[τ0T ]
t=1 y2t

)

= I{τ̂T ≤ τ0}T
(∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1

∑[τ̂TT ]
t=1 y2t−1

∑[τ0T ]
t=1 yt−1εt∑[τ0T ]
t=1 y2t−1

−
∑[τ0T ]

t=[τ̂TT ]+1 yt−1εt
∑[τ̂TT ]

t=1 y2t−1

)

+I{τ̂T > τ0}T
(
−
∑[τ̂TT ]

t=[τ0T ]+1 y
2
t−1

∑[τ̂TT ]
t=1 y2t−1

∑[τ0T ]
t=1 yt−1εt∑[τ0T ]
t=1 y2t−1

+

∑[τ̂TT ]
t=[τ0T ]+1 yt−1εt
∑[τ̂TT ]

t=1 y2t−1

†In Theorem 4 in Chong (2001), the condition T 3/4(1 − β2T ) → ∞, that is kT = o(T 3/4) in

our case, is imposed so as to derive the limiting distribution of τ̂T . By checking his proof carefully,

this condition is imposed only for showing that g(T )√
T

∑[|v|g(T )]−1
t=0

(

1√
g(T )

∑t
i=0 ε[τ0T ]−iε[τ0T ]−t

)

1
g(T )

=

op(1) when εt’s have finite 4th moments (see page 153 in Chong (2001)). However, since
∑[|v|g(T )]−1

t=0

(

1√
g(T )

∑t
i=0 ε[τ0T ]−iε[τ0T ]−t

)

1√
g(T )

=
∑[|v|g(T )]−1

t=0

(

1√
g(T )

∑t−1
i=0 ε[τ0T ]−i

)

ε[τ0T ]−t√
g(T )

+ Op(1) =

Op(1), the condition
√

g(T )
T

= o(1) is sufficient to achieve the goal. Note that g(T ) ≍ k2
T /T , hence, the

condition kT = o(T ) is sufficient. Therefore, the condition T 3/4(1 − β2T ) → ∞ is not needed in Theorem 4

in Chong (2001).
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+ (β2T − β1)

∑[τ̂TT ]
t=[τ0T ]+1 y

2
t−1

∑[τ̂TT ]
t=1 y2t−1

)

= I{τ̂T ≤ τ0}T
(
Op(

k2T l(ηT )

T 2l(ηT )
)Op(

1

T
) +Op(

kT l(ηT )

T 2l(ηT )
)
)

+I{τ̂T > τ0}T
(
Op(

k2T l(ηT )

T 2l(ηT )
)Op(

1

T
) +Op(

kT l(ηT )

T 2l(ηT )
) +Op(

k2T l(ηT )

kTT 2l(ηT )
)
)

= op(1), (B.3)

which implies √∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ̂T )− β̂1(τ0)) = op(1)

by Lemma B.1. Thus, β̂1(τ̂T ) and β̂1(τ0) have the same asymptotic distribution. We then

invoke Lemma B.1 again to obtain
√∑[τ0T ]

t=1 y2t−1

l(ηT )
(β̂1(τ0)− β1) =

∑[τ0T ]
t=1 yt−1εt√

l(ηT )
∑[τ0T ]

t=1 y2t−1

⇒ W 2(τ0)− τ0

2
√∫ τ0

0 W 2(s)ds
,

which immediately leads to

t1 =

√∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ̂T )− β1) ⇒

W 2(τ0)− τ0

2
√∫ τ0

0 W 2(s)ds
. (B.4)

From the properties of Brownian motions and applying a change of variables, it follows that

W 2(τ0)− τ0

2
√∫ τ0

0 W 2(s)ds

d
=

W 2(1)− 1

2
√∫ 1

0 W 2(s)ds
.

Hence, (1.7) is proved.

