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Abstract

It is well known that sample attrition can lead to inconsistent treatment effect estimators even in ran-
domized control trials. Standard solutions to attrition problems either rely on strong assumptions on the
attrition mechanisms or consider the estimation of bounds, which may be uninformative if attrition prob-
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1 Introduction

It is well known that sample attrition can lead to inconsistent treatment effect estimators even in randomized

control trials. Existing alternatives may either rely on strong assumptions on the sample selection mech-

anisms or give up on point identification and estimate bounds to the effects.1 While strategies based on

estimating bounds may circumvent the problem of imposing strong assumptions on the selection mechanism,

they often generate bounds that are too wide, leading to uninformative conclusions. Given that existing

alternatives may require strong assumptions or lead to uninformative bounds, researchers might be tempted

to discard covariate cells in which the observed attrition problem is more severe and focus the analysis on

specific covariate cells in which the attrition problem appears less relevant.

In this paper, we consider the consequences of three strategies to deal with attrition by selecting covariate

cells with lower observed attrition problems: (i) keeping only cells with no observed attrition, (ii) keeping

only cells with no observed differential attrition, and (iii) keeping cells with low observed attrition problems

and estimating bounds for the treatment effects. We provide conditions under which these strategies are

asymptotically valid when the number of observations per covariate cell goes to infinity, even if attrition

is correlated with potential outcomes. Importantly, these strategies provide information on the average

treatment effect for the covariate cells with lower attrition problems. However, while we loose in terms of

external validity, our strategies may provide consistent estimators (in case of strategies (i) and (ii)) or more

informative bounds (in case of strategy (iii)) for the average treatment effects for a well defined population.

If the number of observations per covariate cell is small, however, these strategies may lead to important

distortions. Because we discard covariate cells based on observed attrition rates, it might be that we end up

considering covariate cells with high population attrition probabilities that turned out to have low observed

attrition rates in a given realization. In this case, if attrition is correlated with potential outcomes, then

a comparison between treatment and control observations in covariate cells with low observed attrition

rates would lead to biased estimators, as treatment and control groups would be selected based on different

unobservables. We show in Monte Carlo (MC) simulations that the bias of the treatment effects estimator

using strategies (i) and (ii) is similar to the bias of a naive estimator that compares treated and control

selected observations when there are few observations per covariate cell, and that it converges to zero when

the number of observations per covariate cell increases. We also show that confidence intervals based on

1See, for example, Rubin (1976), Heckman (1979), Heckman (1990), Ahn and Powell (1993), Andrews and Schafgans (1998),
and Das et al. (2003) for conditions under which we can achieve point identification, and Horowitz and Manski (2000), Lee
(2009) and Zhang and Rubin (2003) for approaches that lead to partial identification.
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strategy (iii) may lead to undercoverage when there are few observations per covariate cell, and that this

problem is more severe when we have many covariate cells that should not be selected. When the number

of observations per covariate cell increases, these confidence intervals converge to have the correct coverage

rates, and become tighter than confidence intervals based on all covariate cells.

These strategies of discarding covariate cells with observed attrition problems are related to the argument

in King et al. (2007) and Bruhn and McKenzie (2009) that an advantage of pairwise randomization is that

it provides partial protection in case of attrition. As they argue, if we have attrition related to the variables

used in the stratification, then one could consider only pairs with no attrition, and there would be no bias

on the treated/control comparison of the remaining pairs.2 However, note that dropping broken pairs is

the extreme case in which strategy (i) is used with only two observations per cell, so the estimator will

be biased if sample selection is related to potential outcomes. Our results show that, in order to provide

protection in case of attrition even when we allow for correlation between attrition and potential outcomes,

then one should actually stratify on large blocks, so that realized attrition rates are more informative about

the population attrition probabilities in each covariate cell. In this case, we could focus the analysis on a

set of strata with lower attrition problems, yielding either consistent estimators (in case of strategies (i) and

(ii)) or tighter bounds (in case of strategy (iii)). Pairwise stratification would be the extreme case in which

these strategies would fail, as one would try to infer about attrition probabilities for a treated or for a control

observation in a given covariate cell based on a single observation.

In an empirical application of the third strategy we assess the wage effects of the Job Corps program,

one of the largest federally funded job training programs in the U.S., which was also studied in Lee (2009).

We stratify the sample based on gender and age and estimate the bounds for younger men, who displays a

significantly lower differential attrition relative to the other groups. Our estimation leads to bounds for this

specific group that are 56% tighter when compared to Lee’s original results. The confidence intervals based

on these estimates, however, end up with similar widths, because the bounds’ estimators using our strategy

use fewer observations, implying larger standard errors. Importantly, note that if we had a larger sample,

then the gain in terms of tighter bounds would remain, while the loss in terms of precision of the bounds’

estimators would become less relevant. These results highlight that these strategies of selecting covariate

cells with lower attrition problems relies crucially on a large number of observations per covariate cell in

order to provide accurate and more precise information. A large number of observations per cell is crucial

2The only problem in this case would be of external validity, as the estimator would not be informative about the pairs that
were dropped.
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so that observed attrition is informative about the real attrition problem and because it makes the loss in

precision of the bounds’ estimators second order relative to the gain in the bounds’ width.

The remainder of this paper proceeds as follows. We present our theoretical framework and analyze the

theoretical properties of our strategies of selecting covariate cells in Section 2. In Section 3 we present results

based on MC simulations. In Section 4 we discuss an empirical application using data from the Job Corps

program. Finally, we present concluding remarks in Section 5, including considerations about specification

searching and the importance of pre-analysis plans in randomized experiments.

2 Theoretical Framework

We consider a general selection model in which:
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(Y ∗
i (1), Y

∗
i (0), Si(1), Si(0), Di, Xi) is i.i.d. across individuals

Si = Si(1)Di + Si(0)(1−Di)

Yi = Si{Y ∗
i (1)Di + Y ∗

i (0)(1−Di)}

(Yi, Si, Di, Xi) is observed

(1)

where Y ∗
i (1) and Y ∗

i (0) are latent potential outcome of observations i for the treated and control states, and

Si(1) and Si(0) are potential sample selection status for the treated and control states. Di denotes treatment

status, while Si and Yi denote the observed sample selection status and outcome of individual i. Finally, Xi

is an observed covariate that can take G distinct values. For simplicity, we assume that Xi ∈ {1, ..., G} and

define I(x) = {i | Xi = x}.

We consider the case of a randomized experiment so that, for each partition I(x), a proportion p of these

observations were randomly selected to receive treatment Di. We assume, therefore, that potential outcomes

are independent of treatment status.

