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Abstract

We present a general equilibrium dynamic model that characterizes the gap between optimal and

equilibrium fertility and investment in human capital. In the model, the aggregate production function

exhibits increasing returns to population arising from specialization but households face the standard

quantity-quality trade-off when deciding how many children they have and how much education these

children receive. In the benchmark model, we solve for the equilibrium and optimal levels of fertility

and investment per child and show that competitive fertility is too low and investment per child too

high. We next introduce mortality of young adults in the model and assume that households have a

precautionary demand for children. Human capital investment raises the likelihood that a child survives

to the next generation. In this setup, the model endogenously generates a demographic transition but,

since households do not internalize the positive effects of a larger population on productivity and the

negative effects of human capital on mortality, the demographic transition takes place much later in the

equilibrium solution compared with the efficient solution. The efficient solution produces a demographic

transition 10000 years earlier than the equilibrium solution. Our model can be interpreted as a bridge

between the literature on endogenous demographic transitions and the scarce papers that study welfare

issues associated with fertility and human capital decisions. Moreover, our results can be used to

shed light on understanding demographic transitions in currently developing countries and to formulate

policy recommendations to enhance welfare during these transitions.

1 Introduction

In this paper we present a theoretical model that characterizes the equilibrium and efficient fertility rate

and investment per children. Due to the presence of an agglomeration economy, arising from specialization,

the competitive equilibrium results in a too low number of children and too much investment per child.

With high constant mortality, there can be no difference between the efficient and equilibrium solutions for

fertility and human capital investment. However if mortality declines as a function of human capital, then

there can be dramatic differences between the efficient and equilibrium solutions. The mechanism through

which this gap is generated is a strong decrease in the precautionary demand for children as a response

∗We thank Michal Jerzmanowski, Kevin Tsui, and seminar participants at University of Barcelona, University of Vigo,
GREQAM (Marseille), and the 2013 Warwick Summer School for useful comments. All remaining errors are ours.
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to the fall in mortality. These results still hold if one includes coordination costs of specialization. The

only difference is that in this case, human capital accumulates faster along the efficient transition to the

balanced growth path. Finally, the model produces a closed form solution for the quantity-quality children

trade-off that may be easily estimated.

An important contribution of our model is that we use it to have quantitative predictions on the time

series of several variables like fertility, mortality, human capital, and income per capita, as well as the

timing of the demographic transition.

The paper is organized as follows. The next section presents a summary of the related literature. The

theoretical model is developed in Section 3. Section 4 adds mortality to the model and presents results on

the demographic transition. Section 5 shows the numerical solution of the model with mortality. Section 6

concludes the paper.

2 Related Literature

Our paper relates to two different strands of the literature. The first one is the study of welfare properties

associated with fertility and human capital decisions. The concept of an optimal population growth rate and

level has long been discussed by Dasgupta (1969), Samuelson (1975), Razin and Ben-Zion (1975), Nerlove

et al. (1982, 1987), Gigliotti (1983), Willis (1987), Zimmermann (1989), and, more recently, Golosov et al.

(2007). These papers often discuss how to apply the concept of Pareto optimality to questions related to

population, acknowledging the fact that an increase in population by one member increases the welfare of

this individual, even if it decreases the welfare of all the existing population (Eckstein and Wolpin, 1985).

In our model, parents maximize a utility function that depends on their children’s income. We show that

this equilibrium is inefficient because parents do not internalize the positive effect that a larger population

and stock of human capital have on next generation’s income.

Second, our paper contributes to the theoretical literature on the demographic transition. The de-

mographic transition is typically composed of two stages: a mortality transition, characterized by sharp

declines in mortality rates, and a fertility transition where after a brief lag, fertility rates decline much

faster than mortality rates. Altogether, the typical demographic transition then displays a hump-shaped

evolution of a country’s population growth rate. Most of the existing theoretical literature focuses on

analyzing the triggers of the fertility transition, which include an increase in technological progress and

human capital (Galor and Weil, 1999, 2000; Galor and Moav, 2002), an increase in income per capita

(Becker, 1960; Becker and Lewis, 1973, Jones, 2001), a reduction in gender gaps (Goldin, 1990; Galor and

Weil, 1996; Lagerlöf, 2003; Tertilt, 2005, 2006; Doepke and Tertilt; 2009), and a fall in infant mortality

rates (Sah, 1991; Kalemli-Ozcan, 2002). The causes of the mortality transition are better understood. For

instance, Weil (2005) highlights the importance of improvements in the standards of living - mainly the

quantity and quality of food consumed-, improvements in housing and more often washing of clothes, and

investments in public health - clean water and food-, as well as new medical treatments. However, few

formal models endogenize mortality and even fewer analyze the potential effect of declines in mortality

rates on the fertility transition.1

Our paper contributes by explaining both the mortality and the fertility transition in a unified frame-

1Tamura 2006, does endogenize mortality by assuming that the human capital of the adult child raises the survival
probability of the adult child.
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work. The key economic mechanism in our model is the secular decline in mortality rates, combined with

the household’s response in terms of human capital accumulation. While there is strong empirical evidence

that the number of children produced by a couple declines as infant and/or child mortality declines, the

effect that reductions in this mortality have on fertility sharply differs across theoretical models. In the

framework of the Barro-Becker model (Becker and Barro, 1988; Barro and Becker, 1989), Doepke (2004)

and Fernandez-Villaverde (2001) show that a drop in child mortality rates reduces the cost of raising sur-

vivor children, hence increasing net fertility. In contrast, Boldrin and Jones (2002) show that if one modifies

the standard Barro-Becker model so that parents consumption when old directly enters the utility function

of the children (the old-security hypothesis), it is possible to generate a positive correlation between infant

and/or child mortality rates and fertility. One important difference between our paper and Boldrin and

Jones (2002) is that child mortality rates are endogenous in our case, decreasing as the stock of human

capital in the society rises. Moreover, while our model generates a positive correlation between young adult

mortality rates and fertility as in Boldrin and Jones (2002), we emphasize a different channel, namely a

fall in the precautionary demand for children. The implicit assumption we make is that a decline in the

likelihood that children die before adulthood induces a reduction in fertility if parents seek to have an

optimal number of surviving offspring (see Kalemli-Ozcan, 2002, 2003, Tamura 2006, Tamura et al. 2016,

Tamura and Simon 2017).

