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Abstract

We use a novel Bayesian inference procedure for the Lyapunov exponent in the dynamical system of returns

and their unobserved volatility. In the dynamical system, computation of largest Lyapunov exponent by tradi-

tional methods is impossible as the stochastic nature has to be taken explicitly into account due to unobserved

volatility. We apply the new techniques to daily stock return data for a group of six world countries, namely

USA, UK, Switzerland, Netherlands, Germany and France, from 2003 to 2014 by means of Sequential Monte

Carlo for Bayesian inference. The evidence points to the direction that there is indeed noisy chaos both before

and after the recent financial crisis. However, when a much simpler model is examined where the interaction

between returns and volatility is not taken into consideration jointly, the hypothesis of chaotic dynamics does

not receive much support by the data (“neglected chaos”).
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1 Introduction

The field of chaos was developed several decades ago in Physics to explain some strange-looking behaviours that

lacked order. According to Lahmiri (2017): “a chaotic system is a random-looking nonlinear deterministic process

with irregular periodicity and sensitivity to initial conditions”. Up until recently, the various tests for chaotic

behavior have been implemented primarily in the fields of Science, especially in meteorological and climate change

data where noise is usually absent. However, over the last years, chaos has been the subject of research in various

fields, including those of economics and finance, where a typical approach in these fields has been that the dominant

dynamics are of a stochastic nature, usually described by a given probability function. Relatively recently, some

researchers in the field of finance and financial economics, have found some evidence in favour of chaotic dynamics.

For instance, Mishra et al. (2011) found some evidence of chaotic dynamics in the Indian stock market, Yousefpoor

et al. (2008) in the Tehran stock market, Kyrtsou and Terraza (2002) in the French CAC 40 index, Çoban and

Büyüklü (2009), in the Turkish Lira-USD exchange rate, and Das and Das (2007) in exchange rates.

In this context, tests for chaos using artificial neural networks (ANN) have gained considerable popularity,

recently (BenSaïda, 2014, BenSaïda and Latimi, 2013). In financial time series, however, it is not sufficient to

account for a flexible functional form to represent state dynamics. Time-varying conditional variance is a key

characteristic of these series and, most often, this is ignored or modeled with simple models such as the EGARCH

(Lahmiri, 2017). Although the EGARCH model (Nelson, 1991) is popular, the consensus is that stochastic volatility

models (Jacquier et al., 2014) are better suited for financial data but considerably more computationally intensive.

As BenSaïda (2014) put it: “[F]ew studies have considered studying the dynamics of financial and economic time

series in times of political or economic instability to better understand their behaviour from an econophysics

perspective”; for examples and applications see Cajueiro and Tabak (2009), Sensoy (2013), Lahmiri (2015), Morales

et al. (2012).

In this paper, we consider a bivariate dynamical system consisting of returns and their volatility. Both

functional forms are modeled via ANNs and feedback is allowed between returns and volatility. We propose a

novel way of computing the largest Lyapunov exponent as the dynamical system is inherenty stochastic due to the

presence of stochastic volatility. More precisely, in this work, we test for the presence of noisy chaotic dynamics

before and after the 2008 international financial crisis. The data employed consist of stock indices for six major

countries, namely: USA, UK, Switzerland, Netherlands, Germany and France, and their corresponding implied

volatility indices. The sample covers the period from 15th May 2003 to 25th November 2014 in order to capture

and study the financial crisis.

2 Model

2.1 General

Suppose a time series {xt; t = 1, ..., T} has the representation

yt = f(yt�L, yt�2L, ..., yt�mL) + ut, ut|σt ⇠ N(0,σ2
t ), t = 1, ..., T, (1)



where σ2
t is the conditional variance, m is the embedding dimension (or the length of past dependence) and L is

the time delay. The state space representation is:
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Given initial conditions y0 and a perturbation 4y0 the time series after t periods changes by 4y(y0, t). The

Lyapunov exponent is defined as:

λ = lim
τ!1

τ�1 ln
|4y(y0, τ)|

|∆y0|
, (3)

and measures the average exponential divergence (positive exponent) or convergence (negative exponent) rate

between nearby trajectories within time horizons that differ in terms of initial conditions by an infinitesimal amount.