Assumption 1 (Independence): (Y ∗
i (1), Y

∗
i (0), Si(1), Si(0)) ⊥ Di

In the absence of sample selection, by virtue of random assignment, it is well known that a comparison

of means between treated and control groups would give a consistent estimator for the average treatment

effect, τATE = E[Y ∗
i (1) − Y ∗

i (0)]. However, even under random assignment, we might have attrition (or

sample selection) correlated with potential outcomes, so comparing the observed outcomes (Yi) for treated
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and control individuals might provide a biased estimator. Note that the estimator for the average treatment

effects for individuals with Xi = x would be given by:

τ̂x =
1

Ñx(1)

∑

i∈I(x)|Si=1

DiYi −
1

Ñx(0)

∑

i∈I(x)|Si=1

(1−Di)Yi (2)

where Ñx(1) (Ñx(0)) is the number of observed individuals with Xi = x in the treated (control) group.

Therefore, we have that:

E[τ̂x|Xi = x] = E[Y ∗
i (1)|Xi = x,Di = 1, Si(1) = 1]− E[Y ∗

i (0)|Xi = x,Di = 0, Si(0) = 1] (3)

The main problem is that, even though Di is independent of potential outcomes, the first expectation

is conditional on Si(1) = 1, while the second expectation is conditional on Si(0) = 1. Therefore, we are

potentially not comparing the same set of individuals in the treated and control groups. The existing

alternatives in the literature either impose strong assumptions on the sample selection process to achieve

point identification or estimate bounds on the treatment effects under weaker assumptions. A potential

problem with bounds estimators is that they may be essentially uninformative in some empirical applications

if attrition rates are high. In such cases, it might be tempting to focus the analysis on covariate cells with

relatively lower attrition rates.

We consider three alternatives to deal with this selection problem by discarding covariate cells with

relatively more attrition problems. In Section 2.1, we consider the strategy of excluding all covariate cells

with positive attrition; in Section 2.2 we consider the strategy of excluding covariate cells with treated vs

control differential attrition rates; in Section 2.3 we consider the strategy of choosing covariate cells with

relatively low attrition rates and estimating bounds using only these covariate cells.

2.1 Selecting cells with no attrition

As a first approach to the sample selection problem, we consider a strategy of discarding observations in

any covariate cell with positive attrition rates. Define Γ = {x | Pr(Si(1) = 1|Xi = x) = Pr(Si(0) = 1|Xi =

x) = 1} as the set of covariate values such that there is no attrition problem. We assume that Γ 6= ∅, which

implies that there is at least one covariate cell such that there is no attrition problem. In this case, for x ∈ Γ
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we have that:

E[τ̂x|Xi = x] = E[Y ∗
i (1)|Xi = x,Di = 1, Si(1) = 1]− E[Y ∗

i (0)|Xi = x,Di = 0, Si(0) = 1] (4)

= E[Y ∗
i (1)|Xi = x,Di = 1]− E[Y ∗

i (0)|Xi = x,Di = 0]

= E[Y ∗
i (1)− Y ∗

i (0)|Xi = x] = τx

where the second equality follows from the fact that Si(1) = Si(0) = 1 for all i ∈ I(x) for x ∈ Γ and the

third equality follows from random treatment assignment (assumption 1).

Therefore, if we knew the set Γ, then it would be possible to construct an (infeasible) estimator:

τ̂∗ =
∑

x∈Γ

Ñx
∑

x′∈Γ Ñx′

τ̂x (5)

where Ñx = Ñx(1) + Ñx(0). It follows from equation 4 that E[τ̂∗] = E[τx|x ∈ Γ]. In words, if we knew a

subset of the data that has zero probability of attrition, then we could compare treated and control units

conditional on this subset of observations, and this would provide an unbiased estimator for the average

treatment effect for this subset of individuals with zero probability of attrition. Note that τ̂∗ would provide

an internally valid estimator for the causal effect of the treatment on a well-defined population. However,

external validity might be compromised if treatment effect is heterogeneous. In this case, the average

treatment effect (ATE), τATE = E [τx], might be different from E[τx|x ∈ Γ].

The problem, however, is that Pr(Si(1)|Xi = x) and Pr(Si(0)|Xi = x) are unknown, so we would need

to estimate the set Γ based on the observed realization of the data. Define Γ̂ = {x|Si = 1 ∀ i ∈ I(x)}. That

is, Γ̂ is the set of covariate cells x such that there is no observed attrition. If we take at face value that x ∈ Γ

if x ∈ Γ̂, then we have the estimator:

τ̂ =
∑

x∈Γ̂

Ñx
∑

x′∈Γ̂ Ñx′

τ̂x (6)

Note that there might be x ∈ Γ̂ such that x /∈ Γ. Therefore, unless we impose strong assumptions on the

attrition process, we know from equation 3 that it might be that E[τ̂x|Xi = x] 6= τx for such x. Since x /∈ Γ

implies that individual i could have had Si = 0, then the fact that Si = 1 might be informative about the

potential outcomes Y ∗
i (1) and Y ∗

i (0). The problem here is that there might be covariate cells x with positive

probability of attrition such that Si = 1 for all i ∈ I(x) in a given realization. In other words, if there is a
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positive probability of attrition, then the fact that we do not observe attrition should be informative about

the potential outcomes. If the attrition is correlated with potential outcomes, then this would generate a

biased estimator.

Pairwise Stratification

Note that the key problem in considering only the covariate cells with no observed attrition is that Si = 1 for

all i ∈ I(x) does not guarantee that x ∈ Γ. Our setting can encompass the pairwise stratification case if we

consider Xi ∈ {1, ..., N
2 }, so each Xi = x is a stratum. In this case, note that the probability of no attrition

for subjects in a given stratum x would be given by Pr(Si(1)|Xi = x,Di = 1) × Pr(Si(0)|Xi = x,Di = 0).

Therefore, even if the probability of attrition for subjects in pair x is, for example, equal to 20% (irrespectively

of treatment status), there would still be a 64% probability that we would mistakenly continue to consider

this pair. In other words, the problem with the approach of excluding pairs with attrition is that one would

implicitly be testing whether stratum x has a zero probability of attrition based on only two observations,

where one would reject if there is attrition in at least one observation. The problem is that such test

would have poor power even if the probability of attrition is high enough to generate substantial bias in the

estimator. Therefore, these results highlight that one should take with caution the recommendation in King

et al. (2007) and Bruhn and McKenzie (2009), who argue that an advantage of pairwise randomization is

that it provides partial protection in case of attrition, as one could consider only the pairs with no attrition.

While such strategy would be valid if attrition is solely determined by the covariates used for stratification,

it would lead to inconsistent estimators if attrition is correlated with potential outcomes.

Asymptotics with N → ∞

If there are more observations per covariate cell, then the information of no attrition within a cell would

provide a more powerful test of whether attrition is a problem for that specific cell, attenuating the problem

discussed above. Let Nx be the total number of observations in covariate cell x and assume that pNx is in

the treated group and (1− p)Nx is in the control group. Then the probability of having no attrition in this

covariate cell would be given by:

Pr(Si(1) = 1|Xi = x)pNx × Pr(Si(0) = 1|Xi = x)(1−p)Nx (7)
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which converges to zero when Nx → ∞, unless Pr(Si(1) = 1|Xi = x) = Pr(Si(0) = 1|Xi = x) = 1.