Another important paper that endogenously links the fall in mortality rates and demographic transitions

is Jones (2001). In his model, the occasional generation of new ideas in a Malthusian economy translates into

a larger population size. This larger population in turn produces more ideas and this raises consumption

per capita, reducing mortality rates and hence triggering a demographic transition. In his model, as in

ours, it is the case that, had agents taken into account the positive effects of a larger population, the

industrial revolution (and the demographic transition) would have taken place much earlier. However,

Jones does not solve for the optimal problem explicitly. Soares (2005) develops a model where reductions

in mortality (but not infant, child, or young mortality) are the main force behind economic development.

His model also generates a demographic transition, where gains in life expectancy at birth are followed by

reductions in fertility and increases in the rate of human capital accumulation. The onset of the transition

is characterized by a critical level of life expectancy at birth, which marks the movement of the economy

from a Malthusian equilibrium to an equilibrium with investments in human capital and the possibility of

long-run growth. Finally, Kalemli-Ozcan (2002) develops a model in which parents have a precautionary

demand for children and so reductions in infant mortality rates induce a fall in fertility and an increase in

investment per child. One important difference with our paper is that she does not use the model to have

predictions on the timing of the demographic transition, nor does she compare the optimal and equilibrium

problem.

3 Theoretical Benchmark

3.1 The Baseline Model

3.1.1 Setup

Consider an economy populated by Pt workers. There is a single consumption good which is produced

using the human capital of Nt workers, where 1 ≤ Nt < Pt. These Nt workers use the following reduced
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form for aggregate output:2

Yt =

{

Nt
∑

i=1

h
1
ω

it

}ω

(1)

where Yt is output at period t, and hit is human capital provided by agent i at period t. The parameter ω >

1 represents the degree of increasing returns to population at the aggregate level, arising from specialization

returns as in Rosen (1982) and Tamura (1992, 2002, 2006). Note that there are diminishing returns

to individual human capital since ω is larger than one, however there is constant returns to the entire

distribution of human capital. Within the production coalition, workers are paid the marginal product of

their human capital. Let yjt be a typical worker j’s earnings. Then:

yjt =

{

Nt
∑

i=1

h
1
ω

it

}ω−1

h
1−ω
ω

jt hjt

=

{

Nt
∑

i=1

h
1
ω

it

}ω−1

h
1
ω

jt (2)

where the last equality arises because in the equilibrium that we consider hjt = hjt, for any j and t. It is

evident that earnings of all Nt members of the production coalition exactly exhausts output:

Yt =

Nt
∑

j=1

yjt (3)

This formulation is convenient because it allows us to have increasing returns but also firms that behave

competitively, in a similar spirit as in Romer (1986). There are two restrictions on the number of workers

in a production coalition. First, it cannot fall below 1, which represents autarky. Second, we impose a

restriction that the number of workers cannot exceed either a size determined by coordination costs, or a

fixed proportion, ξ, of the total population.3 Thus we assume:

Nt = min{max{1, [σht]λ},max{1, ξPt}}. (4)

Thus while market specialization can increase, that is the number of distinct workers cooperating to pro-

duce the single consumption good can increase, it can never exceed the population of the economy.4 What

determines the scope of specialization? Since the number of workers in the production coalition is deter-

mined by the average human capital ht, or the population of the economy, ξPt, there is an external effect

of human capital and population. During autarkic production, human capital accumulation does not affect

the number of workers within a production coalition. Therefore, absent any other external effects of human

capital, there would be no difference in the human capital accumulation of workers in equilibrium versus

workers in an efficient allocation. Once production moves out of autarky, Nt > 1, there are two long run

possibilities. First the coordination costs may not bind, and market coalition is given by Nt = ξPt, and

grows at the rate of population growth. The second possibility is that the coordination costs always binds,

2See Tamura (1992) for microfoundations of this functional form.
3All we assume is 0 < ξ ≤ 1.
4We have in mind a population Pt that can exceed the population of a small country like, for instance, Denmark. However

it seems reasonable that much specialization can be restricted to a large metropolitan area. Hence any increasing returns to
specialization are inherently smaller than a country like, for example, the United States.
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and Nt = [σht]
λ. In this case the market grows at the constant rate equal to the human capital growth rate

raised to the λ power. We present more on the long run balanced growth path in the numerical solutions

section.

Returning to production, under symmetry output is given by:

Yt = Nω
t ht

or, in per capita terms

yt = Nω−1
t ht = Ztht

In an equilibrium solution, individuals do not take into account the positive external benefit their human

capital accumulation or their fertility provides for future specialization gains. Furthermore they do not

take into account that their human capital is complementary to other workers, and by extension the human

capital investments they make on their children’s human capital has effects on wages of all other workers in

that generation. Hence they treat the time path of total factor productivity, Zt as exogenous technological

progress.5

The economy is populated by individuals who live for two periods and a family consists of a parent and

his children. In the first period individuals receive education provided by their parent. In the second they

form their own household, work, choose their fertility, rear and educate their children.

We first focus on the stationary balanced growth world without mortality.6 Parents care about their

own consumption, c, the number of children, x, they have, and the income, y, of their typical child. A

parent receives no utility from leisure, so they only work or spend time rearing and educating their children.