The Jacobian matrix J at a point χis

J t(x) =
df t(χ)

dχ
(4)

The Jacobian of the map in (2) is:
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We write (1) compactly as:

yt = f(xt) + ut, (6)

where xt = [xt�L, ..., xt�mL] 2 <d.

The Lyapunov exponent (following Eckmann and Ruelle , 1985) is:

λ = lim
M!1

1

2M
log ν⇤, (7)

where ν⇤ is the largest eigenvalue of matrix T 0
MTM , with

TM =

M�1
Y

t=1

JM�1, (8)

and M  T is the block-length of equally spaced evaluation points, and J is the Jacobian matrix of the chaotic

map f . One can take M = T 2/3(BenSaida, 2014, see also BenSaïda, 2014, BenSaïda and Latimi, 2013).

In this work, we use Artificial Neural Networks (ANNs) because they can approximate any smooth, nonlin-

earity, as the number of hidden units gets larger (Hornik, et al. 1989). Actually, it has been shown in Hornik (1991)

that ANNs act as global approximations to various functions. For instance, see Michaelides et al. (2015) for an

application to banking data. In this work, we approximate the map using a neural network:

yt =
G
X

g=1

αgϕ(x
0
tβg) + ut, (9)



where ϕ(z) = 1
1+exp(�z) , z 2 < is the sigmoid activation function, and βg 2 <L, 8g = 1, ..., G. We impose the

identifiability constraints α1  ...  αG. Asympotically normal tests for chaos have been proposed by considering

the variance of the Lyapunov exponent which depend on the eigengvalues of matrix T 0
MTM . One can assume that

the conditional variance follows a stochastic volatility model:

log σ2
t = µ+ ρ log σ2

t�1 + εt, εt ⇠ iidN
�

0,ω2
�

. (10)

It is well known that even with linear models estimation of (10) is quite difficult. Insread of (9) and (10) we

use a more flexible model:

yt =
PG1

g=1 αgϕ(x
0
tβg +

Pl2
l=1 γglσ

2
t�lL2

) + ut, ut|σt ⇠ N(0,σ2
t ), t = 1, ..., T,

log σ2
t =

PG
g=1 δgϕ(x

0
tζg +

Pl2
l=1 ψglσ

2
t�lL2

) + εt, εt ⇠ N(0,ω2), t = 1, ..., T,
(11)

where L2 is the time delay for the conditional variance. In this model: i) Returns depend on past values as well as

lagged volatilities. ii) Volatility is given by a flexible neural network specification and depends on both past returns

and lagged volatility values. We impose the identifiability constraints α1  ...  αG and δ1  ...  δG.

2.2 Computation of Lyapunov exponent

The Lyapunov exponent for the dynamical system in (11) is difficult to compute as we have a bivariate stochastic

system whose variance is part of the state vector. We can write

yt =
PG1

g=1 αgϕ(x
0
tβg +

Pl2
l=1 γglσ

2
t�lL2

) + σtξt1, ξt1 ⇠ N(0, 1), t = 1, ..., T,

log σ2
t =

PG
g=1 δgϕ(x

0
tζg +

Pl2
l=1 ψglσ

2
t�lL2

) + ωξt2, ξt2 ⇠ N(0, 1), t = 1, ..., T.
(12)

The advantage is that σt appears explicitly in the first equation. In section 3 we show how likelihood-based

inference can be performed for this model. Clearly, however, we cannot ignore ξt as in existing approaches to

computing the Lyapunov exponent(s).

Our proposal is the following.

1. For given parameter values, simulate two values ξ⇤ = [ξ⇤1 , ξ
⇤
2 ]

0 ⇠ iidN(0, 1). Set ξt1 = ξ⇤1 and ξt2 = ξ⇤2 . In

this way, when ⇤
2 = 0 (12) is converted to a deterministic multivariate nonlinear state space model.

