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                    POINT-IN-TIME PD TERM STRUCTURE MODELS  

                  WITH LOAN CREDIT QUALITY AS A COMPONENT  
- Methodologies for IFRS9 ECL estimation and CCAR stress testing  

 

 

                                                                      Bill Huajian Yang 
                                                    

                                                                                 Abstract 

Most point-in-time PD term structure models used in industry for stress testing and IFRS9 expected loss estimation apply only to 
macroeconomic scenarios. Loan level credit quality is not a factor in these models.  In practice, credit profile at assessment time plays 
an important role in the performance of the loan during its lifetime. A forward-looking point-in-time PD term structure model with 
loan credit quality as a component is widely expected. In this paper, we propose a forward-looking point-in-time PD term structure 
model based on forward survival probability, extending the model proposed in [8] by including a loan specific credit quality score as a 
component. The model can be derived under the Merton model framework. Under this model, the forward survival probability for a 
forward term is driven by a loan credit quality score in addition to macroeconomic factors. Empirical results show, the inclusion of the 
loan specific credit score can significantly improve the performance of the model. The proposed approaches provide a tool for 
modeling point-in-time PD term structure in cases where loan credit profile is essential. The model can be implemented easily by 
using, for example, the SAS procedure PROC NLMIXED.    

 
Keywords: PD term structure, loan credit quality score, macroeconomic scenario, forward survival probability, maximum likelihood  
 
 

1. Introduction  
  
For a loan with a non-default risk rating

iR at initial time ,0t  the forward probability of default (PD) in the
th

j forward term is the PD given that the loan has survived for the first )1( j terms. Given a scenario

)...,,,( 21 mxxxx   for the th
j  forward term, let )(~ xp ji

 denote the forward PD for the th
j forward term for 

a loan with a non-default initial rating .iR  The forward survival probability )(~ xs ji  for the th
j forward term 

is ).(~1 xp ji   

 

A forward-looking point-in-time PD term structure model based on forward probability of default )(~ xp ji
 is 

proposed in [8]) under the Merton model framework ([3], [4], [6]).  As reviewed in section 2, the model 
applies only to macroeconomic scenarios. Loan credit profile or credit quality is not a factor.   
 
In practice, loan credit profile plays an important role in the performance of a loan during its lifetime, and 
is essential to loan loss assessments. A forward-looking point-in-time PD term structure model with loan credit 

quality as a component is needed for stress testing and IFRS9 loss projections. 
 
We assume that the loan credit profile known at initial time 

0t has been summarized as a credit quality 

score .0x  Let )...,,,( 21 mxxxx   denote a macroeconomic scenario for a forward term, and   

)...,,,,( 210 mxxxxz   the mixed scenario adding the loan credit quality score. Let  denote the standard 

normal CDF function. 
 
In this paper, we introduce a general form of point-in-time PD term structure models (see model (2.4A)) 

based on forward survival probability with )(~ zs ji  being given:   
 

         )]...([)(~
22110 mmjijjiji xaxaxarxrbzs                                          (1.1) 

1...
22

2

2

1  maaa                                                                                     (1.2) 
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where }{ jib are intercepts, }...,,,{ 21 maaa are coefficients for the macroeconomic variables (common to all 

ratings and all forward terms), and }{ jir are the sensitivities for the loan in responding to the changes of the 

credit index )(xci  given by 
 

         
mmxaxaxaxci  ...)( 2211

   

 

Note that the credit quality score 
0x for a loan is a measure of the credit risk of the loan relative to other 

loans in the portfolio. Thus, the sensitivity parameters }{ jr for a loan in responding to the changes of 
0x  are 

required to be differentiated only between forward terms, not between the risk ratings.  
 