Thus the typical generation t parent i wishes to maximize:

αlncit + (1− α)lnxit + αβlnyit+1 (5)

The typical t period parent’s budget constraint is

cit = withit [1− xit(θ + τit)] (6)

where θ is the unavoidable time cost of child rearing, and τit is time spent teaching each child. Human

capital next period depends on the investment time per child τit i.e.

hit+1 = Ahitτ
µ
it (7)

where µ > 0 and A > 1 is an efficiency parameter.7

3.1.2 Competitive Equilibrium

In the competitive equilibrium we have price taking behavior. Individuals are paid the marginal product

of their human capital. The typical parent takes the wage per unit of human capital as given, and does

5Of course in equilibrium we have
Zt+1

Zt
=

(

Nt+1

Nt

)ω−1

= gω−1
n

6Later on we will introduce mortality to show that the efficient solution involves a different emphasis altogether.
7In previous work, Tamura (1991, 1996, 2006) an externality of human capital is posited in the accumulation technology.

In those models the externality allowed for convergence in human capital along the accumulation path. Since in all simulations
we assume identical agents, we abstract from this additional externality.

5



not assume that his/her investment decisions have any effect on this wage, nor on the wage of any other

worker. Given that the production technology is constant returns to scale in the distribution of human

capital in the economy, paying each worker their marginal product exactly exhausts output. To see this,

we note that for the typical worker j the wage per unit of human capital for worker j is given by:8

wit =







Nt
∑

j=1

h
1
ω

jt







ω−1

h
1
ω
−1

it (8)

yit =







Nt
∑

j=1

h
1
ω

jt







ω−1

h
1
ω

it (9)

Observe that the wage per unit of human capital for worker i is decreasing in human capital of worker i.

However (9) shows that earnings, yit for worker i is increasing in worker i ’s human capital. Utility for a

parent i in generation t can be written as:

U(hit) = max
{hit+1,xit}

{α ln cit + (1− α) lnxit + αβlnyit+1}

= α max
{hit+1,xit}

{

lnwit + lnhit + ln(1− xit[θ + τit]) +
1− α

α
lnxit + βlnhit+1 + βlnwit+1

}

The first order condition with respect to fertility produces the following.

∂

∂xit
= 0 ⇔ α(θ + τit)

1− xit(θ + τit)
=

1− α

xit

xit(θ + τit) = 1− α (10)

The first-order condition shows that the fraction of resources spent on the next generation is constant and

equal to 1− α. Now consider the first order condition with respect to a child’s human capital:

∂

∂hit+1
= 0 ⇔ αxitτit

(1− xit[θ + τit])µhit+1
=

αβ

hit+1

xitτit = αβµ (11)

Combining the results in (10) and (11), we find the equilibrium stationary fertility and investment time:

xeq =
1− α− αβµ

θ
(12)

τeq =
αβµθ

1− α− αβµ
(13)

One immediate parameter restriction is evident:

1− α− αβµ > 0

8One can assume that there are Nt different types of workers, each type with an initial measure of 1, and each worker is a
set of measure zero of the number of workers of their type. In the equilibrium solution, a parent completely ignores the effect
of human capital investment on their children’s wage or the wage of any one of that generation.
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Intuitively, an increase in β - i.e. if parents care more about their children’s income - reduces fertility and

increases the investment in children’s human capital. Similarly, a higher θ obviously reduces fertility and

increases investment per child since the fixed cost of rearing a child is now higher. Finally, an increase in

µ also increases investment in children’s human capital, since the return to this investment is now higher.9

3.1.3 Efficient Solution

In the efficient solution, we consider the case in which a social planner internalizes the positive externality

of population growth on TFP growth, as well as the positive externality of human capital investment on

the next generation wages. For convenience and without loss of generality we focus on the efficient solution

in which all parents are treated equally.10 We consider a social planner that maximizes the utility of adults

within a production coalition, that is for the members of the current production coalition Nt.
11 The social

planner’s problem can be written as:

max
{cjt,xjt,hjt+1}

Nt
j=1







1

Nt

Nt
∑

j=1

[αlncjt + (1− α)lnxjt + αβlnyjt+1]







(14)

subject to the resource constraint:

Nt
∑

j=1

cjt ≤







Nt
∑

j=1

h
1
ω

jt(1− xjt[θ + τjt])
1
ω







ω

(15)

Let Λ be the multiplier on the resource constraint. The first order condition with respect to consumption

for the typical parent i is given by:
∂

∂cit
= 0 ⇔ α

Ntcit
= Λ (16)

Thus all parents receive the same consumption.12 Assume for the time being the possibility that production

coalition size is bigger than 1, and is already determined by ξPt, that is the production coalition is a constant

proportion of the population. We will focus on the homogeneous population case, but for now we allow

the social planner to pick individual parental fertility by agent type, 1, ..., Nt. The first order condition for

optimal fertility, xit, can be written as:

1

Nt











1− α

xit
+ αβ

Nt
∑

j=1

(ω − 1)
{

∑Nt
s=1 xsth

1
ω

st+1

}ω−2

h
1
ω

jt+1h
1
ω

it+1

yjt+1











=

Λ







Nt
∑

j=1

h
1
ω

jt(1− xjt[θ + τjt])
1
ω







ω−1

h
1
ω

it (1− xit[θ + τit])
1
ω
−1[θ + τit] (17)

9These results are similar to those in Tamura (2002).
10It is simple to show that this has no effect on the human capital investment decision in the cases with unequal Pareto

weights.
11We ignore cases where the population is not integer divisible by Nt.
12Again, if the Pareto weights were different, then two parents could receive different consumption values, but it would not

effect the accumulation path of human capital.
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The top line represents the marginal benefits of fertility. The second term in the curly brackets is the full

effect of additional fertility on the earnings of the generation t+1 adults. Notice that we can keep the

number of types of workers constant, and adjust the population of each type in generation t+1 by xjt. The

bottom line represents the marginal cost of fertility in terms of foregone current output.