2. Compute the conditional Lyapunov exponent :

λ(ξ⇤) = lim
n!1

n�1
n�1
X

i=0

log ||∂Φ(χi)/∂χi||, (13)

where χ =
⇥

yt�1, ....yt�m1L1
,σ2

t�1, ...,σ
2
t�m2L2

⇤

, Φ(χ) represents the right-hand-side of (11), and ||.|| repres-

ents the absolute value of the determinant. The Lyapunov exponent is, again, computed as:

λ(ξ⇤) = lim
M!1

1

2M
log ν⇤, (14)

where ν⇤ is the largest eigenvalue of matrix T 0
MTM , with:

TM =

M�1
Y

t=1

JM�1, (15)

and M  T with M = T 2/3, and Ji = ∂Φ(χi)/∂χi.

3. Repeat this a large number of times and let Ξ⇤ be the set of simulated values for ξ⇤.



4. Finally, as a conservative measure take:

λ = min
ξ⇤2Ξ⇤

λ(ξ⇤). (16)

If λ > 0 then we have noisy chaos but negative λ does not necessarily imply stability and we have to examine

the issue in more detail. Since ξ⇤follows a bivariate standard normal distribution, simulation is not really necessary

as we can take, say, S =20 different values for ξ⇤1 and ξ⇤2 in the interval (-3.5, 3.5) which contains almost all

probability mass. We would end up with S2=400 points at which to evaluate the conditional Lyapunov exponents

but the computation is not excessive although we have to repeat it for each SMC draw that is, for every drawn

value of the parameters. Of course, nothing precludes to plot λ(ξ⇤) as a function of ξ⇤1 or ξ⇤2 or both. This allows us

to examine the issue in more detail as there may be values of noise (ξ⇤1 and ξ⇤2) that give different results for noisy

chaotic versus noisy stable dynamics.

3 Bayesian inference

On the one hand, the complication arisingwhen choosing the parameter values is that low parameters may prevent

the neural network from reasonably approximating the specifications. On the other hand, large parameters increase

the computational complexity because of the number of coefficients to be estimated (BenSaïda, 2014).This is the

reason why we chose to select the parameters based on the (normalized) marginal likelihoods adopted as a strategy.

For a discussion of other strategies, see Nychka, et al. (1992), BenSaïda and Litimi (2013).

The likelihood function of the model is:

L(θ;Y) = (2πω2)�T/2
´

<T
+

QT
t=1(2π)

�1/2(σ2
t )

�1 exp

⇢

�
[yt�

PG1
g=1 αgϕ(x0

tβg+
Pl2

l=1 γglσ
2
t�lm2

)]2

2σ2
t

�

·,

exp

⇢

�
(log σ2

t�
PG

g=1 δgϕ(x0

tζg+
Pl2

l=1 ψglσ
2
t�lm2

))2

2ω2

�

dσ2,
(17)

where the parameter vector θ =
⇥

α0,β0,γ0, δ0,ψ0,ω
⇤0
✓ <p, σ2 = [σ2

1 , ...,σ
2
T ], and Y = [y1, ..., yT ]. If λ � 0 then we

have (noisy) chaotic dynamics, under a rich structure for the conditional variance, which has been often ignored in

practice. We use a flat prior on all parameters:

p(θ) / ω�1. (18)

In addition, we have to determine L,L2,l1, l2, m1,m2 and G1, G2. We make the simplifying assumptions L1 = L2 =

L, l1 = l2 = l, m1 = m2 = m and G1 = G2 = G. The posterior distribution is:

p(θ|Y) / L(θ;Y) · p(θ). (19)

To perform Bayesian analysis we use a Sequential Monte Carlo / Particle Filtering (SMC/PF) algorithm. See

Appendix for technical details. We determine L and G using the maximal value of the marginal likelihood or

evidence:

M(Y) =

ˆ

<p

L(θ;Y) · p(θ)dθ. (20)

The marginal likelihood is a byproduct of SMC (see Technical Appendix).



