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Abstract

We investigate the existence of a strictly convex and strictly sub-additive cost func-
tion with positive fixed cost. If there is a positive fixed cost, any cost function can not
be super-additive, and concavity (including linearity) of cost function implies strict
sub-additivity. Then, does there exist a strictly convex and strictly sub-additive cost
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it is strictly convex.
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1 Introduction
Convexity and concavity are important properties for cost functions of firms. Also super-
additivity and sub-additivity are other important properties for them. A cost function 𝑐(𝑥)
is convex when it satisfies

𝑐(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑐(𝑥) + (1 − 𝜆)𝑐(𝑦) for 0 ≤ 𝜆 ≤ 1, 𝑥 ≥ 0, 𝑦 ≥ 0.
It is concave when it satisfies

𝑐(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝜆𝑐(𝑥) + (1 − 𝜆)𝑐(𝑦) for 0 ≤ 𝜆 ≤ 1, 𝑥 ≥ 0, 𝑦 ≥ 0.
It is super-additive if it satisfies

𝑐(𝑥 + 𝑦) ≥ 𝑐(𝑥) + 𝑐(𝑦), for 𝑥 ≥ 0, 𝑦 ≥ 0.
It is sub-additive if it satisfies

𝑐(𝑥 + 𝑦) ≤ 𝑐(𝑥) + 𝑐(𝑦), for 𝑥 ≥ 0, 𝑦 ≥ 0.
If these inequalities strictly hold, we say that a cost function is strictly convex, strictly
concave and so on. Hattori and Tanaka (2017) have shown the following results about
the case of zero fixed cost.

Zero fixed cost case It is well known that with zero fixed cost, that is, 𝑐(0) = 0, convexity
implies super-additivity, and concavity implies sub-additivity. But converse relations do
not hold (please see Bruckner and Ostrow (1962) and Sen and Stamatopoulos (2016)).
Referring to Bourin and Hiai (2015), Sen and Stamatopoulos (2016) pointed out that the
following function is super-additive but it is not convex.

𝑥𝑒− 1𝑥2 , 𝑥 ≥ 0.
However, if, in addition to the zero fixed cost condition, we put the following assumption,
we can show that super-additivity implies convexity, and sub-additivity implies concavity.

Assumption 1. (1) If a cost function is convex in some interval, it is convex throughout
the domain.

(2) If a cost function is concave in some interval, it is concave throughout the domain.

Then, super-additivity and convexity are equivalent, and sub-additivity and concavity
are equivalent.
Assumption 1 excludes a case where a cost function is convex in some interval and

concave in another interval. Above mentioned 𝑥𝑒− 1𝑥2 is such a function.
In this paper we consider the case where there is a positive fixed cost, and will show the

following results.
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Positive fixed cost case It is well known that a cost functionwith a positive fixed cost can
not be super-additive throughout the domain, and even with positive fixed cost concavity
of a cost functionmeans sub-additivity. Then, does there exist a strictly convex and strictly
sub-additive cost function? We will show that the answer to this question is Yes. The
following function is a strictly convex and strictly sub-additive cost function.

𝑐(𝑥) = 𝑥𝑛(𝑥 + 1)𝑛−1 + 𝑛 − 1, 𝑥 ≥ 0, 𝑛 > 1.
In Section 2 we assume that 𝑛 is a natural number which is larger than 1. In Section 3 we
extend the result in that section to a case where 𝑛 is a real number larger than 1.
2 A strictly convex and strictly sub-additive cost function

with positive fixed cost when 𝑛 is a natural number

2.1 Preliminary results
We write a cost function 𝑐(𝑥) with a positive fixed cost 𝑓 as follows.

𝑐(𝑥) = 𝑣(𝑥) + 𝑓.
𝑣(𝑥) is a variable cost.
First we show the following results.

Lemma 1. (1) A cost function with a positive fixed cost cannot be super-additive through-
out the domain.