Therefore, with a large number of observations per covariate cell, we would have more confidence that the

decision rule of considering only the set of covariate cells such that x ∈ Γ̂ would select only the cells such

that x ∈ Γ. We show that this procedure leads to a consistent estimator for E[τx|x ∈ Γ] when the number

of observations in each covariate cell goes to infinity. For simplicity, let Nx = f(x)N for all N and assume

that var(Y ∗
i (1)|Xi = x) = var(Y ∗

i (0)|Xi = x) = σ2.

Proposition 1 If Γ 6= ∅, then, under assumption 1:

τ̂ →p E[τx|x ∈ Γ] and
√
N(τ̂ − E[τx|x ∈ Γ]) →d N

(

0,
1

(
∑

x∈Γ f(x))
2

∑

x∈Γ

f(x)
σ2

p(1− p)

)

(8)

Proof. The main idea of the proof is that 1{x ∈ Γ̂} converges in probability to one if x ∈ Γ and to zero if

x /∈ Γ. See details in appendix A.1.

Therefore, the estimator that compares treatment and control groups’ averages conditional on covariate

cells that had no attrition is a consistent estimator for the average treatment effect for subjects with zero

probability of attrition. However, for a fixed N , this estimator could generally be biased.

Remark 1 Note that τ̂ is asymptotically equivalent to the infeasible estimator when the set Γ is known.

Therefore, no adjustment for inference is required when we consider only a subsample with no attrition

problem, provided that the number of observations per covariate cell is large.

Remark 2 While the strategy of discarding cells with attrition yields a consistent estimator for the average

treatment effect for a well-defined population, there is a loss in precision because we discard information

from individuals in covariate cells with attrition. The loss in precision is increasing with the number of cells

we discard. For example, if we assume that f(x) = 1
G for all x, then note that the asymptotic variance of

√
N(τ̂ − E[τx|x ∈ Γ]) will be given by 1

G′/G
σ2

p(1−p) , where G′ is the number of covariates cells in Γ. Note

that it would not be possible to use the information on the cells with attrition without imposing additional

structure on the selection process.

2.2 Selecting cells with no differential attrition

The strategy discussed in Section 2.1 is extreme in the sense that we would drop an entire cell when even only

one observation is missing. The idea is that, without additional assumptions, including information from

individuals in a covariate cell with any positive probability of attrition would potentially lead to inconsistent
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estimators. If we assume that treatment has a monotonic effect on selection, as in Lee (2009), then we could

have an unbiased estimator if we restrict to covariate cells with no treated x control differential attrition,

even in the presence of positive attrition. However, we again face the problem that we have to estimate the

differential attrition and, with a finite number of observations, there is a risk of still considering cells with

differential attrition rates. We consider the properties of an estimator that tests for differential attrition for

each covariate cell and then includes only the subset such that we cannot reject the null that there is no

differential attrition.

Following Lee (2009), we assume that treatment has a monotone effect on selection status.

Assumption 2 (Monotonicity): Si(1) ≥ Si(0) or Si(1) ≤ Si(0) with probability one.

Under assumption 2, note that Pr(Si(1) = 1|Xi = x) = Pr(Si(0) = 1|Xi = x) implies that Si(1) = Si(0)

with probability one, so Si is independent of Di. Define Γ′ = {x|Pr(Si(1) = 1|Xi = x) = Pr(Si(0) = 1|Xi =

x)}. Then, for x ∈ Γ′, we would have:

E[τ̂x|Xi = x] = E[Y ∗
i (1)|Xi = x,Di = 1, Si(1) = 1]− E[Y ∗

i (0)|Xi = x,Di = 0, Si(0) = 1] (9)

= E[Y ∗
i (1)|Xi = x, Si(1) = 1]− E[Y ∗

i (0)|Xi = x, Si(0) = 1]

= E[Y ∗
i (1)− Y ∗

i (0)|Xi = x, Si = 1]

where the second equality comes from the fact that Di is independent of Si(j) and Y ∗
i (j), and the third

equality comes from the fact that Si(1) = Si(0) when we consider x ∈ Γ′. Note that, for a covariate cell

with no differential attrition, the difference between observed treated and control individuals (τ̂g) is the

average treatment effect for observations in this cell that are selected (Si = 1). We define τ ′ = E{E[Y ∗
i (1)−

Y ∗
i (0)|Xi = x, Si = 1] | x ∈ Γ′}.

If we knew Γ′, then we could construct an (infeasible) estimator τ̂ ′∗ that is unbiased for τ ′ by restricting

to x ∈ Γ. However, similar to the case analyzed in Section 2.1, the problem is that we do not observe Γ′. Let

px(1) = Pr(Si(1) = 1|Xi = x) and px(0) = Pr(Si(0) = 1|Xi = x). We consider a procedure where we use

Γ̂′ instead of Γ′, where Γ̂′ is the set of x such that we cannot reject the null of |px(1)− px(0)| < ǫ for some

ǫ > 0 at the α significance level. Then we construct an estimator τ̂ ′ using only the cells g ∈ Γ̂′. We show

that, under some conditions, τ̂ ′ is a consistent and asymptotically normal estimator for τ ′. We maintain the

assumptions that Nx = f(x)N for all N and assume that var(Y ∗
i (1)|Xi = x) = var(Y ∗

i (0)|Xi = x) = σ2.

Also, let px = px(1) = px(0) if x ∈ Γ′.
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Proposition 2 Assume that Γ′ 6= ∅ and that ǫ is chosen such that minx/∈Γ′{|px(1) − px(0)|} > ǫ. Then,

under assumptions 1 and 2:

τ̂ ′ →p τ ′ and
√
N(τ̂ − τ ′) →d N

(

0,
1

(
∑

x∈Γ pxf(x))
2

∑

x∈Γ

pxf(x)
σ2

p(1− p)

)

(10)

Proof. Similar to Proposition 1, the main idea of the proof is that 1{x ∈ Γ̂′} converges in probability to

one if x ∈ Γ′ and to zero if x /∈ Γ′. See details in appendix A.2.

Remark 3 It is important that we consider a composite null hypothesis H0 : |px(1)− px(0)| < ǫ so that the

estimator converge in probability to τ ′. If we considered instead a simple null hypothesis H0 : px(1) = px(0),

then there would be a α% chance that a covariate cell x ∈ Γ′ would be falsely detected as a cell with

differential attrition even for large N . Therefore, if we have heterogeneous treatment effects, then τ̂ ′ will

not converge to a point. Note that using a null H0 : px(1) = px(0) may be unreasonable given that, with

large N , then one would reject the null (and, therefore, discard a covariate cell) even when the proportion

of attrition is very close in the treated and control groups.3

Remark 4 As in proposition 1, the asymptotic distribution of τ ′ is equivalent to the asymptotic distribution

of the infeasible estimator that considers only x ∈ Γ′. Therefore, no adjustment is necessary for inference.