4 Empirical results

The data employed consist of stock indices for six countries: USA, UK, Switzerland, Netherlands, Germany and

France (S&P 500, FTSE 100, SMI, AEX, DAX and CAC 40), and their corresponding implied volatility indices:

VIX, VFTSE, VSMI, VAEX, VDAX-NEW, and VCAC. The volatility indices have thirty days to maturity and

reflect the volatility of the respective stock markets. All data are extracted from Bloomberg. The sample covers

the period from 15th May 2003 to 25th November 2014 in order to study the financial crisis.

Our empirical results are summarized in Figure 1 where we present the marginal posterior distributions of λ

in the system (11).

Normalized marginal likelihoods for selection of G, L and n are presented in Figure 2. We normalize to 1.0

the value of M(Y) when G = 1, L = 1 or n is equal to its minimal value (10). These figures are drawn (for example)

for G assuming L, m and n are at their optimal values.

In Figure 3 we present marginal posterior distributions of λ in (1) or (9) with σt = σ. The marginal posterior

distributions of λ for the squared residuals from (1) -volatility are presented in Figure 4.

In Figures 5 and 6 we provide the conditional Lyapunov exponent, defined in (13), for the U.S and the U.K,

respectively.

5 Discussion

As can be seen in Figure 1, the estimated Lyapunov exponent, based on the marginal posterior distributions, is

positive for the estimated system in (11) for all the economies examined in the sample, before and after crisis,

which indicates presence of chaos in these series. In fact, in some economies, such as Switzerland or Germany,

the estimated Lyapunov exponent is positive and larger in the after-crisis period, a finding which deserves careful

screening by policy circles. Also, the multimodality often observed in the posterior distributions of various countries

such as France before the crisis, could be seen as an expression of the locally unstable character of the Lyapunov

exponent mirroring the economic and financial situation in those countries.

In the meantime, when adopting a simpistic approach where returns and volatility are not considered jointly,

the model does not support the presence of chaotic dynamics and especially the presence of noisy volatility. We call

this phenomenon “neglected chaos” and we believe that it could have important implications for the development

of an early warning device. Also, of note is that the multimodality comment made earlier in the joint estimation,

is in force here for the volatility case.

Furthermore, as we have seen, when the number of hidden layers G of the Neural Networks employed gets

larger, the network can approximate any smooth non-linearity. We can see that the number of hidden layers before

the crisis is larger than the one after the crisis, implying that more layers were needed to capture the chaotic

behavior of the economy before the crisis. This finding could be seen as an expression of the unstable character of

the economic and financial systems, before the global crisis. Finally, when the character of each equation in the

joint system is taken into separate consideration we map the conditional Lyapunov exponent for all the vectors (1*,

2*). We can visually infer that for 2*=0, and for all the values of 1, the behaviour is chaotic before and after the

crisis, both for the returns and for the volatilities confirming our previous finding.

In conclusion, our findings show strong evidence that for all the economies investigated the joint return-

volatility dynamical system is chaotic both before and after the crisis. Put differently, the dynamics in these series,

have not changed significantly after the crisis, and still remain chaotic



6 Conclusions

In this article, we put forward a novel Bayesian preocedure to compute the Lyapunov exponent jointly in the

dynamical system of returns and volatility, since its direct computation, based on the already existing methods, was

impossible as the stochastic nature had to be taken into consideration. To this end, we applied the new approach

to daily stock return data for a selected group of six world countries, namely USA, UK, Switzerland, Netherlands,

Germany and France, from 2003 to 2014. Sequential Monte Carlo techniques have been employed for Bayesian

inference. Our findings show clearly that there is indeed noisy chaos both before and after the recent financial

crisis. However, interestingly enough, when a much simpler model is examined where the interaction between

returns and volatility is not taken into consideration jointly following common wisedom, the hypothesis of chaotic

dynamics does not receive much support by the data, a situation that we call “neglected chaos” and could have

important policy implications for the development of an early warning mechanism.



TECHNICAL APPENDIX

Particle filtering

The particle filter methodology can be applied to state space models of the general form:

yT ⇠ p(yt|xt), st ⇠ p(st|st�1), (A.1)

where st is a state variable. For general introductions see Gordon (1997), Gordon et al. (1993), Doucet et al (2001)

and Ristic et al. (2004).