For the case where kT ≍
√
T , note that since |τ̂T − τ0| = Op(1/T ), it is trivial that

[τ0T ]∑

t=[τ̂TT ]+1

y2t−1 = Op(T l(ηT )),

[τ0T ]∑

t=[τ̂TT ]+1

yt−1εt = Op(
√
T l(ηT )) (B.5)

and
[τ̂TT ]∑

t=[τ0T ]+1

y2t−1 = Op(T l(ηT )),

[τ̂TT ]∑

t=[τ0T ]+1

yt−1εt = Op(
√
T l(ηT )). (B.6)

Consequently, similar to (B.3), we have

T (β̂1(τ̂T )− β̂1(τ0))

= I{τ̂T ≤ τ0}T
(∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1

∑[τ̂TT ]
t=1 y2t−1

∑[τ0T ]
t=1 yt−1εt∑[τ0T ]
t=1 y2t−1

−
∑[τ0T ]

t=[τ̂TT ]+1 yt−1εt
∑[τ̂TT ]

t=1 y2t−1

)

+I{τ̂T > τ0}T
(
−
∑[τ̂TT ]

t=[τ0T ]+1 y
2
t−1

∑[τ̂TT ]
t=1 y2t−1

∑[τ0T ]
t=1 yt−1εt∑[τ0T ]
t=1 y2t−1

+

∑[τ̂TT ]
t=[τ0T ]+1 yt−1εt
∑[τ̂TT ]

t=1 y2t−1
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+ (β2T − β1)

∑[τ̂TT ]
t=[τ0T ]+1 y

2
t−1

∑[τ̂TT ]
t=1 y2t−1

)

= I{τ̂T ≤ τ0}T
(
Op(

T l(ηT )

T 2l(ηT )
)Op(

1

T
) +Op(

√
T l(ηT )

T 2l(ηT )
)
)

+I{τ̂T > τ0}T
(
Op(

T l(ηT )

T 2l(ηT )
)Op(

1

T
) +Op(

√
T l(ηT )

T 2l(ηT )
) +Op(

T l(ηT )

kTT 2l(ηT )
)
)

= op(1),

which means (B.4) still holds when kT ≍
√
T .

For the case where kT = o(
√
T ), note that since P (k̂ ̸= k0) → 0, following the proof of

Theorem 4 in Chong (2001), one can show that (B.4) still holds. The details are omitted.

To find the limiting distribution of t2, we also consider the following three cases where
√
T = o(kT ), kT ≍

√
T and kT = o(

√
T ) separately.

When
√
T = o(kT ), applying Lemma B.3 and Lemma B.6 and following Appendix G in

Chong (2001), we have

√
TkT (β̂2(τ̂T )− β̂2(τ0))

=
√

TkT

(∑T
t=[τ̂TT ]+1 ytyt−1
∑T

t=[τ̂TT ]+1 y
2
t

−
∑T

t=[τ0T ]+1 ytyt−1
∑T

t=[τ0T ]+1 y
2
t

)

= I{τ̂T ≤ τ0}
√

TkT

(
−
∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ0T ]+1 yt−1εt
∑T

t=[τ0T ]+1 y
2
t−1

+

∑[τ0T ]
t=[τ̂TT ]+1 yt−1εt
∑T

t=[τ̂TT ]+1 y
2
t−1

+ (β1 − β2T )

∑[τ0T ]
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

)

+I{τ̂T > τ0}
√
TkT

(∑[τ̂TT ]
t=[τ0T ]+1 y

2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ0T ]+1 yt−1εt
∑T

t=[τ0T ]+1 y
2
t−1

−
∑[τ̂TT ]

t=[τ0T ]+1 yt−1εt
∑T

t=[τ̂TT ]+1 y
2
t−1

)

= I{τ̂T ≤ τ0}
√

TkT

(
Op(

k2T l(ηT )

TkT l(ηT )
)Op(

1√
TkT

) +Op(
kT l(ηT )

TkT l(ηT )
) +Op(

k2T l(ηT )

Tk2T l(ηT )
)
)

+I{τ̂T > τ0}
√
TkT

(
Op(

k2T l(ηT )

TkT l(ηT )
)Op(

1√
TkT

) +Op(
kT l(ηT )

TkT l(ηT )
)
)

= op(1),

which implies √∑T
t=[τ0T ]+1 y

2
t−1

l(ηT )
(β̂2(τ̂T )− β̂2(τ0)) = op(1)

by Lemma B.3. Thus, β̂2(τ̂T ) and β̂2(τ0) have the same asymptotic distribution. Applying