2.3 Selecting cells with lower attrition rates to construct bounds

The strategies suggested in Sections 2.1 and 2.2 provide consistent estimators for the average treatment

effect for well-defined populations. However, these strategies rely on the existence of a covariate cells with

no attrition problem.4 If this is not the case, then the proposed estimators would not be asymptotically

well defined, as we would discard all observations with probability approaching to one when N → ∞. Given

that the assumption of covariate cells with no attrition problem can be unrealistic in empirical applications,

we consider the use of bounds, as in Lee (2009) and Horowitz and Manski (2000). Since an usual problem

with the use of bounds is that they can be too wide, yielding uninformative results, we consider whether

it would be possible to focus on covariate cells with relatively lower attrition problem, so that we can have

more informative results, even if for a subset of the sample.

3Notice that we assume that ǫ is low enough such that there is no covariate cell with differential attrition smaller than ǫ. If
this were the case, then the probability of rejecting the null for such covariate cells would converge to zero, and there would be
some bias in the estimator. This bias, however, should be small, as the differential attrition would also be small.

4The approach in Section 2.1 requires covariate cells with no probability of attrition, while the approach in 2.2 impose a
monotonicity assumption on the effects of treatment assignment on selection status, and requires existence of covariate cells
with no differential attrition rates.
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We focus on the bounds proposed in Lee (2009), so we maintain assumptions 1 and 2. Under these

assumptions, and considering the case in which Si(1) ≥ Si(0), Lee (2009) shows that it is possible to construct

a lower bound for E[Y ∗
i (1)−Y ∗

i (0)|Si(1) = Si(0) = 1] by trimming the Pr(Si(1) = 1)−Pr(Si(0) = 1) largest

observations in the treated group and an upper bound by trimming the Pr(Si(1) = 1)−Pr(Si(0) = 1) lowest

observations in the treated group. Lee (2009) shows that his strategy can be applied conditional on covariates

in order to provide narrower bounds. What we propose is different, because we propose discarding cells with

a higher level of (differential) attrition in order to achieve narrower bounds, even if this implies that the

bounds would not be informative about the subset of the population that is discarded. The idea is to provide

more informative bounds for a specific subset of the sample, even if we loose in external validity.

In finite samples, a strategy based on selecting covariate cells based on observed differential attrition

would face a problem similar to the one observed in Sections 2.1 and 2.2. Consider, for example, a strategy

of selecting the covariate cell with the lowest differential attrition. In order to provide an intuition on why

this strategy might be problematic, suppose we have only two covariate cells, both with differential attrition

equal to ∆p. Then, in finite samples, the expected value of the differential attrition of the covariate cell with

lower differential attrition will be lower than ∆p. In this case, one would end up systematically trimming

less than would be necessary. Lee (2009) considers the finite sample behavioral of bounds’ estimators when

the differential attrition rate is close to zero. In this case, he argues that coverage rates may be inaccurate in

this case because there would be a non trivial probability that the “wrong” group would be trimmed.5 Note

that our argument that coverage rates may be inaccurate if one discards covariate cells based on observed

differential attrition is valid even if differential attrition is large, and the probability of trimming the “wrong”

group is negligible.

While strategies based on selecting the covariate cell with lower observed attrition problems may lead to

important distortions in finite samples, we show that, under some conditions, such strategies are valid when

N → ∞.

Proposition 3 Under assumptions 1 and 2:

1. For some ∆p̄ ∈ (0, 1), if ∃ x such that |px(1)−px(0)| < ∆p̄ and 6 ∃x such that |px(1)−px(0)| = ∆p̄, then

the strategy of applying the bounds derived in Lee (2009) to covariate cells such that |p̂x(1)−p̂x(0)| < ∆p̄

is asymptotically valid.

5For example, if differential attrition is positive but close to zero, there will be positive probability that the observed
differential attrition would be negative.
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2. Without loss of generality, assume that Xi = 1 is the covariate cell with lowest differential attrition.

If minx 6=1{|px(1) − px(0)|} > |p1(1) − p1(0)|, then the strategy of applying the bounds derived in Lee

(2009) to the covariate cell with lowest differential attrition is asymptotically valid.

Proof.

The proof is essentially the same as in Propositions 1 and 2. Under these assumptions, the estimators for

the bounds derived in Lee (2009) following these strategies will be asymptotically equivalent to the infeasible

estimators assuming we knew which covariate cells should be selected.

Remark 5 If there is more than one covariate cell with the lowest value of differential attrition (that is,

minx 6=1{|px(1)− px(0)|} = |p1(1)− p1(0)|), then we would not be able to guarantee asymptotic equivalence

between the infeasible and the feasible estimator for the bounds. If N is sufficiently large, then the differential

attrition rates of one of the covariates cells with |px(1)−px(0)| = |p1(1)−p1(0)| will have the lowest differential

attrition. Note that the probability of ties converge to zero, even thought the observed differential attrition

converge |p1(1)− p1(0)| for these covariate cells. Therefore, we would end up choosing a covariate cell that

was selected because it had a relatively lower differential attrition.

Remark 6 For the strategy of choosing covariate cells with |p1(1) − p1(0)| < ∆p̄, if there is x such that

|px(1) − px(0)| = ∆p̄, then this covariate cell would only be chosen if it turns out to have a lower than

average differential attrition rate, even when the number of observations per covariate cell goes to infinity.

This would also potentially generate distortions in the coverage rate.

Remark 7 Note that we loose in terms of external validity when we follow one of these strategies, because

our bounds would only be informative about the treatment effect for always selected individuals in covariate

cells with lower attrition rates. However, we gain in terms of having more informative bounds for this subset

of the sample.

3 Monte Carlo Simulations

The results in Section 2 show that strategies of selecting covariate cells with relatively lower attrition problems

are valid when the number of observations per covariate cell is large. However, we also argue that such

strategies might lead to biased estimators and distortions in coverage rates in finite samples. We consider

nowMC simulations to illustrate the potential problems of selecting covariate cells based on observed attrition
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with finite N . We consider in Section 3.1 the strategy of selecting covariate cells with no realized attrition,

in Section 3.2 the strategy of selecting covariate cells with no detected differential attrition, and in Section

3.3 the strategy of selecting the covariate cell with relatively lower differential attrition to apply the bounds

derived in Lee (2009). While the data generating processes we consider are arguably artificial, the main point

in this section is to show that these strategies can lead to important distortions in finite samples even when

all assumptions that guarantee that they would be asymptotically valid are satisfied, and also to analyze

under which conditions this finite sample distortions might be more relevant.

3.1 MC: Selecting cells with no attrition

We consider first a simple data generating process (DGP) given by:































Y ∗
i (0) = βX∗

i + σui

Y ∗
i (1) = Y ∗

i (0) + γTi

Si = 1{Yi ≤ ȳ}

(11)

where ui ∼ U [0, 1]. We use a standard uniform error to guarantee that for some covariate cells the probability

of attrition is zero. We set half of the sample with Ti = 1, and for each Ti we set X∗
i evenly distributed in

the interval [0, 1]. Therefore, for every value of X∗
i we have exactly one treated and one control observation.