The first order condition with respect to human capital investment, hit+1, can be written as:

αβ

ωNt











Nt
∑

j=1

(ω − 1)
{

∑Nt
s=1 xsth

1
ω

st+1

}ω−2

h
1
ω

jt+1xith
1
ω
−1

it+1

yjt+1
+

{

∑Nt
s=1 xsth

1
ω

st+1

}ω−1

h
1
ω
−1

it+1

yit+1











=

Λ







Nt
∑

j=1

h
1
ω

jt(1− xjt[θ + τjt])
1
ω







ω−1

h
1
ω

it (1− xit[θ + τit])
1
ω
−1xitτit

µhit+1
(18)

Looking at the marginal benefits term, the top line of equation (18), the first term in the curly brackets

is the effect of higher human capital for the ith type generation t+1 adult on all wages of t+1 workers.

The second term in the curly brackets is the direct effect higher human capital on earnings of the ith type

generation t+1 worker. In both cases the social planner internalizes the effect on both the wage per unit

of human capital as well as the direct effect, the second term. The bottom line is the marginal cost of

additional human capital for the ith type generation t+1 adult.

We now impose symmetry, that is we assume that all individuals are of the same type, hit = hjt, ∀ i, j,
t. Under symmetry, utilizing the definition of yjt+1, our Euler equation with respect to fertility can now

be written as:
1− α+ αβ(ω − 1)

xt
= ΛNω

t ht(θ + τt) (19)

Similarly we can write our Euler equation with respect to human capital investment as:

αβµ = ΛytNtxtτt (20)

Using the Euler equation for consumption and the resource constraint we can solve for Λ:

Λ =
α

Nω
t ht(1− xt[θ + τt])

(21)

The fraction of resources spent on the next generation is given by:

xt(θ + τt) =
1− α+ αβ(ω − 1)

1 + αβ(ω − 1)
(22)

Differentiating with respect to ω − 1, it is easy to show that the share of resources spent on the next

generation is increasing in the gains from specialization. Obviously when there is no aglommeration return

to market size, ω = 1, then the efficient and equilibrium solutions coincide. Thus for economies in which

ω > 1, the efficient solution involves a greater share of current output spent on the next generation. This

occurs via a rise in fertility as we show below.
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Using this we can solve for the efficient fertility and efficient investment rate:

xeff =
1− α− αβµ+ αβ(ω − 1)

θ[1 + αβ(ω − 1)]
(23)

τeff =
αβµθ

1− α− αβµ+ αβ(ω − 1)
(24)

It is clear that an increase in ω − 1 induces a higher fertility rate since the positive external effect of

population on output per capita and wages is now higher. Of course, the corresponding level of investment

per child decreases as ω − 1 increases.

3.1.4 Comparing Both Setups

In this section we compare the different solutions of the equilibrium problem and the efficient problem. It

is easy to show that fertility is higher in the efficient solution than the equilibrium solution. It is also easy

to show that human capital investment is slower in the efficient solution compared with the equilibrium

solution. Finally, we can show that utility is always higher in the efficient solution compared with the

equilibrium solution. Non trivially however, economic growth can be higher in the equilibrium solution

than in the efficient solution. However for large enough gains from specialization, higher ω, the growth rate

in the efficient solution exceeds that of the equilibrium solution.

Comparing fertility between the two cases:

xeff =
1− α− αβµ+ αβ(ω − 1)

θ[1 + αβ(ω − 1)]
>

1− α− αβµ

θ
= xeq

⇐⇒ 0 > −α(1 + βµ)αβ(ω − 1),

which holds ∀ ω > 1. Next we compare human capital investment rates from the two cases:

τeff =
αβµθ

1− α− αβµ+ αβ(ω − 1)
<

αβµθ

1− α− αβµ
= τeq

⇐⇒ αβ(ω − 1) > 0,

which holds ∀ ω > 1. Next we show that utility is always higher in the efficient solution compared with

the equilibrium solution: Assume that the population is identical between the efficient and equilibrium

problems to start, all individuals have the same human capital, ht, and that the production coalition is

the same size as well, Nt = ξPt. Writing out utility of the typical parent with ht human capital for both

equilibrium and efficient problems, and canceling out identical terms we end up with:

V eff (ht)− V eq(ht) = (1− α− αβµ+m)ln(
1− α− αβµ+m

1− α− αβµ
)− (1 +m)ln(1 +m)

m = αβ(ω − 1)

Observe that when there is no agglomeration return to specialization, ω = 1, then m = 0, and there is no

difference between the efficient utility and equilibrium utility. Taking the derivative of utility difference

9



with respect to m we get:

∂(V eff (ht)− V eq(ht)

∂m
= ln(

1− α− αβµ+m

1− α− αβµ
) + 1− ln(1 +m)− 1

∂(V eff (ht)− V eq(ht)

∂m
= ln(

1− α− αβµ+m

(1− α− αβµ)(1 +m)
) > 0

⇐⇒ m > 0

So for all values with positive agglomeration economy gains from specialization, ω > 1,m > 0, we have the

gap between the efficient utility and the equilibrium utility is positive.

Now we show that growth in output per worker cannot be so easily ordered. For small enough gains

in specialization, equilibrium growth can exceed efficient growth. For larger values of specialization gains,

efficient growth can exceed equilibrium growth.

Case 1: Assume the following parameter configuration, λ = 5:

α =
5

8
, β =

3

5
, µ =

1

2
, θ =

1

8
, A = 5, ω = 1.35

xeq = 0.98, τeq = .2066, xeff = 1.85, τeff = .096

Γeq = (xeq)ω−1A(τeq)µ = 2.2568

Γeff = (xeff )ω−1A(τeff )µ = 1.9198

Case 2: Assume the following parameter configuration, λ = 5:

α =
5

8
, β =

3

5
, µ =

1

2
, θ =

1

8
, A = 5, ω = 1.75

xeq = 0.98, τeq = .2066, xeff = 2.62, τeff = .059

Γeq = (xeq)ω−1A(τeq)µ = 2.2387

Γeff = (xeff )ω−1A(τeff )µ = 2.5060

Thus we have the interesting possibility that while contemporaneous utility is higher under an efficient

solution compared with the contemporaneous equilibrium solution, if economic growth is more rapid under

the equilibrium solution eventually those born in the future would be happier due to their higher human

capital compared with those equivalent generation arriving from the efficient solution.13 Notice that we

present the solutions for λ = 5. We specified the value of λ because we had to ensure that the production

coalition grows at the rate of population growth. For values of λ smaller than 5, the efficient fertility rate

could produce a human capital growth rate that is too slow to support the growth rate of the production

coalition at the rate of population growth. The critical value of λ is given by:

λ =
ln[1− α− αβµ+ αβ(ω − 1)]− lnθ − ln[1 + αβ(ω − 1)]

lnA+ µln[1− α− αβµ+ αβ(ω − 1)]
(25)

In the numerical solutions section we will present results where the coordination costs fall too slowly in

some cases so that the balanced growth path in the efficient solution is constrained. This produces a feature

13Recall that the efficient solution maximizes the utility of the representative parent alive today. The typical parent only
cares about the future through fertility and the income of the typical child. Had a parent cared about the infinitely lived
dynasty, then this result could be overturned.
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quite similar to Galor and Weil (2000) in which reducing the constraint leads to a rise in fertility. In our

case the relaxation of the coordination costs arises as λ increases.

4 Mortality

In this section we add mortality of young adults. In particular we assume that human capital investment

raises the likelihood that a child survives to the next generation. Second we modify the preferences to

introduce a precautionary demand for fertility, as in Tamura (2006), Tamura and Simon (2017) and Tamura,

Simon and Murphy (2016). These are inspired by the seminal work of Kalemli-Ozcan (2002, 2003). We

show that under some simple assumptions human capital accumulation is more rapid under the efficient

solution than the equilibrium solution.

4.1 Equilibrium Solution

Assume that parents care about their own consumption, their number of expected surviving children, and

the earnings of their surviving adult children. Assume preferences can be written as:

αlncit + (1− α)ln[xit(1− δit)]−
δit

2xit(1− δit)
+ αβlnyit+1 (26)

We assume as in Tamura (2006) that parents must educate all their children, and after the education

investment is made, only 1 − δit, of the children survive to adulthood. The term δit
2xit(1−δit)

represents a

precautionary demand for children (see Kalemli-Ozcan, 2003). Intuitively, for a given mortality of young

adults, increases in fertility reduce the disutility generated by the death of a family’s child. Therefore the

budget constraint for the typical parent is given, as before, by (6):

cit = withit [1− xit(θ + τit)] ,

where wit is given above by (8). We assume that human capital accumulation remains as in (7):

ht+1 = Ahtτ
µ
t

where µ > 0 and A > 1 is an efficiency parameter. Importantly, we assume that the cumulative mortality

of young adults is a declining function of the average human capital of their generation:14

δit = min{δ̂,∆exp(−ψ1h̄
ψ2

it+1)}, (27)

where h̄it+1 is the average human capital of adult generation t+ 1 and ψ1 and ψ2 are positive parameters.

Hence whether a child born of a t generation parent, and hence a t+1 generation adult, survives is an

increasing function of the average human capital of their generation.15 Labeling terms that are not affected

14This is similar to that assumed in Tamura (2006).
15Tamura (2006) argues that this is the case if modern sanitation and modern personal hygiene are best at reducing early

mortality. He allows for international spillovers like development of antibiotics and vaccines, which are abstracted from here.
Also note, that unless human capital exceeds a critical threshold, it does not affect the mortality rate. The critical value

solves: ln δ̂ − ln∆− ψ1h̄
ψ2

it+1
= 0.
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by parental choices as Û , the optimization problem for the parent can be written as:

V (hit) = max
{hit+1,xit}

{

α ln cit + (1− α) lnxit −
δit

2xit(1− δit)
+ αβln(yit+1)

}

= Û + max
{hit+1,xit}

{

αln(1− xit[θ + τit]) + (1− α)lnxit −
δit

2xit(1− δit)
+ αβlnhit+1

}

The first order condition with respect to fertility and human capital investment are:

α[θ + τit]

1− xit[θ + τit]
=

1− α

xit
+

δit
2x2it(1− δit)

(28)

αxitτit
1− xit[θ + τit]

= αβµ (29)

Observe that the first order condition on optimal human capital investment in the equilibrium model is

identical whether mortality is non-zero or not. The only way in which mortality risk affects human capital

investment is through the fertility choice. This is precisely the case since we assumed that the entire effect

of human capital investment on young adult mortality is external to the parent. To solve this problem, we

create a grid on human capital investment rates given by:

τi = { i(1− θ)

k
}ki=1 (30)

Then for each value of τi we compute the mortality rate for these young adults:

δi = min{δ̂,∆exp(−ψ1[Ahtτ
µ
i ]
ψ2)}.

We use (28) to solve for the fertility choice for each investment rate on the grid. The fertility choice, for a

given investment rate solves the following quadratic equation:

ax2it + bxit + c = 0 (31)

a = −(θ + τit)

b = 1− α− δ(hit+1)(θ + τit)

2[1− δ(hit+1)]

c =
δ(hit+1)

2[1− δ(hit+1)]

xit =
−b−

√
b2 − 4ac

2a

If we define m = δ
2(1−δ) , then it is easy to show that ∂x

∂m
> 0. So in a world with mortality risk, for any

choice of human capital investment, fertility is higher than a world with no mortality risk. After solving

for the fertility choice as a function of the investment rate, we verify that (29) holds. For those values

that do not solve the equilibrium we discard these potential equilibrium solutions. From this reduced set

of investment and fertility candidate pairs, the utility maximizing choice is selected.