(2) Concavity of a cost function with or without fixed cost means its sub-additivity.

Proof. (1) Impossibility of super-additivity:
Suppose that 𝑐(𝑥) is defined for 𝑥 ≥ 0 and super-additive throughout the domain
with 𝑐(0) > 0. Then, for 𝑥 > 0 we have

𝑐(𝑥) = 𝑐(𝑥 + 0) ≥ 𝑐(𝑥) + 𝑐(0) > 𝑐(𝑥).
It is a contradiction.

A cost function may be super-additive in some interval. A cost function may be
super-additive in some interval although it can not be super-additive throughout
the domain. Assume 𝑐(𝑥) = 𝑥2 + 4, 𝑥 ≥ 0. For 𝑦 > 0 we have

(𝑥 + 𝑦)2 + 4 − (𝑥2 + 4 + 𝑦2 + 4) = 2𝑥𝑦 − 4.
When 𝑥𝑦 > 2, 𝑐(𝑥) is super-additive.
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(2) Concavity⇒ sub-additivity:
For 𝑥 ≥ 0 and 𝑦 ≥ 0 concavity implies

𝑐(𝑥) = 𝑐 ( 𝑥𝑥 + 𝑦(𝑥 + 𝑦) + 𝑦𝑥 + 𝑦 ⋅ 0) ≥ 𝑥𝑥 + 𝑦𝑐(𝑥 + 𝑦) + 𝑦𝑥 + 𝑦𝑐(0),
and

𝑐(𝑦) = 𝑐 ( 𝑦𝑥 + 𝑦(𝑥 + 𝑦) + 𝑥𝑥 + 𝑦 ⋅ 0) ≥ 𝑦𝑥 + 𝑦𝑐(𝑥 + 𝑦) + 𝑥𝑥 + 𝑦𝑐(0).
Then, 𝑐(𝑥) + 𝑐(𝑦) ≥ 𝑐(𝑥 + 𝑦) + 𝑐(0).
Thus, 𝑐(𝑥) + 𝑐(𝑦) ≥ 𝑐(𝑥 + 𝑦).
Linear cost function is strictly sub-additive. Suppose 𝑐(𝑥) = 𝑎𝑥+𝑓, 𝑎 ≥ 0, 𝑓 ≥ 0.
Then, we have𝑐(𝑥 + 𝑦) − 𝑐(𝑥) − 𝑐(𝑦) = 𝑎(𝑥 + 𝑦) + 𝑓 − 𝑎𝑥 − 𝑓 − 𝑎𝑦 − 𝑓 = −𝑓 < 0.
Therefore, 𝑐(𝑥) is strictly sub-additive.

2.2 General property
Strict convexity of a cost function 𝑐(𝑥) is equivalent to strict convexity of a variable cost𝑣(𝑥). Since 𝑣(0) = 0, strict convexity of 𝑣(𝑥) implies strict super-additivity.
Lemma 2. If a variable cost 𝑣(𝑥) is strictly convex, it is strictly super-additive.
Proof. Strict convexity of 𝑣(𝑥)means

𝑣(𝑥) = 𝑣 ( 𝑥𝑥 + 𝑦(𝑥 + 𝑦) + 𝑦𝑥 + 𝑦 ⋅ 0) < 𝑥𝑥 + 𝑦𝑣(𝑥 + 𝑦) + 𝑦𝑥 + 𝑦𝑣(0),
and 𝑣(𝑦) = 𝑣 ( 𝑦𝑥 + 𝑦(𝑥 + 𝑦) + 𝑥𝑥 + 𝑦 ⋅ 0) < 𝑦𝑥 + 𝑦𝑣(𝑥 + 𝑦) + 𝑥𝑥 + 𝑦𝑣(0).
Then, 𝑣(𝑥) + 𝑣(𝑦) < 𝑣(𝑥 + 𝑦) + 𝑣(0).
Since 𝑣(0) = 0, 𝑣(𝑥) + 𝑣(𝑦) < 𝑣(𝑥 + 𝑦).