Lemma B.3 again, we have
√∑T

t=[τ0T ]+1 y
2
t−1

l(ηT )
(β̂2(τ0)− β2T ) =

∑T
t=[τ0T ]+1 yt−1εt√

l(ηT )
∑T

t=[τ0T ]+1 y
2
t−1

⇒ W̃ (1)√
W 2(τ0) + 1− τ0

,

28



which immediately leads to

t2 =

√∑T
t=[τ0T ]+1 y

2
t−1

l(ηT )
(β̂2(τ̂T )− β2T ) ⇒

W̃ (1)√
W 2(τ0) + 1− τ0

. (B.7)

When kT ≍
√
T , applying (B.5) and (B.6), we have

√
TkT (β̂2(τ̂T )− β̂2(τ0))

= I{τ̂T ≤ τ0}
√

TkT

(
−
∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ0T ]+1 yt−1εt
∑T

t=[τ0T ]+1 y
2
t−1

+

∑[τ0T ]
t=[τ̂TT ]+1 yt−1εt
∑T

t=[τ̂TT ]+1 y
2
t−1

+ (β1 − β2T )

∑[τ0T ]
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

)

+I{τ̂T > τ0}
√
TkT

(∑[τ̂TT ]
t=[τ0T ]+1 y

2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ0T ]+1 yt−1εt
∑T

t=[τ0T ]+1 y
2
t−1

−
∑[τ̂TT ]

t=[τ0T ]+1 yt−1εt
∑T

t=[τ̂TT ]+1 y
2
t−1

)

= I{τ̂T ≤ τ0}
√

TkT

(
Op(

T l(ηT )

TkT l(ηT )
)Op(

1√
TkT

) +Op(

√
T l(ηT )

TkT l(ηT )
) +Op(

T l(ηT )

Tk2T l(ηT )
)
)

+I{τ̂T > τ0}
√
TkT

(
Op(

T l(ηT )

TkT l(ηT )
)Op(

1√
TkT

) +Op(

√
T l(ηT )

TkT l(ηT )
)
)

= op(1),

which means that (B.7) still holds.

When kT = o(
√
T ), applying Lemma B.5 and following the proof of Theorem 4 in Chong

(2001), one can show that (B.7) holds. The details are omitted. �

Appendix C: Proof of Theorem 1.3

Lemma B.1 and the following five lemmas are key ingredients in the proof of Theorem 1.3,

and their proofs can be found in the online supplementary materials.

Lemma C.1 Suppose assumptions C1 and C2 are fulfilled and c > 0, then

(a) for any 0 < τ ≤ 1, 1√
kT l(ηT )

∑[τT ]
t=1 (1 +

c
kT

)t−1−[τT ]εt ⇒ X,

(b) for any 0 < τ ≤ 1, 1√
kT l(ηT )

∑[τT ]
t=1 (1 +

c
kT

)−tεt ⇒ Y ,

where X and Y are independent N(0, 1
2c) random variables.

Lemma C.2 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = 1 and

β2 = β2T = 1+ c/kT with c > 0. Then under assumptions C1-C4, the following results hold

jointly:
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(a)
β
−(T−[τ0T ])
2T√
TkT l(ηT )

∑T
t=[τ0T ]+1 yt−1εt ⇒ XW (τ0),

(b)
β
−2(T−[τ0T ])
2T
TkT l(ηT )

∑T
t=[τ0T ]+1 y

2
t−1 ⇒ 1

2cW
2(τ0),

where X is a random variable obeying N(0, 1
2c) and is independent of W (τ0).

Lemma C.3 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = 1 and

β2 = β2T = 1 + c/kT with c > 0. Then under assumptions C1-C4 with kT = O(
√
T ), the

results in (B.1) hold.

Lemma C.4 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = 1 and

β2 = β2T = 1 + c/kT with c > 0. Then under assumptions C1-C4 with
√
T = o(kT ), we

have

(a)
∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1 = Op(k

2
T l(ηT )) and

∑[τ0T ]
t=[τ̂TT ]+1 yt−1εt = Op(kT l(ηT )) when τ̂T ≤ τ0,

(b)
∑[τ̂TT ]

t=[τ0T ]+1 y
2
t−1 = Op(k

2
T l(ηT )) and

∑[τ̂TT ]
t=[τ0T ]+1 yt−1εt = Op(kT l(ηT )) when τ̂T > τ0.