Let jis~  denote the long-run average forward survival probability for the th
j forward term for a loan with a 

non-default initial rating ,iR  and let jic be the threshold value given by ).~(1
jiji sc

  Note that jis~ can be 

estimated directly from the sample. Under the assumption that )...,,,( 21 mxxxx   is independent of ,0x  

and that both )(xci and 0x (at rating level) are normally distributed, model (1.1) can be shown to be 

equivalent to the equation below (see model (2.6)): 
 
 

         )])(()()()(1[)(~
0

22
uxciruxrvrvrczs jiijjiijjiji                       (1.3) 

 

where v and u are the standard deviation and mean of )(xci , while iv  and iu  are the standard deviation 

and mean of 0x for loans with non-default initial rating .iR  

 

It can be  shown that under model (1.3) (see (2.8)) the expected value of )(~ zs ji  (with respect to the 

changes of )(xci and 0x ) is the long-run average forward survival probability )).((~
jiji cs  This 

implies  the forward survival probability given by (1.3) is driven upside-down along its long-run average by 

the credit index )(xci  and the loan credit score 0x .  
 

When credit score 0x is irrelevant, models (1.1) and (1.3) reduce respectively to (1.4) and (1.5) below: 

 

         )]...([)(~
2211 mmjijiji xaxaxarbxs                                                       (1.4) 

         )])(()(1[)(~ 2
uxcirvrcxs jijijiji                                                            (1.5) 

 

Model (1.5) is essentially the same point-in-time PD term structure model as proposed in [8]. The only 

difference is that model (1.5) targets the forward survival probability )(~ xs ji , while in [8] the model targets 

the forward probability of default )(~ xp ji .  

 

We propose the point-in-time PD term structure model (1.3). The advantages of model (1.3) include: 
 

(a) Loan level credit quality, essential for loan loss assessments, is a model component. The forward 

survival probability is given by the loan specific credit score in addition to the credit index )(xci

composed of macroeconomic variables. 
(b) Only the sensitivity parameters }{ jir  and }{ jr  are required to be estimated, given the credit index 

)(xci  and the long-run average forward survival probabilities.  

(c) The model in general outperforms its counterpart that includes macroeconomic factors only. 
(d) It can be derived under the Merton model framework (see section 2.2).  
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The paper is organized as follows: In section 2, we derive the forward survival probability model. In 
section 3, we determine the log-likelihood used for parameter estimation. A parameter estimation algorithm 
by maximum likelihood is proposed in section 4. In section 5, we provide an empirical example and use the 
proposed model to estimate the point-in-time PD term structure for a commercial portfolio.   
 
 
 
 

 

2. The Mathematics of Forward Survival Probability Models  
 

2.1. Forward probability of default and forward survival probability  

     
For a loan with a non-default risk rating 

iR at initial  time 
0t , the th

j forward PD is the PD for the loan in 

the th
j period ],( 1 jj tt   given that the loan has survived the period ],[ 10 jtt . Given a term structure sample, 

let )( jji tn  denote the number of loans that have survived the period ],[ 10 jtt with a non-default initial 

rating 
iR , and )( jji td the number of loans that survived the period ],[ 10 jtt but default in ].,( 1 jj tt   Then the 

sample forward probability of default )(~
jji tp and the sample forward survival probability )(~

jji ts  for the 

period ],( 1 jj tt   are given respectively by 
 

              )(/)()(~
jjijjijji tntdtp                                                                                      

              )(/)(1)(~1)(~
jjijjijjijji tntdtpts                                                          

 
A forward-looking point-in-time PD term structure model is proposed in [8] under the Merton model 

framework ([3], [4], [6]). Let )...,,,( 21 mxxxx  denote a macroeconomic scenario with values given by a 

list of key macroeconomic variables. It is shown in [8] under some appropriate conditions that the forward 

probability of default )(~ xp ji is given by 
 

             )](1[)(~ 2
xcirrbxp jijijiji                                                                        (2.1)                                                            

 

where )(xci is a credit index with zero mean and one standard deviation, derived by a normalization from a 

linear combination 
mmxaxaxa  ...2211 , and )~(1

jiji pb
 , where jip~ denotes the long-run average 

forward PD for the th
j  forward term for a loan with initial rating .iR The coefficients }...,,,{ 21 maaa do not 

depend on the rating index i  and forward term number .j   
 

Under model (2.1), the forward PD for a loan with an initial rating 
iR  and a forward term j  is driven by 

the credit index along the long-run average forward probability of default ),(~
jiji bp   while jir

measures the sensitivity the forward PD in responding to the changes of credit index.  
 