12



4.2 Efficient Solution

Here we solve the planner’s problem, and we only examine the case with identical individuals. Thus we focus

on the equal weight solution, and hence the representative parent. There are several regions that must be

solved in order to characterize the efficient path. In the earliest days, human capital will be sufficiently low

that no specialization occurs, and hence autarky is the method of production. Human capital accumulation

may affect the mortality of the young adult, but not determine the scale of the production coalition. In the

final stage, either the coordination technology will determine the size of the production coalition, or it will

be determined by the fixed proportion of the total population, c.f. (4). Since all individuals are identical,

the earnings of a typical worker are given by:

yit+1 = Nω−1
t+1 hit+1

Nt+1 = min{max {1, [σht+1]
λ},max {1, ξPt+1}}

The planner’s problem can be written as:

max
xit,hit+1

{

αln(1− xit[θ + τit]) + (1− α)[ln(1− δ(hit+1)) + lnxit]−
δ(hit+1)

2xit[1− δ(hit+1)]
+ αβ[(ω − 1)lnNt+1 + lnhit+1]

}

The first order conditions for fertility and human capital investment can be written as:

α(θ + τt)

1− xt[θ + τt]
=

1− α

xt
+

δ(ht+1)

2x2t [1− δ(ht+1)]
+
αβ(ω − 1)

Nt+1

∂Nt+1

∂xt
(32)

αxit
1− xt[θ + τt]

=
αβµ

τt
− 1

1− δ(ht+1)

∂δ(ht+1)

∂τit

{

1− α+
1

2xt[1− δ(ht+1)]

}

+
αβ(ω − 1)

Nt+1

∂Nt+1

∂ht+1
x
∂ht+1

∂τt
(33)

∂δ(ht+1)

∂τt
=







0, if ln δ̂ − ln∆− ψ1h
ψ2

t+1 > 0.

− δ(ht+1)ψ1ψ2µh
ψ2
it+1

τt
if ln δ̂ − ln∆− ψ1h

ψ2

t+1 ≤ 0.

∂Nt+1

∂xt
=







0, if Nt+1 = max {1, [σht+1]
λ} < ξPt+1t+1

Nt(1− δ(ht+1)) if 1 < Nt+1 = ξPt+1 ≤ [σht+1]
λ

∂Nt+1

∂ht+1

∂ht+1

∂τt
=







0, if Nt+1 = max {1, ξPt+1} < [σht+1]
λ

λµσλhλt+1

τt
if 1 < Nt+1 = [σht+1]

λ ≤ ξPt+1

If human capital of the child does not affect the mortality rate of the child, that is ht+1 is below the critical

threshold, and if ∂Nt+1/∂xt = 0 & ∂Nt+1/∂ht+1 = 0 , then the two first order conditions of the social

planner are identical with the first order conditions in the equilibrium solution. Thus for the earliest part

of history, there is no difference in the path of human capital taken in the equilibrium solution and the

efficient solution.

Now consider the range where children’s human capital reduces their mortality, ∂δ/∂τt < 0. Further

assume that the market size could be larger than autarky in the children’s adulthood, i.e. Nt+1 > 1. We

use the same solution algorithm to solve for the efficient choice of fertility and human capital investment

as we employed in solving for the equilibrium choices. We use a grid on possible investment rates, τt and

13



the implied young adult mortality rate. We let possible investment rates come from the following grid:

τi = { i(1− θ)

k
}ki=1

δi = min{δ̂,∆exp(−ψ1{Ahtτµi }ψ2)}.

The first order condition for efficient fertility is given by (32). If the production coalition is determined by

the evolution of population, then the first order condition for fertility can be written as:

α(θ + τit)

1− xit[θ + τit]
=

1− α+ αβ(ω − 1)

xit
+

δ(hit+1)

2x2it[1− δ(hit+1)]

For any given investment rate τit, this is a quadratic function in xit given by:

ax2it + bxit + c = 0

a = −(θ + τit)(1 + αβ(ω − 1))

b = 1− α+ αβ(ω − 1)− δ(hit+1)(θ + τit)

2[1− δ(hit+1)]

c =
δ(hit+1)

2[1− δ(hit+1)]

xit =
−b−

√
b2 − 4ac

2a

For each investment and ferttilty pair, we compute the utility of the representative parent, and the efficient

solution is the maximizing pair. Unlike in the equilibrium solution, we do not constrain the choice of

investment other than feasibility. Implicitly the investment rate either satisfies (33) if internal, or is a corner

solution. In either case it is generally not equal to the equilibrium choice as (29) and (33) are not identical.

If the production coalition is determined by the coordination technology, i.e. 1 < Nt+1 = [σht+1]
λ < ξPt+1,

then the first order condition for fertility can be written as:

α(θ + τit)

1− xit[θ + τit]
=

1− α

xit
+

δ(hit+1)

2x2it[1− δ(hit+1)]

As with the previous case, for each investment rate τit, the first order condition of fertility is a quadratic

form given by:

ax2it + bxit + c = 0

a = −(θ + τit)

b = 1− α+ αβ(ω − 1)− δ(hit+1)(θ + τit)

2[1− δ(hit+1)]

c =
δ(hit+1)

2[1− δ(hit+1)]

xit =
−b−

√
b2 − 4ac

2a

The solution is the investment rate and fertility pair that maximizes utility. For both the equilibrium

solution and the efficient solution, we produce the time series on population, fertility, mortality, human
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capital, coalition size, real output per capita. The evolution is given by:

hrt+1 = Ahrt (τ
r
t )
µ

δ(hrt+1) = min {δ̂,∆exp(−ψ1{Ahrt (τ rt )µ}ψ2)}
P rt+1 = P rt [1− δ(hrt+1)]x

r
t

wt+1 = (Nr
t+1)

ω−1

r = equilibrium or efficient

5 Numerical Solution

In this section we present numerical solutions to compare and contrast the equilibrium time series with the

efficient time series. One interesting feature displayed is the interplay between human capital growth and

growth of the production coalition. If the long run coalition is bounded by the coordination cost, that is

1 < Nt = [σht]
λ < ξPt, then even with high gains from specialization, a large ω, fertility in the efficient

solution will not be given by (23), but rather x̂eff = [Aτ̂µ]λ. If the long run coalition is bounded by the

maximum fraction of the population, 1 < Nt = ξPt < [σht]
λ, then fertility in the efficient solution will be

given by (23).