Lemma C.5 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = 1 and

β2 = β2T = 1 + c/kT with c > 0. Then under assumptions C1-C4 with kT = o(
√
T ), we

have for any fixed integer m ≥ 0,

(a)
k2T

T l(ηT )

(
RSST (τ0 − m

T )−RSST (τ0)
)
⇒ c2mW 2(τ0),

(b)
k2T

T l(ηT )

(
RSST (τ0 +

m
T )−RSST (τ0)

)
⇒ c2mW 2(τ0).

Proof of Theorem 1.3. We first prove the first and second parts of Theorem 1.3(a).

Similar to the proof of Theorem 1.2(a), we can prove (B.2) by using the arguments in the

proof of Theorem 1.2 and invoking Lemma C.3. Hence, the second part of Theorem 1.3(a)

is verified.

To prove the first part of Theorem 1.3(a), i.e., to prove P (k̂ ̸= k0) → 0 when kT = o(
√
T ),

one can refer to the proof of Theorem 1.2(a) and apply Lemma C.5. The details are not

provided here for brevity.

To derive the third part of Theorem 1.3(a), we follow Appendix K in Chong (2001).

Since asymptotics in the mildly explosive model are more complex than that in the mildly

integrated model, we offer more details concerning the proof. We write β2T = 1+c/kT = 1+

1/(
√

Tg(T )), with g(T ) = k2T /(c
2T ). Then, g(T ) → ∞ and g(T ) = o(kT ) since

√
T = o(kT )

and kT = o(T ). We denote

ΛT (τ) =

(∑[τ0T ]
t=1 yt−1εt

)2

∑[τ0T ]
t=1 y2t−1

−

(∑[τT ]
t=1 yt−1εt

)2

∑[τT ]
t=1 y2t−1

+

(∑T
t=[τ0T ]+1 yt−1εt

)2

∑T
t=[τ0T ]+1 y

2
t−1

−

(∑T
t=[τT ]+1 yt−1εt

)2

∑T
t=[τT ]+1 y

2
t−1

.
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The following observation is a simple generalization of Proposition A.1 in Phillips and Mag-

dalinos (2007a), hence the proof is omitted:

(
T

kT

)a

= o((1 + c/kT )
bT ), for any a > 0 and b > 0. (C.1)

For τ = τ0 + νg(T )/T and ν ≤ 0, by applying (C.1) and Lemmas B.1 and C.2, we have

the following results:

ΛT (τ)

l(ηT )
= Op(1),

∑T
t=[τ0T ]+1 y

2
t−1∑T

t=[τT ]+1 y
2
t−1

p→ 1;

∣∣∣∣
(β2T − 1)

l(ηT )

∑[τ0T ]
t=[τT ]+1 y

2
t−1

∑T
t=[τ0T ]+1 yt−1εt

∑T
t=[τT ]+1 y

2
t−1

∣∣∣∣

= Op

(
Tg(T )

√
TkTβ

T−[τ0T ]
2T

kT (Tg(T ) + TkTβ
2(T−[τ0T ])
2T )

)

= Op

(
Tg(T )

√
TkT

Tk2Tβ
(T−[τ0T ])
2T

)
= op

((
T

kT

)1/2

· 1

β
(T−[τ0T ])
2T

)

= op(1);

1√
Tg(T )l(ηT )

[|ν|g(T )]−1∑

t=0

y[τ0T ]−t−1ε[τ0T ]−t

= −
y[τ0T ]√
T l(ηT )

· 1√
g(T )l(ηT )

[|ν|g(T )]−1∑

t=0

(−ε[τ0T ]−t) · (1 + op(1))

⇒ −W1(τ0)W1(|ν|)

and

1

Tg(T )l(ηT )

[|ν|g(T )]−1∑

t=0

y2[τ0T ]−t−1 ⇒ |ν|W 2
1 (τ0).

One is referred to Appendix K in Chong (2001) for more details.