4



Suppose that a cost function 𝑐(𝑥) is sub-additive. Then,
𝑐(𝑥 + 𝑦) ≤ 𝑐(𝑥) + 𝑐(𝑦).

This means 𝑣(𝑥 + 𝑦) ≤ 𝑣(𝑥) + 𝑣(𝑦) + 𝑓.
Thus, we have 0 < 𝑣(𝑥 + 𝑦) − 𝑣(𝑥) − 𝑣(𝑦) ≤ 𝑓. (1)
Therefore, we must search a function which is positive, increasing and satisfies (1) for all𝑥 ≥ 0 and 𝑦 ≥ 0.
2.3 An example of strictly convex and strictly sub-additive cost function

with positive fixed cost
Now consider the following cost function;

𝑐(𝑥) = 𝑥𝑛(𝑥 + 1)𝑛−1 + 𝑛 − 1, 𝑥 ≥ 0, (2)

where 𝑛 is a natural number which is larger than 1. The first order and the second order
derivatives of 𝑐(𝑥) are 𝑐′(𝑥) = 𝑥𝑛−1(𝑥 + 𝑛)(𝑥 + 1)𝑛 > 0,
and 𝑐″(𝑥) = (𝑛 − 1)𝑛𝑥𝑛−2(𝑥 + 1)𝑛+1 > 0.
Thus, 𝑐(𝑥) is an increasing and strictly convex function. The fixed cost is 𝑛 − 1 > 0. Let
us check its sub-additivity in the following theorem.

Theorem 1. The cost function in (2) is strictly sub-additive.

Proof. We prove this theorem by mathematical induction. Let

𝑤𝑘 = [𝑐(𝑥 + 𝑦) − 𝑐(𝑥) − 𝑐(𝑦)]|𝑛=𝑘 ,
and 𝑤𝑘+1 = [𝑐(𝑥 + 𝑦) − 𝑐(𝑥) − 𝑐(𝑦)]|𝑛=𝑘+1 .
We have 𝑤𝑘 = − 𝐴(𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 ,
and 𝑤𝑘+1 = − 𝐵(𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 ,
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Figure 1: An example of 𝑐(𝑥) when 𝑛 = 2
where

𝐴 =𝑘(𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 − (𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘+ 𝑥𝑘+1(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 + 𝑥𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘+ (𝑥 + 1)𝑘𝑦𝑘+1(𝑥 + 𝑦 + 1)𝑘 + (𝑥 + 1)𝑘𝑦𝑘(𝑥 + 𝑦 + 1)𝑘− (𝑥 + 1)𝑘𝑦(𝑦 + 1)𝑘(𝑥 + 𝑦)𝑘 − 𝑥(𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦)𝑘 − (𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦)𝑘,
and

𝐵 =𝑘(𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 + 𝑥𝑘+1(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 + (𝑥 + 1)𝑘𝑦𝑘+1(𝑥 + 𝑦 + 1)𝑘− (𝑥 + 1)𝑘𝑦(𝑦 + 1)𝑘(𝑥 + 𝑦)𝑘 − 𝑥(𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦)𝑘
First consider a case where 𝑛 = 2. Then, we obtain

𝑤2 = −𝑥2 + 𝑥𝑦 + 2𝑥 + 𝑦2 + 2𝑦 + 1(𝑥 + 1)(𝑦 + 1)(𝑥 + 𝑦 + 1) < 0.
Thus, 𝑐(𝑥) is strictly sub-additive when 𝑛 = 2. Now suppose that it is strictly sub-additive
when 𝑛 = 𝑘, and consider a case where 𝑛 = 𝑘 + 1. Assume𝑤𝑘 < 0. Comparing𝑤𝑘+1 and𝑤𝑘, we get

𝑤𝑘+1 − 𝑤𝑘 = − 𝐶(𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 .
6
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Figure 2: An illustration of 𝑤𝑛 when 𝑛 = 2 and 𝑦 = 5
where