We use as covariate cells quantiles of X∗
i , which we denote by Xi = 1, ..., G. For example, we can think that

X∗
i is baseline income, and we aggregate this variable in bins given by Xi. In the extreme case in which

G = N/2, we have the pairwise stratification case. We set β = 1, σ = 2, γ = 1, and ȳ = 3.2. With this

parametrization, treated individuals in the bottom 20% of the distribution of X∗
i and all control individuals

are always selected. However, we have treated individuals that may end up with outcome greater than ȳ.

Note that we have a subset of the covariate cells such that the probability of attrition is equal to zero, which

is one of the main assumptions in Proposition 1.

We consider simulations with the number of covariate cells G ∈ {5, 10, 25, 50} and the number of obser-

vations in each covariate cell Nx ∈ {2, 10, 50, 100, 1000, 5000}. For each scenario, we drew 10,000 samples

for our MC simulations and calculated three different estimators: (i) the naive estimator that includes all

selected observations, (ii) the estimator that considers only the covariate cells with no observed attrition,

and (iii) the infeasible estimator that considers only the observations with zero probability of attrition.

We present in Panel A of Table 1 the average bias of these three estimators when G = 5 as a function of
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the number of observations per cell. Note that the case with Nx = 2 corresponds to pairwise stratification.

In this case, as expect, the bias of the naive estimator (column 1) is the same as the bias of the estimator

that considers only pairs with no realized attrition (column 2). In contrast, the infeasible estimator that

considers only pairs with zero probability of attrition (column 3) would have zero bias. As Nx increases, the

bias of the estimator that discards covariate cells with realized attrition converge to zero, while the naive

estimator remains biased. We find the same pattern for the cases with different G (Panels B to D of Table

1). The only difference is that, with more covariate cells, we need a higher total number of observations

N = Nx ×G so that the bias of the estimator that excludes cells with attrition converges to zero.

We also present in columns 4 to 6 the standard error of these estimator (multiplied by
√
N). As expected,

the standard error of the infeasible estimator is always higher than the standard error of the naive estimator,

because the infeasible estimator relies on fewer observations. While the standard error of the estimator that

excludes covariate cells with observed attrition starts at the same level as the standard error of the naive

estimator, its variance converges to the variance of the infeasible estimator when Nx → ∞. This is consistent

with Proposition 1, which shows that these two estimators are asymptotically equivalent. The main intuition

is that one would discard cells with positive probability of attrition with probability approaching to one.

3.2 MC: Selecting cells with no differential attrition

We now modify the DGP used in Section 3.1 so that all covariate cells have some positive probability

of attrition, although for some covariate cells there is no differential probability of attrition. We add a

10% probability that any observation would not be selected, independently of X∗
i and Yi. We keep all

other parameters the same as the ones in Section 3.1. In this case, observations in the bottom 20% of

the distribution of X∗
i have a 10% probability of attrition irrespectively of treatment status, so there is no

differential attrition, while for larger X∗
i we have a higher probability of attrition for treated observations,

so we have differential attrition. The results, presented in Table 2, are similar to the ones presented in

Section 3.1. With few observations, the bias of the estimator that selects covariate cells with no observed

differential attrition is close to the bias of the naive estimator, but it converges to zero when Nx → ∞.6

The only difference is that, conditional on G, we require a much larger Nx so that the bias is close to zero

when compared to the results in Section 3.1. This happens because, for a given Nx, we have much more

power to reject the null if we define that a cell has attrition problem when even only one individual is not

selected. However, the problem with this approach is that we may end up discarding more observations

6We only include covariate cells that do not reject the null that |px(1)− px(0)| < 0.1% at 5% significance level.
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than necessary. Under assumption 2, we could have covariate cells that could be used for point estimation

even if there is some positive probability of attrition. Indeed, under this DGP, note that we would end up

discarding all covariate cells with probability approaching to one if we used the strategy from Section 3.1 to

select covariate cells.

3.3 MC: Selecting cells with lower attrition rates to construct bounds

Finally, we consider the strategy proposed in Section 2.3. We use the same parameters we considered in

Section 3.1, but we change the distribution of X∗, so that it is easier to present the main mechanisms that

lead to distortions when one selects covariate cells based on the observed attrition. We consider now that we

have one covariate cell with X∗ = 0.4 (which implies a 10% probability of attrition for treated observations)

and G−1 covariate cells withX∗ = 0.8 (which implies a 30% probability of attrition for treated observations).

In this DGP, there is only positive probability of attrition for treated observations, so the potential finite

sample problem raised in Lee (2009) that the estimated differential attrition might lead the researcher to

trim the “wrong” group with a nontrivial probability is absent in this case. Therefore, we can focus solely

on the finite sample distortions generated by the strategy of selecting covariate cells based on the observed

attrition rates. For each replication, we first calculate the Lee bounds using the entire sample. Then we

restrict the sample to covariate cells with observed differential attrition lower than 25%.7 Finally, we consider

an infeasible estimator in which we restrict to covariate cells with populational differential attrition lower

than 25%. Note that, since we consider a DGP with homogeneous treatment effects, in the three cases we

provide bounds to the same parameter.

For these three bounds’ estimators, we construct confidence intervals for the parameter of interest based

on Imbens and Manski (2004). We present empirical coverage rates in columns 1 to 3 of Table 3. When

we consider the Lee bounds for the entire sample (column 1) and when we select on the covariate cell with

lower probability of attrition (column 3), we have a coverage rate of around 95%, regardless of the number

of observations per covariate cell. When we select covariate cells with observed differential attrition lower

than 25%, however, we have undercoverage when the number of observations per covariate cells is not large.

With 5 covariate cells (4 of which should be discarded), we get an empirical coverage rate of around 90%

when Nx = 50, although it gets close to 95% when Nx = 1000 (panel A of Table 3). The undercoverage

problem becomes more severe when we have more covariate cells. With 50 covariate cells, we have an

7Since we consider a DGP in which the probability of attrition in the control group is equal to zero, then this is equivalent
to selecting covariate cells with attrition rates lower than 25% in the treated group.
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empirical coverage of only 30% when Nx = 50 (panel A of Table 3). With Nx = 5000, however, we have

again a coverage rate of around 95%, which is consistent with Proposition 3. The intuition for this result

is that, with more covariate cells that should be discarded, there is a higher probability that we would end

up with at least one of these covariate cells with observed differential attrition sufficiently lower than its

population differential attrition rates. Therefore, one should worry about coverage distortions using our

strategy of selecting cells with relatively lower differential attrition when there are many covariate cells with

few observations each to decide which ones should be discarded.

We also present in columns 4 to 6 of Table 3 width of the confidence intervals for these three estimators.