Then, using equation (B.2) in Chong (2001), we have

RSST (τ)−RSST (τ0)

l(ηT )

= −2(β2T − 1)

l(ηT )

[τ0T ]∑

t=[τT ]+1

yt−1εt · (1 + op(1)) +
(β2T − 1)2

l(ηT )

[τ0T ]∑

t=[τT ]+1

y2t−1 · (1 + op(1)) + op(1)

= − 2(1 + op(1))√
Tg(T )l(ηT )

[|ν|g(T )]−1∑

t=0

y[τ0T ]−t−1ε[τ0T ]−t +
1 + op(1)

Tg(T )l(ηT )

[|ν|g(T )]−1∑

t=0

y2[τ0T ]−t−1 + op(1)

⇒ −2W1(τ0)W1(|ν|) + |ν|W 2
1 (τ0). (C.2)
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For τ = τ0 + νg(T )/T and ν > 0, we have

[τ0T+νg(T )]∑

t=[τ0T ]+1

y2t−1 =

[τ0T+νg(T )]∑

t=[τ0T ]+1

(
β
t−1−[τ0T ]
2T y[τ0T ] +

t−1∑

i=[τ0T ]+1

βt−1−i
2T εi

)2

= y2[τ0T ]

[τ0T+νg(T )]∑

t=[τ0T ]+1

β
2(t−1−[τ0T ])
2T +

[τ0T+νg(T )]∑

t=[τ0T ]+1

( t−1∑

i=[τ0T ]+1

βt−1−i
2T εi

)2

+2y[τ0T ]

[τ0T+νg(T )]∑

t=[τ0T ]+1

β
t−1−[τ0T ]
2T

t−1∑

i=[τ0T ]+1

βt−1−i
2T εi. (C.3)

Note that

[τ0T+νg(T )]∑

t=[τ0T ]+1

β
2(t−1−[τ0T ])
2T = O

( ∣∣∣∣∣
kT (1− β

2[νg(T )]
2T )

kT (1− β2
2T )

∣∣∣∣∣
)
= O

( ∣∣∣∣
kT · g(T )/kT
kT (1− β2

2T )

∣∣∣∣
)
= O(g(T )),

which implies

y2[τ0T ]

[τ0T+νg(T )]∑

t=[τ0T ]+1

β
2(t−1−[τ0T ])
2T = Op(Tg(T )l(ηT )). (C.4)

In addition, it can be shown that

E




[τ0T+νg(T )]∑

t=[τ0T ]+1

( t−1∑

i=[τ0T ]+1

βt−1−i
2T ε

(1)
i

)2

 =

[τ0T+νg(T )]∑

t=[τ0T ]+1

t−1∑

i=[τ0T ]+1

β
2(t−1−i)
2T l(ηT ) · (1 + o(1))

= O

(
g(T )

β2
2T − 1

l(ηT )

)
+O

(
(1− β

νg(T )
2T )l(ηT )

(1− β2
2T )

2

)

= O(kT g(T )l(ηT )) +O(k2T l(ηT ) · g(T )/kT )

= O(kT g(T )l(ηT )),

implying

[τ0T+νg(T )]∑

t=[τ0T ]+1

( t−1∑

i=[τ0T ]+1

βt−1−i
2T εi

)2
= Op(kT g(T )l(ηT )) = op(Tg(T )l(ηT )). (C.5)

Combining (C.3), (C.4) and (C.5) and applying the Cauchy-Schwarz inequality, we have

[τ0T+νg(T )]∑

t=[τ0T ]+1

y2t−1 = Op(Tg(T )l(ηT )). (C.6)

The above arguments also imply that

max
1≤t≤[νg(T )]−1

|y[τ0T ]+t − y[τ0T ]| = op(
√

T l(ηT )).

Then, applying (C.6), we have the following results:

ΛT (τ)

l(ηT )
= Op(1),

∑[τ0T ]
t=1 y2t−1∑[τT ]
t=1 y2t−1

p→ 1;
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∣∣∣∣
(β2T − 1)

l(ηT )
·
−∑[τ0T ]

t=1 yt−1εt
∑[τT ]

t=[τ0T ]+1 y
2
t−1

∑[τT ]
t=1 y2t−1

∣∣∣∣ = Op

(
T 2g(T )

kT (T 2 + Tg(T ))

)
= Op

(g(T )
kT

)
= op(1)

by Lemma B.1 and g(T ) = o(kT ).