Given the data Yt the posterior distribution p(st|Yt) can be approximated by a set of (auxiliary) particles
n

s
(i)
t , i = 1, ..., .N

o

with probability weights
n

w
(i)
t , i = 1, ..., N

o

where
PN

i=1 w
(i)
t = 1. The predictive density can

be approximated by:

p(st+1|Yt) =

ˆ

p(st+1|st)p(st|Yt)dst '

N
X

i=1

p(st+1|s
(i)
t )w

(i)
t , (A.2)

and the final approximation for the filtering density is:

p(st+1|Yt) / p(yt+1|st+1)p(st+1|Yt) ' p(yt+1|st+1)

N
X

i=1

p(st+1|s
(i)
t )w

(i)
t . (A.3)

The basic mechanism of particle filtering rests on propagating
n

s
(i)
t , w

(i)
t , i = 1, . . . , N

o

to the next step, viz.
n

s
(i)
t+1, w

(i)
t+1, i = 1, . . . , N

o

but this often suffers from the weight degeneracy problem. If parameters θ 2 Θ 2 <k

are available, as is often the case, we follow Liu and West (2001) parameter learning takes place via a mixture of

multivariate normals:

p(θ|Yt) '

N
X

i=1

w
(i)
t N(θ|aθ

(i)
t + (1� a)θ̄t, b

2Vt), (A.4)

where θ̄t =
PN

i=1 w
(i)
t θ

(i)
t , and Vt =

PN
i=1 w

(i)
t (θ

(i)
t � θ̄t)(θ

(i)
t � θ̄t)

0. The constants a and b are related to shrinkage

and are determined via a discount factor δ 2 (0, 1) as a = (1� b2)1/2 and b2 = 1� [(3δ � 1)/2δ]2. See also Casarin

and Marin (2007).

Andrieu and Roberts (2009), Flury and Shephard (2011) and Pitt et al. (2012) provide the Particle

Metropolis-Hastings (PMCMC) technique which uses an unbiased estimator of the likelihood function p̂N (Y |θ)

as p(Y |θ) is often not available in closed form.

Given the current state of the parameter θ(j) and the current estimate of the likelihood, say Lj = p̂N (Y |θ(j)),

a candidate θc is drawn from q(θc|θ(j)) yielding Lc = p̂N (Y |θc) . Then, we set θ(j+1) = θc with the Metropolis -

Hastings probability:

A = min

⇢

1,
p(θc)Lc

p(θ(j)Lj

q(θ(j)|θc

q(θc|θ(j))

�

, (A.5)

otherwise we repeat the current draws:
�

θ(j+1), Lj+1
 

=
�

θ(j), Lj
 

.

Hall, Pitt and Kohn (2014) propose an auxiliary particle filter which rests upon the idea that adaptive

particle filtering (Pitt et al., 2012) used within PMCMC requires far fewer particles that the standard particle

filtering algorithm to approximate p(Y |θ). From Pitt and Shephard (1999) we know that auxiliary particle filtering

can be implemented easily once we can evaluate the state transition density p(st|st�1). When this is not possible,

Hall, Pitt and Kohn (2014) present a new approach when, for instance, st = g(st�1, ut) for a certain disturbance.

In this case we have:

p(yt|st�1) =

ˆ

p(yt|st)p(st|st�1)dst, (A.6)



p(ut|st�1; yt) = p(yt|st�1, ut)p(ut|st�1)/p(yt|st�1). (A.7)

If one can evaluate p(yt|st�1) and simulate from p(ut|st�1; yt) the filter would be fully adaptable (Pitt and Shephard,

1999). One can use a Gaussian approximation for the first-stage proposal g(yt|st�1) by matching the first two mo-

ments of p(yt|st�1). So in some way we find that the approximating density p(yt|st�1) = N (E(yt|st�1),V(yt|st�1)).