Model (2.1) proposed in [8] applies only to macroeconomic scenarios. Loan specific credit profile and 
quality known at initial time are not a factor. In practice, loan credit quality score plays an important role in 
the performance of a loan during its lifetime, and is essential to loan loss assessments.     
 

For simplicity, we assume that the loan credit profile known at initial time 0t has been summarized as a 

credit quality score .0x  For example, for a risk-rated loan portfolio, 
0x  can be a credit quality score derived 

from factors including 
 

1. The ratio of loan to value 
2. The debt service ratio 
3. The number of notches downgraded in the last two quarters 
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Let )...,,,,( 210 mxxxxz   be the mixed scenario for a forward term. When a specific period ],( 1 jj tt 
 is 

concerned, we label by )( jtz  the values of z  for the period (value of 
0x  kept the same as at time )0t .   

 

For a loan with a non-default initial rating 
iR at time

0t , let )(~ zp ji
 and )(~1)(~ zpzs jiji   denote 

respectively the forward PD and the forward survival probability for the period ],( 1 jj tt 
 given the mixed 

scenario .z  Let )( ji tc  and )( jji tp denote respectively the corresponding cumulative PD and marginal PD 

for the period ],[ 0 jtt  given the history of )(tz for .0 jttt    

 

We assume that the following Markov property is satisfied: the forward PD conditional on )( jtz  is equal to 

the forward PD conditional on the entire history: .),( 0 jttttz  This requirement is not unreasonable, as 

lagged macroeconomic variables are included and used for the forward model based on their contributions 
to the model.   
 
 

Proposition 2.1. The following equations hold (assuming the Markov property for (2.2C) and (2.2D)): 
 

          )(...)()()( 2211 jjiiiji tptptptc                                                                  (2.2A) 

          ))(1/()())((~
1 jijjijji tctptzp                                                                          (2.2B) 

         ))((~)](1[()()()( 11 jjijijijijji tzptctctctp                                             (2.2C) 

          ))]((~1))]...[((~1))][((~1[)](1[ 2211 jjiiiji tzptzptzptc                           (2.2D) 
 

Proof.  Equation (2.2A) is immediate.  Equation (2.2B) follows from the Bayesian theorem, while equation 
(2.2C) follows from (2.2B). For (2.2D), we have by (2.2A) and (2.2C) 
 

    

))]((~1)][(1[(

))((~))(1()(1

)()(1)(1

1

11

1

jjiji

jjijiji

jjijiji

tzptc

tzptctc

tptctc













 

 

Then (2.2D) follows by induction. □ 
 
 

2.2. Forward survival probability model 
 

For a portfolio with k  non-default risk ratings, and a loan with a non-default initial rating iR , we focus on 

the default risk for the loan in the th
j forward term ],( 1 jj tt   given that the loan has survived the period 

],[ 10 jtt . Assume that there exists a latent variable
jiy given by 

 

            
jimmjijjiji xaxaxarxrby  )...( 22110

                                      (2.3)               
 

such that the loan will default in the period ],( 1 jj tt 
 when ,0jy  where ji  is a normal random variable 

with zero mean and is independent of the mixed scenario )...,,,,( 210 mxxxxz  . The coefficients 

}...,,,{ 21 maaa  do not depend on rating index i  and the forward term number .j  
 

By an appropriate rescaling to both sides of (2.3), we can assume that the standard deviation of ji  is 1. 

Then the forward survival probability )(~ zs ji
and forward probability of default )(~ zp ji

for the period 

],( 1 jj tt  can be derived from (2.3) as: 
 

           )]...([)(~
22110 mmjijjiji xaxaxarxrbzs                                           (2.4A) 
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           )]...([1)(~
22110 mmjijjiji xaxaxarxrbzp                                    (2.4B)                        

 

where }{ jib are intercepts, }...,,,{ 21 maaa are coefficients for the macroeconomic variables (common to all 

ratings and all forward terms), and }{ jir are the sensitivity parameters for the loan in responding to the 

changes of the credit index )(xci  defined by  
 

         
mmxaxaxaxci  ...)( 2211

   
 

The credit quality score 
0x for a loan is a measure of the credit risk of the loan relative to other loans in the 

portfolio.  Therefore, the sensitivity parameters }{ jr for a loan in responding to the changes of 
0x  are 

required to be differentiated only between forward terms, not between the risk ratings. Normalization to the 

credit index )(xci is not required in (2.4A) and (2.4B).  