When Nx is small and we have many covariate cells, the width of the confidence interval of the infeasible

estimator that selects only the covariate cell with lower differential attrition is larger than the width of the

confidence interval using all covariate cells. This happens because, while the population bounds when we

consider only the covariate cell with lower differential attrition is tighter, we estimate these bounds using

fewer observations. In this case, the larger standard errors of the bounds’ estimators end up leading to larger

confidence intervals. When Nx increases, the reduction in sample size when we consider only a subset of

the covariate cells becomes less relevant, so with large Nx the strategy of selecting only the covariate cell

with lower differential attrition leads to tighter confidence intervals. Note that the width of the confidence

intervals when we select covariate cells based on the observed attrition is lower relative to the case in which

we use all observations, even when Nx is small. However, this happens because we end up selecting covariate

cells that should not be selected, which ends up generating undercoverage. When Nx increases, the width of

the confidence intervals when we select covariate cells based on the observed and on the actual differential

attrition becomes very similar, which is consistent with Proposition 3.

Finally, we consider in Table 4 results when we use covariate X to tighten the bounds as derived in Lee

(2009), both when we use all covariate cells and when we select covariate cells based on observed attrition

rates. Note that we still have important gains in terms of tighter confidence intervals when we select covariate

cells with lower attrition rates when Nx is large. The main difference relative to the previous case is that now

we have some undercoverage when Nx is small, even when we use all covariate cells (column 1). However,

the undercoverage we get when we select covariate cells based on observed attrition rates is always more

severe.

Overall, these results suggest that a strategy of selecting covariate cells with lower observed differential

attrition rates may not be attractive when the number of observations per covariate cell is small, as this

would lead to both biased and less precise estimators for the bounds. When the number of observations per
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covariate cells is large, however, the loss in precision becomes negligible and the bias goes to zero, so this

strategy may lead to more informative results, even if only for the average treatment effect for a well-defined

subpopulation.

4 Empirical Application

We derived in Section 2.3 a partial identification strategies that may generate more informative bounds by

selecting covariate cells with lower attrition problems. MC simulations presented in Section 3.3 illustrate the

potential benefits of this strategy in terms of providing tighter bounds when the number of observations per

covariate cell is large, and also potential pitfalls when there are only few observations per covariate cell. In

this section, we consider the use of this strategy in a real application. More specifically, we revisit Lee (2009)

study on the impacts on wages of the The Job Corps program, an education and job-training intervention

in the U.S.8. The Job Corps program is federally funded and organized by the US department of Labor

and focuses on disadvantaged youths aged 16 to 24 years old. A participant usually received vocational

and academic training among many other benefits such as room, board, and health services. The program

typically lasts for eight months, and participants were randomly selected.9 The selection problem arises on

evaluating the impact of the program on wage. We only observe wage from individuals who are employed

and it is expected that the program also affected the likelihood of finding a job. Therefore, it is not possible

to correctly assess the average impact of the program on wage by simply comparing the average wages of

treated and non-treated individuals. It is very well likely that employed treated individuals have different

non-observable characteristics than employed non-treated individuals.

Lee (2009) estimates bounds for the parameter of interest under assumption 2. He estimates the impact

four years after the end of the program. The overall differential attrition between treatment and control

group is 6.8%. In the main specification without control variables, the usual trimming procedures find 0.093

(-0.019) as the the upper (lower) bound of the treatment effect. In order to tighten the bounds, Lee also

calculates the bounds for different cells based on covariates, and then, estimate bounds for the average

(weighted) effect of the treatment. Lee calculates the projection of wage on several socio-demographics

and uses the quartiles of the wage fitted value to create four different cells. The estimated average lower

and upper bounds are -0.012 and 0.089, respectively. Although, this procedure generates tighter bounds

8Other papers have evaluated different effects of the Job Corps intervention; see, for instance, Flores et al. (2012), FLORES-
LAGUNES et al. (2010) and Frumento et al. (2012).

9For more details of the program, see Schochet et al. (2008).
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compared to the main specification, the gain is not very large.

We consider the same dataset as Lee and create four cells based on gender and age (above and under

20 years old). The main idea is that differential attrition can potentially be related to covariate groups

and, if there is a set of covariate cells with lower differential attrition, then it might be possible to estimate

tighter bounds for this subpopulation. Table 5 depicts the proportion of selection in each cell. In all but

one, the differential attrition rates hinge around 9%. The group of young male present the smallest level of

differential attrition with px(0)−px(1)
px(0)

just below 2%. The table also shows the number of selected observation

in each cell. It is important to notice that there are many observations per covariate cell, and that we are

considering only four covariate cells so, in light of our results from Section 3.3, it is unlikely that confidence

intervals based on our strategy would generate undercoverage.

We then estimate the bounds for the only cell with px(0)−px(1)
px(0)

below 5% (young males). Table 5 compares

the results of this exercise with the ones from Lee’s original procedure using the same set of covariates.

Considering the point estimates for the upper and lower bounds, we are able to achieve substantially tighter

bounds relative to the case in which we consider all covariate cells. When we consider the standard errors

of the bounds’ estimators, however, then confidence intervals using both strategies have roughly the same

width.10 This happens because we have to discard many observations from covariate cells with higher

differential attrition rates, so we get less precise estimators for the bounds, as discussed in Section 3.3.

Importantly, we should expect that the strategy of selecting only this covariate cell with lower attrition

would lead to tighter confidence intervals if we had a bigger sample size.

As discussed before, it is important to bear in mind that this strategy compromises external validity. This

may be specially critical in the Job Corp program evaluation. Schochet et al. (2008) have shown important

heterogenous effects of the program for different demographic groups. More specifically, they have shown

that young adults (20-24 years old) experienced larger impacts on weekly earnings compared to adolescents

(16-19 years old). Blanco et al. (2013a) and Blanco et al. (2013b) taking into consideration the potential

sample selection also find larger impacts on wages for young adults compared to adolescents. However, while

this strategy compromises external validity, it may be more informative for well-defined subgroups.

10We calculate confidence intervals using Imbens and Manski (2004).
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5 Concluding Remarks

Sample attrition may invalidate even well implemented field experiments. Given that existing solutions to

deal with attrition may rely on strong assumptions and/or lead to uninformative bounds, researchers might

be tempted to consider subsamples in which attrition problems are more mild. We show that strategies

of selecting subsamples based on observed attrition rates are asymptotically valid when the number of

observations per covariate cell goes to infinity. However, in finite sample such strategies may lead to important

distortions as there might be a nontrivial probability that a covariate cell with severe probabilities of attrition

in the population turns out to have low observed attrition rates in a given sample. In this case, the fact that

one does not discard this covariate cell could be correlated with potential outcomes, leading to inconsistent

estimators.

Importantly, the validity of the strategies we propose relies on the fact that covariate cells are selected

based on pre-determined rules, depending on their observed attrition rates. However, in real applications it

is possible that researchers try different rules to select covariate cells, and this may lead to opportunities to

choose specific rules that lead to significant results, a problem that has received increasing attention in social

sciences.11 Such potential problem highlights the importance of pre-analysis plans in randomized control

trials, in which a researcher could define ex-ante which variables and which rules would be used to select

covariate cells in case of attrition.12 By committing to a given set of rules that a researcher would be allowed

to use to select covariate cells to deal with attrition this specification searching problem would be mitigated.