In the second stage, we know that p(ut|yt, st�1) / p(yt|st�1, ut)p(ut) . For p(ut|yt, st�1) we know it is multimodal

so suppose it has M modes are ûm
t , for m = 1, . . . ,M . For each mode we can use a Laplace approximation. Let

l(ut) = log [p(yt|st�1, ut)p(ut)] . From the Laplace approximation we obtain:

l(ut) ' l(ûm
t ) + 1

2 (ut � ûm
t )0r2l(ûm

t )(ut � ûm
t ). (A.8)

Then we can construct a mixture approximation:

g(ut|xt, st�1) =

M
X

m=1

λm(2π)�d/2|Σm|�1/2 exp
�

1
2 (ut � ûm

t )0Σ�1
m (ut � ûm

t

 

, (A.9)

where Σm = �
⇥

r2l(ûm
t )
⇤�1

and λm / exp {l(um
t )} with

PM
m=1 = 1. This is done for each particle sit. This is known

as the Auxiliary Disturbance Particle Filter (ADPF).

An alternative is the independent particle filter (IPF) of Lin et al. (2005). The IPF forms a proposal for st

directly from the measurement density p(yt|st) although Hall, Pitt and Kohn (2014) are quite right in pointing out

that the state equation can be very informative.

In the standard particle filter of Gordon et al. (1993) particles are simulated through the state density

p(sit|s
i
t�1) and they are re-sampled with weights determined by the measurement density evaluated at the resulting

particle, viz. p(yt|s
i
t).

The ADPF is simple to construct and rests upon the following steps:

For t = 0, . . . , T � 1 given samples skt ⇠ p(st|Y1:t) with mass πk
t for k = 1, ..., N .

1) For k = 1, . . . , N compute ωk
t|t+1 = g(yt+1|s

k
t )π

k
t , π

k
t|t+1 = ωk

t|t+1/
PN

i=1 ω
i
t|t+1 .

2) For k = 1, . . . , N draw s̃kt ⇠
PN

i=1 π
i
t|t+1δ

i
st(dst).

3) For k = 1, . . . , N draw uk
t+1 ⇠ g(ut+1|s̃

k
t , yt+1) and set skt+1 = h(skt ;u

k
t+1).

4) For k = 1, . . . , N compute

ωk
t+1 =

p(yt+1|s
k
t+1)p(u

k
t+1)

g(yt+1|skt )g(u
k
t+1|s̃

k
t , yt+1)

,πk
t+1 =

ωk
t+1

PN
i=1 ω

i
t+1

. (A.10)

It should be mentioned that the estimate of likelihood from ADPF is:

p(Y1:T ) =

T
Y

t=1

 

N
X

i=1

ωi
t�1|t

! 

N�1
N
X

i=1

ωi
t

!

. (A.11)

Particle Metropolis adjusted Langevin filters

Nemeth, Sherlock and Fearnhead (2014) provide a particle version of a Metropolis adjusted Langevin algorithm

(MALA). In Sequential Monte Carlo we are interested in approximating p(st|Y1:t, θ). Given that:

p(st|Y1:t, θ) / g(yt|xt, θ)

ˆ

f(st|st�1, θ)p(st�1|y1:t�1, θ)dst�1, (A.12)

where p(st�1|y1:t�1, θ) is the posterior as of time t�1. If at time t�1 we have a set set of particles
�

sit�1, i = 1, . . . , N
 

and weights
�

wi
t�1, i = 1, . . . .N

 

which form a discrete approximation for p(st�1|y1:t�1, θ) then we have the ap-



proximation:

p̂(st�1|y1:t�1, θ) /

N
X

i=1

wi
t�1f(st|s

i
t�1, θ). (A.13)

See Andrieu et al. (2010) and Cappe at al. (2005) for reviews. From (A.13) Fernhead (2007) makes the

important observation that the joint probability of sampling particle sit�1 and state st is:

ωt =
wi

t�1g(yt|st, θ)f(s|s
i
t�1, θ)

ξitq(st|s
i
t�1, yt, θ)

, (A.14)

where q(st|s
i
t�1, yt, θ) is a density function amenable to simulation and

ξitq(st|s
i
t�1, yt, θ) ' cg(yt|st, θ)f(st|s

i
t�1, θ), (A.15)

and c is the normalizing constant in (A.12).