 
Disturbance in parameter estimation occurs due to the multiplicative structure between the sensitivity 

parameters }{ jir and the macroeconomic coefficients )...,,,( 21 maaa  in model (2.4A):  an arbitrary 

increase for the norm of )...,,,( 21 maaa by a rescale as )...,,,( 21 maaa  can be off-set in the model by 

a scale-down for }{ jir as }./{ jir  We thus impose a constraint for the macroeconomic coefficients as 

below: 
 

         1...
22

2

2

1  maaa                                                                                               (2.5A) 
 

In practice, the sign of a coefficient 
ia is usually pre-determined. For example, default risk is expected to 

increase as unemployment rate increases. We thus require the coefficient for unemployment rate in the 

model be positive. In this way, we can assume that all }{ ia are nonnegative by an appropriate sign 

rescaling. Then a linear constraint as below can be imposed 
 

          1...21  maaa                                                                                                 (2.5B) 

 

Let jis~  denote the long-run average forward survival probability for the th
j forward term for a loan with an 

non-default initial rating
iR and jic  the threshold value given by ).~(1

jiji sc
  Note that jis~ can be 

estimated directly from the sample. Under the assumption that )...,,,( 21 mxxxx  is independent of ,0x  

and that both )(xci and 0x (at rating level) are normally distributed, model (2.4A) becomes (either 

constraint (2.5A) or (2.5B) is on): 
 

   )]...()()()(1[)(~
22110

22
uxaxaxaruxrvrvrcxs mmjiijjiijjiji      (2.6) 

 

where v and u are the standard deviation and mean of )(xci , while iv  and iu  are the standard deviation 

and mean of 0x for loans with non-default initial rating .iR  

 
We propose the point-in-time PD term structure model (2.6) (i.e., model (1.3)). Model (2.6) is derived from 
(2.4A) based on a well-known lemma ([5]) for the following expectation with respect to :s  
 

           )1,0(~),1/()]([ 2
NsbabsaEs                                                      (2.7) 

 

Applying (2.7) to (2.6), we have  
 

          )]}...()()()(1[{)](~[ 22110
22

uxaxaxaruxrvrvrcEzsE mmjiijjiijjiji   

                       
jiji sc ~)(                                                                                           (2.8)       
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This means, the forward survival probability is as driven upside-down along its long-run average by the 

credit index )(xci  and the loan credit score 0x .  

 

In the rest of this section, we show that model (2.6) can also be derived under the Merton model 

framework. For a loan with a non-default rating iR  at initial time ,0t  we are interested in the default risk 

for the loan in the period ],( 1 jj tt  , assuming that the loan has survived the period ].,[ 10 jtt  Under the 

Merton model framework ([3], [4], [6]), the default risk in ],( 1 jj tt   is governed by a latent random variable

,jiz  called the firm’s normalized asset value, which splits into two parts as: 

 

           )1,0(~),1,0(~,10,1 NNssz jijijijijiji                    (2.9)      

 

where s  denotes the systematic risk (common to all non-default ratings and all terms) and ji  is the 

idiosyncratic risk independent of .s  The quantity ji  is called the asset correlation. It is assumed that 

there exist threshold values }{ jib such that the borrower will default in period ],( 1 jj tt   if the normalized 

asset value jiz falls below the threshold value .jib   
 

Assume that s  and ji  decompose further as: 

         10),1,0(~,1/))(( 11

2

111   Neevuxcis             

         10),1,0(~,1/)( 22

2

2202   Neevux iiji
        

 

Then by (2.9) we have               
 

        

),0(~,/)()1(/))((

)1)(1()1(/)()1(/))((

2
021

2

22

2

11021





Neevuxvuxci

eevuxvuxciz

iijiji

jijiiijijiji



  

 

where  

           )1)(1()1(
2

22

2

11   jiji eee .   

