Tamaki, Tetsuya and Nozawa, Wataru and Managi, Shunsuke (2017): Evaluation of the ocean ecosystem: climate change modelling with backstop technology. Forthcoming in: Applied Energy
Preview |
PDF
MPRA_paper_80549.pdf Download (618kB) | Preview |
Abstract
This paper discusses the economic impacts of climate change, including those on ecosystems, and whether a new backstop technology should be used under conditions of strict temperature targets. Using the dynamic integrated climate-economy (DICE) model, we developed a new model to calculate the optimal path by considering new backstop technologies, such as CO2 capture and storage (CCS). We identify the effects of parameter changes based on the resulting differences in CO2 leakage and sites, and we analyse the feasibility of CCS. In addition, we focus on ocean acidification and consider the impact on economic activity. As a result, when CCS is assumed to carry a risk of CO2 leakage and acidification is considered to result in a decrease in utility, we find that CCS can only delay the effects of climate change, but its use is necessary to achieve strict targets, such as a 1.5C limit. This observation suggests that if the target temperature is too tight, we might end up employing a technology that sacrifices the ecosystem too greatly.
Item Type: | MPRA Paper |
---|---|
Original Title: | Evaluation of the ocean ecosystem: climate change modelling with backstop technology |
English Title: | Evaluation of the ocean ecosystem: climate change modelling with backstop technology |
Language: | English |
Keywords: | climate change; ocean acidification; economic impact; CCS; CEEM |
Subjects: | O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O33 - Technological Change: Choices and Consequences ; Diffusion Processes Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q43 - Energy and the Macroeconomy Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 80549 |
Depositing User: | Dr Tetsuya Tamaki |
Date Deposited: | 03 Aug 2017 23:11 |
Last Modified: | 01 Oct 2019 12:59 |
References: | Adams, H. and Adger, W. N. (2013). The contribution of ecosystem services to place utility as a determinant of migration decision-making. Environmental Research Letters, 8(1):015006. Anthoff, D. and Tol, R. S. (2010). On international equity weights and national decision making on climate change. Journal of Environmental Economics and Management, 60(1):14-20. Azar, C., Lindgren, K., Larson, E., and Mollersten, K. (2006). Carbon capture and storage from fossil fuels and biomass-costs and potential role in stabilizing the atmosphere. Climatic Change, 74(1):47-79. Azar, C., Lindgren, K., Obersteiner, M., Riahi, K., van Vuuren, D. P., den Elzen, K. M. G., Mollersten, K., and Larson, E. D. (2010). The feasibility of low co 2 concentration targets and the role of bio-energy with carbon capture and storage (beccs). Climatic Change, 100(1):195-202. Balmford, A., Bruner, A., Cooper, P., Costanza, R., Farber, S., Green, R. E., Jenkins, M., Jefferiss, P., Jessamy, V., Madden, J., Munro, K., Myers, N., Naeem, S., Paavola, J., Rayment, M., Rosendo, S., Roughgarden, J., Trumper, K., and Turner, R. K. (2002). Economic reasons for conserving wild nature. Science, 297(5583):950-953. Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological monographs, 81(2):169-193. Blackford, J., Jones, N., Proctor, R., Holt, J., Widdicombe, S., Lowe, D., and Rees, A. (2009). An initial assessment of the potential environmental impact of co2 escape from marine carbon capture and storage systems. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(3):269-280. Brewer, P. G., Glover, D M., Goyet, C., and Shafer, D. K. (1995). The ph of the north atlantic ocean: improvements to the global model for sound absorption. Journal of Geophysical Research, 100:8761-8776. Bui, M., Fajardy, M., and Mac Dowell, N. (2017). Bio-energy with ccs (beccs) performance evaluation: Efficiency enhancement and emissions reduction. Applied Energy, 195:289-302. Cline, W. R. (1992a). Economics of Global Warming. Peterson Institute for International Economics, Washington, D.C. Cline, W. R. (1992b). Global warming: The economic stakes. Institute for International Economics, Washington, D.C. Cormos, A.