In the MALA algorithm of Roberts and Rosenthal (1998)1 we form a proposal:

θc = θ(s) + λz + λ2

2 rlogp(θ(s)|Y1:T ), (A.16)

where z ⇠ N(0, I) which should result in larger jumps and better mixing properties, plus lower autocorrelations for

a certain scale parameter λ. Acceptance probabilities are:

a(θc|θ(s)) = min

⇢

1,
p(Y1:T |θ

c)q(θ(s)|θc)

p(Y1:T |θ(s))q(θc|θ(s))

�

. (A.17)

Using particle filtering it is possible to create an approximation of the score vector using Fisher’s identity:

r log p(Y1:T |θ) = E [r log p(s1:T , Y1:T |θ)|Y1:T , θ] , (A.18)

which corresponds to the expectation of:

r log p(s1:T , Y1:T |θ) = r log p(|s1:T�1, Y1:T�1|θ) +r log g(yT |sT , θ) +r log f(sT |s|T�1, θ),

over the path s1:T . The particle approximation to the score vector results from replacing p(s1:T |Y1:T , θ) with a parti-

cle approximation p̂(s1:T |Y1:T , θ) . With particle i at time t-1 we can associate a value αi
t�1 = r log p(si1:t�1, Y1:t�1|θ)

which can be updated recursively. As we sample κi in the APF (the index of particle at time t�1 that is propagated

to produce the ith particle at time t) we have the update:

αi
t = aκi

t�1 +r log g(yt|s
i
t, θ) +r log f(sit|s

i
t�1, θ). (A.19)

To avoid problems with increasing variance of the score estimate r log p(Y1:t|θ) we can use the approximation:

αi
t�1 ⇠ N(mi

t�1, Vt�1). (A.20)

1The benefit of MALA over Random-Walk-Metropolis arises when the number of parameters n is large. This happens because the
scaling parameter λ is O(n−1/2)for Random-Walk-Metropolis but it is O(n−1/6) for MALA, see Roberts et al. (1997) and Roberts and
Rosenthal (1998)



The mean is obtained by shrinking αi
t�1 towards the mean of αt�1 as follows:

mi
t�1 = δαi

t�1 + (1� δ)

N
X

i=1

wi
t�1α

i
t�1, (A.21)

where δ 2 (0, 1) is a shrinkage parameter. Using Rao-Blackwellization one can avoid sampling αi
t and instead use

the following recursion for the means:

mi
t = δmκi

t�1 + (1� δ)
N
X

i=1

wi
t�1m

i
t�1 +r log g(yt|s

i
t, θ) +r log f(sit|s

κi

t�1, θ), (A.22)

which yields the final score estimate:

r log p̂(Y1:t|θ) =

N
X

i=1

wi
tm

i
t. (A.23)

As a rule of thumb Nemeth, Sherlock and Fearnhead (2014) suggest taking δ = 0.95. Furthermore, they

show the important result that the algorithm should be tuned to the asymptotically optimal acceptance rate of

15.47% and the number of particles must be selected so that the variance of the estimated log-posterior is about 3.

Additionally, if measures are not taken to control the error in the variance of the score vector, there is no gain over

a simple random walk proposal.

Of course, the marginal likelihood is:

p(Y1:T |θ) = p(y1|θ)

T
Y

t=2

p(yt|Y1:t�1, θ), (A.24)

where

p(yt|Y1:t�1, θ) =

ˆ

g(yt|st)

ˆ

f(st|st�1, θ)p(st�1|Y1:T�1, θ)dst�1dst, (A.25)

provides, in explicit form, the predictive likelihood.
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Figure 1: Marginal posterior distributions of λ
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Figure 2: Lyapunov exponents λ(ξ⇤) for U.S
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Figure 3: Lyapunov exponents λ(ξ⇤) for U.K
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Figure 4: Normalized marginal likelihoods for selection of G,L, n and embedding dimension m
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Figure 5: Marginal posteriors of λ in (1)
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Figure 6: Marginal posteriors of λ for the volatility in (1)
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