           2

2

2

2

2

1

2

2

2

1
2 1)1)(1()1(   jijijiji

                               (2.10) 
 

Assume that e  is independent of )....,,,,( 210 mxxxx  Then by Merton model and using (2.7), we have  

      

 

]/)()/)1((/))(()/(/[

]}...,,,,|]/)(1/))(([{

)]...,,,,|([)...,,,,(~

021

210021

210210

iijijiji

miijijiji

mjijimji

vuxvuxcib

xxxxvuxvuxcibePE

xxxxbzPExxxxp










 

           ])(~))(()~()(1[ 0
22

ijijijjijiji uxruxcirvrvrb                                          (2.11) 

where 
              /)1(~,/ 21 jiijijiji vrvr   
 

Here we use the relationship: 222 /1)~()(1  ijiji vrvr shown as below by using (2.10): 

             
222

2

2

1

2

2

2

2

2

1

22

2

2

1
22

/1/)]1(1[

/)]1([(1)~()(1(









jijijiji

jijiijiji vrvr  

 

By (2.11) and using the relationship ),()( jiji cb  we have  

           ])(~))(()~()(1[)...,,,,(~
0

22
210 ijijijjijijimji uxruxcirvrvrcxxxxs   
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By collapsing the rating index i (i.e., making no differentiation for the sensitivities between ratings) for 

jir
~  and replacing 

jir
~  by ,jr  we have model (2.6). 

 
 

3. Log-Likelihood Given Term Default Frequency Sample 
 
 

In this section, we derive the log-likelihood and demonstrate its concavity given the observed term default 
frequencies by using forward survival probability. We use the following notations: 
 

(a) ),( 0xtn jji
- The number of loans that survived the period ],[ 10 jtt  with a non-default initial rating 

iR  

and credit quality score 0x  known at initial time .0t   

(b) ),( 0xtd jji
- The number of defaults in the period ],( 1 jj tt   for loans that have survived the period 

],[ 10 jtt  with a non-default initial rating 
iR  and credit quality score 0x  known at  initial time .0t  

 

Assume that for each forward term the default count for loans with an initial rating
iR follows a binomial 

distribution.  Then the log-likelihood for observing default frequency for the th
j forward term is 

 

     
jtxi

jjijjijjijjijjij tzsxtdtzsxtdxtnFL
,,

000

0

)])}([~1log(),()])([~log()],(),({[     (3.1) 

with jt sliding through the sample time window. Here we have dropped out the summands corresponding 

to the logarithms of the binomial coefficients, which are independent of the parameters for )]([~
jji tzs  as 

given by (2.4A) or (2.6). Here we use the notation )(tz  as in section 2.1. 
 

There are cases when we need to estimate sensitivity parameters only over a period ],[ jhh tt  for some 

.1j This is the case when we assume that the parameters are constant over this period due to, for 

example, the low default count in the sample for a single forward term. Let ),( jhhL   denote the log-

likelihood for a forward period ],[ jhh tt  .  The following proposition holds.   

 
Proposition 3.1 ([8, Proposition 4.1]). The following equation holds up to a summand which is 
independent of the parameters for )]}([~{ jji tzs  given by model (2.4A) or (2.6): 
 

                   
Nhhh FLFLFLNhhL   ...),( 21                                              (3.2) 

□ 
 

A function is log concave if its logarithm is concave. If a function is concave, a local maximum is a global 
maximum, and the function is unimodal. This property is important for the searching of the maximum 
likelihood estimates. The proposition below shows the concavity of the log-likelihood (3.2) as a function of 

},...,,,{ 21 maaa ,}{ jib and }{ jir .       

 

Proposition 3.2 ([8, Proposition 4.2]). The following statements hold: 
 

(a) When ))((~
jji tzs  is given by (2.4A), (3.2) is concave as a function of the r-parameters },,{ jij rr or a 

function of the b-parameters }{ jib and the a-parameters }...,,,{ 21 maaa  

(b) When ))((~
jji tzs  is given by (2.6), (3.2) is concave as a function of the r-parameters },,{ jij rr or as a 

function of }....,,,{ 21 maaa  

□ 
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4. Parameter Estimation by Maximum Likelihood  
 
 

In this section, we propose a parameter estimation algorithm by maximum likelihood for models (2.4A) and 
(2.6). Note that models (1.4) and (1.5) are the special cases for models (2.4A) and (2.6) where loan credit 
quality score is dropped.  
 