-M. and Cormos, C.-C. (2017). Reducing the carbon footprint of cement industry by post-combustion co 2 capture: Techno-economic and environmental assessment of a ccs project in romania. Chemical Engineering Research and Design. Costanza, R., d 'Arge, R., de Groot, R., Faber, S., Grasso, M., Limburg, K., Naeem, S., O 'Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., and van den Belt, M. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630):253-260. Crost, B. and Traeger, C. P. (2014). Optimal co2 mitigation under damage risk valuation. Nature Climate Change, 4(7):631-636. De Bruin, K. C., Dellink, R. B., and Tol, R. S. (2009). Ad-dice: an implementation of adaptation in the dice model. Climatic Change, 95(1-2):63-81. Dowlatabadi, H. (1995). Integrated assessment models of climate change: An incomplete overview. Energy Policy, 23(4-5):289-296. Dowlatabadi, H. (1998). Sensitivity of climate change mitigation estimates to assumptions about technical change. Energy Economics, 20(5):473-493. Fan, L., Li, F., and Ramkumar, S. (2008). Utilization of chemical looping strategy in coal gasification processes. Particuology, 6(3):131-142. Gerlagh, R. (2008). A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings. Energy Economics, 30(2):425-448. Global CCS Institute (2016). The global status of ccs: 2016, summary report. https://www.globalccsinstitute.com/publications/global-status-ccs-2016-summary-report. Grimaud, A. and Rouge, L. (2008). Environment, directed technical change and economic policy. Environmental and Resource Economics, 41(4):439-463. Hajat, S., Vardoulakis, S., Heaviside, C., and Eggen, B. (2014). Climate change effects on human health: projections of temperature-related mortality for the uk during the 2020s, 2050s and 2080s. Journal of Epidemiology and Community Health, 68(7):649-656. Haugan, P. M. and Drange, H. (1996). Effects of co 2 on the ocean environment. Energy Conversion and Management, 37(6):1019-1022. Held, H., Kriegler, E., Lessmann, K., and Edenhofer, O. (2009). Efficient climate policies under technology and climate uncertainty. Energy Economics, 31:S50-S61. Hinkel, J. (2005). Diva: an iterative method for building modular integrated models. Advances in Geosciences, 4:45-50. Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S., Marzeion, B., Fettweis, X., Ionescu, C., and Levermann, A. (2014). Coastal ood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111(9):3292-3297. Hope, C. (2006). The marginal impact of co2 from page2002: An integrated assessment model incorporating the ipcc's five reasons for concern. Integrated assessment, 6(1). Hope, C. (2011). The social cost of co2 from the page09 model. Economics Discussion Papers 2011-39. Hu, Z., Cao, J., and Hong, L. J. (2012). Robust simulation of global warming policies using the dice model. Management Science, 58(12):2190-2206. Ishida, H., Golmen, L. G., West, J., Kruger, M., Coombs, P., Berge, J. A., Fukuhara, T., Magi, M., and Kita, J. (2013). Effects of co 2 on benthic biota: An in situ benthic chamber experiment in storfjorden (norway). Marine pollution bulletin, 73(2):443-451. Jones, C. I. and Klenow, P. J. (2016). Beyond gdp? welfare across countries and time. The American Economic Review, 106(9):2426-2457. Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.-M., and Bouallou, C. (2010). Pre-combustion, post-combustion and oxy-combustion in thermal power plant for co 2 capture. Applied Thermal Engineering, 30(1):53-62. Kaufmann, R. K. (1997). Assessing the dice model: Uncertainty associated with the emission and retention of greenhouse gases. Climatic Change, 35(4):435-448. Koelbl, B. S., van den Broek, M. A., Wilting, H. C., Sanders, M. W., Bulavskaya, T., Wood, R., Faaij, A. P., and van Vuuren, D. P. (2016). Socio-economic impacts of low-carbon power generation portfolios: Strategies with and without ccs for the netherlands. Applied Energy, 183:257-277. Komen, K., Olwoch, J., Rautenbach, H., Botai, J., and Adebayo, A. (2015). Long-run relative importance of temperature as the main driver to malaria transmission in limpopo province, south africa: A simple econometric approach. EcoHealth, 12(1):131-143. Koornneef, J., van Keulen, T., Faaij, A., and Turkenburg, W. (2008). Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of co 2. International journal of greenhouse gas control, 2(4):448-467. Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J.-P. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology, 19(6):1884-1896. Lee, J.-Y. (2017). A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector. Applied Energy, 198:12-20. Leemans, R. and Eickhout, B. (2004). Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. Global Environmental Change, 14(3):219-228. Li, H., Yan, J., and Anheden, M. (2009). Impurity impacts on the purification process in oxy-fuel combustion based co 2 capture and storage system. Applied Energy, 86(2):202- 213. Lyngfelt, A., Leckner, B., and Mattisson, T. (2001). A uidized-bed combustion process with inherent co 2 separation; application of chemical-looping combustion. Chemical Engineering Science, 56(10):3101-3113. Metz, B., Davidson, O., De Coninck, H., Loos, M., and Meyer, L. (2005). Carbon dioxide capture and storage. Cambridge university press. Moreira, J. R., Romeiro, V., Fuss, S., Kraxner, F., and Pacca, S. A. (2016). Beccs potential in brazil: achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues. Applied Energy, 179:55-63. Mori, S. (2012). An assessment of the potentials of nuclear power and carbon capture and storage in the long-term global warming mitigation options based on asian modeling exercise scenarios. Energy Economics, 34:S421-S428. Murray, F., Widdicombe, S., McNeill, C. L., and Solan, M. (2013). Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions. Marine pollution bulletin, 73(2):435-442. Narita, D., Rehdanz, K., and Tol, R. S. (2012). Economic costs of ocean acidification: a look into the impacts on global shellfish production. Climatic Change, 113(3-4):1049-1063. Nordhaus, W. D. (1992). An optimal transition path for controlling greenhouse gases. Science, 258(5086):1315-1319. Nordhaus, W. D. (2014). Estimates of the social cost of carbon: concepts and results from the dice-2013r model and alternative approaches. Journal of the Association of Environmental and Resource Economists, 1(1/2):273-312. Nordhaus, W. D. and Sztorc, P. (2013). DICE 2013R: Introduction and user's manual. Park, S. K., Ahn, J.-H., and Kim, T. S. (2011). Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture. Applied energy, 88(9):2976-2987. Parry, M., Arnell, N., McMichael, T., Nicholls, R., Martens, P., Kovats, S., Livermore, M., Rosenzweig, C., Iglesias, A., and Fischer, G. (2001). Millions at risk: defining critical climate threats and targets. Global Environmental Change, 11(3):181-183. Perejon, A., Romeo, L. M., Lara, Y., Lisbona, P., Martinez, A., and Valverde, J. M. (2016). The calcium-looping technology for co 2 capture: on the important roles of energy integration and sorbent behavior. Applied Energy, 162:787-807. Pettinau, A., Ferrara, F., Tola, V., and Cau, G. (2017). Techno-economic comparison between different technologies for co 2-free power generation from coal. Applied Energy, 193:426-439. Popp, D. (2004). Entice: endogenous technological change in the dice model of global warming. Journal of Environmental Economics and Management, 48(1):742-768. Popp, D. (2006). Entice-br: The effects of backstop technology r&d on climate policy models. Energy Economics, 28(2):188-222. Sathre, R., Chester, M., Cain, J., and Masanet, E. (2012). A framework for environmental assessment of co 2 capture and storage systems. Energy, 37(1):540-548. Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., and Haszeldine, R. S. (2013). Last chance for carbon capture and storage. Nature Climate Change, 3(2):105-111. Selosse, S. and Ricci, O. (2017). Carbon capture and storage: Lessons from a storage potential and localization analysis. Applied Energy, 188:32-44. Stanton, E. A., Ackerman, F., and Kartha, S. (2009). Inside the integrated assessment models: Four issues in climate economics. Climate and Development, 1(2):166-184. Stern, N. H., Peters, S., Bakhshi, V., Bowen, A., Cameron, C., Catovsky, S., Crane, D., Cruickshank, S., Dietz, S., Edmonson, N., Garbett, S.