Now, making use of equation (B.4) in Chong (2001), we have

RSST (τ)−RSST (τ0)

l(ηT )

=
2(β2T − 1)

l(ηT )

[τT ]∑

t=[τ0T ]+1

yt−1εt · (1 + op(1)) +
(β2T − 1)2

l(ηT )

[τT ]∑

t=[τ0T ]+1

y2t−1 · (1 + op(1)) + op(1)

=
2(1 + op(1))√
Tg(T )l(ηT )

[|ν|g(T )]−1∑

t=0

y[τ0T ]+tε[τ0T ]+t+1 +
1 + op(1)

Tg(T )l(ηT )

[|ν|g(T )]−1∑

t=0

y2[τ0T ]+t+1 + op(1)

=
−2y[τ0T ]√
T l(ηT )

· 1 + op(1)√
g(T )l(ηT )

[|ν|g(T )]−1∑

t=0

(−ε[τ0T ]+t+1) + ν
y2[τ0T ]

T l(ηT )
· (1 + op(1)) + op(1)

⇒ −2W1(τ0)W2(ν) + νW 2
1 (τ0). (C.7)

Finally, applying the continuous mapping theorem for argmax/argmin functionals (cf.

Kim and Pollard (1990)), it follows from (C.2) and (C.7) that

c2T 2

k2T
(τ̂T − τ0) =

T

g(T )
(τ̂T − τ0) = ν̂

= argmin
ν∈R

{RSST (τ)−RSST (τ0)}

= argmin
ν∈R

{
RSST (τ)−RSST (τ0)

l(ηT )

}

⇒ argmin
ν∈R

{
− 2W 2

1 (τ0) ·
(W ∗(ν)
W1(τ0)

− |ν|
2

)}
= argmax

ν∈R

{
W ∗(ν)
W1(τ0)

− |ν|
2

}
,

where W ∗(ν) is a two-sided Brownian motion on R defined to be W ∗(ν) = W1(−ν) for ν ≤ 0

and W ∗(ν) = W2(ν) for ν > 0.

To prove Theorem 1.3(b), note that we have shown that |τ̂T − τ0| = op(1/T ) when

kT = o(
√
T ), |τ̂T − τ0| = Op(1/T ) when kT ≍

√
T and |τ̂T − τ0| = Op(k

2
T /T

2) when
√
T = o(kT ), hence we study the limiting distribution of t1 under the above three cases

separately.

Consider the case where
√
T = o(kT ) first. In this case, applying Lemmas B.1 and C.4

and following Appendix G in Chong (2001), we have

T (β̂1(τ̂T )− β̂1(τ0))

= T

(∑[τ̂TT ]
t=1 ytyt−1∑[τ̂TT ]

t=1 y2t
−
∑[τ0T ]

t=1 ytyt−1∑[τ0T ]
t=1 y2t

)

= I{τ̂T ≤ τ0}T
(∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1

∑[τ̂TT ]
t=1 y2t−1

∑[τ0T ]
t=1 yt−1εt∑[τ0T ]
t=1 y2t−1

−
∑[τ0T ]

t=[τ̂TT ]+1 yt−1εt
∑[τ̂TT ]

t=1 y2t−1

)
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+I{τ̂T > τ0}T
(
−
∑[τ̂TT ]

t=[τ0T ]+1 y
2
t−1

∑[τ̂TT ]
t=1 y2t−1

∑[τ0T ]
t=1 yt−1εt∑[τ0T ]
t=1 y2t−1

+

∑[τ̂TT ]
t=[τ0T ]+1 yt−1εt
∑[τ̂TT ]

t=1 y2t−1

+ (β2T − β1)

∑[τ̂TT ]
t=[τ0T ]+1 y

2
t−1

∑[τ̂TT ]
t=1 y2t−1

)

= I{τ̂T ≤ τ0}T
(
Op(

k2T l(ηT )

T 2l(ηT )
)Op(

1

T
) +Op(

kT l(ηT )

T 2l(ηT )
)
)

+I{τ̂T > τ0}T
(
Op(

k2T l(ηT )

T 2l(ηT )
)Op(

1

T
) +Op(

kT l(ηT )

T 2l(ηT )
) +Op(

k2T l(ηT )

kTT 2l(ηT )
)
)