Table ?? contains the base parameters used in the numerical solutions. Some parameters are time

invariant, e.g. α, β, θ, σ, and mortality risk is only a function of human capital. Others are step functions

in the human capital stock in the economy, e.g. A and µ. For values of human capital less than or equal

to 4.0, they have one value, and for human capital in excess of 4.0, they have a different value. In the case

of θ and µ, we used the stationary values of equilibrium fertility and investment time, in order to peg their

values. We assumed that in the equilibrium stationary solution, fertility is 1.0001, and τ = .375. Using

(12) and (13) it is easy to see that xeqτeq = αβµ. Thus we solve for the stationary value of µ = xeqτeq

αβ
.

Given µ, our stationary θ = 1−ααβµ
xeq

. In Table ??, we only report values for θ and µ to four significant

values.

There are five cases that we examine. These affect only two parameters, A and λ. Most important

is the different value of λ. As we increase the magnitude of this parameter we increase the growth rate

of the coordinated production coalition. Thus as we increase λ we increase the stationary fertility in the

efficient solution. Notice that in Case 1, the efficient stationary fertility, 0.9000, and is independent of the

aglomeration economy arising from specialization (λ). This maybe surprising at first look. However what

is happening is that the production coalition is bound by [σht]
λ, and population is decreasing. Eventually

the declining population will become the binding constraint, which will then lead to a rise in fertility. This

however has not happened in the solutions by year 5000.16 Moving from Case 1 to Case 5, we observe that

the efficient stationary fertility rises with ω. Fertility rises for every ω value, except for the first, ω = 1.25,

as coordination technology improves, λ increases, until it reaches its stationary value.

As there are 4 values of ω and 5 Cases, that is 5 different coordination technologies, we present the

results of the numerical solutions in two ways. First, for each Case, we present the time series for each

variable of interest for all values of ω for both the equilibrium and the efficient solutions. The variables

16Indeed from 9880 onward fertility is 2.0126, and schooling is 6.84 for ω = 1.25. For ω = 1.50, from 9760 onward fertility
is 2.1206, and schooling is 7.06. From 9640 onward fertility is 2.2418, and schooling is 7.37 for ω = 1.875. From 9480 onward
fertility is 2.3912, and schooling is 7.74 for ω = 2.50.
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Table 1: Parameter Values & Stationary Numerical Solutions

α = 0.55 β = 0.65 θ = .075 δ(ht) = min
{

.74, .9exp(−.015h3t )
}

σ = 1.25
µ = .03295 if h ≤ 4.0 A = 1.5148 if h≤ 4.0

Case 1 Case 2 Case 3 Case 4 Case 5
A 11.25 if h > 4.0 11.25 if h > 4.0 11.25 if h > 4.0 20 if h > 4.0 30 if h > 4.0
µ 1.049 if h > 4.0 1.049 if h > 4.0 1.049 if h > 4.0 1.049 if h > 4.0 1.049 if h > 4.0
λ 1.25 4.50 9.45 5.66 9.77
ω

equilibrium stationary fertility
1.25 1.0001 1.0001 1.0001 1.0001 1.0001
1.50 1.0001 1.0001 1.0001 1.0001 1.0001
1.875 1.0001 1.0001 1.0001 1.0001 1.0001
2.50 1.0001 1.0001 1.0001 1.0001 1.0001

equilibrium stationary schooling: 40τ
1.25 15.0 15.0 15.0 15.0 15.0
1.50 15.0 15.0 15.0 15.0 15.0
1.875 15.0 15.0 15.0 15.0 15.0
2.50 15.0 15.0 15.0 15.0 15.0

efficient stationary fertility
1.25 0.4500 2.0126 2.0126 2.0126 2.0126
1.50 0.4500 2.6970 2.8716 2.8716 2.8716
1.875 0.4500 2.9088 3.1142 3.9407 3.9407
2.50 0.4500 3.1764 3.4213 4.3216 5.3079

efficient stationary schooling: 40τ
1.25 37.0 6.84 6.84 6.84 6.84
1.50 37.0 4.91 4.43 4.43 4.43
1.875 37.0 4.99 4.47 2.90 2.90
2.50 37.0 5.09 4.51 2.94 1.84
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we present are growth rates of income, log of human capital, total fertility rates, mortalityand schooling.

Afterwards we present the time series for each ω in their own graph as we vary the coordination technology.

In this way, the reader can see the comparative dynamics from ω and the comparative dynamics from λ.

Figure ?? contains the time series for per capita income growth. In order to keep things in scale, we

constructed annualized growth rates over 1000 years.17 Thus each observation is given by:

gy =
ln yt+25 − ln yt

1000
, (34)

where t represents adults in generation t, and each period is 40 years. We color code the growth rates; the

green curves are the equilibrium growth rates, and the yellow-orange-red curves are the efficient growth

rates. We did calibrate the equilibrium model to produce a Demographic Transition between 1600 to 2000.

In all 5 cases, the efficient solution has an earlier acceleration in growth, and a much earlier decline in

mortality, over 19000 years earlier! Since the equilibrium parent does not internalize the human capital

externality on survival rates, the timing of the equilibrium Demographic Transition is independent of ω. It

need not be constant across the cases. For Case 1 Figure 2 shows that the equilibrium log human capital

time series, which is independent of the ω but not by Case. This is because Case 4 and Case 5 have a much

larger value of A.

Figure ?? contains the efficient growth rates of income per capita, arranged by ω. One interesting result

is that for every value of ω, Case 1 with the most restrictive coordination technology, lowest λ, has the

lowest growth rate until about 1000, but the highest growth rate in the balanced growth path. This is

because the fertility rate over the remaining period is actually below the equilibrium balanced growth path

fertility. The growth rate for Case 5 is always highest before about 1000, and then has the second highest

growth rate of the cases. Case 3 has the same growth rate as Case 2 until about 1000 and then has the

lowest growth rate. Finally Case 4 has the second highest growth rate before 1000, and the third highest

growth rate after 1000.