𝐶 =(𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 − 𝑥𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘− (𝑥 + 1)𝑘𝑦𝑘(𝑥 + 𝑦 + 1)𝑘 + (𝑥 + 1)𝑘(𝑦 + 1)𝑘(𝑥 + 𝑦)𝑘.
Since 𝐶 is reduced to

𝐶 =[(𝑥 + 1)𝑘 − 𝑥𝑘](𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 + (𝑥 + 1)𝑘[(𝑦 + 1)𝑘(𝑥 + 𝑦)𝑘 − 𝑦𝑘(𝑥 + 𝑦 + 1)𝑘]=[(𝑥 + 1)𝑘 − 𝑥𝑘](𝑦 + 1)𝑘(𝑥 + 𝑦 + 1)𝑘 + (𝑥 + 1)𝑘[(𝑦2 + 𝑥𝑦 + 𝑦 + 1)𝑘 − (𝑦2 + 𝑥𝑦 + 𝑦)𝑘] > 0,
we find 𝑤𝑘+1 − 𝑤𝑘 < 0.
Because we assume 𝑤𝑘 < 0, this implies 𝑤𝑘+1 < 0. Therefore, 𝑐(𝑥) is sub-additive for any
value of 𝑛.
In Figure 1 we illustrate 𝑐(𝑥), 𝑐′(𝑥) and 𝑐″(𝑥) assuming 𝑛 = 2. Also in Figure 2 we

illustrate the relation between the value of 𝑐(𝑥 + 𝑦) − 𝑐(𝑥) − 𝑐(𝑦) and 𝑥 when 𝑛 = 2 and𝑦 = 5. 𝑐(𝑥 + 𝑦) − 𝑐(𝑥) − 𝑐(𝑦) < 0means that 𝑣(𝑥 + 𝑦) − 𝑣(𝑥) − 𝑣(𝑦) is smaller than 𝑛 − 1.
In Figure 3 we illustrate the value of 𝑣(𝑥 + 𝑦) − 𝑣(𝑥) − 𝑣(𝑦) assuming 𝑛 = 2 and 𝑦 = 5.𝑣(𝑥 + 𝑦) − 𝑣(𝑥) − 𝑣(𝑦) is as follows.

𝑣(𝑥 + 𝑦) − 𝑣(𝑥) − 𝑣(𝑦) = 𝐷(𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ,
7
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Figure 3: An illustration of 𝑣(𝑥 + 𝑦) − 𝑣(𝑥) − 𝑣(𝑦) when 𝑛 = 2 and 𝑦 = 5
where

𝐷 =(𝑥 + 1)𝑛𝑦(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 + 𝑥(𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛+ (𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 − 𝑥𝑛+1(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛− 𝑥𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 − (𝑥 + 1)𝑛𝑦𝑛+1(𝑥 + 𝑦 + 1)𝑛 − (𝑥 + 1)𝑛𝑦𝑛(𝑥 + 𝑦 + 1)𝑛.
3 Extension to a case where 𝑛 is a real number
We extend the result in the previous section to a case where 𝑛 is a real number. In this
section we assume 𝑥 > 0 and 𝑦 > 0. Again consider the following cost function.

𝑐(𝑥) = 𝑥𝑛(𝑥 + 1)𝑛−1 + 𝑛 − 1, 𝑥 > 0.
Now 𝑛 is a real number larger than 1. Let

𝜑(𝑥) = (𝑥 + 1𝑥 )𝑥 .
As a preliminary result we show

Lemma 3. 𝜑(𝑥) is increasing with respect to 𝑥.
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Proof. We have 𝜑(𝑥) = 𝑒ln(𝑥+1𝑥 )𝑥 = 𝑒𝑥 ln(𝑥+1𝑥 ).
Then, 𝜑′(𝑥) = 𝜑(𝑥) (ln 𝑥 + 1𝑥 − 1𝑥 + 1) .
Let 𝜓(𝑥) = 𝜑′(𝑥)𝜑(𝑥) = (ln 𝑥 + 1𝑥 − 1𝑥 + 1) .
Differentiating this with respect to 𝑥, we get