-L., Hamid, L., Hoffman, G., Ingram, D., Jones, B., Patmore, N., Radcliffe, H., Sathiyarajah, R., Stock, M., Taylor, C., Vermon, T., Wanjie, H., and Zenghelis, D. (2006). Stern Review: The economics of climate change. Cambridge University Press Cambridge. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (2013). Climate Change 2013: The Physical Science Basis,Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5). Cambridge University Press, Cambridge. Syri, S., Lehtila, A., Ekholm, T., Savolainen, I., Holttinen, H., and Peltola, E. (2008). Global energy and emissions scenarios for effective climate change mitigation―deterministic and stochastic scenarios with the tiam model. International Journal of Greenhouse Gas Control, 2(2):274-285. Tol, R. S. (2009). The economic effects of climate change. The Journal of Economic Perspectives, 23(2):29-51. Tollefson, J. (2015). The 2 °C dream. Nature, 527(7579):436. Traeger, C. P. (2014). A 4-stated dice: quantitatively addressing uncertainty effects in climate change. Environmental and Resource Economics, 59(1):1-37. Vicente-Serrano, S. M., Lopez-Moreno, J.-I., Begueria, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., Garcia-Ruiz, J. M., Azorin-Molina, C., Moran-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., and Espejo, F. (2014). Evidence of increasing drought severity caused by temperature rise in southern europe. Environmental Research Letters, 9(4):044001. Viebahn, P., Daniel, V., and Samuel, H. (2012). Integrated assessment of carbon capture and storage (CCS) in the german power sector and comparison with the deployment of renewable energies. Applied Energy, 97:238-248. Viebahn, P., Vallentin, D., and Holler, S. (2014). Prospects of carbon capture and storage (CCS) in india's power sector-an integrated assessment. Applied Energy, 117:62-75. Viebahn, P., Vallentin, D., and Holler, S. (2015). Prospects of carbon capture and storage (CCS) in china 's power sector-an integrated assessment. Applied Energy, 157:229-244. Warren, R. (2006). Impacts of global climate change at different annual mean global temperature increases. In Avoiding Dangerous Climate Change, pages 93-132. Cambridge University Press, Cambridge. Warren, R., Arnell, N., Nicholls, R., Levy, P., and Price, J. (2006). Understanding the regional impacts of climate change. Tyndall Centre for Climate Change Research Working Paper, 90. Warren, R., Price, J., Fischlin, A., de la Nava Santos, S., and Midgley, G. (2011). Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Climatic Change, 106(2):141-177. Weydahl, T., Jamaluddin, J., Seljeskog, M., and Anantharaman, R. (2013). Pursuing the pre-combustion ccs route in oil refineries-the impact on fired heaters. Applied energy, 102:833-839. Widdicombe, S., Blackford, J. C., and Spicer, J. I. (2013). Assessing the environmental consequences of co2 leakage from geological ccs: generating evidence to support environmental risk assessment. Marine pollution bulletin, 73(2):399-401. Widdicombe, S. and Spicer, J. I. (2008). Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? Journal of Experimental Marine Biology and Ecology, 366(1):187-197. Zhou, W., Zhu, B., Fuss, S., Szolgayova, J., Obersteiner, M., and Fei, W. (2010). Uncertainty modeling of ccs investment strategy in china 's power sector. Applied Energy, 87(7):2392-2400. Zhu, L. and Fan, Y. (2011). A real options-based ccs investment evaluation model: Case study of china 's power generation sector. Applied Energy, 88(12):4320-4333. Zhu, L., Jiang, P., and Fan, J. (2015). Comparison of carbon capture igcc with chemicallooping combustion and with calcium-looping process driven by coal for power generation. Chemical Engineering Research and Design, 104:110-124. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/80549 |