As commonly observed in practice, loan default intensity increases for the first few terms, then decreases, 
and becomes flat in the long-run. To best capture portfolio default risk for the credit index, we fit 

}...,,,{ 21 maaa  by using model (1.4), dropping the loan specific score
0x  and using only the data over the 

first few terms. We thus divide the fitting process into two parts:  
 

(1) Fit the coefficients }...,,,{ 21 maaa for the credit index by model (1.4) using the data for the first term.  

(2) When the credit index is determined, fit for the intercept parameters for model (2.4A), and the 
sensitivity parameters for models (2.4A) and (2.6).  

 
 

A. Fitting for credit index 
 

Parameter initialization: Initially, all }...,,,{ 11211 krrr in (1.4) are set to 1. We estimate the parameters

}...,,,{ 21 maaa  and }...,,,{ 11211 kbbb by maximizing the log-likelihood 
1FL of (3.1). Recall that (3.1) is 

concave as a function of }...,,,{ 21 maaa  and }...,,,{ 11211 kbbb  by Proposition 3.2 (a), therefore global 

maximum estimates are granted. We rescale the a-parameter estimates by a scalar 0  to make sum 

squared of )...,,,( 21 maaa equal to 1, and then set each component of }...,,,{ 11211 krrr to ./1   This 

completes the parameter initialization.  
 

Step 1. Given }...,,,{ 21 maaa and },{ 1ib  we estimate the sensitivity parameters }{ 1ir  in model (1.4) by 

maximizing the log-likelihood 
1FL  in (3.1).  

 

Step 2. Given sensitivity parameters }{ 1ir , we estimate the intercept parameters }{ 1ib  and macroeconomic 

coefficients }...,,,{ 21 maaa together by maximizing the log-likelihood
1FL in (3.1) for all initial ratings. We 

rescale the new estimates for }...,,,{ 21 maaa  by an appropriate  to make the sum squared of the vector 

equal to 1, and rescale }{ 1ir  by the scalar ./1   
 

Step 3. We repeat the above two steps until a convergence is reached, i.e., the maximum deviation of 
estimates between two consecutive iterations is less than, for example, 410  for all parameters.   
 
B. Fitting for other parameters 
 

At this stage, the credit index is known. For model (2.4A), we are required only to fit for the sensitivity and 
the intercept parameters for each term. We perform steps 4 and 5 below for each forward term ,j  until a 

convergence is reached: 
 

Step 4. Fit },{ jij rr for all risk ratings and a fixed j  given }{ jib (initialized appropriately) and the credit 

index, by maximizing the log-likelihood
jFL in (3.1) with ))((~

jji tzs  being given by (2.4A).  To avoid over 

fitting, we impose for each forward term j  a monotonicity constraint 
 

                
jkjjj rrrr 1321 ...                                                                                    (4.1) 

 

Step 5. Given },{ jij rr  and the credit index, fit }{ jib by maximizing the log-likelihood
jFL in (3.1) with 

))((~
jji tzs  being given by (2.4A). Similarly, we impose for each forward term j  a monotonicity constraint 
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jkjjj bbbb 1321 ...                                                                                     (4.2) 

 
For model (2.6), we fit for each term j the sensitivity parameters },{ jij rr  by maximizing the log-

likelihood
jFL in (3.1) with ))((~

jji tzs  being given by (2.6), using the threshold values calculated from the 

historical long-run average forward term survival rate. Monotonicity constraint (4.1) is imposed.  
  
The above process can be implemented by using, for example, SAS procedure PROC NLMIXED ([7]). 
 
 

5.  An Empirical Example: The Point-in-Time PD Term Structure for a Commercial 

Portfolio 
 
The sample is created synthetically by an appropriate proportion re-sampling from a historical dataset of a 
commercial portfolio containing quarterly rating level default frequency (the default rate does not represent 
the original default rate). A loan level behaviour score summarizing the loan credit quality at the beginning 

of each quarter is available. There are 21 ratings with rating 1R  as the best quality rating and
21R the default 

rating.  Higher index ratings carry higher default risk.  
 