𝜓′(𝑥) = − 1𝑥(𝑥 + 1) + 1(𝑥 + 1)2 < 0.
Thus,𝜓(𝑥) is decreasingwith respect to𝑥, andwehave lim𝑥→∞ 𝜓(𝑥) = 0 because lim𝑥→∞ 𝑥+1𝑥 =1. Then, 𝜓(𝑥) > 0. Since 𝜑(𝑥) > 0, we obtain 𝜑′(𝑥) > 0.
Let 𝑤𝑛 = 𝑐(𝑥 + 𝑦) − 𝑐(𝑥) − 𝑐(𝑦), 𝑥 > 0, 𝑦 > 0.

This lemma means (𝑥 + 1𝑥 )𝑥 < 𝑒 = lim𝑥→∞ (𝑥 + 1𝑥 )𝑥 ,
or ln (𝑥 + 1𝑥 )𝑥 < 1.
Also it implies (𝑥 + 𝑦 + 1𝑥 + 𝑦 )𝑥+𝑦 > (𝑦 + 1𝑦 )𝑦 for 𝑥 > 0, 𝑦 > 0. (3)

We show the following theorem.

Theorem 2. 𝑐(𝑥) is strictly sub-additive when 𝑛 is a real number larger than 1.
Proof. First when 𝑛 = 1, 𝑐(𝑥) = 𝑥. Then, 𝑤1 = 0. We show that 𝑤𝑛 is decreasing with
respect to 𝑛. We have

𝑤𝑛 = (𝑥 + 𝑦)𝑛(𝑥 + 𝑦 + 1)𝑛 − 𝑥𝑛(𝑥 + 1)𝑛 − 𝑦𝑛(𝑦 + 1)𝑛 − (𝑛 − 1).
Differencing 𝑤𝑛 with respect to 𝑛 yields𝑑𝑤𝑛𝑑𝑛 = − 𝐸(𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ,
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Figure 4: An example of 𝑤𝑛 when 𝑥 = 10 and 𝑦 = 5
where

𝐸 =(𝑥 + 1)𝑛𝑦(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 ln(𝑥 + 𝑦 + 1) + 𝑥(𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 ln(𝑥 + 𝑦 + 1)+ (𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 ln(𝑥 + 𝑦 + 1) − (𝑥 + 1)𝑛𝑦(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 ln(𝑥 + 𝑦)− 𝑥(𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 ln(𝑥 + 𝑦) − (𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 ln(𝑥 + 𝑦)− (𝑥 + 1)𝑛𝑦𝑛+1(𝑥 + 𝑦 + 1)𝑛 ln(𝑦 + 1) − (𝑥 + 1)𝑛𝑦𝑛(𝑥 + 𝑦 + 1)𝑛 ln(𝑦 + 1)+ (𝑥 + 1)𝑛𝑦𝑛+1(𝑥 + 𝑦 + 1)𝑛 ln(𝑦) + (𝑥 + 1)𝑛𝑦𝑛(𝑥 + 𝑦 + 1)𝑛 ln(𝑦)− 𝑥𝑛+1(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln(𝑥 + 1) − 𝑥𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln(𝑥 + 1)+ 𝑥𝑛+1(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln(𝑥) + 𝑥𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln(𝑥)+ (𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛.
𝐷 is reduced to