= op(1), (C.8)

implying √∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ̂T )− β̂1(τ0)) = op(1)

by Lemma B.1. Thus, β̂1(τ̂T ) and β̂1(τ0) have the same asymptotic distribution. Then,

applying Lemma B.1 again, we have

√∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ0)− β1) =

∑[τ0T ]
t=1 yt−1εt√

l(ηT )
∑[τ0T ]

t=1 y2t−1

⇒ W 2(τ0)− τ0

2
√∫ τ0

0 W 2(t)dt

d
=

W 2(1)− 1

2
√∫ 1

0 W 2(s)ds
,

implying

t1 =

√∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ̂T )− β1) ⇒

W 2(1)− 1

2
√∫ 1

0 W 2(s)ds
. (C.9)

When kT ≍
√
T , since |k̂ − k0| = Op(1), one can follow the proofs in Theorem 1.2 to

show that T (β̂1(τ̂T ) − β̂1(τ0)) = op(1) still holds by using (B.5) and (B.6). The details are

omitted here. Hence, (C.9) still holds when kT ≍
√
T .

When kT = o(
√
T ), since P (k̂ ̸= k0) → 0, one can follow the lines in the proof of

Theorem 4 in Chong (2001) to show that (C.9) still holds. The details are also omitted.

Next, we shall prove Theorem 1.3(c). Similarly, when
√
T = o(kT ), making use of

Lemmas C.2 and C.4 and following Appendix G in Chong (2001), we have

β
T−[τ0T ]
2T

√
TkT (β̂2(τ̂T )− β̂2(τ0))

= β
T−[τ0T ]
2T

√
TkT

(∑T
t=[τ̂TT ]+1 ytyt−1
∑T

t=[τ̂TT ]+1 y
2
t

−
∑T

t=[τ0T ]+1 ytyt−1
∑T

t=[τ0T ]+1 y
2
t

)

= I{τ̂T ≤ τ0}βT−[τ0T ]
2T

√
TkT

(
−
∑[τ0T ]

t=[τ̂TT ]+1 y
2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ0T ]+1 yt−1εt
∑T

t=[τ0T ]+1 y
2
t−1

+

∑[τ0T ]
t=[τ̂TT ]+1 yt−1εt
∑T

t=[τ̂TT ]+1 y
2
t−1

+ (β1 − β2T )

∑[τ0T ]
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

)
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+I{τ̂T > τ0}βT−[τ0T ]
2T

√
TkT

(∑[τ̂TT ]
t=[τ0T ]+1 y

2
t−1

∑T
t=[τ̂TT ]+1 y

2
t−1

∑T
t=[τ0T ]+1 yt−1εt
∑T

t=[τ0T ]+1 y
2
t−1

−
∑[τ̂TT ]

t=[τ0T ]+1 yt−1εt
∑T

t=[τ̂TT ]+1 y
2
t−1

)

= I{τ̂T ≤ τ0}βT−[τ0T ]
2T

√
TkT

(
Op(

k2T l(ηT )

β
2(T−[τ0T ])
2T TkT l(ηT )

)Op(
1

β
T−[τ0T ]
2T

√
TkT l(ηT )

)

+Op(
kT l(ηT )

β
2(T−[τ0T ])
2T TkT l(ηT )

) +Op(
k2T l(ηT )

β
2(T−[τ0T ])
2T Tk2T l(ηT )

)
)

+I{τ̂T > τ0}βT−[τ0T ]
2T

√
TkT

(
Op(

k2T l(ηT )

β
2(T−[τ0T ])
2T TkT l(ηT )

)Op(
1

β
T−[τ0T ]
2T

√
TkT

)

+Op(
kT l(ηT )

β
2(T−[τ0T ])
2T TkT l(ηT )

)
)

= op(1)

by using (C.1), which implies
√∑T

t=[τ0T ]+1 y
2
t−1

l(ηT )
(β̂2(τ̂T )− β̂2(τ0)) = op(1)

by Lemma C.2. Thus, β̂2(τ̂T ) and β̂2(τ0) have the same asymptotic distribution. Applying