Figure ?? contains the time series for log human capital. The demographic transition has accelerated

human capital investment in the efficient solution before falling to a lower balanced growth path value.

For each case, the higher the returns to specialization, greater ω, the lower the rate of human capital

investment, particularly noticeable after 2000. While the rate of human capital investment does not vary

by ω, nor λ in the equilibrium solution, since A changes between Cases 1-3 compared with Case 4 and

5, the rate of growth of human capital is higher for Cases 4 and 5 compared with the identical solutions

for Cases 1-3. The difference between cases for the efficient solutions is more clearly evident in figure ??.

Although in Case 1 the fertility and investment solutions are nearly identical for all values of ω. This is

shown in the first panel of figure ??, where there is almost no difference between the efficient paths.

Figure ?? contains the time series of total fertility rates. We produced total fertility rates by multiplying

fertility in the model solutions by 2. In three of the five cases the efficient solution fertility falls from its

initial values before the equilibrium solution enters into its Demographic Transition. Cases 1, 2 and 4

have lower fertility than the equilibrium solution for roughly 19000 years.18 In Cases 2-5, the balanced

growth path efficient total fertility rates begin to differ by ω, with higher fertility rates for higher values

17We made no effort to calibrate the model with observed long run growth rates. The incredible growth rates that exist
arise from the transition dynamics of expansion of the production coalition.

18The change after a very long stationary solution in all 5 cases of the efficient solution arises because the size of the
production accelerates, even though it is determined by the coordination technology.
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of ω. In Case 5, the long run fertility rates in the efficient solution differ across all four values of ω. The

equilibrium time series path of total fertility reproduces the long classical-Malthusian world, interrupted by

a brief rapid Demographic Transition, followed by a stationary total fertility rate of near zero population

growth. In contrast, each of the five Cases produces efficient fertility time series that typically have an

intermediate phase of fertility, lower than the classical-Malthusian fertility, but different from the long

run balanced growth path fertility. This intermediate phase, unlike the short Demographic Transition in

the equilibrium solution, is much longer lasting. Roughly lasting 19000 years, whereas the equilibrium

Demographic Transition lasts on the order of 700 years. Figure ?? contains the mortality rate for these

solutions. Here the standard equilibrium demographic transition via the mortality revolution is evident.

In this parameterization, the mortality decline is identical across all cases. This occurs because when the

value of A changes in Cases 4 and 5, coincides with a decline of mortality to 0. If the mortality function

required a higher value of human capital before it declines to 0, then there would be a divergence between

Cases 1-3 and Cases 4 and 5. For all Cases, the equilibrium mortality decline begins 1320, but does not

drop below .70 until 1680. From 1680 until 1880 mortality declines only from .58 to .57, before dropping to

.38 in 1920, .38 in 1960 and .18 in 2000 and then 0 in 2040. The mortality decline in the efficient solution

does differ by ω for each case. However the mortality decline occurs between -17640 and -17320 for Case 1.

For Case 2, the efficient solution has mortality decline between -17640 and -17360. The efficient mortality

decline occurs between -17640 and -17280 for Case 3. For Case 4 again the decline begins in -17640 and

ends by -17320. Finally in Case 5 decline begins and ends in -17640 and -17280. If we date the end of the

mortality decline in the year when mortality is less than 1%, the ending date for ω = 1.25 varies between

-17480 for Cases 1 and 2, -17440 for Cases 3, 4 and 5, At the other end, for ω = 2.50, the ending date of

the mortality decline, defined as mortality below 1%, occurs in year -17520 for Case 1, -17480 for Cases 2

and 4, -17440 for Case 3 and 5.

We present the years of schooling per worker, 40τ , in Figure ??. As with fertility, schooling does not

depend on ω for the equilibrium solutions. Fertility is affected by ω in the efficient solution, and hence

so is schooling. In all 5 Cases, the efficient solution has an earlier rise in schooling compared with the

equilibrium solution, and a higher peak schooling. In cases 2-5, along the balanced growth path, schooling

in the equilibrium solution exceeds the schooling in the efficient solution, because fertility is lower in

the equilibrium solution due to a quantity-quality trade-off. In Case 1, fertility is actually lower in the

balanced growth path in the efficient solution compared with the equilibrium solution. This however is an

intermediate run case. Fertility in the efficient solution is significantly lower than 1 at .45. Thus population

is declining over a long period of time, because the coordination technology is the limiting factor determining

production coalition size. When the population becomes the limiting factor, the efficient solutions will be

given by (23) and (24). In results not reported here, this occurs around year 10000.

6 Conclusions

In this paper we characterize the gap between optimal and equilibrium fertility an investment in human

capital with and without mortality of young adults. We develop a model in which the aggregate production

function exhibits increasing returns to population. Moreover, individuals have a precautionary demand for

children when mortality risk is non-zero. These two assumptions result in an equilibrium fertility rate

that is sub-optimal and too much investment in human capital per child in equilibrium in the long run.
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When we add mortality to the model we find that the optimal solution of the model involves accumulating

human capital rapidly to eliminate mortality as soon as possible. Our numerical solutions indicate that the

efficient solution produces 0 mortality 19000 years before it occurs in the equilibrium solution. This leads

to an early intermediate fertility transition although optimal fertility in the long run increases again above

the equilibrium level to take advantage of the increasing returns in population. The model presented here

provides a unified framework to understand fertility and mortality in a dynamic context and allows us to

establish a clear comparison between the equilibrium and optimal paths of the two variables.
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Figure 1: Equilibrium and Efficient Growth Rates of Per Capita Income
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Figure 2: Efficient Growth Rates of Per Capita Income
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Figure 3: Equilibrium and Efficient Log Human Capital
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Figure 4: Efficient Log Human Capital
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Figure 5: Equilibrium and Efficient Total Fertility Rates
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Figure 6: Efficient Total Fertility Rates
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Figure 7: Equilibrium and Efficient Mortality
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Figure 8: Equilibrium and Efficient Schooling
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Figure 9: Efficient Schooling
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