𝐷 =(𝑥 + 𝑦 + 1)(𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 ln 𝑥 + 𝑦 + 1𝑥 + 𝑦 − (𝑥 + 1)𝑛𝑦𝑛(𝑦 + 1)(𝑥 + 𝑦 + 1)𝑛 ln 𝑦 + 1𝑦− 𝑥𝑛(𝑥 + 1)(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln 𝑥 + 1𝑥 + (𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛.
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Since ln (𝑥+1𝑥 )𝑥 < 1, we obtain
𝐷 >(𝑥 + 𝑦 + 1)(𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛 ln 𝑥 + 𝑦 + 1𝑥 + 𝑦 − (𝑥 + 1)𝑛𝑦𝑛(𝑦 + 1)(𝑥 + 𝑦 + 1)𝑛 ln 𝑦 + 1𝑦− 𝑥𝑛(𝑥 + 1)(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln 𝑥 + 1𝑥 + (𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln (𝑥 + 1𝑥 )𝑥 .
This is rewritten as

𝐷 >(𝑥 + 𝑦 + 1)(𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛−1 ln (𝑥 + 𝑦 + 1𝑥 + 𝑦 )𝑥+𝑦
− (𝑥 + 1)𝑛𝑦𝑛−1(𝑦 + 1)(𝑥 + 𝑦 + 1)𝑛 ln (𝑦 + 1𝑦 )𝑦
− 𝑥𝑛−1(𝑥 + 1)(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln (𝑥 + 1𝑥 )𝑥
+ (𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln (𝑥 + 1𝑥 )𝑥 .

From (3) (𝑥+𝑦+1𝑥+𝑦 )𝑥+𝑦 > (𝑦+1𝑦 )𝑦. Therefore, we obtain
𝐷 >(𝑥 + 𝑦 + 1)(𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦)𝑛−1 ln (𝑦 + 1𝑦 )𝑦

− (𝑥 + 1)𝑛𝑦𝑛−1(𝑦 + 1)(𝑥 + 𝑦 + 1)𝑛 ln (𝑦 + 1𝑦 )𝑦
− 𝑥𝑛−1(𝑥 + 1)(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln (𝑥 + 1𝑥 )𝑥
+ (𝑥 + 1)𝑛(𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛 ln (𝑥 + 1𝑥 )𝑥

=(𝑥 + 𝑦 + 1)(𝑥 + 1)𝑛(𝑦 + 1)[(𝑦 + 1)𝑛−1(𝑥 + 𝑦)𝑛−1 − 𝑦𝑛−1(𝑥 + 𝑦 + 1)𝑛−1] ln (𝑦 + 1𝑦 )𝑦
+ (𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛(𝑥 + 1)[(𝑥 + 1)𝑛−1 − 𝑥𝑛−1] ln (𝑥 + 1𝑥 )𝑥

=(𝑥 + 𝑦 + 1)(𝑥 + 1)𝑛(𝑦 + 1)[(𝑥𝑦 + 𝑦2 + 𝑥 + 𝑦)𝑛−1 − (𝑥𝑦 + 𝑦2 + 𝑦)𝑛−1] ln (𝑦 + 1𝑦 )𝑦
+ (𝑦 + 1)𝑛(𝑥 + 𝑦 + 1)𝑛(𝑥 + 1)[(𝑥 + 1)𝑛−1 − 𝑥𝑛−1] ln (𝑥 + 1𝑥 )𝑥 > 0.

Thus, we get 𝑑𝑤𝑛𝑑𝑛 < 0.
Since 𝑤1 = 0, 𝑤𝑛 < 0 for 𝑛 > 1. Therefore, we conclude that for 𝑥 > 0 𝑐(𝑥) is strictly

sub-additive when 𝑛 is a real number larger than 1.
In Figure 4 we illustrate𝑤𝑛 assuming 𝑥 = 10, 𝑦 = 5. In Figure 5 we present an example

of 𝑐(𝑥) assuming 𝑛 = √2.
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Figure 5: An example of 𝑐(𝑥) when 𝑛 = √2
4 Concluding Remark
We have found a cost function which is strictly convex and strictly sub-additive with posi-
tive fixed cost. As we see in Figure 1 and 5, 𝑐(𝑥) is very close to a linear function although
it is strictly convex.
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