11See Christensen and Miguel (2016) for a recent survey on transparency in economics research.
12For a thorough discussion on the advantages and disadvantages of pre-analysis plans in social sciences, see Olken (2015)

and Coffman and Niederle (2015).
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Table 1: Selecting cells with no attrition - bias and standard error

Absolute value of the bias (×100) Standard error (×
√
N)

No
selection

Selection on
observed
attrition

Selection on
actual

attrition

No
selection

Selection on
observed
attrition

Selection on
actual

attrition
(1) (2) (3) (4) (5) (6)

Panel A: 5 covariate cells
Nx = 2 16.92 16.92 0.01 1.248 1.248 2.590
Nx = 10 15.31 7.21 0.06 1.138 1.740 2.584
Nx = 50 15.12 0.82 0.11 1.131 2.370 2.547
Nx = 100 15.01 0.13 0.03 1.114 2.539 2.577
Nx = 1000 15.03 0.00 0.00 1.122 2.580 2.580
Nx = 5000 14.98 0.01 0.01 1.124 2.586 2.586

Panel B:10 covariate cells
Nx = 2 15.50 15.50 1.03 1.213 1.213 2.582
Nx = 10 15.24 7.63 0.45 1.111 1.652 2.602
Nx = 50 14.90 0.91 0.03 1.114 2.290 2.577
Nx = 100 14.94 0.43 0.11 1.110 2.470 2.604
Nx = 1000 14.90 0.02 0.02 1.117 2.567 2.567
Nx = 5000 14.90 0.01 0.01 1.122 2.622 2.622

Panel C: 25 covariate cells
Nx = 2 14.40 14.40 0.06 1.196 1.196 2.584
Nx = 10 14.89 7.74 0.11 1.138 1.597 2.547
Nx = 50 14.85 0.89 0.14 1.117 2.223 2.572
Nx = 100 14.86 0.26 0.05 1.122 2.382 2.580
Nx = 1000 14.86 0.00 0.01 1.124 2.585 2.586
Nx = 5000 14.87 0.01 0.01 1.112 2.590 2.590

Panel D: 50 covariate cells
Nx = 2 14.46 14.46 0.45 1.173 1.173 2.602
Nx = 10 14.75 7.69 0.03 1.122 1.616 2.577
Nx = 50 14.84 0.95 0.05 1.123 2.201 2.580
Nx = 100 14.89 0.30 0.00 1.123 2.381 2.580
Nx = 1000 14.86 0.00 0.01 1.122 2.610 2.622
Nx = 5000 14.87 0.01 0.01 1.115 2.553 2.553

Note: this table presents results from MC simulation described in Section 3.1. We present the absolute value of
the bias (multiplied by 100) and the standard error (multiplied by

√
N for three different estimators: (i) one that

runs OLS on the selected sample, (ii) OLS on observations in cells with no observed attrition, and (iii) OLS on
observations in cells such that there is zero probability of attrition. We vary the number of observations per cell
(Nx) and the number of covariate cells.
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Table 2: Selecting cells with no differential attrition - bias and standard error

Absolute value of the bias (×100) Standard error (×
√
N)

No
selection

Selection on
observed
attrition

Selection on
actual

attrition

No
selection

Selection on
observed
attrition

Selection on
actual

attrition
(1) (2) (3) (4) (5) (6)

Panel A: 5 covariate cells
Nx = 50 15.08 9.78 0.14 1.189 1.643 2.737
Nx = 100 15.03 6.42 0.21 1.184 1.927 2.782
Nx = 1000 15.00 1.33 0.01 1.168 2.798 2.735
Nx = 5000 15.00 0.02 0.03 1.180 2.649 2.689

Panel B:10 covariate cells
Nx = 50 14.95 9.82 0.32 1.188 1.620 2.760
Nx = 100 14.86 6.25 0.07 1.170 1.867 2.728
Nx = 1000 14.92 0.96 0.00 1.191 2.507 2.742
Nx = 5000 14.90 0.29 0.01 1.201 2.830 2.739

Panel C: 25 covariate cells
Nx = 50 14.91 9.92 0.08 1.188 1.581 2.754
Nx = 100 14.87 6.45 0.00 1.176 1.813 2.662
Nx = 1000 14.87 0.91 0.03 1.176 2.411 2.685
Nx = 5000 14.87 0.22 0.01 1.176 2.634 2.734

Panel D: 50 covariate cells
Nx = 50 14.86 9.94 0.01 1.178 1.552 2.670
Nx = 100 14.85 6.46 0.00 1.169 1.847 2.736
Nx = 1000 14.87 0.94 0.01 1.198 2.432 2.746
Nx = 5000 14.87 0.23 0.01 1.190 2.627 2.745

Note: this table presents results from MC simulation described in Section ??. We present the absolute value of
the bias (multiplied by 100) and the standard error (multiplied by

√
N for three different estimators: (i) one that

runs OLS on the selected sample, (ii) OLS on observations in cells with no observed differential attrition, and (iii)
OLS on observations in cells such that there is no differential attrition in the population. We vary the number of
observations per cell (Nx) and the number of covariate cells.
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Table 3: Lee bounds selecting cells with lower differential attrition (without covariates to tighten
bounds)

Empirical coverage Width of the confidence interval

No
selection

Selection on
observed
attrition

Selection on
actual

attrition

No
selection

Selection on
observed
attrition

Selection on
actual

attrition
(1) (2) (3) (4) (5) (6)

Panel A: 5 covariate cells
Nx = 50 0.958 0.905 0.955 0.819 0.737 0.803
Nx = 100 0.954 0.904 0.946 0.736 0.624 0.611
Nx = 1000 0.955 0.943 0.947 0.600 0.334 0.330
Nx = 5000 0.960 0.952 0.952 0.566 0.258 0.258

Panel B:10 covariate cells
Nx = 50 0.955 0.829 0.955 0.767 0.677 0.803
Nx = 100 0.951 0.838 0.945 0.710 0.616 0.611
Nx = 1000 0.954 0.938 0.947 0.614 0.338 0.330
Nx = 5000 0.952 0.951 0.951 0.590 0.258 0.258

Panel C: 25 covariate cells
Nx = 50 0.954 0.601 0.955 0.712 0.591 0.803
Nx = 100 0.952 0.635 0.946 0.676 0.577 0.611
Nx = 1000 0.951 0.920 0.947 0.616 0.353 0.330
Nx = 5000 0.951 0.953 0.953 0.601 0.258 0.258

Panel D: 50 covariate cells
Nx = 50 0.953 0.301 0.955 0.682 0.539 0.804
Nx = 100 0.955 0.343 0.946 0.656 0.541 0.611
Nx = 1000 0.951 0.892 0.948 0.614 0.374 0.330
Nx = 5000 0.951 0.952 0.952 0.603 0.258 0.258

Note: this table presents results from MC simulation described in Section 3.3. We present the empirical coverage
and the width of the confidence interval for three different estimators: (i) the standard Bounds’ estimator proposed
in Lee (2009), (ii) the Lee bounds restricting to cells with observed differential attrition rates lower than 25%, and
(iii) the Lee bounds restricting to cells with differential attrition rates lower than 25% in the population. We vary
the number of observations per cell (Nx) and the number of covariate cells.
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Table 4: Lee bounds selecting cells with lower differential attrition (with covariates to tighten
bounds)