Lemma C.2 again, we have
√∑T

t=[τ0T ]+1 y
2
t−1

l(ηT )
(β̂2(τ0)− β2T ) =

∑T
t=[τ0T ]+1 yt−1εt√

l(ηT )
∑T

t=[τ0T ]+1 y
2
t−1

⇒ N(0, 1),

which implies

t2 =

√∑T
t=[τ0T ]+1 y

2
t−1

l(ηT )
(β̂2(τ̂T )− β2T ) ⇒ N(0, 1). (C.10)

The result (C.10) when kT ≍
√
T or kT = o(

√
T ) can also be proved by similar argu-

ments in the proofs of Theorem 1.2, and the details are omitted. �

Appendix D: Proof of Theorem 1.4

The following four lemmas are needed in the proof of Theorem 1.4, and their proofs can be

found in the online supplementary materials.

Lemma D.1 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = β1T =

1 + c/kT with c > 0. Then under assumptions C1-C4, the following results hold jointly:

(a)
β
−[τ0T ]
1T

kT l(ηT )

∑[τ0T ]
t=1 yt−1εt ⇒ XY,

(b)
β
−2[τ0T ]
1T

k2T l(ηT )

∑[τ0T ]
t=1 y2t−1 ⇒ 1

2cY
2,

where X and Y are independent N(0, 1
2c) random variables.

35



Lemma D.2 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = β1T =

1+ c/kT with c > 0 and β2 = 1. Then under assumptions C1-C4, the following results hold

jointly:

(a)
β
−[τ0T ]
1T√

TkT l(ηT )

∑T
t=[τ0T ]+1 yt−1εt ⇒ Y (W (1)−W (τ0)),

(b)
β
−2[τ0T ]
1T

TkT l(ηT )

∑T
t=[τ0T ]+1 y

2
t−1 ⇒ (1− τ0)Y

2,

where Y is as defined in Lemma D.1 and is independent of W (1)−W (τ0).

Lemma D.3 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = β1T =

1+ c/kT and β2 = 1 with c > 0. Then under assumptions C1-C4, the results in (B.1) hold.

Lemma D.4 Let {yt, t ≥ 1} be generated according to Model (1.1), where β1 = β1T =

1 + c/kT and β2 = 1 with c > 0. Then under assumptions C1-C4, we have, for any fixed

integer m ≥ 0,

(a) kT

β
2[τ0T ]
1T l(ηT )

(
RSST (τ0 − m

T )−RSST (τ0)
)
⇒ c2mY 2,

(b) kT

β
2[τ0T ]
1T l(ηT )

(
RSST (τ0 +

m
T )−RSST (τ0)

)
⇒ c2mY 2,

where Y is as defined in Lemma D.1.

Proof of Theorem 1.4. To prove (1.11), we first show that |τ̂T − τ0| = Op(1/T ). It can

be proved by following the similar arguments in the proof of Theorem 1.2 and using Lemma

D.3. The proof of P (k̂ ̸= k0) → 0 can then be completed by using Lemma D.4. The details

are omitted for brevity.

To obtain the limiting distribution of t1, we use the fact that the limiting distributions

of β̂1(τ̂T ) and β̂1(τ0) are identical when P (k̂ ̸= k0) → 0 by applying the similar arguments in

the proof of Theorem 4 in Chong (2001). The details are omitted. Then, invoking Lemma

D.1, we have
√∑[τ0T ]

t=1 y2t−1

l(ηT )
(β̂1(τ0)− β1T ) =

∑[τ0T ]
t=1 yt−1εt√

l(ηT )
∑[τ0T ]

t=1 y2t−1

⇒ N(0, 1),

which implies

t1 =

√∑[τ0T ]
t=1 y2t−1

l(ηT )
(β̂1(τ̂T )− β1T ) ⇒ N(0, 1).

Analogously, β̂2(τ̂T ) and β̂2(τ0) have the same asymptotic distribution. Then, applying

Lemma D.2, we have
√∑T

t=[τ0T ]+1 y
2
t−1

l(ηT )
(β̂2(τ0)− β2) =

∑T
t=[τ0T ]+1 yt−1εt√

l(ηT )
∑T

t=[τ0T ]+1 y
2
t−1

⇒ N(0, 1),
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which implies

t2 =

√∑T
t=[τ0T ]+1 y

2
t−1

l(ηT )
(β̂2(τ̂T )− β2) ⇒ N(0, 1).

�
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