We use two macroeconomic variables and one credit quality score as described below: 
 

(a) 3-month treasury bill interest rate (lagged by one quarter)  
(b) Unemployment rate  
(c) The change in the credit score (score at current quarter minus the score two quarters ago) 

 

 

We fit for the following two forward survival probability models: 
 

FSPM1-The forward survival probability model (1.5) using only the above two macroeconomic variables. 
FSPM2 -The forward survival probability model (2.6) using the change of credit score in addition to the 
               same two macroeconomic variables used by the previous model.  
 
First, we follow the algorithm (steps 1-3) proposed in section 4 to fit for the credit index (Note that both 
models have the same credit index). The table below shows the estimates for two macroeconomic variable 
coefficients (here constraint (2.5B) is imposed). 
    
       Table 1. Credit index parameters 

       
 

Given the credit index, we then fit for the sensitivity parameters for models (2.6) and (1.5) with 
monotonicity constraint (4.1) being imposed (see section 4). To reduce the number of sensitivity 
parameters, we fit only for the yearly sensitivity, i.e., we assume that the sensitivity parameter is constant 
for all quarters within each year for a total of four years. The table below shows the estimates for these 

sensitivities for all 20 ratings and for each of these four years. For example, the column labelled as 
1r  

stores four sensitivities for each of two models, while the column labelled as 
0r stores for model FSPM2 

those four sensitivities with respect to the loan credit quality score .0x  

 

       Table 2. Sensitivity parameters 

        

v1 v2 p1 p2

0.4548 0.5452 <0.0001 <0.0001

Model yr r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

1 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0.2611 0.2611 0.2611 0.2611 0.3026 0.8255 0.8256

2 0.1928 0.1928 0.1928 0.1928 0.1928 0.1928 0.1928 0.1928 0.1928 0.1929 0.1929 0.1929 0.2481 0.2481 0.4516 0.4516 0.4884 0.5134 0.5134 0.5134

3 0.0959 0.0959 0.0959 0.0959 0.0959 0.0959 0.0959 0.0959 0.1273 0.1273 0.1273 0.1683 0.3165 0.3664 0.5928 0.6476 0.6476 0.6476 0.6476 0.7198

4 0.2908 0.2908 0.2908 0.2908 0.2908 0.2908 0.2908 0.2908 0.2908 0.2908 0.2908 0.2908 0.2908 0.3000 0.8951 0.8952 0.8952 0.8952 0.8952 0.8952

1
0.1737 0.1183 0.1183 0.1183 0.1183 0.1183 0.1183 0.1183 0.1183 0.1183 0.1183 0.1183 0.1246 0.1348 0.1349 0.1445 0.1511 0.1662 0.1756 0.1991 0.1992

2
0.1895 0.1288 0.1288 0.1288 0.1288 0.1288 0.1288 0.1288 0.1288 0.1288 0.1289 0.1289 0.1290 0.1554 0.1555 0.2166 0.2167 0.2511 0.2708 0.2708 0.2709

3
0.0955 0.1103 0.1103 0.1103 0.1103 0.1103 0.1103 0.1103 0.1103 0.1187 0.1187 0.1200 0.1308 0.1466 0.1548 0.1743 0.1798 0.1799 0.1799 0.1799 0.1864

4
0.1292 0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.1174 0.1175 0.1287 0.3813 0.3814 0.3814 0.3814 0.3814 0.3815

F
S

P
M

1
F

S
P

M
2
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The table below shows the back-tested R-Squared for predicting cumulative PD at portfolio level for 1-4 
years. These empirical results show, the model with a loan specific credit quality score, outperforms 
significantly its counterpart without the credit quality score.   
 

       Table 3. Back-test RSQ for portfolio level cumulative PD 

              
                

Conclusion. Most point-in-time PD term structure models used in industry for stress testing and IFRS9 
expected loss estimation apply only to macroeconomic scenarios. Loan level credit quality is not a factor. 
In practice, loan credit quality plays an important role in the performance of the loan during its lifetime, 
and is an essential factor for loan ECL assessment. The point-in-time PD term model proposed in this paper 
extends the forward-looking point-in-time PD term structure model proposed in [8] by including a loan 
specific credit quality score known at initial time. The model can be derived under the Merton model 
framework. Empirical results show, adding a loan specific credit quality score improves model 
performance significantly. 
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