Empirical coverage Width of the confidence interval

No
selection

Selection on
observed
attrition

Selection on
actual

attrition

No
selection

Selection on
observed
attrition

Selection on
actual

attrition
(1) (2) (3) (4) (5) (6)

Panel A: 5 covariate cells
Nx = 50 0.933 0.886 0.955 0.745 0.698 0.803
Nx = 100 0.935 0.890 0.946 0.679 0.596 0.611
Nx = 1000 0.947 0.942 0.947 0.562 0.333 0.330
Nx = 5000 0.953 0.952 0.952 0.530 0.258 0.258

Panel B:10 covariate cells
Nx = 50 0.911 0.790 0.955 0.704 0.634 0.803
Nx = 100 0.920 0.812 0.945 0.667 0.580 0.611
Nx = 1000 0.944 0.936 0.947 0.592 0.336 0.330
Nx = 5000 0.946 0.951 0.951 0.569 0.258 0.258

Panel C: 25 covariate cells
Nx = 50 0.858 0.518 0.955 0.659 0.558 0.803
Nx = 100 0.895 0.580 0.946 0.645 0.547 0.611
Nx = 1000 0.934 0.915 0.947 0.605 0.346 0.330
Nx = 5000 0.944 0.953 0.953 0.592 0.258 0.258

Panel D: 50 covariate cells
Nx = 50 0.786 0.212 0.955 0.632 0.512 0.804
Nx = 100 0.856 0.283 0.946 0.629 0.519 0.611
Nx = 1000 0.927 0.882 0.948 0.607 0.362 0.330
Nx = 5000 0.940 0.952 0.952 0.598 0.258 0.258

Note: this table replicates the results from 3 using covariates to tighten the bounds as proposed in Lee (2009).
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Table 5: Empirical application: sample selection
by covariate cell

% Selection

Cells px(1) px(0)
px(1)−px(0)

px(1)
N

Male Old 0.732 0.662 0.093 918
Young 0.587 0.576 0.019 2210

Female Old 0.641 0.589 0.088 776
Young 0.564 0.508 0.098 1523

Notes: “Old” means twenty years of age or older;
“Young” means younger than twenty years. px(1) and
px(0) are the proportion of employed individuals in the
treatment and control groups, respectively. N is the
number of observations.

Table 6: Empirical application: bounds’ estima-
tors

Selected All
cells cells

Lower Bound 0.019 -0.004
Upper Bound 0.056 0.080
CI of the treatment [-0.024, 0.117] [-0.029, 0.109]

Notes: “Selected cells” group includes only cells with
differential selection below 5% (young males); “All cells”
group includes all cells regardless the differential attri-
tion. Lower and Upper bounds are calculated based on
Lee (2009). For the “All cells” group estimation, gender
and age dummies were used to tighten the bounds. CI
of treatment is calculated based on Imbens and Manski
(2004).
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A Appendix

A.1 Proof of Proposition 1

Assume that the number of observations in covariate cell x is given by Nx = f(x)N for all N . Then the

estimator τ̂ can be written as:

τ̂ =
1

∑G
x=1 1{x ∈ Γ̂}f(x)

G
∑

x=1

1{x ∈ Γ̂}f(x)τ̂x (12)

From equation 7, we know that:

1{x ∈ Γ̂} →p















1 if x ∈ Γ

0 if x /∈ Γ

(13)

which implies that
∑G

x=1 1{x ∈ Γ̂}f(x) →p

∑G
x=1 1{x ∈ Γ}f(x).

Moreover, we know that
√
N(τ̂x − τx) →d N

(

0, 1
f(x)

σ2

p(1−p)

)

if x ∈ Γ and τ̂x = Op(1) if x /∈ Γ. Therefore:

τ̂ →p
1

∑G
x=1 1{x ∈ Γ}f(x)

G
∑

x=1

1{x ∈ Γ}f(x)τx =
1

∑

x∈Γ f(x)

∑

x∈Γ

f(x)τx = E[τx|x ∈ Γ] (14)

and:

√
N(τ̂ − E[τx|x ∈ Γ]) →d N

(

0,
1

(
∑

x∈Γ f(x))
2

∑

x∈Γ

f(x)
σ2

p(1− p)

)

(15)

A.2 Proof of Proposition 2

For each x, we want to test H0 : |px(1) − px(0)| ≤ ǫ at α significance level. Consider the decision rule

such that we reject H0 if either p̂x(1)−p̂x(0)−ǫ
σ̂ > Φ(1 − α) or p̂x(1)−p̂x(0)+ǫ

σ̂ < Φ(α), where σ̂ is a consistent

estimator for the standard error of p̂x(1)− p̂x(0) and Φ(.) is the CDF of the standard normal. Note that, for

any px(1) − px(0) such that |px(1) − px(0)| ≤ ǫ, we have that Pr(reject H0|px(1) − px(0)) → α̃ ≤ α when

Nx → ∞. For example, if px(1) − px(0) = ǫ, then Pr
(

p̂x(1)−p̂x(0)−ǫ
σ̂ > Φ(1− α)|px(1)− px(0) = ǫ

)

→ α

while Pr
(

p̂x(1)−p̂x(0)+ǫ
σ̂ < Φ(α)|px(1)− px(0) = ǫ

)

→ 0. The opposite happens when px(1) − px(0) = −ǫ.

Importantly, note that Pr(reject H0|px(1)− px(0) = 0) → 0 while Pr(reject H0| |px(1)− px(0)| > ǫ) → 1.
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As in proposition 1, we have that:

τ̂ ′ =

∑G
x=1 1{x ∈ Γ̂′}[p(1− p̂x(1)) + (1− p)(1− p̂x(0))]f(x)τ̂x
∑G

x=1 1{x ∈ Γ̂′}[p(1− p̂x(1)) + (1− p)(1− p̂x(0))]f(x)
(16)

Since we assume that |px(1)− px(0)| > ǫ for x /∈ Γ′, we have that:

1{x ∈ Γ̂′} →p















1 if x ∈ Γ′

0 if x /∈ Γ′

(17)

Moreover, for x ∈ Γ′, we have that p̂x(1) →p px, p̂x(0) →p px, and
√
N(τ̂x − τx) →d N

(

0, 1
pxf(x)

σ2

p(1−p)

)

.

Also, τ̂x = Op(1) if x /∈ Γ′. Therefore:

τ̂ ′ →p
1

∑G
x=1 1{x ∈ Γ′}pxf(x)

G
∑

x=1

1{x ∈ Γ′}pxf(x)τx =
1

∑

x∈Γ′ pxf(x)

∑

x∈Γ′

pxf(x)τx = τ ′ (18)

and:

√
N(τ̂ − τ ′) →d N

(

0,
1

(
∑

x∈Γ pxf(x))
2

∑

x∈Γ

pxf(x)
σ2

p(1− p)

)

(19)
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